WO2021226911A1 - Monitoring occasions for repetition levels associated with control channel messages - Google Patents

Monitoring occasions for repetition levels associated with control channel messages Download PDF

Info

Publication number
WO2021226911A1
WO2021226911A1 PCT/CN2020/090167 CN2020090167W WO2021226911A1 WO 2021226911 A1 WO2021226911 A1 WO 2021226911A1 CN 2020090167 W CN2020090167 W CN 2020090167W WO 2021226911 A1 WO2021226911 A1 WO 2021226911A1
Authority
WO
WIPO (PCT)
Prior art keywords
subset
repetition level
monitoring
downlink communications
monitoring occasions
Prior art date
Application number
PCT/CN2020/090167
Other languages
French (fr)
Inventor
Qiaoyu Li
Wanshi Chen
Chao Wei
Jing LEI
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/090167 priority Critical patent/WO2021226911A1/en
Publication of WO2021226911A1 publication Critical patent/WO2021226911A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for monitoring occasions for repetition levels associated with control channel (CCH) messages.
  • CCH control channel
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a UE may communicate with a BS via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a 5G BS, a 5G Node B, and/or the like.
  • 5G which may also be referred to as New Radio (NR)
  • NR New Radio
  • 3GPP Third Generation Partnership Project
  • 5G is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDM with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • CP-OFDM OFDM with a cyclic prefix
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • UEs User equipment
  • a base station may use repetitions of downlink messages, such as physical downlink control channel (PDCCH) messages, physical downlink shared channel (PDSCH) messages, and/or other downlink messages.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Base stations may therefore lack flexibility in scheduling downlink messages for different UEs as well as in communicating multiple DCIs to the same UE.
  • the base station may therefore schedule communications to multiple UEs with different repetition levels and monitoring occasion patterns for those repetition levels in order to reduce interference. Additionally, the base station may schedule multiple communications to a UE with different repetition levels and monitoring occasion patterns for those repetition levels in order to reduce latency.
  • a method, a user equipment (UE) , a base station, an apparatus, and a computer program product are provided.
  • the method may by performed by a UE.
  • the method may include monitoring, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and decoding at least one downlink control information (DCI) of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  • DCI downlink control information
  • the UE may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  • the apparatus may include means for monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and means for decoding at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  • the computer program product may include a non-transitory computer-readable medium storing one or more instructions.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  • the method may by performed by a base station.
  • the method may include transmitting, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmitting one or more downlink communications based at least in part on the set of monitoring occasions.
  • the base station may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to transmit, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit one or more downlink communications based at least in part on the set of monitoring occasions.
  • the apparatus may include means for transmitting, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and means for transmitting one or more downlink communications based at least in part on the set of monitoring occasions.
  • the computer program product may include a non-transitory computer-readable medium storing one or more instructions.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to transmit, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit one or more downlink communications based at least in part on the set of monitoring occasions.
  • the method may by performed by a UE.
  • the method may include monitoring for common DCI from a base station; and determining whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the UE may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to monitor for common DCI from a base station; and determine whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the apparatus may include means for monitoring for common DCI from a base station; and means for determining whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the computer program product may include a non-transitory computer-readable medium storing one or more instructions.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the method may by performed by a base station.
  • the method may include generating a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmitting the common DCI to the UE.
  • the base station may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to generate a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit the common DCI to the UE.
  • the apparatus may include means for generating a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and means for transmitting the common DCI to the UE.
  • the computer program product may include a non-transitory computer-readable medium storing one or more instructions.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to generate a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit the common DCI to the UE.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described with reference to and as illustrated by the drawings and specification.
  • FIG. 1 is diagram illustrating an example of a wireless communication network.
  • FIG. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless communication network.
  • FIG. 3 is a diagram illustrating an example of monitoring occasions for different inter-slot repetition levels associated with downlink communications.
  • FIG. 4 is a diagram illustrating an example of monitoring occasions for different intra-slot repetition levels associated with downlink communications.
  • FIG. 5 is a diagram illustrating an example of group-common downlink control information (DCI) that configures a UE to monitor different repetition levels associated with downlink communications.
  • DCI group-common downlink control information
  • FIG. 6 is a diagram illustrating an example of decoding DCI for different repetition levels associated with physical downlink CCH (PDCCH) messages.
  • PDCCH physical downlink CCH
  • FIG. 7 is a flowchart of a method of wireless communication performed by a UE.
  • FIG. 8 is a flowchart of a method of wireless communication performed by a base station.
  • FIG. 9 is a flowchart of another method of wireless communication performed by a UE.
  • FIG. 10 is a flowchart of another method of wireless communication performed by a base station.
  • FIG. 11 is a conceptual data flow diagram illustrating the data flow between different components in an example apparatus.
  • FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • FIG. 13 is a conceptual data flow diagram illustrating the data flow between different components in an example apparatus.
  • FIG. 14 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • One or more processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • magnetic disk storage magnetic disk storage or other magnetic storage devices
  • FIG. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a 5G BS, a Node B, a gNB, a 5G NB, an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • 5G BS base station
  • gNB gNB
  • TRP AP
  • AP node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • 5G RAT networks may be deployed.
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • P2P peer-to-peer
  • mesh network UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • Some UEs may operate using fewer antennas (e.g., fewer Rx antennas) and/or reduced bandwidth (e.g., operating in a 5MHz-20MHz range rather than a 100MHz bandwidth) in order to conserve battery power.
  • Such UEs may include smart devices (such as smart watches, fitness trackers, and/or the like) , industrial sensors, video surveillance devices, and/or the like and may be referred to as reduced capacity UEs ( “Red-Cap UEs” ) and/or “NR-light UEs. ”
  • a base station may use repetitions of downlink messages, such as physical downlink control channel (PDCCH) messages, physical downlink shared channel (PDSCH) messages, and/or the like.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a base station may use a particular repetition level for PDCCH messages, PDSCH messages, and/or other downlink messages to increase the reliability of communications with the reduced capacity UEs.
  • repetition levels are generally associated with a single pattern of monitoring occasions. Base stations may therefore lack flexibility in scheduling downlink messages for different UEs as well as in communicating multiple DCIs to the same UE.
  • FIG. 1 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 1.
  • FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, may select a modulation and coding scheme (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding scheme
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the CRS) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine RSRP, RSSI, RSRQ, CQI, and/or the like.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform one or more techniques associated with monitoring occasions for different repetition levels associated with CCH messages, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform or direct operations of, for example, method 700 of FIG. 7, method 800 of FIG. 8, method 900 of FIG. 9, method 1000 of FIG. 10, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 2 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 2.
  • Red-Cap UEs and other UEs with reduced reception capabilities may experience an increase in reception reliability when a base station uses repetition for downlink communications, such as PDCCH messages.
  • Techniques and apparatuses described herein may provide increased flexibility for using multiple monitoring occasion (MO) patterns associated with a repetition level for downlink messages.
  • the base station may therefore schedule communications to multiple UEs with different repetition levels and MO patterns for those repetition levels to reduce interference on downlink communications. Additionally, the base station may schedule multiple communications to a UE with different repetition levels and MO patterns for those repetition levels to reduce latency for the multiple communications.
  • MO monitoring occasion
  • FIG. 3 is a diagram illustrating an example 300 of MOs for different inter-slot repetition levels associated with downlink communications, in accordance with various aspects of the present disclosure.
  • a UE e.g., UE 120 and/or the like
  • PDCCH messages the description below will focus on one or more PDCCH messages, the description equally applies to one or more other downlink communications to the UE 120.
  • the set of MOs may correspond to a plurality of repetition levels configured for the UE 120.
  • the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the first repetition level may be written as N1
  • the second repetition level may be written as N2, where N2 > N1.
  • the third repetition level may be written as N3 and based at least in part on N1 and N2.
  • the third repetition level may be equal to N2 –N1.
  • the set of MOs includes a first subset 305 of consecutive MOs corresponding to the first repetition level and a second subset 310 of consecutive MOs corresponding to the third repetition level.
  • the UE 120 may monitor for the one or more PDCCH messages by monitoring for a first subset of the one or more PDCCH messages corresponding to the first repetition level (N1) in the first subset 305 of consecutive MOs.
  • N1 2
  • the first subset 305 of consecutive MOs occupies two adjacent symbols in a first slot.
  • a “slot” may refer a portion of a radio frame within an LTE, 5G, or other wireless communication structure.
  • a “symbol” may refer to an orthogonal frequency-division multiplexing (OFDM) symbol or other similar symbol within a slot.
  • OFDM orthogonal frequency-division multiplexing
  • the UE 120 may further monitor for the one or more PDCCH messages by monitoring for a second subset of the one or more PDCCH messages corresponding to the second repetition level (N2) in the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs.
  • N2 4
  • the second subset 310 of consecutive MOs occupies two adjacent symbols in a second slot.
  • the UE 120 may monitor for the second subset of the one or more PDCCH messages corresponding to the second repetition level in the set 315 of MOs including both the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs.
  • the UE 120 may further monitor for the one or more PDCCH messages by monitoring for a third subset of the one or more PDCCH messages corresponding to the third repetition level in the second subset 310 of consecutive MOs.
  • the second subset 310 of consecutive MOs occupies two adjacent symbols in the second slot, as described above.
  • the third repetition level is equal to the first repetition level.
  • the third repetition level may be less than the first repetition level.
  • N3 may be 1, and N1 may be 2 such that the first subset 305 of consecutive MOs includes two MOs, and the second subset 310 of consecutive MOs includes one MO.
  • the third repetition level may be greater than the first repetition level.
  • N3 may be 3, and N1 may be 2 such that the first subset 305 of consecutive MOs includes two MOs, and the second subset 310 of consecutive MOs includes three MOs.
  • the UE 120 may further monitor for the one or more PDCCH messages by monitoring for the first subset of the one or more PDCCH messages corresponding to the first repetition level and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level in a first portion of the first subset 305 of consecutive MOs and a second portion of the second subset 310 of consecutive MOs.
  • the UE 120 may further monitor for the one or more PDCCH messages by monitoring for the first subset of the one or more PDCCH messages corresponding to the first repetition level and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level in a first portion of the first subset 305 of consecutive MOs and a second portion of the second subset 310 of consecutive MOs.
  • N3 may be greater than N1.
  • N1 may be greater than N3.
  • the UE 120 may be preconfigured with the set of MOs. Additionally, or alternatively, the UE 120 may receive a configuration message (e.g., an RRC signal and/or the like) from a base station that indicates the set of MOs.
  • a configuration message e.g., an RRC signal and/or the like
  • a gap between the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs may be a radio resource configured gap.
  • the gap may be configured by the configuration message from the base station.
  • the gap may span a slot such that the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs are within adjacent slots.
  • the first subset 305 of consecutive MOs are within a first slot
  • the second subset 310 of consecutive MOs are within a second slot with the first slot and the second slot being adjacent, as shown in FIG. 3.
  • first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs may be within non-adjacent slots.
  • first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs may share a slot at least in part, as described below in connection with FIG. 4.
  • the first subset 305 of consecutive MOs may include adjacent symbols within a slot.
  • the MOs within the first subset 305 may be separated by the 0-symbol.
  • the second subset 310 of consecutive MOs may include adjacent symbols within a slot.
  • the MOs within the second subset 310 may be separated by the 0-symbol.
  • the base station may transmit the one or more PDCCH messages based at least in part on the set of MOs. Accordingly, based at least in part on monitoring for the one or more PDCCH messages in the set of MOs, the UE 120 may decode at least one DCI of the one or more PDCCH messages.
  • the base station may transmit a plurality of DCI using different repetition levels in fewer slots and thus with less latency than using separate MO patterns for each repetition level.
  • FIG. 3 is provided as an example. Other examples may differ from what is described with respect to FIG. 3.
  • FIG. 4 is a diagram illustrating an example 400 of MOs for different intra-slot repetition levels associated with downlink communications, in accordance with various aspects of the present disclosure.
  • a UE e.g., UE 120 and/or the like
  • PDCCH messages the description below will focus on PDCCH messages, the description equally applies to other downlink communications to the UE 120.
  • FIG. 4 depicts a set of MOs that may correspond to a plurality of repetition levels configured for the UE 120.
  • the plurality of different repetition levels may include a first repetition level (N1) , a second repetition level (N2) that is greater than the first repetition level (N2 > N1) , and a third repetition level (N3) that is based at least in part on the first repetition level and the second repetition level (e.g., N2 –N1) .
  • N1 first repetition level
  • N2 > N1 the first repetition level
  • N3 third repetition level
  • the set of MOs includes a first subset 405 of consecutive MOs corresponding to the first repetition level and a second subset 410 of consecutive MOs corresponding to the third repetition level.
  • the UE 120 may further monitor for the one or more PDCCH messages by monitoring for the first subset of the one or more PDCCH messages corresponding to the first repetition level and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level in a first portion of the first subset 405 of consecutive MOs and a second portion of the second subset 410 of consecutive MOs.
  • the UE 120 may further monitor for the one or more PDCCH messages by monitoring for the first subset of the one or more PDCCH messages corresponding to the first repetition level and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level in a first portion of the first subset 405 of consecutive MOs and a second portion of the second subset 410 of consecutive MOs.
  • the third repetition level is equal to the first repetition level in the example of FIG. 4.
  • the third repetition level may be less than the first repetition level, or the third repetition level may be greater than the first repetition level.
  • the UE 120 may be preconfigured with the set of MOs. Additionally, or alternatively, the UE 120 may receive a configuration message (e.g., an RRC signal and/or the like) from a base station that indicates the set of MOs.
  • a configuration message e.g., an RRC signal and/or the like
  • a gap between the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs may be a radio resource configured gap.
  • the gap may be configured by the configuration message from the base station.
  • the gap may include one or more symbols such that the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs are fully or at least partially within the same slot.
