WO2021227037A1 - Pdcch monitoring for intra-slot and inter-slot repetition - Google Patents

Pdcch monitoring for intra-slot and inter-slot repetition Download PDF

Info

Publication number
WO2021227037A1
WO2021227037A1 PCT/CN2020/090581 CN2020090581W WO2021227037A1 WO 2021227037 A1 WO2021227037 A1 WO 2021227037A1 CN 2020090581 W CN2020090581 W CN 2020090581W WO 2021227037 A1 WO2021227037 A1 WO 2021227037A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
repetition
slots
monitoring
slot
Prior art date
Application number
PCT/CN2020/090581
Other languages
French (fr)
Inventor
Chao Wei
Huilin Xu
Jing LEI
Hwan Joon Kwon
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/090581 priority Critical patent/WO2021227037A1/en
Publication of WO2021227037A1 publication Critical patent/WO2021227037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for transmitting and monitoring for physical downlink control channel (PDCCH) transmissions sent with repetition.
  • PDCCH physical downlink control channel
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) .
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB) .
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a base station or distributed unit may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
  • New Radio (e.g., 5G) is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. It is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects of the present disclosure provide a method for wireless communications by a user equipment (UE) .
  • the method generally includes receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) , and monitoring for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  • PDCCH physical downlink control channel
  • MOs PDCCH monitoring occasions
  • Certain aspects of the present disclosure provide a method for wireless communications by a network entity.
  • the method generally includes configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) , and transmitting the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  • UE user equipment
  • PDCCH physical downlink control channel
  • MOs PDCCH monitoring occasions
  • aspects of the present disclosure provide means for, apparatus, processors, and computer-readable mediums for performing the methods described herein.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
  • RAN radio access network
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
  • NR new radio
  • FIG. 7 illustrates how different synchronization signal blocks (SSBs) may be sent using different beams, in accordance with certain aspects of the present disclosure.
  • SSBs synchronization signal blocks
  • FIG. 8 shows an exemplary transmission resource mapping, according to aspects of the present disclosure.
  • FIGs. 9A-9C illustrate examples of PDCCH repetition.
  • FIG. 10 illustrates example operations for wireless communications by a user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • UE user equipment
  • FIG. 11 illustrates example operations for wireless communications by a network entity, in accordance with certain aspects of the present disclosure.
  • FIG. 12 illustrates an example mapping of a scrambling mask to a number of PDCCH slots, in accordance with certain aspects of the present disclosure.
  • FIG. 13 illustrates an example of PDCCH repetition, in accordance with certain aspects of the present disclosure.
  • FIG. 14 illustrates another example of PDCCH repetition, in accordance with certain aspects of the present disclosure.
  • FIG. 15A illustrates an example of PDCCH repetition with different redundancy versions for repetitions in different slots, in accordance with certain aspects of the present disclosure.
  • FIG. 15B illustrates an example of circular buffers of coded bits with different redundancy versions for repetitions in different slots, in accordance with certain aspects of the present disclosure.
  • FIG. 16A and 16B illustrates example candidate PDCCH repetitions, in accordance with certain aspects of the present disclosure.
  • FIG. 17-18 illustrate example communications devices that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for transmitting and monitoring for physical downlink control channel (PDCCH) transmissions sent with repetition.
  • PDCCH physical downlink control channel
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • New radio (NR) access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 (e.g., an NR/5G network) , in which aspects of the present disclosure may be performed.
  • the wireless network 100 may include a UE 120 configured to perform operations 1000 of FIG. 10 to process physical downlink control channel (PDCCH) transmission sent with repetition.
  • the wireless network 100 may include a base station 110 configured to perform operations 1100 of FIG. 11 to send PDCCH transmission with repetition to a UE (performing operations 1000 of FIG. 10) .
  • PDCCH physical downlink control channel
  • the wireless network 100 may include a number of base stations (BSs) 110 and other network entities.
  • a BS may be a station that communicates with user equipments (UEs) .
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a NodeB (NB) and/or a NodeB subsystem serving this coverage area, depending on the context in which the term is used.
  • gNB next generation NodeB
  • NR BS new radio base station
  • 5G NB access point
  • AP access point
  • TRP transmission reception point
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a base station may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • Wireless communication network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • Wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • an entertainment device e.g., a music device, a video device, a satellite radio, etc.
  • a vehicular component or sensor e.g., a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, gaming device, reality augmentation device (augmented reality (AR) , extended reality (XR) , or virtual reality (VR) ) , or any other suitable device that is configured to communicate via a wireless or wired medium.
  • AR augmented reality
  • XR extended reality
  • VR virtual reality
  • Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.8 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity e.g., a base station (BS) , Node B, eNB, gNB, or the like
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities can utilize resources allocated by one or more scheduling entities.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • FIG. 1 this figure illustrates a variety of potential deployments for various deployment scenarios.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • Other lines show component to component (e.g., UE to UE) communication options.
  • FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1.
  • a 5G access node 206 may include an access node controller (ANC) 202.
  • ANC 202 may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202.
  • the backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202.
  • ANC 202 may include one or more transmission reception points (TRPs) 208 (e.g., cells, BSs, gNBs, etc. ) .
  • TRPs transmission reception points
  • the TRPs 208 may be a distributed unit (DU) .
  • TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) .
  • a single ANC e.g., ANC 202
  • ANC e.g., ANC 202
  • RaaS radio as a service
  • TRPs 208 may be connected to more than one ANC.
  • TRPs 208 may each include one or more antenna ports.
  • TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the logical architecture of distributed RAN 200 may support various backhauling and fronthauling solutions. This support may occur via and across different deployment types.
  • the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
  • NG-AN next generation access node
  • the logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202.
  • An inter-TRP interface may not be used.
  • Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • FIG. 3 illustrates an example physical architecture of a distributed Radio Access Network (RAN) 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • C-CU 302 may be centrally deployed.
  • C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU 304 may host core network functions locally.
  • the C-RU 304 may have distributed deployment.
  • the C-RU 304 may be close to the network edge.
  • a DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 452, processors 466, 458, 464, and/or controller/processor 480 of the UE 120 may be used to perform operations 1000 of FIG. 10
  • antennas 434, processors 420, 460, 438, and/or controller/processor 440 of the BS 110 may be used to perform operations 1100 of FIG. 11.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • antennas 452a through 452r may receive downlink signals from the base station 110 and may provide received signals to demodulators (DEMODs) in transceivers 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, down convert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the
  • uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct operations at the base station 110 and the UE 120, respectively.
  • the processor 440 and/or other processors and modules at the BS 110 may perform or direct execution of processes for techniques described herein.
  • the memories 442 and 482 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure.
  • the illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility) .
  • Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
  • a network access device e.g., ANs, CUs, and/or DUs
  • a first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) .
  • a centralized network access device e.g., an ANC 202 in FIG. 2
  • distributed network access device e.g., DU 208 in FIG. 2
  • an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit
  • an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU.
  • the CU and the DU may be collocated or non-collocated.
  • the first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
