WO2021226793A1 - Low-latency transmit for rolling comments - Google Patents

Low-latency transmit for rolling comments Download PDF

Info

Publication number
WO2021226793A1
WO2021226793A1 PCT/CN2020/089625 CN2020089625W WO2021226793A1 WO 2021226793 A1 WO2021226793 A1 WO 2021226793A1 CN 2020089625 W CN2020089625 W CN 2020089625W WO 2021226793 A1 WO2021226793 A1 WO 2021226793A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
comment
network entity
real
random access
Prior art date
Application number
PCT/CN2020/089625
Other languages
French (fr)
Inventor
Yiqing Cao
Yan Li
Zhimin Du
Thomas Stockhammer
Lu Gao
Bin Han
Ting Wang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/089625 priority Critical patent/WO2021226793A1/en
Publication of WO2021226793A1 publication Critical patent/WO2021226793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • H04L51/046Interoperability with other network applications or services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • This application relates to wireless communication systems, and more particularly to providing low-latency transmissions for rolling comments in real-time streaming content broadcast.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long term evolution
  • NR next generation new radio
  • 5G 5 th Generation
  • LTE long term evolution
  • NR next generation new radio
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands.
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum.
  • Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services.
  • Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • the advancements in NR technologies may enable deployments of new applications and services and/or enhancements to existing applications and services, such as mobile broadcast services.
  • a method of wireless communication including receiving, by a first network entity from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; determining, by the first network entity, at least one of a latency or a reliability based on the user ID; transmitting, by the first network entity to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and receiving, by the first network entity from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  • UE user equipment
  • ID user identifier
  • a method of wireless communication including receiving, by a user equipment (UE) from a content provider (CP) , real-time streaming content; and transmitting, by the UE, a random access message including a first message associated with the real-time streaming content.
  • UE user equipment
  • CP content provider
  • a method of wireless communication including receiving, by a network entity from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; determining, by the network entity, an uplink resource for the UE based on the at least one of the latency or the reliability; and transmitting, by the network entity to the UE, an indication of the uplink resource.
  • UE user equipment
  • a network system including a first network entity including a transceiver configured to receive, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; and a processor configured to determine at least one of a latency or a reliability based on the user ID, where the transceiver is further configured to transmit, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  • UE user equipment
  • ID user identifier
  • a user equipment including a transceiver configured to receive, from a content provider (CP) , real-time streaming content; and transmit a random access message including a first message associated with the real-time streaming content.
  • CP content provider
  • a network entity including a transceiver configured to receive, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; and a processor configured to determine an uplink resource for the UE based on the at least one of the latency or the reliability, where the transceiver is further configured to transmit, to the UE, an indication of the uplink resource.
  • a transceiver configured to receive, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; and a processor configured to determine an uplink resource for the UE based on the at least one of the latency or the reliability, where the transceiver is further configured to transmit, to the UE, an indication of the uplink resource.
  • a non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a first network entity to receive, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; code for causing the first network entity to determine at least one of a latency or a reliability based on the user ID, code for causing the first network entity to transmit, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and code for causing the first network entity to receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  • UE user equipment
  • ID user identifier
  • a non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to receive, from a content provider (CP) , real-time streaming content; and code for causing the UE to transmit a random access message including a first message associated with the real-time streaming content.
  • UE user equipment
  • CP content provider
  • a non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a network entity to receive, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; code for causing the network entity to determine an uplink resource for the UE based on the at least one of the latency or the reliability, code for causing the network entity to transmit, to the UE, an indication of the uplink resource.
  • UE user equipment
  • a first network entity including means for receiving, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; means for determining at least one of a latency or a reliability based on the user ID, means for transmitting, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and means for receiving, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  • UE user equipment
  • ID user identifier
  • a user equipment including means for receiving, from a content provider (CP) , real-time streaming content; and means for transmitting a random access message including a first message associated with the real-time streaming content.
  • CP content provider
  • a network entity including means for receiving, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; means for determining an uplink resource for the UE based on the at least one of the latency or the reliability, means for transmitting, to the UE, an indication of the uplink resource.
  • UE user equipment
  • FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
  • FIG. 2 illustrates a network system serving media content according to some aspects of the present disclosure.
  • FIG. 3 is signaling diagram illustrating a low-latency rolling comment communication method according to some aspects of the present disclosure.
  • FIG. 4 is a signaling diagram illustrating a connection-less rolling comment communication method according to some aspects of the present disclosure.
  • FIG. 5 is a signaling diagram illustrating a connection-less rolling comment communication method according to some aspects of the present disclosure.
  • FIG. 6 illustrates a network system serving media content according to some aspects of the present disclosure.
  • FIG. 7 is a flow diagram of a rolling comment communication method according to some aspects of the present disclosure.
  • FIG. 8 is a block diagram of an exemplary network unit according to some aspects of the present disclosure.
  • FIG. 9 is a block diagram of an exemplary network unit according to some aspects of the present disclosure.
  • FIG. 10 is a block diagram of an exemplary base station according to some aspects of the present disclosure.
  • FIG. 11 is a block diagram of an exemplary user equipment (UE) according to some aspects of the present disclosure.
  • FIG. 12 is a flow diagram of a communication method according to some aspects of the present disclosure.
  • FIG. 13 is a flow diagram of a communication method according to some aspects of the present disclosure.
  • FIG. 14 is a flow diagram of a communication method according to some aspects of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • LTE long term evolution
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) .
  • BW bandwidth
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz BW.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz BW.
  • subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • a media content provider or distributor may stream media content to streaming clients, which may take the form of various user end devices, such as televisions, notebook computers, mobile handsets, and/or smartphones.
  • Some example of media content may include television programs, video games, interactive games, online promotions, movies, comics movies, live streams, and/or live broadcasts.
  • a user may receive the media content based on a subscription with the content provider. In some other instances, a user may receive the media content without having a subscription with the content provider.
  • Media content may be delivered from a streaming server to a user over a broadcast network, which may be an LTE network or a 5G network.
  • a content provider may stream a content in real-time (e.g., live stream) and may allow a user to send messages and/or comments associated with the real-time streaming content.
  • the comments may be in the form of texts, for example, commenting on the real-time streaming content. In some instances, the comments may also be in the form of gifts, for example, in gaming content.
  • the user’s comment may be delivered to the content provider via a mobile network, such as a 5G or LTE network.
  • the content provider may broadcast the user’s comments along with the real-time streaming content.
  • the user’s comments may be projected or displayed on the screens of the user’s device, for example, overlaid on top of the real-time streaming content.
  • the content provider may continue to update the projection of users’ comments in real-time as new users’ comments are received.
  • the reception of the real-time messages and/or comments from users and the projection of the real-time users’ messages along with real-time streaming content or comments may be referred to as rolling comments.
  • Rolling comments may have various performance requirements, such as low latency, massive concurrent comments, and/or high reliability for some users, for example, very important person (VIP) users.
  • VIP very important person
  • rolling comments may require a round-trip latency in the order of hundreds of milliseconds.
  • the round-trip latency may refer to the time when a user transmits a comment for real-time streaming content to the time when the comment is projected on a screen along with the real-time streaming content. Since a user may comment on a certain portion or a certain event of the real-time streaming content, the comment may be out-of-date or irrelevant to the real-time streaming content if there is a large round-trip latency.
  • real-time streaming content may have tens of millions of users or audiences, and thus a massive amount of comments may be transmitted by users concurrently or at about the same time to the content provider providing the real-time streaming content.
  • VIP users may desire to have a high reliability and/or a lower latency to guarantee the broadcast of the VIP users’ comments along with the real-time comments.
  • TCP transmission control protocol
  • the higher layer optimizations may be limiting.
  • a content provider may provide real-time streaming content over an operator network.
  • the content provider may receive a first message from a UE.
  • the first message may include a comment associated with a certain portion or a certain event of the real-time streaming content.
  • the first message may also include a user identifier (ID) associated with the UE.
  • ID user identifier
  • the content provider may determine at least one of a reliability or a latency requirement based on the user ID. For instance, the content provider may determine whether the UE is a VIP user based on the user ID.
  • the content provider may determine a low latency and/or a higher reliability requirement for a VIP user than for a non-VIP user.
  • the content provider may indicate the at least one of the latency and/or reliability requirement to a unicast network serving the UE.
  • the unicast network may assign the UE with uplink radio resources satisfying or guaranteeing the at least one of the latency and/or reliability requirement.
  • the UE may transmit a second message including a comment associated with the real-time streaming content to the content provider using the allocated uplink radio resource.
  • the second message may reach the content provider with a low-latency and/or a high-reliability, allowing the content provider to broadcast the comment in the second message along with the real-time streaming content with a minimal delay (from the time the UE transmit the second message) .
  • the unicast network may assign a high quality of service (QoS) PDU flow for the UE to transmit comments to the content provider.
  • the QoS may be determined based on the at least one of the latency or reliability requirement.
  • the unicast network may configure the UE with configured grant resources. The UE may transmit in a configured grant resource without having to request for a schedule from a BS and receive a dynamic UL grant from the BS for each resource. Accordingly, when the UE has a comment to be sent to the content provider, the UE may transmit the comment in a configured resource without the overhead of requesting for a schedule and waiting for a scheduling grant.
  • the UE may transmit a comment to the content provider using a connection-less message, such as a random access message.
  • a connection-less message such as a random access message.
  • the size of a comment may be relatively small, for example, a few bytes to tens of bytes.
  • the overhead of establishing a connection e.g., a radio resource control (RRC) connection
  • RRC radio resource control
  • the UE may transmit a comment in a random access message 3 (MSG3) of a four-step random access procedure or in a random access message A (MSGA) of a two-step random access procedure.
  • MSG3 random access message 3
  • MSGA random access message A
  • the UE may include a timestamp of the real-time streaming content associated with a comment along with the comment in a message to the content provider.
  • the UE may also include a flag in the message indicating whether the comment is time sensitive or not.
  • some comments may be relevant to the real-time streaming content for a short duration of time.
  • the content provider may determine whether to broadcast the comment along with the real-time streaming content based on the time stamp and/or the flag.
  • the content provider may broadcast the comment along with the real-time streaming content. If a duration between the time (e.g., indicated by the timestamp) when the comment was generated to the time the comment is received and ready for broadcast is long (e.g., fails to satisfy a threshold) , the content provider may or may not broadcast the comment along with the real-time streaming content depending on whether the comment is time sensitive or not.
  • the content provider may not broadcast the comment along with the real-time streaming content. If the delay is long and the comment is not time sensitive, the content provider may broadcast the comment along with the real-time streaming content.
  • the allocation of low-latency uplink radio resources (e.g., configured grant resources) and/or the assignment of a high QoS PDU session may allow VIP users to transmit comments to a content provider with a low latency.
  • connection-less message e.g., MSG3 or MSGA
  • MSG3 or MSGA connection-less message
  • timestamp of real-time streaming content associated with a comment and/or an indication of a comment type may allow the content provider to avoid broadcasting commentsa that are out-of-date or no longer relevant for the real-time streaming content.
  • FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt e.g., communication links indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 105 may also communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115.
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and a BS 105.
  • V2V dynamic, low-latency TDD/FDD communications
  • V2X V2X
  • C-V2X C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115
  • V2I vehicle-to-infrastructure
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands.
  • each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than for UL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining minimum system information (e.g., RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining minimum system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (e.g., PDSCH) .
  • PBCH physical broadcast channel
  • PDSCH physical downlink shared channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 115 may receive a MIB.
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI and/or OSI.
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105.
  • the random access procedure may be a four-step random access procedure.
  • the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response.
  • the random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator.
  • ID detected random access preamble identifier
  • TA timing advance
  • C-RNTI temporary cell-radio network temporary identifier
  • the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response.
  • the connection response may indicate a contention resolution.
  • the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively.
  • the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission (MSGA) and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission (MSGB) .
  • MSGA random access preamble and a connection request in a single transmission
  • MSGB single transmission
  • the UE 115 may initiate an initial network attachment procedure with the network 100.
  • the UE 115 may return to an idle state (e.g., RRC idle mode) .
  • the UE 115 and the BS 105 can enter an operational state or active state, where operational data may be exchanged (e.g., RRC connected mode) .
  • the BS 105 may schedule the UE 115 for UL and/or DL communications.
  • the BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH.
  • the BS 105 may transmit a DL communication signal to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
  • the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service.
  • the BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH.
  • the BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH.
  • the DL data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105.
  • TB transport block
  • the UE 115 may transmit a HARQ NACK to the BS 105.
  • the BS 105 may retransmit the DL data packet to the UE 115.
  • the retransmission may include the same coded version of DL data as the initial transmission.
  • the retransmission may include a different coded version of the DL data than the initial transmission.
  • the UE 115 may apply soft-combining to combine the encoded data received from the initial transmission and the retransmission for decoding.
  • the BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
  • the network 100 may operate over a system BW or a component carrier (CC) BW.
  • the network 100 may partition the system BW into multiple BWPs (e.g., portions) .
  • a BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) .
  • the assigned BWP may be referred to as the active BWP.
  • the UE 115 may monitor the active BWP for signaling information from the BS 105.
  • the BS 105 may schedule the UE 115 for UL or DL communications in the active BWP.
  • a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • the network 100 may operate over a shared channel, which may include shared frequency bands and/or unlicensed frequency bands.
  • the network 100 may be an NR-U network operating over an unlicensed frequency band.
  • the BSs 105 and the UEs 115 may be operated by multiple network operating entities.
  • the BSs 105 and the UEs 115 may employ a listen-before-talk (LBT) procedure to monitor for transmission opportunities (TXOPs) in the shared channel.
  • LBT listen-before-talk
  • TXOPs transmission opportunities
  • a TXOP may also be referred to as COT.
  • a transmitting node e.g., a BS 105 or a UE 115
  • An LBT can be based on energy detection (ED) or signal detection.
  • ED energy detection
  • the LBT results in a pass when signal energy measured from the channel is below a threshold. Conversely, the LBT results in a failure when signal energy measured from the channel exceeds the threshold.
  • the LBT results in a pass when a channel reservation signal (e.g., a predetermined preamble signal) is not detected in the channel.
  • a channel reservation signal e.g., a predetermined preamble signal
  • an LBT may be in a variety of modes.
  • An LBT mode may be, for example, a category 4 (CAT4) LBT, a category 2 (CAT2) LBT, or a category 1 (CAT1) LBT.
  • a CAT1 LBT is referred to a no LBT mode, where no LBT is to be performed prior to a transmission.
  • a CAT2 LBT refers to an LBT without a random backoff period.
  • a transmitting node may determine a channel measurement in a time interval and determine whether the channel is available or not based on a comparison of the channel measurement against a ED threshold.
  • a CAT4 LBT refers to an LBT with a random backoff and a variable contention window (CW) . For instance, a transmitting node may draw a random number and backoff for a duration based on the drawn random number in a certain time unit.
  • CW variable contention window
  • the network 100 may support unicast and/or broadcast services.
  • the network 100 may support mobile broadcast services where media content may be streamed from a streaming server via a BS 105 to one or more UEs 115.
  • media content may include television programs, video games, interactive games, online promotions, movies, comics movies, live streams, and/or live broadcasts.
  • some content providers may enhance user experiences by providing real-time user interactions. For instance, a content provider may stream a content in real-time (e.g., live stream) and may allow a user to send messages and/or comments associated with the real-time streaming content. The comments may be in the form of texts, for example, commenting on the real-time streaming content.
  • the comments may also be in the form of gifts, for example, in gaming content.
  • the user’s comment may be delivered to the content provider via a mobile network, such as a 5G or LTE network.
  • the content provider may broadcast the user’s comments along with the real-time streaming content.
  • the user’s comments may be projected or displayed on the screen of the user’s device, for example, overlaid on top of the real-time streaming content.
  • FIG. 2 illustrates a network system 200 serving media content according to some aspects of the present disclosure.
  • the system 200 includes a content provider 210 and an operator network 220 serving a UE 230.
  • the operator network 220 may correspond to a portion of the network 100.
  • the UE 230 may be similar to the UEs 115.
  • the UE 230 may be a mobile phone, smartphone, vehicles, laptop computer, desktop computer, tablets, and/or interactive TV.
  • the content provider 210 may provide media content for live streaming over the operator network 220.
  • the UE 230 may receive the content in real-time via the operator network 220.
  • the content provider 210 may also allow the UE 230 to comment on the live streaming content by sending messages to the content provider 210 via the operator network 220.
  • the content provider 210 may project the UE 230’s comments along with live streaming content in real-time.
  • FIG. 2 illustrates the system 200 serving content to one UE 230, it should be understood that in other examples the system 200 can include any suitable number of UEs 230 (e.g., about 2, 5, 10, 100, 1000, or tens of millions) .
  • the content provider 210 may operate a content server 212 and a content distribution network (CDN) 214.
  • the content server 212 may be a computing server or any network equipment.
  • the content server 212 may include hardware and/or software components configured to generate media content 216.
  • the media content 216 may include a TV show, a comic movie, an online promotion program, and/or the like.
  • the content server 212 may be in communication with the CDN 214.
  • the CDN 214 may include a group of geographically distributed servers configured to receive the content 216 from the content server 212 and distribute the content 216 to end users (e.g., the UEs 115 and/or 230) via the operator network 220.
  • the geographical distributions of the servers may provide fast delivery of the content 216 to the ends user. For instance, a user may request for a content and the request may be directed to a server that is most optimal in serving the user. For example, the most optimal server may be a server located closes to the user among the group of servers.
  • the operator network 220 may be substantially similar to the network 100.
  • the operator network 220 may support broadcasting and unicasting.
  • the operator network 220 includes a BS 226 providing broadcast services and a BS 224 providing unicast services.
  • the BSs 224 and 226 may be substantially similar to the BSs 105.
  • FIG. 2 illustrates the operator network 220 including one BS 224 providing unicast services and one BS 226 providing broadcast services, it should be understood that in other examples the operator network 220 may include any suitable number of BSs (e.g., about 2, 3, 4 or more) and each BS may provide unicast services only, broadcast services only, or a combination of unicast and broadcast services.
  • the operator network 220 may also include a streaming server 222.
  • the streaming server 222 may be a computer server and may include hardware and/or software components configured to deliver media content streams, for example, streaming media content in real-time.
  • the streaming server 222 may be configured to implement various types of media codecs (e.g., H. 263, H. 264, and/or MPEG) and/or support various types of media content streaming protocols (e.g., real time streaming protocol (RTSP) and/or MPEG-dynamic adaptive streaming over hypertext transfer protocol (MPEG-DASH) ) .
  • RTSP real time streaming protocol
  • MPEG-DASH MPEG-dynamic adaptive streaming over hypertext transfer protocol
  • the streaming server 222 may receive the media content 216 from the CDN 214, apply any suitable encoding and/or decoding to the media content 216, and deliver the media content 216 using a certain streaming protocol to the BS 226 for broadcasting to end users, for example, the UE 230.
  • the BS 226 may support any suitable radio access technologies (RATs) .
  • the BS 226 may be LTE BS (e.g., eNB) .
  • the BS 226 may be a NR BS (e.g., gNB) .
  • the BS 226 may support both LTE and NR.
  • the BS 226 may broadcast the media content 216 over a radio protocol stack of a corresponding RAT.
  • the UE 230 may receive the broadcast media content 216 from the BS 226. In some instances, the UE 230 may receive the media content 216 based on a subscription with the content provider 210. In some other instances, the UE 230 may receive the media content 216 without having a subscription with the content provider 210. The UE 230 may operate as client receiving the media content 216. In some aspects, the UE 230 may include hardware and/or software components configured to implement a streaming media player that can stream media content in real-time. In some aspects, the UE 230 may include hardware and/or software components configured to implement a gaming platform supporting various gaming applications.
  • the content provider 210 may allow a user (e.g., the UE 230) to send messages and/or comments associated with the real-time streaming content 216.
  • the comments may be in the form of texts, for example, commenting on the real-time streaming content. In some instances, the comments may also be in the form of gifts, for example, in gaming content.
  • the user’s comment may be delivered to the content provider 210 via the operator network 220. For instance, a user of the UE 230 receiving the live content 216 may comment on the live content 216. The user may generate a comment about the live content 216.
  • the UE 230 may transmit the comment in the form of messages 232 to the content provider 210 via the BS 224 providing the unicast service.
  • the BS 224 may support any suitable radio access technologies (RATs) .
  • the BS 224 may be LTE BS (e.g., eNB) .
  • the BS 224 may be a NR BS (e.g., gNB) .
  • the BS 224 may support both LTE and NR.
  • the UE 230 may establish a connection (e.g., a RRC connection) with the BS 224, for example, using similar a random access mechanisms as discussed above in relation to FIG. 1.
  • the UE 230 may request for an UL grant from the BS 224 for transmitting a message 232 including a comment related to the media content 216.
  • the BS 224 may allocate UL radio resources (e.g., time-frequency resources) for the UE 230 and transmit a UL scheduling grant to the UE 230.
  • the UL scheduling grant may be transmitted in the form of downlink control information (DCI) over a PDCCH.
  • DCI downlink control information
  • the UL scheduling grant may indicate the allocated UL resources and/or transmit parameters, such as a modulation coding scheme (MCS) and/or transmit power control, to be used for transmitting the message 232.
  • MCS modulation coding scheme
  • the UE 230 may transmit the message 232 to the content provider 210 via the BS 224.
  • the BS 224 may forward the message 232 to the streaming server 222, which may direct the message 232 to the content provider 210.
  • the content provider 210 may include the message 232 (e.g., the UE 230’s comment) in the content 216 at a next time instant for broadcasting. Since the UE 230’s comment is related to the content 216 at a certain point of time (e.g., T1) , it may be desirable for the content provider 210 to broadcast and project the UE 230’s comment along with the content 216 at a time (e.g., T2) with a small delay from the time T1.
  • T1 point of time
  • the UE 230’s comment may no longer be relevant to the content 216 that is being projected. Additionally, in some instances, the UE 230 may be a VIP user of the content 216, and thus it may be desirable to provide a better performance (e.g., latency and reliability) for comments from a VIP user.
  • a better performance e.g., latency and reliability
  • the present disclosure provides techniques for providing improves to rolling comments where users’ comments are broadcast and projected along with real-time streaming content.
  • FIG. 3 is signaling diagram illustrating a low-latency rolling comment communication method 300 according to some aspects of the present disclosure.
  • the method 300 may be implemented among a UE 302, a BS 304, a network function component 306, and a content provider 308 in a network such as the network 100 and/or the system 200.
  • the UE 302 may correspond to the UE 230.
  • the BS 304 may correspond to the BS 225 providing unicast services.
  • the network function component 306 may be a network server in the network 220 providing core network functions, such as user plane function (UPF) , access and mobility function (AMF) , and/or session management function (SMF) .
  • UPF user plane function
  • AMF access and mobility function
  • SMF session management function
  • the network function component 306 may be a media server (e.g., the streaming server 222) .
  • the BS 304 and the network function component 306 may be operated by an operator in an operator network 301 (e.g., a unicast network) similar to the network 220.
  • the content provider 308 correspond to the content provider 210.
