WO2021225318A1 - Electronic device, and control method therefor - Google Patents

Electronic device, and control method therefor Download PDF

Info

Publication number
WO2021225318A1
WO2021225318A1 PCT/KR2021/005223 KR2021005223W WO2021225318A1 WO 2021225318 A1 WO2021225318 A1 WO 2021225318A1 KR 2021005223 W KR2021005223 W KR 2021005223W WO 2021225318 A1 WO2021225318 A1 WO 2021225318A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
unit
switching
output
energy
Prior art date
Application number
PCT/KR2021/005223
Other languages
French (fr)
Korean (ko)
Inventor
윤영남
최용호
김영수
최진영
Original Assignee
삼성전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자(주) filed Critical 삼성전자(주)
Publication of WO2021225318A1 publication Critical patent/WO2021225318A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an electronic device having a power supply for supplying operating energy based on AC power transmitted from the outside and a control method therefor, and more particularly, a power factor correction function in a conversion circuit that converts AC power in the power supply to DC power. It relates to the implemented electronic device and its control method.
  • an electronic device that basically includes electronic components such as a CPU, a chipset, and a memory for arithmetic operation may be of various types depending on the information to be processed or the purpose of use. can be divided into
  • an electronic device includes an information processing device such as a PC or server that processes general-purpose information, an image processing device that processes image data, a display device that displays the processed image data as an image on a screen, and an audio processing device.
  • an audio processing device There are audio devices and household appliances that perform chores in the home.
  • the electronic device has a power supply that provides electrical energy for operation based on an external AC power supply.
  • the power supply unit may be embedded in the electronic device or provided to be connected to the electronic device in the form of an adapter.
  • Power factor is one of the many things to be considered in the circuit design of the power supply.
  • the power factor represents the ratio of how little reactive power is supplied to the power supply but not delivered to the load and consumed as compared to the active power used in the load by being actually delivered to the load from the power supply.
  • the power supply part having a poor power factor means that the electric energy delivered to the load is relatively small compared to the electric energy supplied from the outside. Accordingly, a design of a power factor correction function for improving the power factor by reducing reactive power may be applied to the power supply unit.
  • An electronic device includes a first switching unit that converts rectified input power into AC power, a transformer that transforms and transmits the AC power, and a DC output voltage based on the output of the transformer.
  • a power factor correcting unit including an output unit for outputting a , a charging element connected to the transformer and a second switching unit, and controlling the first switching unit to adjust the output voltage output by the output unit, through the transformer It may include a controller for controlling the second switching unit so that the transferred energy is charged in the charging element, the energy charged in the charging element is discharged to increase the energy transferred to the output unit through the transforming unit.
  • the controller may control the current transmitted through the transformer to charge the charging device, and discharge energy charged in the charging device to increase the voltage transmitted through the transformer.
  • the second switching unit includes a switching element provided to be open and closed between the charging element and the transformer, and the control unit is configured to add the energy charged to the charging element to the energy transmitted through the transformer.
  • the switching element can be controlled.
  • control unit may turn on the switching element in response to the time when the first switching unit operates so that the direction of the current flowing through the transformer is switched.
  • the controller increases the duty ratio of the signal for controlling the switching operation of the first switching element in a section where the magnitude of the input AC voltage is small and decreases it in the section where the magnitude of the input AC voltage is large.
  • the power factor correction unit may further include a diode disposed between the transformer and the output unit, and the control unit may increase the energy transferred to the output unit through the transformer to flow through the diode.
  • the power factor correction unit may further include a capacitor charged based on the energy transmitted to the output unit through the transformer, and provided to transmit the charged electric energy to the output unit.
  • it may further include a resonance coil unit charged based on the energy transferred through the transformer and the energy charged in the charging device, the charged electric energy is transmitted through the diode.
  • the charging device may include a capacitor.
  • the first switching unit may include a plurality of switches
  • the control unit may control the direction of the current delivered to the transformer to change by individually opening and closing the plurality of switches.
  • the energy transferred through the transformer may be electrical energy transferred from the input coil of the transformer to the output coil.
  • the method for controlling an electronic device comprises the steps of converting the rectified input power into AC power by a first switching unit, and a power factor correction unit including a charging element and a second switching unit. , the steps of charging the charging element based on the energy transmitted through the transformer, and controlling the second switching unit to discharge the energy charged in the charging element to increase the energy transferred to the output unit through the transformer.
  • 1 is an exemplary diagram of an electronic device.
  • FIG. 2 is a block diagram of an image processing device of an electronic apparatus.
  • FIG. 3 is a block diagram of the AC-DC converter of the power supply unit.
  • FIG. 4 is an exemplary diagram illustrating a circuit structure of the AC-DC converter of FIG. 3 .
  • 5 is a graph showing signal waveforms in each part of the AC-DC converter.
