WO2021227297A1 - Bilaterally driven closed-loop artificial pancreas - Google Patents

Bilaterally driven closed-loop artificial pancreas Download PDF

Info

Publication number
WO2021227297A1
WO2021227297A1 PCT/CN2020/111174 CN2020111174W WO2021227297A1 WO 2021227297 A1 WO2021227297 A1 WO 2021227297A1 CN 2020111174 W CN2020111174 W CN 2020111174W WO 2021227297 A1 WO2021227297 A1 WO 2021227297A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
infusion
driving
artificial pancreas
driving unit
Prior art date
Application number
PCT/CN2020/111174
Other languages
French (fr)
Inventor
Cuijun YANG
Original Assignee
Medtrum Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2019/087342 external-priority patent/WO2020232565A1/en
Priority claimed from PCT/CN2019/098784 external-priority patent/WO2021016975A1/en
Application filed by Medtrum Technologies Inc. filed Critical Medtrum Technologies Inc.
Priority to US17/924,120 priority Critical patent/US20230173168A1/en
Priority to EP20935920.7A priority patent/EP4149584A4/en
Publication of WO2021227297A1 publication Critical patent/WO2021227297A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14236Screw, impeller or centrifugal type pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M2005/14208Pressure infusion, e.g. using pumps with a programmable infusion control system, characterised by the infusion program
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M2005/14268Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body with a reusable and a disposable component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M2005/14506Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons mechanically driven, e.g. spring or clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/2006Having specific accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0266Shape memory materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/10General characteristics of the apparatus with powered movement mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/10General characteristics of the apparatus with powered movement mechanisms
    • A61M2205/106General characteristics of the apparatus with powered movement mechanisms reciprocating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3317Electromagnetic, inductive or dielectric measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3327Measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • A61M2209/088Supports for equipment on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/201Glucose concentration