  • the UE 302 may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116 shown in FIG. 11, to perform the aspects of the method 300.
  • the BS 304 may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the method 300.
  • the network function component 306 may utilize one or more components, such as the processor 902, the network function module 908, the transceiver 910, to perform aspects of the method 300.
  • the content provider 308 may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of the method of 300.
  • the method 300 illustrates the content provider 308 serving content to one UE 302, it should be understood that in other examples the content provider 308 may serve content to any suitable number of UEs 302 (e.g., about 2, 5, 10, 100, 1000, or tens of millions) . As illustrated, the method 300 includes a number of enumerated actions, but embodiments of the method 300 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
  • the method 300 may be implemented while the UE 302 is receiving real-time streaming content (e.g., the content 216) from the content provider 308.
  • the UE 302 may be executing a streaming media player application, which may be in communication with a radio protocol stack (e.g., a LTE radio protocol stack or an NR radio protocol stack) .
  • the radio protocol stack may implement functions supporting the reception of the broadcast real-time streaming content.
  • the UE 302 transmits a first message to the content provider 308.
  • the first message may be associated with the real-time streaming content.
  • the first message may include a comment related to the real-time streaming content.
  • the first message may include a gift, for example, when the content is associated with interactive gaming.
  • a comment may refer to a text comment, a virtual gift object, and/or any objects related to the real-time streaming content.
  • the first message is a real-time message to the content provider 308, where the comment is to be for broadcasting along with the real-time streaming content as discussed above.
  • the first message may also include a user ID identifying the UE 302.
  • the content provider 308 may identify the UE 302 based on the user ID.
  • the user ID may be associated with a subscription of the content.
  • the first message may include the user ID in a message field designated for indicating a user ID.
  • the first message may include a cyclic redundancy check (CRC) and the CRC may be masked by the user ID.
  • CRC masking mechanisms may allow a receiver to identify the user ID without adding additional field in the first message, and thus may provide a smaller payload size for the first message.
  • the first message may also include timing information associated with the comment.
  • the user of the UE 302 may comment on the real-time streaming content at a particular point of time (e.g., at time T1) .
  • the comment may be relevant to the real-time streaming content at that particular time T1.
  • the first message may include a timestamp (e.g., T1) associated with the real-time streaming content to enable the content provider 308 to correlate the comment and the real-time streaming content.
  • the first message may indicate a time when the first message is generated, where the time is indicated by referencing to the timeline of the real-time streaming content.
  • the timing information may be optional.
  • timing information may be excluded from the first message.
  • the inclusion or exclusion of timing information and/or the indication of comment type (e.g., time-sensitive or time tolerant) in a comment message, such as the first message, will be discussed more fully below in relation to FIG. 7.
  • the UE 302 may transmit the first message in a variety of ways.
  • the UE 302 may establish a RRC connection with the BS 304 and have completed a network attachment procedure with the operator network 301.
  • the UE 302 may transmit a scheduling request (SR) to the BS 304.
  • the BS 304 may allocate UL radio resources (e.g., time-frequency resources in units of symbols in time and/or RBs in frequency) for the UE 302 to transmit an UL transmission (e.g., PUSCH transmission) .
  • the BS may transmit an UL scheduling grant in the form of DCI over a PDCCH.
  • the UL scheduling grant may indicate the allocated UL resources and/or transmit parameters, such as a MCS and/or a transmit power control.
  • the UE 302 may transmit the first message to the BS 304 using the allocated UL resource.
  • the BS 304 may forward the first message to the content provider 308.
  • the UE 302 may not have a connection (e.g., an RRC connection) established with the BS 304.
  • a connection e.g., an RRC connection
  • the UE 302 may exchange at 2 to 4 messages with the BS 304. Since the first message may have a relatively small payload size, for example, a few bytes to tens of byte, the overhead of an RRC connection setup may be large compared to the first message itself. Accordingly, it may be desirable for the UE 302 to transmit the first message including the connect in a connection-less message. For instance, the UE 302 may transmit the first message using a random access procedure.
  • the UE 302 may include the first message in a random access message, such as a MSG3 in a 4-step random access procedure or a MSGA in a 2-step random access procedure as will be discussed more fully below in relation to FIGS. 4 and 5, respectively.
  • a random access message such as a MSG3 in a 4-step random access procedure or a MSGA in a 2-step random access procedure as will be discussed more fully below in relation to FIGS. 4 and 5, respectively.
  • the content provider 308 transmits an indication of at least a latency or a reliability associated with the UE 302 to the network function component 306.
  • the indication may also include the user ID associated with the UE 302.
  • the content provider 308 may determine the at least one of the latency or reliability associated with the UE 302 based on the user ID indicated by the first message. For instance, the content provider 308 may maintain an association or mapping between users and their statuses, for example, whether they are VIP users or not. The statuses may also be associated with subscription levels. For instance, a user may pay a higher subscription fee to be a VIP user. Alternatively, a frequency user may be given a VIP status.
  • a VIP user may be given priority over normal users, for example, in terms of latency and/or reliability of the VIP user’s comment.
  • the content provider 308 may determine a latency requirement and/or a reliability requirement for a user based on the user’s ID.
  • the latency may be in units of time and/or the reliability may be terms of reliability rate or packet error rate.
  • the at least one of the latency or the reliability rate may be in the format of a traffic priority class, a QoS, or any suitable format.
  • the network function component 306 upon receiving the indication the network function component 306, the network function component 306 establishes a high QoS PDU session with the UE 302 for uplink communications. For instance, the network function component 306 may perform a translation between the user ID and a UE ID of the UE 302. As discussed above, the user ID is used by the content provider 308 to identify the UE 302 or a user of the UE 302. The UE ID identifies the UE 302 in the operator network 301. In some instances, the network function component 306 may maintain or store a mapping between user IDs and UE IDs, for example, in a memory such as the memory 904 of FIG. 9.
  • the network function component 306 may identify a BS (e.g., the BS 304) serving the UE 302. The network function component 306 may determine a QoS for a PDU session for the UE 302 (to perform UL transmissions) based on the latency requirement and/or reliability requirement indicated by the content provider 308. If the latency requirement and/or reliability requirement is high (e.g., the UE 302 may be a VIP user to the content provider 308, the network function component 306 may assign a high QoS PDU session for the UE 302 (to perform UL transmissions) . The network function component 306 may coordinate with the BS 304 to provide the high QoS PDU session.
  • a BS e.g., the BS 304
  • the network function component 306 may determine a QoS for a PDU session for the UE 302 (to perform UL transmissions) based on the latency requirement and/or reliability requirement indicated by the content provider 308. If the latency requirement and/or reliability
  • the network function component 306 may transmit a PDU session resource setup request to the BS 304 requesting the BS 304 to allocate resources guaranteeing the QoS for the PDU session.
  • the BS 304 may perform resource allocation and respond to the network function component 306 by transmitting a PDU session resource setup response.
  • the BS 304 allocates uplink radio resources for the UE 302 to transmit comments to the content provider 308.
  • the BS 304 may assign the UE 302 with a higher UL scheduling priority, for example, at scheduling in a media access control (MAC) layer.
  • MAC media access control
  • the MAC scheduling may guarantee a certain QoS for the UE 302, where the QoS may satisfy the latency and/or reliability requirements indicated by the content provider 308.
  • the BS 304 may also configure the UE 302 with configured grant resources for UL transmissions.
  • a configured UL transmission is an unscheduled transmission in a channel without a scheduled UL grant (e.g., a dynamic scheduling grant via PDCCH) .
  • a configured UL transmission may also be referred to as a grantless, grant-free, or autonomous transmission.
  • the UE 302 may transmit a message carrying a comment (for the real-time streaming content) in a configured resource.
  • the configured-UL data (e.g., message with the comments) may also be referred to as grantless UL data, grant-free UL data, unscheduled UL data, or autonomous UL (AUL) data.
  • a configured grant may also be referred to as a grant-free grant, unscheduled grant, or autonomous grant.
  • the resources and other parameters used by the UE for a configured grant transmission may be provided by the BS 304 in, for example, an RRC configuration, without an explicit grant for each UE transmission.
  • the BS 304 transmits an indication of the uplink resource to the UE 302.
  • the indication may be a configured grant indicating a plurality of resources (e.g., configured grant resources) to the UE 302.
  • the configured grant resource may include resources (e.g., in units of RBs) that are repeated periodically.
  • the BS 304 may configure periodic resources, which may be semi-static, for the UE 302 to transmit UL data.
  • the UE 302 may quickly transmit a second message including the comment using a configured grant resource without having to request for an UL schedule and wait for the BS 304 to grant an UL allocation for transmission. Accordingly, comments from the UE 302 to the content provider 308 may have a low latency.
  • the second message may be substantially similar to the first message.
  • the second message may include the comment and the user ID and may optionally include timing information associated with the comment. The timing information may be a timestamp of the real-time streaming content associated with the comment.
  • the content provider 308 may broadcast the comment in the second message along with the real-time streaming content.
  • the process of the UE 302 transmitting comments related to the real-time streaming content (using the configured resources) to the content provider 308 and the content provider 308 broadcasting the UE 302’s comments along with real-time streaming content may continue for a duration of the live stream or for an entire duration of the live stream.
  • the BS 304 can de-configure the configured grant resource and allocate the resources to serve other users so that resource utilization efficiency may not be sacrificed. If the UE 302 has a comment to be sent to the content provider 308 at a later point of time, the BS 304 may configure configured grant resources for the UE 302 to transmit UL transmission again. Alternatively, instead of de-configuring the configured grant resources, the BS 304 may modify a configuration of the configured grant resources (e.g., reduce the periodicity) .
  • the content provider 308 transmits a session release request to the network function component 306.
  • the network function component 306 releases the high QoS PDU session. For instance, the network function component 306 may request the BS 304 to release resources (e.g., the configured resources) that the BS 304 may have allocated for the UE 302 for transmitting comment messages.
  • resources e.g., the configured resources
  • FIGS. 4-5 provide various mechanisms for providing low-latency massive concurrent transmissions of comments from a massive number of users via connection-less transmissions.
  • the connection-less transmission may refer to the transmission of a comment from a user (e.g., the UEs 115, 230, and/or 302) without having an RRC connection setup with a BS (e.g., the BSs 105, 224, and/or 304) .
  • a user when a user has a real-time comment to be sent to a content provider (e.g., the content provider 210 and/or 308) , the use may initiate a 4-step random access procedure or a 2-step random access procedure with the BS and include the comment message in a random access message (e.g., MSG3 or MSGA) .
  • a random access message e.g., MSG3 or MSGA
  • FIG. 4 is a signaling diagram illustrating a connection-less rolling comment communication method 400 according to some aspects of the present disclosure.
  • the method 400 may be implemented between the UE 302 and the BS 304.
  • the UE 302 may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116 shown in FIG. 11, to perform the aspects of the method 400.
  • the BS 304 may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1016, to perform the aspects of the method 400.
  • the method 400 includes a number of enumerated actions, but embodiments of the method 400 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
  • the method 400 may be implemented while the UE 302 is receiving real-time streaming content (e.g., the content 216) from a content provider (e.g., the content provider 308) .
  • the UE 302 may be executing a streaming media player application, which may be in communication with a radio protocol stack (e.g., a LTE radio protocol stack or an NR radio protocol stack) .
  • the radio protocol stack may implement functions supporting the reception of the broadcast real-time streaming content
  • the UE 302 receives a comment to be sent to the content provider.
  • the comment may be received from an application layer.
  • the comment may be generated by a user of the UE 302.
  • the UE 302 transmits a MSG1 carrying a random access preamble (e.g., a physical random access channel (PRACH) preamble sequence) according to a random channel access configuration.
  • a random access preamble e.g., a physical random access channel (PRACH) preamble sequence
  • the UE 302 may receive a random access channel configuration in RMSI.
  • the random access channel configuration may indicate random channel access opportunities (ROs) (e.g., time-frequency resources) for transmitting a random access preamble and/or information related to generation and/or select of the random access preamble.
  • ROs random channel access opportunities
  • the UE 302 monitors for a MSG2 from the BS 302, for example, during a RAR within a random access response (RAR) window.
  • the UE 302 may monitor for a MSG2 based on the random access ID to identify whether a received RAR is a response to a random access preamble transmitted by the UE 302.
  • the random access ID may be referred to as a random access-radio network temporary identifier (RA-RNTI) .
  • RA-RNTI random access-radio network temporary identifier
  • the BS 304 transmits a MSG2 to the UE 302.
  • the BS 304 may determine UL transmission timing of the UE 302 and assign a UL resource (e.g., a UL schedule) and a temporary ID to the UE 302 for sending a subsequent message.
  • the BS 304 may assign the UL resources based on a random access message transmission configuration, for example, the tone spacing, the symbol timing, the starting time, and/or the ending time of the UL control and data channels.
  • the BS 304 may identify a subsequent (or next) random access message (e.g., MSG3) from the UE 115 by a temporary ID.
  • the temporary ID is referred to as a temporary cell-radio network temporary identifier (C-RNTI) .
  • C-RNTI temporary cell-radio network temporary identifier
  • the UE 302 upon detecting the MSG2, the UE 302 generates a MSG3. For instance, the UE 302 may retrieve the assigned resources or UL schedule, the temporary ID, and the timing advance information from the MSG2. The UE 302 may include a first message associated with the real-time streaming content in the MSG3, where the first message may include a comment associated with the real-time streaming content as shown by the example message structure 432.
  • the message structure 432 includes the MSG3 450.
  • the MSG3 450 includes a first message 460.
  • the first message 460 includes a comment 462, a user ID 464, a timestamp 466, and a flag 468.
  • the first message is to be transmitted to the content provider.
  • the comment 462 may include a comment (e.g., in a text format or a character string) or a gift (e.g., in a text format or an ID identifying a gift such as a rocket or a flower) associated with the real-time streaming content.
  • the user ID 464 may be an identifier that identifies the UE 302 or the user of the UE 302 to the content provider.
  • the first message may apply the user ID 464 as a mask to a CRC of the first message.
  • the UE 302 may generate a CRC for the payload of the first message and perform an exclusive OR between the CRC and the user ID 464 and include the masked CRC in place of the CRC in the first message 460.
  • a receiver e.g., the content provider
  • the timestamp 466 may be a timestamp (e.g., T1) of the real-time streaming content at the time when the comment 462 is generated.
  • the comment 462 may be a comment for the real-time streaming content at the time T1 in the timeline of the real-time streaming content.
  • the flag 468 may indicate whether the comment 462 is of a first comment type or a second comment type.
  • the first comment type may have a less time-tolerance than the second comment type.
  • the first comment type may be time sensitive and the second comment type may be time tolerant.
  • a comment 462 of the first comment type may be relevant or valid for a shorter amount of time then a comment 462 of the second comment type.
  • the timestamp 466 and/or the flag 468 may enable the content provider to determine whether to broadcast the comment 462 along with the real-time streaming content upon receiving the comment 462 as will be discussed more fully below in relation to FIG. 7.
  • the UE 302 may include the timestamp 466 in the first message 460.
  • the comment 462 is of the second comment type (e.g., time tolerant)
  • the inclusion of the timestamp 466 in the first message 460 may be optional.
  • the UE 302 transmits the MSG3 450, which carries the first message 460 including the comment 462, the user ID 464, the timestamp 466, and/or the flag 468.
  • the MSG3 may be sent according to the assigned resource, the temporary ID and the timing advancement information.
  • the MSG3 may include an RRC connection request.
  • the UE 302 since the purpose of sending the MSG3 in the method 400 is to transmit the comment 462 to the content provider, the UE 302 may not include an RRC connection request in the MSG3.
  • the UE 302 may include an indication in the MSG3 to indicate that there is no connection request.
  • the BS 304 may forward the first message 460 to the content provider.
  • the BS 304 transmits a MSG4 to the UE 302.
  • the MSG3 may include an RRC connection request response. Since there is no RRC connection setup request associated with MSG3, the MSG4 may not include an RRC connection request response.
  • the UE 302 may include an RRC connection request in the MSG3 at action 430 and the BS 304 may include an RRC connection response in the MSG4 at action 450.
  • the UE 302 may proceed to complete the RRC connection establishment procedure with the BS 304, for example, for other data transfer and/or for a subsequent comment transmission to the content provider.
  • the BS 304 may configure the UE 302 with a higher initial transmit power for transmitting the MSG3. For instance, the UE 302 may transmit UL transmission using a nominal transmit power (e.g., at about 23 decibel-milliwatts (dBm) ) , the BS 304 may configure the UE 302 to transmit the MSG3 at a transmit power higher than the nominal transmit power.
  • the higher transmit power can improve the signal-noise-ratio (SNR) of the UL signal, and thus may allow the BS 304 to receive and decode the MSG3 with a higher reliability.
  • SNR signal-noise-ratio
  • the method 400 may allow the UE 302 to transmit comments to the content provider with a lower latency and/or a higher reliability. Further, since no RRC connection setup is used, a network may potentially support many more UEs sending comments in a UL direction to the content provider.
  • FIG. 5 is a signaling diagram illustrating a connection-less rolling comment communication method 500 according to some aspects of the present disclosure.
  • the method 500 may be implemented between the UE 302 and the BS 304.
  • the UE 302 may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116 shown in FIG. 11, to perform the aspects of the method 500.
  • the BS 304 may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the method 500.
  • the method 500 includes a number of enumerated actions, but embodiments of the method 500 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
  • the method 500 may be implemented while the UE 302 is receiving real-time streaming content (e.g., the content 216) from a content provider (e.g., the content provider 308) .
  • the UE 302 may be executing a streaming media player application, which may be in communication with a radio protocol stack (e.g., a LTE radio protocol stack or an NR radio protocol stack) .
  • the radio protocol stack may implement functions supporting the reception of the broadcast real-time streaming content.
  • the method 500 may be substantially similar to the method 400.
  • the UE 302 may transmit a comment associated with the real-time streaming content via a 2-step random access procedure instead of a 4-step random access procedure.
  • the UE 302 receives a comment associated with the real-time streaming content to be sent to the content provider similar to the operations at action 405.
  • the UE may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116, to perform the aspects of 505.
  • the UE 302 generates MSGA.
  • the MSGA may be a combination of the MSG1 and MSG3 of the method 400.
  • the MSGA includes a random access preamble, which may be generated according to a random access configuration in RMSI as discussed above in relation to FIGS. 1 and 4.
  • the MSGA further includes a first message including the comment associated with the real-time streaming content as shown by the example message structure 512.
  • the message structure 512 includes the MSGA 550.
  • the MSGA 550 includes a first message 560.
  • the first message 560 includes a comment 562, a user ID 564, a timestamp 566, and a flag 568, which may be similar to the comment 462, the user ID 464, the timestamp 466, and the flag 468 discussed above in relation to FIG. 4. Accordingly, for sake of brevity, details of the first message 560 will not be repeated here.
  • the MSGA may include an RRC connection request.
  • the UE 302 since the purpose of sending the MSGA in the method 500 is to transmit the comment 562 to the content provider, the UE 302 may not include an RRC connection request in the MSGA.
  • the UE 302 may include an indication in the MSGA to indicate that there is no connection request.
  • the UE 302 transmits the MSGA 550 carrying the first message 560 to the BS 302, for example, in a random access resource or RO indicated by the BS 304 via RMSI.
  • the BS 304 may forward the first message 460 to the content provider.
  • the BS 304 transmits a MSGB to the UE 302.
  • the MSGB may include a random access response and an RRC connection response. Since there is no RRC connection setup request associated with MSG3, the MSG4 may not include an RRC connection request response.
  • the UE 302 may include an RRC connection request in the MSGA at action 510 and the BS 304 may include an RRC connection response in the MSGB at action 530.
  • the UE 302 may proceed to complete the RRC connection establishment procedure with the BS 304, for example, for other data transfer and/or for a subsequent comment transmission to the content provider.
  • FIG. 6 illustrates a network system 600 serving media content according to some aspects of the present disclosure.
  • the system 600 may be substantially similar to the system 200 and may use the same reference numerals for simplicity’s sake. However, in the system 600, different operators may operate a unicast network and a broadcast network.
  • the system 600 includes a content provider 210, a unicast network 620, and a broadcast network 640 serving a UE 230.
  • the unicast network 620 is operated by an operator A.
  • the broadcast network 640 is operated by an operator B different form the operator A.
  • the CDN 214 may provide the media content 216 to the broadcast network 640 for broadcasting to end users such as the UE 230.
  • the broadcast network 640 any include a broadcast core network 642, which may include a media server or a streaming server similar to the streaming server 222.
  • the broadcast core network 642 may handle the real-time streaming of the content 216.
  • the BS 226 may broadcast the media content 216 to the end users, for example, using an NR RAT.
  • the UE 230 or a user of the UE 230 may generate a comment about the live content 216.
  • the UE 230 may transmit the comment in the form of message 232 to the content provider 210 via the unicast network 620.
  • the unicast network 620 may be a 5G network including a 5G core network 622 and a BS 224.
  • the 5G core network 622 may provide network functions such as AMF, UPF, SMF, and/or any other core network functions.
  • the 5G core network 622 may be similar to the network function component 306.
  • the BS 224 may receive the message 232 and may forward the message 232 to the content provider 210.
  • the content provider 210 may broadcast the comment in the message 232 along with the real-time streaming content.
  • the UE 230 may be a VIP user of the content provider 210.
  • the content provider 210, the 5G core network 622, the BS 224, and the UE 230 may implement the method 300 discussed above with reference to FIG. 3 so that the UE 230 may transmit comments associated with the real-time streaming content 215 to the content provider 210 with low-latency and high-reliability.
  • the content provider 210, the 5G core network 622, the BS 224, and the UE 230 may correspond to the content provider 308, the network function component 306, the BS 304, and the UE 302 in the method 300.
  • the UE 230 and the BS 224 may implement the methods 400 and/or 500.
  • the UE 230 may transmit a comment associated with the real-time streaming content via a MSG3 or a MSGA as shown in the method 400 or 500, respectively.
  • the content provider 210 may manage latency associated with the rolling comments. For instance, the content provider 210 may determine whether to broadcast a comment received from a user (e.g., the UE 23) along with the real-time streaming content.
  • FIG. 7 is a flow diagram of a rolling comment communication method 700 according to some aspects of the present disclosure.
  • a computing device e.g., a processor, processing circuit, and/or other suitable component
  • a first network entity such as a component of the content provider 210 and/or 308, the content server 212 and/or the network unit 800, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to execute the actions of method 700.
  • the method 700 includes a number of enumerated steps, but aspects of the method 700 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • the method 700 may be implemented in conjunction with the method 300.
  • the first network entity may be providing real-time streaming content and may be broadcasting the real-time streaming content over a network similar to the network 100, 220, and/or 640.
  • the first network entity receives a message with from a UE, for example, vi a second network entity.
  • the UE may be similar to the UEs 115, 230, and/or 302.
  • the UE may be a user receiving the real-time streaming content.
  • the message may include a comment associated with the real-time streaming content.
  • the message may be similar to the first messages 460 and/or 560.
  • the comment may be similar to the comments 462 and/or 562.
  • the message may also include a timestamp (e.g., the timestamp 466 and/or 566) of the real-time streaming content associated with the comment.
  • the timestamp may correspond to a time when the message or comment is generated according to a timeline of the real-time streaming content.
  • the message may also include a flag (e.g., the flags 468 and/or 568) indicating whether the comment is of a first comment type or a second comment type.
  • the first comment type may have a less time-tolerance than the second comment type.
  • the first comment type may be time sensitive and the second comment type may be time tolerant.
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 710.
  • the first network entity may determine whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment type or a second comment type, the first comment type being less time-tolerant than the second comment type.
  • the first network entity determines whether a duration between the timestamp and a broadcast time (when the comment may be broadcast along with the real-time streaming content) satisfies a threshold.
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 720. If the duration between the timestamp and the broadcast time satisfies the threshold, the first network entity proceeds to block 730.
  • the first network entity in response to determining that the duration between the timestamp and the broadcast time satisfies the threshold, broadcast the comment along with the real-time streaming content.
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 730.
  • the first network entity determines whether the comment is time sensitive (e.g., the flag in the message indicates that the comment is of the first comment type) .
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 740. If the comment is time sensitive, the first network entity proceeds to block 750.
  • the first network operating entity refrains from broadcasting the comment along with the real-time streaming content.
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 750.
  • the first network entity proceeds to block 730 and broadcasts the comment along with the real-time streaming content.
  • the first network entity may broadcasts the comment along with the real-time streaming content.
  • FIG. 8 is a block diagram of an exemplary network unit 800 according to some aspects of the present disclosure.
  • the network unit 800 may be a component of a content provider such as the content provider 210 discussed above in FIGS. 2 and 6 discussed above or the content provider 308 discussed above in FIG. 3.
  • the network unit 800 may include a processor 802, a memory 804, an interactive content module 808, a transceiver 810 including a modem subsystem 812 and a frontend unit 814. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 802 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 802 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 804 may include a cache memory (e.g., a cache memory of the processor 802) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 804 may include a non-transitory computer-readable medium.