  • a second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device.
  • RRC layer 510, PDCP layer 515, RLC layer 520, MAC layer 525, and PHY layer 530 may each be implemented by the AN.
  • the second option 505-b may be useful in, for example, a femto cell deployment.
  • a UE may implement an entire protocol stack as shown in 505-c (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
  • Embodiments discussed herein may include a variety of spacing and timing deployments.
  • the basic transmission time interval (TTI) or packet duration is the 1 ms subframe.
  • a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, slots) depending on the subcarrier spacing.
  • the NR RB is 12 consecutive frequency subcarriers.
  • NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc.
  • the symbol and slot lengths scale with the subcarrier spacing.
  • the CP length also depends on the subcarrier spacing.
  • FIG. 6 is a diagram showing an example of a frame format 600 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots depending on the subcarrier spacing.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot is a subslot structure (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal (SS) block (SSB) is transmitted.
  • the SS block includes a PSS, a SSS, and a two symbol PBCH.
  • the SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, and the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • RMSI remaining minimum system information
  • SIBs system information blocks
  • OSI system information
  • PDSCH physical downlink shared channel
  • the SS blocks may be organized into SS burst sets to support beam sweeping.
  • each SSB within a burst set may be transmitted using a different beam, which may help a UE quickly acquire both transmit (Tx) and receive (Rx) beams (particular for mmW applications) .
  • a physical cell identity (PCI) may still decoded from the PSS and SSS of the SSB.
  • Certain deployment scenarios may include one or both NR deployment options. Some may be configured for non-standalone (NSA) and/or standalone (SA) option.
  • a standalone cell may need to broadcast both SSB and remaining minimum system information (RMSI) , for example, with SIB1 and SIB2.
  • RMSI remaining minimum system information
  • a non-standalone cell may only need to broadcast SSB, without broadcasting RMSI.
  • multiple SSBs may be sent in different frequencies, and may include the different types of SSB.
  • Control Resource Sets (CORESETs)
  • a control resource set (CORESET) for an OFDMA system may comprise one or more control resource (e.g., time and frequency resources) sets, configured for conveying PDCCH, within the system bandwidth.
  • control resource e.g., time and frequency resources
  • search spaces e.g., common search space (CSS) , UE-specific search space (USS) , etc.
  • search spaces are generally areas or portions where a communication device (e.g., a UE) may look for control information.
  • a CORESET is a set of time and frequency domain resources, defined in units of resource element groups (REGs) .
  • Each REG may comprise a fixed number (e.g., twelve) tones in one symbol period (e.g., a symbol period of a slot) , where one tone in one symbol period is referred to as a resource element (RE) .
  • a fixed number of REGs may be included in a control channel element (CCE) .
  • CCE control channel element
  • Sets of CCEs may be used to transmit new radio PDCCHs (NR-PDCCHs) , with different numbers of CCEs in the sets used to transmit NR-PDCCHs using differing aggregation levels.
  • Multiple sets of CCEs may be defined as search spaces for UEs, and thus a NodeB or other base station may transmit an NR-PDCCH to a UE by transmitting the NR-PDCCH in a set of CCEs that is defined as a decoding candidate within a search space for the UE, and the UE may receive the NR-PDCCH by searching in search spaces for the UE and decoding the NR-PDCCH transmitted by the NodeB.
  • Operating characteristics of a NodeB or other base station in an NR communications system may be dependent on a frequency range (FR) in which the system operates.
  • a frequency range may comprise one or more operating bands (e.g., “n1” band, “n2” band, “n7” band, and “n41” band) , and a communications system (e.g., one or more NodeBs and UEs) may operate in one or more operating bands.
  • Frequency ranges and operating bands are described in more detail in “Base Station (BS) radio transmission and reception” TS38.104 (Release 15) , which is available from the 3GPP website.
  • a CORESET is a set of time and frequency domain resources.
  • the CORESET can be configured for conveying PDCCH within system bandwidth.
  • a UE may determine a CORESET and monitors the CORESET for control channels.
  • a UE may identify an initial CORESET (CORESET #0) configuration from a field (e.g., pdcchConfigSIB1) in a maser information block (MIB) .
  • This initial CORESET may then be used to configure the UE (e.g., with other CORESETs and/or bandwidth parts via dedicated (UE-specific) signaling.
  • the UE When the UE detects a control channel in the CORESET, the UE attempts to decode the control channel and communicates with the transmitting BS (e.g., the transmitting cell) according to the control data provided in the control channel (e.g., transmitted via the CORESET) .
  • the transmitting BS e.g., the transmitting cell
  • the UE may receive a master information block (MIB) .
  • the MIB can be in a synchronization signal and physical broadcast channel (SS/PBCH) block (e.g., in the PBCH of the SS/PBCH block) on a synchronization raster (sync raster) .
  • SS/PBCH synchronization signal and physical broadcast channel
  • the sync raster may correspond to an SSB.
  • the UE may determine an operating band of the cell. Based on a cell’s operation band, the UE may determine a minimum channel bandwidth and a subcarrier spacing (SCS) of the channel.
  • SCS subcarrier spacing
  • the UE may then determine an index from the MIB (e.g., four bits in the MIB, conveying an index in a range 0-15) .
  • the UE may look up or locate a CORESET configuration (this initial CORESET configured via the MIB is generally referred to as CORESET #0) . This may be accomplished from one or more tables of CORESET configurations. These configurations (including single table scenarios) may include various subsets of indices indicating valid CORESET configurations for various combinations of minimum channel bandwidth and SCS. In some arrangements, each combination of minimum channel bandwidth and SCS may be mapped to a subset of indices in the table.
  • the UE may select a search space CORESET configuration table from several tables of CORESET configurations. These configurations can be based on a minimum channel bandwidth and SCS.
  • the UE may then look up a CORESET configuration (e.g., a Type0-PDCCH search space CORESET configuration) from the selected table, based on the index.
  • the UE may then determine the CORESET to be monitored (as mentioned above) based on the location (in time and frequency) of the SS/PBCH block and the CORESET configuration.
  • FIG. 8 shows an exemplary transmission resource mapping 800, according to aspects of the present disclosure.
  • a BS e.g., BS 110a, shown in FIG. 1 transmits an SS/PBCH block 802.
  • the SS/PBCH block includes a MIB conveying an index to a table that relates the time and frequency resources of the CORESET 804 to the time and frequency resources of the SS/PBCH block.
  • the BS may also transmit control signaling.
  • the BS may also transmit a PDCCH to a UE (e.g., UE 120, shown in FIG. 1) in the (time/frequency resources of the) CORESET.
  • the PDCCH may schedule a PDSCH 806.
  • the BS then transmits the PDSCH to the UE.
  • the UE may receive the MIB in the SS/PBCH block, determine the index, look up a CORESET configuration based on the index, and determine the CORESET from the CORESET configuration and the SS/PBCH block.
  • the UE may then monitor the CORESET, decode the PDCCH in the CORESET, and receive the PDSCH that was allocated by the PDCCH.
  • each configuration may indicate a number of resource blocks (e.g., 24, 48, or 96) , a number of symbols (e.g., 1-3) , as well as an offset (e.g., 0-38 RBs) that indicates a location in frequency.
  • resource blocks e.g., 24, 48, or 96
  • symbols e.g., 1-3
  • offset e.g., 0-38 RBs
  • Certain versions of standards may focus on higher end devices and services, such as premium smartphones (eMBB) , and other verticals (URLLC, V2X) .
  • eMBB premium smartphones
  • URLLC verticals
  • V2X verticals
  • NR-Light is a paradigm that refers to reduced capability (RedCap) UEs.
  • NR-Light is driven by various key use cases, such as wearables, industrial wireless sensor networks (IWSN) , surveillance cameras, and the like.
  • the lower UE complexity may include smaller bandwidth capabilities, reduced number of RX antennas, and relaxed UE processing and PDCCH monitoring.
  • PDCCH repetition may include intra-slot only repetition, where PDCCH transmissions are repeated across multiple monitoring occasions within the same slot.
  • PDCCH repetition may include intra and inter-slot PDCCH repetition, where PDCCH transmissions are repeated across multiple monitoring occasions in same and different slots.
  • the PDCCH monitoring occasion associated with a search space is determined based on various configured search space parameters. As illustrated in FIG. 9C, these parameters include monitoringSlotPeriodicityAndOffset (that indicates the starting slot index for PDCCH monitoring) , duration (if configured, indicates #of consecutive slots for PDCCH monitoring) , and the PDCCH monitoring pattern within a slot indicating first symbol (s) of the CORESET within a slot for PDCCH monitoring.
  • the example shown in FIG. 9C illustrates an example of PDCCH repetition level 2 and PDCCH repetition level 4.
  • the same DCI will be repeated across monitoring occasions in a same slot or different slots.