  • the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs may be in adjacent slots.
  • the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs may be in non-adjacent slots.
  • the first subset 405 of consecutive MOs may include adjacent symbols within a slot.
  • the MOs within the first subset 405 may be separated by the 0-symbol.
  • the second subset 410 of consecutive MOs may include adjacent symbols within a slot.
  • the MOs within the second subset 410 may be separated by the 0-symbol.
  • the base station may transmit the one or more PDCCH messages based at least in part on the set of MOs. Accordingly, based at least in part on monitoring for the one or more PDCCH messages in the set of MOs, the UE 120 may decode at least one DCI of the one or more PDCCH messages. For example, the UE 120 may monitor for the 1-symbol control-resource set (CORESET) or other similar symbol repeated according to the repetition levels.
  • CORESET 1-symbol control-resource set
  • the base station may transmit a plurality of DCI using different repetition levels in fewer slots and thus with less latency than using separate MO patterns for each repetition level.
  • FIG. 4 is provided as an example. Other examples may differ from what is described with respect to FIG. 4.
  • FIG. 5 is a diagram illustrating an example 500 of group-common DCI (GC-DCI) 505 that configures a UE (e.g., UE 120 and/or the like) to monitor different repetition levels associated with downlink communications, in accordance with various aspects of the present disclosure.
  • the GC-DCI 505 may include one or more bits to activate or deactivate portions of MO patterns for different repetition levels for one or more downlink communications.
  • the common DCI 505 may configure the UE 120 to monitor, for the one or more PDCCH messages, in a set of MOs.
  • the common DCI 505 may include a plurality of indications corresponding to a plurality of UEs, where an indication is one or more bits that activate or reactive all or a portion of the set of MOs for a corresponding UE.
  • the set of MOs may be preconfigured for the UEs and/or configured via an RRC signal or other configuration message from a base station.
  • the UE 120 may monitor for the common DCI 505 based on a cyclic redundancy check (CRC) .
  • CRC cyclic redundancy check
  • the CRC may include DCI scrambled by a radio network temporary identifier (RNTI) along with an offset index for mapping the indications to the corresponding to UEs.
  • RNTI radio network temporary identifier
  • the common DCI 505 configures the UE 120 to monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level, in a subset of consecutive MOs in the set of MOs. For example, as described above in connection with FIGS. 3-4, the common DCI 505 may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) . In some aspects, the common DCI 505 may trigger or otherwise configure the UE 120 to monitor the first subset of consecutive MOs.
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • N1 first repetition level
  • the common DCI 505 may trigger or otherwise configure the UE 120 to monitor the first subset of consecutive MOs.
  • the UE 120 may be configured to monitor the first subset of consecutive MOs, and the common DCI 505 may deactivate other MOs (e.g., second subset 310, second subset 410, and/or the like) such that the UE 120 only monitors the first subset of consecutive MOs.
  • the common DCI 505 may deactivate other MOs (e.g., second subset 310, second subset 410, and/or the like) such that the UE 120 only monitors the first subset of consecutive MOs.
  • the common DCI 505 may configure the UE 120 to monitor, for a subset of the one or more PDCCH messages corresponding to the second repetition level, in a first subset of consecutive MOs in the set of monitoring occasions and a second subset of consecutive MOs in the set of monitoring occasions. For example, as described above in connection with FIGS.
  • the common DCI 505 may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) .
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • a second subset of consecutive MOs e.g., second subset 310, second subset 410, and/or the like
  • the common DCI 505 may configure the UE 120 to monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) as well as to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
  • the UE 120 may already be configured to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) , and the common DCI 505 may trigger or otherwise configure the UE 120 to additionally monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) .
  • the common DCI 505 may trigger or otherwise configure the UE 120 to monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) instead of monitoring the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
  • the common DCI 505 may configure the UE 120 to monitor, for a subset of the one or more PDCCH messages corresponding to the third repetition level, in a subset of consecutive MOs in the set of monitoring occasions. For example, as described above in connection with FIGS. 3-4, the common DCI 505 may trigger the UE 120 to monitor a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
  • a second subset of consecutive MOs e.g., second subset 310, second subset 410, and/or the like
  • the common DCI 505 may configure the UE to monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level, in a portion of a first subset of consecutive MOs in the set of MOs and in a portion of a second subset of consecutive MOs in the set of MOs. For example, as described above in connection with FIGS.
  • the common DCI 505 may trigger the UE 120 to monitor a portion of a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a portion of a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • a second subset of consecutive MOs e.g., second subset 310, second subset 410, and/or the like
  • the common DCI 505 may configure the UE to monitor, for a subset of the one or more PDCCH messages corresponding to the third repetition level, in a portion of a first subset of consecutive MOs in the set of MOs and in a portion of a second subset of consecutive MOs in the set of MOs. For example, as described above in connection with FIGS.
  • the common DCI 505 may trigger the UE 120 to monitor a portion of a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a portion of a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • a second subset of consecutive MOs e.g., second subset 310, second subset 410, and/or the like
  • FIG. 5 is provided as an example. Other examples may differ from what is described with respect to FIG. 5.
  • FIG. 6 is a diagram illustrating an example 600 of a signaling diagram between a base station 110 and a UE 120 configured for different repetition levels associated with one or more PDCCH messages, in accordance with various aspects of the present disclosure. Although the description below will focus on one or more PDCCH messages, the description equally applies to one or more other downlink communications to the UE 120.
  • the base station 110 may transmit a GC-DCI or other common DCI signal to the UE 120. Accordingly, the UE 120 may monitor for the common DCI from the base station 110. In some aspects, the UE 120 may determine whether to monitor, for the one or more PDCCH messages, in a set of MOs, based at least in part on monitoring for the common DCI. As described above in connection with FIGS.
  • the UE 120 may receive the common DCI based at least in part on monitoring for the common DCI.
  • the UE 120 may monitor for the one or more PDCCH messages based at least in part on information in the common DCI, as described above in connection with FIG. 5 and below in connection with reference number 615.
  • the UE 120 may transmit an acknowledgment message based at least in part on the UE 120 monitoring for the common DCI.
  • the UE 120 may transmit the acknowledgment message to the base station 110 over an uplink control channel, such as a physical uplink CCH (PUCCH) resource and/or other uplink resource.
  • the uplink control channel may include a sequence-based control channel resource, such as a sequence-based PUCCH resource.
  • the PUCCH resource may include a large repetition level (e.g., a maximum repetition level, such as 32 or greater) , a small payload (e.g., 1 bit, 2 bits, 4 bits, or the like) , and/or a large number of OFDM symbols (e.g., 14 OFDM symbols or greater) .
  • the acknowledgment message may be an ACK report or other message indicating that the UE 120 received the common DCI.
  • the UE 120 may receive no common DCI when monitoring for the common DCI. Accordingly, the acknowledgment message may be a NACK report or other message indicating that the UE 120 did not receive the common DCI.
  • the UE 120 may still monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level, in a subset of consecutive MOs in the set of MOs, based at least in part on receiving no common DCI. For example, as described above in connection with FIGS. 3-4, the UE 120 may still monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) even when the UE 120 does not receive the common DCI. As an alternative, the UE 120 may refrain from monitoring for the one or more PDCCH messages based at least in part on receiving no common DCI.
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • N1 first repetition level
  • the UE 120 may refrain from monitoring for the one or more PDCCH messages based at least in part on receiving no common
  • the base station 110 may transmit the one or more PDCCH messages based at least in part on the set of MOs, as described above. For example, as described above, the base station 110 may transmit the one or more PDCCH messages using the different repetition levels based at least in part on receiving an ACK report from the UE 120. In some aspects, the base station 110 may transmit the one or more PDCCH messages using only the first repetition level based at least in part on receiving a NACK report from the UE 120. As an alternative, the base station 110 may refrain from transmitting the one or more PDCCH messages based at least in part on receiving the NACK report from the UE 120.
  • the UE 120 may monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level, in a subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI.
  • the common DCI may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • N1 the first repetition level
  • the UE 120 may be configured to monitor the first subset of consecutive MOs, and the common DCI may deactivate other MOs (e.g., second subset 310, second subset 410, and/or the like) such that the UE 120 only monitors the first subset of consecutive MOs.
  • the common DCI may deactivate other MOs (e.g., second subset 310, second subset 410, and/or the like) such that the UE 120 only monitors the first subset of consecutive MOs.
  • the UE 120 may monitor, for a first subset of the one or more PDCCH messages corresponding to the first repetition level, in a first subset of consecutive MOs in the set of MOs and monitor, for a second subset of the one or more PDCCH messages corresponding to the second repetition level, in the first subset of consecutive MOs and a second subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI. For example, as described above in connection with FIG.
  • the common DCI may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) as well as to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • a second subset of consecutive MOs e.g., second subset 310, second subset 410, and/or the like
  • the UE 120 may already be configured to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) , and the common DCI may trigger or otherwise configure the UE 120 to additionally monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) .
  • the common DCI may trigger the UE 120 to monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) instead of monitoring the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
  • the UE 120 may monitor, for a third subset of the one or more PDCCH messages corresponding to the third repetition level, in the second subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI.
  • the common DCI may trigger the UE 120 to monitor a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
  • the UE 120 may monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level and/or a subset of the one or more PDCCH messages corresponding to the third repetition level, in a portion of a first subset of consecutive MOs in the set of MOs and in a portion of a second subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI. For example, as described above in connection with FIG.
  • the common DCI may trigger the UE 120 to monitor a portion of a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a portion of a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) and/or a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
  • a first subset of consecutive MOs e.g., first subset 305, first subset 405, and/or the like
  • a second subset of consecutive MOs e.g., second subset 310, second subset 410, and/or the like
  • the UE 120 may decode at least one DCI of the one or more PDCCH messages based at least in part on monitoring, for the one or more PDCCH messages, in the set of MOs, as described above. In some aspects, the UE 120 may decode a plurality of DCI by monitoring the set of MOs corresponding to the different repetition levels. By using MO patterns as described in connection with FIG. 6, the UE 120 may decode a plurality of DCI using different repetition levels in fewer slots and thus with less latency than using separate MO patterns for each repetition level.
  • FIG. 6 is provided as an example. Other examples may differ from what is described with respect to FIG. 6.
  • FIG. 7 is a flowchart of a method 700 of wireless communication.
  • the method may be performed by a UE (e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like) .
  • a UE e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like.
  • the UE may receive a configuration message that indicates a set of MOs corresponding to a plurality of different repetition levels.
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the set of MOs corresponds to a plurality of different repetition levels configured for the UE.
  • the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the UE may monitor, for one or more downlink communications, in the set of MOs.
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the one or more downlink communications may include one or more PDCCH messages.
  • the UE may decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of MOs.
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the at least one DCI may include a plurality of DCI associated with the different repetition levels.
  • Method 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the third repetition level is equal to the first repetition level.
  • the set of monitoring occasions includes a first subset of consecutive monitoring occasions corresponding to the first repetition level and a second subset of consecutive monitoring occasions corresponding to the third repetition level
  • monitoring for the one or more downlink communications comprises monitoring for a first subset of the one or more downlink communications corresponding to the first repetition level in the first subset of consecutive monitoring occasions.
  • monitoring for the one or more downlink communications further comprises monitoring for a second subset of the one or more downlink communications corresponding to the second repetition level in the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions.
  • monitoring for the one or more downlink communications further comprises monitoring for a third subset of the one or more downlink communications corresponding to the third repetition level in the second subset of consecutive monitoring occasions.
  • monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  • monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  • a gap between the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions is a radio resource configured gap.
  • the first subset of consecutive monitoring occasions includes adjacent symbols within a slot.
  • the first subset of consecutive monitoring occasions are within a first slot
  • the second subset of consecutive monitoring occasions are within a second slot
  • the first slot and the second slot are adjacent slots.
  • method 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 7. Additionally, or alternatively, two or more of the blocks of method 700 may be performed in parallel.
  • FIG. 8 is a flowchart of a method 800 of wireless communication.
  • the method may be performed by a base station (e.g., the base station 110 of FIG. 1, the apparatus 1302/1302′, and/or the like) .
  • a base station e.g., the base station 110 of FIG. 1, the apparatus 1302/1302′, and/or the like.
  • the base station may transmit a configuration message that indicates a set of MOs corresponding to a plurality of different repetition levels.
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • the set of MOs corresponds to a plurality of different repetition levels configured for the UE.
  • the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the base station may receive an acknowledgment message based at least in part on transmitting the configuration message.
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • the base station may receive the acknowledgment message on an uplink control channel.
  • the uplink control channel may use a PUCCH resource.
  • the base station may transmit one or more downlink communications based at least in part on the set of MOs.
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • the base station may transmit at least one DCI using the one or more downlink communications.
  • the at least one DCI may include a plurality of DCI associated with the different repetition levels.
  • Method 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the third repetition level is equal to the first repetition level.
  • the set of monitoring occasions includes a first subset of consecutive monitoring occasions corresponding to the first repetition level and a second subset of consecutive monitoring occasions corresponding to the third repetition level
  • transmitting the one or more downlink communications comprises transmitting a first subset of the one or more downlink communications corresponding to the first repetition level in the first subset of consecutive monitoring occasions.
  • transmitting the one or more downlink communications further comprises transmitting a second subset of the one or more downlink communications corresponding to the second repetition level in the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions.
  • transmitting the one or more downlink communications further comprises transmitting a third subset of the one or more downlink communications corresponding to the third repetition level in the second subset of consecutive monitoring occasions.
  • transmitting the one or more downlink communications further comprises transmitting the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  • transmitting the one or more downlink communications further comprises transmitting the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  • a gap between the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions is a radio resource configured gap.
  • the first subset of consecutive monitoring occasions includes adjacent symbols within a slot.