  • the memory 804 may store instructions 806.
  • the instructions 806 may include instructions that, when executed by the processor 802, cause the processor 802 to perform operations described herein, for example, aspects of FIGS. 2-7. Instructions 806 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 802) to control or command the wireless communication device to do so.
  • processors such as processor 802
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc.
  • “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the interactive content module 808 may be implemented via hardware, software, or combinations thereof.
  • the interactive content module 808 may be implemented as a processor, circuit, and/or instructions 806 stored in the memory 804 and executed by the processor 802.
  • the interactive content module 808 can be integrated within the modem subsystem 812.
  • the interactive content module 808 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 812.
  • the interactive content module 808 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-7.
  • the interactive content module 808 is configured to provide real-time streaming content to an operator network (e.g., the network 220 and/or 630) for broadcasting, receive, from a UE (e.g., the UEs 115, 230, 302, and/or 1100) , a first message associated with the real-time streaming content and including a user ID associated with the UE, determine at least one of a latency or a reliability based on the user ID, transmit, to a second network entity (e.g., a unicast network) , an indication of the user ID and the at least one of the latency or the reliability, and receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  • a UE e.g., the UEs 115, 230
  • the second message may include a comment, a timestamp of the real-time streaming content associated with the comment, and/or a flag indicating whether the comment is of a first comment type or a second comment type, where the first comment type being less time-tolerant than the second comment type.
  • the interactive content module 808 may be further configured to broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold.
  • the interactive content module 808 may be further configured to broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type.
  • the interactive content module 808 may be further configured to refrain from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold. In some aspects, the interactive content module 808 may be further configured to refraining from broadcasting the comment along with the real-time streaming content further based on a determination that the comment is associated with the first comment type.
  • the transceiver 810 may include the modem subsystem 812 and the frontend unit 814.
  • the transceiver 810 can be configured to communicate bi-directionally with other devices, such as the BSs 105, 205, and 400 and/or another core network element.
  • the modem subsystem 812 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, etc.
  • the frontend unit 814 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, optical to electrical conversion or electrical to optical conversion, etc.
  • modulated/encoded data e.g., media content, media content along with users’ comments, and/or indications of users’ latency and/or reliability requirements
  • modulated/encoded data e.g., media content, media content along with users’ comments, and/or indications of users’ latency and/or reliability requirements
  • modulated/encoded data e.g., media content, media content along with users’ comments, and/or indications of users’ latency and/or reliability requirements
  • modulated/encoded data e.g., media content, media content along with users’ comments, and/or indications of users’ latency and/or reliability requirements
  • modulated/encoded data e.g., media content, media content along with users’ comments, and/or indications of users’ latency and/or reliability requirements
  • modulated/encoded data e.g., media content, media content along with users’ comments, and/or indications of users’ latency and/or reliability requirements
  • modulated/encoded data
  • FIG. 9 is a block diagram of an exemplary network unit 900 according to some aspects of the present disclosure.
  • the network unit 900 may be a component of an operator network such as the operator network 220 discussed above in FIG. 2, the network function component 306 discussed above in FIG. 3, or a component of a core network such as the core network 622 discussed above in FIG. 6.
  • the network unit 900 may include a processor 902, a memory 904, a network function module 908, a transceiver 910 including a modem subsystem 912 and a frontend unit 914. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 902 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 902 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 904 may include a cache memory (e.g., a cache memory of the processor 902) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 904 may include a non-transitory computer-readable medium.
  • the memory 904 may store instructions 906.
  • the instructions 906 may include instructions that, when executed by the processor 902, cause the processor 902 to perform operations described herein, for example, aspects of FIGS. 2-6. Instructions 906 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
  • the network function module 908 may be implemented via hardware, software, or combinations thereof.
  • the network function module 908 may be implemented as a processor, circuit, and/or instructions 906 stored in the memory 904 and executed by the processor 902.
  • the network function module 908 can be integrated within the modem subsystem 912.
  • the network function module 908 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 912.
  • the network function module 908 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-6.
  • the network function module 908 is configured to receive, from a content provider (e.g., the content provider 210, 308, and/or the network unit 800 of a content provider) , an indication of at least one of a latency or a reliability associated with a user ID, translate the user ID to a UE ID based on a user-to-UE ID mapping (e.g., stored at the memory 904) , assign and establish a PDU session with a UE of the UE ID via a serving BS of the UE, determine a QoS for the PDU session, transmit a PDU session resource setup request to the serving BS requesting the BS to allocate resources satisfying the QoS for the UE for UL transmission, receive a PDU session resource setup response form the serving BS, receive a user comment (related to real-time streaming content of the content provider) from the UE via the serving BS (
  • the transceiver 910 may include the modem subsystem 912 and the frontend unit 914.
  • the transceiver 910 can be configured to communicate bi-directionally with other devices, such as the BSs 105, 205, and 400 and/or another core network element.
  • the modem subsystem 912 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, etc.
  • the frontend unit 914 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, optical to electrical conversion or electrical to optical conversion, etc.
  • modulated/encoded data e.g., resource allocation request, PDU session resource setup request, users’ comments related to real-time streaming content
  • modulated/encoded data e.g., resource allocation request, PDU session resource setup request, users’ comments related to real-time streaming content
  • the modem subsystem 912 and the frontend unit 914 may be separate devices that are coupled together at the network unit 900 to enable the network unit 900 to communicate with other devices.
  • the frontend unit 914 may transmit signal carrying the modulated and/or processed data over an electrical and/or optical link.
  • the frontend unit 914 may further receive signals carrying data messages (e.g., PDU session resource setup response, user’s comments) and provide the received data messages for processing and/or demodulation at the transceiver 910.
  • FIG. 10 is a block diagram of an exemplary BS 1000 according to some aspects of the present disclosure.
  • the BS 1000 may be a BS 105 discussed above in FIG. 1, a BS 224 discussed above in FIGS. 2 and 6, or a BS 304 discussed above in FIG. 3.
  • the BS 1000 may include a processor 1002, a memory 1004, a resource module 1008, a communication module 1009, a transceiver 1010 including a modem subsystem 1012 and a RF unit 1014, and one or more antennas 1016. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 1002 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 1002 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 1004 may include a cache memory (e.g., a cache memory of the processor 1002) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 1004 may include a non-transitory computer-readable medium.
  • the memory 1004 may store instructions 1006.
  • the instructions 1006 may include instructions that, when executed by the processor 1002, cause the processor 1002 to perform operations described herein, for example, aspects of FIGS. 2-6. Instructions 1006 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
  • the resource module 1008 and/or the communication module 1009 may be implemented via hardware, software, or combinations thereof.
  • the resource module 1008 and/or communication module 1009 may be implemented as a processor, circuit, and/or instructions 1006 stored in the memory 1004 and executed by the processor 1002.
  • the resource module 1008 and/or the communication module 1009 may be used for various aspects of the present disclosure.
  • the resource module 1008 and/or the communication module 1009 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-6.
  • the communication module 1009 is configured to receive an indication of at least one of a latency or a reliability associated with a UE (e.g., the UEs 115, 230, 302, and/or 1100) .
  • the resource module 1008 is configured to determine an uplink for the UE based on the at least one of the latency the reliability.
  • the communication module 1009 is configured to transmit an indication of the uplink resource to the UE.
  • the uplink resource is a configured grant resource.
  • the communication module 1009 is configured to receive, from a core network function component (e.g., the network function component 306 and/or the network unit 900) , a PDU session resource setup request requesting for a high QoS PDU session with the UE, coordinate with the resource module 1008 to allocate resources satisfying the QoS to the UE, and respond to the PDU session resource setup request by transmitting a PDU session resource setup response to the core network function component.
  • a core network function component e.g., the network function component 306 and/or the network unit 900
  • the communication module 1009 is further configured to receive, from the UE, a first message associated with the real-time streaming content and forward, to the content provider the first message.
  • the first message may include a comment associated with the real-time streaming content.
  • the communication module 1009 is further configured to receive the first message in a MSG3 from a four-step random access procedure.
  • the communication module 1009 is further configured to receive the first message in a MSGA from a two-step random access procedure.
  • the communication module 1009 is further configured to receive a scheduling grant from the UE, allocate a UL resource according to the scheduling grant, transmit the scheduling grant to the UE, and receive the first message in a PUSCH according to a scheduling grant.
  • the transceiver 1010 may include the modem subsystem 1012 and the RF unit 1014.
  • the transceiver 1010 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element.
  • the modem subsystem 1012 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 1014 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., configured grant, UL scheduling grant, PDU session resource setup response, RRC configuration, MSG2, MSG4, MSGB
  • modulated/encoded data e.g., configured grant, UL scheduling grant, PDU session resource setup response, RRC configuration, MSG2, MSG4, MSGB
  • the RF unit 1014 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 1012 and/or the RF unit 1014 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
  • the RF unit 1014 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 1016 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 according to some aspects of the present disclosure.
  • the antennas 1016 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 1010.
  • the transceiver 1010 may provide the demodulated and decoded data (e.g., comments related to real-time streaming content, scheduling request, MSG1, MSG3, MSGA, PUSCH) to the resource module 1008 and the communication module 1009 for processing.
  • the antennas 1016 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the BS 1000 can include multiple transceivers 1010 implementing different RATs (e.g., NR and LTE) .
  • the BS 1000 can include a single transceiver 1010 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 1010 can include various components, where different combinations of components can implement different RATs.
  • FIG. 11 is a block diagram of an exemplary UE 1100 according to some aspects of the present disclosure.
  • the UE 1100 may be a UE 115 as discussed above in FIG. 1, a UE 230 as discussed above in FIGS. 2 and 6, or a UE 302 discussed above in FIG. 3.
  • the UE 1100 may include a processor 1102, a memory 1104, an interactive content module 1108, then communication module 1109, a transceiver 1110 including a modem subsystem 1112 and a radio frequency (RF) unit 1114, and one or more antennas 1116.
  • RF radio frequency
  • the processor 1102 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 1102 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 1104 may include a cache memory (e.g., a cache memory of the processor 1102) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 1104 includes a non-transitory computer-readable medium.
  • the memory 1104 may store, or have recorded thereon, instructions 1106.
  • the instructions 1106 may include instructions that, when executed by the processor 1102, cause the processor 1102 to perform the operations described herein with reference to the UEs 115 in connection with aspects of the present disclosure, for example, aspects of FIGS. 2-6. Instructions 1106 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
  • the interactive content module 1108 and/or the communication module 1109 may be implemented via hardware, software, or combinations thereof.
  • the interactive content module 1108 and/or the communication module 1109 may be implemented as a processor, circuit, and/or instructions 1106 stored in the memory 1104 and executed by the processor 1102.
  • the interactive content module 1108 and/or the communication module 1109 may be used for various aspects of the present disclosure.
  • the interactive content module 1108 and/or the communication module 1109 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-6.
  • the interactive content module 1108 is configured to receive real-time streaming content from ta content provider (e.g., the content provider 210 and/or 308) and receive a comment associated with the real-time streaming content, for example, from a user.
  • the communication module 1109 is configured to transmit the comment to the content provider, for example, via a BS such as the BSs 105, 224, and/or 800.
  • the communication module 1109 is configured to transmit a random access message including a first message associated with the real-time streaming content.
  • the first message may include a user ID, a comment associated with the real-time streaming content, a timestamp of the real-time streaming content associated with the comment, and/or a flag indicating whether the comment is of a first comment type or a second comment type, where the first comment type may be more time sensitive than second comment type.
  • the first message may not include the timestamp, for example, when the comment is not a time sensitive comment.
  • the first message may include a CRC scrambled with the user ID.
  • the communication module 1009 is configured to perform a four-step random access procedure and transmit the first message in a MSG3. In some aspects, the communication module 1009 is configured to perform a two-step random access procedure and transmit the first message in a MSGA. In some aspects, the communication module 1009 is configured to receive a configuration for transmitting the MSG3 or MSGA including the comment at a transmit power higher than a nominal transmit power (e.g., for normal operation data transmission) . In some aspects, the communication module 1009 is configured to receive a configuration (e.g., RRC configuration) for a configured resource, and transmit, in the configured resource, a second message associated with the real-time streaming content.
  • a configuration e.g., RRC configuration
  • the transceiver 1110 may include the modem subsystem 1112 and the RF unit 1114.
  • the transceiver 1110 can be configured to communicate bi-directionally with other devices, such as the BSs 105.
  • the modem subsystem 1112 may be configured to modulate and/or encode the data from the memory 1104 and/or the communication module 1109 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 1114 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., PUSCH, PUCCH
  • the RF unit 1114 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 1112 and the RF unit 1114 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
  • the RF unit 1114 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may include one or more data packets and other information) , to the antennas 1116 for transmission to one or more other devices.
  • the antennas 1116 may further receive data messages transmitted from other devices.
  • the antennas 1116 may provide the received data messages for processing and/or demodulation at the transceiver 1110.
  • the transceiver 1110 may provide the demodulated and decoded data (e.g., RRC configuration, SSB transmission schedule, slot format configuration, slot format reconfiguration, PDCCH DCI, SSBs, SSB muting pattern, SSB frequency-shifting configuration, SSB splitting configuration, UL allocation) to the communication module 1109 for processing.
  • the antennas 1116 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the RF unit 1114 may configure the antennas 1116.
  • the UE 1100 can include multiple transceivers 1110 implementing different RATs (e.g., NR and LTE) .
  • the UE 1100 can include a single transceiver 1110 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 1110 can include various components, where different combinations of components can implement different RATs.
  • FIG. 12 is a flow diagram of a communication method 1200 according to some aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a network entity or other suitable means for performing the steps.
  • a network entity such as the content server 212, a server of the content provider 308, and/or the network unit 800, may utilize one or more components, such as the processor 802, the memory 804, the interactive content module 808, and/or the transceiver 810, to execute the steps of method 1200.
  • the method 1200 may employ similar mechanisms as in methods 300, 400, 500, and 700 discussed above with respect to FIG. 3, 4, 5, and 7, respectively.
  • the method 1200 includes a number of enumerated steps, but aspects of the method 1200 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • a first network entity receives, from a UE, a first message associated with real-time streaming content, the first message including a user ID associated with the UE.
  • the first network entity may be associated with a content provider such as the content provider 210 and/or 308.
  • the first network entity may be a network server or a component, such as the content server 212 or the network unit 800, of the content provider.
  • the real-time streaming content may be similar to the content 216 may include a TV show, a comic movie, an online promotion program, and/or the like.
  • the comment may be a user comment on a certain portion or a certain event of the real-time streaming content.
  • the comment may be in a text format, character strings, and/or any suitable formant.
  • the UE may be similar to the UEs 115, 230, 302, and/or 1000.
  • the first network entity unit may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1210.
  • the first network entity may receive a MSGA including the first message, for example, as shown in the method 500 discussed above with reference to FIG. 5.
  • the first network entity may receive a MSG3 including the first message, for example, as shown in the method 400 discussed above with reference to FIG. 4.
  • the first network entity may receive the first message via a PUSCH.
  • the first message may include a comment associated with the real-time streaming content.
  • the first message may include a CRC scrambled with the user ID.
  • the first network entity determines at least one of a latency or a reliability based on the user ID.
  • the first network entity may determine whether the user ID is associated with a VIP user of the real-time streaming content and may determine a lower latency and/or a higher liability for a VIP user than for a non-VIP user.
  • the latency may be in units of time and/or the reliability may be terms of reliability rate or packet error rate.
  • the at least one of the latency or the reliability rate may be in the format of a traffic priority class, a QoS, or any suitable format.
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1220.
  • the first network entity transmits, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability.
  • the second network entity may be associated with a unicast network such as the network 620 or an operator network such as the network 220 providing unicast services.
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1230.
  • the first network entity receives, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  • the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1240.
  • the first network entity may receive, from the UE in a configured grant resource associated with the second network entity, where the second message associated with the real-time streaming content.
  • the first network entity may receive, from the UE, the second message including a comment associated with the real-time streaming content and a timestamp of the real-time streaming content associated with the comment. In some aspects, as part of receiving the second message, the first network entity may receive, from the UE, the second message including a comment associated with the real-time streaming content, where the second message excludes a timestamp of the real-time streaming content based on a time tolerance associated with the comment.
  • the first network entity may further determine whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment type or a second comment type, where the first comment type being less time-tolerant than the second comment type, for example, as shown in the method 700 discussed above with reference to FIG. 7.
  • the first network entity may further broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold.
  • the first network entity may further broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type. In some aspects, the first network entity may further refrain from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold. In some aspects, the first network entity may refrain from broadcasting the comment along with the real-time streaming content further based on a determination that the comment is associated with the first comment type. In some aspects, as part of receiving the second message at block 1240, the first network entity may receive the second message including an indication indicating whether the comment is associated with the first comment type or the second comment type.
  • the second network entity may determine the uplink resource based on the at least one of the latency or the reliability. In aspects, the second network entity may transmit, to the UE, an indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE. In some aspects, the second network entity may transmit, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power. In some aspects, the second network entity may establish a PDU session with the UE. The PDU session may have a QoS satisfying the at least one of the latency or the reliability.
  • FIG. 13 is a flow diagram of a communication method 1300 according to some aspects of the present disclosure. Aspects of the method 1300 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps.
  • a wireless communication device such as the UE 115, 230, 302, or 1100, may utilize one or more components, such as the processor 1102, the memory 1104, the interactive content module 1108, the communication module 1109, and/or the transceiver 1110, to execute the steps of method 1300.
  • the method 1300 may employ similar mechanisms as in methods 300, 400, and/or 500 discussed above with respect to FIG. 3, 4, and 5, respectively.
  • the method 1300 includes a number of enumerated steps, but aspects of the method 1300 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • a UE receives, from a content provider, real-time streaming content.
  • the UE may be a UE 115, 230, 302, and/or 1100 as discussed above.
  • the real-time streaming content may be similar to the content 216 may include a TV show, a comic movie, an online promotion program, and/or the like.
  • the UE may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116, to perform the aspects of 1310.
  • the UE may view the real-time streaming content on a display or screen of the UE.
  • the UE transmits a random access message including a first message associated with the real-time streaming content.
  • the UE may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116, to perform the aspects of 1320.
  • the UE may transmit a MSGA including the first message, for example, as shown in the method 500 discussed above with reference to FIG. 5.
  • the UE may transmit a MSG3 including the first message, for example, as shown in the method 400 discussed above with reference to FIG. 4.
  • the UE may transmit the random access message including the first message indicating at least one of a comment associated with the real-time streaming content or a user ID associated with the UE.
  • the comment may be a user comment on a certain portion or a certain event of the real-time streaming content.
  • the comment may be in a text format, character strings, and/or any suitable formant.
  • the first message may include a CRC scrambled with the user ID.
  • the first message may include a timestamp of the real-time streaming content associated with the comment.
  • the first message may include the timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance less than a threshold.
  • the first message may exclude a timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance greater than a threshold.
  • the UE may transmit the random access message based on a transmit power higher than a nominal transmit power. In aspects, the UE may further receive an indication of the transmit power for transmitting the random access message.
  • the UE may further receive a configuration (e.g., RRC configuration) for a configured resource, and transmit, in the configured resource, a second message associated with the real-time streaming content.
  • a configuration e.g., RRC configuration
  • FIG. 14 is a flow diagram of a communication method 1400 according to some aspects of the present disclosure. Aspects of the method 1400 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps.
  • a computing device e.g., a processor, processing circuit, and/or other suitable component
  • a BS such as the BSs 105, 224, 304, and/or 1000
  • the method 1400 may employ similar mechanisms as in methods 300, 400, and/or 500 discussed above with respect to FIG. 3, 4, and/or 5, respectively.
  • the method 1400 includes a number of enumerated steps, but aspects of the method 1400 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • a network entity receives, from a content provider of real-time streaming content, an indication of a latency or a reliability associated with a UE.
  • the network entity may be a component of an operator network such as the network 220 and/or the unicast network 620.
  • the network entity may be a BS such as the BSs 105, 224, 304, and/or 1000.
  • the network entity may be a network function component such as the network function component 306 or the network unit 900 of a core network such as the network 622.
  • the real-time streaming content may be similar to the content 216 may include a TV show, a comic movie, an online promotion program, and/or the like.
  • the latency may be in units of time and/or the reliability may be terms of reliability rate or packet error rate.
  • the at least one of the latency or the reliability rate may be in the format of a traffic priority class, a QoS, or any suitable format.
  • the network entity may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the block 1410.
  • the network entity determines an uplink resource for the UE based on the at least one of the latency or the reliability. For instance, the network entity may allocate configured grant resources for the UE so that the UE may transmit without having to request for a UL schedule and wait for a scheduling grant. The network entity may assign the UE with a higher priority when performing uplink scheduling. In some instances, the network entity may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the block 1420.
  • the network entity may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the block 1420.
  • the network entity transmits, to the UE, an indication of the uplink resource.
  • the network entity may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the block 1430.
  • the network entity may receive, from the content provider, the indication further indicating a user ID.
  • the network entity may transmit, to the UE, the indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
  • the network entity further receives, from the UE, a first message associated with the real-time streaming content.
  • the network entity may also forward, to the content provider the first message.
  • the network entity may receive a MSGA including the first message, for example, as shown in the method 500 discussed above with reference to FIG. 5.
  • the network entity may receive a MSG3 including the first message, for example, as shown in the method 400 discussed above with reference to FIG. 4.
  • the network entity may receive the first message via a PUSCH.
  • the network entity may further transmit, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power.
  • the network entity may further establish a PDU session with the UE, where the PDU session may having a QoS satisfying the at least one of the latency or reliability.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Wireless communications systems and methods related to low-latency transmissions for rolling comments in real-time streaming content broadcast are provided. A first network entity receives, from a user equipment (UE), a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE. The first network entity determines at least one of a latency or a reliability based on the user ID. The first network entity transmits, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability. The first network entity receives, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.