Definitions

  • the present invention mainly relates to the field of medical instruments, in particular to a bilaterally driven closed-loop artificial pancreas.
  • pancreas in a normal person can automatically monitor the amount of glucose in the blood and automatically secrete the required dosage of insulin/glucagon.
  • the function of the pancreas is abnormal, and the pancreas cannot normally secrete required dosage of insulin. Therefore, diabetes is a metabolic disease caused by abnormal pancreatic function and also a lifelong disease.
  • medical technology cannot cure diabetes, but can only control the onset and development of diabetes and its complications by stabilizing blood glucose.
  • CGM Continuous Glucose Monitoring
  • BG blood glucose
  • the infusion device as a closed-loop or semi-closed-loop artificial pancreas, injects the currently required insulin dose.
  • TDD total daily dose
  • the closed-loop artificial pancreas in prior art needs to be manually input the physical conditions instead of automatically detecting, and the TDD value cannot be accurately obtained, resulting in inaccurate current insulin infusion dose and worsening user experience. And also, the infusion efficiency is lower.
  • Embodiments of the present invention disclose a bilaterally driven closed-loop artificial pancreas, in which the infusion efficiency is higher, and it can accurately calculate the TDD value and the current insulin infusion dose, enhancing user experience.
  • the invention discloses a bilaterally driven closed-loop artificial pancreas, comprising: a detection module configured to detect blood glucose; an infusion module, including: a drug storage unit; a screw connected to a piston and a driving wheel provided with wheel teeth, respectively, the driving wheel drives the screw to move by rotation, pushing the piston, provided in the drug storage unit, forward; a driving unit cooperating with the driving wheel, the driving unit includes at least two driving portions, the driving unit pivots around a pivot shaft, driving different driving portions in different directions, thus pushing the wheel teeth located on different driving wheel respectively, and rotating the driving wheel; a power unit connected to the driving unit, the power unit outputs two forces in two directions on the driving unit, making the driving unit pivot in two directions around the pivot shaft; and a program module, which is connected to the detention module and the infusion module respectively, is imported the total daily dose algorithm and the current insulin infusion algorithm, and the force output of the power unit is controlled by the program module according to the calculation result of the current insulin infusion algorithm, thereby controlling the infusion
  • the driving wheel includes at least two sub-wheels.
  • the driving wheel includes two sub-wheels, and the pivot shaft is disposed between the two sub-wheels, one or more of the driving portions are provided on both sides of the driving unit, and each sub-wheel is cooperated with each driving portion.
  • two driving portions are respectively provided on both sides of the driving unit, and the two driving portions on one side of the driving unit are disposed up and down or left and right.
  • the program module includes a manual input interface or an automatic detection sub-module
  • the method for the program module to obtain the insulin dose infused per day by users includes: the insulin dose infused per day by users is manually input into the program module through the manual input interface; or the insulin dose infused per day by users is automatically detected, stored and calculated by the automatic detection sub-module.
  • the insulin dose infused per day by users includes the total amount of daily infusion dose data, or the bolus and basal data infused in different time periods, or the temporary basal data and the correction bolus data, or the infusion data after different events.
  • the total daily dose is obtained by calculating the total amount of daily infusion dose data in the previous two or more days according to the total daily dose algorithm, and the total daily dose is the average or median of the insulin dose infused per day by users, and the total daily dose is one variable factor of the current insulin infusion algorithm.
  • variable factors of the total daily dose algorithm include one or more of the user's physical activity status, physiological status, psychological status, and meal status.
  • the physical activity status includes general body stretching, exercise, or sleep.
  • it further comprises a motion sensor, which is provided in the detection module, the program module or the infusion module, is used to automatically sense the user’s physical activity status which can be sent to the program module and is one of the variable factors of the total daily dose algorithm or the current insulin infusion algorithm.
  • a motion sensor which is provided in the detection module, the program module or the infusion module, is used to automatically sense the user’s physical activity status which can be sent to the program module and is one of the variable factors of the total daily dose algorithm or the current insulin infusion algorithm.
  • the motion sensor includes a three-axis acceleration sensor or a gyroscope.
  • any two of the detection module, the program module and the infusion module are connected to each other configured to form a single structure whose attached position on the shin is different from the third module.
  • the detection module, the program module and the infusion module are connected together configured to form a single structure which is attached on only one position on the skin.
  • a program module which is connected to the detention module and the infusion module respectively, is imported the total daily dose algorithm and the current insulin infusion algorithm, and the force output of the power unit is controlled by the program module according to the calculation result of the current insulin infusion algorithm, thereby controlling the infusion module to infuse insulin required.
  • the program module is imported into the total daily dose algorithm and the current insulin infusion algorithm. Using the detection data, the insulin dose infused per day by users and the total daily dose alone or in combination makes the current insulin infusion dose more accurate.
  • a power unit connected to the driving unit the power unit outputs two forces in two directions on the driving unit, making the driving unit pivot in two directions around the pivot shaft.
  • the driving unit can drive the driving wheel in two directions for infusion insulin, improving the infusion efficiency.
  • the program module includes a manual input interface or an automatic detection sub-module
  • the method for the program module to obtain the insulin dose infused per day by users includes: the insulin dose infused per day by users is manually input into the program module through the manual input interface; or the insulin dose infused per day by users is automatically detected, stored and calculated by the automatic detection sub-module.
  • the manual input interface or the automatic detection sub-module can be used alone or a combined, which enhances the flexibility using the device.
  • the data automatically detected and manually input can be combined and compared to make the program module adjust the algorithm in real time, helping to make the calculation result more accurate.
  • the physical activity status includes general body stretching, exercise or sleep.
  • the artificial pancreas can distinguish normal activities, exercise and sleep, making the artificial pancreas more refined to control blood glucose level.
  • the motion sensor is provided in the detection module, the program module or the infusion module.
  • the motion sensor provided in the artificial pancreas can improve the integration of the artificial pancreas as much as possible, reduce the size of the device, and enhance the user experience.
  • the motion sensor includes a three-axis acceleration sensor or a gyroscope.
  • the three-axis acceleration sensor or gyroscope can sense the body's activity intensity, activity mode or body posture accurately, ultimately improving the accuracy of the calculation result of the infusion dose.
  • the detection module, the program module and the infusion module are connected together configured to form a single structure which is attached on only one position on the skin. If the three modules are connected as a whole and attached in the only one position, the number of the device on the user skin will be reduced, thereby reducing the interference of more attached devices on user activities. At the same time, it also effectively solves the problem of the poor wireless communication between separating devices, further enhancing the user experience.
  • FIG. 1 is a schematic view of the module relationship of the closed-loop artificial pancreas according to one embodiment of the present invention
  • FIG. 2a -FIG. 2b are schematic views showing the structure of the infusion module according to an embodiment of the present invention.
  • FIG. 3a is a schematic view of the driving unit according to an embodiment of the present invention.
  • FIG. 3b is a side view of the driving unit in FIG. 3a;
  • FIG. 4 is a schematic view of a position structure of multiple pivot amplitudes of the driving unit according to an embodiment of the present invention
  • FIG. 5a -FIG. 5b are schematic views of the driving unit including two driving portions according to another embodiment of the present invention.
  • the TDD value cannot be accurately obtained, resulting in inaccurate current insulin infusion dose and worsening user experience. And also, the infusion efficiency is lower.
  • the present invention provides a bilaterally driven closed-loop artificial pancreas, in which the driving unit can drive the driving wheel in two directions for infusion insulin, making the infusion efficiency much higher, and it can accurately calculate the TDD value and the current insulin infusion dose, enhancing user experience.
  • FIG. 1 is a schematic view of the module relationship of the closed-loop artificial pancreas according to the embodiment of the present invention.
  • the closed-loop artificial pancreas disclosed in the embodiment of the present invention mainly includes a detection module 100, a program module 101, and an infusion module 102.
  • the detection module 100 is used to continuously detect the user's real-time blood glucose (BG) level.
  • the detection module 100 is a Continuous Glucose Monitoring (CGM) for detecting real-time BG, monitoring BG changes, and also sending them to the program module 101.
  • CGM Continuous Glucose Monitoring
  • the program module 101 is used to control the detection module 100 and the infusion module 102. Therefore, the program module 101 is connected to the detection module 100 and the infusion module 102, respectively.
  • the connection refers to a conventional electrical connection or a wireless connection.
  • the infusion module 102 includes the essential mechanical structures used to infuse insulin and controlled by the program module 101, which will be described in detail below. According to the current insulin infusion dose calculated by the program module 101, the infusion module 102 injects the currently insulin dose required into the user's body. At the same time, the real-time infusion status of the infusion module 102 can also be fed back to the program module 101.
  • the embodiment of the present invention does not limit the specific positions and connection relationships of the detection module 100, the program module 101 and the infusion module 102, as long as the aforementioned functional conditions can be satisfied.
  • the three are electrically connected to form a single structure. Therefore, the three modules can be attached together on only one position of the user's skin. If the three modules are connected as a whole and attached in the only one position, the number of the device on the user skin will be reduced, thereby reducing the interference of more attached devices on user activities. At the same time, it also effectively solves the problem of the poor wireless communication between separating devices, further enhancing the user experience.
  • the program module 101 and the infusion module 102 are electrically connected to each other to form a single structure while the detection module 100 is separately provided in another structure. At this time, the detection module 100 and the program module 101 transmit wireless signals to each other to realize mutual connection. Therefore, the program module 101 and the infusion module 102 can be attached on the same position of the user's skin while the detection module 100 is attached on the other position.
  • the program module 101 and the detection module 100 are electrically connected to each other forming a single structure while the infusion module 102 is separately provided in another structure.
  • the infusion module 102 and the program module 101 transmit wireless signals to each other to realize mutual connection. Therefore, the program module 101 and the detection module 100 can be attached on the same position of the user's skin while the infusion module 102 is attached on the other position.
  • the three are respectively provided in different structures, thus being attached on different position.
  • the program module 101, the detection module 100 and the infusion module 102 respectively transmit wireless signals to each other to realize mutual connection.
  • the program module 101 of the embodiment of the present invention also has functions such as storage, recording, and access to the database, thus, the program module 101 can be reused. In this way, not only can the user's physical condition data be stored, but also the production cost and the user's consumption cost can be saved. As described above, when the service life of the detection module 100 or the infusion module 102 expires, the program module 101 can be separated from the detection module 100, the infusion module 102, or both the detection module 100 and the infusion module 102.
  • the service lives of the detection module 100, the program module 101 and the infusion module 102 are different. Therefore, when the three are electrically connected to each other to form a single device, the three can also be separated from each other in pairs. For example, if one module expires firstly, the user can only replace this module and keep the other two modules continuous using.
  • the program module 101 of the embodiment of the present invention may also include multiple sub-modules. According to the functions of the sub-modules, different sub-modules can be respectively assembled in different structure, which is not specific limitation herein, as long as the control conditions of the program module 101 can be satisfied.
  • the program module 101 is also used to obtain data including the insulin dose infused per day by users.
  • the current insulin dose required is closely related to the insulin dose infused per day by users in history.
  • the insulin dose infused per day by users includes the total amount of daily infusion dose data (d) , or the bolus and basal data infused in different time periods, or the temporary basal data and the correction bolus data, or the infusion data after different events.
  • the program module 101 includes a manual input interface (not shown) or an automatic detection sub-module (not shown) .
