WO2021227466A1 - 核电厂非能动消氢装置和消氢系统 - Google Patents

核电厂非能动消氢装置和消氢系统 Download PDF

Info

Publication number
WO2021227466A1
WO2021227466A1 PCT/CN2020/134714 CN2020134714W WO2021227466A1 WO 2021227466 A1 WO2021227466 A1 WO 2021227466A1 CN 2020134714 W CN2020134714 W CN 2020134714W WO 2021227466 A1 WO2021227466 A1 WO 2021227466A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear power
power plant
hydrogen
hydrogen elimination
passive
Prior art date
Application number
PCT/CN2020/134714
Other languages
English (en)
French (fr)
Inventor
鲍青波
胡剑
周绍飞
彭跃
Original Assignee
中广核工程有限公司
深圳中广核工程设计有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 深圳中广核工程设计有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2021227466A1 publication Critical patent/WO2021227466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/001Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices against explosions, e.g. blast shields
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/02Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
    • G21C9/033Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency by an absorbent fluid
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention belongs to the technical field of nuclear power. More specifically, the present invention relates to a passive hydrogen elimination device and a hydrogen elimination system of a nuclear power plant.
  • the reactor core temperature increased due to insufficient cooling of the reactor.
  • the zirconium alloy will react with water or steam and produce a large amount of hydrogen.
  • the volumetric content of hydrogen contained in the air in the containment is greater than 10%, hydrogen combustion or explosion may occur, affecting the integrity of the containment or causing complete failure of the containment.
  • the combustible gas control system mainly uses a passive hydrogen recombiner with a metal catalytic plate structure to eliminate hydrogen, and some nuclear power plants also assist with an active igniter device as a coordinated hydrogen elimination.
  • the passive hydrogen recombiner mainly promotes the hydrogen-oxygen recombination reaction based on the principle of metal catalysis in the containment, and then passively eliminates hydrogen.
  • the passive hydrogen recombiner has no active parts, which automatically catalyzes hydrogen elimination, and does not require power supply and other support systems.
  • the passive hydrogen recombiner is in standby mode; when the hydrogen concentration in the containment vessel reaches the start-up threshold of the equipment, the passive hydrogen recombiner operates automatically, so that the hydrogen and oxygen in the gas mixture in the containment are in the catalyst Under the catalysis effect of the compound, it becomes water vapor, which effectively controls the hydrogen concentration in the containment within a safe range.
  • the passive hydrogen recombiner has a chimney effect after it is activated, which can effectively promote the natural convection and turbulence of the containment atmosphere, avoid the local hydrogen concentration from reaching the explosion limit, and maintain the integrity of the containment.
  • the passive hydrogen recombiner is composed of a stainless steel shell and a catalyst unit, and the outer metal shell of the recombiner guides hydrogen-containing gas to flow upward through the device (the gas enters from the bottom of the recombiner and is discharged from the top).
  • the outer metal shell of the recombiner guides hydrogen-containing gas to flow upward through the device (the gas enters from the bottom of the recombiner and is discharged from the top).
  • the carrier plates are coated with precious metals such as platinum and palladium, which are vertically inserted into the frame at the bottom of the box. .
  • the passive hydrogen elimination is carried out through the hydrogen recombiners arranged in different positions in the containment.
  • the metal shell of the hydrogen recombiner can guide the air flow upwards through the hydrogen recombiner, and a frame inserted in many parallel vertical catalyst plates is installed in the lower part of the casing, and the catalyst plate is coated with active catalyst.
  • the hydrogen-containing gas mixture undergoes a hydrogen-oxygen recombination reaction under the action of the catalyst, and releases heat to reduce the gas density in the lower part of the recombiner, thereby strengthening gas convection, allowing a large amount of hydrogen-containing gas to enter into contact with the catalyst, thereby ensuring efficient consumption Hydrogen function.
  • the effective area of hydrogen and oxygen contacting the metal catalyst is relatively small, the hydrogen elimination rate is slow, and the peak hydrogen concentration cannot be effectively alleviated; it is easily affected by changes in the temperature field caused by high-temperature radiation.
  • Hydrogen elimination efficiency; catalytic materials are more sensitive to the environment, and the catalytic surface is prone to poisoning and failure; higher requirements for catalytic materials require a larger surface area, resulting in a larger device volume, occupying more engineering layout space, and also It is not suitable for hydrogen elimination in small spaces; precious metals are used as catalytic media, titanium plates are used as carriers, and the project cost is expensive; it is necessary to support and purchase special periodic test devices and catalyst plate regeneration reduction devices, which will add more Engineering costs.
  • an active igniter is also used to partially eliminate hydrogen in the containment through active ignition of electric sparks.
  • the active igniter adopts the glow plug design.
  • the surface of the glow plug can be maintained above 900 °C. Once the hydrogen concentration reaches flammable conditions, the high temperature glow plug will ignite the nearby hydrogen. Before the accumulated hydrogen risk is enough to threaten the integrity of the containment, the unacceptable hydrogen rapid ignition risk or the large-volume hydrogen explosion risk is released in stages to maintain the integrity of the containment.
  • the above technical solutions have the following drawbacks: when the water vapor concentration is high, the active igniter may not be able to ignite in an inerted environment, resulting in its function failure and inability to exert its hydrogen elimination effect; the ignition of the hydrogen igniter needs to meet the requirements of hydrogen