Description

LOW-LATENCY TRANSMIT FOR ROLLING COMMENTS TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to providing low-latency transmissions for rolling comments in real-time streaming content broadcast.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the long term evolution (LTE) technology to a next generation new radio (NR) technology, which may be referred to as 5 th Generation (5G) . For example, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum. The advancements in NR technologies may enable deployments of new applications and services and/or enhancements to existing applications and services, such as mobile broadcast services.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all  contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
For example, in an aspect of the disclosure, a method of wireless communication, the method including receiving, by a first network entity from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; determining, by the first network entity, at least one of a latency or a reliability based on the user ID; transmitting, by the first network entity to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and receiving, by the first network entity from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
In an additional aspect of the disclosure, a method of wireless communication, the method including receiving, by a user equipment (UE) from a content provider (CP) , real-time streaming content; and transmitting, by the UE, a random access message including a first message associated with the real-time streaming content.
In an additional aspect of the disclosure, a method of wireless communication, the method including receiving, by a network entity from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; determining, by the network entity, an uplink resource for the UE based on the at least one of the latency or the reliability; and transmitting, by the network entity to the UE, an indication of the uplink resource.
In an additional aspect of the disclosure, a network system including a first network entity including a transceiver configured to receive, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; and a processor configured to determine at least one of a latency or a reliability based on the user ID, where the transceiver is further configured to transmit, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
In an additional aspect of the disclosure, a user equipment (UE) including a transceiver configured to receive, from a content provider (CP) , real-time streaming content; and transmit a random access message including a first message associated with the real-time streaming content.
In an additional aspect of the disclosure, a network entity including a transceiver configured to receive, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; and a processor configured to determine an uplink resource for the UE based on the at least one of the latency or the reliability, where the transceiver is further configured to transmit, to the UE, an indication of the uplink resource.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a first network entity to receive, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; code for causing the first network entity to determine at least one of a latency or a reliability based on the user ID, code for causing the first network entity to transmit, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and code for causing the first network entity to receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to receive, from a content provider (CP) , real-time streaming content; and code for causing the UE to transmit a random access message including a first message associated with the real-time streaming content.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon, the program code including code for causing a network entity to receive, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; code for causing the network entity to determine an uplink resource for the UE based on the at least one of the latency or the reliability, code for causing the network entity to transmit, to the UE, an indication of the uplink resource.
In an additional aspect of the disclosure, a first network entity including means for receiving, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; means for determining at least one of a latency or a reliability based on the user ID, means for transmitting, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and means for receiving, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
In an additional aspect of the disclosure, a user equipment (UE) including means for receiving, from a content provider (CP) , real-time streaming content; and means for transmitting a random access message including a first message associated with the real-time streaming content.
In an additional aspect of the disclosure, a network entity including means for receiving, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; means for determining an uplink resource for the UE based on the at least one of the latency or the reliability, means for transmitting, to the UE, an indication of the uplink resource.
Other aspects, features, and embodiments of the present invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of the present invention in conjunction with the accompanying figures. While features of the present invention may be discussed relative to certain embodiments and figures below, all embodiments of the present invention can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments of the invention discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
FIG. 2 illustrates a network system serving media content according to some aspects of the present disclosure.
FIG. 3 is signaling diagram illustrating a low-latency rolling comment communication method according to some aspects of the present disclosure.
FIG. 4 is a signaling diagram illustrating a connection-less rolling comment communication method according to some aspects of the present disclosure.
FIG. 5 is a signaling diagram illustrating a connection-less rolling comment communication method according to some aspects of the present disclosure.
FIG. 6 illustrates a network system serving media content according to some aspects of the present disclosure.
FIG. 7 is a flow diagram of a rolling comment communication method according to some aspects of the present disclosure.
FIG. 8 is a block diagram of an exemplary network unit according to some aspects of the present disclosure.
FIG. 9 is a block diagram of an exemplary network unit according to some aspects of the present disclosure.
FIG. 10 is a block diagram of an exemplary base station according to some aspects of the present disclosure.
FIG. 11 is a block diagram of an exemplary user equipment (UE) according to some aspects of the present disclosure.
FIG. 12 is a flow diagram of a communication method according to some aspects of the present disclosure.
FIG. 13 is a flow diagram of a communication method according to some aspects of the present disclosure.
FIG. 14 is a flow diagram of a communication method according to some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR,  with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) . For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
A media content provider or distributor may stream media content to streaming clients, which may take the form of various user end devices, such as televisions, notebook computers, mobile handsets, and/or smartphones. Some example of media content may include television programs, video games, interactive games, online promotions, movies, comics movies, live streams,  and/or live broadcasts. In some instances, a user may receive the media content based on a subscription with the content provider. In some other instances, a user may receive the media content without having a subscription with the content provider.
Media content may be delivered from a streaming server to a user over a broadcast network, which may be an LTE network or a 5G network. Some content providers may enhance user experiences by providing real-time user interactions. For instance, a content provider may stream a content in real-time (e.g., live stream) and may allow a user to send messages and/or comments associated with the real-time streaming content. The comments may be in the form of texts, for example, commenting on the real-time streaming content. In some instances, the comments may also be in the form of gifts, for example, in gaming content. The user’s comment may be delivered to the content provider via a mobile network, such as a 5G or LTE network. The content provider may broadcast the user’s comments along with the real-time streaming content. The user’s comments may be projected or displayed on the screens of the user’s device, for example, overlaid on top of the real-time streaming content. The content provider may continue to update the projection of users’ comments in real-time as new users’ comments are received. Thus, the reception of the real-time messages and/or comments from users and the projection of the real-time users’ messages along with real-time streaming content or comments may be referred to as rolling comments.
Rolling comments may have various performance requirements, such as low latency, massive concurrent comments, and/or high reliability for some users, for example, very important person (VIP) users. For instance, rolling comments may require a round-trip latency in the order of hundreds of milliseconds. The round-trip latency may refer to the time when a user transmits a comment for real-time streaming content to the time when the comment is projected on a screen along with the real-time streaming content. Since a user may comment on a certain portion or a certain event of the real-time streaming content, the comment may be out-of-date or irrelevant to the real-time streaming content if there is a large round-trip latency. Additionally, in some instances, real-time streaming content may have tens of millions of users or audiences, and thus a massive amount of comments may be transmitted by users concurrently or at about the same time to the content provider providing the real-time streaming content. Further, VIP users may desire to have a high reliability and/or a lower latency to guarantee the broadcast of the VIP users’ comments along with the real-time comments. While some optimizations for rolling comment communication can be performed above the transmission control protocol (TCP) layer, for example, in WebSocket and/or or Comet, the higher layer optimizations may be limiting. There is currently no optimization on layers below the TCP layer. As such, mobile networks are not configured to match the  performance requirements (e.g., low latency, massive concurrent comments, and/or reliability for VIP users) of the rolling comments.
The present application describes mechanisms for providing low-latency transmissions for rolling comments in real-time streaming content broadcast. For example, a content provider may provide real-time streaming content over an operator network. During the live stream, the content provider may receive a first message from a UE. The first message may include a comment associated with a certain portion or a certain event of the real-time streaming content. The first message may also include a user identifier (ID) associated with the UE. The content provider may determine at least one of a reliability or a latency requirement based on the user ID. For instance, the content provider may determine whether the UE is a VIP user based on the user ID. The content provider may determine a low latency and/or a higher reliability requirement for a VIP user than for a non-VIP user. The content provider may indicate the at least one of the latency and/or reliability requirement to a unicast network serving the UE. The unicast network may assign the UE with uplink radio resources satisfying or guaranteeing the at least one of the latency and/or reliability requirement. Thus, the UE may transmit a second message including a comment associated with the real-time streaming content to the content provider using the allocated uplink radio resource. Since the allocated uplink radio resource satisfies the at least one of the latency and/or reliability requirement, the second message may reach the content provider with a low-latency and/or a high-reliability, allowing the content provider to broadcast the comment in the second message along with the real-time streaming content with a minimal delay (from the time the UE transmit the second message) .
In some aspects, the unicast network may assign a high quality of service (QoS) PDU flow for the UE to transmit comments to the content provider. The QoS may be determined based on the at least one of the latency or reliability requirement. In some aspects, the unicast network may configure the UE with configured grant resources. The UE may transmit in a configured grant resource without having to request for a schedule from a BS and receive a dynamic UL grant from the BS for each resource. Accordingly, when the UE has a comment to be sent to the content provider, the UE may transmit the comment in a configured resource without the overhead of requesting for a schedule and waiting for a scheduling grant.
In some aspects, the UE may transmit a comment to the content provider using a connection-less message, such as a random access message. For instance, the size of a comment may be relatively small, for example, a few bytes to tens of bytes. As such, the overhead of establishing a connection (e.g., a radio resource control (RRC) connection) and then transmitting the comment after the connection may be high, resulting in a high latency for the comment  transmission. To reduce the overhead and latency, the UE may transmit a comment in a random access message 3 (MSG3) of a four-step random access procedure or in a random access message A (MSGA) of a two-step random access procedure.
In some aspects, the UE may include a timestamp of the real-time streaming content associated with a comment along with the comment in a message to the content provider. The UE may also include a flag in the message indicating whether the comment is time sensitive or not. As discussed above, some comments may be relevant to the real-time streaming content for a short duration of time. Thus, upon receiving the message, the content provider may determine whether to broadcast the comment along with the real-time streaming content based on the time stamp and/or the flag. For instance, if the delay from the time (e.g., indicated by the timestamp) when the comment was generated to the time the comment is received and ready for broadcast is short (e.g., satisfying a threshold) , the content provider may broadcast the comment along with the real-time streaming content. If a duration between the time (e.g., indicated by the timestamp) when the comment was generated to the time the comment is received and ready for broadcast is long (e.g., fails to satisfy a threshold) , the content provider may or may not broadcast the comment along with the real-time streaming content depending on whether the comment is time sensitive or not. If the delay is long and the comment is time sensitive (e.g., indicated by the flag) , the content provider may not broadcast the comment along with the real-time streaming content. If the delay is long and the comment is not time sensitive, the content provider may broadcast the comment along with the real-time streaming content.
Aspects of the present disclosure can provide several benefits. For example, the allocation of low-latency uplink radio resources (e.g., configured grant resources) and/or the assignment of a high QoS PDU session may allow VIP users to transmit comments to a content provider with a low latency. The use of connection-less message (e.g., MSG3 or MSGA) for carrying comments can reduce signaling overhead associated with connection setup, and thus may allow support for massive amount concurrent comments. The inclusion of timestamp of real-time streaming content associated with a comment and/or an indication of a comment type (e.g., time sensitive or time tolerant) in a message to a content provider may allow the content provider to avoid broadcasting commentsa that are out-of-date or no longer relevant for the real-time streaming content.
FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities. A BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.  Each BS 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
A BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. A UE 115 may also be a machine specifically configured for connected communication, including  machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 105 may also communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various examples, the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and 105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105e, or in multi-step-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network  efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and a BS 105.
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some instances, the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
In some aspects, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a TDD mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some aspects, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL  communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. A UL-centric subframe may include a longer duration for UL communication than for UL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining minimum system information (e.g., RMSI) , and other system information (OSI) ) to facilitate initial network access. In some instances, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (e.g., PDSCH) .
In some aspects, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 115 may receive a MIB. The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI and/or OSI. The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. In some examples, the random access procedure may be a four-step random access procedure. For example, the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response. The random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator. Upon receiving the random access response, the UE 115 may transmit a connection request to the BS 105  and the BS 105 may respond with a connection response. The connection response may indicate a contention resolution. In some examples, the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively. In some examples, the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission (MSGA) and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission (MSGB) .
After establishing a connection, the UE 115 may initiate an initial network attachment procedure with the network 100. When the UE 115 has no active data communication with the BS 105 after the network attachment, the UE 115 may return to an idle state (e.g., RRC idle mode) . Alternatively, the UE 115 and the BS 105 can enter an operational state or active state, where operational data may be exchanged (e.g., RRC connected mode) . For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The BS 105 may transmit a DL communication signal to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
In some aspects, the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service. The BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH. The BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH. The DL data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105. Conversely, if the UE 115 fails to receive the DL transmission successfully, the UE 115 may transmit a HARQ NACK to the BS 105. Upon receiving a HARQ NACK from the UE 115, the BS 105 may retransmit the DL data packet to the UE 115. The retransmission may include the same coded version of DL data as the initial transmission. Alternatively, the retransmission may include a different coded version of the DL data than the initial transmission. The UE 115 may apply soft-combining to combine the encoded data received from the initial transmission and the retransmission for decoding. The BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
In some aspects, the network 100 may operate over a system BW or a component carrier (CC) BW. The network 100 may partition the system BW into multiple BWPs (e.g., portions) . A  BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) . The assigned BWP may be referred to as the active BWP. The UE 115 may monitor the active BWP for signaling information from the BS 105. The BS 105 may schedule the UE 115 for UL or DL communications in the active BWP. In some aspects, a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications. For example, the BWP pair may include one BWP for UL communications and one BWP for DL communications.
In some aspects, the network 100 may operate over a shared channel, which may include shared frequency bands and/or unlicensed frequency bands. For example, the network 100 may be an NR-U network operating over an unlicensed frequency band. In such an aspect, the BSs 105 and the UEs 115 may be operated by multiple network operating entities. To avoid collisions, the BSs 105 and the UEs 115 may employ a listen-before-talk (LBT) procedure to monitor for transmission opportunities (TXOPs) in the shared channel. A TXOP may also be referred to as COT. For example, a transmitting node (e.g., a BS 105 or a UE 115) may perform an LBT prior to transmitting in the channel. When the LBT passes, the transmitting node may proceed with the transmission. When the LBT fails, the transmitting node may refrain from transmitting in the channel.
An LBT can be based on energy detection (ED) or signal detection. For an energy detection-based LBT, the LBT results in a pass when signal energy measured from the channel is below a threshold. Conversely, the LBT results in a failure when signal energy measured from the channel exceeds the threshold. For a signal detection-based LBT, the LBT results in a pass when a channel reservation signal (e.g., a predetermined preamble signal) is not detected in the channel. Additionally, an LBT may be in a variety of modes. An LBT mode may be, for example, a category 4 (CAT4) LBT, a category 2 (CAT2) LBT, or a category 1 (CAT1) LBT. A CAT1 LBT is referred to a no LBT mode, where no LBT is to be performed prior to a transmission. A CAT2 LBT refers to an LBT without a random backoff period. For instance, a transmitting node may determine a channel measurement in a time interval and determine whether the channel is available or not based on a comparison of the channel measurement against a ED threshold. A CAT4 LBT refers to an LBT with a random backoff and a variable contention window (CW) . For instance, a transmitting node may draw a random number and backoff for a duration based on the drawn random number in a certain time unit.
In some aspects, the network 100 may support unicast and/or broadcast services. For instance, the network 100 may support mobile broadcast services where media content may be streamed from a streaming server via a BS 105 to one or more UEs 115. Some example of media content may include television programs, video games, interactive games, online promotions,  movies, comics movies, live streams, and/or live broadcasts. As discussed above, some content providers may enhance user experiences by providing real-time user interactions. For instance, a content provider may stream a content in real-time (e.g., live stream) and may allow a user to send messages and/or comments associated with the real-time streaming content. The comments may be in the form of texts, for example, commenting on the real-time streaming content. In some instances, the comments may also be in the form of gifts, for example, in gaming content. The user’s comment may be delivered to the content provider via a mobile network, such as a 5G or LTE network. The content provider may broadcast the user’s comments along with the real-time streaming content. The user’s comments may be projected or displayed on the screen of the user’s device, for example, overlaid on top of the real-time streaming content.
FIG. 2 illustrates a network system 200 serving media content according to some aspects of the present disclosure. The system 200 includes a content provider 210 and an operator network 220 serving a UE 230. The operator network 220 may correspond to a portion of the network 100. The UE 230 may be similar to the UEs 115. For instance, the UE 230 may be a mobile phone, smartphone, vehicles, laptop computer, desktop computer, tablets, and/or interactive TV. At a high level, the content provider 210 may provide media content for live streaming over the operator network 220. The UE 230 may receive the content in real-time via the operator network 220. The content provider 210 may also allow the UE 230 to comment on the live streaming content by sending messages to the content provider 210 via the operator network 220. The content provider 210 may project the UE 230’s comments along with live streaming content in real-time. Although FIG. 2 illustrates the system 200 serving content to one UE 230, it should be understood that in other examples the system 200 can include any suitable number of UEs 230 (e.g., about 2, 5, 10, 100, 1000, or tens of millions) .
The content provider 210 may operate a content server 212 and a content distribution network (CDN) 214. The content server 212 may be a computing server or any network equipment. The content server 212 may include hardware and/or software components configured to generate media content 216. The media content 216 may include a TV show, a comic movie, an online promotion program, and/or the like. The content server 212 may be in communication with the CDN 214.
The CDN 214 may include a group of geographically distributed servers configured to receive the content 216 from the content server 212 and distribute the content 216 to end users (e.g., the UEs 115 and/or 230) via the operator network 220. The geographical distributions of the servers may provide fast delivery of the content 216 to the ends user. For instance, a user may request for a content and the request may be directed to a server that is most optimal in serving the  user. For example, the most optimal server may be a server located closes to the user among the group of servers.
The operator network 220 may be substantially similar to the network 100. The operator network 220 may support broadcasting and unicasting. In the illustrated example of FIG. 2, the operator network 220 includes a BS 226 providing broadcast services and a BS 224 providing unicast services. The  BSs  224 and 226 may be substantially similar to the BSs 105. Although FIG. 2 illustrates the operator network 220 including one BS 224 providing unicast services and one BS 226 providing broadcast services, it should be understood that in other examples the operator network 220 may include any suitable number of BSs (e.g., about 2, 3, 4 or more) and each BS may provide unicast services only, broadcast services only, or a combination of unicast and broadcast services.
The operator network 220 may also include a streaming server 222. The streaming server 222 may be a computer server and may include hardware and/or software components configured to deliver media content streams, for example, streaming media content in real-time. For instance, the streaming server 222 may be configured to implement various types of media codecs (e.g., H. 263, H. 264, and/or MPEG) and/or support various types of media content streaming protocols (e.g., real time streaming protocol (RTSP) and/or MPEG-dynamic adaptive streaming over hypertext transfer protocol (MPEG-DASH) ) . For instance, the streaming server 222 may receive the media content 216 from the CDN 214, apply any suitable encoding and/or decoding to the media content 216, and deliver the media content 216 using a certain streaming protocol to the BS 226 for broadcasting to end users, for example, the UE 230.
The BS 226 may support any suitable radio access technologies (RATs) . In some aspects, the BS 226 may be LTE BS (e.g., eNB) . In some aspects, the BS 226 may be a NR BS (e.g., gNB) . In some aspects, the BS 226 may support both LTE and NR. The BS 226 may broadcast the media content 216 over a radio protocol stack of a corresponding RAT.
The UE 230 may receive the broadcast media content 216 from the BS 226. In some instances, the UE 230 may receive the media content 216 based on a subscription with the content provider 210. In some other instances, the UE 230 may receive the media content 216 without having a subscription with the content provider 210. The UE 230 may operate as client receiving the media content 216. In some aspects, the UE 230 may include hardware and/or software components configured to implement a streaming media player that can stream media content in real-time. In some aspects, the UE 230 may include hardware and/or software components configured to implement a gaming platform supporting various gaming applications.
In some aspects, the content provider 210 may allow a user (e.g., the UE 230) to send messages and/or comments associated with the real-time streaming content 216. The comments may be in the form of texts, for example, commenting on the real-time streaming content. In some instances, the comments may also be in the form of gifts, for example, in gaming content. The user’s comment may be delivered to the content provider 210 via the operator network 220. For instance, a user of the UE 230 receiving the live content 216 may comment on the live content 216. The user may generate a comment about the live content 216. The UE 230 may transmit the comment in the form of messages 232 to the content provider 210 via the BS 224 providing the unicast service.
The BS 224 may support any suitable radio access technologies (RATs) . In some aspects, the BS 224 may be LTE BS (e.g., eNB) . In some aspects, the BS 224 may be a NR BS (e.g., gNB) . In some aspects, the BS 224 may support both LTE and NR. For instance, the UE 230 may establish a connection (e.g., a RRC connection) with the BS 224, for example, using similar a random access mechanisms as discussed above in relation to FIG. 1. The UE 230 may request for an UL grant from the BS 224 for transmitting a message 232 including a comment related to the media content 216. Upon receiving the request, the BS 224 may allocate UL radio resources (e.g., time-frequency resources) for the UE 230 and transmit a UL scheduling grant to the UE 230. The UL scheduling grant may be transmitted in the form of downlink control information (DCI) over a PDCCH. The UL scheduling grant may indicate the allocated UL resources and/or transmit parameters, such as a modulation coding scheme (MCS) and/or transmit power control, to be used for transmitting the message 232.
Upon receiving the UL scheduling grant, the UE 230 may transmit the message 232 to the content provider 210 via the BS 224. The BS 224 may forward the message 232 to the streaming server 222, which may direct the message 232 to the content provider 210. The content provider 210 may include the message 232 (e.g., the UE 230’s comment) in the content 216 at a next time instant for broadcasting. Since the UE 230’s comment is related to the content 216 at a certain point of time (e.g., T1) , it may be desirable for the content provider 210 to broadcast and project the UE 230’s comment along with the content 216 at a time (e.g., T2) with a small delay from the time T1. Otherwise, the UE 230’s comment may no longer be relevant to the content 216 that is being projected. Additionally, in some instances, the UE 230 may be a VIP user of the content 216, and thus it may be desirable to provide a better performance (e.g., latency and reliability) for comments from a VIP user.
Accordingly, the present disclosure provides techniques for providing improves to rolling comments where users’ comments are broadcast and projected along with real-time streaming content.
FIG. 3 is signaling diagram illustrating a low-latency rolling comment communication method 300 according to some aspects of the present disclosure. The method 300 may be implemented among a UE 302, a BS 304, a network function component 306, and a content provider 308 in a network such as the network 100 and/or the system 200. The UE 302 may correspond to the UE 230. The BS 304 may correspond to the BS 225 providing unicast services. In some aspects, the network function component 306 may be a network server in the network 220 providing core network functions, such as user plane function (UPF) , access and mobility function (AMF) , and/or session management function (SMF) . In some other aspects, the network function component 306 may be a media server (e.g., the streaming server 222) . The BS 304 and the network function component 306 may be operated by an operator in an operator network 301 (e.g., a unicast network) similar to the network 220. The content provider 308 correspond to the content provider 210. In some instances, the UE 302 may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116 shown in FIG. 11, to perform the aspects of the method 300. In some instances, the BS 304 may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the method 300. In some instances, the network function component 306 may utilize one or more components, such as the processor 902, the network function module 908, the transceiver 910, to perform aspects of the method 300. In some instances, the content provider 308 may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of the method of 300. Although the method 300 illustrates the content provider 308 serving content to one UE 302, it should be understood that in other examples the content provider 308 may serve content to any suitable number of UEs 302 (e.g., about 2, 5, 10, 100, 1000, or tens of millions) . As illustrated, the method 300 includes a number of enumerated actions, but embodiments of the method 300 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