  • a manual input interface not shown
  • an automatic detection sub-module not shown
  • the program module 101 can obtain the user's physical condition data. This alone or combination using of these two modules enhances the flexibility in using the device.
  • users can manually input the insulin dose infused per day by users into the program module 101 according to the clinical guidance.
  • the program module 101 has already stored and recorded the user's previous insulin infusion data.
  • the program module 101 can automatically obtain and calculate the insulin dose infused per day by users.
  • the user uses the manual input interface in combination with the automatic detection sub-module. At this time, the data automatically detected and the manually input can be combined and compared, making the program module 101 adjust the algorithm in real time for obtaining more accurate calculation outcome.
  • users can also input other information, such as meal information, exercise information, sleep information, and physical condition information into the program module 101, which is not specifically limited herein.
  • the purpose of using an artificial pancreas is to stabilize the BG level, that is, an appropriate dose of insulin needs to be infused into the user's body.
  • the current insulin infusion dose is closely related to the total daily dose (TDD) which is an important factor influencing the current insulin infusion dose. Therefore, the program module 101 is imported into the total daily dose algorithm and the current insulin infusion algorithm, which are used to calculate the TDD and the current insulin infusion dose, respectively.
  • the current insulin infusion algorithm is used to calculate the current insulin infusion dose required.
  • factors affecting the current insulin infusion dose such as physical activity status, TDD, etc.
  • the TDD is one of the variable factors. Therefore, the more accurate the TDD or the more accurate the artificial pancreas sensing the user's activity status, the more accurate the current insulin infusion dose will be.
  • TDD can be obtained from calculating the aforementioned insulin dose infused per day by users according to the total daily dose algorithm.
  • the program module 101 can alone or in combination uses the detection data, the insulin dose infused per day by users and TDD data to calculate the current insulin infusion dose.
  • variable factors of the total daily dose algorithm include one or more of the user's physical activity status, physiological status, psychological status, and meal status.
  • the physiological status of the user includes one or more factors of weight, gender, age, disease condition, and menstrual period.
  • the user's psychological status includes emotional conditions such as anger, fear, depression, hyperactivity, and excitement.
  • the user's physical activity status includes general body stretching, exercise, or sleep.
  • the artificial pancreas can distinguish normal activities, exercise and sleep, making the artificial pancreas more refined to control BG levels.
  • TDD is obtained by the program module 101 by calculating the total amount of daily infusion dose data (d) in the previous two days or more according to the total daily dose algorithm.
  • TDD is obtained by the program module 101 by calculating the total amount of daily infusion dose data (d) in the previous seven days.
  • TDD is the average value of the total amount of daily infusion dose data (d) .
  • d 7 , d 6 , ..., d 2 , d 1 respectively represent the total amount of daily infusion dose data in the previous seventh day, the previous sixth day, ..., the day before yesterday, and yesterday, then:
  • TDD (d 7 + d 6 + ... + d 2 + d 1 ) /7
  • TDD is the arithmetic average of the total amount of daily infusion dose data (d) .
  • different d n has different weights ⁇ n , such as the corresponding weights ⁇ 7 , ⁇ 6 , ..., ⁇ 2 , ⁇ 1 , then:
  • TDD ⁇ 7 d 7 + ⁇ 6 d 6 + ... + ⁇ 2 d 2 + ⁇ 1 d 1
  • TDD is the weighted average of the total amount of insulin infused per day (d) .
  • the embodiment of the present invention does not limit the statistical method of d n .
  • the TDD value can be determined by the median of the total amount of daily infusion dose data (d) in the previous seven days.
  • the maximum value and minimum value of d n may be eliminated firstly, and then the averaging process is performed.
  • Another embodiment of the present invention introduces variance or standard deviation method with discarding points with larger errors firstly and then performing averaging processing.
  • a method of combining weighted average with a sliding data frame may also be used to make the calculation result of TDD more accurate.
  • the sliding data frame refers to select the data, like from previous five consecutive days, as a data frame for statistics. And according to the passage of time, the data frame as a whole moves backward for several days, but still keeps including data of another previous five consecutive days.
  • the specific statistical method of the data in the sliding data frame please refer to the foresaid, which will not be repeated herein.
  • the closed-loop artificial pancreas also includes a motion sensor (not shown) which is used to sense the user's physical activity.
  • the program module 101 can receive physical activity status information.
  • the motion sensor can automatically and accurately sense the physical activity status of the user which will be sent to the program module 101, making the calculation result of the TDD or the current insulin infusion dose much more accurate, and enhancing the user experience.
  • providing the motion sensor in the module of the artificial pancreas can improve the integration of the artificial pancreas as much as possible, reduce the device size, and enhance the user experience.
  • the motion sensor is provided in the detection module 100, the program module 101 or the infusion module 102.
  • the motion sensor is provided in the program module 101.
  • the embodiment of the present invention does not limit the number of motion sensors and the installation positions of these multiple motion sensors, as long as the conditions for the motion sensor to sense the user's activity status can be satisfied.
  • the motion sensor includes a three-axis acceleration sensor or a gyroscope.
  • the three-axis acceleration sensor or gyroscope can more accurately sense the body's activity intensity, activity mode or body posture, which ultimately makes the calculation result of the infusion more accurate.
  • the motion sensor is the combination of a three-axis acceleration sensor and a gyroscope.
  • FIG. 2a is a schematic view showing the structure of the infusion module according to an embodiment of the present invention.
  • the infusion module includes a driving unit 1100, a driving wheel 1130, a drug storage unit 1150, a piston 1160, a screw 1170, and a power unit 1180.
  • FIG. 2b is a schematic view of the cooperation between the driving unit 1100 and the driving wheel 1130 according to an embodiment of the present invention.
  • the screw 1170 is connected to the piston 1160 and the driving wheel 1130, respectively.
  • the driving wheel 1130 is movably mounted on the device base (not shown) , and the driving wheel 1130 moves the driving screw 1170 through rotation to advance the piston 1160 disposed in the drug storage unit 1150 to move forward for the purpose of injecting insulin.
  • the driving unit 1100 is used to drive the driving wheel 1130 to rotate.
  • the driving unit 1100 is movably connected to the device base through the pivot shaft 1120.
  • the power unit 1180 is used to apply a force to the driving unit 1100 leading the driving unit 1100 to pivot.
  • the power unit 1180 is fixedly connected at the top position 1140 of the driving unit 1100, thereby dividing the power unit 1180 into two left and right portions, such as the A' direction portion and the B' direction portion in FIG. 2a.
  • the driving unit 1100 is alternately led to pivot in the A' direction or the B' direction through the pivot shaft 1120.
  • the driving unit 1100 pivots in the A direction through the pivot shaft 1120
  • the power unit 1180 leads the driving unit 1100 to the B' direction
  • the driving unit 1100 pivots in the B direction through the pivot shaft 1120.
  • the power unit 1180 is made of shape memory alloy.
  • the A' direction portion and the B' direction portion of the shape memory alloy are alternately powered on and off, and a leading force is applied to the driving unit 1100 by a change in the length of the power unit 1180 thereof.
  • the power unit 1180 may be composed of one piece of shape memory alloy, or may be composed of left and right segments (such as the A' direction segment and the B' direction segment) of shape memory alloy, and is not specifically limited herein, as long as the force can be applied to lead the driving unit 1100 to pivot.
  • the power unit 1180 includes, but is not limited to, a shape memory alloy. In other embodiments of the present invention, the power unit 1180 may also be other structures, and the location where the power unit 1180 applies force to the driving unit 1100 is also not limited to the top position 1140, as long as the action of applying a force to the driving unit 1100 can be satisfied to cause the driving unit 1100 to alternately pivot left and right.
  • the driving wheel 1130 includes a plurality of sub-wheels, and the circumferential surface of the sub-wheels is provided with wheel teeth 1131.
  • Driving unit 1100 through the wheel teeth 1131, cooperates with the driving wheel 1130.
  • the driving unit 1100 includes four driving portions 1110, which are 1110a, 1110b, 1110c, and 1110d, respectively.
  • 1110a, 1110b are installed on one side of the driving unit 1100, while 1110c, 1110d are installed on the other side of the driving unit 1100.
  • the driving wheel 1130 includes two sub-wheels, one of which cooperates with 1110a, 1110b and the other of which cooperates with 1110c, 1110d.
  • FIG. 3a and FIG. 3b are respectively schematic view, a side view of the driving unit 1100.
  • the two driving portions 1110 on one side of the driving unit 1100 are installed up and down.
  • the up and down settings refer to the up and down positional relationship representations shown in FIG. 3b.
  • the two driving portions 1110 (such as 1110a and 1110b) on the side of the driving unit 1100 can be seen in the side view FIG. 3b, and 1110b and 1110d are blocked by 1110a and 1110c, respectively.
  • these four driving portions may be disposed by other means, such as the two driving portions on one side of the driving unit are disposed left and right, as long as the arms are able to drive the driving wheel to rotate, and is not specifically limited herein.
  • FIG. 4 is a schematic view of a position structure of a plurality of pivot amplitudes of the driving unit 1100, and is also a top view in the direction of the arrow in FIG. 3b.
  • driving portion1110a and/or 1110b engage the wheel teeth 1131 to rotate the driving wheel 1130, while 1110c and 1110d can slide on the wheel teeth 1131, but not exert a force for driving the driving wheel 1130 to rotate. And obviously, 1110c slides to the next adjacent driving position firstly.
  • the driving unit 1100 stops pivoting and the driving portions 1110a and/or 1110b stop engaging the wheel teeth 1131, therefore, the driving wheel 1130 stops rotating.
  • the driving unit 1100 completes one kind of pivot amplitude.
  • the driving unit 1100 pivots in the A direction to reach A 1 position.
  • the driving portion1110d may firstly slide to the next gear tooth 1131, and then 1110c slides to the next gear tooth 1131, which is not specifically limited herein.
  • the driving unit 1100 pivots in the B direction, it can perform B 1 and B 2 two pivot amplitudes, respectively.
  • the driving unit 1100 undergoes an alternate action of pivot and stop, and the driving portions 1110 alternately engage and stop engaging wheel teeth 1131 to drive the driving wheel 1130 to rotate and stop rotating, realizing two-step rotation of the driving wheel, and finally achieving two infusion modes of the infusion module.
  • the driving unit 1100 pivots to the A 1 position, and then pivots one or two amplitudes in the B direction, that is, reaching the B 1 or B 2 position until the pivot in the B direction stops. This process completes the alternate pivot of the driving unit 1100 in two directions, so that the driving wheel 1130 can be rotated in multiple steps. Therefore, in the embodiment of the present invention, the driving unit 1100 can alternately switch amplitudes among A 1 -B 1 , or A 1 -B 1 -B 2 , or B 1 -A 1 -A 2 , so as to achieve the purpose of switching among different infusion modes.
  • the driving unit 1100 can also be pivoted directly to the A 2 position without passing through the A 1 position, then directly pivoted to the B 2 position without passing through the B 1 position, that is, the driving unit 1100 alternately pivots between the A 2 -B 2 positions. As described above, the driving unit 1100 can also alternately pivot between the A 1 -B 1 positions.
  • the patient or the artificial pancreas when the infusion is started, the amount of insulin required is relatively large, and the patient or the artificial pancreas can select the large A 2 -B 2 pivot amplitude for infusion. After a period of time, the intermediate A 1 -B 1 -B 2 pivot amplitude or B 1 -A 1 -A 2 pivot amplitude can be used to reduce the rate of insulin infusion. When the insulin infusion is about to be completed, the patient or the artificial pancreas can switch to the small A 1 -B 1 pivot amplitude to further reduce the infusion rate and achieve precise control of the drug infusion. Of course, the patient or the artificial pancreas can also choose one or several of the modes for infusion, and there are no specific restrictions.
  • driving portions like three, four, etc.
  • the total number of driving portions may also be an odd number, such as three, five or more, that is, the numbers of driving portions on both sides of the driving unit are not equal.
  • the structural relationship between the different driving portions can be similar to that described above, and no specific restrictions are imposed herein.
  • FIG. 5a -FIG. 5b are schematic views of the driving unit 1200 including two driving portions.
  • the driving unit 1200 when the driving unit 1200 is output a force in the A' direction, the driving unit 1200 rotates in the A direction around the pivot shaft 1220, making the driving portion 1210a push the wheel teeth 1231a, thereby driving the driving wheel 1230a to rotate.
  • the driving unit 1200 When the driving unit 1200 is output a force in the B' direction, the driving unit 1200 rotates in the B direction around the pivot shaft 1220, making the driving portion 1210b push the wheel teeth 1231b, thereby driving the driving wheel 1230b to rotate.
  • the frequency of the force output by the power unit can be changed to further change the pivot frequency of the driving unit, so that the infusion module has a variety of different infusion rates.
  • the user or the artificial pancreas can flexibly select the appropriate infusion rate as needed, making the infusion process flexible and controllable.
  • the present invention discloses a bilaterally driven closed-loop artificial pancreas, in which the infusion efficiency is higher, and it can accurately calculate the TDD value and the current insulin infusion dose, enhancing user experience.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • External Artificial Organs (AREA)