  • the first subset of consecutive monitoring occasions are within a first slot
  • the second subset of consecutive monitoring occasions are within a second slot
  • the first slot and the second slot are adjacent slots.
  • method 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 8. Additionally, or alternatively, two or more of the blocks of method 800 may be performed in parallel.
  • FIG. 9 is a flowchart of a method 900 of wireless communication.
  • the method may be performed by a UE (e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like) .
  • a UE e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like.
  • the UE may monitor for common DCI from a base station.
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • UE may transmit an acknowledgment message based at least in part on monitoring for the common DCI.
  • the UE may transmit an ACK report or a NACK report based at least in part on whether the UE receives the common DCI.
  • the UE may determine whether to monitor, for one or more downlink communications, in a set of MOs corresponding to a plurality of different repetition levels, based at least in part on monitoring for the common DCI.
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the set of MOs corresponds to the plurality of different repetition levels configured for the UE.
  • the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the UE may monitor, for the one or more downlink communications, in the set of MOs based at least in part on determining whether to monitor. For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may monitor for the one or more downlink communications in the set of MOs, as described above. In some aspects, the UE may decode at least one DCI based at least in part on monitoring for the one or more downlink communications. For example, the at least one DCI may include a plurality of DCI associated with the different repetition levels.
  • Method 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • method 900 further includes receiving the common DCI based at least in part on monitoring for the common DCI.
  • determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
  • determining whether to monitor for the one or more downlink communications comprises: monitoring, for a first subset of the one or more downlink communications corresponding to the first repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions; monitoring, for a second subset of the one or more downlink communications corresponding to the second repetition level, in the first subset of consecutive monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the first subset of the one or more downlink communications and monitoring for the second subset of the one or more downlink communications.
  • determining whether to monitor for the one or more downlink communications further comprises: monitoring, for a third subset of the one or more downlink communications corresponding to the third repetition level, in the second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the third subset of the one or more downlink communications.
  • determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the second repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the subset of the one or more downlink communications.
  • determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a portion of a first subset of consecutive monitoring occasions in the set of monitoring occasions and a portion of a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the subset of the one or more downlink communications.
  • method 900 further includes receiving no common DCI when monitoring for the common DCI, and determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on receiving no common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
  • method 900 further includes receiving no common DCI when monitoring for the common DCI, and determining whether to monitor for the one or more downlink communications comprises refraining from monitoring for the one or more downlink communications based at least in part on receiving no common DCI.
  • method 900 further includes reporting, to the base station and over an uplink control channel, an acknowledgment message based at least in part on monitoring for the common DCI.
  • the uplink control channel includes a sequence-based control channel resource.
  • method 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 9. Additionally, or alternatively, two or more of the blocks of method 900 may be performed in parallel.
  • FIG. 10 is a flowchart of a method 1000 of wireless communication.
  • the method may be performed by a base station (e.g., the base station 110 of FIG. 1, the apparatus 1302/1302′, and/or the like) .
  • a base station e.g., the base station 110 of FIG. 1, the apparatus 1302/1302′, and/or the like.
  • the base station may generate a common DCI that configures a UE (e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like) to monitor, for one or more downlink communications, in a set of MOs corresponding to a plurality of different repetition levels.
  • a UE e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • the set of MOs corresponds to a plurality of different repetition levels configured for the UE.
  • the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the base station may transmit the common DCI to the UE.
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • the base station may receive an acknowledgment message based at least in part on transmitting the common DCI, from the UE, on an uplink control channel.
  • the uplink control channel may use a PUCCH resource.
  • the base station may transmit one or more downlink communications to the UE based at least in part on the set of MOs.
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • the base station may transmit at least one DCI using the one or more downlink communications.
  • the at least one DCI may include a plurality of DCI associated with the different repetition levels.
  • Method 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions.
  • the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the second repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions.
  • the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the third repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI.
  • the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a portion of a first subset of consecutive monitoring occasions in the set of monitoring occasions and a portion of a second subset of consecutive monitoring occasions in the set of monitoring occasions.
  • method 1000 further includes receiving, from the UE and over an uplink control channel, an acknowledgment message based at least in part on the UE monitoring for the common DCI.
  • the uplink control channel includes a sequence-based control channel resource.
  • method 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 10. Additionally, or alternatively, two or more of the blocks of method 1000 may be performed in parallel.
  • FIG. 11 is a conceptual data flow diagram 1100 illustrating the data flow between different components in an example apparatus 1102.
  • the apparatus 1102 may be a UE (e.g., UE 120) .
  • the apparatus 1102 includes a reception component 1104, a decoding component 1106, and/or a transmission component 1108.
  • the reception component 1104 may receive (e.g., from an apparatus 1150, such as base station 110 and/or the like) a configuration message that indicates a set of MOs.
  • the set of MOs may correspond to a plurality of different repetition levels configured for the apparatus 1102.
  • the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the reception component 1104 may receive (e.g., from an apparatus 1150, such as base station 110 and/or the like) common DCI that configures the apparatus 1102 to monitor, for one or more downlink communications, in the set of MOs.
  • the transmission component 1108 may transmit (e.g., to an apparatus 1150, such as base station 110 and/or the like) an acknowledgment message based at least in part on whether the reception component 1104 received the configuration message and/or the common DCI.
  • the transmission component 1108 may transmit an ACK report or a NACK report on an uplink control channel (e.g., a PUCCH channel) to the apparatus 1150, such as base station 110 and/or the like.
  • an uplink control channel e.g., a PUCCH channel
  • the reception component 1104 may monitor, for the one or more downlink communications, in the set of MOs. For example, the reception component 1104 may determine whether to monitor, for the one or more downlink communications, in a set of MOs, based at least in part on information in the configuration message and/or the common DCI. The reception component 1104 may monitor for the one or more downlink communications from the apparatus 1150, such as base station 110 and/or the like.
  • the decoding component 1106 may decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of MOs. For example, the decoding component 1106 may decode different DCI corresponding to the different repetition levels.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned method 700 of FIG. 7, method 900 of FIG. 9, and/or the like. Each block in the aforementioned method 700 of FIG. 7, method 900 of FIG. 9, and/or the like may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 11 The number and arrangement of components shown in FIG. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in FIG. 11. Furthermore, two or more components shown in FIG. 11 may be implemented within a single component, or a single component shown in FIG. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in FIG. 11 may perform one or more functions described as being performed by another set of components shown in FIG. 11.
  • FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1202' employing a processing system 1202.
  • the apparatus 1202' may be a UE (e.g., UE 120) .
  • the processing system 1202 may be implemented with a bus architecture, represented generally by the bus 1204.
  • the bus 1204 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1202 and the overall design constraints.
  • the bus 1204 links together various circuits including one or more processors and/or hardware components, represented by the processor 1206, the components 1104, 1106, and/or 1108, and the computer-readable medium /memory 1208.
  • the bus 1204 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
  • the processing system 1202 may be coupled to a transceiver 1210.
  • the transceiver 1210 is coupled to one or more antennas 1212.
  • the transceiver 1210 provides a means for communicating with various other apparatuses over a transmission medium.
  • the transceiver 1210 receives a signal from the one or more antennas 1212, extracts information from the received signal, and provides the extracted information to the processing system 1202, specifically the reception component 1104.
  • the transceiver 1210 receives information from the processing system 1202, specifically the transmission component 1108, and based at least in part on the received information, generates a signal to be applied to the one or more antennas 1212.
  • the processing system 1202 includes a processor 1206 coupled to a computer-readable medium /memory 1208.
  • the processor 1206 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1208.
  • the software when executed by the processor 1206, causes the processing system 1202 to perform the various functions described herein for any particular apparatus.
  • the computer-readable medium /memory 1208 may also be used for storing data that is manipulated by the processor 1206 when executing software.
  • the processing system further includes at least one of the components 1104, 1106, and/or 1108.
  • the components may be software modules running in the processor 1206, resident/stored in the computer readable medium /memory 1208, one or more hardware modules coupled to the processor 1206, or some combination thereof.
  • the processing system 1202 may be a component of the UE 120 and may include the memory 282 and/or at least one of the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280.
  • the apparatus 1102/1102' for wireless communication includes means for monitoring, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; means for decoding at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions; means for monitoring for common DCI from a base station; means for determining whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1102 and/or the processing system 1202 of the apparatus 1102' configured to perform the functions recited by the aforementioned means.
  • the processing system 1202 may include the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280.
  • the aforementioned means may be the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280 configured to perform the functions and/or operations recited herein.
  • FIG. 12 is provided as an example. Other examples may differ from what is described in connection with FIG. 12.
  • FIG. 13 is a conceptual data flow diagram 1300 illustrating the data flow between different components in an example apparatus 1302.
  • the apparatus 1302 may be a base station (e.g., base station 110) .
  • the apparatus 1302 includes a reception component 1304, a repetition component 1306, and/or a transmission component 1308.
  • the transmission component 1308 may transmit (e.g., to an apparatus 1350, such as UE 120 and/or the like) a configuration message that indicates a set of MOs.
  • the set of MOs may correspond to a plurality of different repetition levels configured for the apparatus 1350.
  • the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  • the transmission component 1308 may transmit (e.g., to an apparatus 1150, such as UE 120 and/or the like) common DCI that configures the apparatus 1350 to monitor, for one or more downlink communications, in the set of MOs.
  • the reception component 1304 may receive (e.g., from an apparatus 1350, such as UE 120 and/or the like) an acknowledgment message based at least in part on whether the apparatus 1350 received the configuration message and/or the common DCI.
  • the reception component 1304 may receive an ACK report or a NACK report on an uplink control channel (e.g., a PUCCH channel) from the apparatus 1350, such as UE 120 and/or the like.
  • an uplink control channel e.g., a PUCCH channel
  • the repetition component 1306 may determine one or more repetition levels of the plurality of repetition levels for transmitting based at least in part on transmitting the configuration message and/or the common DCI. In some aspects, the repetition component 1306 may determine the one or more repetition levels further based at least in part on whether the reception component 1304 received an ACK report or a NACK report, as described above.
  • the transmission component 1308 may transmit one or more downlink communications based at least in part on the set of MOs. For example, the transmission component 1308 may transmit the one or more downlink communications according to one or more repetition levels determined by the repetition component 1306, as described above. The transmission component 1308 may transmit the one or more downlink communications to the apparatus 1350, such as UE 120 and/or the like.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned method 800 of FIG. 8, method 1000 of FIG. 10, and/or the like.
  • Each block in the aforementioned method 800 of FIG. 8, method 1000 of FIG. 10, and/or the like may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 13 The number and arrangement of components shown in FIG. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in FIG. 13. Furthermore, two or more components shown in FIG. 13 may be implemented within a single component, or a single component shown in FIG. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in FIG. 13 may perform one or more functions described as being performed by another set of components shown in FIG. 13.
  • FIG. 14 is a diagram 1400 illustrating an example of a hardware implementation for an apparatus 1302' employing a processing system 1402.
  • the apparatus 1302' may be a base station (e.g., base station 110) .
  • the processing system 1402 may be implemented with a bus architecture, represented generally by the bus 1404.
  • the bus 1404 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1402 and the overall design constraints.
  • the bus 1404 links together various circuits including one or more processors and/or hardware components, represented by the processor 1406, the components 1304, 1306, and/or 1308, and the computer-readable medium /memory 1408.
  • the bus 1404 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
  • the processing system 1402 may be coupled to a transceiver 1410.
  • the transceiver 1410 is coupled to one or more antennas 1412.
  • the transceiver 1410 provides a means for communicating with various other apparatuses over a transmission medium.
  • the transceiver 1410 receives a signal from the one or more antennas 1412, extracts information from the received signal, and provides the extracted information to the processing system 1402, specifically the reception component 1304.
  • the transceiver 1410 receives information from the processing system 1402, specifically the transmission component 1308, and based at least in part on the received information, generates a signal to be applied to the one or more antennas 1412.
  • the processing system 1402 includes a processor 1406 coupled to a computer-readable medium /memory 1408.
  • the processor 1406 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1408.
  • the software when executed by the processor 1406, causes the processing system 1402 to perform the various functions described herein for any particular apparatus.
  • the computer-readable medium /memory 1408 may also be used for storing data that is manipulated by the processor 1406 when executing software.
  • the processing system further includes at least one of the components 1304, 1306, and/or 1308.
  • the components may be software modules running in the processor 1406, resident/stored in the computer readable medium /memory 1408, one or more hardware modules coupled to the processor 1406, or some combination thereof.
  • the processing system 1402 may be a component of the base station 110 and may include the memory 242 and/or at least one of the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240.
  • the apparatus 1302/1302' for wireless communication includes means for transmitting, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; means for transmitting one or more downlink communications based at least in part on the set of monitoring occasions; means for generating a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1302 and/or the processing system 1402 of the apparatus 1302' configured to perform the functions recited by the aforementioned means.
  • the processing system 1402 may include the TX MIMO processor 230, the receive processor 238, and/or the controller/processor 240.
  • the aforementioned means may be the TX MIMO processor 230, the receive processor 238, and/or the controller/processor 240 configured to perform the functions and/or operations recited herein.
  • FIG. 14 is provided as an example. Other examples may differ from what is described in connection with FIG. 14.
  • Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