The method 300 may be implemented while the UE 302 is receiving real-time streaming content (e.g., the content 216) from the content provider 308. For instance, the UE 302 may be executing a streaming media player application, which may be in communication with a radio  protocol stack (e.g., a LTE radio protocol stack or an NR radio protocol stack) . The radio protocol stack may implement functions supporting the reception of the broadcast real-time streaming content.
At action 310, the UE 302 transmits a first message to the content provider 308. The first message may be associated with the real-time streaming content. For instance, the first message may include a comment related to the real-time streaming content. In some other instances, the first message may include a gift, for example, when the content is associated with interactive gaming. In general, a comment may refer to a text comment, a virtual gift object, and/or any objects related to the real-time streaming content. The first message is a real-time message to the content provider 308, where the comment is to be for broadcasting along with the real-time streaming content as discussed above.
The first message may also include a user ID identifying the UE 302. For instance, the content provider 308 may identify the UE 302 based on the user ID. In some instances, the user ID may be associated with a subscription of the content. In some aspects, the first message may include the user ID in a message field designated for indicating a user ID. In some other aspects, the first message may include a cyclic redundancy check (CRC) and the CRC may be masked by the user ID. The CRC masking mechanisms may allow a receiver to identify the user ID without adding additional field in the first message, and thus may provide a smaller payload size for the first message.
The first message may also include timing information associated with the comment. For instance, the user of the UE 302 may comment on the real-time streaming content at a particular point of time (e.g., at time T1) . In other words, the comment may be relevant to the real-time streaming content at that particular time T1. Thus, the first message may include a timestamp (e.g., T1) associated with the real-time streaming content to enable the content provider 308 to correlate the comment and the real-time streaming content. In other words, the first message may indicate a time when the first message is generated, where the time is indicated by referencing to the timeline of the real-time streaming content. In some aspects, the timing information may be optional. For instance, certain comments may not be time-sensitive, and thus timing information may be excluded from the first message. The inclusion or exclusion of timing information and/or the indication of comment type (e.g., time-sensitive or time tolerant) in a comment message, such as the first message, will be discussed more fully below in relation to FIG. 7.
The UE 302 may transmit the first message in a variety of ways. In some aspects, the UE 302 may establish a RRC connection with the BS 304 and have completed a network attachment procedure with the operator network 301. When the UE 302 desires to send a comment about the  content, the UE 302 may transmit a scheduling request (SR) to the BS 304. Upon receiving the SR, the BS 304 may allocate UL radio resources (e.g., time-frequency resources in units of symbols in time and/or RBs in frequency) for the UE 302 to transmit an UL transmission (e.g., PUSCH transmission) . For instance, the BS may transmit an UL scheduling grant in the form of DCI over a PDCCH. The UL scheduling grant may indicate the allocated UL resources and/or transmit parameters, such as a MCS and/or a transmit power control. Upon receiving the UL scheduling grant, the UE 302 may transmit the first message to the BS 304 using the allocated UL resource. The BS 304 may forward the first message to the content provider 308.
In some aspects, the UE 302 may not have a connection (e.g., an RRC connection) established with the BS 304. To setup an RRC connection, the UE 302 may exchange at 2 to 4 messages with the BS 304. Since the first message may have a relatively small payload size, for example, a few bytes to tens of byte, the overhead of an RRC connection setup may be large compared to the first message itself. Accordingly, it may be desirable for the UE 302 to transmit the first message including the connect in a connection-less message. For instance, the UE 302 may transmit the first message using a random access procedure. Instead of performing an RRC connection procedure and transmit the first message in a PUSCH after establishing an RRC connection, which may take time and cause delays, the UE 302 may include the first message in a random access message, such as a MSG3 in a 4-step random access procedure or a MSGA in a 2-step random access procedure as will be discussed more fully below in relation to FIGS. 4 and 5, respectively.
At action 320, upon receiving the first message, the content provider 308 transmits an indication of at least a latency or a reliability associated with the UE 302 to the network function component 306. The indication may also include the user ID associated with the UE 302. In some aspects, the content provider 308 may determine the at least one of the latency or reliability associated with the UE 302 based on the user ID indicated by the first message. For instance, the content provider 308 may maintain an association or mapping between users and their statuses, for example, whether they are VIP users or not. The statuses may also be associated with subscription levels. For instance, a user may pay a higher subscription fee to be a VIP user. Alternatively, a frequency user may be given a VIP status. A VIP user may be given priority over normal users, for example, in terms of latency and/or reliability of the VIP user’s comment. In general, the content provider 308 may determine a latency requirement and/or a reliability requirement for a user based on the user’s ID. In some instances, the latency may be in units of time and/or the reliability may be terms of reliability rate or packet error rate. In some instances, the at least one of the latency or the reliability rate may be in the format of a traffic priority class, a QoS, or any suitable format.
At action 330, upon receiving the indication the network function component 306, the network function component 306 establishes a high QoS PDU session with the UE 302 for uplink communications. For instance, the network function component 306 may perform a translation between the user ID and a UE ID of the UE 302. As discussed above, the user ID is used by the content provider 308 to identify the UE 302 or a user of the UE 302. The UE ID identifies the UE 302 in the operator network 301. In some instances, the network function component 306 may maintain or store a mapping between user IDs and UE IDs, for example, in a memory such as the memory 904 of FIG. 9. After determining a UE ID corresponding to the user ID, the network function component 306 may identify a BS (e.g., the BS 304) serving the UE 302. The network function component 306 may determine a QoS for a PDU session for the UE 302 (to perform UL transmissions) based on the latency requirement and/or reliability requirement indicated by the content provider 308. If the latency requirement and/or reliability requirement is high (e.g., the UE 302 may be a VIP user to the content provider 308, the network function component 306 may assign a high QoS PDU session for the UE 302 (to perform UL transmissions) . The network function component 306 may coordinate with the BS 304 to provide the high QoS PDU session. For instance, the network function component 306 may transmit a PDU session resource setup request to the BS 304 requesting the BS 304 to allocate resources guaranteeing the QoS for the PDU session. The BS 304 may perform resource allocation and respond to the network function component 306 by transmitting a PDU session resource setup response.
At action 340, the BS 304 allocates uplink radio resources for the UE 302 to transmit comments to the content provider 308. The BS 304 may assign the UE 302 with a higher UL scheduling priority, for example, at scheduling in a media access control (MAC) layer. For instance, the MAC scheduling may guarantee a certain QoS for the UE 302, where the QoS may satisfy the latency and/or reliability requirements indicated by the content provider 308. In some aspects, the BS 304 may also configure the UE 302 with configured grant resources for UL transmissions.
A configured UL transmission is an unscheduled transmission in a channel without a scheduled UL grant (e.g., a dynamic scheduling grant via PDCCH) . A configured UL transmission may also be referred to as a grantless, grant-free, or autonomous transmission. The UE 302 may transmit a message carrying a comment (for the real-time streaming content) in a configured resource. The configured-UL data (e.g., message with the comments) may also be referred to as grantless UL data, grant-free UL data, unscheduled UL data, or autonomous UL (AUL) data. Additionally, a configured grant may also be referred to as a grant-free grant, unscheduled grant, or autonomous grant. The resources and other parameters used by the UE for a configured grant  transmission may be provided by the BS 304 in, for example, an RRC configuration, without an explicit grant for each UE transmission.
For example, at action 350, the BS 304 transmits an indication of the uplink resource to the UE 302. The indication may be a configured grant indicating a plurality of resources (e.g., configured grant resources) to the UE 302. The configured grant resource may include resources (e.g., in units of RBs) that are repeated periodically. In other words, the BS 304 may configure periodic resources, which may be semi-static, for the UE 302 to transmit UL data.
As such, at action 360, when the UE 302 has a comment to be transmitted to the content provider 308, the UE 302 may quickly transmit a second message including the comment using a configured grant resource without having to request for an UL schedule and wait for the BS 304 to grant an UL allocation for transmission. Accordingly, comments from the UE 302 to the content provider 308 may have a low latency. The second message may be substantially similar to the first message. For example, the second message may include the comment and the user ID and may optionally include timing information associated with the comment. The timing information may be a timestamp of the real-time streaming content associated with the comment.
Upon receiving the second message, the content provider 308 may broadcast the comment in the second message along with the real-time streaming content. The process of the UE 302 transmitting comments related to the real-time streaming content (using the configured resources) to the content provider 308 and the content provider 308 broadcasting the UE 302’s comments along with real-time streaming content may continue for a duration of the live stream or for an entire duration of the live stream.
Since the UE 302 may not always have a comment for the real-time streaming content, there may be some configured grant resources that are unused by the UE 302. In some aspects, when there is a long duration when the UE 302 does not have any comment for the real-time streaming content, the BS 304 can de-configure the configured grant resource and allocate the resources to serve other users so that resource utilization efficiency may not be sacrificed. If the UE 302 has a comment to be sent to the content provider 308 at a later point of time, the BS 304 may configure configured grant resources for the UE 302 to transmit UL transmission again. Alternatively, instead of de-configuring the configured grant resources, the BS 304 may modify a configuration of the configured grant resources (e.g., reduce the periodicity) .
At action 370, when the live stream of the real-time streaming content is completed, the content provider 308 transmits a session release request to the network function component 306.
At action 380, upon receiving the session release request, the network function component 306 releases the high QoS PDU session. For instance, the network function component 306 may  request the BS 304 to release resources (e.g., the configured resources) that the BS 304 may have allocated for the UE 302 for transmitting comment messages.
As discussed above, another key performance indicator for rolling comments is the support of low-latency massive concurrent comment transmissions from a massive number of users, which may be up to tens of millions of users. FIGS. 4-5 provide various mechanisms for providing low-latency massive concurrent transmissions of comments from a massive number of users via connection-less transmissions. The connection-less transmission may refer to the transmission of a comment from a user (e.g., the UEs 115, 230, and/or 302) without having an RRC connection setup with a BS (e.g., the BSs 105, 224, and/or 304) . For instance, when a user has a real-time comment to be sent to a content provider (e.g., the content provider 210 and/or 308) , the use may initiate a 4-step random access procedure or a 2-step random access procedure with the BS and include the comment message in a random access message (e.g., MSG3 or MSGA) .
FIG. 4 is a signaling diagram illustrating a connection-less rolling comment communication method 400 according to some aspects of the present disclosure. The method 400 may be implemented between the UE 302 and the BS 304. In some instances, the UE 302 may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116 shown in FIG. 11, to perform the aspects of the method 400. In some instances, the BS 304 may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1016, to perform the aspects of the method 400. As illustrated, the method 400 includes a number of enumerated actions, but embodiments of the method 400 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
The method 400 may be implemented while the UE 302 is receiving real-time streaming content (e.g., the content 216) from a content provider (e.g., the content provider 308) . For instance, the UE 302 may be executing a streaming media player application, which may be in communication with a radio protocol stack (e.g., a LTE radio protocol stack or an NR radio protocol stack) . The radio protocol stack may implement functions supporting the reception of the broadcast real-time streaming content
At action 405, the UE 302 receives a comment to be sent to the content provider. The comment may be received from an application layer. The comment may be generated by a user of the UE 302.
At action 410, the UE 302 transmits a MSG1 carrying a random access preamble (e.g., a physical random access channel (PRACH) preamble sequence) according to a random channel access configuration. As discussed above in relation to FIG. 1, The UE 302 may receive a random access channel configuration in RMSI. The random access channel configuration may indicate random channel access opportunities (ROs) (e.g., time-frequency resources) for transmitting a random access preamble and/or information related to generation and/or select of the random access preamble.
At action 415, after sending the MSG1, the UE 302 monitors for a MSG2 from the BS 302, for example, during a RAR within a random access response (RAR) window. The UE 302 may monitor for a MSG2 based on the random access ID to identify whether a received RAR is a response to a random access preamble transmitted by the UE 302. In the context of LTE or 5G, the random access ID may be referred to as a random access-radio network temporary identifier (RA-RNTI) .
At action 420, upon detecting the MSG1, the BS 304 transmits a MSG2 to the UE 302. For each detected random access preamble, the BS 304 may determine UL transmission timing of the UE 302 and assign a UL resource (e.g., a UL schedule) and a temporary ID to the UE 302 for sending a subsequent message. The BS 304 may assign the UL resources based on a random access message transmission configuration, for example, the tone spacing, the symbol timing, the starting time, and/or the ending time of the UL control and data channels. The BS 304 may identify a subsequent (or next) random access message (e.g., MSG3) from the UE 115 by a temporary ID. In the context of LTE or 5G, the temporary ID is referred to as a temporary cell-radio network temporary identifier (C-RNTI) .
At action 425, upon detecting the MSG2, the UE 302 generates a MSG3. For instance, the UE 302 may retrieve the assigned resources or UL schedule, the temporary ID, and the timing advance information from the MSG2. The UE 302 may include a first message associated with the real-time streaming content in the MSG3, where the first message may include a comment associated with the real-time streaming content as shown by the example message structure 432.
The message structure 432 includes the MSG3 450. The MSG3 450 includes a first message 460. The first message 460 includes a comment 462, a user ID 464, a timestamp 466, and a flag 468. The first message is to be transmitted to the content provider. The comment 462 may include a comment (e.g., in a text format or a character string) or a gift (e.g., in a text format or an ID identifying a gift such as a rocket or a flower) associated with the real-time streaming content.
The user ID 464 may be an identifier that identifies the UE 302 or the user of the UE 302 to the content provider. In some other aspects, instead of including the user ID 464 in the first  message as a message field, the first message may apply the user ID 464 as a mask to a CRC of the first message. For instance, the UE 302 may generate a CRC for the payload of the first message and perform an exclusive OR between the CRC and the user ID 464 and include the masked CRC in place of the CRC in the first message 460. Accordingly, a receiver (e.g., the content provider) may determine the user ID 464 from the first message 460 based on the CRC mask.
The timestamp 466 may be a timestamp (e.g., T1) of the real-time streaming content at the time when the comment 462 is generated. In other words, the comment 462 may be a comment for the real-time streaming content at the time T1 in the timeline of the real-time streaming content.
The flag 468 may indicate whether the comment 462 is of a first comment type or a second comment type. For instance, the first comment type may have a less time-tolerance than the second comment type. For example, the first comment type may be time sensitive and the second comment type may be time tolerant. In other words, a comment 462 of the first comment type may be relevant or valid for a shorter amount of time then a comment 462 of the second comment type. The timestamp 466 and/or the flag 468 may enable the content provider to determine whether to broadcast the comment 462 along with the real-time streaming content upon receiving the comment 462 as will be discussed more fully below in relation to FIG. 7. In some instances, if the comment 462 is of the first comment type (e.g., time sensitive) , the UE 302 may include the timestamp 466 in the first message 460. Conversely, if the comment 462 is of the second comment type (e.g., time tolerant) , the inclusion of the timestamp 466 in the first message 460 may be optional.
At action 430, the UE 302 transmits the MSG3 450, which carries the first message 460 including the comment 462, the user ID 464, the timestamp 466, and/or the flag 468. The MSG3 may be sent according to the assigned resource, the temporary ID and the timing advancement information. In a random access procedure for RRC connection setup, the MSG3 may include an RRC connection request. However, since the purpose of sending the MSG3 in the method 400 is to transmit the comment 462 to the content provider, the UE 302 may not include an RRC connection request in the MSG3. In some aspect, the UE 302 may include an indication in the MSG3 to indicate that there is no connection request.
At action 440, upon receiving the MSG3 450, the BS 304 may forward the first message 460 to the content provider.
At action 450, the BS 304 transmits a MSG4 to the UE 302. In a random access procedure for RRC connection setup, the MSG3 may include an RRC connection request response. Since there is no RRC connection setup request associated with MSG3, the MSG4 may not include an RRC connection request response.
In some other aspects, the UE 302 may include an RRC connection request in the MSG3 at action 430 and the BS 304 may include an RRC connection response in the MSG4 at action 450. The UE 302 may proceed to complete the RRC connection establishment procedure with the BS 304, for example, for other data transfer and/or for a subsequent comment transmission to the content provider.
In some aspects, to further improve the UL transmission performance of the UE 302, the BS 304 may configure the UE 302 with a higher initial transmit power for transmitting the MSG3. For instance, the UE 302 may transmit UL transmission using a nominal transmit power (e.g., at about 23 decibel-milliwatts (dBm) ) , the BS 304 may configure the UE 302 to transmit the MSG3 at a transmit power higher than the nominal transmit power. The higher transmit power can improve the signal-noise-ratio (SNR) of the UL signal, and thus may allow the BS 304 to receive and decode the MSG3 with a higher reliability. Accordingly, the method 400 may allow the UE 302 to transmit comments to the content provider with a lower latency and/or a higher reliability. Further, since no RRC connection setup is used, a network may potentially support many more UEs sending comments in a UL direction to the content provider.
FIG. 5 is a signaling diagram illustrating a connection-less rolling comment communication method 500 according to some aspects of the present disclosure. The method 500 may be implemented between the UE 302 and the BS 304. In some instances, the UE 302 may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116 shown in FIG. 11, to perform the aspects of the method 500. In some instances, the BS 304 may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the method 500.
As illustrated, the method 500 includes a number of enumerated actions, but embodiments of the method 500 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
The method 500 may be implemented while the UE 302 is receiving real-time streaming content (e.g., the content 216) from a content provider (e.g., the content provider 308) . For instance, the UE 302 may be executing a streaming media player application, which may be in communication with a radio protocol stack (e.g., a LTE radio protocol stack or an NR radio protocol stack) . The radio protocol stack may implement functions supporting the reception of the broadcast real-time streaming content. The method 500 may be substantially similar to the method  400. In the method 500, the UE 302 may transmit a comment associated with the real-time streaming content via a 2-step random access procedure instead of a 4-step random access procedure.
At action 505, the UE 302 receives a comment associated with the real-time streaming content to be sent to the content provider similar to the operations at action 405. In some instances, the UE may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116, to perform the aspects of 505.
At action 510, the UE 302 generates MSGA. The MSGA may be a combination of the MSG1 and MSG3 of the method 400. For instance, the MSGA includes a random access preamble, which may be generated according to a random access configuration in RMSI as discussed above in relation to FIGS. 1 and 4. The MSGA further includes a first message including the comment associated with the real-time streaming content as shown by the example message structure 512. The message structure 512 includes the MSGA 550. The MSGA 550 includes a first message 560. The first message 560 includes a comment 562, a user ID 564, a timestamp 566, and a flag 568, which may be similar to the comment 462, the user ID 464, the timestamp 466, and the flag 468 discussed above in relation to FIG. 4. Accordingly, for sake of brevity, details of the first message 560 will not be repeated here. In a random access procedure for RRC connection setup, the MSGA may include an RRC connection request. However, since the purpose of sending the MSGA in the method 500 is to transmit the comment 562 to the content provider, the UE 302 may not include an RRC connection request in the MSGA. In some aspect, the UE 302 may include an indication in the MSGA to indicate that there is no connection request.
At action 520, the UE 302 transmits the MSGA 550 carrying the first message 560 to the BS 302, for example, in a random access resource or RO indicated by the BS 304 via RMSI.
At action 530, upon receiving the MSGA 550, the BS 304 may forward the first message 460 to the content provider.
At action 540, the BS 304 transmits a MSGB to the UE 302. In a random access procedure for RRC connection setup, the MSGB may include a random access response and an RRC connection response. Since there is no RRC connection setup request associated with MSG3, the MSG4 may not include an RRC connection request response.
In some other aspects, the UE 302 may include an RRC connection request in the MSGA at action 510 and the BS 304 may include an RRC connection response in the MSGB at action 530. The UE 302 may proceed to complete the RRC connection establishment procedure with the BS  304, for example, for other data transfer and/or for a subsequent comment transmission to the content provider.
FIG. 6 illustrates a network system 600 serving media content according to some aspects of the present disclosure. The system 600 may be substantially similar to the system 200 and may use the same reference numerals for simplicity’s sake. However, in the system 600, different operators may operate a unicast network and a broadcast network. As shown, the system 600 includes a content provider 210, a unicast network 620, and a broadcast network 640 serving a UE 230. The unicast network 620 is operated by an operator A. The broadcast network 640 is operated by an operator B different form the operator A. The CDN 214 may provide the media content 216 to the broadcast network 640 for broadcasting to end users such as the UE 230.
The broadcast network 640 any include a broadcast core network 642, which may include a media server or a streaming server similar to the streaming server 222. The broadcast core network 642 may handle the real-time streaming of the content 216. The BS 226 may broadcast the media content 216 to the end users, for example, using an NR RAT.
Similar to the system 200, the UE 230 or a user of the UE 230 may generate a comment about the live content 216. The UE 230 may transmit the comment in the form of message 232 to the content provider 210 via the unicast network 620. As shown, the unicast network 620 may be a 5G network including a 5G core network 622 and a BS 224. The 5G core network 622 may provide network functions such as AMF, UPF, SMF, and/or any other core network functions. The 5G core network 622 may be similar to the network function component 306. The BS 224 may receive the message 232 and may forward the message 232 to the content provider 210. The content provider 210 may broadcast the comment in the message 232 along with the real-time streaming content.
In some aspects, the UE 230 may be a VIP user of the content provider 210. The content provider 210, the 5G core network 622, the BS 224, and the UE 230 may implement the method 300 discussed above with reference to FIG. 3 so that the UE 230 may transmit comments associated with the real-time streaming content 215 to the content provider 210 with low-latency and high-reliability. For instance, the content provider 210, the 5G core network 622, the BS 224, and the UE 230 may correspond to the content provider 308, the network function component 306, the BS 304, and the UE 302 in the method 300.
In some aspects, the UE 230 and the BS 224 may implement the methods 400 and/or 500. For instance, the UE 230 may transmit a comment associated with the real-time streaming content via a MSG3 or a MSGA as shown in the  method  400 or 500, respectively.
In some aspects, the content provider 210 may manage latency associated with the rolling comments. For instance, the content provider 210 may determine whether to broadcast a comment received from a user (e.g., the UE 23) along with the real-time streaming content.
FIG. 7 is a flow diagram of a rolling comment communication method 700 according to some aspects of the present disclosure. Aspects of the method 700 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a first network entity, such as a component of the content provider 210 and/or 308, the content server 212 and/or the network unit 800, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to execute the actions of method 700. As illustrated, the method 700 includes a number of enumerated steps, but aspects of the method 700 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
The method 700 may be implemented in conjunction with the method 300. The first network entity may be providing real-time streaming content and may be broadcasting the real-time streaming content over a network similar to the  network  100, 220, and/or 640.
At block 710, the first network entity receives a message with from a UE, for example, vi a second network entity. The UE may be similar to the UEs 115, 230, and/or 302. The UE may be a user receiving the real-time streaming content. The message may include a comment associated with the real-time streaming content. The message may be similar to the first messages 460 and/or 560. The comment may be similar to the comments 462 and/or 562. The message may also include a timestamp (e.g., the timestamp 466 and/or 566) of the real-time streaming content associated with the comment. For instance, the timestamp may correspond to a time when the message or comment is generated according to a timeline of the real-time streaming content. The message may also include a flag (e.g., the flags 468 and/or 568) indicating whether the comment is of a first comment type or a second comment type. For instance, the first comment type may have a less time-tolerance than the second comment type. For example, the first comment type may be time sensitive and the second comment type may be time tolerant. In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 710.
The first network entity may determine whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment type or a second comment type, the first comment type being less time-tolerant than the second comment type.
For instance, at block 720, the first network entity determines whether a duration between the timestamp and a broadcast time (when the comment may be broadcast along with the real-time streaming content) satisfies a threshold. In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 720. If the duration between the timestamp and the broadcast time satisfies the threshold, the first network entity proceeds to block 730.
At block 730, in response to determining that the duration between the timestamp and the broadcast time satisfies the threshold, the first network entity broadcast the comment along with the real-time streaming content. In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 730.
Returning the block 720, if the duration between the timestamp and the broadcast time fails to satisfy the threshold, the first network entity proceeds to block 740. At block 740, the first network entity determines whether the comment is time sensitive (e.g., the flag in the message indicates that the comment is of the first comment type) . In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 740. If the comment is time sensitive, the first network entity proceeds to block 750.
At block 750, in response to determining that the comment in the message is time sensitive, the first network operating entity refrains from broadcasting the comment along with the real-time streaming content. In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810 of FIG. 8, to perform aspects of block 750.
Returning the block 740, if the comment is not time sensitive, the first network entity proceeds to block 730 and broadcasts the comment along with the real-time streaming content. In other words, in response to determining that the flag in the message indicates that the comment is of the second comment type, the first network entity may broadcasts the comment along with the real-time streaming content.