Abstract

A bilaterally driven closed-loop artificial pancreas, comprising: a detection module (100); an infusion module (102), including: a drug storage unit (1150); a screw (1170) and a driving wheel (1130) provided with wheel teeth, the driving wheel (1130) drives the screw (1170) and the screw (1170) pushes a piston (1160); a driving unit (1100) cooperating with the driving wheel (1130), the driving unit (1100) includes at least two driving portions (1110); a power unit (1180) connected to the driving unit (1100), the power unit (1180) outputs two forces in two directions on the driving unit (1100); and a program module (101) imported the total daily dose algorithm and the current insulin infusion algorithm. The artificial pancreas can accurately calculate the TDD value and the current insulin infusion dose, and enhance user experience.

Description

BILATERALLY DRIVEN CLOSED-LOOP ARTIFICIAL PANCREAS TECHNICAL FIELD
The present invention mainly relates to the field of medical instruments, in particular to a bilaterally driven closed-loop artificial pancreas.
BACKGROUND
The pancreas in a normal person can automatically monitor the amount of glucose in the blood and automatically secrete the required dosage of insulin/glucagon. However, for diabetic patients, the function of the pancreas is abnormal, and the pancreas cannot normally secrete required dosage of insulin. Therefore, diabetes is a metabolic disease caused by abnormal pancreatic function and also a lifelong disease. At present, medical technology cannot cure diabetes, but can only control the onset and development of diabetes and its complications by stabilizing blood glucose.
Patients with diabetes need to check their blood glucose before injecting insulin into the body. At present, most of the detection methods can continuously detect blood glucose, and send the blood glucose data to the remote device in real time for the user to view. This detection method is called Continuous Glucose Monitoring (CGM) , which requires the detection device to be attached to the surface of the patients’ skin, and the sensor carried by the device is inserted into the subcutaneous tissue fluid for testing. According to the blood glucose (BG) level, the infusion device, as a closed-loop or semi-closed-loop artificial pancreas, injects the currently required insulin dose.
At present, the detection device and the infusion device are connected to each other to form a closed-loop artificial pancreas with the processing of the program module. While the program module is calculating the insulin infusion dose, total daily dose (TDD) is an important parameter with many determinants, such as physical conditions, physiological conditions, etc.
However, the closed-loop artificial pancreas in prior art needs to be manually input the physical conditions instead of automatically detecting, and the TDD value cannot be accurately obtained, resulting in inaccurate current insulin infusion dose and worsening user experience. And also, the infusion efficiency is lower.
Therefore, in the prior art, there is an urgent need for a closed-loop artificial pancreas that can accurately calculate the current infusion dose with higher infusion efficiency.
BRIEF SUMMARY OF THE INVENTION
Embodiments of the present invention disclose a bilaterally driven closed-loop artificial pancreas, in which the infusion efficiency is higher, and it can accurately calculate the TDD value and the current insulin infusion dose, enhancing user experience.
The invention discloses a bilaterally driven closed-loop artificial pancreas, comprising: a detection module configured to detect blood glucose; an infusion module, including: a drug storage unit; a screw connected to a piston and a driving wheel provided with wheel teeth, respectively, the driving wheel drives the screw to move by rotation, pushing the piston, provided in the drug storage unit, forward; a driving unit cooperating with the  driving wheel, the driving unit includes at least two driving portions, the driving unit pivots around a pivot shaft, driving different driving portions in different directions, thus pushing the wheel teeth located on different driving wheel respectively, and rotating the driving wheel; a power unit connected to the driving unit, the power unit outputs two forces in two directions on the driving unit, making the driving unit pivot in two directions around the pivot shaft; and a program module, which is connected to the detention module and the infusion module respectively, is imported the total daily dose algorithm and the current insulin infusion algorithm, and the force output of the power unit is controlled by the program module according to the calculation result of the current insulin infusion algorithm, thereby controlling the infusion module to infuse insulin required.
According to one aspect of this invention, the driving wheel includes at least two sub-wheels.
According to one aspect of this invention, the driving wheel includes two sub-wheels, and the pivot shaft is disposed between the two sub-wheels, one or more of the driving portions are provided on both sides of the driving unit, and each sub-wheel is cooperated with each driving portion.
According to one aspect of this invention, two driving portions are respectively provided on both sides of the driving unit, and the two driving portions on one side of the driving unit are disposed up and down or left and right.
According to one aspect of the present invention, the program module includes a manual input interface or an automatic detection sub-module, and the method for the program module to obtain the insulin dose infused per day by users includes: the insulin dose infused per day by users is manually input into the program module through the manual input interface; or the insulin dose infused per day by users is automatically detected, stored and calculated by the automatic detection sub-module.
According to one aspect of the present invention, the insulin dose infused per day by users includes the total amount of daily infusion dose data, or the bolus and basal data infused in different time periods, or the temporary basal data and the correction bolus data, or the infusion data after different events.
According to one aspect of the present invention, the total daily dose is obtained by calculating the total amount of daily infusion dose data in the previous two or more days according to the total daily dose algorithm, and the total daily dose is the average or median of the insulin dose infused per day by users, and the total daily dose is one variable factor of the current insulin infusion algorithm.
According to one aspect of the present invention, the variable factors of the total daily dose algorithm include one or more of the user's physical activity status, physiological status, psychological status, and meal status.
According to one aspect of the present invention, the physical activity status includes general body stretching, exercise, or sleep.
According to one aspect of the present invention, it further comprises a motion sensor, which is provided in the detection module, the program module or the infusion module, is used to automatically sense the user’s physical activity status which can be sent to the program module and is one of the variable factors of the total daily dose algorithm or the current insulin infusion algorithm.
According to one aspect of the present invention, the motion sensor includes a three-axis acceleration sensor or a gyroscope.
According to one aspect of the present invention, any two of the detection module, the program module and the infusion module are connected to each other configured to form a single structure whose attached position on  the shin is different from the third module.
According to one aspect of the present invention, the detection module, the program module and the infusion module are connected together configured to form a single structure which is attached on only one position on the skin.
Compared with the prior arts, the technical solution of the present invention has the following advantages:
In the bilaterally driven closed-loop artificial pancreas disclosed herein, a program module, which is connected to the detention module and the infusion module respectively, is imported the total daily dose algorithm and the current insulin infusion algorithm, and the force output of the power unit is controlled by the program module according to the calculation result of the current insulin infusion algorithm, thereby controlling the infusion module to infuse insulin required. The program module is imported into the total daily dose algorithm and the current insulin infusion algorithm. Using the detection data, the insulin dose infused per day by users and the total daily dose alone or in combination makes the current insulin infusion dose more accurate. Secondly, a power unit connected to the driving unit, the power unit outputs two forces in two directions on the driving unit, making the driving unit pivot in two directions around the pivot shaft. The driving unit can drive the driving wheel in two directions for infusion insulin, improving the infusion efficiency.
Furthermore, the program module includes a manual input interface or an automatic detection sub-module, and the method for the program module to obtain the insulin dose infused per day by users includes: the insulin dose infused per day by users is manually input into the program module through the manual input interface; or the insulin dose infused per day by users is automatically detected, stored and calculated by the automatic detection sub-module. The manual input interface or the automatic detection sub-module can be used alone or a combined, which enhances the flexibility using the device. Secondly, with the manual input interface and the automatic detection sub-module used in combination, the data automatically detected and manually input can be combined and compared to make the program module adjust the algorithm in real time, helping to make the calculation result more accurate.
Furthermore, the physical activity status includes general body stretching, exercise or sleep. The artificial pancreas can distinguish normal activities, exercise and sleep, making the artificial pancreas more refined to control blood glucose level.
Furthermore, the motion sensor is provided in the detection module, the program module or the infusion module. The motion sensor provided in the artificial pancreas, not disposed in other structure, can improve the integration of the artificial pancreas as much as possible, reduce the size of the device, and enhance the user experience.
Furthermore, the motion sensor includes a three-axis acceleration sensor or a gyroscope. The three-axis acceleration sensor or gyroscope can sense the body's activity intensity, activity mode or body posture accurately, ultimately improving the accuracy of the calculation result of the infusion dose.
Furthermore, the detection module, the program module and the infusion module are connected together configured to form a single structure which is attached on only one position on the skin. If the three modules are connected as a whole and attached in the only one position, the number of the device on the user skin will be reduced, thereby reducing the interference of more attached devices on user activities. At the same time, it also effectively solves the problem of the poor wireless communication between separating devices, further enhancing the user experience.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic view of the module relationship of the closed-loop artificial pancreas according to one embodiment of the present invention;
FIG. 2a -FIG. 2b are schematic views showing the structure of the infusion module according to an embodiment of the present invention;
FIG. 3a is a schematic view of the driving unit according to an embodiment of the present invention;
FIG. 3b is a side view of the driving unit in FIG. 3a;
FIG. 4 is a schematic view of a position structure of multiple pivot amplitudes of the driving unit according to an embodiment of the present invention;
FIG. 5a -FIG. 5b are schematic views of the driving unit including two driving portions according to another embodiment of the present invention.
DETAILED DESCRIPTION
As described above, in the prior art device, the TDD value cannot be accurately obtained, resulting in inaccurate current insulin infusion dose and worsening user experience. And also, the infusion efficiency is lower.
The study found that the cause of the above problems is that the driving unit can only drive the driving wheel in one rotation direction, and total daily dose algorithm is not perfect.
In order to solve this problem, the present invention provides a bilaterally driven closed-loop artificial pancreas, in which the driving unit can drive the driving wheel in two directions for infusion insulin, making the infusion efficiency much higher, and it can accurately calculate the TDD value and the current insulin infusion dose, enhancing user experience.
Various exemplary embodiments of the present invention will now be described in detail with reference to the drawings. The relative arrangement of the components and the steps, numerical expressions and numerical values set forth in the embodiments are not to be construed as limiting the scope of the invention.
