WO2021227881A1 - 无线链路失败恢复方法及对应的用户设备 - Google Patents

无线链路失败恢复方法及对应的用户设备 Download PDF

Info

Publication number
WO2021227881A1
WO2021227881A1 PCT/CN2021/090694 CN2021090694W WO2021227881A1 WO 2021227881 A1 WO2021227881 A1 WO 2021227881A1 CN 2021090694 W CN2021090694 W CN 2021090694W WO 2021227881 A1 WO2021227881 A1 WO 2021227881A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
source base
daps
release
source
Prior art date
Application number
PCT/CN2021/090694
Other languages
English (en)
French (fr)
Inventor
常宁娟
堀贵子
Original Assignee
夏普株式会社
常宁娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 常宁娟 filed Critical 夏普株式会社
Priority to EP21803581.4A priority Critical patent/EP4152886A1/en
Priority to US17/923,986 priority patent/US20230180330A1/en
Publication of WO2021227881A1 publication Critical patent/WO2021227881A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • H04W76/36Selective release of ongoing connections for reassigning the resources associated with the released connections

Definitions

  • the present disclosure relates to the field of wireless communication technology, and more specifically, the present disclosure relates to a handover method and corresponding user equipment.
  • seamless handover that is, the handover interruption time of zero milliseconds or close to zero milliseconds can be met during the handover process of changing the UE's serving cell .
  • Dual Active Protocol Stack Dual Active Protocol Stack
  • the UE after receiving the handover command, the UE does not cut off the link with the source base station (data transmission) during the handover process that accesses the target base station, but can maintain the connection with the target base station and the source base station at the same time.
  • the time delay caused by service interruption caused by disconnecting the connection with the source base station before accessing the target base station during the handover process In order to avoid the time delay caused by service interruption caused by disconnecting the connection with the source base station before accessing the target base station during the handover process.
  • the present disclosure proposes a solution to the problem of how to implement the DAPS mechanism in the LTE system or the NR system.
  • the purpose of the embodiments of the present disclosure is to propose a solution to the problem of implementing the DAPS mechanism in the LTE/NR system. More specifically, the present disclosure is directed to how the UE will fall back to the traditional radio link failure (Radio Link Failure, RLF) in the LTE/NR system after the DAPS handover is performed and the target cell is successfully accessed.
  • RLF Radio Link Failure
  • the problem of single activation protocol stack is proposed to solve the problem.
  • the embodiments of the present disclosure provide a method for recovering from a wireless link failure when DAPS is configured in a user equipment, and a corresponding user equipment.
  • a method implemented in a user equipment UE which includes: a master cell group (Master Cell Group, MCG) radio link failure RLF occurs in the user equipment UE, and the UE initiates radio resources Control (Radio Resourc Control, RRC) connection re-establishment process to restore the connection with the network side; in the RRC connection re-establishment process, if the UE is configured with the dual activation protocol stack DAPS bearer, the UE performs slave The change operation from the dual activation protocol stack to the single activation protocol stack releases the protocol stack and configuration associated with the source base station.
  • MCG Master Cell Group
  • RRC Radio Resourc Control
  • the change operation performed by the UE from the dual activation protocol stack to the single activation protocol stack includes one or more of the following:
  • Operation 1 Reset the Medium Access Control (MAC) corresponding to the source base station and release the MAC configuration of the source base station;
  • MAC Medium Access Control
  • Operation 2 For each DAPS bearer, release the Radio Link Control (RLC) entity of the source base station and its associated logical channel, and reconfigure the Packet Data Convergence Protocol (PDCP) to release it DAPS (the PDCP entity that is configured with DAPS (called DAPS PDCP entity) will be reconfigured as a normal non-PDCP entity (PDCP entity that is not configured with DAPS));
  • RLC Radio Link Control
  • PDCP entity Packet Data Convergence Protocol
  • Operation 3 For each Signaling Radio Bearer (SRB), release the PDCP entity of the source base station, and release the RLC entity of the source base station and its associated logical channel;
  • SRB Signaling Radio Bearer
  • Operation 4 Release the physical channel configuration of the source base station
  • Operation 5 Discard the security key used at the source base station.
  • the UE configured with DAPS bearer determines that the link with the source base station does not detect the radio link failure RLF, the UE falls back to only the source base station.
  • the base station maintains the single activation protocol stack state of the connection, including performing one or more of the following operations:
  • Operation 1 Release the configuration of the target base station
  • Operation 2 Reset the MAC corresponding to the target base station and release the MAC configuration of the target base station;
  • Operation 3 For each DAPS bearer, release the RLC entity of the target base station and its associated logical channel, and reconfigure PDCP release to release DAPS (that is, reconfigure the DAPS PDCP entity as a normal non-PDCP entity);
  • Operation 4 For each SRB, release the PDCP entity of the target base station, release the RLC entity of the target base station and its associated logical channel, if the master key update indication (such as the masterKeyUpdate information element indication) is not received, configure the source base station’s
  • the PDCP entity is the continuation (cotinuation) of the state variable of the PDCP entity of the target base station;
  • Operation 5 For each Data Radio Bearer (DRB) that is not configured as a DAPS bearer, if the master key update indication (such as the masterKeyUpdate information element indication) is not received, the PDCP entity of the source base station is configured as the target The continuation of the state variables of the PDCP entity of the base station (cotinuation);
  • DRB Data Radio Bearer
  • the master key update indication such as the masterKeyUpdate information element indication
  • Operation 6 Release the physical channel configuration of the target base station
  • Operation 7 Discard the security key used at the target base station
  • Operation 8 Lose any saved RRC message; restore the suspended SRB at the source base station;
  • Operation 9 For each non-DAPS bearer, fall back to the UE configuration used by the DRB of the source base station (including PDCP, RLC state variables, security configuration, PDCP and RLC entity sending and receiving data stored in the buffer);
  • Operation 10 Fall back to the measurement configuration used by the UE at the source base station.
  • Operation 11 Initiate a failure information process to report to the network side that RLF has occurred in the target base station when DAPS is configured.
  • the failure reason included in the RRC message (such as the failure information Failure Information message) used for reporting the failure information by the UE is set to MCG RLF configured with DAPS.
  • the MCG RLF of the UE occurs after the UE successfully completes the DAPS handover to the target base station.
  • the UE configured with the DAPS bearer initiates an RRC connection re-establishment process when RLF is detected in the link between the UE and the source base station.
  • the UE performs a change operation from a dual activation protocol stack to a single activation protocol stack when the UE receives an instruction for releasing the source base station from the network side. Execute when the information is RRC message.
  • the UE sends an RRC message containing DAPS indication information to the network side, where the DAPS indication information is used to indicate that the UE is configured with a DAPS bearer; preferably, the RRC The message is an RRC re-establishment request message or an RRC re-establishment request complete message.
  • the UE is configured with a DAPS bearer, and one or more DRBs of the UE are configured with a DAPS configuration information element for instructing to perform a DAPS handover operation.
  • the UE when the UE detects that RLF has occurred in the link of the source base station, the UE performs one or more of the following operations:
  • Operation 1 Reset the MAC corresponding to the source base station and release the MAC configuration of the source base station;
  • Operation 2 For each DAPS bearer, release the RLC entity of the source base station and its associated logical channel, and reconfigure PDCP release to release DAPS (that is, the PDCP entity configured with DAPS (called DAPS PDCP entity) is reconfigured as a normal non-PDCP entity (PDCP entity without DAPS configuration));
  • Operation 3 For each SRB, release the PDCP entity of the source base station, and release the RLC entity of the source base station and its associated logical channel;
  • Operation 4 Release the physical channel configuration of the source base station
  • Operation 5 Discard the security key used at the source base station.
  • a user equipment including: a processor; and a memory storing instructions; wherein the instructions execute the wireless link failure recovery according to the context when the instructions are run by the processor method.
  • a wireless link failure recovery method including:
  • the UE performs a change operation from the dual-activation protocol stack to the single-activation protocol stack:
  • a wireless link failure recovery method including:
  • the timer T310 associated with the source primary cell PCell expires, or the MAC of the source primary cell group MCG receives a random access problem indication, or the RLC of the source MCG receives an indication that the maximum number of retransmissions has been reached,
  • the user equipment UE considers that RLF has occurred on the link of the source MCG that has been monitored;
  • a UE device configured to:
  • the UE performs a change operation from the dual-activation protocol stack to the single-activation protocol stack:
  • a UE device configured to:
  • the timer T310 associated with the source primary cell PCell expires, or the MAC of the source primary cell group MCG receives a random access problem indication, or the RLC of the source MCG receives an indication that the maximum number of retransmissions has been reached,
  • the UE considers that RLF has been detected on the link of the source MCG
  • FIG. 1 is a sequence diagram showing that a user equipment UE in a connected state changes a serving cell through a handover process.
  • Figure 2 is a schematic diagram showing a protocol stack related to a DAPS bearer in a dual activation protocol stack configuration.
  • Fig. 3 is a flowchart showing a wireless link failure recovery method of the first embodiment.
  • FIG. 4 shows a block diagram of the user equipment UE involved in the present disclosure.
  • LTE Long Term Evolution
  • NR New Radio Access
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • handover refers to the change of the primary cell initiated by the network side, including the primary cell change between cells and the primary cell change within the cell, that is, the primary cell of the UE is changed from the source cell to the target cell, where the source cell
  • the target cell can be the same cell or a different cell.
  • the secret key or security algorithm used for access layer security can also be updated or not updated accordingly.
  • the security includes encryption and decryption and integrity protection.
  • the source cell can also be called the source base station, or the source beam (beam), the source transmission point (TRP), the source primary cell (Primary Cell, PCell), the source primary cell group MCG;
  • the target cell can also be called the target Base station, or target beam, target transmission point, target primary cell PCell, target cell group MCG.
  • the source cell refers to the cell that is connected to serve the UE before the handover process is initiated, that is, the cell that sends the RRC message containing the handover command to the UE.
  • the target cell refers to the cell that the UE is connected to and serves the UE after the handover process is successfully completed, or the cell indicated by the target cell identifier included in the handover command.
  • the handover command described in the present disclosure is used to trigger the UE to perform handover.
  • it is an RRC reconfiguration message containing a synchronization reconfiguration (Reconfigurationwithsync) information element.
  • MCG master cell group
  • the handover can also be referred to as the synchronous reconfiguration of the MCG.
  • it is an RRC connection reconfiguration message containing an information element of mobility control information (MobilityControlInformation).
  • the synchronization reconfiguration information element or the mobile control information information element may contain the configuration information of the target cell, such as the target cell identity, the target cell frequency, the common configuration of the target cell, such as system information, and the information used by the UE to access the target cell. Random access configuration, security parameter configuration of the UE in the target cell, radio bearer configuration of the UE in the target cell, etc.
  • the RRC reconfiguration message in the present disclosure is equivalent to the RRC connection reconfiguration message; similarly, the response message RRC reconfiguration complete message is equivalent to the RRC connection reconfiguration complete message.
  • the handover command is equivalent to the RRC message containing the handover command, and refers to the RRC message or the configuration in the RRC message that triggers the UE to perform the handover.
  • Switch configuration refers to all or part of the configuration in the switch command. Cancel, release, delete, empty and clear can be replaced. Execution, use and application can be replaced. Configuration and reconfiguration can be replaced. Monitor and detect can be replaced.