FIG. 8 is a block diagram of an exemplary network unit 800 according to some aspects of the present disclosure. The network unit 800 may be a component of a content provider such as the content provider 210 discussed above in FIGS. 2 and 6 discussed above or the content provider 308 discussed above in FIG. 3. As shown, the network unit 800 may include a processor 802, a memory 804, an interactive content module 808, a transceiver 810 including a modem subsystem 812 and a  frontend unit 814. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 802 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 802 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 804 may include a cache memory (e.g., a cache memory of the processor 802) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 804 may include a non-transitory computer-readable medium. The memory 804 may store instructions 806. The instructions 806 may include instructions that, when executed by the processor 802, cause the processor 802 to perform operations described herein, for example, aspects of FIGS. 2-7. Instructions 806 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 802) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
The interactive content module 808 may be implemented via hardware, software, or combinations thereof. For example, the interactive content module 808 may be implemented as a processor, circuit, and/or instructions 806 stored in the memory 804 and executed by the processor 802. In some examples, the interactive content module 808 can be integrated within the modem subsystem 812. For example, the interactive content module 808 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 812.
The interactive content module 808 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-7. In some aspects, the interactive content module 808 is configured to provide real-time streaming content to an operator network (e.g., the network 220 and/or 630) for broadcasting, receive, from a UE (e.g., the  UEs  115, 230, 302, and/or 1100) , a first message associated with the real-time streaming content and including a user ID associated with the  UE, determine at least one of a latency or a reliability based on the user ID, transmit, to a second network entity (e.g., a unicast network) , an indication of the user ID and the at least one of the latency or the reliability, and receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
In some aspects, the second message may include a comment, a timestamp of the real-time streaming content associated with the comment, and/or a flag indicating whether the comment is of a first comment type or a second comment type, where the first comment type being less time-tolerant than the second comment type. In some aspects, the interactive content module 808 may be further configured to broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold. In some aspects, the interactive content module 808 may be further configured to broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type. In some aspects, the interactive content module 808 may be further configured to refrain from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold. In some aspects, the interactive content module 808 may be further configured to refraining from broadcasting the comment along with the real-time streaming content further based on a determination that the comment is associated with the first comment type.
As shown, the transceiver 810 may include the modem subsystem 812 and the frontend unit 814. The transceiver 810 can be configured to communicate bi-directionally with other devices, such as the BSs 105, 205, and 400 and/or another core network element. The modem subsystem 812 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, etc. The frontend unit 814 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, optical to electrical conversion or electrical to optical conversion, etc. ) modulated/encoded data (e.g., media content, media content along with users’ comments, and/or indications of users’ latency and/or reliability requirements) from the modem subsystem 812 (on outbound transmissions) or of transmissions originating from another source such as a backend or core network. Although shown as integrated together in transceiver 810, the modem subsystem 812 and the frontend unit 814 may be separate devices that are coupled together at the network unit 800 to enable the network unit 800 to communicate with other devices. The frontend unit 814 may transmit signal carrying the modulated and/or processed data over an electrical and/or optical link. The frontend unit 814 may further receive  signals carrying data messages (e.g., user’s comments) and provide the received data messages for processing and/or demodulation at the transceiver 810.
FIG. 9 is a block diagram of an exemplary network unit 900 according to some aspects of the present disclosure. The network unit 900 may be a component of an operator network such as the operator network 220 discussed above in FIG. 2, the network function component 306 discussed above in FIG. 3, or a component of a core network such as the core network 622 discussed above in FIG. 6. As shown, the network unit 900 may include a processor 902, a memory 904, a network function module 908, a transceiver 910 including a modem subsystem 912 and a frontend unit 914. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 902 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 902 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 904 may include a cache memory (e.g., a cache memory of the processor 902) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 904 may include a non-transitory computer-readable medium. The memory 904 may store instructions 906. The instructions 906 may include instructions that, when executed by the processor 902, cause the processor 902 to perform operations described herein, for example, aspects of FIGS. 2-6. Instructions 906 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
The network function module 908 may be implemented via hardware, software, or combinations thereof. For example, the network function module 908 may be implemented as a processor, circuit, and/or instructions 906 stored in the memory 904 and executed by the processor 902. In some examples, the network function module 908 can be integrated within the modem subsystem 912. For example, the network function module 908 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 912.
The network function module 908 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-6. In some aspects, the network function module 908 is configured  to receive, from a content provider (e.g., the  content provider  210, 308, and/or the network unit 800 of a content provider) , an indication of at least one of a latency or a reliability associated with a user ID, translate the user ID to a UE ID based on a user-to-UE ID mapping (e.g., stored at the memory 904) , assign and establish a PDU session with a UE of the UE ID via a serving BS of the UE, determine a QoS for the PDU session, transmit a PDU session resource setup request to the serving BS requesting the BS to allocate resources satisfying the QoS for the UE for UL transmission, receive a PDU session resource setup response form the serving BS, receive a user comment (related to real-time streaming content of the content provider) from the UE via the serving BS (e.g., over the PDU session) , and forward the user comment to the content provider. In some aspects, the network unction module 908 may also be configured to implement 5G core network functions, such as UPF, AMF, and/or SMF.
As shown, the transceiver 910 may include the modem subsystem 912 and the frontend unit 914. The transceiver 910 can be configured to communicate bi-directionally with other devices, such as the BSs 105, 205, and 400 and/or another core network element. The modem subsystem 912 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, etc. The frontend unit 914 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, optical to electrical conversion or electrical to optical conversion, etc. ) modulated/encoded data (e.g., resource allocation request, PDU session resource setup request, users’ comments related to real-time streaming content) from the modem subsystem 912 (on outbound transmissions) or of transmissions originating from another source such as a backend or core network. Although shown as integrated together in transceiver 910, the modem subsystem 912 and the frontend unit 914 may be separate devices that are coupled together at the network unit 900 to enable the network unit 900 to communicate with other devices. The frontend unit 914 may transmit signal carrying the modulated and/or processed data over an electrical and/or optical link. The frontend unit 914 may further receive signals carrying data messages (e.g., PDU session resource setup response, user’s comments) and provide the received data messages for processing and/or demodulation at the transceiver 910.
FIG. 10 is a block diagram of an exemplary BS 1000 according to some aspects of the present disclosure. The BS 1000 may be a BS 105 discussed above in FIG. 1, a BS 224 discussed above in FIGS. 2 and 6, or a BS 304 discussed above in FIG. 3. As shown, the BS 1000 may include a processor 1002, a memory 1004, a resource module 1008, a communication module 1009, a transceiver 1010 including a modem subsystem 1012 and a RF unit 1014, and one or more antennas 1016. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 1002 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 1002 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 1004 may include a cache memory (e.g., a cache memory of the processor 1002) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 1004 may include a non-transitory computer-readable medium. The memory 1004 may store instructions 1006. The instructions 1006 may include instructions that, when executed by the processor 1002, cause the processor 1002 to perform operations described herein, for example, aspects of FIGS. 2-6. Instructions 1006 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
The resource module 1008 and/or the communication module 1009 may be implemented via hardware, software, or combinations thereof. For example, the resource module 1008 and/or communication module 1009 may be implemented as a processor, circuit, and/or instructions 1006 stored in the memory 1004 and executed by the processor 1002. The resource module 1008 and/or the communication module 1009 may be used for various aspects of the present disclosure.
The resource module 1008 and/or the communication module 1009 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-6. In some aspects, the communication module 1009 is configured to receive an indication of at least one of a latency or a reliability associated with a UE (e.g., the  UEs  115, 230, 302, and/or 1100) . The resource module 1008 is configured to determine an uplink for the UE based on the at least one of the latency the reliability. The communication module 1009 is configured to transmit an indication of the uplink resource to the UE. In some aspects, the uplink resource is a configured grant resource.
In some aspects, the communication module 1009 is configured to receive, from a core network function component (e.g., the network function component 306 and/or the network unit 900) , a PDU session resource setup request requesting for a high QoS PDU session with the UE, coordinate with the resource module 1008 to allocate resources satisfying the QoS to the UE, and respond to the PDU session resource setup request by transmitting a PDU session resource setup response to the core network function component.
In some aspects, the communication module 1009 is further configured to receive, from the UE, a first message associated with the real-time streaming content and forward, to the content provider the first message. The first message may include a comment associated with the real-time streaming content. In some aspects, the communication module 1009 is further configured to receive the first message in a MSG3 from a four-step random access procedure. In some aspects, the communication module 1009 is further configured to receive the first message in a MSGA from a two-step random access procedure. In some aspects, the communication module 1009 is further configured to receive a scheduling grant from the UE, allocate a UL resource according to the scheduling grant, transmit the scheduling grant to the UE, and receive the first message in a PUSCH according to a scheduling grant.
As shown, the transceiver 1010 may include the modem subsystem 1012 and the RF unit 1014. The transceiver 1010 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element. The modem subsystem 1012 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 1014 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., configured grant, UL scheduling grant, PDU session resource setup response, RRC configuration, MSG2, MSG4, MSGB) from the modem subsystem 1012 (on outbound transmissions) or of transmissions originating from another source such as a UE 115. The RF unit 1014 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 1010, the modem subsystem 1012 and/or the RF unit 1014 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
The RF unit 1014 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 1016 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 according to some aspects of the present disclosure. The antennas 1016 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 1010. The transceiver 1010 may provide the demodulated and decoded data (e.g., comments related to real-time streaming content, scheduling request, MSG1, MSG3, MSGA, PUSCH) to the resource module 1008 and the communication module 1009 for processing. The antennas 1016 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In an aspect, the BS 1000 can include multiple transceivers 1010 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 1000 can include a single transceiver 1010 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 1010 can include various components, where different combinations of components can implement different RATs.
FIG. 11 is a block diagram of an exemplary UE 1100 according to some aspects of the present disclosure. The UE 1100 may be a UE 115 as discussed above in FIG. 1, a UE 230 as discussed above in FIGS. 2 and 6, or a UE 302 discussed above in FIG. 3. As shown, the UE 1100 may include a processor 1102, a memory 1104, an interactive content module 1108, then communication module 1109, a transceiver 1110 including a modem subsystem 1112 and a radio frequency (RF) unit 1114, and one or more antennas 1116. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 1102 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 1102 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 1104 may include a cache memory (e.g., a cache memory of the processor 1102) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 1104 includes a non-transitory computer-readable medium. The memory 1104 may store, or have recorded thereon, instructions 1106. The instructions 1106 may include instructions that, when executed by the processor 1102, cause the processor 1102 to perform the operations described herein with reference to the UEs 115 in connection with aspects of the present disclosure, for example, aspects of FIGS. 2-6. Instructions 1106 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
The interactive content module 1108 and/or the communication module 1109 may be implemented via hardware, software, or combinations thereof. For example, the interactive content module 1108 and/or the communication module 1109 may be implemented as a processor, circuit, and/or instructions 1106 stored in the memory 1104 and executed by the processor 1102. The  interactive content module 1108 and/or the communication module 1109 may be used for various aspects of the present disclosure.
The interactive content module 1108 and/or the communication module 1109 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-6. In some aspects, the interactive content module 1108 is configured to receive real-time streaming content from ta content provider (e.g., the content provider 210 and/or 308) and receive a comment associated with the real-time streaming content, for example, from a user. The communication module 1109 is configured to transmit the comment to the content provider, for example, via a BS such as the BSs 105, 224, and/or 800.
In some aspects, the communication module 1109 is configured to transmit a random access message including a first message associated with the real-time streaming content. The first message may include a user ID, a comment associated with the real-time streaming content, a timestamp of the real-time streaming content associated with the comment, and/or a flag indicating whether the comment is of a first comment type or a second comment type, where the first comment type may be more time sensitive than second comment type. In some aspects, the first message may not include the timestamp, for example, when the comment is not a time sensitive comment. In some aspects, the first message may include a CRC scrambled with the user ID. In some aspects, the communication module 1009 is configured to perform a four-step random access procedure and transmit the first message in a MSG3. In some aspects, the communication module 1009 is configured to perform a two-step random access procedure and transmit the first message in a MSGA. In some aspects, the communication module 1009 is configured to receive a configuration for transmitting the MSG3 or MSGA including the comment at a transmit power higher than a nominal transmit power (e.g., for normal operation data transmission) . In some aspects, the communication module 1009 is configured to receive a configuration (e.g., RRC configuration) for a configured resource, and transmit, in the configured resource, a second message associated with the real-time streaming content.
As shown, the transceiver 1110 may include the modem subsystem 1112 and the RF unit 1114. The transceiver 1110 can be configured to communicate bi-directionally with other devices, such as the BSs 105. The modem subsystem 1112 may be configured to modulate and/or encode the data from the memory 1104 and/or the communication module 1109 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 1114 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., PUSCH, PUCCH) from the modem subsystem 1112 (on  outbound transmissions) or of transmissions originating from another source such as a UE 115 or a BS 105. The RF unit 1114 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 1110, the modem subsystem 1112 and the RF unit 1114 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
The RF unit 1114 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may include one or more data packets and other information) , to the antennas 1116 for transmission to one or more other devices. The antennas 1116 may further receive data messages transmitted from other devices. The antennas 1116 may provide the received data messages for processing and/or demodulation at the transceiver 1110. The transceiver 1110 may provide the demodulated and decoded data (e.g., RRC configuration, SSB transmission schedule, slot format configuration, slot format reconfiguration, PDCCH DCI, SSBs, SSB muting pattern, SSB frequency-shifting configuration, SSB splitting configuration, UL allocation) to the communication module 1109 for processing. The antennas 1116 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. The RF unit 1114 may configure the antennas 1116.
In an aspect, the UE 1100 can include multiple transceivers 1110 implementing different RATs (e.g., NR and LTE) . In an aspect, the UE 1100 can include a single transceiver 1110 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 1110 can include various components, where different combinations of components can implement different RATs.
FIG. 12 is a flow diagram of a communication method 1200 according to some aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a network entity or other suitable means for performing the steps. For example, a network entity, such as the content server 212, a server of the content provider 308, and/or the network unit 800, may utilize one or more components, such as the processor 802, the memory 804, the interactive content module 808, and/or the transceiver 810, to execute the steps of method 1200. The method 1200 may employ similar mechanisms as in  methods  300, 400, 500, and 700 discussed above with respect to FIG. 3, 4, 5, and 7, respectively. As illustrated, the method 1200 includes a number of enumerated steps, but aspects of the method 1200 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At block 1210, a first network entity receives, from a UE, a first message associated with real-time streaming content, the first message including a user ID associated with the UE. The first  network entity may be associated with a content provider such as the content provider 210 and/or 308. For instance, the first network entity may be a network server or a component, such as the content server 212 or the network unit 800, of the content provider. The real-time streaming content may be similar to the content 216 may include a TV show, a comic movie, an online promotion program, and/or the like. The comment may be a user comment on a certain portion or a certain event of the real-time streaming content. The comment may be in a text format, character strings, and/or any suitable formant. The UE may be similar to the  UEs  115, 230, 302, and/or 1000. In some instances, the first network entity unit may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1210.
In some aspects, as part of receiving the first message, the first network entity may receive a MSGA including the first message, for example, as shown in the method 500 discussed above with reference to FIG. 5. In some aspects, as part of receiving the first message, the first network entity may receive a MSG3 including the first message, for example, as shown in the method 400 discussed above with reference to FIG. 4. In some aspects, as part of receiving the first message, the first network entity may receive the first message via a PUSCH. In some aspects, the first message may include a comment associated with the real-time streaming content. In some aspects, the first message may include a CRC scrambled with the user ID.
At block 1220, the first network entity determines at least one of a latency or a reliability based on the user ID. In some aspects, the first network entity may determine whether the user ID is associated with a VIP user of the real-time streaming content and may determine a lower latency and/or a higher liability for a VIP user than for a non-VIP user. In some instances, the latency may be in units of time and/or the reliability may be terms of reliability rate or packet error rate. In some instances, the at least one of the latency or the reliability rate may be in the format of a traffic priority class, a QoS, or any suitable format. In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1220.
At block 1230, the first network entity transmits, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability. In some aspects, the second network entity may be associated with a unicast network such as the network 620 or an operator network such as the network 220 providing unicast services. In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1230.
At block 1240, the first network entity receives, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content. In some instances, the first network entity may utilize one or more components, such as the processor 802, the interactive content module 808, the transceiver 810, to perform the aspects of 1240.
In some aspects, as part of receiving the second message, the first network entity may receive, from the UE in a configured grant resource associated with the second network entity, where the second message associated with the real-time streaming content.
In some aspects, as part of receiving the second message, the first network entity may receive, from the UE, the second message including a comment associated with the real-time streaming content and a timestamp of the real-time streaming content associated with the comment. In some aspects, as part of receiving the second message, the first network entity may receive, from the UE, the second message including a comment associated with the real-time streaming content, where the second message excludes a timestamp of the real-time streaming content based on a time tolerance associated with the comment.
In some aspects, the first network entity may further determine whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment type or a second comment type, where the first comment type being less time-tolerant than the second comment type, for example, as shown in the method 700 discussed above with reference to FIG. 7. In some aspects, the first network entity may further broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold. In some aspects, the first network entity may further broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type. In some aspects, the first network entity may further refrain from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold. In some aspects, the first network entity may refrain from broadcasting the comment along with the real-time streaming content further based on a determination that the comment is associated with the first comment type. In some aspects, as part of receiving the second message at block 1240, the first network entity may receive the second message including an indication indicating whether the comment is associated with the first comment type or the second comment type.
In some aspects, the second network entity may determine the uplink resource based on the at least one of the latency or the reliability. In aspects, the second network entity may transmit, to the UE, an indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE. In some aspects, the second network entity may transmit, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power. In some aspects, the second network entity may establish a PDU session with the UE. The PDU session may have a QoS satisfying the at least one of the latency or the reliability.
FIG. 13 is a flow diagram of a communication method 1300 according to some aspects of the present disclosure. Aspects of the method 1300 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a wireless communication device, such as the  UE  115, 230, 302, or 1100, may utilize one or more components, such as the processor 1102, the memory 1104, the interactive content module 1108, the communication module 1109, and/or the transceiver 1110, to execute the steps of method 1300. The method 1300 may employ similar mechanisms as in  methods  300, 400, and/or 500 discussed above with respect to FIG. 3, 4, and 5, respectively. As illustrated, the method 1300 includes a number of enumerated steps, but aspects of the method 1300 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At block 1310, a UE receives, from a content provider, real-time streaming content. The UE may be a  UE  115, 230, 302, and/or 1100 as discussed above. The real-time streaming content may be similar to the content 216 may include a TV show, a comic movie, an online promotion program, and/or the like. In some instances, the UE may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116, to perform the aspects of 1310. The UE may view the real-time streaming content on a display or screen of the UE.
At block 1320, the UE transmits a random access message including a first message associated with the real-time streaming content. In some instances, the UE may utilize one or more components, such as the processor 1102, the interactive content module 1108, the communication module 1109, the transceiver 1110, and the one or more antennas 1116, to perform the aspects of 1320.
In some aspects, as part of transmitting the random access message, the UE may transmit a MSGA including the first message, for example, as shown in the method 500 discussed above with  reference to FIG. 5. In some aspects, as part of transmitting the random access message, the UE may transmit a MSG3 including the first message, for example, as shown in the method 400 discussed above with reference to FIG. 4. In some aspects, as part of transmitting the random access message, the UE may transmit the random access message including the first message indicating at least one of a comment associated with the real-time streaming content or a user ID associated with the UE. The comment may be a user comment on a certain portion or a certain event of the real-time streaming content. The comment may be in a text format, character strings, and/or any suitable formant. In some aspects, the first message may include a CRC scrambled with the user ID. In some aspects, the first message may include a timestamp of the real-time streaming content associated with the comment. In some aspects, the first message may include the timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance less than a threshold. In some aspects, the first message may exclude a timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance greater than a threshold.
In some aspects, as part of transmitting the random access message, the UE may transmit the random access message based on a transmit power higher than a nominal transmit power. In aspects, the UE may further receive an indication of the transmit power for transmitting the random access message.
In some aspects, the UE may further receive a configuration (e.g., RRC configuration) for a configured resource, and transmit, in the configured resource, a second message associated with the real-time streaming content.
FIG. 14 is a flow diagram of a communication method 1400 according to some aspects of the present disclosure. Aspects of the method 1400 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a BS, such as the  BSs  105, 224, 304, and/or 1000, may utilize one or more components, such as the processor 1002, the memory 1004, the resource module 1008, and/or the transceiver 1010, to execute the steps of method 1400. The method 1400 may employ similar mechanisms as in  methods  300, 400, and/or 500 discussed above with respect to FIG. 3, 4, and/or 5, respectively. As illustrated, the method 1400 includes a number of enumerated steps, but aspects of the method 1400 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At block 1410, a network entity receives, from a content provider of real-time streaming content, an indication of a latency or a reliability associated with a UE. The network entity may be  a component of an operator network such as the network 220 and/or the unicast network 620. For instance, the network entity may be a BS such as the  BSs  105, 224, 304, and/or 1000. In some other instances, the network entity may be a network function component such as the network function component 306 or the network unit 900 of a core network such as the network 622. The real-time streaming content may be similar to the content 216 may include a TV show, a comic movie, an online promotion program, and/or the like. In some instances, the latency may be in units of time and/or the reliability may be terms of reliability rate or packet error rate. In some instances, the at least one of the latency or the reliability rate may be in the format of a traffic priority class, a QoS, or any suitable format. In some instances, the network entity may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the block 1410.
At block 1420, the network entity determines an uplink resource for the UE based on the at least one of the latency or the reliability. For instance, the network entity may allocate configured grant resources for the UE so that the UE may transmit without having to request for a UL schedule and wait for a scheduling grant. The network entity may assign the UE with a higher priority when performing uplink scheduling. In some instances, the network entity may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the block 1420.
At block 1430, the network entity transmits, to the UE, an indication of the uplink resource. In some instances, the network entity may utilize one or more components, such as the processor 1002, the resource module 1008, the communication module 1009, the transceiver 1010, and/or the one or more antennas 1006, to perform the aspects of the block 1430.
In some aspects, as part of receiving the indication of the latency or the reliability at block 1410, the network entity may receive, from the content provider, the indication further indicating a user ID. As part of transmitting the indication of the uplink resource at block 1430, the network entity may transmit, to the UE, the indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
In some aspects, the network entity further receives, from the UE, a first message associated with the real-time streaming content. The network entity may also forward, to the content provider the first message. In some aspects, as part of receiving the first message, the network entity may receive a MSGA including the first message, for example, as shown in the method 500 discussed above with reference to FIG. 5. In some aspects, as part of receiving the first message, the network  entity may receive a MSG3 including the first message, for example, as shown in the method 400 discussed above with reference to FIG. 4. In some aspects, as part of receiving the first message, the network entity may receive the first message via a PUSCH.
In some aspects, the network entity may further transmit, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power. In some aspects, the network entity may further establish a PDU session with the UE, where the PDU session may having a QoS satisfying the at least one of the latency or reliability.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular embodiments illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (156)