In addition, it should be understood that, for ease of description, the dimensions of the various components shown in the figures are not necessarily drawn in the actual scale relationship, for example, the thickness, width, length or distance of certain units may be exaggerated relative to other structures.
The following description of the exemplary embodiments is merely illustrative, and is not intended to be in any way limiting the invention and its application or use. The techniques, methods and devices that are known to those of ordinary skill in the art may not be discussed in detail, but such techniques, methods and devices should be considered as part of the specification.
It should be noted that similar reference numerals and letters indicate similar items in the following figures. Therefore, once an item is defined or illustrated in a drawing, it will not be discussed further in the following description of the drawings.
FIG. 1 is a schematic view of the module relationship of the closed-loop artificial pancreas according to the embodiment of the present invention.
The closed-loop artificial pancreas disclosed in the embodiment of the present invention mainly includes a detection module 100, a program module 101, and an infusion module 102.
The detection module 100 is used to continuously detect the user's real-time blood glucose (BG) level. Generally, the detection module 100 is a Continuous Glucose Monitoring (CGM) for detecting real-time BG, monitoring BG changes, and also sending them to the program module 101.
The program module 101 is used to control the detection module 100 and the infusion module 102. Therefore, the program module 101 is connected to the detection module 100 and the infusion module 102, respectively. Here, the connection refers to a conventional electrical connection or a wireless connection.
The infusion module 102 includes the essential mechanical structures used to infuse insulin and controlled by the program module 101, which will be described in detail below. According to the current insulin infusion dose calculated by the program module 101, the infusion module 102 injects the currently insulin dose required into the user's body. At the same time, the real-time infusion status of the infusion module 102 can also be fed back to the program module 101.
The embodiment of the present invention does not limit the specific positions and connection relationships of the detection module 100, the program module 101 and the infusion module 102, as long as the aforementioned functional conditions can be satisfied.
As in an embodiment of the present invention, the three are electrically connected to form a single structure. Therefore, the three modules can be attached together on only one position of the user's skin. If the three modules are connected as a whole and attached in the only one position, the number of the device on the user skin will be reduced, thereby reducing the interference of more attached devices on user activities. At the same time, it also effectively solves the problem of the poor wireless communication between separating devices, further enhancing the user experience.
As in another embodiment of the present invention, the program module 101 and the infusion module 102 are electrically connected to each other to form a single structure while the detection module 100 is separately provided in another structure. At this time, the detection module 100 and the program module 101 transmit wireless signals to each other to realize mutual connection. Therefore, the program module 101 and the infusion module 102 can be attached on the same position of the user's skin while the detection module 100 is attached on the other position.
As in another embodiment of the present invention, the program module 101 and the detection module 100 are electrically connected to each other forming a single structure while the infusion module 102 is separately provided in another structure. The infusion module 102 and the program module 101 transmit wireless signals to each other to realize mutual connection. Therefore, the program module 101 and the detection module 100 can be attached on the same position of the user's skin while the infusion module 102 is attached on the other position.
As in another embodiment of the present invention, the three are respectively provided in different structures, thus being attached on different position. At this time, the program module 101, the detection module 100 and the infusion module 102 respectively transmit wireless signals to each other to realize mutual connection.
It should be noted that the program module 101 of the embodiment of the present invention also has functions such as storage, recording, and access to the database, thus, the program module 101 can be reused. In this way, not only can the user's physical condition data be stored, but also the production cost and the user's consumption cost can be saved. As described above, when the service life of the detection module 100 or the  infusion module 102 expires, the program module 101 can be separated from the detection module 100, the infusion module 102, or both the detection module 100 and the infusion module 102.
Generally, the service lives of the detection module 100, the program module 101 and the infusion module 102 are different. Therefore, when the three are electrically connected to each other to form a single device, the three can also be separated from each other in pairs. For example, if one module expires firstly, the user can only replace this module and keep the other two modules continuous using.
Here, it should be noted that the program module 101 of the embodiment of the present invention may also include multiple sub-modules. According to the functions of the sub-modules, different sub-modules can be respectively assembled in different structure, which is not specific limitation herein, as long as the control conditions of the program module 101 can be satisfied.
In the embodiment of the present invention, the program module 101 is also used to obtain data including the insulin dose infused per day by users. Generally, for artificial pancreas, the current insulin dose required is closely related to the insulin dose infused per day by users in history. Preferably, in the embodiment of the present invention, the insulin dose infused per day by users includes the total amount of daily infusion dose data (d) , or the bolus and basal data infused in different time periods, or the temporary basal data and the correction bolus data, or the infusion data after different events.
The program module 101 includes a manual input interface (not shown) or an automatic detection sub-module (not shown) . By using the manual input interface or the automatic detection sub-module alone, or using the two combination, the program module 101 can obtain the user's physical condition data. This alone or combination using of these two modules enhances the flexibility in using the device.
For example, in an embodiment of the present invention, with the manual input interface, users can manually input the insulin dose infused per day by users into the program module 101 according to the clinical guidance. In another embodiment of the present invention, the program module 101 has already stored and recorded the user's previous insulin infusion data. With the automatic detection sub-module, the program module 101 can automatically obtain and calculate the insulin dose infused per day by users. Preferably, in the embodiment of the present invention, the user uses the manual input interface in combination with the automatic detection sub-module. At this time, the data automatically detected and the manually input can be combined and compared, making the program module 101 adjust the algorithm in real time for obtaining more accurate calculation outcome.
In other embodiments of the present invention, through the manual input interface, users can also input other information, such as meal information, exercise information, sleep information, and physical condition information into the program module 101, which is not specifically limited herein.
Generally, the purpose of using an artificial pancreas is to stabilize the BG level, that is, an appropriate dose of insulin needs to be infused into the user's body. However, the current insulin infusion dose is closely related to the total daily dose (TDD) which is an important factor influencing the current insulin infusion dose. Therefore, the program module 101 is imported into the total daily dose algorithm and the current insulin infusion algorithm, which are used to calculate the TDD and the current insulin infusion dose, respectively.
The current insulin infusion algorithm is used to calculate the current insulin infusion dose required. In the embodiment of the present invention, there are also many factors affecting the current insulin infusion dose, such as physical activity status, TDD, etc. Preferably, in the embodiment of the present invention, the TDD is one of the variable factors. Therefore, the more accurate the TDD or the more accurate the artificial pancreas  sensing the user's activity status, the more accurate the current insulin infusion dose will be. And TDD can be obtained from calculating the aforementioned insulin dose infused per day by users according to the total daily dose algorithm. At the same time, the program module 101 can alone or in combination uses the detection data, the insulin dose infused per day by users and TDD data to calculate the current insulin infusion dose.
There are many factors that affect TDD, and some of them are related to the user's physical condition. Therefore, in the embodiment of the present invention, the variable factors of the total daily dose algorithm include one or more of the user's physical activity status, physiological status, psychological status, and meal status.
Here, the physiological status of the user includes one or more factors of weight, gender, age, disease condition, and menstrual period.
The user's psychological status includes emotional conditions such as anger, fear, depression, hyperactivity, and excitement.
The user's physical activity status includes general body stretching, exercise, or sleep. The artificial pancreas can distinguish normal activities, exercise and sleep, making the artificial pancreas more refined to control BG levels.
As mentioned above, TDD is obtained by the program module 101 by calculating the total amount of daily infusion dose data (d) in the previous two days or more according to the total daily dose algorithm. Preferably, in the embodiment of the present invention, TDD is obtained by the program module 101 by calculating the total amount of daily infusion dose data (d) in the previous seven days. Preferably, TDD is the average value of the total amount of daily infusion dose data (d) .
In an embodiment of the present invention, if d 7, d 6, ..., d 2, d 1 respectively represent the total amount of daily infusion dose data in the previous seventh day, the previous sixth day, ..., the day before yesterday, and yesterday, then:
TDD = (d 7 + d 6 + ... + d 2 + d 1) /7
that is, TDD is the arithmetic average of the total amount of daily infusion dose data (d) .
If the time is much closer to the today, the total amount of daily infusion dose data (d) is much closer to the actual TDD. Therefore, in another embodiment of the present invention, different d n has different weights γ n, such as the corresponding weights γ 7, γ 6, ..., γ 2, γ 1, then:
TDD = γ 7d 7 + γ 6d 6 + ... + γ 2d 2 + γ 1d 1
that is, TDD is the weighted average of the total amount of insulin infused per day (d) .
It should be noted that the embodiment of the present invention does not limit the statistical method of d n. In yet another embodiment of the present invention, the TDD value can be determined by the median of the total amount of daily infusion dose data (d) in the previous seven days. In another embodiment of the present invention, the maximum value and minimum value of d n may be eliminated firstly, and then the averaging process is performed. Another embodiment of the present invention introduces variance or standard deviation method with discarding points with larger errors firstly and then performing averaging processing. In other embodiments of the present invention, a method of combining weighted average with a sliding data frame may also be used to make the calculation result of TDD more accurate.
Here, it should be noted that the sliding data frame refers to select the data, like from previous five consecutive  days, as a data frame for statistics. And according to the passage of time, the data frame as a whole moves backward for several days, but still keeps including data of another previous five consecutive days. For the specific statistical method of the data in the sliding data frame, please refer to the foresaid, which will not be repeated herein.
As mentioned above, both TDD and the current insulin infusion dose are affected by physical activities. Therefore, the closed-loop artificial pancreas also includes a motion sensor (not shown) which is used to sense the user's physical activity. And the program module 101 can receive physical activity status information. The motion sensor can automatically and accurately sense the physical activity status of the user which will be sent to the program module 101, making the calculation result of the TDD or the current insulin infusion dose much more accurate, and enhancing the user experience. At the same time, providing the motion sensor in the module of the artificial pancreas can improve the integration of the artificial pancreas as much as possible, reduce the device size, and enhance the user experience.