  • a UE is configured with multiple repetition levels (e.g. a repetition level 2 with two consecutive MOs in a slot, or a repetition level 4 with two consecutive two slots each with two MOs)
  • there may be ambiguity on the last PDCCH slot of the PDCCH candidate (or the reference slot for determining the scheduled PDSCH slot) since a UE experiencing good channel conditions may decode PDCCH early, before the end of PDCCH repetition.
  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for transmitting and monitoring for physical downlink control channel (PDCCH) transmissions sent with repetition.
  • PDCCH physical downlink control channel
  • the PDCCH repetitions may be transmitted in a manner that indicates at least one of a repetition level or the number of PDCCH slots.
  • FIG. 10 illustrates example operations 1000 for wireless communications by a UE, in accordance with certain aspects of the present disclosure.
  • operations 1000 may be performed by a UE 120 of FIG. 1 to perform intra-and inter-slot repetition.
  • Operations 1000 begin, at 1002, by receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) .
  • PDCCH physical downlink control channel
  • MOs PDCCH monitoring occasions
  • the UE monitors for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  • FIG. 11 illustrates example operations 1100 for wireless communications by a network entity and may be considered complementary to operations 1000 of FIG. 10.
  • operations 1100 may be performed by a gNB transmitting PDCCH with repetition to a UE 120 performing operations 1000 of FIG. 10.
  • Operations 1100 begin, at 1102, by configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) .
  • UE user equipment
  • PDCCH physical downlink control channel
  • the network entity transmits the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  • One way to indicate a number of PDCCH slots is via CRC scrambling of the DCI (PDCCH) format.
  • PDCH DCI
  • RNTI radio network temporary identifier
  • CRC cyclic redundancy check
  • an additional 8-bit mask may be used to scramble the 8 most significant bits (MSB) bits of the 24-bits CRC parity bits, which may be represented as:
  • b k is the sequence after CRC attachment
  • c k is the sequence after CRC scrambling and x mask
  • -A is the 8-bits mask defined as in the table shown in FIG. 12.
  • the example values in the table of FIG. 10 show a bit mask of all zeros indicates a one-slot PDCCH, a bit mask of all ones indicates a two-slot PDCCH, while alternating zeros and ones (starting with a zero) indicates four-slot PDCCH.
  • Another approach to indicate a number of PDCCH slots is via restrictions on the configuration of PDCCH monitoring. For example, when a UE is configured with multiple PDCCH repetition levels, a restriction may be that all the repetition levels will have the same set of PDCCH slots and, thus, the same number of PDCCH slots.
  • FIG. 13 illustrates an example of this approach for repetition levels 2 and 4, where each as the same set (and number) of PDCCH slots (2 in this example) .
  • PDCCH repetition may be applied first across slots until an indicated maximum number of slots is reached (e.g. 2 slots) and then the next PDCCH repetition may wrap around from the next monitoring occasion in a slot and this may be repeated for all of the PDCCH repetitions for this level.
  • an indicated maximum number of slots e.g. 2 slots
  • Another example restriction that may be placed on a UE configuration with multiple PDCCH repetition levels, is to require that the monitoring pattern for different repetition levels will have the same starting slot index.
  • a repetition level 4 is configured across two consecutive slots, then the monitoring pattern for both repetition level 2 and 4 starts only from the even-numbered slots (slots 0 and 2) . If a repetition level 2 is configured across two consecutive occasions within a slot, then the UE may not be required to monitor a repetition level 2 in the odd-numbered slots.
  • the reference slot for determining the scheduled PDSCH slots can be based on the slot index associated with the first PDCCH monitoring occasion (MO) .
  • Another approach to indicate a number of PDCCH slots or the repetition level is to have PDCCH coded and transmitted with different redundancy versions (RVs) in consecutive slots, but with the same RV in monitoring occasions within the same slot.
  • RVs redundancy versions
  • an RV generally indicates a starting offset when reading coded bits from circular buffer for mapping to resource element (RE) .
  • the illustrated approach with a different RV used for odd-numbered slots helps to differentiate a repetition level 4 candidate from a repetition level 2 candidate in the same slot.
  • one of the other restrictions noted above may be applied.
  • the slot index of the first PDCCH monitoring occasion may be used as the reference slot for determining the scheduled PDSCH slots.
  • the UE may be configured with one of the monitoring patterns shown in FIGs. 16A and 16B.
  • the illustrated examples assume 2 MOs per slot.
  • a repetition level 1 is in the first MO of every 2 slots
  • a repetition level 2 is in the first 2 MOs of every 2 slots
  • a repetition level 4 with the same RV for all repetitions is in two consecutive slots (for a total of 4 MOs)
  • a repetition level 1 is in the first MO in each slot
  • a repetition level 2 is in two consecutive MOs in each slot
  • a repetition level 4 with different RVs is in 2 consecutive slots.
  • FIG. 17 illustrates a communications device 1700 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 10.
  • the communications device 1700 includes a processing system 1702 coupled to a transceiver 1708.
  • the transceiver 1708 is configured to transmit and receive signals for the communications device 1700 via an antenna 1710, such as the various signals as described herein.
  • the processing system 1702 may be configured to perform processing functions for the communications device 1700, including processing signals received and/or to be transmitted by the communications device 1700.
  • the processing system 1702 includes a processor 1704 coupled to a computer-readable medium/memory 1712 via a bus 1706.
  • the computer-readable medium/memory 1712 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1704, cause the processor 1704 to perform the operations illustrated in FIG. 10, or other operations for performing the various techniques discussed herein.
  • computer-readable medium/memory 1712 stores code 1714 for receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and code 1716 for monitoring for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  • the processor 1704 has circuitry configured to implement the code stored in the computer-readable medium/memory 1712.
  • the processor 1704 includes circuitry 1726 for receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; circuitry 1728 for monitoring for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  • PDCCH physical downlink control channel
  • MOs PDCCH monitoring occasions
  • FIG. 18 illustrates a communications device 1800 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 11.
  • the communications device 1800 includes a processing system 1802 coupled to a transceiver 1808.
  • the transceiver 1808 is configured to transmit and receive signals for the communications device 1800 via an antenna 1810, such as the various signals as described herein.
  • the processing system 1802 may be configured to perform processing functions for the communications device 1800, including processing signals received and/or to be transmitted by the communications device 1800.
  • the processing system 1802 includes a processor 1804 coupled to a computer-readable medium/memory 1812 via a bus 1806.
  • the computer-readable medium/memory 1812 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1804, cause the processor 1804 to perform the operations illustrated in FIG. 11, or other operations for performing the various techniques discussed herein.
  • computer-readable medium/memory 1812 stores: code 1814 for configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and code 1818 for transmitting the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  • the processor 1804 has circuitry configured to implement the code stored in the computer-readable medium/memory 1812.
  • the processor 1804 includes circuitry 1826 for configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and circuitry 1828 for transmitting the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots
  • UE user equipment
  • PDCCH physical downlink control channel
  • MOs PDCCH monitoring occasions
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • processors 458, 464, 466, and/or controller/processor 480 of the UE 120 and/or processors 420, 430, 438, and/or controller/processor 440 of the BS 110 shown in FIG. 4 may be configured to perform operations 1000 of FIG. 10 and/or operations 1100 of FIG. 11.
  • Means for receiving may include a receiver (such as one or more antennas or receive processors) illustrated in FIG. 4.
  • Means for transmitting may include a transmitter (such as one or more antennas or transmit processors) illustrated in FIG. 4.
  • Means for determining, means for processing, means for treating, and means for applying may include a processing system, which may include one or more processors, such as processors 458, 464, 466, and/or controller/processor 480 of the UE 120 and/or processors 420, 430, 438, and/or controller/processor 440 of the BS 110 shown in FIG. 4.
  • a device may have an interface to output a frame for transmission (a means for outputting) .
  • a processor may output a frame, via a bus interface, to a radio frequency (RF) front end for transmission.
  • RF radio frequency
  • a device may have an interface to obtain a frame received from another device (a means for obtaining) .
  • a processor may obtain (or receive) a frame, via a bus interface, from an RF front end for reception.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Abstract

Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for transmitting and monitoring for physical downlink control channel (PDCCH) transmissions sent with repetition.

Description

PDCCH MONITORING FOR INTRA-SLOT AND INTER-SLOT REPETITION
INTRODUCTION
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for transmitting and monitoring for physical downlink control channel (PDCCH) transmissions sent with repetition.
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-Anetwork, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more distributed units, in communication with a central unit, may define an access node (e.g., which may be referred to as a base station, 5G NB, next generation NodeB (gNB or gNodeB) , TRP, etc. ) . A base station or distributed unit may communicate with a set of UEs on downlink channels (e.g., for  transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New Radio (NR) (e.g., 5G) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. It is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects of the present disclosure provide a method for wireless communications by a user equipment (UE) . The method generally includes receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) , and monitoring for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in  a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
Certain aspects of the present disclosure provide a method for wireless communications by a network entity. The method generally includes configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) , and transmitting the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
Aspects of the present disclosure provide means for, apparatus, processors, and computer-readable mediums for performing the methods described herein.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
FIG. 7 illustrates how different synchronization signal blocks (SSBs) may be sent using different beams, in accordance with certain aspects of the present disclosure.
FIG. 8 shows an exemplary transmission resource mapping, according to aspects of the present disclosure.
FIGs. 9A-9C illustrate examples of PDCCH repetition.
FIG. 10 illustrates example operations for wireless communications by a user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 11 illustrates example operations for wireless communications by a network entity, in accordance with certain aspects of the present disclosure.
FIG. 12 illustrates an example mapping of a scrambling mask to a number of PDCCH slots, in accordance with certain aspects of the present disclosure.
FIG. 13 illustrates an example of PDCCH repetition, in accordance with certain aspects of the present disclosure.
FIG. 14 illustrates another example of PDCCH repetition, in accordance with certain aspects of the present disclosure.
FIG. 15A illustrates an example of PDCCH repetition with different redundancy versions for repetitions in different slots, in accordance with certain aspects of the present disclosure.
FIG. 15B illustrates an example of circular buffers of coded bits with different redundancy versions for repetitions in different slots, in accordance with certain aspects of the present disclosure.
[Rectified under Rule 91, 07.12.2020]
FIG. 16A and 16B illustrates example candidate PDCCH repetitions, in accordance with certain aspects of the present disclosure.
FIG. 17-18 illustrate example communications devices that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without speacific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for transmitting and monitoring for physical downlink control channel (PDCCH) transmissions sent with repetition.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or  illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
New radio (NR) access (e.g., 5G technology) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may  include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
Example Wireless Communications System
FIG. 1 illustrates an example wireless communication network 100 (e.g., an NR/5G network) , in which aspects of the present disclosure may be performed. For example, the wireless network 100 may include a UE 120 configured to perform operations 1000 of FIG. 10 to process physical downlink control channel (PDCCH) transmission sent with repetition. Similarly, the wireless network 100 may include a base station 110 configured to perform operations 1100 of FIG. 11 to send PDCCH transmission with repetition to a UE (performing operations 1000 of FIG. 10) .
As illustrated in FIG. 1, the wireless network 100 may include a number of base stations (BSs) 110 and other network entities. A BS may be a station that communicates with user equipments (UEs) . Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a NodeB (NB) and/or a NodeB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and next generation NodeB (gNB) , new radio base station (NR BS) , 5G NB, access point (AP) , or transmission reception point (TRP) may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a  single RAT in a given geographic area to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A base station (BS) may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
Wireless communication network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
Wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame  timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, gaming device, reality augmentation device (augmented reality (AR) , extended reality (XR) , or virtual reality (VR) ) , or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.8 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR. NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some scenarios, air interface access may be scheduled. For example, a scheduling entity (e.g., a base station (BS) , Node B, eNB, gNB, or the like) can allocate resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities can utilize resources allocated by one or more scheduling entities.
Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
Turning back to FIG. 1, this figure illustrates a variety of potential deployments for various deployment scenarios. For example, in FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a BS. Other lines show component to component (e.g., UE to UE) communication options.
FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1. A 5G access node 206 may include an access node controller (ANC) 202. ANC 202 may be a central unit (CU) of the distributed RAN 200. The backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202. The backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202. ANC 202 may include one or more transmission reception points (TRPs) 208 (e.g., cells, BSs, gNBs, etc. ) .
The TRPs 208 may be a distributed unit (DU) . TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) . For example, for RAN sharing, radio as a service (RaaS) , and service specific ANC deployments, TRPs 208 may be connected to more than one ANC. TRPs 208 may each include one or more antenna ports. TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The logical architecture of distributed RAN 200 may support various backhauling and fronthauling solutions. This support may occur via and across different deployment types. For example, the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
The logical architecture of distributed RAN 200 may share features and/or components with LTE. For example, next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
The logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202. An inter-TRP interface may not be used.
Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200. As will be described in more detail with reference to FIG. 5, the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
FIG. 3 illustrates an example physical architecture of a distributed Radio Access Network (RAN) 300, according to aspects of the present disclosure. A centralized core network unit (C-CU) 302 may host core network functions. C-CU 302 may be centrally deployed. C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 304 may host one or more ANC functions. Optionally, the C-RU 304 may host core network functions locally. The C-RU 304 may have distributed deployment. The C-RU 304 may be close to the network edge.
DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) . The DU may be located at edges of the network with radio frequency (RF) functionality.
FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 452,  processors  466, 458, 464, and/or controller/processor 480 of the UE 120 may be used to perform operations 1000 of FIG. 10, while antennas 434,  processors  420, 460, 438, and/or controller/processor 440 of the BS 110 may be used to perform operations 1100 of FIG. 11.
At the BS 110, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator  channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
At the UE 120, antennas 452a through 452r may receive downlink signals from the base station 110 and may provide received signals to demodulators (DEMODs) in transceivers 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, down convert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 456 may obtain received symbols from all demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
On the uplink, at UE 120, a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480. The transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466  if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
The controllers/ processors  440 and 480 may direct operations at the base station 110 and the UE 120, respectively. The processor 440 and/or other processors and modules at the BS 110 may perform or direct execution of processes for techniques described herein. The  memories  442 and 482 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure. The illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility) . Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530. In various examples, the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
A first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) . In the first option 505-a, an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit, and an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU. In various examples the CU and the DU may be collocated  or non-collocated. The first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
A second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device. In the second option, RRC layer 510, PDCP layer 515, RLC layer 520, MAC layer 525, and PHY layer 530 may each be implemented by the AN. The second option 505-b may be useful in, for example, a femto cell deployment.
Regardless of whether a network access device implements part or all of a protocol stack, a UE may implement an entire protocol stack as shown in 505-c (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
Embodiments discussed herein may include a variety of spacing and timing deployments. For example, in LTE, the basic transmission time interval (TTI) or packet duration is the 1 ms subframe. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, slots) depending on the subcarrier spacing. The NR RB is 12 consecutive frequency subcarriers. NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. The symbol and slot lengths scale with the subcarrier spacing. The CP length also depends on the subcarrier spacing.