  • the flammability limit is closely related to the flammable point. Its active hydrogen elimination is obviously subject to the accumulation effect of the hydrogen concentration field. Its application limitation is that the gas components must be flammable and not inerted by water vapor; the volume of hydrogen in the containment is required The concentration is at least higher than a certain concentration value, and the water vapor concentration is at least lower than a certain limit.
  • the active hydrogen igniter hydrogen elimination device needs the support of power source, compared with the passive principle, hydrogen elimination The reliability is poor, and it can only be used as an auxiliary hydrogen elimination after a nuclear power plant accident; the active igniter hydrogen elimination device ignites local hydrogen and there is an electric spark open flame, which can only be used for local hydrogen elimination in a large space, not a small space
  • the process flow eliminates hydrogen.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a safe and reliable passive hydrogen elimination device and hydrogen elimination system for nuclear power plants.
  • the present invention provides a safe and reliable passive hydrogen elimination device for nuclear power plants, which includes a carrier and silver zeolite particles arranged on the carrier.
  • the compounding process includes the following steps: a. The diffusion of hydrogen and oxygen to the surface of the silver zeolite catalyst; b. The catalytic reaction of hydrogen and oxygen on the surface of the silver zeolite catalyst (also known as chemical absorption); c. An intermediate reaction occurs to generate water vapor. D. The product desorbs; e. The product diffuses from the surface of the silver zeolite catalyst.
  • the carrier is provided with a chimney-shaped flow channel, and the silver zeolite particles are placed in the chimney-shaped flow channel.
  • the chimney-like flow channel of the carrier is provided with a honeycomb structure, a grid structure, a baffle guide channel structure, and a sandwich structure, and the silver zeolite particles are distributed in Honeycomb structure, grid structure, baffle guide channel structure, sandwich structure.
  • the carrier is provided with a chimney-shaped flow channel, and the silver zeolite particles are attached to the outer surface of the carrier.
  • the carrier is made of stainless steel, metal or ceramic.
  • the present invention provides a nuclear power plant passive hydrogen elimination system, which includes a containment vessel and a plurality of spaced apart nuclear power plant passive hydrogen elimination devices arranged in the containment vessel.
  • the active hydrogen elimination device includes a carrier and silver zeolite particles arranged on the carrier, the carrier is provided with a chimney-shaped flow channel, and the silver zeolite particles are placed in the chimney-shaped flow channel.
  • the passive hydrogen elimination device of the nuclear power plant has the anti-vibration capability.
  • the present invention provides a nuclear power plant passive hydrogen elimination system, which includes a process system and a nuclear power plant passive hydrogen elimination device arranged in the process system pipeline, wherein the nuclear power plant passive hydrogen elimination device It includes a carrier and silver zeolite particles arranged on the carrier, the carrier is provided with a chimney-shaped flow channel, and the silver zeolite particles are placed in the chimney-shaped flow channel.
  • the passive hydrogen elimination device of the nuclear power plant has the anti-vibration capability.
  • the present invention provides a nuclear power plant passive hydrogen elimination system, which includes a containment vessel and a plurality of spaced apart nuclear power plant passive hydrogen elimination devices arranged in the containment vessel.
  • the active hydrogen elimination device includes a carrier and silver zeolite particles arranged on the carrier, and the silver zeolite particles are attached to the outer surface of the carrier
  • the passive hydrogen elimination device and system of the nuclear power plant of the present invention adopts the method of silver zeolite catalysis and passive hydrogen elimination, and has the following technical effects:
  • Fig. 1 is a schematic structural diagram of an embodiment of a passive hydrogen elimination device for a nuclear power plant according to the present invention.
  • Figure 2 is a schematic diagram of the passive hydrogen elimination system of a nuclear power plant using the passive hydrogen elimination device of the nuclear power plant shown in Figure 1, which is suitable for large spaces such as containment.
  • Figure 3 is a schematic structural diagram of a passive hydrogen elimination system in a nuclear power plant using the passive hydrogen elimination device of the nuclear power plant shown in Figure 1, which is suitable for small spaces such as process systems.
  • Figure 4 is a schematic structural diagram of a passive hydrogen elimination system in a nuclear power plant using the passive hydrogen elimination device of the nuclear power plant shown in Figure 1, which is suitable for small spaces such as process systems.
  • Fig. 5 is a schematic structural diagram of another embodiment of a passive hydrogen elimination device for a nuclear power plant according to the present invention.
  • Figure 6 is a schematic diagram of the passive hydrogen elimination system of a nuclear power plant using the passive hydrogen elimination device of the nuclear power plant shown in Figure 5, which is suitable for large spaces such as containment.
  • Carrier 10 Silver zeolite 20.
  • the present invention provides a safe and reliable passive hydrogen elimination device for nuclear power plants, which includes a carrier 10 and silver zeolite particles 20 arranged on the carrier 10.
  • the embodiment shown in FIG. 1 is a built-in passive hydrogen elimination device for a nuclear power plant
  • the carrier 10 is provided with a chimney-shaped flow channel
  • the silver zeolite particles 20 are placed in the chimney-shaped flow channel.
  • the chimney-shaped flow channel of the carrier 10 is provided with a honeycomb structure, a grid structure, a baffle guide channel structure, and a sandwich structure.