The motion sensor is provided in the detection module 100, the program module 101 or the infusion module 102. Preferably, in the embodiment of the present invention, the motion sensor is provided in the program module 101.
It should be noted that the embodiment of the present invention does not limit the number of motion sensors and the installation positions of these multiple motion sensors, as long as the conditions for the motion sensor to sense the user's activity status can be satisfied.
The motion sensor includes a three-axis acceleration sensor or a gyroscope. The three-axis acceleration sensor or gyroscope can more accurately sense the body's activity intensity, activity mode or body posture, which ultimately makes the calculation result of the infusion more accurate. Preferably, in the embodiment of the present invention, the motion sensor is the combination of a three-axis acceleration sensor and a gyroscope.
FIG. 2a is a schematic view showing the structure of the infusion module according to an embodiment of the present invention. The infusion module includes a driving unit 1100, a driving wheel 1130, a drug storage unit 1150, a piston 1160, a screw 1170, and a power unit 1180. FIG. 2b is a schematic view of the cooperation between the driving unit 1100 and the driving wheel 1130 according to an embodiment of the present invention.
The screw 1170 is connected to the piston 1160 and the driving wheel 1130, respectively. In the embodiment of the present invention, the driving wheel 1130 is movably mounted on the device base (not shown) , and the driving wheel 1130 moves the driving screw 1170 through rotation to advance the piston 1160 disposed in the drug storage unit 1150 to move forward for the purpose of injecting insulin.
The driving unit 1100 is used to drive the driving wheel 1130 to rotate. The driving unit 1100 is movably connected to the device base through the pivot shaft 1120. The power unit 1180 is used to apply a force to the driving unit 1100 leading the driving unit 1100 to pivot. In the embodiment of the present invention, the power unit 1180 is fixedly connected at the top position 1140 of the driving unit 1100, thereby dividing the power unit 1180 into two left and right portions, such as the A' direction portion and the B' direction portion in FIG. 2a. The driving unit 1100 is alternately led to pivot in the A' direction or the B' direction through the pivot shaft 1120. Specifically, in the embodiment of the present invention, when the power unit 1180 leads the driving unit 1100 to A' direction, the driving unit 1100 pivots in the A direction through the pivot shaft 1120, while the power unit 1180 leads the driving unit 1100 to the B' direction, the driving unit 1100 pivots in the B direction through the pivot shaft 1120. By alternately leading the driving unit 1100 to the A' direction and the B' direction, the driving unit 1100 can be alternately pivoted through the pivot shaft 1120 in two different directions, like the A direction and the B direction.
Specifically, in the embodiment of the present invention, the power unit 1180 is made of shape memory alloy. The A' direction portion and the B' direction portion of the shape memory alloy are alternately powered on and off, and a leading force is applied to the driving unit 1100 by a change in the length of the power unit 1180 thereof. The power unit 1180 may be composed of one piece of shape memory alloy, or may be composed of left and right segments (such as the A' direction segment and the B' direction segment) of shape memory alloy, and is not specifically limited herein, as long as the force can be applied to lead the driving unit 1100 to pivot.
Here, it should be noted that the power unit 1180 includes, but is not limited to, a shape memory alloy. In other embodiments of the present invention, the power unit 1180 may also be other structures, and the location where the power unit 1180 applies force to the driving unit 1100 is also not limited to the top position 1140, as long as the action of applying a force to the driving unit 1100 can be satisfied to cause the driving unit 1100 to alternately pivot left and right.
As shown in FIG. 2a and FIG. 2b, the driving wheel 1130 includes a plurality of sub-wheels, and the circumferential surface of the sub-wheels is provided with wheel teeth 1131. Driving unit 1100, through the wheel teeth 1131, cooperates with the driving wheel 1130.
In the embodiment of the present invention, a plurality of driving portions 1110 are installed on each side of the driving unit 1100. Therefore, a plurality of sub-wheels are also installed on both sides of the driving unit 1100 to cooperate with the driving portions 1110. Specifically, in the embodiment of the present invention, the driving unit 1100 includes four driving portions 1110, which are 1110a, 1110b, 1110c, and 1110d, respectively. 1110a, 1110b are installed on one side of the driving unit 1100, while 1110c, 1110d are installed on the other side of the driving unit 1100. The driving wheel 1130 includes two sub-wheels, one of which cooperates with 1110a, 1110b and the other of which cooperates with 1110c, 1110d.
FIG. 3a and FIG. 3b are respectively schematic view, a side view of the driving unit 1100.
In the embodiment of the present invention, the two driving portions 1110 on one side of the driving unit 1100 are installed up and down. Here, the up and down settings refer to the up and down positional relationship representations shown in FIG. 3b. Specifically, the two driving portions 1110 (such as 1110a and 1110b) on the side of the driving unit 1100 can be seen in the side view FIG. 3b, and 1110b and 1110d are blocked by 1110a and 1110c, respectively.
It should be noted that, in other embodiments of the present invention, these four driving portions may be disposed by other means, such as the two driving portions on one side of the driving unit are disposed left and right, as long as the arms are able to drive the driving wheel to rotate, and is not specifically limited herein.
FIG. 4 is a schematic view of a position structure of a plurality of pivot amplitudes of the driving unit 1100, and is also a top view in the direction of the arrow in FIG. 3b.
In a single pivot in the direction A, driving portion1110a and/or 1110b engage the wheel teeth 1131 to rotate the driving wheel 1130, while 1110c and 1110d can slide on the wheel teeth 1131, but not exert a force for driving the driving wheel 1130 to rotate. And obviously, 1110c slides to the next adjacent driving position firstly. At this time, the driving unit 1100 stops pivoting and the driving portions 1110a and/or 1110b stop engaging the wheel teeth 1131, therefore, the driving wheel 1130 stops rotating. Thus, the driving unit 1100 completes one kind of pivot amplitude. At this time, the driving unit 1100 pivots in the A direction to reach A 1 position. The next moment the driving unit 1100 continues to pivot in the A direction, 1110d will slide to the next adjacent driving position. Similarly, the driving unit 1100 completes another kind of pivot amplitude. At this time, the driving unit 1100 still pivots in the A direction to reach A 2 position. And the driving unit 1100 completes the  whole process of single pivot in the A direction, performing A 1 and A 2 two pivot amplitudes, respectively, thereby driving the driving wheel 1130 to rotate by two steps, realizing two kinds of infusion modes of the infusion module.
It should be noted that, in the above pivoting process, the driving portion1110d may firstly slide to the next gear tooth 1131, and then 1110c slides to the next gear tooth 1131, which is not specifically limited herein. Similarly, when the driving unit 1100 pivots in the B direction, it can perform B 1 and B 2 two pivot amplitudes, respectively.
Obviously, in the whole process of the above-mentioned single pivot in the A direction, the driving unit 1100 undergoes an alternate action of pivot and stop, and the driving portions 1110 alternately engage and stop engaging wheel teeth 1131 to drive the driving wheel 1130 to rotate and stop rotating, realizing two-step rotation of the driving wheel, and finally achieving two infusion modes of the infusion module.
Referring to FIG. 4 again, in another embodiment of the present invention, the driving unit 1100 pivots to the A 1 position, and then pivots one or two amplitudes in the B direction, that is, reaching the B 1 or B 2 position until the pivot in the B direction stops. This process completes the alternate pivot of the driving unit 1100 in two directions, so that the driving wheel 1130 can be rotated in multiple steps. Therefore, in the embodiment of the present invention, the driving unit 1100 can alternately switch amplitudes among A 1-B 1, or A 1-B 1-B 2, or B 1-A 1-A 2, so as to achieve the purpose of switching among different infusion modes.
Referring to FIG. 4 again, in another embodiment of the present invention, the driving unit 1100 can also be pivoted directly to the A 2 position without passing through the A 1 position, then directly pivoted to the B 2 position without passing through the B 1 position, that is, the driving unit 1100 alternately pivots between the A 2-B 2 positions. As described above, the driving unit 1100 can also alternately pivot between the A 1-B 1 positions.
As with the infusion module of the embodiment of the present invention, when the infusion is started, the amount of insulin required is relatively large, and the patient or the artificial pancreas can select the large A 2-B 2 pivot amplitude for infusion. After a period of time, the intermediate A 1-B 1-B 2 pivot amplitude or B 1-A 1-A 2 pivot amplitude can be used to reduce the rate of insulin infusion. When the insulin infusion is about to be completed, the patient or the artificial pancreas can switch to the small A 1-B 1 pivot amplitude to further reduce the infusion rate and achieve precise control of the drug infusion. Of course, the patient or the artificial pancreas can also choose one or several of the modes for infusion, and there are no specific restrictions.
It should be noted that in another embodiment of the present invention, further more driving portions, like three, four, etc., can be disposed on one side of the driving unit. And the total number of driving portions may also be an odd number, such as three, five or more, that is, the numbers of driving portions on both sides of the driving unit are not equal. Moreover, the structural relationship between the different driving portions can be similar to that described above, and no specific restrictions are imposed herein.
FIG. 5a -FIG. 5b are schematic views of the driving unit 1200 including two driving portions.
As described above, when the driving unit 1200 is output a force in the A' direction, the driving unit 1200 rotates in the A direction around the pivot shaft 1220, making the driving portion 1210a push the wheel teeth 1231a, thereby driving the driving wheel 1230a to rotate. When the driving unit 1200 is output a force in the B' direction, the driving unit 1200 rotates in the B direction around the pivot shaft 1220, making the driving portion 1210b push the wheel teeth 1231b, thereby driving the driving wheel 1230b to rotate.
Referring to FIG. 5a and FIG. 5b again, when the driving  portion  1210a or 1210b reaches a different position,  the driving unit 1200 can still continue to rotate in the direction A or B to move the driving portion away from the driving position. If the distance of the driving portion 1210a away from the driving position is s 1, if the tooth pitch is S, then s 1 = 1/3S, 1/2S, 3/4S, or S. Therefore, during the pivot of the driving unit 1200, at a certain moment, neither of the driving  portions  1210a and 1210b push the wheel teeth 1231, for example, the front end of the driving portion and the driving position are separated by s 2 and s 3, respectively. At this time, the driving wheel does not rotate, nor does the infusion module perform insulin infusion. According to this working principle, the driving unit 1200 will pivot at any different amplitude, and the infusion module has a variety of different infusion modes.
In the embodiments of the present invention, the frequency of the force output by the power unit can be changed to further change the pivot frequency of the driving unit, so that the infusion module has a variety of different infusion rates. The user or the artificial pancreas can flexibly select the appropriate infusion rate as needed, making the infusion process flexible and controllable.
In summary, the present invention discloses a bilaterally driven closed-loop artificial pancreas, in which the infusion efficiency is higher, and it can accurately calculate the TDD value and the current insulin infusion dose, enhancing user experience.
While the invention has been described in detail with reference to the specific embodiments of the present invention, it should be understood that it will be appreciated by those skilled in the art that the above embodiments may be modified without departing from the scope and spirit of the invention. The scope of the invention is defined by the appended claims.