FIG. 6 is a diagram showing an example of a frame format 600 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots depending on the subcarrier spacing. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing. The symbol periods in each slot may be assigned indices. A mini-slot is a subslot structure (e.g., 2, 3, or 4 symbols) .
Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically  switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal (SS) block (SSB) is transmitted. The SS block includes a PSS, a SSS, and a two symbol PBCH. The SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6. The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, and the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
As shown in FIG. 7, the SS blocks may be organized into SS burst sets to support beam sweeping. As shown, each SSB within a burst set may be transmitted using a different beam, which may help a UE quickly acquire both transmit (Tx) and receive (Rx) beams (particular for mmW applications) . A physical cell identity (PCI) may still decoded from the PSS and SSS of the SSB.
Certain deployment scenarios may include one or both NR deployment options. Some may be configured for non-standalone (NSA) and/or standalone (SA) option. A standalone cell may need to broadcast both SSB and remaining minimum system information (RMSI) , for example, with SIB1 and SIB2. A non-standalone cell may only need to broadcast SSB, without broadcasting RMSI. In a single carrier in NR, multiple SSBs may be sent in different frequencies, and may include the different types of SSB.
Control Resource Sets (CORESETs)
A control resource set (CORESET) for an OFDMA system (e.g., a communications system transmitting PDCCH using OFDMA waveforms) may comprise one or more control resource (e.g., time and frequency resources) sets, configured for conveying PDCCH, within the system bandwidth. Within each CORESET, one or more search spaces (e.g., common search space (CSS) , UE-specific search space (USS) , etc. )  may be defined for a given UE. Search spaces are generally areas or portions where a communication device (e.g., a UE) may look for control information.
According to aspects of the present disclosure, a CORESET is a set of time and frequency domain resources, defined in units of resource element groups (REGs) . Each REG may comprise a fixed number (e.g., twelve) tones in one symbol period (e.g., a symbol period of a slot) , where one tone in one symbol period is referred to as a resource element (RE) . A fixed number of REGs may be included in a control channel element (CCE) . Sets of CCEs may be used to transmit new radio PDCCHs (NR-PDCCHs) , with different numbers of CCEs in the sets used to transmit NR-PDCCHs using differing aggregation levels. Multiple sets of CCEs may be defined as search spaces for UEs, and thus a NodeB or other base station may transmit an NR-PDCCH to a UE by transmitting the NR-PDCCH in a set of CCEs that is defined as a decoding candidate within a search space for the UE, and the UE may receive the NR-PDCCH by searching in search spaces for the UE and decoding the NR-PDCCH transmitted by the NodeB.
Operating characteristics of a NodeB or other base station in an NR communications system may be dependent on a frequency range (FR) in which the system operates. A frequency range may comprise one or more operating bands (e.g., “n1” band, “n2” band, “n7” band, and “n41” band) , and a communications system (e.g., one or more NodeBs and UEs) may operate in one or more operating bands. Frequency ranges and operating bands are described in more detail in “Base Station (BS) radio transmission and reception” TS38.104 (Release 15) , which is available from the 3GPP website.
As described above, a CORESET is a set of time and frequency domain resources. The CORESET can be configured for conveying PDCCH within system bandwidth. A UE may determine a CORESET and monitors the CORESET for control channels. During initial access, a UE may identify an initial CORESET (CORESET #0) configuration from a field (e.g., pdcchConfigSIB1) in a maser information block (MIB) . This initial CORESET may then be used to configure the UE (e.g., with other CORESETs and/or bandwidth parts via dedicated (UE-specific) signaling. When the UE detects a control channel in the CORESET, the UE attempts to decode the control channel and communicates with the transmitting BS (e.g., the transmitting cell) according to the control data provided in the control channel (e.g., transmitted via the CORESET) .
According to aspects of the present disclosure, when a UE is connected to a cell (or BS) , the UE may receive a master information block (MIB) . The MIB can be in a synchronization signal and physical broadcast channel (SS/PBCH) block (e.g., in the PBCH of the SS/PBCH block) on a synchronization raster (sync raster) . In some scenarios, the sync raster may correspond to an SSB. From the frequency of the sync raster, the UE may determine an operating band of the cell. Based on a cell’s operation band, the UE may determine a minimum channel bandwidth and a subcarrier spacing (SCS) of the channel. The UE may then determine an index from the MIB (e.g., four bits in the MIB, conveying an index in a range 0-15) .
Given this index, the UE may look up or locate a CORESET configuration (this initial CORESET configured via the MIB is generally referred to as CORESET #0) . This may be accomplished from one or more tables of CORESET configurations. These configurations (including single table scenarios) may include various subsets of indices indicating valid CORESET configurations for various combinations of minimum channel bandwidth and SCS. In some arrangements, each combination of minimum channel bandwidth and SCS may be mapped to a subset of indices in the table.
Alternatively or additionally, the UE may select a search space CORESET configuration table from several tables of CORESET configurations. These configurations can be based on a minimum channel bandwidth and SCS. The UE may then look up a CORESET configuration (e.g., a Type0-PDCCH search space CORESET configuration) from the selected table, based on the index. After determining the CORESET configuration (e.g., from the single table or the selected table) , the UE may then determine the CORESET to be monitored (as mentioned above) based on the location (in time and frequency) of the SS/PBCH block and the CORESET configuration.
FIG. 8 shows an exemplary transmission resource mapping 800, according to aspects of the present disclosure. In the exemplary mapping, a BS (e.g., BS 110a, shown in FIG. 1) transmits an SS/PBCH block 802. The SS/PBCH block includes a MIB conveying an index to a table that relates the time and frequency resources of the CORESET 804 to the time and frequency resources of the SS/PBCH block.
The BS may also transmit control signaling. In some scenarios, the BS may also transmit a PDCCH to a UE (e.g., UE 120, shown in FIG. 1) in the (time/frequency resources of the) CORESET. The PDCCH may schedule a PDSCH 806. The BS then  transmits the PDSCH to the UE. The UE may receive the MIB in the SS/PBCH block, determine the index, look up a CORESET configuration based on the index, and determine the CORESET from the CORESET configuration and the SS/PBCH block. The UE may then monitor the CORESET, decode the PDCCH in the CORESET, and receive the PDSCH that was allocated by the PDCCH.
Different CORESET configurations may have different parameters that define a corresponding CORESET. For example, each configuration may indicate a number of resource blocks (e.g., 24, 48, or 96) , a number of symbols (e.g., 1-3) , as well as an offset (e.g., 0-38 RBs) that indicates a location in frequency.
Example PDCCH Monitoring for Intra-and Inter-slot Repetition
Certain versions of standards (e.g., 3GPP Rel-15 and Rel-16) may focus on higher end devices and services, such as premium smartphones (eMBB) , and other verticals (URLLC, V2X) . The volume of such devices may ensure that there is a strong baseline for NR considering advanced and diverse requirements.
In subsequent standards versions (e.g., Rel-17 and beyond) , there may be a strong need for NR to be scalable and deployable in a more efficient and cost-effective way. In such cases, peak throughput, latency, and reliability requirements may be relaxed in favor of efficiency (e.g., reduced power consumption and system overhead) and cost improvements.
NR-Light is a paradigm that refers to reduced capability (RedCap) UEs. NR-Light is driven by various key use cases, such as wearables, industrial wireless sensor networks (IWSN) , surveillance cameras, and the like. The lower UE complexity (reduced capability) may include smaller bandwidth capabilities, reduced number of RX antennas, and relaxed UE processing and PDCCH monitoring.
Due to the reduced number of receive (Rx) antennas at a RedCap UE, there is potential coverage loss in the downlink (e.g., ~6dB coverage loss when #Rx is reduced from 4 to 1) . For enhancing PDCCH coverage in such cases, PDCCH repetition (where the same DCI is repeated) across multiple monitoring occasions may be considered.
As illustrated in FIG. 9A, PDCCH repetition may include intra-slot only repetition, where PDCCH transmissions are repeated across multiple monitoring occasions within the same slot. As illustrated in FIG. 9B, PDCCH repetition may include  intra and inter-slot PDCCH repetition, where PDCCH transmissions are repeated across multiple monitoring occasions in same and different slots.
In current standard specifications, the PDCCH monitoring occasion associated with a search space is determined based on various configured search space parameters. As illustrated in FIG. 9C, these parameters include monitoringSlotPeriodicityAndOffset (that indicates the starting slot index for PDCCH monitoring) , duration (if configured, indicates #of consecutive slots for PDCCH monitoring) , and the PDCCH monitoring pattern within a slot indicating first symbol (s) of the CORESET within a slot for PDCCH monitoring. The example shown in FIG. 9C illustrates an example of PDCCH repetition level 2 and PDCCH repetition level 4.
In case of inter-slot repetition, the same DCI will be repeated across monitoring occasions in a same slot or different slots. When a UE is configured with multiple repetition levels (e.g. a repetition level 2 with two consecutive MOs in a slot, or a repetition level 4 with two consecutive two slots each with two MOs) , there may be ambiguity on the last PDCCH slot of the PDCCH candidate (or the reference slot for determining the scheduled PDSCH slot) , since a UE experiencing good channel conditions may decode PDCCH early, before the end of PDCCH repetition.
One solution to this issue is to indicate the number of PDCCH repetitions (or number of PDCCH slots) in the DCI. However, this solution comes with a number of issues. For example, the DCI payload size is increased by a number of bits for indicating the number of PDCCH repetitions, which may result in a PDCCH coverage loss. Further, due to a change of DCI format size, such a special format PDCCH for reduced capability (RedCap) UEs would not be able to be shared with regular UEs, which may increase the overall DCI overhead. Finally, this solution would only be for UEs that are in a radio resource control (RRC) connected mode, based on the UE capability reporting for supporting inter-slot PDCCH repetition.