User equipment (UEs) may operate within a wireless communication network using fewer antennas and/or reduced bandwidth in order to conserve battery power. In order to compensate for the reduced downlink capacity of such UEs, a base station may use repetitions of downlink messages, such as physical downlink control channel (PDCCH) messages. However, such repetition levels are generally associated with a single pattern of monitoring occasions. Base stations may therefore lack flexibility in scheduling downlink messages for different UEs as well as in communicating multiple DCIs to the same UE. Techniques and apparatuses described herein may provide increased flexibility for using multiple monitoring occasion patterns associated with a repetition level for downlink messages. The base station may therefore schedule communications to multiple UEs with different repetition levels to reduce interference. Additionally, the base station may schedule multiple communications to a UE with different repetition levels to reduce latency.

Description

MONITORING OCCASIONS FOR REPETITION LEVELS ASSOCIATED WITH CONTROL CHANNEL MESSAGES BACKGROUND Field
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for monitoring occasions for repetition levels associated with control channel (CCH) messages.
Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A UE may communicate with a BS via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a 5G BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless communication devices to communicate on a municipal, national, regional, and even global level. 5G, which may also be referred to as New Radio (NR) , is a set  of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . 5G is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDM with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and 5G technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
User equipment (UEs) may operate within a wireless communication network using fewer antennas and/or reduced bandwidth in order to conserve battery power. In order to compensate for reduced downlink capacity of such UEs, a base station may use repetitions of downlink messages, such as physical downlink control channel (PDCCH) messages, physical downlink shared channel (PDSCH) messages, and/or other downlink messages. However, such repetition levels are generally associated with a single pattern of monitoring occasions. Base stations may therefore lack flexibility in scheduling downlink messages for different UEs as well as in communicating multiple DCIs to the same UE.
Techniques and apparatuses described herein may provide increased flexibility for using multiple monitoring occasion patterns associated with a repetition level for downlink messages. The base station may therefore schedule communications to multiple UEs with different repetition levels and monitoring occasion patterns for those repetition levels in order to reduce interference. Additionally, the base station may schedule multiple communications to a UE with different repetition levels and monitoring occasion patterns for those repetition levels in order to reduce latency.
In an aspect of the disclosure, a method, a user equipment (UE) , a base station, an apparatus, and a computer program product are provided.
In some aspects, the method may by performed by a UE. The method may include monitoring, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and decoding at least one downlink control information (DCI) of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
In some aspects, the UE may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
In some aspects, the apparatus may include means for monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and means for decoding at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
In some aspects, the computer program product may include a non-transitory computer-readable medium storing one or more instructions. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to monitor, for one or more downlink communications, in a set of  monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
In some aspects, the method may by performed by a base station. The method may include transmitting, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmitting one or more downlink communications based at least in part on the set of monitoring occasions.
In some aspects, the base station may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to transmit, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit one or more downlink communications based at least in part on the set of monitoring occasions.
In some aspects, the apparatus may include means for transmitting, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition  level and the second repetition level; and means for transmitting one or more downlink communications based at least in part on the set of monitoring occasions.
In some aspects, the computer program product may include a non-transitory computer-readable medium storing one or more instructions. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to transmit, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit one or more downlink communications based at least in part on the set of monitoring occasions.
In some aspects, the method may by performed by a UE. The method may include monitoring for common DCI from a base station; and determining whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
In some aspects, the UE may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to monitor for common DCI from a base station; and determine whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
In some aspects, the apparatus may include means for monitoring for common DCI from a base station; and means for determining whether to monitor, for one or more  downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
In some aspects, the computer program product may include a non-transitory computer-readable medium storing one or more instructions. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
In some aspects, the method may by performed by a base station. The method may include generating a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmitting the common DCI to the UE.
In some aspects, the base station may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to generate a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit the common DCI to the UE.
In some aspects, the apparatus may include means for generating a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and means for transmitting the common DCI to the UE.
In some aspects, the computer program product may include a non-transitory computer-readable medium storing one or more instructions. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to generate a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and transmit the common DCI to the UE.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the  purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is diagram illustrating an example of a wireless communication network.
FIG. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless communication network.
FIG. 3 is a diagram illustrating an example of monitoring occasions for different inter-slot repetition levels associated with downlink communications.
FIG. 4 is a diagram illustrating an example of monitoring occasions for different intra-slot repetition levels associated with downlink communications.
FIG. 5 is a diagram illustrating an example of group-common downlink control information (DCI) that configures a UE to monitor different repetition levels associated with downlink communications.
FIG. 6 is a diagram illustrating an example of decoding DCI for different repetition levels associated with physical downlink CCH (PDCCH) messages.
FIG. 7 is a flowchart of a method of wireless communication performed by a UE.
FIG. 8 is a flowchart of a method of wireless communication performed by a base station.
FIG. 9 is a flowchart of another method of wireless communication performed by a UE.
FIG. 10 is a flowchart of another method of wireless communication performed by a base station.
FIG. 11 is a conceptual data flow diagram illustrating the data flow between different components in an example apparatus.
FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
FIG. 13 is a conceptual data flow diagram illustrating the data flow between different components in an example apparatus.
FIG. 14 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purposes of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media  includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including 5G technologies.
FIG. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a 5G BS, a Node B, a gNB, a 5G NB, an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple  (e.g., three) cells. The terms “eNB” , “base station” , “5G BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in FIG. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, etc. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment,  biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, 5G RAT networks may be deployed.
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example,  the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
Some UEs may operate using fewer antennas (e.g., fewer Rx antennas) and/or reduced bandwidth (e.g., operating in a 5MHz-20MHz range rather than a 100MHz bandwidth) in order to conserve battery power. Such UEs may include smart devices (such as smart watches, fitness trackers, and/or the like) , industrial sensors, video surveillance devices, and/or the like and may be referred to as reduced capacity UEs ( “Red-Cap UEs” ) and/or “NR-light UEs. ”
In order to compensate for reduced downlink capacity of UEs such as Red-Cap UEs, a base station may use repetitions of downlink messages, such as physical downlink control channel (PDCCH) messages, physical downlink shared channel (PDSCH) messages, and/or the like. For example, a base station may use a particular repetition level for PDCCH messages, PDSCH messages, and/or other downlink messages to increase the reliability of communications with the reduced capacity UEs. However, such repetition levels are generally associated with a single pattern of monitoring occasions. Base stations may therefore lack flexibility in scheduling downlink messages for different UEs as well as in communicating multiple DCIs to the same UE.
As indicated above, FIG. 1 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 1.
FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, may select a modulation and coding scheme (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE,  process (e.g., encode and modulate) the data for each UE based at least in part on the MCS selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the CRS) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine RSRP, RSSI, RSRQ, CQI, and/or the like.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264  may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform one or more techniques associated with monitoring occasions for different repetition levels associated with CCH messages, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of FIG. 2 may perform or direct operations of, for example, method 700 of FIG. 7, method 800 of FIG. 8, method 900 of FIG. 9, method 1000 of FIG. 10, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
As indicated above, FIG. 2 is provided merely as an example. Other examples may differ from what is described with regard to FIG. 2.
As described above, Red-Cap UEs and other UEs with reduced reception capabilities may experience an increase in reception reliability when a base station uses repetition for downlink communications, such as PDCCH messages. Techniques and apparatuses described herein may provide increased flexibility for using multiple monitoring occasion (MO) patterns associated with a repetition level for downlink messages. The base station may therefore schedule communications to multiple UEs with different repetition levels and MO patterns for those repetition levels to reduce interference on downlink communications. Additionally, the base station may  schedule multiple communications to a UE with different repetition levels and MO patterns for those repetition levels to reduce latency for the multiple communications.
FIG. 3 is a diagram illustrating an example 300 of MOs for different inter-slot repetition levels associated with downlink communications, in accordance with various aspects of the present disclosure. As shown in FIG. 3, a UE (e.g., UE 120 and/or the like) may monitor for one or more downlink communications in a set of MOs. Although the description below will focus on one or more PDCCH messages, the description equally applies to one or more other downlink communications to the UE 120.
As shown in FIG. 3, the set of MOs may correspond to a plurality of repetition levels configured for the UE 120. For example, the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level. For example, the first repetition level may be written as N1, and the second repetition level may be written as N2, where N2 > N1. Moreover, the third repetition level may be written as N3 and based at least in part on N1 and N2. For example, the third repetition level may be equal to N2 –N1.
As further shown in FIG. 3, the set of MOs includes a first subset 305 of consecutive MOs corresponding to the first repetition level and a second subset 310 of consecutive MOs corresponding to the third repetition level. The UE 120 may monitor for the one or more PDCCH messages by monitoring for a first subset of the one or more PDCCH messages corresponding to the first repetition level (N1) in the first subset 305 of consecutive MOs. In the example depicted in FIG. 3, N1 = 2, and the first subset 305 of consecutive MOs occupies two adjacent symbols in a first slot. As used herein, a “slot” may refer a portion of a radio frame within an LTE, 5G, or other wireless communication structure. Similarly, a “symbol” may refer to an orthogonal frequency-division multiplexing (OFDM) symbol or other similar symbol within a slot.
In some aspects, the UE 120 may further monitor for the one or more PDCCH messages by monitoring for a second subset of the one or more PDCCH messages corresponding to the second repetition level (N2) in the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs. In the example depicted in FIG. 3, N2 = 4, and the second subset 310 of consecutive MOs occupies two adjacent  symbols in a second slot. Accordingly, the UE 120 may monitor for the second subset of the one or more PDCCH messages corresponding to the second repetition level in the set 315 of MOs including both the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs.
In some aspects, the UE 120 may further monitor for the one or more PDCCH messages by monitoring for a third subset of the one or more PDCCH messages corresponding to the third repetition level in the second subset 310 of consecutive MOs. In the example depicted in FIG. 3, N3 = N2 –N1 = 2, and the second subset 310 of consecutive MOs occupies two adjacent symbols in the second slot, as described above.
Accordingly, in the example of FIG. 3, the third repetition level is equal to the first repetition level. As an alternative, the third repetition level may be less than the first repetition level. For example, N3 may be 1, and N1 may be 2 such that the first subset 305 of consecutive MOs includes two MOs, and the second subset 310 of consecutive MOs includes one MO. As an alternative, the third repetition level may be greater than the first repetition level. For example, N3 may be 3, and N1 may be 2 such that the first subset 305 of consecutive MOs includes two MOs, and the second subset 310 of consecutive MOs includes three MOs.
Additionally, or alternatively, the UE 120 may further monitor for the one or more PDCCH messages by monitoring for the first subset of the one or more PDCCH messages corresponding to the first repetition level and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level in a first portion of the first subset 305 of consecutive MOs and a second portion of the second subset 310 of consecutive MOs. In the example depicted in FIG. 3, the UE 120 may monitor the first or the second MO of the first subset 305 in combination with the first or the second MO of the second subset 310 for the first subset of the one or more PDCCH messages corresponding to the first repetition level (N1 = 2) and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level (N3 = 2) , as described above.
As further described above, in some aspects, N3 may be greater than N1. For example, N3 may be 3 (and N1 may be 2) such that the UE 120 may monitor a combination of the first and/or the second MO of the first subset 305 with the first, the second, and/or the third MO of the second subset 310 for the third subset of the one or more PDCCH messages corresponding to the third repetition level (N3 = 3) .  As an alternative, as described above, N1 may be greater than N3. For example, N1 may be 3 (and N3 may be 2) such that the UE 120 may monitor a combination of the first, the second, and/or the third MO of the first subset 305 with the first and/or the second MO of the second subset 310 for the first subset of the one or more PDCCH messages corresponding to the first repetition level (N1 = 3) .
In some aspects, the UE 120 may be preconfigured with the set of MOs. Additionally, or alternatively, the UE 120 may receive a configuration message (e.g., an RRC signal and/or the like) from a base station that indicates the set of MOs.
In some aspects, a gap between the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs may be a radio resource configured gap. For example, the gap may be configured by the configuration message from the base station. In some aspects, as shown in the example depicted in FIG. 3, the gap may span a slot such that the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs are within adjacent slots. For example, the first subset 305 of consecutive MOs are within a first slot, and the second subset 310 of consecutive MOs are within a second slot with the first slot and the second slot being adjacent, as shown in FIG. 3. In some aspects, the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs may be within non-adjacent slots. As an alternative, the first subset 305 of consecutive MOs and the second subset 310 of consecutive MOs may share a slot at least in part, as described below in connection with FIG. 4.
As further shown in FIG. 3, the first subset 305 of consecutive MOs may include adjacent symbols within a slot. For example, the MOs within the first subset 305 may be separated by the 0-symbol. Additionally, or alternatively, the second subset 310 of consecutive MOs may include adjacent symbols within a slot. For example, the MOs within the second subset 310 may be separated by the 0-symbol.
The base station may transmit the one or more PDCCH messages based at least in part on the set of MOs. Accordingly, based at least in part on monitoring for the one or more PDCCH messages in the set of MOs, the UE 120 may decode at least one DCI of the one or more PDCCH messages. By using MO patterns as described in connection with FIG. 3, the base station may transmit a plurality of DCI using different repetition levels in fewer slots and thus with less latency than using separate MO patterns for each repetition level.
As indicated above, FIG. 3 is provided as an example. Other examples may differ from what is described with respect to FIG. 3.
FIG. 4 is a diagram illustrating an example 400 of MOs for different intra-slot repetition levels associated with downlink communications, in accordance with various aspects of the present disclosure. As shown in FIG. 4, a UE (e.g., UE 120 and/or the like) may monitor for one or more downlink communications in a set of MOs. Although the description below will focus on PDCCH messages, the description equally applies to other downlink communications to the UE 120.
Similar to FIG. 3, FIG. 4 depicts a set of MOs that may correspond to a plurality of repetition levels configured for the UE 120. For example, the plurality of different repetition levels may include a first repetition level (N1) , a second repetition level (N2) that is greater than the first repetition level (N2 > N1) , and a third repetition level (N3) that is based at least in part on the first repetition level and the second repetition level (e.g., N2 –N1) . Although the description below will focus on three repetition levels, in some aspects, fewer repetition levels or additional repetition levels may be used.
As further shown in FIG. 4, the set of MOs includes a first subset 405 of consecutive MOs corresponding to the first repetition level and a second subset 410 of consecutive MOs corresponding to the third repetition level. The UE 120 may monitor for the one or more PDCCH messages by monitoring for a first subset of the one or more PDCCH messages corresponding to the first repetition level (N1) in the first subset 405 of consecutive MOs. Similar to FIG. 3, N1 = 2 in FIG. 4, and the first subset 405 of consecutive MOs occupies two adjacent symbols in a first slot.