  • the RRC reconfiguration message used for the handover command carries the RRC configuration from the target base station, including but not limited to the following RRC configuration (for details, please refer to section 6.2.2 in the 3GPP technical standard protocol 38.331):
  • -Measurement configuration used to configure intra-frequency, inter-frequency and inter-radio access technology measurements performed by the UE. Such as measurement object configuration, measurement report configuration, measurement gap configuration, etc.
  • -Cell group configuration (cellGroupConfig information element), used to configure a primary cell group or a secondary cell group.
  • cellGroupConfig information element used to configure a primary cell group or a secondary cell group.
  • MAC configuration MAC-cellgroupconfig information element
  • physical layer configuration secondary cell add/modify/release configuration
  • special cell Special cell, SpCell
  • the spcell configuration includes cell index number, handover information (reconfigurationWithSync information element), radio link failure related timer and constant configuration, radio link detection (Radio Link Monitoring, RLM) configuration, special cell specific configuration, etc.
  • the reconfigurationwithsync information element is similar to the mobility control information in the LTE system. It contains handover-related information to achieve mobility. It includes public information about the serving cell configuration, the C-RNTI of the UE in the target cell, the handover process monitoring timer T304 configuration, and Random access dedicated configuration for random access process to the target cell, etc.
  • RadiobearerConfig information element used to configure the service data application protocol layer (Service Data Application Protocol, SDAP) and PDCP of the radio bearer DRB and/or SRB.
  • -Other configuration (otherconfig information element), used to configure proximity report configuration (reportproximityconfig information element), in-device coexistence (In-Device Coexistence, IDC) configuration, energy selection indication configuration (powerprefIndicationconfig information element), location acquisition configuration (obtainlocationconfig information) Element) and so on.
  • FIG. 1 is a sequence diagram showing that a user equipment UE in a connected state changes a serving cell through a handover process.
  • the handover process generally includes the following stages:
  • Phase 1 Measurement phase.
  • the base station sends the measurement configuration to the user equipment (User Equipment, UE); the UE measures the radio link corresponding to the serving cell or neighboring cell based on the measurement configuration, and when the configured measurement reporting conditions are met, the UE sends the measurement to the base station report.
  • the measurement phase is not necessary, and the UE can be handed over blindly when the base station does not have a valid measurement report.
  • Phase 2 Handover preparation phase.
  • the base station determines whether to trigger a handover for the UE based on the received measurement report and other factors such as the load of the base station. If it is determined to trigger a handover for the UE, the source base station initiates the handover preparation process by sending a handover request message to the target base station.
  • the target base station decides whether to accept this handover request for the UE according to the UE context in the handover request message and the available resources of the target base station. If accepted, it will reply to the source base station with a handover confirmation message, where the handover confirmation message contains a base station Inter-node RRC messages are handover commands.
  • Phase 3 Switch execution phase.
  • the source base station issues the handover command to the UE and starts to forward the UE's data to the target base station.
  • the UE that receives the handover command immediately applies the configuration of the handover command to perform handover, accesses the target base station through a random access process, and sends a confirmation message to the target base station. Among them, the random access process is not necessary.
  • Phase 4 The handover is completed. After the target base station confirms that the UE has successfully accessed, it sends a handover complete message to the source base station. According to this, the source base station can release the UE context stored on it.
  • the DAPS handover introduced in version 16 refers to a handover process. After the UE receives the RRC message for handover, it still maintains the connection with the source base station until the source base station is released after the target random access process is successfully executed. . In this process, the UE continues to receive downlink data from the source base station until the source base station is released, and the user continues to send uplink data to the source base station until the random access process to the target base station is successfully completed. After the random access process to the target base station is completed, the MAC layer instructs the upper layer to complete the random access process. After receiving the instruction, the RRC layer instructs the lower layer (such as the PDCP layer) to perform uplink data change and change the uplink path from the source base station Is the target base station.
  • the lower layer such as the PDCP layer
  • the PDCP layer PDCP data protocol data unit (Protocol Data Unit, PDU) PDU is delivered to the RLF entity associated with the target base station, and the PDCP control PDU associated with the source base station is delivered to the source base station for association
  • the RLC entity that is associated with the target base station delivers the PDCP control PDU associated with the target base station to the RLC entity associated with the target base station.
  • DAPS handover After the UE receives the handover command, it establishes a MAC entity for the target base station. If a DRB is configured as a DAPS bearer, it establishes an RLC entity associated with the target base station and dedicated service information (Dedicated Service Information) for the DRB. Traffic Channel, DTCH) logical channel, and the PDCP entity associated with the DAPS bearer is reconfigured as a DAPS PDCP entity.
  • the DAPS PDCP entity is a PDCP entity that is simultaneously associated with the source base station and the target base station for security and robustness.
  • the header compression (RObust Header Compression, ROHC) function, and the security and ROHC functions are respectively associated with the corresponding RLC entities configured by the source base station and the target base station.
  • the UE In the DAPS process, if the source base station has a radio link failure, the UE will suspend the DRB transmission of all source base stations and release the connection of the source base station.
  • the UE receives the RRC reconfiguration message sent from the target base station, which carries the indication information for instructing the release of the source base station (for example, identified by the daps-SourceRelease information element). After receiving the indication, the UE performs the release Source base station configuration and operation of the protocol stack.
  • the operation includes one or more of the following: reset the MAC corresponding to the source base station, release the MAC configuration of the source base station; for each DAPS bearer, release the RLC entity of the source base station and its associated logical channel, and reconfigure the PDCP release To release DAPS (that is, the PDCP entity configured with DAPS (called DAPS PDCP entity) will be reconfigured as a normal non-PDCP entity (PDCP entity without DAPS configured)); for each SRB, the PDCP entity of the source base station is released, and the source base station's PDCP entity is released.
  • the RLC entity and its associated logical channel release the physical channel configuration of the source base station; discard the security key used in the source base station.
  • the UE When the DAPS handover fails, that is, the T304 timer used to monitor the handover process expires, if the radio link failure is not detected on the source base station, the UE returns to the connection with the source base station and reports the DAPS switch failure through the source base station. Will trigger the RRC connection re-establishment process.
  • the UE rolls back from the DAPS state to the single activation protocol stack state that only maintains communication with the source base station by performing one or more of the following operations: release the configuration of the target base station; reset the target The MAC corresponding to the base station, release the MAC configuration of the target base station; for each DAPS bearer, release the RLC entity of the target base station and its associated logical channel, and reconfigure the PDCP release to release the DAPS (that is, reconfigure the DAPS PDCP entity as a normal non-PDCP entity ); For each SRB, release the PDCP entity of the target base station, release the RLC entity of the target base station and its associated logical channel, if the master key update instruction is not received, configure the PDCP entity of the source base station as the PDCP entity of the target base station The continuation of the state variables (cotinuation); release the physical channel configuration of the target base station; discard the security key used at the target base station; lose any saved RRC messages; restore the
  • the UE considers that RLF has occurred when the following situations occur: the timer T310 for RLF monitoring expires, the timer T312 for fast RLF monitoring expires, the random access problem from the MAC layer is only received and the RLC entity is received Is used to indicate the maximum number of retransmissions.
  • the timer T310 for RLF monitoring expires
  • the timer T312 for fast RLF monitoring expires
  • the random access problem from the MAC layer is only received
  • the RLC entity is received Is used to indicate the maximum number of retransmissions.
  • the UE In the case of dual connectivity (DC), the UE is configured with a secondary cell group (Secondary Cell Group, SCG). If the above timer, MAC entity, and RLC are associated with the SCG, it is considered that the SCG RLF is monitored.
  • SCG Secondary Cell Group
  • a radio link failure RLF occurs.
  • the RLF refers to the link failure of the PCell after the handover succeeds, or the link of the target cell of the DAPS handover fails.
  • the link between the UE and the source base station is also in the RLF state.
  • the RLF of the source link can occur during the DAPS handover process (T304 is running) or after the DAPS handover process is successfully completed, that is, the UE communicates with the target base station. The random access process was successfully completed.
  • a radio link failure RLF occurs.
  • the RLF refers to the link failure of the PCell after the handover succeeds, or the link of the target cell of the DAPS handover fails.
  • the link between the UE and the source base station is not in the RLF state, that is, the link quality state of the source link is good.
  • the UE needs to roll back from the DAPS state, that is, the dual activation protocol stack state, to the single activation protocol stack state, to continue the next operation, such as performing the RRC connection re-establishment process. Otherwise, when the UE in the DAPS state performs the connection recovery process with the network side in the RLF of the above two scenarios, the network side cannot know whether the UE is in the DAPS state, and the status of the UE and the network side do not match, which may cause the UE to recover. RRC reconfiguration fails after the process fails.
  • the present disclosure provides solutions to the above-mentioned problems on the basis of the above-mentioned scenarios, but is not limited to the above-mentioned scenarios.
  • This embodiment provides a method for the UE to autonomously perform the fallback from the DAPS state to the single activation protocol stack (non-DAPS) state during the RRC connection re-establishment process (as shown in FIG. 3).
  • Step 1 The UE initiates the RRC re-establishment process.
  • the UE can initiate the RRC re-establishment process when one of the following conditions is met: that is, in step 0, when the RLF of the MCG is detected; when the RLF of the MCG is detected and the timer 316 is not configured; when the MCG is synchronized If the reconfiguration fails, the switch fails.
  • the RLF of the MCG refers to the RLF of the target base station after receiving the handover command or after the handover is successful.
  • the successful handover refers to the successful completion of the random access between the MAC layer and the target base station.
  • the timer T316 is used to monitor the MCG failure information process (or called the fast MCG recovery process).
  • T316 is started, and when a response message from the network side such as an RRC reconfiguration message is received Or RRC release message, or stop T316 when the RRC connection re-establishment process is initiated.
  • a response message from the network side such as an RRC reconfiguration message is received Or RRC release message, or stop T316 when the RRC connection re-establishment process is initiated.
  • T316 times out, the UE considers that the MCG failure information process has failed and ends, and the UE can perform the RRC re-establishment process at this time.
  • Step 2 During the RRC re-establishment process, such as the initialization phase of the RRC re-establishment process, the UE performs an operation of falling back from the DAPS state to the single activation protocol stack (non-DAPS) state, and releases the protocol stack and configuration associated with the source base station.
  • the operation includes one or more of the following:
  • Operation 1 Reset the MAC corresponding to the source base station and release the MAC configuration of the source base station;
  • Operation 2 For each DAPS bearer, release the RLC entity of the source base station and its associated logical channel, and reconfigure PDCP release to release DAPS (that is, the PDCP entity configured with DAPS (called DAPS PDCP entity) is reconfigured as a normal non-PDCP entity (PDCP entity without DAPS configuration));