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for transmitting and monitoring for physical downlink control channel (PDCCH) transmissions sent with repetition. As will be described in greater detail below, the PDCCH repetitions may be transmitted in a manner that indicates at least one of a repetition level or the number of PDCCH slots.
FIG. 10 illustrates example operations 1000 for wireless communications by a UE, in accordance with certain aspects of the present disclosure. For example, operations 1000 may be performed by a UE 120 of FIG. 1 to perform intra-and inter-slot repetition.
Operations 1000 begin, at 1002, by receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) .
At 1004, the UE monitors for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
FIG. 11 illustrates example operations 1100 for wireless communications by a network entity and may be considered complementary to operations 1000 of FIG. 10. For example, operations 1100 may be performed by a gNB transmitting PDCCH with repetition to a UE 120 performing operations 1000 of FIG. 10.
Operations 1100 begin, at 1102, by configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) .
At 1104, the network entity transmits the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
One way to indicate a number of PDCCH slots (the number of slots across which the PDCCH repetitions span) is via CRC scrambling of the DCI (PDCCH) format. For example, in addition to using a 16-bit radio network temporary identifier (RNTI) to scramble the cyclic redundancy check (CRC) parity bits of the DCI format, an additional 8-bit mask may be used to scramble the 8 most significant bits (MSB) bits of the 24-bits CRC parity bits, which may be represented as:
c k=b k for k=0, 1, 2, …, A-1,
c k= (b k+x mask, k-Amod 2 for k=A, …, A+7 and
c k= (b k+x RNTI,k-A-Bmod 2 for k=A+8, A+9, …, A+23,
where b k is the sequence after CRC attachment, c k is the sequence after CRC scrambling and x mask, -Ais the 8-bits mask defined as in the table shown in FIG. 12. The example values in the table of FIG. 10 show a bit mask of all zeros indicates a one-slot PDCCH, a bit mask of all ones indicates a two-slot PDCCH, while alternating zeros and ones (starting with a zero) indicates four-slot PDCCH.
This approach, scrambling DCI CRC with a mask to indicate the number of PDCCH slots, has the benefit that the DCI format size is not changed and, thus, there may be little or no impact on coverage.
Another approach to indicate a number of PDCCH slots is via restrictions on the configuration of PDCCH monitoring. For example, when a UE is configured with multiple PDCCH repetition levels, a restriction may be that all the repetition levels will have the same set of PDCCH slots and, thus, the same number of PDCCH slots.
FIG. 13 illustrates an example of this approach for  repetition levels  2 and 4, where each as the same set (and number) of PDCCH slots (2 in this example) .
Given each repetition level has the same number of PDCCH slots, the option in the top timeline, with both level 2 PDCCH repetitions occurring in the same slot (slot 0) is not allowed. Rather, based on this proposal, as shown in the second diagram, for a repletion level 2, PDCCH is repeated across two monitoring occasions in two consecutive slots (instead of two consecutive occasions in one slot as shown in the top diagram) . As the repetition level 4 also has 2 slots, the 4 PDCCH repetitions occur in consecutive occasions across two consecutive slots.
While not shown, as an alternative, PDCCH repetition may be applied first across slots until an indicated maximum number of slots is reached (e.g. 2 slots) and then the next PDCCH repetition may wrap around from the next monitoring occasion in a slot and this may be repeated for all of the PDCCH repetitions for this level.
Another example restriction that may be placed on a UE configuration with multiple PDCCH repetition levels, is to require that the monitoring pattern for different repetition levels will have the same starting slot index.
For example, as shown in FIG. 14, if a repetition level 4 is configured across two consecutive slots, then the monitoring pattern for both  repetition level  2 and 4 starts only from the even-numbered slots (slots 0 and 2) . If a repetition level 2 is configured across two consecutive occasions within a slot, then the UE may not be required to monitor a repetition level 2 in the odd-numbered slots.
Since all the repetition levels have the same starting slot, the reference slot for determining the scheduled PDSCH slots can be based on the slot index associated with the first PDCCH monitoring occasion (MO) .
Another approach to indicate a number of PDCCH slots or the repetition level is to have PDCCH coded and transmitted with different redundancy versions (RVs) in consecutive slots, but with the same RV in monitoring occasions within the same slot.
This approach is illustrated in FIG. 15A, where the redundancy version for each level 2 PDCCH repetition has RV0, as they are in the same slot. For repetition 4, on the other hand, 2 of the 4 repetitions have RV0 in slot 0 while, the other 2 of the 4 repetitions have RV2 in slot 1. As illustrated in FIG. 15B, an RV generally indicates a starting offset when reading coded bits from circular buffer for mapping to resource element (RE) .
The illustrated approach, with a different RV used for odd-numbered slots helps to differentiate a repetition level 4 candidate from a repetition level 2 candidate in the same slot. In some cases, one of the other restrictions noted above may be applied. For example, the slot index of the first PDCCH monitoring occasion may be used as the reference slot for determining the scheduled PDSCH slots.
In some cases, if a repetition level 1 is configured as part of the multiple PDCCH repetition levels, the UE may be configured with one of the monitoring patterns shown in FIGs. 16A and 16B. The illustrated examples assume 2 MOs per slot.
In the option shown in FIG. 16A, a repetition level 1 is in the first MO of every 2 slots, a repetition level 2 is in the first 2 MOs of every 2 slots, while a repetition level 4 with the same RV for all repetitions is in two consecutive slots (for a total of 4 MOs) . In the option shown in FIG. 16B, a repetition level 1 is in the first MO in each slot, a repetition level 2 is in two consecutive MOs in each slot, and a repetition level 4 with different RVs (e.g., RV0 in slot 0 and RV2 in slot 1) is in 2 consecutive slots.
FIG. 17 illustrates a communications device 1700 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 10. The communications device 1700 includes a processing system 1702 coupled to a transceiver 1708. The transceiver 1708 is configured to transmit and receive signals for the communications device 1700 via an antenna 1710, such as the various signals as described herein. The processing system 1702 may be configured to perform processing functions for the communications device 1700, including processing signals received and/or to be transmitted by the communications device 1700.
The processing system 1702 includes a processor 1704 coupled to a computer-readable medium/memory 1712 via a bus 1706. In certain aspects, the computer-readable medium/memory 1712 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1704, cause the processor 1704 to perform the operations illustrated in FIG. 10, or other operations for performing the various techniques discussed herein. In certain aspects, computer-readable medium/memory 1712 stores code 1714 for receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and code 1716 for monitoring for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots. In certain aspects, the processor 1704 has circuitry configured to implement the code stored in the computer-readable medium/memory 1712. The processor 1704 includes circuitry 1726 for receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; circuitry 1728 for monitoring for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
FIG. 18 illustrates a communications device 1800 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated  in FIG. 11. The communications device 1800 includes a processing system 1802 coupled to a transceiver 1808. The transceiver 1808 is configured to transmit and receive signals for the communications device 1800 via an antenna 1810, such as the various signals as described herein. The processing system 1802 may be configured to perform processing functions for the communications device 1800, including processing signals received and/or to be transmitted by the communications device 1800.
The processing system 1802 includes a processor 1804 coupled to a computer-readable medium/memory 1812 via a bus 1806. In certain aspects, the computer-readable medium/memory 1812 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1804, cause the processor 1804 to perform the operations illustrated in FIG. 11, or other operations for performing the various techniques discussed herein. In certain aspects, computer-readable medium/memory 1812 stores: code 1814 for configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and code 1818 for transmitting the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots. In certain aspects, the processor 1804 has circuitry configured to implement the code stored in the computer-readable medium/memory 1812. The processor 1804 includes circuitry 1826 for configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and circuitry 1828 for transmitting the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one  of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. For example,  processors  458, 464, 466, and/or controller/processor 480 of the UE 120 and/or  processors  420, 430, 438, and/or controller/processor 440 of the BS 110 shown in  FIG. 4 may be configured to perform operations 1000 of FIG. 10 and/or operations 1100 of FIG. 11.
Means for receiving may include a receiver (such as one or more antennas or receive processors) illustrated in FIG. 4. Means for transmitting may include a transmitter (such as one or more antennas or transmit processors) illustrated in FIG. 4. Means for determining, means for processing, means for treating, and means for applying may include a processing system, which may include one or more processors, such as  processors  458, 464, 466, and/or controller/processor 480 of the UE 120 and/or  processors  420, 430, 438, and/or controller/processor 440 of the BS 110 shown in FIG. 4.
In some cases, rather than actually transmitting a frame a device may have an interface to output a frame for transmission (a means for outputting) . For example, a processor may output a frame, via a bus interface, to a radio frequency (RF) front end for transmission. Similarly, rather than actually receiving a frame, a device may have an interface to obtain a frame received from another device (a means for obtaining) . For example, a processor may obtain (or receive) a frame, via a bus interface, from an RF front end for reception.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a  processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) ,  EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2020090581-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein and illustrated in FIGs. 10-11.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (24)