Similar to FIG. 3, the UE 120 may further monitor for the one or more PDCCH messages by monitoring for a second subset of the one or more PDCCH messages corresponding to the second repetition level (N2) in the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs. Similar to FIG. 3, N2 = 4 in FIG. 4, and the second subset 410 of consecutive MOs occupies two adjacent symbols in a second slot. Accordingly, the UE 120 may monitor for the second subset of the one or more PDCCH messages corresponding to the second repetition level in the set 415 of MOs including both the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs.
As further depicted in FIG. 4, the UE 120 may further monitor for the one or more PDCCH messages by monitoring for the first subset of the one or more PDCCH  messages corresponding to the first repetition level and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level in a first portion of the first subset 405 of consecutive MOs and a second portion of the second subset 410 of consecutive MOs. In the example depicted in FIG. 4, the UE 120 may monitor a set 420 of MOs including the second MO of the first subset 405 in combination with the first MO of the second subset 410 for the first subset of the one or more PDCCH messages corresponding to the first repetition level (N1 = 2) and/or the third subset of the one or more PDCCH messages corresponding to the third repetition level (N3 = 2) , as described above.
Accordingly, similar to FIG. 3, the third repetition level is equal to the first repetition level in the example of FIG. 4. As an alternative, the third repetition level may be less than the first repetition level, or the third repetition level may be greater than the first repetition level.
In some aspects, the UE 120 may be preconfigured with the set of MOs. Additionally, or alternatively, the UE 120 may receive a configuration message (e.g., an RRC signal and/or the like) from a base station that indicates the set of MOs.
In some aspects, similar to FIG. 3, a gap between the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs may be a radio resource configured gap. For example, the gap may be configured by the configuration message from the base station. In some aspects, as shown in the example depicted in FIG. 4, the gap may include one or more symbols such that the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs are fully or at least partially within the same slot. As an alternative, and as described above in connection with FIG. 3, the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs may be in adjacent slots. In some aspects, the first subset 405 of consecutive MOs and the second subset 410 of consecutive MOs may be in non-adjacent slots.
As further shown in FIG. 4, the first subset 405 of consecutive MOs may include adjacent symbols within a slot. For example, the MOs within the first subset 405 may be separated by the 0-symbol. Additionally, or alternatively, the second subset 410 of consecutive MOs may include adjacent symbols within a slot. For example, the MOs within the second subset 410 may be separated by the 0-symbol.
The base station may transmit the one or more PDCCH messages based at least in part on the set of MOs. Accordingly, based at least in part on monitoring for the one or  more PDCCH messages in the set of MOs, the UE 120 may decode at least one DCI of the one or more PDCCH messages. For example, the UE 120 may monitor for the 1-symbol control-resource set (CORESET) or other similar symbol repeated according to the repetition levels. By using MO patterns as described in connection with FIG. 4, the base station may transmit a plurality of DCI using different repetition levels in fewer slots and thus with less latency than using separate MO patterns for each repetition level.
As indicated above, FIG. 4 is provided as an example. Other examples may differ from what is described with respect to FIG. 4.
FIG. 5 is a diagram illustrating an example 500 of group-common DCI (GC-DCI) 505 that configures a UE (e.g., UE 120 and/or the like) to monitor different repetition levels associated with downlink communications, in accordance with various aspects of the present disclosure. As shown in FIG. 5, the GC-DCI 505 may include one or more bits to activate or deactivate portions of MO patterns for different repetition levels for one or more downlink communications. Although the description below will focus on one or more PDCCH messages, the description equally applies to one or more other downlink communications to the UE 120.
As shown in FIG. 5, the common DCI 505 may configure the UE 120 to monitor, for the one or more PDCCH messages, in a set of MOs. As described above in connection with FIGS. 3-4, the set of MOs may correspond to a plurality of different repetition levels configured for the UE 120, the plurality of different repetition levels including a first repetition level (N1) , a second repetition level (N2) that is greater than the first repetition level (N2 > N1) , and a third repetition level (N3) that is based at least in part on the first repetition level and the second repetition level (e.g., N3 = N2 –N1) .
As further shown in FIG. 5, the common DCI 505 may include a plurality of indications corresponding to a plurality of UEs, where an indication is one or more bits that activate or reactive all or a portion of the set of MOs for a corresponding UE. The set of MOs may be preconfigured for the UEs and/or configured via an RRC signal or other configuration message from a base station.
In some aspects, the UE 120 may monitor for the common DCI 505 based on a cyclic redundancy check (CRC) . For example, as shown in FIG. 5, the CRC may include DCI scrambled by a radio network temporary identifier (RNTI) along with an offset index for mapping the indications to the corresponding to UEs.
In some aspects, the common DCI 505 configures the UE 120 to monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level, in a subset of consecutive MOs in the set of MOs. For example, as described above in connection with FIGS. 3-4, the common DCI 505 may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) . In some aspects, the common DCI 505 may trigger or otherwise configure the UE 120 to monitor the first subset of consecutive MOs. As an alternative, the UE 120 may be configured to monitor the first subset of consecutive MOs, and the common DCI 505 may deactivate other MOs (e.g., second subset 310, second subset 410, and/or the like) such that the UE 120 only monitors the first subset of consecutive MOs.
In some aspects, the common DCI 505 may configure the UE 120 to monitor, for a subset of the one or more PDCCH messages corresponding to the second repetition level, in a first subset of consecutive MOs in the set of monitoring occasions and a second subset of consecutive MOs in the set of monitoring occasions. For example, as described above in connection with FIGS. 3-4, the common DCI 505 may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) .
The common DCI 505 may configure the UE 120 to monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) as well as to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) . As an alternative, the UE 120 may already be configured to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) , and the common DCI 505 may trigger or otherwise configure the UE 120 to additionally monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) . As an alternative, the common DCI 505 may trigger or otherwise configure the UE 120 to monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH  messages corresponding to the second repetition level (N2) instead of monitoring the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
Additionally, or alternatively, the common DCI 505 may configure the UE 120 to monitor, for a subset of the one or more PDCCH messages corresponding to the third repetition level, in a subset of consecutive MOs in the set of monitoring occasions. For example, as described above in connection with FIGS. 3-4, the common DCI 505 may trigger the UE 120 to monitor a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
Additionally, or alternatively, the common DCI 505 may configure the UE to monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level, in a portion of a first subset of consecutive MOs in the set of MOs and in a portion of a second subset of consecutive MOs in the set of MOs. For example, as described above in connection with FIGS. 3-4, the common DCI 505 may trigger the UE 120 to monitor a portion of a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a portion of a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) . Additionally, or alternatively, the common DCI 505 may configure the UE to monitor, for a subset of the one or more PDCCH messages corresponding to the third repetition level, in a portion of a first subset of consecutive MOs in the set of MOs and in a portion of a second subset of consecutive MOs in the set of MOs. For example, as described above in connection with FIGS. 3-4, the common DCI 505 may trigger the UE 120 to monitor a portion of a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a portion of a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
As indicated above, FIG. 5 is provided as an example. Other examples may differ from what is described with respect to FIG. 5.
FIG. 6 is a diagram illustrating an example 600 of a signaling diagram between a base station 110 and a UE 120 configured for different repetition levels associated with one or more PDCCH messages, in accordance with various aspects of the present disclosure. Although the description below will focus on one or more PDCCH  messages, the description equally applies to one or more other downlink communications to the UE 120.
As shown in FIG. 6, and at 605, the base station 110 may transmit a GC-DCI or other common DCI signal to the UE 120. Accordingly, the UE 120 may monitor for the common DCI from the base station 110. In some aspects, the UE 120 may determine whether to monitor, for the one or more PDCCH messages, in a set of MOs, based at least in part on monitoring for the common DCI. As described above in connection with FIGS. 3-4, the set of MOs may correspond to a plurality of different repetition levels configured for the UE 120, the plurality of different repetition levels including a first repetition level (N1) , a second repetition level (N2) that is greater than the first repetition level (N2 > N1) , and a third repetition level (N3) that is based at least in part on the first repetition level and the second repetition level (e.g., N3 = N2 –N1) .
In some aspects, the UE 120 may receive the common DCI based at least in part on monitoring for the common DCI. The UE 120 may monitor for the one or more PDCCH messages based at least in part on information in the common DCI, as described above in connection with FIG. 5 and below in connection with reference number 615.
In some aspects, at 610, the UE 120 may transmit an acknowledgment message based at least in part on the UE 120 monitoring for the common DCI. In some aspects, the UE 120 may transmit the acknowledgment message to the base station 110 over an uplink control channel, such as a physical uplink CCH (PUCCH) resource and/or other uplink resource. For example, the uplink control channel may include a sequence-based control channel resource, such as a sequence-based PUCCH resource. In some aspects, the PUCCH resource may include a large repetition level (e.g., a maximum repetition level, such as 32 or greater) , a small payload (e.g., 1 bit, 2 bits, 4 bits, or the like) , and/or a large number of OFDM symbols (e.g., 14 OFDM symbols or greater) . When the UE 120 receives the common DCI, the acknowledgment message may be an ACK report or other message indicating that the UE 120 received the common DCI.
As an alternative, the UE 120 may receive no common DCI when monitoring for the common DCI. Accordingly, the acknowledgment message may be a NACK report or other message indicating that the UE 120 did not receive the common DCI.
In some aspects, when the UE 120 does not receive the common DCI, the UE 120 may still monitor, for a subset of the one or more PDCCH messages corresponding to  the first repetition level, in a subset of consecutive MOs in the set of MOs, based at least in part on receiving no common DCI. For example, as described above in connection with FIGS. 3-4, the UE 120 may still monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) even when the UE 120 does not receive the common DCI. As an alternative, the UE 120 may refrain from monitoring for the one or more PDCCH messages based at least in part on receiving no common DCI.
At 615, the base station 110 may transmit the one or more PDCCH messages based at least in part on the set of MOs, as described above. For example, as described above, the base station 110 may transmit the one or more PDCCH messages using the different repetition levels based at least in part on receiving an ACK report from the UE 120. In some aspects, the base station 110 may transmit the one or more PDCCH messages using only the first repetition level based at least in part on receiving a NACK report from the UE 120. As an alternative, the base station 110 may refrain from transmitting the one or more PDCCH messages based at least in part on receiving the NACK report from the UE 120.
In some aspects, the UE 120 may monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level, in a subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI. For example, as described above in connection with FIG. 5, the common DCI may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) . As an alternative, and as described above in connection with FIG. 5, the UE 120 may be configured to monitor the first subset of consecutive MOs, and the common DCI may deactivate other MOs (e.g., second subset 310, second subset 410, and/or the like) such that the UE 120 only monitors the first subset of consecutive MOs.
Additionally, or alternatively, the UE 120 may monitor, for a first subset of the one or more PDCCH messages corresponding to the first repetition level, in a first subset of consecutive MOs in the set of MOs and monitor, for a second subset of the one or more PDCCH messages corresponding to the second repetition level, in the first subset of consecutive MOs and a second subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI. For example, as described  above in connection with FIG. 5, the common DCI may trigger the UE 120 to monitor a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) as well as to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) . As an alternative, the UE 120 may already be configured to monitor the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) , and the common DCI may trigger or otherwise configure the UE 120 to additionally monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) . As an alternative, the common DCI may trigger the UE 120 to monitor the first subset of consecutive MOs and the second subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the second repetition level (N2) instead of monitoring the first subset of consecutive MOs for a subset of the one or more PDCCH messages corresponding to the first repetition level (N1) .
Additionally, or alternatively, the UE 120 may monitor, for a third subset of the one or more PDCCH messages corresponding to the third repetition level, in the second subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI. For example, the common DCI may trigger the UE 120 to monitor a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
Additionally, or alternatively, the UE 120 may monitor, for a subset of the one or more PDCCH messages corresponding to the first repetition level and/or a subset of the one or more PDCCH messages corresponding to the third repetition level, in a portion of a first subset of consecutive MOs in the set of MOs and in a portion of a second subset of consecutive MOs in the set of MOs, based at least in part on information in the common DCI. For example, as described above in connection with FIG. 5, the common DCI may trigger the UE 120 to monitor a portion of a first subset of consecutive MOs (e.g., first subset 305, first subset 405, and/or the like) and a portion of a second subset of consecutive MOs (e.g., second subset 310, second subset 410, and/or the like) for a subset of the one or more PDCCH messages corresponding  to the first repetition level (N1) and/or a subset of the one or more PDCCH messages corresponding to the third repetition level (N3) .
At 620, the UE 120 may decode at least one DCI of the one or more PDCCH messages based at least in part on monitoring, for the one or more PDCCH messages, in the set of MOs, as described above. In some aspects, the UE 120 may decode a plurality of DCI by monitoring the set of MOs corresponding to the different repetition levels. By using MO patterns as described in connection with FIG. 6, the UE 120 may decode a plurality of DCI using different repetition levels in fewer slots and thus with less latency than using separate MO patterns for each repetition level.
As indicated above, FIG. 6 is provided as an example. Other examples may differ from what is described with respect to FIG. 6.
FIG. 7 is a flowchart of a method 700 of wireless communication. The method may be performed by a UE (e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like) .
At 710, the UE may receive a configuration message that indicates a set of MOs corresponding to a plurality of different repetition levels. For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may receive the configuration message that indicates the set of MOs, as described above. In some aspects, the set of MOs corresponds to a plurality of different repetition levels configured for the UE. For example, the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
At 720, the UE may monitor, for one or more downlink communications, in the set of MOs. For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may monitor for the one or more downlink communications in the set of MOs, as described above. In some aspects, the one or more downlink communications may include one or more PDCCH messages.
At 730, the UE may decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of MOs. For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may decode the at least one DCI of the one or more downlink  communications, as described above. In some aspects, the at least one DCI may include a plurality of DCI associated with the different repetition levels.
Method 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the third repetition level is equal to the first repetition level.
In a second aspect, alone or in combination with the first aspect, the set of monitoring occasions includes a first subset of consecutive monitoring occasions corresponding to the first repetition level and a second subset of consecutive monitoring occasions corresponding to the third repetition level, and monitoring for the one or more downlink communications comprises monitoring for a first subset of the one or more downlink communications corresponding to the first repetition level in the first subset of consecutive monitoring occasions.
In a third aspect, alone or in combination with one or more of the first and second aspects, monitoring for the one or more downlink communications further comprises monitoring for a second subset of the one or more downlink communications corresponding to the second repetition level in the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, monitoring for the one or more downlink communications further comprises monitoring for a third subset of the one or more downlink communications corresponding to the third repetition level in the second subset of consecutive monitoring occasions.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of  consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, a gap between the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions is a radio resource configured gap.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first subset of consecutive monitoring occasions includes adjacent symbols within a slot.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the first subset of consecutive monitoring occasions are within a first slot, the second subset of consecutive monitoring occasions are within a second slot, and the first slot and the second slot are adjacent slots.
Although FIG. 7 shows example blocks of method 700, in some aspects, method 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 7. Additionally, or alternatively, two or more of the blocks of method 700 may be performed in parallel.
FIG. 8 is a flowchart of a method 800 of wireless communication. The method may be performed by a base station (e.g., the base station 110 of FIG. 1, the apparatus 1302/1302′, and/or the like) .
At 810, the base station may transmit a configuration message that indicates a set of MOs corresponding to a plurality of different repetition levels. For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit, to a UE (e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like) , the configuration message that indicates the set of MOs corresponding to the plurality of different repetition levels, as described above. In some aspects, the set of MOs corresponds to a plurality of different repetition levels configured for the UE. For example, the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