Claims (13)

  1. A bilaterally driven closed-loop artificial pancreas, characterized in that, comprising:
    a detection module configured to continuously detect the real-time blood glucose level;
    an infusion module, including:
    a drug storage unit;
    a screw connected to a piston and a driving wheel provided with wheel teeth, respectively, the driving wheel drives the screw to move by rotation, pushing the piston, provided in the drug storage unit, forward;
    a driving unit cooperating with the driving wheel, the driving unit includes at least two driving portions, the driving unit pivots around a pivot shaft, driving different driving portions in different directions, thus pushing the wheel teeth located on different driving wheel respectively, and rotating the driving wheel;
    a power unit connected to the driving unit, the power unit outputs two forces in two directions on the driving unit, making the driving unit pivot in two directions around the pivot shaft; and
    a program module, which is connected to the detention module and the infusion module respectively, is imported the total daily dose algorithm and the current insulin infusion algorithm, and the force output of the power unit is controlled by the program module according to the calculation result of the current insulin infusion algorithm, thereby controlling the infusion module to infuse insulin required.
  2. A bilaterally driven closed-loop artificial pancreas of claim 1, characterized in that:
    the driving wheel includes at least two sub-wheels.
  3. A bilaterally driven closed-loop artificial pancreas of claim 2, characterized in that:
    the driving wheel includes two sub-wheels, and the pivot shaft is disposed between the two sub-wheels, one or more of the driving portions are provided on both sides of the driving unit, and each sub-wheel is cooperated with each driving portion.
  4. A bilaterally driven closed-loop artificial pancreas of claim 3, characterized in that:
    two driving portions are respectively provided on both sides of the driving unit, and the two driving portions on one side of the driving unit are disposed up and down or left and right.
  5. A bilaterally driven closed-loop artificial pancreas of claim 1, characterized in that,
    the program module includes a manual input interface or an automatic detection sub-module, and the method for the program module to obtain the insulin dose infused per day by users includes: the insulin dose infused per day by users is manually input into the program module through the manual input interface; or the insulin dose infused per day by users is automatically detected, stored and calculated by the automatic detection sub-module.
  6. A bilaterally driven closed-loop artificial pancreas of claim 5, characterized in that,
    the insulin dose infused per day by users includes the total amount of daily infusion dose data, or the bolus and basal data infused in different time periods, or the temporary basal data and the correction  bolus data, or the infusion data after different events.
  7. A bilaterally driven closed-loop artificial pancreas of claim 6, characterized in that,
    the total daily dose is obtained by calculating the total amount of daily infusion dose data in the previous two or more days according to the total daily dose algorithm, and the total daily dose is the average or median of the insulin dose infused per day by users, and the total daily dose is one variable factor of the current insulin infusion algorithm.
  8. A bilaterally driven closed-loop artificial pancreas of claim 1, characterized in that,
    the variable factors of the total daily dose algorithm include one or more of the user's physical activity status, physiological status, psychological status, and meal status.
  9. A bilaterally driven closed-loop artificial pancreas of claim 8, characterized in that,
    the physical activity status includes general body stretching, exercise, or sleep.
  10. A bilaterally driven closed-loop artificial pancreas of claim 1, characterized in that,
    it further comprises a motion sensor, which is provided in the detection module, the program module or the infusion module, is used to automatically sense the user’s physical activity status which can be sent to the program module and is one of the variable factors of the total daily dose algorithm or the current insulin infusion algorithm.
  11. A bilaterally driven closed-loop artificial pancreas of claim 10, characterized in that,
    the motion sensor includes a three-axis acceleration sensor or a gyroscope.
  12. A bilaterally driven closed-loop artificial pancreas of claim 1, characterized in that,
    any two of the detection module, the program module and the infusion module are connected to each other configured to form a single structure whose attached position on the shin is different from the third module.
  13. A bilaterally driven closed-loop artificial pancreas of claim 1, characterized in that,
    the detection module, the program module and the infusion module are connected together configured to form a single structure which is attached on only one position on the skin.
PCT/CN2020/111174 2019-05-17 2020-08-26 Bilaterally driven closed-loop artificial pancreas WO2021227297A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/924,120 US20230173168A1 (en) 2019-05-17 2020-08-26 Bilaterally driven closed-loop artificial pancreas
EP20935920.7A EP4149584A4 (en) 2019-05-17 2020-08-26 Bilaterally driven closed-loop artificial pancreas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/087342 WO2020232565A1 (en) 2019-05-17 2019-05-17 Drug infusion device
PCT/CN2019/098784 WO2021016975A1 (en) 2019-08-01 2019-08-01 Driving apparatus and drug infusion device
PCT/CN2020/090152 WO2020233486A1 (en) 2019-05-17 2020-05-14 Bilaterally driven drug infusion device with multiple infusion modes
CNPCT/CN2020/090152 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021227297A1 true WO2021227297A1 (en) 2021-11-18

Family

ID=73337079

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2020/090152 WO2020233486A1 (en) 2019-05-17 2020-05-14 Bilaterally driven drug infusion device with multiple infusion modes
PCT/CN2020/111174 WO2021227297A1 (en) 2019-05-17 2020-08-26 Bilaterally driven closed-loop artificial pancreas
PCT/CN2020/111181 WO2021227298A1 (en) 2019-05-17 2020-08-26 Bilaterally driven closed-loop artificial pancreas
PCT/CN2020/113976 WO2021227312A1 (en) 2019-05-17 2020-09-08 Bilateral-driven patch-type drug infusion device
PCT/CN2021/093875 WO2021228232A1 (en) 2019-05-17 2021-05-14 Double-sided-driving smart control infusion device, and closed-loop artificial pancreas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090152 WO2020233486A1 (en) 2019-05-17 2020-05-14 Bilaterally driven drug infusion device with multiple infusion modes

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/111181 WO2021227298A1 (en) 2019-05-17 2020-08-26 Bilaterally driven closed-loop artificial pancreas
PCT/CN2020/113976 WO2021227312A1 (en) 2019-05-17 2020-09-08 Bilateral-driven patch-type drug infusion device
PCT/CN2021/093875 WO2021228232A1 (en) 2019-05-17 2021-05-14 Double-sided-driving smart control infusion device, and closed-loop artificial pancreas

Country Status (4)

Country Link
US (6) US20220118176A1 (en)
EP (6) EP3969076A4 (en)
CN (6) CN111939386B (en)
WO (5) WO2020233486A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220118176A1 (en) * 2019-05-17 2022-04-21 Medtrum Technologies Inc. Bilaterally driven drug infusion device with multiple infusion modes
US20220218895A1 (en) * 2019-08-01 2022-07-14 Medtrum Technologies Inc. Driving apparatus and drug infusion device
WO2021146902A1 (en) * 2020-01-21 2021-07-29 Medtrum Technologies Inc. Medical device with safety verification and safety verification method thereof
WO2022109967A1 (en) * 2020-11-27 2022-06-02 Medtrum Technologies Inc. A driving structure of a drug infusion device
US20240009385A1 (en) * 2020-11-27 2024-01-11 Medtrum Technologies Inc. Driving structure of a drug infusion device
WO2022147985A1 (en) * 2021-01-05 2022-07-14 Medtrum Technologies Inc. A skin patch drug infusion device
CN115887813A (en) * 2021-08-06 2023-04-04 上海移宇科技有限公司 Half-press-free drug infusion device
WO2024073398A1 (en) * 2022-09-30 2024-04-04 Insulet Corporation Dual wheel actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236498A1 (en) * 1998-03-23 2003-12-25 Joseph Gross Device for measuring volume of drug
CN101208515A (en) * 2005-03-28 2008-06-25 因苏雷特公司 Fluid delivery device
CN108261585A (en) * 2016-12-30 2018-07-10 上海移宇科技股份有限公司 A kind of system and method for artificial pancreas closed-loop control
CN108472440A (en) * 2016-01-05 2018-08-31 比格福特生物医药公司 Operate multi-mode delivery system
US20190117881A1 (en) * 2016-04-18 2019-04-25 Medtrum Technologies Inc. Unilateral driving mechanism for a portable infusion system