  1. A method of wireless communication, the method comprising:
    receiving, by a first network entity from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE;
    determining, by the first network entity, at least one of a latency or a reliability based on the user ID;
    transmitting, by the first network entity to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and
    receiving, by the first network entity from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  2. The method of claim 1, wherein the first network entity is associated with a content provider, and wherein the second network entity is associated with a unicast network.
  3. The method of claim 1, wherein the receiving the first message comprises:
    receiving, by the first network entity from the UE, a random access message A (MSGA) including the first message.
  4. The method of claim 1, wherein the receiving the first message comprises:
    receiving, by the first network entity from the UE, a random access message 3 (MSG3) including the first message.
  5. The method of claim 1, wherein the receiving the first message comprises:
    receiving, by the first network entity from the UE, the first message via a physical uplink shared channel (PUSCH) .
  6. The method of claim 1, wherein the receiving the first message comprises:
    receiving, by the first network entity from the UE, the first message including a comment associated with the real-time streaming content.
  7. The method of claim 1, wherein the receiving the first message comprises:
    receiving, by the first network entity from the UE, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  8. The method of claim 1, wherein the receiving the second message comprises:
    receiving, by the first network entity from the UE in a configured grant resource associated with the second network entity, the second message associated with the real-time streaming content.
  9. The method of claim 1, further comprising:
    determining, by the second network entity, the uplink resource based on the at least one of the latency or the reliability.
  10. The method of claim 1, further comprising:
    transmitting, by the second network entity to the UE, an indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
  11. The method of claim 1, further comprising:
    transmitting, by the second network entity to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power.
  12. The method of claim 1, further comprising:
    establishing, by the second network entity, a protocol data unit (PDU) session with the UE, the PDU session having a quality of service (QoS) satisfying the at least one of the latency or the reliability.
  13. The method of claim 1, wherein the receiving the second message comprises:
    receiving, by the first network entity from the UE, the second message including a comment associated with the real-time streaming content and a timestamp of the real-time streaming content associated with the comment.
  14. The method of claim 13, further comprising:
    determining, by the first network entity, whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment type or a second comment type, the first comment type being less time-tolerant than the second comment type.
  15. The method of claim 14, further comprising:
    broadcasting, by the first network entity, the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold.
  16. The method of claim 14, further comprising:
    broadcasting, by the first network entity, the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type.
  17. The method of claim 14, further comprising:
    refraining, by the first network entity, from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold.
  18. The method of claim 17, wherein the refraining from broadcasting the comment along with the real-time streaming content is further based on a determination that the comment is associated with the first comment type.
  19. The method of claim 14, wherein the receiving the second message comprises:
    receiving, by the first network entity from the UE, the second message including an indication indicating whether the comment is associated with the first comment type or the second comment type.
  20. The method of claim 1, wherein the receiving the second message comprises:
    receiving, by the first network entity from the UE, the second message including a comment associated with the real-time streaming content, the second message excluding a timestamp of the real-time streaming content based on a time tolerance associated with the comment.
  21. A method of wireless communication, the method comprising:
    receiving, by a user equipment (UE) from a content provider (CP) , real-time streaming content; and
    transmitting, by the UE, a random access message including a first message associated with the real-time streaming content.
  22. The method of claim 21, wherein the transmitting the random access message comprises:
    transmitting, by the UE, a random access message A (MSGA) including the first message.
  23. The method of claim 21, wherein the transmitting the random access message comprises:
    transmitting, by the UE, a random access message 3 (MSG3) including the first message.
  24. The method of claim 21, wherein the transmitting the random access message comprises:
    transmitting, by the UE, the random access message including the first message indicating at least one of a comment associated with the real-time streaming content or a user ID associated with the UE.
  25. The method of claim 24, wherein the transmitting the random access message further comprises:
    transmitting, by the UE, the random access message including the first message, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  26. The method of claim 24, wherein the transmitting the random access message further comprises:
    transmitting, by the UE, the random access message including the first message, the first message including a timestamp of the real-time streaming content associated with the comment.
  27. The method of claim 26, wherein the transmitting the random access message further comprises:
    transmitting, by the UE, the random access message including the first message, the first message including the timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance less than a threshold.
  28. The method of claim 24, wherein the transmitting the random access message further comprises:
    transmitting, by the UE, the random access message including the first message, the first message excluding a timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance greater than a threshold.
  29. The method of claim 21, wherein the transmitting the random access message comprises:
    transmitting, by the UE, the random access message based on a transmit power higher than a nominal transmit power.
  30. The method of claim 29, further comprising:
    receiving, by the UE, an indication of the transmit power for transmitting the random access message.
  31. The method of claim 21, further comprising:
    receiving, by the UE, a configuration for a configured resource; and
    transmitting, by the UE in the configured resource, a second message associated with the real-time streaming content.
  32. A method of wireless communication, the method comprising:
    receiving, by a network entity from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ;
    determining, by the network entity, an uplink resource for the UE based on the at least one of the latency or the reliability; and
    transmitting, by the network entity to the UE, an indication of the uplink resource.
  33. The method of claim 32, further comprising:
    receiving, by the network entity from the UE, a first message associated with the real-time streaming content; and
    forwarding, by the network entity to the content provider, the first message.
  34. The method of claim 33, wherein:
    the receiving the indication of the latency or the reliability comprises:
    receiving, by the network entity from the content provider, the indication further indicating a user identifier (ID) ; and
    the transmitting the indication of the uplink resource comprises:
    transmitting, by the network entity to the UE, the indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
  35. The method of claim 33, wherein the receiving the first message comprises:
    receiving, by the network entity from the UE, a random access message A (MSGA) including the first message.
  36. The method of claim 33, wherein the receiving the first message comprises:
    receiving, by the network entity from the UE, a random access message 3 (MSG3) including the first message.
  37. The method of claim 33, wherein the receiving the first message comprises:
    receiving, by the network entity from the UE, the first message via a physical uplink shared channel (PUSCH) .
  38. The method of claim 33, wherein the uplink resource is a configured grant resource.
  39. The method of claim 38, wherein the determining the uplink resource comprises:
    determining the configured grant resource for the UE based on the at least one of the latency or reliability associated with the UE.
  40. The method of claim 32, further comprising:
    transmitting, by the network entity to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power.
  41. The method of claim 32, further comprising:
    establishing, by the network entity, a protocol data unit (PDU) session with the UE, the PDU session having a quality of service (QoS) satisfying the at least one of the latency or reliability.
  42. A network system comprising:
    a first network entity comprising
    a transceiver configured to receive, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE; and
    a processor configured to determine at least one of a latency or a reliability based on the user ID,
    wherein the transceiver is further configured to:
    transmit, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and
    receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  43. The network system of claim 42, wherein the first network entity is associated with a content provider, and wherein the second network entity is associated with a unicast network.
  44. The network system of claim 42, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, a random access message A (MSGA) including the first message.
  45. The network system of claim 42, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, a random access message 3 (MSG3) including the first message.
  46. The network system of claim 42, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, the first message via a physical uplink shared channel (PUSCH) .
  47. The network system of claim 42, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, the first message including a comment associated with the real-time streaming content.
  48. The network system of claim 42, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  49. The network system of claim 42, wherein the transceiver configured to receive the second message is further configured to:
    receive, from the UE in a configured grant resource associated with the second network entity, the second message associated with the real-time streaming content.
  50. The network system of claim 42, further comprising:
    the second network entity comprising:
    a processor configured to determine the uplink resource based on the at least one of the latency or the reliability.
  51. The network system of claim 42, further comprising:
    the second network entity comprising:
    a transceiver configured to transmit, to the UE, an indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
  52. The network system of claim 42, further comprising:
    the second network entity comprising:
    a transceiver configured to transmit, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power.
  53. The network system of claim 42, further comprising:
    the second network entity comprising:
    a processor configured to establish a protocol data unit (PDU) session with the UE, the PDU session having a quality of service (QoS) satisfying the at least one of the latency or the reliability.
  54. The network system of claim 42, wherein the transceiver configured to receive the second message is further configured to:
    receive, from the UE, the second message including a comment associated with the real-time streaming content and a timestamp of the real-time streaming content associated with the comment.
  55. The network system of claim 54, wherein the processor is further configured to:
    determine whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment  type or a second comment type, the first comment type being less time-tolerant than the second comment type.
  56. The network system of claim 55, wherein the transceiver is further configured to:
    broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold.
  57. The network system of claim 55, wherein the transceiver is further configured to:
    broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type.
  58. The network system of claim 55, wherein the processor is further configured to:
    refrain from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold.
  59. The network system of claim 58, wherein the processor configured to refrain from broadcasting the comment along with the real-time streaming content is further based on a determination that the comment is associated with the first comment type.
  60. The network system of claim 55, wherein the transceiver configured to receive the second message is further configured to:
    receive, from the UE, the second message including an indication indicating whether the comment is associated with the first comment type or the second comment type.
  61. The network system of claim 42, wherein the transceiver configured to receive the second message is further configured to:
    receive, from the UE, the second message including a comment associated with the real-time streaming content, the second message excluding a timestamp of the real-time streaming content based on a time tolerance associated with the comment.
  62. A user equipment (UE) comprising:
    a transceiver configured to:
    receive, from a content provider (CP) , real-time streaming content; and
    transmit a random access message including a first message associated with the real-time streaming content.
  63. The UE of claim 62, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit a random access message A (MSGA) including the first message.
  64. The UE of claim 62, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit a random access message 3 (MSG3) including the first message.
  65. The UE of claim 62, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit the random access message including the first message indicating at least one of a comment associated with the real-time streaming content or a user ID associated with the UE.
  66. The UE of claim 65, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  67. The UE of claim 65, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message including a timestamp of the real-time streaming content associated with the comment.
  68. The UE of claim 67, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message including the timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance less than a threshold.
  69. The UE of claim 65, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message excluding a timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance greater than a threshold.
  70. The UE of claim 62, wherein the transceiver configured to transmit the random access message is further configured to:
    transmit the random access message based on a transmit power higher than a nominal transmit power.
  71. The UE of claim 70, wherein the transceiver is further configured to:
    receive an indication of the transmit power for transmitting the random access message.
  72. The UE of claim 62, wherein the transceiver is further configured to:
    receive a configuration for a configured resource; and
    transmit, in the configured resource, a second message associated with the real-time streaming content.
  73. A network entity comprising:
    a transceiver configured to receive, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ; and
    a processor configured to determine an uplink resource for the UE based on the at least one of the latency or the reliability,
    wherein the transceiver is further configured to transmit, to the UE, an indication of the uplink resource.
  74. The network entity of claim 73, wherein the transceiver is further configured to:
    receive, from the UE, a first message associated with the real-time streaming content; and
    forward, to the content provider, the first message.
  75. The network entity of claim 74, wherein:
    the transceiver configured to receive the indication of the latency or the reliability is further configured to:
    receive, from the content provider, the indication further indicating a user identifier (ID) ; and
    the transceiver configured to transmit the indication of the uplink resource is further configured to:
    transmit, to the UE, the indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
  76. The network entity of claim 74, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, a random access message A (MSGA) including the first message.
  77. The network entity of claim 74, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, a random access message 3 (MSG3) including the first message.
  78. The network entity of claim 74, wherein the transceiver configured to receive the first message is further configured to:
    receive, from the UE, the first message via a physical uplink shared channel (PUSCH) .
  79. The network entity of claim 74, wherein the uplink resource is a configured grant resource.
  80. The network entity of claim 79, wherein the processor configured to determine the uplink resource is further configured to:
    determine the configured grant resource for the UE based on the at least one of the latency or reliability associated with the UE.
  81. The network entity of claim 73, wherein the transceiver is further configured to:
    transmit, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power.
  82. The network entity of claim 73, wherein the processor is further configured to:
    establish a protocol data unit (PDU) session with the UE, the PDU session having a quality of service (QoS) satisfying the at least one of the latency or reliability.
  83. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a first network entity to receive, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE;
    code for causing the first network entity to determine at least one of a latency or a reliability based on the user ID,
    code for causing the first network entity to transmit, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and
    code for causing the first network entity to receive, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  84. The non-transitory computer-readable medium of claim 83, wherein the first network entity is associated with a content provider, and wherein the second network entity is associated with a unicast network.
  85. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the first message is further configured to:
    receive, from the UE, a random access message A (MSGA) including the first message.
  86. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the first message is further configured to:
    receive, from the UE, a random access message 3 (MSG3) including the first message.
  87. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the first message is further configured to:
    receive, from the UE, the first message via a physical uplink shared channel (PUSCH) .
  88. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the first message is further configured to:
    receive, from the UE, the first message including a comment associated with the real-time streaming content.
  89. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the first message is further configured to:
    receive, from the UE, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  90. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the second message is further configured to:
    receive, from the UE in a configured grant resource associated with the second network entity, the second message associated with the real-time streaming content.
  91. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the second message is further configured to:
    receive, from the UE, the second message including a comment associated with the real-time streaming content and a timestamp of the real-time streaming content associated with the comment.
  92. The non-transitory computer-readable medium of claim 91, further comprising:
    code for causing the first network entity to determine whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment type or a second comment type, the first comment type being less time-tolerant than the second comment type.
  93. The non-transitory computer-readable medium of claim 92, further comprising:
    code for causing the first network entity to broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold.
  94. The non-transitory computer-readable medium of claim 92, further comprising:
    code for causing the first network entity to broadcast the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type.
  95. The non-transitory computer-readable medium of claim 92, further comprising:
    code for causing the first network entity to code for causing the first network entity to refrain from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold.
  96. The non-transitory computer-readable medium of claim 95, wherein the code for causing the first network entity to refrain from broadcasting the comment along with the real-time streaming content is further based on a determination that the comment is associated with the first comment type.
  97. The non-transitory computer-readable medium of claim 92, wherein the code for causing the first network entity to receive the second message is further configured to:
    receive, from the UE, the second message including an indication indicating whether the comment is associated with the first comment type or the second comment type.
  98. The non-transitory computer-readable medium of claim 83, wherein the code for causing the first network entity to receive the second message is further configured to:
    receive, from the UE, the second message including a comment associated with the real-time streaming content, the second message excluding a timestamp of the real-time streaming content based on a time tolerance associated with the comment.
  99. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a user equipment (UE) to receive, from a content provider (CP) , real-time streaming content; and
    code for causing the UE to transmit a random access message including a first message associated with the real-time streaming content.
  100. The non-transitory computer-readable medium of claim 99, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit a random access message A (MSGA) including the first message.
  101. The non-transitory computer-readable medium of claim 99, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit a random access message 3 (MSG3) including the first message.
  102. The non-transitory computer-readable medium of claim 99, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit the random access message including the first message indicating at least one of a comment associated with the real-time streaming content or a user ID associated with the UE.
  103. The non-transitory computer-readable medium of claim 102, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  104. The non-transitory computer-readable medium of claim 102, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message including a timestamp of the real-time streaming content associated with the comment.
  105. The non-transitory computer-readable medium of claim 104, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message including the timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance less than a threshold.
  106. The non-transitory computer-readable medium of claim 102, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit the random access message including the first message, the first message excluding a timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance greater than a threshold.
  107. The non-transitory computer-readable medium of claim 99, wherein the code for causing the UE to transmit the random access message is further configured to:
    transmit the random access message based on a transmit power higher than a nominal transmit power.
  108. The non-transitory computer-readable medium of claim 107, further comprising:
    code for causing the UE to receive an indication of the transmit power for transmitting the random access message.
  109. The non-transitory computer-readable medium of claim 99, further comprising:
    code for causing the UE to receive a configuration for a configured resource; and
    code for causing the UE to transmit, in the configured resource, a second message associated with the real-time streaming content.
  110. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a network entity to receive, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ;
    code for causing the network entity to determine an uplink resource for the UE based on the at least one of the latency or the reliability,
    code for causing the network entity to transmit, to the UE, an indication of the uplink resource.
  111. The non-transitory computer-readable medium of claim 110, further comprising:
    code for causing the network entity to receive, from the UE, a first message associated with the real-time streaming content; and
    code for causing the network entity to forward, to the content provider, the first message.
  112. The non-transitory computer-readable medium of claim 111, wherein:
    the code for causing the network entity to receive the indication of the latency or the reliability is further configured to:
    receive, from the content provider, the indication further indicating a user identifier (ID) ; and
    the code for causing the network entity to transmit the indication of the uplink resource is further configured to:
    transmit, to the UE, the indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
  113. The non-transitory computer-readable medium of claim 111, wherein the code for causing the network entity to receive the first message is further configured to:
    receive, from the UE, a random access message A (MSGA) including the first message.
  114. The non-transitory computer-readable medium of claim 111, wherein the code for causing the network entity to receive the first message is further configured to:
    receive, from the UE, a random access message 3 (MSG3) including the first message.
  115. The non-transitory computer-readable medium of claim 111, wherein the code for causing the network entity to receive the first message is further configured to:
    receive, from the UE, the first message via a physical uplink shared channel (PUSCH) .
  116. The non-transitory computer-readable medium of claim 111, wherein the uplink resource is a configured grant resource.
  117. The non-transitory computer-readable medium of claim 116, wherein code for causing the network entity to determine the uplink resource is further configured to:
    determine the configured grant resource for the UE based on the at least one of the latency or reliability associated with the UE.
  118. The non-transitory computer-readable medium of claim 110, further comprising:
    code for causing the network entity to transmit, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power.
  119. The non-transitory computer-readable medium of claim 110, further comprising:
    code for causing the network entity to establish a protocol data unit (PDU) session with the UE, the PDU session having a quality of service (QoS) satisfying the at least one of the latency or reliability.
  120. A first network entity comprising:
    means for receiving, from a user equipment (UE) , a first message associated with real-time streaming content, the first message including a user identifier (ID) associated with the UE;
    means for determining at least one of a latency or a reliability based on the user ID,
    means for transmitting, to a second network entity, an indication of the user ID and the at least one of the latency or the reliability; and
    means for receiving, from the UE in an uplink resource associated with the second network entity and satisfying the at least one of the latency or the reliability, a second message associated with the real-time streaming content.
  121. The first network entity of claim 120, wherein the first network entity is associated with a content provider, and wherein the second network entity is associated with a unicast network.
  122. The first network entity of claim 120, wherein the means for receiving the first message is further configured to:
    receive, from the UE, a random access message A (MSGA) including the first message.
  123. The first network entity of claim 120, wherein the means for receiving the first message is further configured to:
    receive, from the UE, a random access message 3 (MSG3) including the first message.
  124. The first network entity of claim 120, wherein the means for receiving the first message is further configured to:
    receive, from the UE, the first message via a physical uplink shared channel (PUSCH) .
  125. The first network entity of claim 120, wherein the means for receiving the first message is further configured to:
    receive, from the UE, the first message including a comment associated with the real-time streaming content.
  126. The first network entity of claim 120, wherein the means for receiving the first message is further configured to:
    receive, from the UE, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  127. The first network entity of claim 120, wherein the means for receiving the second message is further configured to:
    receive, from the UE in a configured grant resource associated with the second network entity, the second message associated with the real-time streaming content.
  128. The first network entity of claim 120, wherein the means for receiving the second message is further configured to:
    receive, from the UE, the second message including a comment associated with the real-time streaming content and a timestamp of the real-time streaming content associated with the comment.
  129. The first network entity of claim 128, further comprising:
    means for determining whether to broadcast the comment along with the real-time streaming content based on at least one of the timestamp or whether the comment is associated with a first comment type or a second comment type, the first comment type being less time-tolerant than the second comment type.
  130. The first network entity of claim 129, further comprising:
    means for broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time satisfies a threshold.
  131. The first network entity of claim 129, further comprising:
    means for broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold and the comment is associated with the second comment type.
  132. The first network entity of claim 129, further comprising:
    means for refraining from broadcasting the comment along with the real-time streaming content in response to determining that a duration between the timestamp and a broadcast time fails to satisfy a threshold.
  133. The first network entity of claim 132, wherein the means for refraining from broadcasting the comment along with the real-time streaming content is further based on a determination that the comment is associated with the first comment type.
  134. The first network entity of claim 129, wherein the means for receiving the second message is further configured to:
    receive, from the UE, the second message including an indication indicating whether the comment is associated with the first comment type or the second comment type.
  135. The first network entity of claim 120, wherein the means for receiving the second message is further configured to:
    receive, from the UE, the second message including a comment associated with the real-time streaming content, the second message excluding a timestamp of the real-time streaming content based on a time tolerance associated with the comment.
  136. A user equipment (UE) comprising:
    means for receiving, from a content provider (CP) , real-time streaming content; and
    means for transmitting a random access message including a first message associated with the real-time streaming content.
  137. The UE of claim 136, wherein the means for transmitting the random access message is further configured to:
    transmit a random access message A (MSGA) including the first message.
  138. The UE of claim 136, wherein the means for transmitting the random access message is further configured to:
    transmit a random access message 3 (MSG3) including the first message.
  139. The UE of claim 136, wherein the means for transmitting the random access message is further configured to:
    transmit the random access message including the first message indicating at least one of a comment associated with the real-time streaming content or a user ID associated with the UE.
  140. The UE of claim 139, wherein the means for transmitting the random access message is further configured to:
    transmit the random access message including the first message, the first message including a cyclic redundancy check (CRC) scrambled with the user ID.
  141. The UE of claim 139, wherein the means for transmitting the random access message is further configured to:
    transmit the random access message including the first message, the first message including a timestamp of the real-time streaming content associated with the comment.
  142. The UE of claim 141, wherein the means for transmitting the random access message is further configured to:
    transmit the random access message including the first message, the first message including the timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance less than a threshold.
  143. The UE of claim 139, wherein the means for transmitting the random access message is further configured to:
    transmit the random access message including the first message, the first message excluding a timestamp of the real-time streaming content associated with the comment based on the comment being associated with a time tolerance greater than a threshold.
  144. The UE of claim 136, wherein the means for transmitting the random access message is further configured to:
    transmit the random access message based on a transmit power higher than a nominal transmit power.
  145. The UE of claim 144, further comprising:
    means for receiving an indication of the transmit power for transmitting the random access message.
  146. The UE of claim 136, further comprising:
    means for receiving a configuration for a configured resource; and
    means for transmitting, in the configured resource, a second message associated with the real-time streaming content.
  147. A network entity comprising:
    means for receiving, from a content provider of a real-time streaming content, an indication of a latency or a reliability associated with a user equipment (UE) ;
    means for determining an uplink resource for the UE based on the at least one of the latency or the reliability,
    means for transmitting, to the UE, an indication of the uplink resource.
  148. The network entity of claim 147, further comprising:
    means for receiving, from the UE, a first message associated with the real-time streaming content; and
    means for forward, to the content provider, the first message.
  149. The network entity of claim 148, wherein:
    the means for receiving the indication of the latency or the reliability is further configured to:
    receive, from the content provider, the indication further indicating a user identifier (ID) ; and
    the means for transmitting the indication of the uplink resource is further configured to:
    transmit, to the UE, the indication of the uplink resource based on a mapping between the user ID and a UE ID associated with the UE.
  150. The network entity of claim 148, wherein the means for receiving the first message is further configured to:
    receive, from the UE, a random access message A (MSGA) including the first message.
  151. The network entity of claim 148, wherein the means for receiving the first message is further configured to:
    receive, from the UE, a random access message 3 (MSG3) including the first message.
  152. The network entity of claim 148, wherein the means for receiving the first message is further configured to:
    receive, from the UE, the first message via a physical uplink shared channel (PUSCH) .
  153. The network entity of claim 148, wherein the uplink resource is a configured grant resource.
  154. The network entity of claim 153, wherein means for determining the uplink resource is further configured to:
    determine the configured grant resource for the UE based on the at least one of the latency or reliability associated with the UE.
  155. The network entity of claim 147, further comprising:
    means for transmitting, to the UE, an indication of a transmit power for the uplink resource, the transmit power being higher than a nominal transmit power.
  156. The network entity of claim 147, further comprising:
    means for establish a protocol data unit (PDU) session with the UE, the PDU session having a quality of service (QoS) satisfying the at least one of the latency or reliability.
PCT/CN2020/089625 2020-05-11 2020-05-11 Low-latency transmit for rolling comments WO2021226793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089625 WO2021226793A1 (en) 2020-05-11 2020-05-11 Low-latency transmit for rolling comments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089625 WO2021226793A1 (en) 2020-05-11 2020-05-11 Low-latency transmit for rolling comments