At 820, the base station may receive an acknowledgment message based at least in part on transmitting the configuration message. For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may receive, from the UE, the acknowledgment message, as described above. In  some aspects, the base station may receive the acknowledgment message on an uplink control channel. For example, the uplink control channel may use a PUCCH resource.
At 830, the base station may transmit one or more downlink communications based at least in part on the set of MOs. For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit, to the UE, the one or more downlink communications, as described above. In some aspects, the base station may transmit at least one DCI using the one or more downlink communications. In some aspects, the at least one DCI may include a plurality of DCI associated with the different repetition levels.
Method 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the third repetition level is equal to the first repetition level.
In a second aspect, alone or in combination with the first aspect, the set of monitoring occasions includes a first subset of consecutive monitoring occasions corresponding to the first repetition level and a second subset of consecutive monitoring occasions corresponding to the third repetition level, and transmitting the one or more downlink communications comprises transmitting a first subset of the one or more downlink communications corresponding to the first repetition level in the first subset of consecutive monitoring occasions.
In a third aspect, alone or in combination with one or more of the first and second aspects, transmitting the one or more downlink communications further comprises transmitting a second subset of the one or more downlink communications corresponding to the second repetition level in the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, transmitting the one or more downlink communications further comprises transmitting a third subset of the one or more downlink communications corresponding to the third repetition level in the second subset of consecutive monitoring occasions.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, transmitting the one or more downlink communications further comprises transmitting the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of  consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, transmitting the one or more downlink communications further comprises transmitting the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, a gap between the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions is a radio resource configured gap.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first subset of consecutive monitoring occasions includes adjacent symbols within a slot.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the first subset of consecutive monitoring occasions are within a first slot, the second subset of consecutive monitoring occasions are within a second slot, and the first slot and the second slot are adjacent slots.
Although FIG. 8 shows example blocks of method 800, in some aspects, method 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 8. Additionally, or alternatively, two or more of the blocks of method 800 may be performed in parallel.
FIG. 9 is a flowchart of a method 900 of wireless communication. The method may be performed by a UE (e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like) .
At 910, the UE may monitor for common DCI from a base station. For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may monitor for the common DCI, as described above. In some aspects, UE may transmit an acknowledgment message based at least in part on monitoring for the common DCI. For example, the UE may transmit an ACK report or a NACK report based at least in part on whether the UE receives the common DCI.
At 920, the UE may determine whether to monitor, for one or more downlink communications, in a set of MOs corresponding to a plurality of different repetition  levels, based at least in part on monitoring for the common DCI. For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine whether to monitor for the one or more downlink communications in the set of MOs, as described above. In some aspects, the set of MOs corresponds to the plurality of different repetition levels configured for the UE. For example, the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
At 930, the UE may monitor, for the one or more downlink communications, in the set of MOs based at least in part on determining whether to monitor. For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may monitor for the one or more downlink communications in the set of MOs, as described above. In some aspects, the UE may decode at least one DCI based at least in part on monitoring for the one or more downlink communications. For example, the at least one DCI may include a plurality of DCI associated with the different repetition levels.
Method 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, method 900 further includes receiving the common DCI based at least in part on monitoring for the common DCI.
In a second aspect, alone or in combination with the first aspect, determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
In a third aspect, alone or in combination with one or more of the first and second aspects, determining whether to monitor for the one or more downlink communications comprises: monitoring, for a first subset of the one or more downlink communications corresponding to the first repetition level, in a first subset of  consecutive monitoring occasions in the set of monitoring occasions; monitoring, for a second subset of the one or more downlink communications corresponding to the second repetition level, in the first subset of consecutive monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the first subset of the one or more downlink communications and monitoring for the second subset of the one or more downlink communications.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, determining whether to monitor for the one or more downlink communications further comprises: monitoring, for a third subset of the one or more downlink communications corresponding to the third repetition level, in the second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the third subset of the one or more downlink communications.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the second repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the subset of the one or more downlink communications.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a portion of a first subset of consecutive monitoring occasions in the set of monitoring occasions and a portion of a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the subset of the one or more downlink communications.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, method 900 further includes receiving no common DCI when monitoring for the common DCI, and determining whether to monitor for the one or more downlink communications comprises: monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on receiving no common DCI; and decoding at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, method 900 further includes receiving no common DCI when monitoring for the common DCI, and determining whether to monitor for the one or more downlink communications comprises refraining from monitoring for the one or more downlink communications based at least in part on receiving no common DCI.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, method 900 further includes reporting, to the base station and over an uplink control channel, an acknowledgment message based at least in part on monitoring for the common DCI.
In a tenth aspects, alone or in combination with one or more of the first through ninth aspects, the uplink control channel includes a sequence-based control channel resource.
Although FIG. 9 shows example blocks of method 900, in some aspects, method 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 9. Additionally, or alternatively, two or more of the blocks of method 900 may be performed in parallel.
FIG. 10 is a flowchart of a method 1000 of wireless communication. The method may be performed by a base station (e.g., the base station 110 of FIG. 1, the apparatus 1302/1302′, and/or the like) .
At 1010, the base station may generate a common DCI that configures a UE (e.g., the UE 120 of FIG. 1, the apparatus 1102/1102′, and/or the like) to monitor, for one or more downlink communications, in a set of MOs corresponding to a plurality of different repetition levels. For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may generate the common DCI, as described above. In some aspects, the set of MOs corresponds to a  plurality of different repetition levels configured for the UE. For example, the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
At 1020, the base station may transmit the common DCI to the UE. For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit, from the UE, the common DCI, as described above. In some aspects, the base station may receive an acknowledgment message based at least in part on transmitting the common DCI, from the UE, on an uplink control channel. For example, the uplink control channel may use a PUCCH resource.
At 1030, the base station may transmit one or more downlink communications to the UE based at least in part on the set of MOs. For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit, to the UE, the one or more downlink communications, as described above. In some aspects, the base station may transmit at least one DCI using the one or more downlink communications. In some aspects, the at least one DCI may include a plurality of DCI associated with the different repetition levels.
Method 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions.
In a second aspect, alone or in combination with the first aspect, the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the second repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions.
In a third aspect, alone or in combination with one or more of the first and second aspects, the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the third repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a portion of a first subset of consecutive monitoring occasions in the set of monitoring occasions and a portion of a second subset of consecutive monitoring occasions in the set of monitoring occasions.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, method 1000 further includes receiving, from the UE and over an uplink control channel, an acknowledgment message based at least in part on the UE monitoring for the common DCI.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the uplink control channel includes a sequence-based control channel resource.
Although FIG. 10 shows example blocks of method 1000, in some aspects, method 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in FIG. 10. Additionally, or alternatively, two or more of the blocks of method 1000 may be performed in parallel.
FIG. 11 is a conceptual data flow diagram 1100 illustrating the data flow between different components in an example apparatus 1102. The apparatus 1102 may be a UE (e.g., UE 120) . In some aspects, the apparatus 1102 includes a reception component 1104, a decoding component 1106, and/or a transmission component 1108.
In some aspects, the reception component 1104 may receive (e.g., from an apparatus 1150, such as base station 110 and/or the like) a configuration message that indicates a set of MOs. In some aspects, the set of MOs may correspond to a plurality of different repetition levels configured for the apparatus 1102. For example, the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level. Additionally, or alternatively, the reception component 1104 may receive (e.g., from an apparatus 1150, such as base station 110 and/or the like) common DCI that configures the apparatus 1102 to monitor, for one or more downlink communications, in the set of MOs.
In some aspects, the transmission component 1108 may transmit (e.g., to an apparatus 1150, such as base station 110 and/or the like) an acknowledgment message based at least in part on whether the reception component 1104 received the configuration message and/or the common DCI. For example, the transmission component 1108 may transmit an ACK report or a NACK report on an uplink control channel (e.g., a PUCCH channel) to the apparatus 1150, such as base station 110 and/or the like.
In some aspects, the reception component 1104 may monitor, for the one or more downlink communications, in the set of MOs. For example, the reception component 1104 may determine whether to monitor, for the one or more downlink communications, in a set of MOs, based at least in part on information in the configuration message and/or the common DCI. The reception component 1104 may monitor for the one or more downlink communications from the apparatus 1150, such as base station 110 and/or the like.
In some aspects, the decoding component 1106 may decode at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of MOs. For example, the decoding component 1106 may decode different DCI corresponding to the different repetition levels.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned method 700 of FIG. 7, method 900 of FIG. 9, and/or the like. Each block in the aforementioned method 700 of FIG. 7, method 900 of FIG. 9, and/or the like may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
The number and arrangement of components shown in FIG. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in FIG. 11. Furthermore, two or more components shown in FIG. 11 may be implemented within a single component, or a single component shown in FIG. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in FIG. 11 may perform one or  more functions described as being performed by another set of components shown in FIG. 11.
FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1202' employing a processing system 1202. The apparatus 1202' may be a UE (e.g., UE 120) .
The processing system 1202 may be implemented with a bus architecture, represented generally by the bus 1204. The bus 1204 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1202 and the overall design constraints. The bus 1204 links together various circuits including one or more processors and/or hardware components, represented by the processor 1206, the  components  1104, 1106, and/or 1108, and the computer-readable medium /memory 1208. The bus 1204 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
The processing system 1202 may be coupled to a transceiver 1210. The transceiver 1210 is coupled to one or more antennas 1212. The transceiver 1210 provides a means for communicating with various other apparatuses over a transmission medium. The transceiver 1210 receives a signal from the one or more antennas 1212, extracts information from the received signal, and provides the extracted information to the processing system 1202, specifically the reception component 1104. In addition, the transceiver 1210 receives information from the processing system 1202, specifically the transmission component 1108, and based at least in part on the received information, generates a signal to be applied to the one or more antennas 1212. The processing system 1202 includes a processor 1206 coupled to a computer-readable medium /memory 1208. The processor 1206 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1208. The software, when executed by the processor 1206, causes the processing system 1202 to perform the various functions described herein for any particular apparatus. The computer-readable medium /memory 1208 may also be used for storing data that is manipulated by the processor 1206 when executing software. The processing system further includes at least one of the  components  1104, 1106, and/or 1108. The components may be software modules running in the processor 1206, resident/stored in the computer readable medium /memory 1208, one or more hardware modules coupled to the processor 1206, or some combination  thereof. The processing system 1202 may be a component of the UE 120 and may include the memory 282 and/or at least one of the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280.
In some aspects, the apparatus 1102/1102' for wireless communication includes means for monitoring, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; means for decoding at least one DCI of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions; means for monitoring for common DCI from a base station; means for determining whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and/or the like. The aforementioned means may be one or more of the aforementioned components of the apparatus 1102 and/or the processing system 1202 of the apparatus 1102' configured to perform the functions recited by the aforementioned means. As described elsewhere herein, the processing system 1202 may include the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280. In one configuration, the aforementioned means may be the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280 configured to perform the functions and/or operations recited herein.
FIG. 12 is provided as an example. Other examples may differ from what is described in connection with FIG. 12.
FIG. 13 is a conceptual data flow diagram 1300 illustrating the data flow between different components in an example apparatus 1302. The apparatus 1302 may be a base station (e.g., base station 110) . In some aspects, the apparatus 1302 includes a  reception component 1304, a repetition component 1306, and/or a transmission component 1308.
In some aspects, the transmission component 1308 may transmit (e.g., to an apparatus 1350, such as UE 120 and/or the like) a configuration message that indicates a set of MOs. In some aspects, the set of MOs may correspond to a plurality of different repetition levels configured for the apparatus 1350. For example, the plurality of different repetition levels may include a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level. Additionally, or alternatively, the transmission component 1308 may transmit (e.g., to an apparatus 1150, such as UE 120 and/or the like) common DCI that configures the apparatus 1350 to monitor, for one or more downlink communications, in the set of MOs.
In some aspects, the reception component 1304 may receive (e.g., from an apparatus 1350, such as UE 120 and/or the like) an acknowledgment message based at least in part on whether the apparatus 1350 received the configuration message and/or the common DCI. For example, the reception component 1304 may receive an ACK report or a NACK report on an uplink control channel (e.g., a PUCCH channel) from the apparatus 1350, such as UE 120 and/or the like.
In some aspects, the repetition component 1306 may determine one or more repetition levels of the plurality of repetition levels for transmitting based at least in part on transmitting the configuration message and/or the common DCI. In some aspects, the repetition component 1306 may determine the one or more repetition levels further based at least in part on whether the reception component 1304 received an ACK report or a NACK report, as described above.
In some aspects, the transmission component 1308 may transmit one or more downlink communications based at least in part on the set of MOs. For example, the transmission component 1308 may transmit the one or more downlink communications according to one or more repetition levels determined by the repetition component 1306, as described above. The transmission component 1308 may transmit the one or more downlink communications to the apparatus 1350, such as UE 120 and/or the like.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned method 800 of FIG. 8, method 1000 of FIG. 10, and/or the like. Each block in the aforementioned method 800 of FIG. 8, method 1000  of FIG. 10, and/or the like may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
The number and arrangement of components shown in FIG. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in FIG. 13. Furthermore, two or more components shown in FIG. 13 may be implemented within a single component, or a single component shown in FIG. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in FIG. 13 may perform one or more functions described as being performed by another set of components shown in FIG. 13.
FIG. 14 is a diagram 1400 illustrating an example of a hardware implementation for an apparatus 1302' employing a processing system 1402. The apparatus 1302' may be a base station (e.g., base station 110) .
The processing system 1402 may be implemented with a bus architecture, represented generally by the bus 1404. The bus 1404 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1402 and the overall design constraints. The bus 1404 links together various circuits including one or more processors and/or hardware components, represented by the processor 1406, the  components  1304, 1306, and/or 1308, and the computer-readable medium /memory 1408. The bus 1404 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