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024656A (en) * 1988-08-30 1991-06-18 Injet Medical Products, Inc. Gas-pressure-regulated needleless injection system
ES2193383T3 (en) * 1996-07-01 2003-11-01 Pharmacia Ab INJECTION DEVICE AND METHOD FOR OPERATION.
DE19725899C2 (en) * 1997-06-13 1999-10-28 Brose Fahrzeugteile Actuator acting on both sides
FR2770136B1 (en) * 1997-10-27 2000-03-10 Njc Innovations DEVICE FOR ADMINISTERING THERAPEUTIC SUBSTANCES WITH A MOTORIZED SYRINGE
US6423035B1 (en) * 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
US20010041869A1 (en) * 2000-03-23 2001-11-15 Causey James D. Control tabs for infusion devices and methods of using the same
US6899699B2 (en) * 2001-01-05 2005-05-31 Novo Nordisk A/S Automatic injection device with reset feature
US20050238507A1 (en) * 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
US6656159B2 (en) * 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20040153032A1 (en) * 2002-04-23 2004-08-05 Garribotto John T. Dispenser for patient infusion device
US6656158B2 (en) * 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US7144384B2 (en) * 2002-09-30 2006-12-05 Insulet Corporation Dispenser components and methods for patient infusion device
DE102005004498B4 (en) * 2005-02-01 2009-07-09 Roche Diagnostics Gmbh Drive for medical devices and use for such a drive
CN101420997B (en) * 2006-04-19 2013-03-27 诺沃-诺迪斯克有限公司 A fluid infusion system, a method of assembling such system and drug reservoir for use in the system
CA2656026C (en) * 2006-06-21 2015-09-01 Ferag Ag A device for processing flat objects which are conveyed one after another in a continuous manner or a quasi endless material web
WO2008152623A1 (en) * 2007-06-11 2008-12-18 Medingo Ltd. Portable infusion device with reduced level of operational noise
US8475108B2 (en) * 2007-10-17 2013-07-02 Castlewood Medical Technologies Llc System and method for moving large objects
US7771392B2 (en) * 2007-11-29 2010-08-10 Roche Diagnostics Operations, Inc. Lead screw delivery device using reusable shape memory actuator drive
KR20100132495A (en) * 2008-02-08 2010-12-17 우노메디컬 에이/에스 Inserter assembly
GB0805521D0 (en) * 2008-03-27 2008-04-30 The Technology Partnership Plc Dispensing system
US20110071765A1 (en) * 2008-05-16 2011-03-24 Ofer Yodfat Device and Method for Alleviating Postprandial Hyperglycemia
US9180245B2 (en) * 2008-10-10 2015-11-10 Deka Products Limited Partnership System and method for administering an infusible fluid
US8728024B2 (en) * 2008-10-10 2014-05-20 Deka Products Limited Partnership Infusion pump methods, systems and apparatus
FR2950811B1 (en) * 2009-10-02 2012-10-26 Fresenius Vial ANTIBOLUS CONTROL METHOD AND CORRESPONDING DEVICE
DE102009053154A1 (en) * 2009-11-06 2011-05-12 Tecpharma Licensing Ag Administration device e.g. autoinjector for administrating insulin, has actuating element releasing blocking element, and driven element movable around priming stroke to discharge condition by storage unit when block element is released
DK2506914T3 (en) * 2009-11-30 2018-12-10 Hoffmann La Roche ANALYSIS MONITORING AND FLUID SUBMISSION SYSTEM
KR101802548B1 (en) * 2010-06-09 2017-11-28 발레리타스 인코포레이티드 Fluid delivery device needle retraciton mechanisms, cartridges and expandable hydraulic fluid seals
US9211378B2 (en) * 2010-10-22 2015-12-15 Cequr Sa Methods and systems for dosing a medicament
US8535268B2 (en) * 2010-12-22 2013-09-17 Alcon Research, Ltd. Device for at least one of injection or aspiration
US9821116B2 (en) * 2011-07-25 2017-11-21 Preciflex Sa Fluid dispenser
US8603026B2 (en) * 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
US9463280B2 (en) * 2012-03-26 2016-10-11 Medimop Medical Projects Ltd. Motion activated septum puncturing drug delivery device
EP3549524B1 (en) * 2012-03-30 2023-01-25 Insulet Corporation Fluid delivery device with transcutaneous access tool, insertion mechanism and blood glucose monitoring for use therewith
CN103463695B (en) * 2012-07-26 2015-07-29 东莞市立中新材料科技有限公司 A kind of micro-medicinal liquid weight feed mechanism
WO2014111335A1 (en) * 2013-01-15 2014-07-24 Sanofi-Aventis Deutschland Gmbh Pen type drug injection device with friction reducing dose encoder mechanism
US20140303559A1 (en) * 2013-04-05 2014-10-09 William Marsh Rice University Automatic syringe pumps for drug and fluid delivery
EP3574943B1 (en) * 2013-05-31 2021-06-30 Zealand Pharma A/S A fluid delivery device having an insertable prefilled cartridge
US20140378903A1 (en) * 2013-06-21 2014-12-25 Animas Corporation Manually actuated infusion device and dose counter
CN203503195U (en) * 2013-10-29 2014-03-26 马登云 Novel DIY innovation fabrication platform
BR112016009384A8 (en) * 2013-10-31 2020-03-24 Swissinnov Product Sarl portable pump for injecting fluids into a patient
CN104784777B (en) * 2014-01-20 2019-01-25 上海移宇科技股份有限公司 Duct free drug fluid infusion device
US10279106B1 (en) * 2014-05-08 2019-05-07 Tandem Diabetes Care, Inc. Insulin patch pump
JP2015230095A (en) * 2014-06-05 2015-12-21 熊谷 潤美 Worm reduction machine with back-lash removal mechanism and industrial mechanism having worm reduction machine as driving source
US20160082187A1 (en) * 2014-09-23 2016-03-24 Animas Corporation Decisions support for patients with diabetes
JP2017536959A (en) * 2014-12-08 2017-12-14 サノフイ Drug delivery device
JP2018511355A (en) * 2015-01-28 2018-04-26 クロノ セラピューティクス インコーポレイテッドChrono Therapeutics Inc. Drug delivery method and system
CN106267459A (en) * 2015-05-25 2017-01-04 美敦力公司 Fluid infusion device and manufacture method thereof including mechanical actuation means
US20170095610A1 (en) * 2015-10-06 2017-04-06 Medtronic Minimed, Inc. Personal injection device
US10973977B2 (en) * 2015-12-21 2021-04-13 Fresenius Vial Sas Infusion device having a pusher device
AU2017277381B2 (en) * 2016-06-07 2019-12-05 F. Hoffmann-La Roche Ag Valve drive unit with shape memory alloy actuator
EP3260146A1 (en) * 2016-06-23 2017-12-27 TecPharma Licensing AG A coupling mechanism for a medication delivery device
CN206228699U (en) * 2016-06-30 2017-06-09 郑钰 A kind of injection pen of adjustable dosage
CN106139311A (en) * 2016-08-12 2016-11-23 上海移宇科技股份有限公司 A kind of drug-supplying system comprising position detection unit
WO2018027937A1 (en) * 2016-08-12 2018-02-15 Medtrum Technologies Inc. A delivery system including a position detecting unit
CN106110445B (en) * 2016-08-12 2019-12-03 上海移宇科技股份有限公司 A kind of infusion system of portable medication infusion device
TW201811385A (en) * 2016-08-30 2018-04-01 澳洲商優尼揣克注射器有限公司 Controlled delivery drive mechanisms for drug delivery pumps
US10780217B2 (en) * 2016-11-10 2020-09-22 Insulet Corporation Ratchet drive for on body delivery system
WO2018096534A1 (en) * 2016-11-22 2018-05-31 Sorrel Medical Ltd. Apparatus for delivering a therapeutic substance
WO2018120104A1 (en) * 2016-12-30 2018-07-05 Medtrum Technologies Inc. System and method for closed loop control in artificial pancreas
JP7126544B2 (en) * 2017-07-07 2022-08-26 ニューロダーム リミテッド Vial adapter, method and filling system for filling a reservoir of a drug delivery device with a flowable drug using the vial adapter
CN109451730A (en) * 2017-07-20 2019-03-08 东莞市立中新材料科技有限公司 A kind of precision serial verb construction and the micro liquid syringe using the structure
CN107456625B (en) * 2017-09-12 2018-08-14 美敦力公司 Fluid infusion apparatus and its drive system
IT201700108005A1 (en) * 2017-09-27 2019-03-27 Medirio Sa MEDICAL INFUSION DEVICE
CN208388798U (en) * 2017-10-23 2019-01-18 西安理工大学 A kind of small white mouse automatic fine infusion device
AU2019251796B2 (en) * 2018-04-09 2022-05-26 F. Hoffmann-La Roche Ag Method and devices for delivering insulin
JP7025999B2 (en) * 2018-05-31 2022-02-25 Phcホールディングス株式会社 Syringe adapter, drug infusion device and drug infusion system
JP7057243B2 (en) * 2018-07-12 2022-04-19 日本電産サンキョー株式会社 Valve drive
CN109172934A (en) * 2018-08-23 2019-01-11 苏州新生命医疗科技有限公司 A kind of driving structure and drug infusion system of compact drug infusion system
US20220118176A1 (en) * 2019-05-17 2022-04-21 Medtrum Technologies Inc. Bilaterally driven drug infusion device with multiple infusion modes
EP3999144A4 (en) * 2019-07-19 2023-03-29 Medtrum Technologies Inc. Integrated drug infusion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236498A1 (en) * 1998-03-23 2003-12-25 Joseph Gross Device for measuring volume of drug
CN101208515A (en) * 2005-03-28 2008-06-25 因苏雷特公司 Fluid delivery device
CN108472440A (en) * 2016-01-05 2018-08-31 比格福特生物医药公司 Operate multi-mode delivery system
US20190117881A1 (en) * 2016-04-18 2019-04-25 Medtrum Technologies Inc. Unilateral driving mechanism for a portable infusion system
CN108261585A (en) * 2016-12-30 2018-07-10 上海移宇科技股份有限公司 A kind of system and method for artificial pancreas closed-loop control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4149584A4 *

Also Published As

Publication number Publication date
US20230173174A1 (en) 2023-06-08
CN113663159A (en) 2021-11-19
EP4151251A1 (en) 2023-03-22
CN113663166B (en) 2023-03-24
CN113663159B (en) 2023-11-21
EP4149584A4 (en) 2024-06-05
EP3969076A4 (en) 2023-06-14
CN113663166A (en) 2021-11-19
EP4149585A4 (en) 2024-07-10
EP4149586A4 (en) 2024-07-10
US20230173165A1 (en) 2023-06-08
CN113663176A (en) 2021-11-19
WO2021227312A1 (en) 2021-11-18
EP4149585A1 (en) 2023-03-22
CN111939386A (en) 2020-11-17
US20220133984A1 (en) 2022-05-05
EP4151251A4 (en) 2024-07-10
CN113663158A (en) 2021-11-19
US20230173169A1 (en) 2023-06-08
US20220118176A1 (en) 2022-04-21
EP4149586A1 (en) 2023-03-22
EP3969076A1 (en) 2022-03-23
WO2021227298A1 (en) 2021-11-18
EP3969079A4 (en) 2023-07-19
EP4149584A1 (en) 2023-03-22
CN113663176B (en) 2023-06-20
WO2020233486A1 (en) 2020-11-26
CN113663158B (en) 2024-04-26
CN113663157A (en) 2021-11-19
EP3969079A1 (en) 2022-03-23
WO2021228232A1 (en) 2021-11-18
US20230173168A1 (en) 2023-06-08
CN111939386B (en) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2021227297A1 (en) Bilaterally driven closed-loop artificial pancreas
US20220409106A1 (en) Unilaterally driven closed-loop artificial pancreas and data obtaining method for program module thereof
US20230173176A1 (en) System and method for adjusting insulin delivery
US10881793B2 (en) System and method for adjusting insulin delivery
US10758675B2 (en) System and method for adjusting insulin delivery
JP2023022020A (en) Adjustment of insulin delivery amount
US20230029902A1 (en) Integrated closed-loop artificial pancreas and data obtaining method for program module thereof
US10548525B2 (en) Algorithms for diabetes exercise therapy
JP6696962B2 (en) Data management unit
US20220262478A1 (en) Methods and Devices for Burden-free Blood Glucose Management With Minimal User Interaction
Karia et al. An affordable insulin pump for type-1 diabetic patients: A case study of user-in-the-loop approach to engineering design
ES2752758T3 (en) Procedure and apparatus for monitoring characteristics along with a mode of continuously measured blood glucose values and a software product
EP3568858A1 (en) System and method for adjusting insulin delivery
WO2022040947A1 (en) Closed-loop artificial pancreas insulin infusion control system
US20230248909A1 (en) Techniques for determining medication correction factors in automatic medication delivery systems
CN114099846A (en) Closed-loop artificial pancreas insulin infusion control system
D’Arcangelo current stAtus of diAbetes technology
CN115515664A (en) System and method for drug administration and tracking
CN113952542A (en) Insulin pump basal rate control method, infusion device and monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935920

Country of ref document: EP

Effective date: 20221214