  1. A method for wireless communications by a network entity, comprising:
    configuring a user equipment (UE) with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and
    transmitting the PDCCH with repetition across multiple PDCCH MOs in one or more PDCCH slots, in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  2. The method of claim 1, wherein the number of PDCCH slots is indicated by scrambling a portion of a downlink control information (DCI) format of the PDCCH.
  3. The method of claim 2, wherein the scrambling comprises:
    scrambling a first portion of cyclic redundancy check (CRC) of the DCI format with a radio network temporary identifier (RNTI) of a first length; and
    scrambling a second portion of the CRC with a value that indicates the number of PDCCH slots.
  4. The method of claim 1, wherein the network entity transmits PDCCH with all different repetition levels across the same number of PDCCH slots.
  5. The method of claim 4, wherein:
    for a repetition level of two, the PDCCH is repeated across two monitoring occasions in two consecutive slots.
  6. The method of claim 4, wherein:
    PDCCH repetition is applied first to a single PDCCH monitoring occasions across slots up to a maximum number of slots and then to the next monitoring occasion in a slot.
  7. The method of claim 1, wherein the network entity transmits PDCCH according to a monitoring pattern, wherein a monitoring pattern for different repetition levels has a same starting slot index.
  8. The method of claim 7, further comprising transmitting a physical downlink shared channel (PDSCH) scheduled by the PDCCH repetition in a slot determined based on the starting slot index associated with a first PDCCH monitoring occasion.
  9. The method of claim 1, wherein:
    the PDCCH is coded and transmitted with different redundancy versions (RVs) in consecutive slots; and
    the PDCCH is coded and transmitted with a same RV in monitoring occasions in the same slot.
  10. The method of claim 9, wherein:
    for a repetition level of four, with four PDCCH occasions in two slots, a different RV is used for odd-numbered slots to differentiate from a repetition level two PDCCH candidate in the same slot.
  11. The method of claim 1, wherein, if a repetition level of one is configured as part of the multiple repetition levels, the UE is also configured with a monitoring pattern with:
    a repetition level of one in a first PDCCH monitoring occasion of every two slots;
    a repetition level of two in the first two PDCCH monitoring occasions of every two slots; and
    a repetition level of four with a same redundancy version (RV) in two consecutive slots.
  12. The method of claim 1, wherein, if a repetition level of one is configured as part of the multiple repetition levels, the UE is also configured with a monitoring pattern with:
    a repetition level of one in a first PDCCH monitoring occasion in each slot;
    a repetition level of two in two consecutive two monitoring occasions in each slot; and
    a repetition level of four with a different redundancy versions (RVs) in two consecutive slots.
  13. A method for wireless communications by a user equipment (UE) , comprising:
    receiving, from a network entity, signaling configuring the UE with multiple repetition levels for monitoring for a physical downlink control channel (PDCCH) transmitted with repetition across multiple PDCCH monitoring occasions (MOs) ; and
    monitoring for the PDCCH transmitted with repetition across multiple PDCCH MOs in one or more PDCCH slots in a manner that indicates to the UE at least one of a repetition level or the number of PDCCH slots.
  14. The method of claim 13, wherein the number of PDCCH slots is indicated by scrambling a portion of a downlink control information (DCI) format of the PDCCH.
  15. The method of claim 14, wherein the scrambling comprises:
    scrambling a first portion of cyclic redundancy check (CRC) of the DCI format with a radio network temporary identifier (RNTI) of a first length; and
    scrambling a second portion of the CRC with a value that indicates the number of PDCCH slots.
  16. The method of claim 13, wherein the network entity transmits PDCCH with all different repetition levels across the same number of PDCCH slots.
  17. The method of claim 16, wherein:
    for a repetition level of two, the PDCCH is repeated across two monitoring occasions in two consecutive slots.
  18. The method of claim 16, wherein:
    PDCCH repetition is applied first to a single PDCCH monitoring occasions across slots up to a maximum number of slots and then to the next monitoring occasion in a slot.
  19. The method of claim 13, wherein the UE monitors for PDCCH repetitions according to a monitoring pattern, wherein a monitoring pattern for different repetition levels has a same starting slot index.
  20. The method of claim 19, further comprising monitoring for a physical downlink shared channel (PDSCH) scheduled by the PDCCH repetition in a slot determined based on the starting slot index associated with a first PDCCH monitoring occasion.
  21. The method of claim 13, wherein:
    the PDCCH is coded and transmitted with different redundancy versions (RVs) in consecutive slots; and
    the PDCCH is coded and transmitted with a same RV in monitoring occasions in the same slot.
  22. The method of claim 21, wherein:
    for a repetition level of four, with four PDCCH occasions in two slots, a different RV is used for odd-numbered slots to differentiate from a repetition level two PDCCH candidate in the same slot.
  23. The method of claim 13, wherein, if a repetition level of one is configured as part of the multiple repetition levels, the UE is also configured with a monitoring pattern with:
    a repetition level of one in a first PDCCH monitoring occasion of every two slots;
    a repetition level of two in the first two PDCCH monitoring occasions of every two slots; and
    a repetition level of four with a same redundancy version (RV) in two consecutive slots.
  24. The method of claim 13, wherein, if a repetition level of one is configured as part of the multiple repetition levels, the UE is also configured with a monitoring pattern with:
    a repetition level of one in a first PDCCH monitoring occasion in each slot;
    a repetition level of two in two consecutive two monitoring occasions in each slot; and
    a repetition level of four with a different redundancy versions (RVs) in two consecutive slots.
PCT/CN2020/090581 2020-05-15 2020-05-15 Pdcch monitoring for intra-slot and inter-slot repetition WO2021227037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090581 WO2021227037A1 (en) 2020-05-15 2020-05-15 Pdcch monitoring for intra-slot and inter-slot repetition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090581 WO2021227037A1 (en) 2020-05-15 2020-05-15 Pdcch monitoring for intra-slot and inter-slot repetition