  • Operation 3 For each SRB, release the PDCP entity of the source base station, and release the RLC entity of the source base station and its associated logical channel;
  • Operation 4 Release the physical channel configuration of the source base station
  • Operation 5 Discard the security key used at the source base station.
  • the UE performs the above operations when DAPS is configured.
  • the configured DAPS of the UE can also be described as the UE is configured with any one or more DAPS bearers; or any one or more DRBs of the UE are configured with DAPS (such as (Identified by the daps-Config information element).
  • the DAPS bearer refers to that the bearer DRB is configured with an information element for indicating daps configuration, such as a daps-config information element.
  • the daps-config information element is configured separately for each DRB.
  • This embodiment presents a method based on the DAPS information reported by the UE on the network side to instruct the UE to perform a fallback from the DAPS state to the single activation protocol stack (non-DAPS) state during the RRC connection re-establishment process through the displayed RRC signaling.
  • Step 1 The UE initiates the RRC re-establishment process.
  • the trigger for the UE to initiate the RRC re-establishment process is the same as that described in Embodiment 1.
  • Step 2 In the RRC re-establishment process, the UE carries a DAPS indication information in the RRC connection re-establishment request message or the RRC connection re-establishment complete message, which is used to indicate to the network that the UE is configured with DAPS, or the UE is configured with any One or more DAPS bearers.
  • Step 3 Receive from the base station an RRC message containing an information element for instructing the release of the source base station.
  • the RRC message may be an RRC connection re-establishment message or an RRC reconfiguration message.
  • the RRC reconfiguration message is the first RRC reconfiguration message after the RRC re-establishment process is completed.
  • the daps-sourcerelease information element used to indicate the release of the source base station information element is used to instruct the UE to release the source base station, including the source cell part for stopping DAPS operation and the source cell part for releasing the DAPS configuration.
  • the information element used to indicate the release of the source base station may also be described as the information element used to indicate the release of the source base station is set to TRUE or 1.
  • the UE performs the operation of falling back from the DAPS state to the single activation protocol stack (non-DAPS) state, and releases the protocol stack and configuration associated with the source base station.
  • the operation includes one or more of the following:
  • Operation 1 Reset the MAC corresponding to the source base station and release the MAC configuration of the source base station;
  • Operation 2 For each DAPS bearer, release the RLC entity of the source base station and its associated logical channel, and reconfigure PDCP release to release DAPS (that is, the PDCP entity configured with DAPS (called DAPS PDCP entity) is reconfigured as a normal non-PDCP entity (PDCP entity without DAPS configuration));
  • Operation 3 For each SRB, release the PDCP entity of the source base station, and release the RLC entity of the source base station and its associated logical channel;
  • Operation 4 Release the physical channel configuration of the source base station
  • Operation 5 Discard the security key used at the source base station.
  • the UE performs the above operations when DAPS is configured.
  • the configured DAPS of the UE can also be described as the UE is configured with any one or more DAPS bearers; or any one or more DRBs of the UE are configured with DAPS (such as (Identified by the daps-Config information element).
  • the DAPS bearer refers to that the bearer DRB is configured with an information element for indicating daps configuration, such as a daps-config information element.
  • the daps-config information element is configured separately for each DRB.
  • This embodiment provides a method for the UE to fall back from the DAPS state to the single activation protocol stack (non-DAPS) state and fall back to the connection with the source base station in the case of the above scenario 2, so as to avoid initiating RRC Connection re-establishment process.
  • Step 1 The UE detects that the RLF of the MCG has occurred.
  • the MCG refers to the target MCG during DAPS handover.
  • Step 2 If the source base station does not detect the RLF, the UE releases the target base station part of the DAPS operation, and performs the operation of falling back from the DAPS state to the single activation protocol stack (non-DAPS) state.
  • the operation includes one or more of the following:
  • Operation 1 Release the configuration of the target base station
  • Operation 2 Reset the MAC corresponding to the target base station and release the MAC configuration of the target base station;
  • Operation 3 For each DAPS bearer, release the RLC entity of the target base station and its associated logical channel, and reconfigure PDCP release to release DAPS (that is, reconfigure the DAPS PDCP entity as a normal non-PDCP entity);
  • Operation 4 For each SRB, release the PDCP entity of the target base station, release the RLC entity of the target base station and its associated logical channel, if the master key update indication (such as the masterKeyUpdate information element indication) is not received, configure the source base station’s
  • the PDCP entity is the continuation (cotinuation) of the state variable of the PDCP entity of the target base station;
  • Operation 5 For each DRB that is not configured as a DAPS bearer, if the master key update instruction (such as the masterKeyUpdate information element instruction) is not received, the PDCP entity of the source base station is configured as the continuation of the state variable of the PDCP entity of the target base station (cotinuation);
  • the master key update instruction such as the masterKeyUpdate information element instruction
  • Operation 6 Release the physical channel configuration of the target base station
  • Operation 7 Discard the security key used at the target base station
  • Operation 8 Lose any saved RRC message; restore the suspended SRB at the source base station;
  • Operation 9 For each non-DAPS bearer, fall back to the UE configuration used by the DRB of the source base station (including PDCP, RLC state variables, security configuration, PDCP and RLC entity sending and receiving data stored in the buffer);
  • Operation 10 Fall back to the measurement configuration used by the UE at the source base station.
  • Operation 11 Initiate a failure information process to report to the network side that RLF has occurred in the target base station when DAPS is configured.
  • the failure reason included in the RRC message (such as the failure information Failure Information message) used for reporting the failure information by the UE is set to MCG RLF configured with DAPS.
  • step 1 it also includes that the UE has successfully completed the DAPS handover, that is, when the UE is configured with any DAPS bearer, the MAC layer has successfully completed the random access process to the target base station, and T304 is not in the running state at this time. That is, step 2 is performed when the UE is configured with any one or more DAPS bearers.
  • This embodiment provides a method for the UE to perform a fallback from the DAPS state to the single activation protocol stack (non-DAPS) state when an RLF occurs in the source base station.
  • Step 1 The source RLF in the DAPS process occurs, that is, when the UE is configured with any DAPS bearer, the UE monitors the RLF of the source MCG.
  • Step 2 Perform a rollback from the DAPS state to the single activation protocol stack (non-DAPS) state, and release the configuration and protocol stack of the source base station.
  • the operation includes one or more of the following:
  • Operation 1 Suspend the transmission of DRB of all source base stations
  • Operation 2 Release the connection of the source base station
  • Operation 3 Reset the MAC corresponding to the source base station and release the MAC configuration of the source base station;
  • Operation 4 For each DAPS bearer, release the RLC entity of the source base station and its associated logical channel, and reconfigure PDCP release to release DAPS (that is, the PDCP entity configured with DAPS (called DAPS PDCP entity) is reconfigured as a normal non-PDCP entity (PDCP entity without DAPS configuration));
  • Operation 5 For each SRB, release the PDCP entity of the source base station, and release the RLC entity of the source base station and its associated logical channel;
  • Operation 6 Release the physical channel configuration of the source base station
  • Operation 7 Discard the security key used at the source base station.
  • this embodiment is not limited to the aforementioned scenario 1 and scenario 2 of the present disclosure, and is also applicable to the case of the source base station RLF when the DAPS has not been completed, that is, when the T304 is running.
  • This embodiment corresponds to Embodiment 2, and provides a corresponding method on the base station side.
  • Step 1 During the RRC re-establishment process, the RRC connection re-establishment request message or the RRC connection re-establishment complete message received from the UE carries a DAPS indication information, which is used by the UE to indicate to the network that the UE is configured with DAPS or the UE is configured Any one or more DAPS bearers.
  • a DAPS indication information which is used by the UE to indicate to the network that the UE is configured with DAPS or the UE is configured Any one or more DAPS bearers.
  • Step 2 Send an RRC message containing an information element for instructing the release of the source base station to the UE.
  • the RRC message may be an RRC connection re-establishment message or an RRC reconfiguration message.
  • the RRC reconfiguration message is the first RRC reconfiguration message after the RRC re-establishment process is completed.
  • the daps-sourcerelease information element used to indicate the release of the source base station information element is used to instruct the UE to release the source base station, including the source cell part for stopping DAPS operation and the source cell part for releasing the DAPS configuration.
  • the information element used to indicate the release of the source base station may also be described as the information element used to indicate the release of the source base station is set to TRUE or 1.
  • the instruction to release the information element of the source base station so that after receiving the information element, the UE performs the operation of falling back from the DAPS state to the single activation protocol stack (non-DAPS) state, and releases the information element associated with the source base station.
  • Protocol stack and configuration The operation includes one or more of the following:
  • Operation 1 Reset the MAC corresponding to the source base station and release the MAC configuration of the source base station;
  • Operation 2 For each DAPS bearer, release the RLC entity of the source base station and its associated logical channel, and reconfigure PDCP release to release DAPS (that is, the PDCP entity configured with DAPS (called DAPS PDCP entity) is reconfigured as a normal non-PDCP entity (PDCP entity without DAPS configuration));
  • Operation 3 For each SRB, release the PDCP entity of the source base station, and release the RLC entity of the source base station and its associated logical channel;
  • Operation 4 Release the physical channel configuration of the source base station
  • Operation 5 Discard the security key used at the source base station.
  • the UE performs the above operations when DAPS is configured.
  • the configured DAPS of the UE can also be described as the UE is configured with any one or more DAPS bearers; or any one or more DRBs of the UE are configured with DAPS (such as (Identified by the daps-Config information element).
  • the DAPS bearer refers to that the bearer DRB is configured with an information element for indicating daps configuration, such as a daps-config information element.
  • the daps-config information element is configured separately for each DRB.
  • FIG. 4 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE40 includes a processor 401 and a memory 402.
  • the processor 401 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 402 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memories.
  • the memory 402 stores program instructions. When the instruction is run by the processor 401, it can execute the various methods of radio link failure recovery when the DAPS bearer is described in detail in the present invention.
  • the method and related equipment of the present disclosure have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the method shown above is only exemplary. The method of the present disclosure is not limited to the steps and sequence shown above.
  • the base station and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future that can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present disclosure is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the program running on the device may be a program that causes the computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • the program for realizing the functions of the various embodiments of the present disclosure may be recorded on a computer-readable recording medium.
  • Corresponding functions can be realized by causing the computer system to read the programs recorded on the recording medium and execute these programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium storing a program dynamically for a short period of time, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuit can be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies.
  • present disclosure is not limited to the above-mentioned embodiments. Although various examples of the embodiment have been described, the present disclosure is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种切换时的链路失败恢复的方法以及相应的用户设备。在用户设备中执行的方法包括:在UE配置了双激活协议栈的切换过程成功后,若UE发生了主小区组的无线链路失败RLF,则在用于恢复连接的无线资源控制重建立过程中或者在源链路发生RLF时,UE执行从双激活协议栈回退到单激活协议栈的操作,释放源基站关联的协议栈和配置;在源基站的链路质量好时,UE释放目标基站关联的协议栈和配置,恢复和源基站的单连接状态,并将所述失败信息上报给基站。