The processing system 1402 may be coupled to a transceiver 1410. The transceiver 1410 is coupled to one or more antennas 1412. The transceiver 1410 provides a means for communicating with various other apparatuses over a transmission medium. The transceiver 1410 receives a signal from the one or more antennas 1412, extracts information from the received signal, and provides the extracted information to the processing system 1402, specifically the reception component 1304. In addition, the transceiver 1410 receives information from the processing system 1402, specifically  the transmission component 1308, and based at least in part on the received information, generates a signal to be applied to the one or more antennas 1412. The processing system 1402 includes a processor 1406 coupled to a computer-readable medium /memory 1408. The processor 1406 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1408. The software, when executed by the processor 1406, causes the processing system 1402 to perform the various functions described herein for any particular apparatus. The computer-readable medium /memory 1408 may also be used for storing data that is manipulated by the processor 1406 when executing software. The processing system further includes at least one of the  components  1304, 1306, and/or 1308. The components may be software modules running in the processor 1406, resident/stored in the computer readable medium /memory 1408, one or more hardware modules coupled to the processor 1406, or some combination thereof. The processing system 1402 may be a component of the base station 110 and may include the memory 242 and/or at least one of the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240.
In some aspects, the apparatus 1302/1302' for wireless communication includes means for transmitting, to a UE, a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; means for transmitting one or more downlink communications based at least in part on the set of monitoring occasions; means for generating a common DCI that configures a UE to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; means for transmitting the common DCI to the UE; and/or the like. The aforementioned means may be one or more of the aforementioned components of the apparatus 1302 and/or the processing system 1402 of the apparatus 1302' configured to perform the functions recited by the  aforementioned means. As described elsewhere herein, the processing system 1402 may include the TX MIMO processor 230, the receive processor 238, and/or the controller/processor 240. In one configuration, the aforementioned means may be the TX MIMO processor 230, the receive processor 238, and/or the controller/processor 240 configured to perform the functions and/or operations recited herein.
FIG. 14 is provided as an example. Other examples may differ from what is described in connection with FIG. 14.
It should be understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are  intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (60)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    monitoring, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    decoding at least one downlink control information (DCI) of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  2. The method of claim 1, wherein the third repetition level is equal to the first repetition level.
  3. The method of claim 1, wherein the set of monitoring occasions includes a first subset of consecutive monitoring occasions corresponding to the first repetition level and a second subset of consecutive monitoring occasions corresponding to the third repetition level, and wherein monitoring for the one or more downlink communications comprises monitoring for a first subset of the one or more downlink communications corresponding to the first repetition level in the first subset of consecutive monitoring occasions.
  4. The method of claim 3, wherein monitoring for the one or more downlink communications further comprises monitoring for a second subset of the one or more downlink communications corresponding to the second repetition level in the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions.
  5. The method of claim 4, wherein monitoring for the one or more downlink communications further comprises monitoring for a third subset of the one or more downlink communications corresponding to the third repetition level in the second subset of consecutive monitoring occasions.
  6. The method of claim 5, wherein monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  7. The method of claim 4, wherein monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  8. The method of claim 3, wherein a gap between the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions is a radio resource configured gap.
  9. The method of claim 3, wherein the first subset of consecutive monitoring occasions includes adjacent symbols within a slot.
  10. The method of claim 3, wherein the first subset of consecutive monitoring occasions are within a first slot, the second subset of consecutive monitoring occasions are within a second slot, and the first slot and the second slot are adjacent slots.
  11. A method of wireless communication performed by a base station, comprising:
    transmitting, to a user equipment (UE) , a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    transmitting one or more downlink communications based at least in part on the set of monitoring occasions.
  12. The method of claim 11, wherein the third repetition level is equal to the first repetition level.
  13. The method of claim 11, wherein the set of monitoring occasions includes a first subset of consecutive monitoring occasions corresponding to the first repetition level and a second subset of consecutive monitoring occasions corresponding to the third repetition level, and wherein transmitting the one or more downlink communications comprises transmitting a first subset of the one or more downlink communications corresponding to the first repetition level in the first subset of consecutive monitoring occasions.
  14. The method of claim 13, wherein transmitting the one or more downlink communications further comprises transmitting a second subset of the one or more downlink communications corresponding to the second repetition level in the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions.
  15. The method of claim 14, wherein transmitting the one or more downlink communications further comprises transmitting a third subset of the one or more downlink communications corresponding to the third repetition level in the second subset of consecutive monitoring occasions.
  16. The method of claim 15, wherein transmitting the one or more downlink communications further comprises transmitting the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  17. The method of claim 14, wherein transmitting the one or more downlink communications further comprises transmitting the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  18. The method of claim 13, wherein a gap between the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions is a radio resource configured gap.
  19. The method of claim 13, wherein the first subset of consecutive monitoring occasions include adjacent symbols within a slot.
  20. The method of claim 13, wherein the first subset of consecutive monitoring occasions are within a first slot, the second subset of consecutive monitoring occasions are within a second slot, and the first slot and the second slot are adjacent slots.
  21. A method of wireless communication performed by a user equipment (UE) , comprising:
    monitoring for common downlink control information (DCI) from a base station; and
    determining whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  22. The method of claim 21, further comprising:
    receiving the common DCI based at least in part on monitoring for the common DCI.
  23. The method of claim 22, wherein determining whether to monitor for the one or more downlink communications comprises:
    monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decoding at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
  24. The method of claim 22, wherein determining whether to monitor for the one or more downlink communications comprises:
    monitoring, for a first subset of the one or more downlink communications corresponding to the first repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions;
    monitoring, for a second subset of the one or more downlink communications corresponding to the second repetition level, in the first subset of consecutive monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the first subset of the one or more downlink communications and monitoring for the second subset of the one or more downlink communications.
  25. The method of claim 24, wherein determining whether to monitor for the one or more downlink communications further comprises:
    monitoring, for a third subset of the one or more downlink communications corresponding to the third repetition level, in the second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the third subset of the one or more downlink communications.
  26. The method of claim 22, wherein determining whether to monitor for the one or more downlink communications comprises:
    monitoring, for a subset of the one or more downlink communications corresponding to the second repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions and a second subset of consecutive  monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the subset of the one or more downlink communications.
  27. The method of claim 22, wherein determining whether to monitor for the one or more downlink communications comprises:
    monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a portion of a first subset of consecutive monitoring occasions in the set of monitoring occasions and a portion of a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decoding at least one DCI in the one or more downlink communications based at least in part on monitoring for the subset of the one or more downlink communications.
  28. The method of claim 21, further comprising:
    receiving no common DCI when monitoring for the common DCI,
    wherein determining whether to monitor for the one or more downlink communications comprises:
    monitoring, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on receiving no common DCI; and
    decoding at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
  29. The method of claim 21, further comprising:
    receiving no common DCI when monitoring for the common DCI,
    wherein determining whether to monitor for the one or more downlink communications comprises refraining from monitoring for the one or more downlink communications based at least in part on receiving no common DCI.
  30. The method of claim 21, further comprising:
    transmitting, to the base station and over an uplink control channel, an acknowledgment message based at least in part on monitoring for the common DCI.
  31. The method of claim 30, wherein the uplink control channel includes a sequence-based control channel resource.
  32. A method of wireless communication performed by a base station, comprising:
    generating a common downlink control information (DCI) that configures a user equipment (UE) to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    transmitting the common DCI to the UE.
  33. The method of claim 32, wherein the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions.
  34. The method of claim 32, wherein the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the second repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions.
  35. The method of claim 32, wherein the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the third repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI.
  36. The method of claim 32, wherein the common DCI configures the UE to monitor, for a subset of the one or more downlink communications corresponding to the  first repetition level, in a portion of a first subset of consecutive monitoring occasions in the set of monitoring occasions and a portion of a second subset of consecutive monitoring occasions in the set of monitoring occasions.
  37. The method of claim 32, further comprising:
    receiving, from the UE and over an uplink control channel, an acknowledgment message based at least in part on the UE monitoring for the common DCI.
  38. The method of claim 37, wherein the uplink control channel includes a sequence-based control channel resource.
  39. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    decode at least one downlink control information (DCI) of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  40. The UE of claim 39, wherein the set of monitoring occasions includes a first subset of consecutive monitoring occasions corresponding to the first repetition level and a second subset of consecutive monitoring occasions corresponding to the third repetition level, and wherein monitoring for the one or more downlink communications comprises monitoring for a first subset of the one or more downlink communications corresponding to the first repetition level in the first subset of consecutive monitoring occasions.
  41. The UE of claim 40, wherein monitoring for the one or more downlink communications further comprises monitoring for a second subset of the one or more downlink communications corresponding to the second repetition level in the first subset of consecutive monitoring occasions and the second subset of consecutive monitoring occasions.
  42. The UE of claim 41, wherein monitoring for the one or more downlink communications further comprises monitoring for a third subset of the one or more downlink communications corresponding to the third repetition level in the second subset of consecutive monitoring occasions.
  43. The UE of claim 42, wherein monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  44. The UE of claim 41, wherein monitoring for the one or more downlink communications further comprises monitoring for the first subset of the one or more downlink communications corresponding to the first repetition level in a first portion of the first subset of consecutive monitoring occasions and a second portion of the second subset of consecutive monitoring occasions.
  45. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit, to a user equipment (UE) , a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    transmit one or more downlink communications based at least in part on the set of monitoring occasions.
  46. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    monitor for common downlink control information (DCI) from a base station; and
    determine whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  47. The UE of claim 46, wherein determining whether to monitor for the one or more downlink communications comprises:
    monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decode at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
  48. The UE of claim 46, wherein determining whether to monitor for the one or more downlink communications comprises:
    monitor, for a first subset of the one or more downlink communications corresponding to the first repetition level, in a first subset of consecutive monitoring occasions in the set of monitoring occasions;
    monitor, for a second subset of the one or more downlink communications corresponding to the second repetition level, in the first subset of consecutive monitoring occasions and a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decode at least one DCI in the one or more downlink communications based at least in part on monitoring for the first subset of the one or more downlink communications and monitoring for the second subset of the one or more downlink communications.
  49. The UE of claim 48, wherein determining whether to monitor for the one or more downlink communications wherein the one or more processors are further configured to:
    monitor, for a third subset of the one or more downlink communications corresponding to the third repetition level, in the second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decode at least one DCI in the one or more downlink communications based at least in part on monitoring for the third subset of the one or more downlink communications.
  50. The UE of claim 46, wherein determining whether to monitor for the one or more downlink communications comprises:
    monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a portion of a first subset of consecutive monitoring occasions in the set of monitoring occasions and a portion of a second subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on information in the common DCI; and
    decode at least one DCI in the one or more downlink communications based at least in part on monitoring for the subset of the one or more downlink communications.
  51. The UE of claim 46, wherein the one or more processors are further configured to:
    receive no common DCI when monitoring for the common DCI,
    wherein determining whether to monitor for the one or more downlink communications comprises:
    monitor, for a subset of the one or more downlink communications corresponding to the first repetition level, in a subset of consecutive monitoring occasions in the set of monitoring occasions, based at least in part on receiving no common DCI; and
    decode at least one DCI in the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the subset of consecutive monitoring occasions.
  52. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    generate a common downlink control information (DCI) that configures a user equipment (UE) to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    transmit the common DCI to the UE.
  53. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition  level that is based at least in part on the first repetition level and the second repetition level; and
    decode at least one downlink control information (DCI) of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  54. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    transmit, to a user equipment (UE) , a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    transmit one or more downlink communications based at least in part on the set of monitoring occasions.
  55. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    monitor for common downlink control information (DCI) from a base station; and
    determine whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  56. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    generate a common downlink control information (DCI) that configures a user equipment (UE) to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    transmit the common DCI to the UE.
  57. An apparatus for wireless communication, comprising:
    means for monitoring, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    means for decoding at least one downlink control information (DCI) of the one or more downlink communications based at least in part on monitoring, for the one or more downlink communications, in the set of monitoring occasions.
  58. An apparatus for wireless communication, comprising:
    means for transmitting, to a user equipment (UE) , a configuration message that indicates a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    means for transmitting one or more downlink communications based at least in part on the set of monitoring occasions.
  59. An apparatus for wireless communication, comprising:
    means for monitoring for common downlink control information (DCI) from a base station; and
    means for determining whether to monitor, for one or more downlink communications, in a set of monitoring occasions, based at least in part on monitoring for the common DCI, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the apparatus, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level.
  60. An apparatus for wireless communication, comprising:
    means for generating a common downlink control information (DCI) that configures a user equipment (UE) to monitor, for one or more downlink communications, in a set of monitoring occasions, wherein the set of monitoring occasions corresponds to a plurality of different repetition levels configured for the UE, and wherein the plurality of different repetition levels includes a first repetition level, a second repetition level that is greater than the first repetition level, and a third repetition level that is based at least in part on the first repetition level and the second repetition level; and
    means for transmitting the common DCI to the UE.
PCT/CN2020/090167 2020-05-14 2020-05-14 Monitoring occasions for repetition levels associated with control channel messages WO2021226911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090167 WO2021226911A1 (en) 2020-05-14 2020-05-14 Monitoring occasions for repetition levels associated with control channel messages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090167 WO2021226911A1 (en) 2020-05-14 2020-05-14 Monitoring occasions for repetition levels associated with control channel messages