Publications (1)

Publication Number Publication Date
WO2021227037A1 true WO2021227037A1 (en) 2021-11-18

Family

ID=78526099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090581 WO2021227037A1 (en) 2020-05-15 2020-05-15 Pdcch monitoring for intra-slot and inter-slot repetition

Country Status (1)

Country Link
WO (1) WO2021227037A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4346137A1 (en) * 2022-09-30 2024-04-03 Nokia Technologies Oy Indication of pucch repetitions via dci crc scrambling for wireless networks
US11956802B2 (en) 2020-07-17 2024-04-09 Wilus Institute Of Standards And Technology Inc. Method for transmitting physical downlink control channel and device for same in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182807A1 (en) * 2018-02-16 2019-06-13 Intel Corporation Reliability mechanisms for physical downlink control channel (pdcch) transmissions in new radio (nr) systems
CN110050501A (en) * 2016-11-04 2019-07-23 Lg 电子株式会社 The method and device thereof of data are sent and received in a wireless communication system
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050501A (en) * 2016-11-04 2019-07-23 Lg 电子株式会社 The method and device thereof of data are sent and received in a wireless communication system
US20190182807A1 (en) * 2018-02-16 2019-06-13 Intel Corporation Reliability mechanisms for physical downlink control channel (pdcch) transmissions in new radio (nr) systems
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Detailed design on RACH procedure for MTC UE", 3GPP DRAFT; R1-155373_PRACH_V1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Malmö, Sweden; 20151005 - 20151009, 4 October 2015 (2015-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051002281 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11956802B2 (en) 2020-07-17 2024-04-09 Wilus Institute Of Standards And Technology Inc. Method for transmitting physical downlink control channel and device for same in wireless communication system
EP4346137A1 (en) * 2022-09-30 2024-04-03 Nokia Technologies Oy Indication of pucch repetitions via dci crc scrambling for wireless networks

Similar Documents

Publication Publication Date Title
EP3713146B1 (en) Slot format indicator (sfi) and slot aggregation level indication in group common pdcch and sfi conflict handling
US11082320B2 (en) Techniques for RMSI PDCCH transmission and monitoring
EP3652879B1 (en) Demodulation reference signal (dmrs) sequence generation and resource mapping for physical broadcast channel (pbch) transmissions
WO2019217717A1 (en) Signaling of control resource set (coreset)
WO2021142704A1 (en) Monitoring for a combination downlink control information (dci) for scheduling transmissions in multiple cells
EP4118754A1 (en) Synchronization signal block pattern with gaps
WO2021169848A1 (en) Sounding reference signal (srs) beam sweeping in multiple transmission reception point (trp) scenarios
WO2021222275A1 (en) Control channel overlap handling for systems with large subcarrier spacing
WO2021227037A1 (en) Pdcch monitoring for intra-slot and inter-slot repetition
EP4097904A1 (en) Dynamically updating transmission configuration indicator (tci) and spatial relation information
US11743929B2 (en) Method to mitigate timing resolution limitation due to SSB with smaller SCS
WO2021227973A1 (en) Field mapping order per physical layer csi report on pusch
WO2021226996A1 (en) Refraining from monitoring physical downlink control channel (pdcch) repetition monitoring occasions
WO2021203315A1 (en) Determining uplink default beam for multiple-input multiple-output (mimo)
US11985668B2 (en) Uplink transmit beam update using uplink transmission configuration indicator state
WO2022150958A1 (en) Downlink control information cooperation introduction
WO2021227007A1 (en) Skipping non-standalone cells for standalone cell selection
US20230262743A1 (en) Application of uplink transmission configuration indicator state with downlink reference signal to codebook based transmissions
WO2021138890A1 (en) Bandwidth part operation for combination dci for scheduling multiple cells
US20210195583A1 (en) Uplink transmit beam update using uplink transmission configuration indicator state
WO2020164017A1 (en) Flexible bandwidth design for physical broadcast channel
WO2021134442A1 (en) Subcarrier spacing (scs) adaptation for high speed environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935863

Country of ref document: EP

Kind code of ref document: A1