Description

无线链路失败恢复方法及对应的用户设备 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及切换的方法以及对应的用户设备。
背景技术
2018年6月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#80次全会上批准了一个5G技术标准的新的研究项目(参见非专利文献:RP-181433:New WID on NR(New Radio)mobility enhancements)以及一个长期演进系统(Long Term Evolution,LTE)Release 16的新研究项目(参见非专利文献:RP-181544)。这两个项目的研究目的之一是找到用于满足移动性需求之一的解决方案:无缝切换,即在更换UE的服务小区的切换过程中能够满足零毫秒或接近零毫秒的切换中断时间。在正在研究的降低切换中断时间的解决方案中,有一种解决方法是双激活协议栈(Dual Active Protocol Stack)机制。在DAPS机制中,UE在收到切换命令后,在执行接入到目标基站的切换过程中并不切断和源基站的链接(数据传输),而是可以同时维护和目标基站以及源基站之间的连接和数据传输,从而避免切换过程中由于在接入目标基站之前就断开和源基站的连接而产生的对业务中断所带来的时延。
本公开针对在LTE系统或NR系统中如何实现DAPS机制的问题提出解决方法。
发明内容
本公开实施例的目的在于针对在LTE/NR系统中实现DAPS机制的问题提出解决方法。更具体地,本公开针对在LTE/NR系统中在执 行完DAPS切换成功接入到目标小区后发生目标小区链路无线链路失败(Radio Link Failure,RLF)的情况下UE如何回退到传统单激活协议栈的问题提出了解决方法。本公开实施例提供了在用户设备中执行的配置了DAPS时的无线链路失败恢复的方法以及相应的用户设备。
根据本公开的第一方面,提出了一种在用户设备UE中执行的方法,包括:用户设备UE发生主小区组(Master Cell Group,MCG)的无线链路失败RLF,所述UE发起无线资源控制(Radio Resourc Control,RRC)连接重建立过程来恢复和网络侧的连接;在所述RRC连接重建立过程中,若所述UE被配置了双激活协议栈DAPS承载,则所述UE执行从双激活协议栈到单激活协议栈的变更操作,释放源基站关联的协议栈和配置。
在上述第一方面的无线链路失败恢复方法中,所述UE执行从双激活协议栈到单激活协议栈的变更操作包括以下的一项或多项:
操作1:重置源基站对应的媒介接入控制实体(Medium Access Control,MAC)、释放源基站的MAC配置;
操作2:对于每一个DAPS承载,释放源基站的无线链路控制(Radio Link Control,RLC)实体及其关联的逻辑信道,重配置包数据汇聚协议实体(Packet Data Convergence Protocol,PDCP)释放来释放DAPS(即将配置了DAPS的PDCP实体(称DAPS PDCP实体)重配置为正常非PDCP实体(未配置DAPS的PDCP实体));
操作3:对于每一个信令无线承载(Signalling Radio Bearer,SRB),释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
操作4:释放源基站的物理信道配置;
操作5:丢弃在源基站所使用的安全密钥。
在上述第一方面的无线链路失败恢复方法中,当所述被配置了DAPS承载的UE确定和源基站之间的链路未监测到无线链路失败RLF时,UE回退到仅和源基站维持连接的单激活协议栈状态,包括执行以下一项或多项操作:
操作1:释放目标基站的配置;
操作2:重置目标基站对应的MAC、释放目标基站的MAC配置;
操作3:对于每一个DAPS承载,释放目标基站的RLC实体及其关联的逻辑信道,重配置PDCP释放来释放DAPS(即将DAPS PDCP实体重配置为正常非PDCP实体);
操作4:对于每一个SRB,释放目标基站的PDCP实体,释放目标基站的RLC实体和其关联的逻辑信道,若未收到主密钥更新指示(如masterKeyUpdate信息元素指示),则配置源基站的PDCP实体为目标基站的PDCP实体的状态变量的继续(cotinuation);
操作5:对每一个未被配置为DAPS承载的数据无线承载(Data Radio Bearer,DRB),若未收到主密钥更新指示(如masterKeyUpdate信息元素指示),则配置源基站的PDCP实体为目标基站的PDCP实体的状态变量的继续(cotinuation);
操作6:释放目标基站的物理信道配置;
操作7:丢弃在目标基站所使用的安全密钥;
操作8:丢失任何保存的RRC消息;恢复在源基站的挂起的SRB;
操作9:对于每一个非DAPS承载,回退到在源基站的DRB所使用的UE配置(包括PDCP、RLC状态变量,安全配置,PDCP和RLC实体的发送和接收缓存中保存的数据);
操作10:回退到UE在源基站所使用的测量配置。
操作11:发起失败信息过程以向网络侧上报在配置了DAPS的情况下在目标基站发生了RLF。优选地,在所述失败信息过程中,UE在用于上报所述失败信息的RRC消息(如失败信息FailureInformation消息)中包含的失败理由设置为配置了DAPS的MCG RLF。
在上述第一方面的无线链路失败恢复方法中,所述UE发生MCG RLF发生在所述UE成功完成到目标基站的DAPS切换之后。
在上述第一方面的无线链路失败恢复方法中,所述被配置了DAPS承载的UE在和所述源基站之间的链路监测到发生了RLF时,发起RRC连接重建立过程。
在上述第一方面的无线链路失败恢复方法中,所述UE执行从双激活协议栈到单激活协议栈的变更操作,是在所述UE从网络侧接收 到包含用于释放源基站的指示信息的RRC消息时执行。
在上述第一方面的无线链路失败恢复方法中,UE向网络侧发送包含DAPS指示信息的RRC消息,所述DAPS指示信息用于指示所述UE被配置了DAPS承载;优选地,所述RRC消息为RRC重建立请求消息或RRC重建立请求完成消息。
在上述第一方面的无线链路失败恢复方法中,所述UE被配置了DAPS承载是所述UE的一个或多个DRB被配置了用于指示执行DAPS切换操作的DAPS配置信息元素。
在上述第一方面的无线链路失败恢复方法中,当所述UE监测到所述源基站的链路发生了RLF时,所述UE执行下述操作中的一项或多项:
操作1:重置源基站对应的MAC、释放源基站的MAC配置;
操作2:对于每一个DAPS承载,释放源基站的RLC实体及其关联的逻辑信道,重配置PDCP释放来释放DAPS(即将配置了DAPS的PDCP实体(称DAPS PDCP实体)重配置为正常非PDCP实体(未配置DAPS的PDCP实体));
操作3:对于每一个SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
操作4:释放源基站的物理信道配置;
操作5:丢弃在源基站所使用的安全密钥。
根据本公开的第二方面,提供一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据上下文所述的无线链路失败恢复方法。
根据本公开的另一个方面,提供一种无线链路失败恢复方法,包括:
在RRC连接重建立过程中,若用户设备UE被配置了双激活协议栈DAPS承载,则所述UE执行从双激活协议栈到单激活协议栈的变更操作:
释放源主基站配置;
重置源基站对应的媒介接入控制MAC、释放源基站的MAC配置;
对于每一个DAPS承载,释放源基站的无线链路控制RLC实体及其关联的逻辑信道,重配置协议数据聚合协议PDCP实体释放来释放DAPS;
对于每一个信令无线承载SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
释放源基站的物理信道配置;
丢弃在源基站所使用的安全密钥。
此外,根据本公开的另一个方面,提供一种无线链路失败恢复方法,包括:
当源主小区PCell相关联的定时器T310超时,或者从源主小区组MCG的MAC收到了随机接入问题指示,或者从源MCG的RLC收到了最大重传次数已达到的指示,
用户设备UE认为监测到所述源MCG的链路发生了RLF;
重置源基站对应的MAC。
另外,根据本公开的另一个方面,提供一种UE设备,所包含的处理器被配置为:
在RRC连接重建立过程中,若所述UE被配置了双激活协议栈DAPS承载,则所述UE执行从双激活协议栈到单激活协议栈的变更操作:
释放源主基站配置;
重置源基站对应的媒介接入控制MAC、释放源基站的MAC配置;
对于每一个DAPS承载,释放源基站的无线链路控制RLC实体及其关联的逻辑信道,重配置协议数据聚合协议PDCP实体释放来释放DAPS;
对于每一个信令无线承载SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
释放源基站的物理信道配置;
丢弃在源基站所使用的安全密钥。
此外,根据本公开的另一个方面,提供一种UE设备,所包含的处理器被配置为:
当源主小区PCell相关联的定时器T310超时,或者从源主小区组MCG的MAC收到了随机接入问题指示,或者从源MCG的RLC收到了最大重传次数已达到的指示,
所述UE认为监测到所述源MCG的链路发生了RLF;
重置源基站对应的MAC。
附图说明
为了更完整地理解本公开及其优势,现在将参考结合附图的以下描述,其中:
图1是表示连接态的用户设备UE通过切换过程来变更服务小区的顺序图。
图2是表示双激活协议栈配置下的一个DAPS承载所相关的协议栈示意图。
图3是表示实施例1的无线链路失败恢复方法的流程图。
图4表示本公开所涉及的用户设备UE的框图。
在附图中,相同或相似的结构均以相同或相似的附图标记进行标识。
具体实施方式
根据结合附图对本公开示例性实施例的以下详细描述,本公开的其它方面、优势和突出特征对于本领域技术人员将变得显而易见。
在本公开中,术语“包括”和“含有”及其派生词意为包括而非限制;术语“或”是包含性的,意为和/或。
在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于 帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不背离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同参考数字用于相似功能和操作。