  • the silver zeolite particles 20 are distributed in the honeycomb structure, the grid structure, and the fold The flow plate guide channel structure, sandwich structure.
  • FIG. 5 is another embodiment of the passive hydrogen elimination device of a nuclear power plant of the present invention, which is a sweeping type nuclear power plant passive hydrogen elimination device, wherein the carrier 10 is provided with a chimney-like flow channel, and silver zeolite particles 20 Attached to the outer surface of the carrier 10.
  • the carrier 10 is made of an anti-corrosion material, such as stainless steel, metal, or ceramic.
  • the composite process includes the following steps: a. The diffusion of hydrogen and oxygen to the surface of the silver zeolite catalyst; b. The catalytic reaction of hydrogen and oxygen on the surface of the silver zeolite catalyst (also known as chemical absorption); c. An intermediate reaction occurs to produce water vapor Product; d. Product desorption occurs; e. Product diffuses from the surface of the silver zeolite catalyst.
  • the present invention provides a nuclear power plant passive hydrogen elimination system, which includes a containment vessel and a plurality of spaced apart nuclear power plant passive hydrogen elimination devices arranged in the containment vessel.
  • the passive hydrogen elimination device for nuclear power plant is the built-in passive hydrogen elimination device shown in Figure 1, which includes a carrier 10 and silver zeolite particles arranged on the carrier 10.
  • the carrier 10 is provided with a chimney-like flow channel and 20 silver zeolite particles. Placed in a chimney-like flow channel. It is understandable that in other large spaces, multiple built-in nuclear power plant passive hydrogen elimination devices can also be arranged at different locations and at different intervals as needed to perform the elimination of hydrogen in the large space and realize the large space after the accident.
  • the hydrogen elimination function maintains the integrity of the containment or corresponding plant structure.
  • the specific number and placement of built-in passive hydrogen elimination devices can be determined based on actual engineering requirements and the layout of the plant.
  • the effective hydrogen elimination capacity and capacity of each built-in nuclear power plant passive hydrogen elimination device can be based on actual engineering requirements The best choice is to determine, as long as the combination of multiple built-in nuclear power plants passive hydrogen elimination devices can control the hydrogen concentration in the large space within a safe range, while ensuring long-term and repeated hydrogen elimination.
  • the passive hydrogen elimination device of the built-in nuclear power plant is filled with qualified silver zeolite particles 20. During the standby period, the silver zeolite particles 20 are placed in the hydrogen elimination device for a long time.
  • the present invention provides a nuclear power plant passive hydrogen elimination system, which includes a process system and a built-in nuclear power plant passive hydrogen elimination device with seismic capability arranged in the process system pipeline
  • the passive hydrogen elimination device of a nuclear power plant includes a carrier 10 and silver zeolite particles 20 arranged on the carrier 10, the carrier 10 is provided with a chimney-shaped flow channel, and the silver zeolite particles 20 are placed in the chimney-shaped flow channel. It is understandable that in other small spaces, such as in a container or process system pipeline, single or multiple built-in passive hydrogen elimination devices are configured to perform operations in a local space (such as in a container or process system pipeline). Hydrogen elimination function to avoid the risk of hydrogen.
  • the specific number can be determined based on actual engineering requirements and layout; the effective hydrogen elimination capacity and capacity of each built-in passive hydrogen elimination device can be determined based on actual engineering requirements.
  • the built-in silver zeolite passive hydrogen elimination device or its combination needs to be able to control the hydrogen concentration in the local space within a safe range, and can eliminate hydrogen repeatedly and continuously.
  • the present invention provides a nuclear power plant passive hydrogen elimination system, which includes a containment vessel and a plurality of spaced nuclear power plant passive hydrogen elimination devices arranged in the containment, wherein the nuclear power plant
  • the passive hydrogen elimination device includes a carrier 10 and silver zeolite particles 20 arranged on the carrier 10, and the silver zeolite particles 20 are attached to the outer surface of the carrier 10.
  • multiple sweeping nuclear power plant passive hydrogen elimination devices can also be arranged at different positions and at different intervals as needed to perform the large-space hydrogen elimination action and realize the large-scale space after the accident. Hydrogen elimination function to maintain the integrity of the containment or corresponding plant structure.
  • the specific number and placement position of the sweeping passive hydrogen elimination device can be determined according to the actual engineering requirements and the layout of the plant.
  • the effective hydrogen elimination capacity and capacity of each sweeping nuclear power plant passive hydrogen elimination device can be determined according to the actual situation.
  • the engineering requirements are determined by preference, as long as the combination of multiple sweeping nuclear power plants passive hydrogen elimination devices can control the hydrogen concentration in a large space within a safe range, while ensuring long-term and repeated hydrogen elimination.
  • the passive hydrogen elimination device of the built-in nuclear power plant is filled with qualified silver zeolite particles 20. During the standby period, the silver zeolite particles 20 are placed in the hydrogen elimination device for a long time.
  • the passive hydrogen elimination device and system of the nuclear power plant of the present invention adopts a silver zeolite catalytic and passive hydrogen elimination method, and has the following technical effects:

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种核电厂非能动消氢装置,包括载体(10)和设置于载体(10)上的银沸石颗粒(20),其中,载体(10)设有烟囱状流道,银沸石颗粒(20)置于烟囱状流道中或附着在载体(10)的外表面。还涉及一种采用该核电厂非能动消氢装置的核电厂非能动消氢系统。该核电厂非能动消氢装置和系统采用了银沸石催化、非能动原理消氢的方法,实现了事故后尤其是严重事故后的可靠消氢,解决了核电厂事故后大空间安全壳内的氢燃、氢爆风险问题,维持安全壳的完整性;实现了小空间和工艺系统管路的可靠消氢,为小空间氢气复合、容器内氢气消除、工艺含氢介质消氢处理、实验室消氢处理和核电厂氢复合器再生试验装置中消氢处理提供了可靠方法。

Description

核电厂非能动消氢装置和消氢系统 技术领域
本发明属于核电技术领域,更具体地说,本发明涉及一种核电厂非能动消氢装置和消氢系统。
背景技术
根据IAEA导则NS-G-1.10和HAF102《核动力厂设计安全规定》要求:设计时,必须做到实际消除可能导致早期放射性释放或大量放射性释放的核动力厂工况发生的可能性。
在核电厂反应堆发生严重事故后,由于反应堆得不到足够的冷却,导致堆芯温度升高。当堆芯温度超过800℃时,锆合金会与水或蒸汽发生反应并产生大量的氢气。当安全壳内的空气中所含氢气的体积含量大于10%时,就有可能发生氢气燃烧或爆炸,影响安全壳的完整性或造成安全壳彻底失效。
目前,为了避免或缓解严重事故后安全壳内的氢燃氢爆风险,多数核电厂都采用了可燃气体控制系统,以消除氢气对安全壳包容能力完整性的挑战,避免不可控的放射性物质向外部环境大规模释放。可燃气体控制系统主要采用金属催化板结构的非能动氢复合器消氢,部分核电厂还辅助以能动点火器装置作为配合消氢。
非能动氢复合器主要根据安全壳内金属催化原理来促进氢氧复合反应的发生,进而非能动消除氢气的方法。非能动氢复合器没有能动部件,自动催化消氢,不需要电源和其它支持系统。在机组正常运行时,非能动氢复合器处于备用状态;当安全壳内的氢浓度达到设备的启动阈值时,非能动氢复合器自动工作,使安全壳内气体混合物中的氢气和氧气在催化剂的催化作用下复合成为水 蒸气,有效将安全壳内的氢气浓度控制在安全范围之内。此外,非能动氢复合器启动后具有烟囱效应,可以有效促进安全壳大气的自然对流和搅浑,避免局部氢气浓度过高达到爆炸限值,维持安全壳的完整性。
相关技术中,非能动氢复合器由不锈钢壳体和催化剂单元组成,复合器的外部金属壳体引导含氢气体向上流过装置(气体从复合器的底部进入,从顶部排出)。壳体内部有一定数量的涂有催化活性涂层的耐热载体板(一般为不锈钢板或钛合金板),在载体板上涂有铂和钯等贵金属,垂直插在箱体底部的框架上。在事故后安全壳内产生氢气时,当局部氢气浓度达到氢复合器的启动阈值时,通过安全壳内的不同位置布置的氢复合器进行非能动消氢。其工作原理为:氢复合器的金属外壳可引导气流向上通过氢复合器,在壳体的下部装有一个插入很多平行的竖直催化剂板的框架,在催化剂板上涂满活性催化剂。含氢气体混合物在催化剂作用下发生氢氧复合反应,并释放出热量使复合器下部的气体密度降低,进而加强了气体对流,使大量的含氢气体进入与催化剂接触,以此来保证高效消氢功能。
但是,上述技术方案存在以下缺陷:氢气和氧气接触金属催化剂的有效面积相对较少,消氢速率较慢,不能有效缓解氢浓度峰值;易受到由于高温辐照导致的温度场变化的影响,影响消氢效率;催化材料环境敏感性较高,催化表面容易发生中毒而失效;对催化材料的要求较高,需要较大的表面积,导致装置体积也较大,占用较多工程布置空间,同时也不适合用于小空间内的消氢;采用贵金属作为催化介质,采用钛板等作为载体,工程造价昂贵;需配套和额外采购专用的定期试验装置及催化剂板再生还原装置,会增加更多的工程成本。
相关技术中,还采用能动点火器在安全壳内通过电火花能动点火局部消除氢气。能动点火器采用电热塞设计,在事故后的安全壳环境内,能将电热塞表面维持在900℃以上,一旦氢气浓度达到可燃条件,高温的电热塞将附近的氢气点燃。在积聚的氢气风险足以威胁到安全壳完整性之前,分阶段地释放不可接受的氢气快燃风险或大体积的氢气燃爆风险,维持安全壳的完整性。