Publications (1)

Publication Number Publication Date
WO2021226793A1 true WO2021226793A1 (en) 2021-11-18

Family

ID=78526353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089625 WO2021226793A1 (en) 2020-05-11 2020-05-11 Low-latency transmit for rolling comments

Country Status (1)

Country Link
WO (1) WO2021226793A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106998590A (en) * 2015-12-28 2017-08-01 中国信息通信研究院 A kind of uplink scheduling method and device
CN108702762A (en) * 2018-05-18 2018-10-23 北京小米移动软件有限公司 Message method, device and resource allocation methods, device
US20190208411A1 (en) * 2018-03-16 2019-07-04 Intel Corporation Security framework for msg3 and msg4 in early data transmission
US20190394808A1 (en) * 2017-07-27 2019-12-26 Lg Electronics Inc. Method and device for configuring signaling category for access control mechanism in wireless communication system
CN110662295A (en) * 2018-06-29 2020-01-07 珠海市魅族科技有限公司 Uplink resource scheduling method and device, network side equipment and terminal equipment
CN110999404A (en) * 2017-08-10 2020-04-10 京瓷株式会社 Communication control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106998590A (en) * 2015-12-28 2017-08-01 中国信息通信研究院 A kind of uplink scheduling method and device
US20190394808A1 (en) * 2017-07-27 2019-12-26 Lg Electronics Inc. Method and device for configuring signaling category for access control mechanism in wireless communication system
CN110999404A (en) * 2017-08-10 2020-04-10 京瓷株式会社 Communication control method
US20190208411A1 (en) * 2018-03-16 2019-07-04 Intel Corporation Security framework for msg3 and msg4 in early data transmission
CN108702762A (en) * 2018-05-18 2018-10-23 北京小米移动软件有限公司 Message method, device and resource allocation methods, device
CN110662295A (en) * 2018-06-29 2020-01-07 珠海市魅族科技有限公司 Uplink resource scheduling method and device, network side equipment and terminal equipment

Similar Documents

Publication Publication Date Title
US11463886B2 (en) Radio (NR) for spectrum sharing
US10912012B2 (en) Initial network access for downlink unlicensed deployment
US20220103232A1 (en) Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
EP4073967B1 (en) New radio (nr) multicast feedback switching
US11304229B2 (en) Constraints on no listen-before-talk (LBT) transmission during uplink/downlink (UL/DL) switches
US10945287B2 (en) Uplink (UL) to downlink (DL) channel occupancy time (COT) sharing with scheduled UL in new radio-unlicensed (NR-U)
WO2021217484A1 (en) Sidelink slot structure for sidelink communication in a wireless communications network
US11528742B2 (en) Systems and methods for autonomous transmission of deprioritized protocol data units
US20230164711A1 (en) Bandwidth part assignment in wireless communication systems
US20220295575A1 (en) Frame based equipment (fbe) structure for new radio-unlicensed (nr-u)
US20230362938A1 (en) Dynamic indication of uplink transmission parameters via configured grant-uci (cg-uci)
US20230199856A1 (en) Random access channel transmission for frame based equipment (fbe) mode
WO2021138796A1 (en) Downlink control information size and buffering limits for combination dci
US11696332B2 (en) Hybrid resource mapping for RAR
WO2021189340A1 (en) Continuous transmission for new radio-unlicensed (nr-u) uplink
WO2021226793A1 (en) Low-latency transmit for rolling comments
WO2022217536A1 (en) Air to ground signaling enhancement for multiple waveform use
WO2022077449A1 (en) Long physical uplink control channel (pucch) format for multi-slot transmissions
US20220038245A1 (en) L1 csi feedback via sci-2 for v2x and sl communications
US20230171709A1 (en) Dynamic switching between power mode configurations
WO2023164834A1 (en) Random access channel occasion configurations for random access preamble repetitions
WO2022217534A1 (en) Coreset0 design for non-traditional numerologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934987

Country of ref document: EP

Kind code of ref document: A1