下文以长期演进系统(Long Term Evolution,LTE)/NR移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统。若无特殊说明,在本公开中,小区和基站的概念可以互相替换;LTE系统也用于指代5G及其之后的LTE系统(如称为eLTE系统,或者可以连接到5G核心网的LTE系统),同时LTE可以用演进的通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)或演进的通用陆地无线接入网E-UTRAN来替换。在本公开中,切换指的是网络侧发起的主小区的变更,包含小区间的主小区变更也包含小区内的主小区变更,即UE的主小区从源小区变更为目标小区,其中源小区和目标小区可以是同一个小区也可以是不同的小区,在此过程中,用于接入层安全的秘钥或安全算法也可随之更新或不更新。所述安全包括加密解密和完整性保护。源小区也可称为源基站,或称源光束(beam)、源传输点(Transmission point,TRP),源主小区(Primary Cell,PCell),源主小区组MCG;目标小区也可称为目标基站,或目标光束、目标传输点,目标主小区PCell,目标小区组MCG。源小区指的是切换过程发起之前所连接的为UE服务的小区即向UE发送包含切换命令的RRC消息的小区。目标小区指的是切换过程成功完成之后UE所连接的为UE服务的小区,或者说是切换命令中所包含的目标小区标识所指示的小区。本公开所述切换命令用于触发UE执行切换,在NR系统中是包含同步重配置(Reconfigurationwithsync)信息元素的RRC重配置消息,更进一步地,是包含用于主小区组(Master Cell Group,MCG)的同步重配置(Reconfigurationwithsync)信息元素的RRC重配置消息。此时, 切换也可称为MCG的同步重配置。在LTE系统中是包含移动控制信息(MobilityControlInformation)信息元素的RRC连接重配置消息。其中,所述同步重配置信息元素或移动控制信息信息元素可以包含目标小区的配置信息,例如目标小区标识、目标小区频率、目标小区的公共配置如系统信息、UE接入到目标小区所使用的随机接入配置、UE在目标小区的安全参数配置、UE在目标小区的无线承载配置等。为便于描述,本公开中RRC重配置消息和RRC连接重配置消息等同;同理,其响应消息RRC重配置完成消息和RRC连接重配置完成消息等同。切换命令和包含切换命令的RRC消息等同,指触发UE执行切换的RRC消息或RRC消息中的配置。切换配置指切换命令中的全部或部分配置。取消、释放、删除、清空和清除等可以替换。执行、使用和应用可替换。配置和重配置可以替换。监测(monitor)和检测(detect)可替换。
下列描述了本公开涉及的现有技术中的过程或概念。
NR系统中的切换配置:
在NR系统中,用于切换命令的RRC重配置消息承载着来自目标基站的RRC配置,包含但不限于下述RRC配置(具体请参见3GPP技术标准协议38.331中的6.2.2章节):
-测量配置(measconfig信息元素):用于配置UE所执行的频率内、频率间和无线接入技术间的测量。如测量对象配置、测量上报配置、测量空隙(gap)配置等。
-小区组配置(cellGroupConfig信息元素),用于配置主小区组或辅小区组。包括DRB/SRB对应的RLC承载配置(rlc-bearerToAddModList信息元素和rlc-bearerToreleaselist信息元素)、MAC配置(MAC-cellgroupconfig信息元素)、物理层配置、辅小区添加/修改/释放配置、特殊小区(Special cell,SpCell)配置等。其中,spcell配置中包含小区索引号、切换信息(reconfigurationWithSync信息元素)、无线链路失败相关定时器及常数配置、无线链路检测(Radio Link Monitoring,RLM)配置、特殊小区专用配置等。其中reconfigurationwithsync信息元素和LTE系统中的移动控制信息类似, 包含切换相关信息来实现移动性,其包含服务小区配置公共信息、UE在目标小区的C-RNTI、切换过程监控定时器T304配置、用于向目标小区随机接入过程的随机接入专用配置等。
-非接入层专用信息(dedicatedInfoNASList信息元素)。
-无线承载配置(radiobearerConfig信息元素),用于配置无线承载DRB和/或SRB的服务数据应用协议层(Service Data Application Protocol,SDAP)和PDCP。
-主密钥更新配置(masterKeyupdate信息元素)。
-其他配置(otherconfig信息元素),用于配置临近上报配置(reportproximityconfig信息元素)、设备内共存(In-Device Coexistence,IDC)配置、能量选择指示配置(powerprefIndicationconfig信息元素)、位置获取配置(obtainlocationconfig信息元素)等。
LTE/NR系统中的一般切换过程:
连接态的用户移动性主要通过切换过程来实现,所述切换即指的是处于RRC连接态的UE变更服务小区(主小区)的过程。图1是表示连接态的用户设备UE通过切换过程来变更服务小区的顺序图。如图1所示,切换过程一般包括如下阶段:
阶段1:测量阶段。基站向用户设备(User Equipment,UE)下发测量配置;UE基于该测量配置对服务小区或邻小区所对应的无线链路进行测量,当满足所配置的测量上报条件时,UE向基站发送测量报告。测量阶段不是必须的,在基站在没有有效测量报告的时候也可以盲切换UE。
阶段2:切换准备阶段。基站结合收到的测量报告以及其他因素如基站负载等决定是否为该UE触发切换。若确定对该UE触发切换,则源基站通过向目标基站发送切换请求消息来发起切换准备过程。目标基站根据切换请求消息中UE的上下文和目标基站的可用资源等因素决定是否接受对该UE的本次切换请求,如果接受,则向源基站回复切换确认消息,其中切换确认消息中包含一条基站间(inter-node)的RRC消息即切换命令。
阶段3:切换执行阶段。源基站将切换命令下发给UE,并开始将该UE的数据转发给目标基站。收到切换命令的UE立即应用该切换命令的配置执行切换,通过随机接入过程接入到目标基站,向目标基站发送确认消息。其中,随机接入过程不是必须的。
阶段4:切换完成阶段。目标基站确认UE成功接入后,向源基站发送切换完成消息。源基站据此可以释放其上所保存的UE上下文。
DAPS切换:
版本16引入的DAPS切换,指的一种切换过程,UE在收到用于切换的RRC消息后仍维持和源基站之间的连接,直到成功执行到目标的随机接入过程后源基站被释放。在此过程中,UE继续从源基站接收下行数据直到源基站被释放,用户继续向源基站发送上行数据直到到目标基站的随机接入过程成功完成。向目标基站的随机接入过程完成后,MAC层向上层指示随机接入过程完成,RRC层在收到该指示后,指示下层(如PDCP层)执行上行数据变更,将上行路径从源基站变更为目标基站。当PDCP层被请求了上行数据变更时,PDCP层PDCP数据协议数据单元(Protocol Data Unit,PDU)PDU递交给目标基站所关联的RLF实体,将关联到源基站的PDCP控制PDU递交给源基站关联的RLC实体,将关联到目标基站的PDCP控制PDU递交给目标基站关联的RLC实体。
在DAPS切换情况下,UE在收到切换命令后,为目标基站建立一个MAC实体,若一个DRB被配置为DAPS承载,则为该DRB建立一个关联到目标基站的RLC实体和专用业务信息(Dedicated Traffic Channel,DTCH)逻辑信道,且对该DAPS承载所关联的PDCP实体重配为DAPS PDCP实体,所述DAPS PDCP实体即在PDCP实体中同时存在分别关联到源基站和目标基站的安全和鲁棒性头压缩(RObust Header Compression,ROHC)功能,且将所述安全和ROHC功能分别关联到源基站和目标基站所配置的对应的RLC实体上。通过上述方式,在DAPS切换过程中,UE同时维护对于源基站和目标基站的激活协议栈,见图2。
在DAPS的过程中,如果源基站发生无线链路失败,则UE会挂起所有源基站的DRB的传输,释放源基站的连接。当DAPS切换完成后,UE接收从目标基站发送的RRC重配置消息,其中携带了用于指示释放源基站的指示信息(如以daps-SourceRelease信息元素标识),当收到该指示后UE执行释放源基站配置和协议栈的操作。所述操作包含下述一项或多项:重置源基站对应的MAC、释放源基站的MAC配置;对于每一个DAPS承载,释放源基站的RLC实体及其关联的逻辑信道,重配置PDCP释放来释放DAPS(即将配置了DAPS的PDCP实体(称DAPS PDCP实体)重配置为正常非PDCP实体(未配置DAPS的PDCP实体));对于每一个SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;释放源基站的物理信道配置;丢弃在源基站所使用的安全密钥。
当DAPS切换失败,即用于监测切换过程的T304定时器超时,则如果源基站上未监测到无线链路失败,则UE返回到和源基站的连接,通过源基站上报DAPS切换失败,而不会触发RRC连接重建立过程。在返回和源基站的连接过程中,UE通过执行下述一项或多项操作来从DAPS状态回退到仅和源基站保持通信的单激活协议栈状态:释放目标基站的配置;重置目标基站对应的MAC、释放目标基站的MAC配置;对于每一个DAPS承载,释放目标基站的RLC实体及其关联的逻辑信道,重配置PDCP释放来释放DAPS(即将DAPS PDCP实体重配置为正常非PDCP实体);对于每一个SRB,释放目标基站的PDCP实体,释放目标基站的RLC实体和其关联的逻辑信道,若未收到主密钥更新指示,则配置源基站的PDCP实体为目标基站的PDCP实体的状态变量的继续(cotinuation);释放目标基站的物理信道配置;丢弃在目标基站所使用的安全密钥;丢失任何保存的RRC消息;恢复在源基站的挂起的SRB;对于每一个非DAPS承载,回退到在源基站的DRB所使用的UE配置(包括PDCP、RLC状态变量,安全配置,PDCP和RLC实体的发送和接收缓存中保存的数据);回退到UE在源基站所使用的测量配置。
无线链路失败(Radio Link Failure,RLF):
UE在下述情况发生时,认为发生了RLF:用于RLF监测的定时器T310超时、用于快速RLF监测的定时器T312超时、收到来自MAC层的随机接入问题只是和收到来自RLC实体的用于指示重传次数达到最大数的指示。在DAPS切换时,若上述定时器、MAC实体和RLC是与源基站MCG关联的,则认为监测到了源基站MCG RLF;若上述定时器、MAC实体和RLC是与目标基站MCG关联的,则认为监测到了目标基站MCG RLF。在双连接(Dual Connectivity,DC)的时候,UE被配置了辅小区组(Secondary Cell Group,SCG),若上述定时器、MAC实体和RLC是与SCG关联的,则认为监测到了SCG RLF。
本公开中考虑下述两种场景:
场景1:UE在DAPS切换成功后,发生了无线链路失败RLF,所述RLF是指的是切换成功后的PCell的链路失败,或者说是DAPS切换的目标小区的链路失败。此时UE和源基站之间的链路也处于RLF状态,源链路的RLF可以发生在DAPS切换过程中(T304正在运行)也可以是发生在DAPS切换过程成功完成之后,即UE对目标基站的随机接入过程成功完成。
场景2:UE在DAPS切换成功后,发生了无线链路失败RLF,所述RLF是指的是切换成功后的PCell的链路失败,或者说是DAPS切换的目标小区的链路失败。此时UE和源基站之间的链路不处于RLF状态,即源链路的链路质量状态是好的。
在上述两种情况下,UE需要从DAPS状态即双激活协议栈状态,回退到单激活协议栈状态,以继续下一步的操作,如执行RRC连接重建立流程。否则处于DAPS状态的UE在上述两种场景的RLF下执行和网络侧的连接恢复过程时,网络侧无法获知UE是否处于DAPS状态,UE和网络侧的状态不匹配,可能会导致UE的连接恢复过程失败后RRC重配置失败。本公开在上述场景的基础上给出上述问题的解决方法,但并不限于上述场景。
实施例1:
该实施例给出了一种UE在RRC连接重建立过程中自主执行从DAPS状态回退到单激活协议栈(非DAPS)状态的方法(如图3所示)。
步骤1:UE发起RRC重建立过程。
优选地,UE可以在下述条件之一满足时,发起RRC重建立过程:即步骤0中,当检测到发生MCG的RLF;当检测到发生MCG的RLF且未配置定时器316;当MCG的同步重配置失败即切换失败。在UE配置了DAPS时,所述MCG的RLF指的是在收到切换命令后或切换成功后的目标基站的RLF。所述切换成功如前所述指的是在MAC层和目标基站之间的随机接入成功完成。所述定时器T316用于监测MCG失败信息过程(或称快速MCG恢复过程),当UE发送MCGfailureinformation消息或触发MCG失败信息过程时,启动T316,当收到网络侧的响应消息如RRC重配置消息或RRC释放消息,或当发起RRC连接重建立过程时停止T316,当T316超时,UE认为MCG失败信息过程失败结束,此时UE可以执行RRC重建立过程。
步骤2:在RRC重建立过程中,如RRC重建立过程的初始化阶段,UE执行从DAPS状态回退到单激活协议栈(非DAPS)状态的操作,释放源基站相关联的协议栈和配置。所述操作包括下述一项或多项:
操作1:重置源基站对应的MAC、释放源基站的MAC配置;
操作2:对于每一个DAPS承载,释放源基站的RLC实体及其关联的逻辑信道,重配置PDCP释放来释放DAPS(即将配置了DAPS的PDCP实体(称DAPS PDCP实体)重配置为正常非PDCP实体(未配置DAPS的PDCP实体));
操作3:对于每一个SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
操作4:释放源基站的物理信道配置;
操作5:丢弃在源基站所使用的安全密钥。
UE在配置了DAPS的情况下执行上述操作,所述UE被配置的DAPS也可以描述为UE被配置了任何一个或多个DAPS承载;或者 UE的任何一个或多个DRB被配置了DAPS(如以daps-Config信息元素来标识)。所述DAPS承载指的是所述承载DRB被配置了用于指示daps配置的信息元素如daps-config信息元素。优选地,所述daps-config信息元素是对每一个DRB分别配置的。
实施例2:
该实施例给出了一种网络侧基于UE上报的DAPS信息通过显示的RRC信令的方式来指示UE在RRC连接重建立过程中执行从DAPS状态回退到单激活协议栈(非DAPS)状态的方法。
步骤1:UE发起RRC重建立过程。
UE发起RRC重建立过程的触发同实施例1所述。
步骤2:在RRC重建立过程中,UE在RRC连接重建立请求消息或者RRC连接重建立完成消息中携带一个DAPS指示信息,用于向网络侧指示UE被配置了DAPS,或者UE被配置了任何一个或多个DAPS承载。
步骤3:从基站接收包含用于指示释放源基站的信息元素的RRC消息。所述RRC消息可以是RRC连接重建立消息,或者RRC重配置消息。优选地,所述RRC重配置消息是RRC重建立过程完成之后第一个RRC重配置消息。优选地,所述用于指示释放源基站的信息元素时daps-sourcerelease信息元素,用于指示UE释放源基站,包括停止DAPS操作的源小区部分以及释放DAPS配置的源小区部分。优选地,所述包含用于指示释放源基站的信息元素也可以描述为用于指示释放源基站的信息元素设置为TRUE或1。
在该步骤中,UE在收到包含上述信息元素的RRC消息后,UE执行从DAPS状态回退到单激活协议栈(非DAPS)状态的操作,释放源基站相关联的协议栈和配置。所述操作包括下述一项或多项:
操作1:重置源基站对应的MAC、释放源基站的MAC配置;
操作2:对于每一个DAPS承载,释放源基站的RLC实体及其关联的逻辑信道,重配置PDCP释放来释放DAPS(即将配置了DAPS的PDCP实体(称DAPS PDCP实体)重配置为正常非PDCP实体(未 配置DAPS的PDCP实体));
操作3:对于每一个SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
操作4:释放源基站的物理信道配置;
操作5:丢弃在源基站所使用的安全密钥。
UE在配置了DAPS的情况下执行上述操作,所述UE被配置的DAPS也可以描述为UE被配置了任何一个或多个DAPS承载;或者UE的任何一个或多个DRB被配置了DAPS(如以daps-Config信息元素来标识)。所述DAPS承载指的是所述承载DRB被配置了用于指示daps配置的信息元素如daps-config信息元素。优选地,所述daps-config信息元素是对每一个DRB分别配置的。
实施例3:
该实施例给出了一种在上述场景2的情况下,UE执行从DAPS状态回退到单激活协议栈(非DAPS)状态,并回退到和源基站的连接的方法,以避免发起RRC连接重建立过程。
步骤1:UE监测到发生了MCG的RLF。
所述MCG指的是DAPS切换时的目标MCG。
步骤2:若源基站未监测到RLF,则UE释放DAPS操作的目标基站部分,执行从DAPS状态回退到单激活协议栈(非DAPS)状态的操作。所述操作包括下述一项或多项:
操作1:释放目标基站的配置;
操作2:重置目标基站对应的MAC、释放目标基站的MAC配置;
操作3:对于每一个DAPS承载,释放目标基站的RLC实体及其关联的逻辑信道,重配置PDCP释放来释放DAPS(即将DAPS PDCP实体重配置为正常非PDCP实体);
操作4:对于每一个SRB,释放目标基站的PDCP实体,释放目标基站的RLC实体和其关联的逻辑信道,若未收到主密钥更新指示(如masterKeyUpdate信息元素指示),则配置源基站的PDCP实体为目标基站的PDCP实体的状态变量的继续(cotinuation);
操作5:对每一个未被配置为DAPS承载的DRB,若未收到主密钥更新指示(如masterKeyUpdate信息元素指示),则配置源基站的PDCP实体为目标基站的PDCP实体的状态变量的继续(cotinuation);
操作6:释放目标基站的物理信道配置;
操作7:丢弃在目标基站所使用的安全密钥;
操作8:丢失任何保存的RRC消息;恢复在源基站的挂起的SRB;
操作9:对于每一个非DAPS承载,回退到在源基站的DRB所使用的UE配置(包括PDCP、RLC状态变量,安全配置,PDCP和RLC实体的发送和接收缓存中保存的数据);
操作10:回退到UE在源基站所使用的测量配置。
操作11:发起失败信息过程以向网络侧上报在配置了DAPS的情况下在目标基站发生了RLF。优选地,在所述失败信息过程中,UE在用于上报所述失败信息的RRC消息(如失败信息FailureInformation消息)中包含的失败理由设置为配置了DAPS的MCG RLF。
在步骤1之前还包括UE成功完成了DAPS切换,即在UE被配置了任意DAPS承载的情况下,MAC层成功完成了到目标基站的随机接入过程,此时T304不处于运行状态。即步骤2是在UE被配置了任何一个或多个DAPS承载时执行。
实施例4:
该实施例给出了一种UE在源基站发生RLF的情况下执行从DAPS状态回退到单激活协议栈(非DAPS)状态的方法。
步骤1:发生DAPS过程中的源RLF,即在UE被配置了任意一个DAPS承载时,UE监测到源MCG的RLF。
步骤2:执行从DAPS状态回退到单激活协议栈(非DAPS)状态,释放源基站的配置和协议栈。所述操作包括下述的一项或多项:
操作1:挂起所有源基站的DRB的传输;
操作2:释放源基站的连接;
操作3:重置源基站对应的MAC、释放源基站的MAC配置;
操作4:对于每一个DAPS承载,释放源基站的RLC实体及其关 联的逻辑信道,重配置PDCP释放来释放DAPS(即将配置了DAPS的PDCP实体(称DAPS PDCP实体)重配置为正常非PDCP实体(未配置DAPS的PDCP实体));
操作5:对于每一个SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
操作6:释放源基站的物理信道配置;
操作7:丢弃在源基站所使用的安全密钥。
值得注意的是,该实施例不限于本公开前述场景1和场景2,也适用于DAPS尚未完成即T304正在运行时的源基站RLF的情况。
实施例5:
该实施例对应于实施例2,给出对应的基站侧的方法。
步骤1:在RRC重建立过程中,从UE接收RRC连接重建立请求消息或者RRC连接重建立完成消息中携带一个DAPS指示信息,用于UE向网络侧指示UE被配置了DAPS,或者UE被配置了任何一个或多个DAPS承载。
步骤2:向UE发送包含用于指示释放源基站的信息元素的RRC消息。所述RRC消息可以是RRC连接重建立消息,或者RRC重配置消息。优选地,所述RRC重配置消息是RRC重建立过程完成之后第一个RRC重配置消息。优选地,所述用于指示释放源基站的信息元素时daps-sourcerelease信息元素,用于指示UE释放源基站,包括停止DAPS操作的源小区部分以及释放DAPS配置的源小区部分。优选地,所述包含用于指示释放源基站的信息元素也可以描述为用于指示释放源基站的信息元素设置为TRUE或1。
在该步骤中,所述指示释放源基站的信息元素,使得UE在收到该信息元素后,执行从DAPS状态回退到单激活协议栈(非DAPS)状态的操作,释放源基站相关联的协议栈和配置。所述操作包括下述一项或多项:
操作1:重置源基站对应的MAC、释放源基站的MAC配置;
操作2:对于每一个DAPS承载,释放源基站的RLC实体及其关 联的逻辑信道,重配置PDCP释放来释放DAPS(即将配置了DAPS的PDCP实体(称DAPS PDCP实体)重配置为正常非PDCP实体(未配置DAPS的PDCP实体));
操作3:对于每一个SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
操作4:释放源基站的物理信道配置;
操作5:丢弃在源基站所使用的安全密钥。
UE在配置了DAPS的情况下执行上述操作,所述UE被配置的DAPS也可以描述为UE被配置了任何一个或多个DAPS承载;或者UE的任何一个或多个DRB被配置了DAPS(如以daps-Config信息元素来标识)。所述DAPS承载指的是所述承载DRB被配置了用于指示daps配置的信息元素如daps-config信息元素。优选地,所述daps-config信息元素是对每一个DRB分别配置的。
实施例6
该实施例对本公开的用户设备UE进行说明。图4是表示本发明所涉及的用户设备UE的框图。如图4所示,该用户设备UE40包括处理器401和存储器402。处理器401例如可以包括微处理器、微控制器、嵌入式处理器等。存储器402例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器402上存储有程序指令。该指令在由处理器401运行时,可以执行本发明中详细描述的上述了DAPS承载时的无线链路失败恢复的各种方法。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本公开的方法并不局限于上面示出的步骤和顺序。上面示出的基站和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这些标识的示例 的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任 何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (4)