但是,上述技术方案存在以下缺陷:在水蒸汽浓度较高时,能动点火器处于惰化环境中可能无法点火,导致其功能失效,无法发挥其消氢作用;氢气点火器的点火需要满足氢气的可燃极限,与可燃点紧密相关,其能动消氢受制于氢气浓度场聚集效应明显,其应用局限性在于,气体组分必须是可燃的,不被水蒸汽惰化的;要求安全壳中氢气体积浓度至少高于一定浓度数值,水蒸汽浓度至少低于某一限值,存在低浓度难以消氢的显著缺陷;能动氢气点火器消氢装置需要动力电源的支持,相对于非能动原理,消氢可靠性较差,只能用作核电厂事故后的辅助消氢;能动点火器消氢装置点燃局部氢气存在电火花明火,只能用作大空间局部消氢,不能用作小空间消氢及工艺流程消氢。
有鉴于此,确有必要提供一种安全、可靠的核电厂非能动消氢装置和消氢系统。
发明内容
本发明的目的在于:克服现有技术的缺陷,提供一种安全、可靠的核电厂非能动消氢装置和消氢系统。
为了实现上述发明目的,本发明提供了一种安全、可靠的核电厂非能动消氢装置,其包括:载体和设置于载体上的银沸石颗粒。
在银沸石表面处,由于存在原子/分子吸引力,氢气和氧气分子在银沸石催化介质表面能被有效吸附。氢气和氧气在催化剂表面发生化学反应时,产生的反应热会加热和推进催化表面附近局部的空气,热空气因密度变化抬升,受热空气抬升后留下的局部空间由下部冷空气补充过来,从而形成局部气体自然扩散循环,催化消氢过程得以持续进行。此外,氢气和氧气在催化剂表面发生化学反应时释放的反应热会进一步提升银沸石的表面温度,提升银沸石作为催化剂的活性,使消氢效率更有效的提升。复合过程包括如下步骤:a.氢气和氧气扩散到银沸石催化剂的表面;b.氢气和氧气在银沸石催化剂表面发生催化剂反应(也称为化学吸收作用);c.发生中间反应产生水蒸气生成物;d.生成物发生 解吸附作用;e.生成物从银沸石催化剂表面扩散掉。
作为本发明核电厂非能动消氢装置的一种改进,所述载体设有烟囱状流道,所述银沸石颗粒置于烟囱状流道中。
作为本发明核电厂非能动消氢装置的一种改进,所述载体的烟囱状流道中设有蜂窝结构、格栅结构、折流板导流通道结构、夹层结构,所述银沸石颗粒分布于蜂窝结构、格栅结构、折流板导流通道结构、夹层结构上。
作为本发明核电厂非能动消氢装置的一种改进,所述载体设有烟囱状流道,所述银沸石颗粒附着在所述载体的外表面。
作为本发明核电厂非能动消氢装置的一种改进,所述载体为不锈钢材质、金属材质或陶瓷材质。
为了实现上述发明目的,本发明提供了一种核电厂非能动消氢系统,其包括安全壳和设置于安全壳内的多个间隔排布的核电厂非能动消氢装置,其中,核电厂非能动消氢装置包括载体和设置于载体上的银沸石颗粒,载体设有烟囱状流道,银沸石颗粒置于烟囱状流道中。
作为本发明核电厂非能动消氢系统的一种改进,所述核电厂非能动消氢装置具有抗震能力。
为了实现上述发明目的,本发明提供了一种核电厂非能动消氢系统,其包括工艺系统和设置于工艺系统管路内的核电厂非能动消氢装置,其中,核电厂非能动消氢装置包括载体和设置于载体上的银沸石颗粒,载体设有烟囱状流道,银沸石颗粒置于烟囱状流道中。
作为本发明核电厂非能动消氢系统的一种改进,所述核电厂非能动消氢装置具有抗震能力。
为了实现上述发明目的,本发明提供了一种核电厂非能动消氢系统,其包 括安全壳和设置于安全壳内的多个间隔排布的核电厂非能动消氢装置,其中,核电厂非能动消氢装置包括载体和设置于载体上的银沸石颗粒,银沸石颗粒附着在载体的外表面
相对于现有技术,本发明核电厂非能动消氢装置和系统采用了银沸石催化、非能动原理消氢的方法,具有以下技术效果:
a.实现了事故后尤其是严重事故后的可靠消氢,根本解决了核电厂事故后大空间安全壳内的氢燃、氢爆风险问题,维持安全壳的完整性;
b.实现了小空间及工艺系统的可靠消氢,提供了多种消氢结构形式和方法,对小空间氢气复合、容器内氢气消除、工艺含氢介质消氢处理、实验室消氢处理及核电厂氢复合器再生试验装置中消氢处理提供了可靠方法;
c.节省了金属催化非能动氢复合器的配套定期试验装置及还原再生装置。
附图说明