Publications (1)

Publication Number Publication Date
WO2021226911A1 true WO2021226911A1 (en) 2021-11-18

Family

ID=78526196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090167 WO2021226911A1 (en) 2020-05-14 2020-05-14 Monitoring occasions for repetition levels associated with control channel messages

Country Status (1)

Country Link
WO (1) WO2021226911A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165508A (en) * 2014-01-27 2016-11-23 松下电器(美国)知识产权公司 Wireless communications method, enode b and subscriber equipment
US20190182807A1 (en) * 2018-02-16 2019-06-13 Intel Corporation Reliability mechanisms for physical downlink control channel (pdcch) transmissions in new radio (nr) systems
WO2020006416A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Pdcch with repetition
WO2020033647A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Reliability enhancement in downlink communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165508A (en) * 2014-01-27 2016-11-23 松下电器(美国)知识产权公司 Wireless communications method, enode b and subscriber equipment
US20190182807A1 (en) * 2018-02-16 2019-06-13 Intel Corporation Reliability mechanisms for physical downlink control channel (pdcch) transmissions in new radio (nr) systems
WO2020006416A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Pdcch with repetition
WO2020033647A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Reliability enhancement in downlink communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE ET AL.: "3GPP TSG RAN WG1 Meeting #92,R1-1801633,", DISCUSSION OF PDCCH REPETITION,, 2 March 2018 (2018-03-02), XP051396976 *

Similar Documents

Publication Publication Date Title
US10848209B2 (en) Sounding reference signal (SRS) switching capability and configuration
US10903942B2 (en) Synchronization signal block and downlink channel multiplexing
US11812449B2 (en) Active beam management, configuration, and capability signaling
US11882590B2 (en) Techniques and apparatuses for multiple types of physical random access channel (PRACH) transmission utilization
US11006415B2 (en) Channel list signaling
US11653231B2 (en) Joint beam failure detection
EP3646626B1 (en) Techniques and apparatuses for communication relay discovery
US11516823B2 (en) EMTC coexistence between radio access technologies
WO2021042360A1 (en) Wakeup signal based beam management
WO2021174432A1 (en) Bandwidth part mapping for control and data channels
WO2021120082A1 (en) Spatial relation update across multiple component carriers
WO2021226911A1 (en) Monitoring occasions for repetition levels associated with control channel messages
CA3129431A1 (en) Gap configuration for multiple transport blocks
US11582829B2 (en) Preconfigured uplink resource release counter management
WO2023023928A1 (en) Transmission configuration indicator state selection without indication
US20230006788A1 (en) Device-to-device periodic signal configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935220

Country of ref document: EP

Kind code of ref document: A1