  1. 一种无线链路失败恢复方法,包括:
    在RRC连接重建立过程中,若用户设备UE被配置了双激活协议栈DAPS承载,则所述UE执行从双激活协议栈到单激活协议栈的变更操作:
    释放源主基站配置;
    重置源基站对应的媒介接入控制MAC、释放源基站的MAC配置;
    对于每一个DAPS承载,释放源基站的无线链路控制RLC实体及其关联的逻辑信道,重配置协议数据聚合协议PDCP实体释放来释放DAPS;
    对于每一个信令无线承载SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
    释放源基站的物理信道配置;
    丢弃在源基站所使用的安全密钥。
  2. 一种无线链路失败恢复方法,包括:
    当源主小区PCell相关联的定时器T310超时,或者从源主小区组MCG的MAC收到了随机接入问题指示,或者从源MCG的RLC收到了最大重传次数已达到的指示,
    用户设备UE认为监测到所述源MCG的链路发生了RLF;
    重置源基站对应的MAC。
  3. 一种UE设备,所包含的处理器被配置为:
    在RRC连接重建立过程中,若所述UE被配置了双激活协议栈DAPS承载,则所述UE执行从双激活协议栈到单激活协议栈的变更操作:
    释放源主基站配置;
    重置源基站对应的媒介接入控制MAC、释放源基站的MAC配置;
    对于每一个DAPS承载,释放源基站的无线链路控制RLC实体及其关联的逻辑信道,重配置协议数据聚合协议PDCP实体释放来释放 DAPS;
    对于每一个信令无线承载SRB,释放源基站的PDCP实体,释放源基站的RLC实体和其关联的逻辑信道;
    释放源基站的物理信道配置;
    丢弃在源基站所使用的安全密钥。
  4. 一种UE设备,所包含的处理器被配置为:
    当源主小区PCell相关联的定时器T310超时,或者从源主小区组MCG的MAC收到了随机接入问题指示,或者从源MCG的RLC收到了最大重传次数已达到的指示,
    所述UE认为监测到所述源MCG的链路发生了RLF;
    重置源基站对应的MAC。
PCT/CN2021/090694 2020-05-13 2021-04-28 无线链路失败恢复方法及对应的用户设备 WO2021227881A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21803581.4A EP4152886A1 (en) 2020-05-13 2021-04-28 Radio link failure recovery method and corresponding user equipment
US17/923,986 US20230180330A1 (en) 2020-05-13 2021-04-28 Radio link failure recovery method and corresponding user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010405241.XA CN113677040A (zh) 2020-05-13 2020-05-13 无线链路失败恢复方法及对应的用户设备
CN202010405241.X 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021227881A1 true WO2021227881A1 (zh) 2021-11-18