以下结合附图和具体实施方式,对本发明核电厂非能动消氢装置和消氢系统进一步详细说明,其中:
图1是本发明核电厂非能动消氢装置一个实施方式的结构示意图。
图2是采用图1所示核电厂非能动消氢装置的一个核电厂非能动消氢系统的结构示意图,适用于安全壳等大空间。
图3是采用图1所示核电厂非能动消氢装置的一个核电厂非能动消氢系统的结构示意图,适用于工艺系统等小空间。
图4是采用图1所示核电厂非能动消氢装置的一个核电厂非能动消氢系统的结构示意图,适用于工艺系统等小空间。
图5是本发明核电厂非能动消氢装置另一个实施方式的结构示意图。
图6是采用图5所示核电厂非能动消氢装置的一个核电厂非能动消氢系统的结构示意图,适用于安全壳等大空间。
载体10;银沸石20。
具体实施方式
为了使本发明的发明目的、技术方案和有益技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
请参照图1所示,为了实现上述发明目的,本发明提供了一种安全、可靠的核电厂非能动消氢装置,其包括:载体10和设置于载体10上的银沸石颗粒20。
图1所示的实施方式为内置式核电厂非能动消氢装置,载体10设有烟囱状流道,银沸石颗粒20置于烟囱状流道中。根据本发明的一个优选实施方式,载体10的烟囱状流道中设有蜂窝结构、格栅结构、折流板导流通道结构、夹层结构,银沸石颗粒20分布于蜂窝结构、格栅结构、折流板导流通道结构、夹层结构上。
请参照图5所示,为本发明核电厂非能动消氢装置的另一个实施方式,为外掠式核电厂非能动消氢装置,其中,载体10设有烟囱状流道,银沸石颗粒20附着在载体10的外表面。
根据本发明核电厂非能动消氢装置的一个实施方式,载体10由防腐蚀材料制成,如由不锈钢材质、金属材质或陶瓷材质制成。
在银沸石表面处,由于存在原子/分子吸引力,氢气和氧气分子在银沸石催化介质表面能被有效吸附。氢气和氧气在催化剂表面发生化学反应时,产生的反应热会加热和推进催化表面附近局部的空气,热空气因密度变化抬升,受热空气抬升后留下的局部空间由下部冷空气补充过来,从而形成局部气体自然扩散循环,催化消氢过程得以持续进行。此外,氢气和氧气在催化剂表面发生化 学反应时释放的反应热会进一步提升银沸石的表面温度,从而提升银沸石作为催化剂的活性,使消氢效率更有效的提升。其复合过程包括如下步骤:a.氢气和氧气扩散到银沸石催化剂的表面;b.氢气和氧气在银沸石催化剂表面发生催化剂反应(也称为化学吸收作用);c.发生中间反应产生水蒸气生成物;d.生成物发生解吸附作用;e.生成物从银沸石催化剂表面扩散掉。
请参照图2所示,本发明提供了一种核电厂非能动消氢系统,其包括安全壳和设置于安全壳内的多个间隔排布的具有抗震能力的核电厂非能动消氢装置,其中,核电厂非能动消氢装置为图1所示内置式非能动消氢装置,包括载体10和设置于载体10上的银沸石颗粒,载体10设有烟囱状流道,银沸石颗20粒置于烟囱状流道中。可以理解的是,在其他大空间内,也可以根据需要在不同位置、以不同间隔布置多个内置式核电厂非能动消氢装置,以执行大空间消氢动作,实现事故后大空间内的消氢功能,保持安全壳或相应厂房结构的完整性。内置式非能动消氢装置的具体数目和放置位置可根据实际工程需求和厂房内的布置情况择优确定,每个内置式核电厂非能动消氢装置的有效消氢能力和容量可根据实际工程需求择优确定,只要多个内置式核电厂非能动消氢装置的组合需能够将大空间内的氢气浓度控制在安全范围之内,同时能保证长期和多次消氢即可。此时,内置式核电厂非能动消氢装置内充有合格的银沸石颗粒20,备用期间,银沸石颗粒20长期放置在消氢装置内。
请参照图3和图4所示,本发明提供了一种核电厂非能动消氢系统,其包括工艺系统和设置于工艺系统管路内的具有抗震能力的内置式核电厂非能动消氢装置,其中,核电厂非能动消氢装置包括载体10和设置于载体10上的银沸石颗粒20,载体10设有烟囱状流道,银沸石颗粒20置于烟囱状流道中。可以理解的是,在其他小空间,如容器内或工艺系统管路,内配置单台或多台内置 式非能动消氢装置,执行局部空间内(如容器内或工艺系统管路)内的消氢功能,避免氢气风险。设置单个或多个内置式非能动消氢装置,具体数目可根据实际工程需求和布置情况择优确定;每个内置式非能动消氢装置的有效消氢能力和容量可根据实际工程需求择优确定,只要内置式银沸石非能动消氢装置或其组合需能够将局部空间内的氢气浓度控制在安全范围之内,并能多次和持续消氢即可。