Family

ID=78526409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090694 WO2021227881A1 (zh) 2020-05-13 2021-04-28 无线链路失败恢复方法及对应的用户设备

Country Status (5)

Country Link
US (1) US20230180330A1 (zh)
EP (1) EP4152886A1 (zh)
CN (1) CN113677040A (zh)
TW (1) TW202143791A (zh)
WO (1) WO2021227881A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230935A1 (zh) * 2022-05-31 2023-12-07 北京小米移动软件有限公司 一种小区组失败的恢复方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116847390A (zh) * 2022-03-25 2023-10-03 夏普株式会社 无线链路失败信息报告方法以及用户设备
WO2024026894A1 (zh) * 2022-08-05 2024-02-08 富士通株式会社 配置参数的方法、装置以及通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301955A (zh) * 2014-09-02 2015-01-21 中兴通讯股份有限公司 一种用户设备切换基站的方法及基站、用户设备
US20200022035A1 (en) * 2018-07-10 2020-01-16 Qualcomm Incorporated Performing a combination of handover techniques
CN110798867A (zh) * 2018-08-01 2020-02-14 夏普株式会社 用户设备的控制方法以及用户设备
WO2020088592A1 (en) * 2018-10-31 2020-05-07 Mediatek Singapore Pte. Ltd. Reordering with dual protocol to reduce mobility interruption in wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301955A (zh) * 2014-09-02 2015-01-21 中兴通讯股份有限公司 一种用户设备切换基站的方法及基站、用户设备
US20200022035A1 (en) * 2018-07-10 2020-01-16 Qualcomm Incorporated Performing a combination of handover techniques
CN110798867A (zh) * 2018-08-01 2020-02-14 夏普株式会社 用户设备的控制方法以及用户设备
WO2020088592A1 (en) * 2018-10-31 2020-05-07 Mediatek Singapore Pte. Ltd. Reordering with dual protocol to reduce mobility interruption in wireless network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TECHNICAL STANDARD PROTOCOL 38.331
INTEL CORPORATION: "Running CR for the introduction of NR mobility enhancement", 3GPP DRAFT; R2-2000460, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Elbonia; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849048 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230935A1 (zh) * 2022-05-31 2023-12-07 北京小米移动软件有限公司 一种小区组失败的恢复方法及装置

Also Published As

Publication number Publication date
US20230180330A1 (en) 2023-06-08
EP4152886A1 (en) 2023-03-22
CN113677040A (zh) 2021-11-19
TW202143791A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2021190608A1 (zh) 无线链路失败报告方法以及用户设备
WO2021115370A1 (zh) 无线链路失败恢复方法以及用户设备
WO2020151653A1 (zh) 由用户设备执行的切换方法以及用户设备
WO2020249081A1 (zh) 无线链路失败恢复方法以及用户设备
WO2021227881A1 (zh) 无线链路失败恢复方法及对应的用户设备
WO2021008478A1 (zh) 信息上报方法及对应的用户设备
WO2020025022A1 (zh) 用户设备的控制方法以及用户设备
WO2020221193A1 (zh) 条件切换方法及对应的用户设备
WO2021013170A1 (zh) 无线链路失败恢复方法以及用户设备
WO2021057702A1 (zh) 无线链路失败恢复方法以及用户设备
WO2020042863A1 (zh) 由用户设备执行的方法、用户设备以及切换命令生成方法
WO2022012363A1 (zh) 切换信息报告方法及用户设备
WO2014154132A1 (zh) 一种针对无线链路失败的网络优化方法、装置及系统
WO2022057783A1 (zh) 无线链路失败报告方法以及用户设备
WO2021254197A1 (zh) 由用户设备执行的方法以及用户设备
WO2023040955A1 (zh) 切换信息报告方法以及用户设备
WO2021232383A1 (zh) 小区切换中的持续lbt失败检测和恢复的方法及装置
WO2023134763A1 (zh) 信息报告方法以及用户设备
WO2023093818A1 (zh) 由用户设备执行的方法及用户设备
WO2024008076A1 (zh) 切换信息报告方法以及用户设备
WO2022257974A1 (zh) 切换信息报告方法、用户设备以及通信系统
WO2023179677A1 (zh) 无线链路失败信息报告方法以及用户设备
WO2023241622A1 (zh) 由用户设备执行的方法、用户设备以及信息报告方法
WO2023005967A1 (zh) 切换信息报告方法以及用户设备
WO2023280046A1 (zh) 小区变更执行方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021803581

Country of ref document: EP

Effective date: 20221213