请参照图6所示,本发明提供了一种核电厂非能动消氢系统,其包括安全壳和设置于安全壳内的多个间隔排布的核电厂非能动消氢装置,其中,核电厂非能动消氢装置包括载体10和设置于载体10上的银沸石颗粒20,银沸石颗粒20附着在载体10的外表面。
可以理解的是,在其他大空间内,也可以根据需要在不同位置以不同间隔布置多个外掠式核电厂非能动消氢装置,以执行大空间消氢动作,实现事故后大空间内的消氢功能,以保持安全壳或相应厂房结构的完整性。外掠式非能动消氢装置的具体数目和放置位置可根据实际工程需求和厂房内的布置情况择优确定,每个外掠式核电厂非能动消氢装置的有效消氢能力和容量可根据实际工程需求择优确定,只要多个外掠式核电厂非能动消氢装置的组合需能够将大空间内的氢气浓度控制在安全范围之内,同时能保证长期和多次消氢即可。此时,内置式核电厂非能动消氢装置内充有合格的银沸石颗粒20,备用期间,银沸石颗粒20长期放置在消氢装置内。
结合以上对本发明具体实施方式的详细描述可以看出,相对于现有技术,本发明核电厂非能动消氢装置和系统采用了银沸石催化、非能动原理消氢的方法,具有以下技术效果:
a.实现了事故后尤其是严重事故后的可靠消氢,根本解决了核电厂事故后 大空间安全壳内的氢燃、氢爆风险问题,维持安全壳的完整性;
b.实现了小空间及工艺系统的可靠消氢,提供了多种消氢结构形式和方法,对小空间氢气复合、容器内氢气消除、工艺含氢介质消氢处理、实验室消氢处理及核电厂氢复合器再生试验装置中消氢处理提供了可靠方法;
c.节省了金属催化非能动氢复合器的配套定期试验装置及还原再生装置。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种核电厂非能动消氢装置,其特征在于,包括:载体和设置于载体上的银沸石颗粒。
  2. 根据权利要求1所述的核电厂非能动消氢装置,其特征在于,所述载体设有烟囱状流道,所述银沸石颗粒置于烟囱状流道中。
  3. 根据权利要求2所述的核电厂非能动消氢装置,其特征在于,所述载体的烟囱状流道中设有蜂窝结构、格栅结构、折流板导流通道结构、夹层结构,所述银沸石颗粒分布于蜂窝结构、格栅结构、折流板导流通道结构、夹层结构上。
  4. 根据权利要求1所述的核电厂非能动消氢装置,其特征在于,所述载体设有烟囱状流道,所述银沸石颗粒附着在所述载体的外表面。
  5. 根据权利要求1至4中任一项所述的核电厂非能动消氢装置,其特征在于,所述载体为不锈钢材质、金属材质或陶瓷材质。
  6. 一种核电厂非能动消氢系统,包括安全壳和设置于安全壳内的多个间隔排布的核电厂非能动消氢装置,其特征在于,所述核电厂非能动消氢装置为权利要求2或3所述的核电厂非能动消氢装置。
  7. 根据权利要求6所述的核电厂非能动消氢系统,其特征在于,所述核电厂非能动消氢装置具有抗震能力。
  8. 一种核电厂非能动消氢系统,包括工艺系统和设置于工艺系统管路内的核电厂非能动消氢装置,其特征在于,所述核电厂非能动消氢装置为权利要求2或3所述的核电厂非能动消氢装置。
  9. 根据权利要求8所述的核电厂非能动消氢系统,其特征在于,所述核电 厂非能动消氢装置具有抗震能力。
  10. 一种核电厂非能动消氢系统,包括安全壳和设置于安全壳内的多个间隔排布的核电厂非能动消氢装置,其特征在于,所述核电厂非能动消氢装置为权利要求4所述的核电厂非能动消氢装置。
PCT/CN2020/134714 2020-10-13 2020-12-09 核电厂非能动消氢装置和消氢系统 WO2021227466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011089655.2A CN112271003A (zh) 2020-10-13 2020-10-13 核电厂非能动消氢装置和消氢系统
CN202011089655.2 2020-10-13

Publications (1)

Publication Number Publication Date
WO2021227466A1 true WO2021227466A1 (zh) 2021-11-18

Family

ID=74338012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134714 WO2021227466A1 (zh) 2020-10-13 2020-12-09 核电厂非能动消氢装置和消氢系统

Country Status (2)

Country Link
CN (1) CN112271003A (zh)
WO (1) WO2021227466A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130102A (zh) * 2021-04-09 2021-07-16 哈尔滨工程大学 一种氢气复合器高温保护装置
CN113380430A (zh) * 2021-06-03 2021-09-10 哈尔滨工程大学 一种氢气复合器催化剂装载盒
CN113380431A (zh) * 2021-06-03 2021-09-10 哈尔滨工程大学 一种氢气复合器催化单元

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428612B1 (en) * 2001-04-19 2002-08-06 Hughes Electronics Corporation Hydrogen getter package assembly
CN1795982A (zh) * 2004-12-21 2006-07-05 上海焦化有限公司 载银沸石吸附剂及其制备方法和应用
CN2901504Y (zh) * 2006-05-25 2007-05-16 中国船舶重工集团公司第七一八研究所 一种无须外部提供能源的氢与氧复合装置
CN102744062A (zh) * 2012-07-12 2012-10-24 中国核动力研究设计院 核电厂非能动氢复合器催化板及其构成的氢复合器
CN102945685A (zh) * 2012-10-24 2013-02-27 中国核电工程有限公司 一种安全壳外与安全壳内、能动与非能动结合的消氢系统及方法
CN103453312A (zh) * 2013-09-11 2013-12-18 张家港韩中深冷科技有限公司 低温罐体的外置式银沸石吸附装置
CN110560149A (zh) * 2019-09-03 2019-12-13 中国工程物理研究院核物理与化学研究所 一种沸石负载金属型消氢和除氚催化剂及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2596227Y (zh) * 2003-01-17 2003-12-31 李春义 热风式反循环螺旋管取暖炉
CN102306506A (zh) * 2011-09-15 2012-01-04 中国核电工程有限公司 用于核电站设计基准事故和严重事故下安全壳消氢的设计方法
DE102012211897B3 (de) * 2012-07-09 2013-06-06 Areva Np Gmbh Kerntechnische Anlage mit einer Sicherheitshülle und mit einem Druckentlastungssystem
RU2661906C1 (ru) * 2015-03-12 2018-07-23 Раса Индастриз, Лтд. Фильтрующий материал для фильтрующей вентиляции и фильтрующее вентиляционное устройство
CN104979020B (zh) * 2015-05-20 2017-05-03 中国核动力研究设计院 小功率核反应堆安全壳氢气风险控制系统及其控制方法
CN105225704A (zh) * 2015-10-28 2016-01-06 中国工程物理研究院材料研究所 具有风电转换功能的非能动氢复合器及其用途
CN105811876B (zh) * 2016-03-16 2017-10-03 哈尔滨工程大学 基于烟囱效应的聚光光伏发电系统散热器
JP6881829B2 (ja) * 2017-01-11 2021-06-02 フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング 接触式再結合器及びフィルタ装置
CN111108325B (zh) * 2017-10-05 2021-12-21 Rasa工业株式会社 热源装置、以及银沸石的使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428612B1 (en) * 2001-04-19 2002-08-06 Hughes Electronics Corporation Hydrogen getter package assembly
CN1795982A (zh) * 2004-12-21 2006-07-05 上海焦化有限公司 载银沸石吸附剂及其制备方法和应用
CN2901504Y (zh) * 2006-05-25 2007-05-16 中国船舶重工集团公司第七一八研究所 一种无须外部提供能源的氢与氧复合装置
CN102744062A (zh) * 2012-07-12 2012-10-24 中国核动力研究设计院 核电厂非能动氢复合器催化板及其构成的氢复合器
CN102945685A (zh) * 2012-10-24 2013-02-27 中国核电工程有限公司 一种安全壳外与安全壳内、能动与非能动结合的消氢系统及方法
CN103453312A (zh) * 2013-09-11 2013-12-18 张家港韩中深冷科技有限公司 低温罐体的外置式银沸石吸附装置
CN110560149A (zh) * 2019-09-03 2019-12-13 中国工程物理研究院核物理与化学研究所 一种沸石负载金属型消氢和除氚催化剂及其应用

Also Published As

Publication number Publication date
CN112271003A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2021227466A1 (zh) 核电厂非能动消氢装置和消氢系统
KR101841617B1 (ko) 격납 용기 및 압력 완화 시스템을 갖는 원자력 발전소
Gupta Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident
CN110553275B (zh) 一种用于密闭体系的消氢器及消氢方法
Sandeep et al. Experimental investigation on the kinetics of catalytic recombination of hydrogen with oxygen in air
Meynet et al. Numerical study of hydrogen ignition by passive autocatalytic recombiners
CN108926990A (zh) 一种用于VOCs气体净化的催化反应器
Arnould et al. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)
Mazzini et al. Hydrogen explosion mitigation in DEMO vacuum vessel pressure suppression system using passive recombiners
Steffen et al. Operational behavior of a passive auto-catalytic recombiner under low pressure conditions
JP6865773B2 (ja) 原子力発電所における水素爆発の安全性の確保方法
Rubtsov et al. Catalytic activity of Pt and Pd in gaseous reactions of H2 and CH4 oxidation at low pressures
Edao et al. Performance of tritium analysis system using inorganic-based hydrophobic platinum catalyst
JP5632272B2 (ja) 原子炉格納容器の水素処理設備
Fischer et al. Hydrogen removal from LWR containments by catalytic-coated thermal insulation elements (THINCAT)
Kozlov et al. Influence of a Bulk Layer of a Catalyst on the Passage of a Hydrogen–Air Flame in a Restricted Space
CN210921445U (zh) 一种含不溶于水物质的有机废气处理装置
CN108364698B (zh) 核电站小空间消氢方法及系统
Solaija et al. Filtered Containment Venting System (FCVS) for removal of elemental and organic iodine during severe nuclear power plant accidents
RU2599145C1 (ru) Рекомбинатор и способ рекомбинации водорода или метана и кислорода в газовой смеси
CN118262945A (zh) 一种具备碘甲烷和氢气消除功能的装置
JP2013178188A (ja) 原子力プラントの水素処理設備
Kim et al. Investigation of hydrogen risk in the major containment compartments of OPR1000 using MELCOR code under SBO scenario
RU114219U1 (ru) Сжигатель пожаро- и взрывоопасного газа с каталитическим поджигающим устройством
CN211822440U (zh) 一种用于工业高浓度废气催化燃烧净化一体化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935834

Country of ref document: EP

Kind code of ref document: A1