  • FIG. 6 is a circuit diagram illustrating an operation of an AC-DC converter in a time period T0 to T1 of the time period of FIG. 5 .
  • FIG. 7 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T1 to T2 among the time period of FIG. 5 .
  • FIG. 8 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T2 to T3 among the time period of FIG. 5 .
  • FIG. 9 is a graph illustrating an example of a time ratio according to a signal transmitted by the power factor control unit to the switching element M5 and an output terminal load.
  • FIG. 10 is a graph showing the simulation results of the phases of the input current and the input voltage in the AC-DC converter according to the related art to which the switching device M5 of the present embodiment is not applied.
  • FIG. 11 is a graph showing simulation results of input current and input voltage phase due to a power factor correction operation of the switching device M5 according to the present embodiment.
  • FIG. 12 is an exemplary diagram of an AC-DC converter circuit in which a design of a switching unit is changed.
  • FIG. 13 is an exemplary diagram of a circuit of an AC-DC converter in which the design of the transformer is changed.
  • 1 is an exemplary diagram of an electronic device.
  • the electronic device 1 is implemented as a display device 1 .
  • the display device 1 is only one example of the electronic devices 1 that can be implemented, and the electronic device can be implemented as various types of devices such as information processing devices, household appliances, and image processing devices operated by an external power source.
  • the electronic device 1 has a screen 201 for displaying an image by processing an image signal, and is implemented as, for example, a TV.
  • the electronic device 1 may be implemented as various types of devices other than the TV, for example, a fixed display device including a TV, a monitor, a digital signage, an electronic blackboard, and an electronic picture frame; or an image processing apparatus including a set-top box, an optical media player, and the like; It is an information processing device including a computer body or the like; or a mobile device including a smart phone, a tablet device, and the like; It may be implemented in various types of devices, such as wearable devices.
  • a fixed display device including a TV, a monitor, a digital signage, an electronic blackboard, and an electronic picture frame
  • an image processing apparatus including a set-top box, an optical media player, and the like
  • It is an information processing device including a computer body or the like
  • a mobile device including a smart phone, a tablet device, and the like
  • It may be implemented in various types of devices, such as wearable devices.
  • the electronic apparatus 1 includes an image processing device 100 that processes an image signal based on image content received from the outside or stored therein, and a display unit that displays an image based on an image signal output from the image processing device 100 . (200).
  • the electronic apparatus 1 in the case where the image processing device 100 is in the form of a media box separated from the display unit 200 is described, but the image processing device 100 and the display unit 200 are one
  • the electronic device 1 coupled to the frame or accommodated in one housing is also possible.
  • the image processing device 100 receives an image signal according to various transmission methods, such as through short-distance communication with an external device such as a PC or a set-top box, through wide-area network communication with a server, or receiving a broadcast signal in an RF format. do.
  • the image processing device 100 may acquire an image signal by reading image content data stored in an internal storage.
  • the image processing device 100 performs image-related processing such as decoding and scaling on the obtained image signal, and outputs the image-related processing to the display unit 200 .
  • a signal transmission method between the image processing device 100 and the display unit 200 may be both wired and wireless.
  • the display unit 200 forms a screen 201 for displaying an image signal from the image processing device 100 as an image.
  • the display unit 200 includes a display panel, and various design methods may be applied to the structure of the display panel.
  • the display unit 200 according to the present embodiment is provided in a structure in which a single large screen 201 is formed by a plurality of display panels or a plurality of display modules having a self-luminous structure such as micro LED or OLED.
  • the display unit 200 may be provided in the structure of a single display panel provided with a light-receiving structure such as a liquid crystal method or a self-luminous structure such as an OLED method.
  • FIG. 2 is a block diagram of an image processing device of an electronic apparatus.
  • the image processing device 100 of the electronic apparatus may include an interface unit 110 .
  • the interface unit 110 includes an interface circuit for the image processing device 100 to communicate with various types of external devices or servers, and to transmit and receive data.
  • the interface unit 110 includes one or more wired interface units 111 for wired communication connection and one or more wireless interface units 112 for wireless communication connection according to a connection method.
  • the wired interface unit 111 includes a connector or port to which a cable of a predefined transmission standard is connected.
  • the wired interface unit 111 includes a port to which a terrestrial or satellite broadcasting antenna is connected to receive a broadcast signal, or a cable for cable broadcasting is connected.
  • the wired interface unit 111 includes ports to which cables of various wired transmission standards such as HDMI, DP, DVI, Component, Composite, S-Video, and Thunderbolt are connected to be connected to various image processing devices.
  • the wired interface unit 111 includes a USB standard port for connecting to a USB device.
  • the wired interface unit 111 includes an optical port to which an optical cable is connected.
  • the wired interface unit 111 includes an audio input port to which an external microphone is connected, and an audio output port to which a headset, earphone, external speaker, and the like are connected.
  • the wired interface unit 111 includes an Ethernet port connected to a gateway, a router, a hub, or the like to access a wide area network.
  • the wireless interface unit 112 includes a bidirectional communication circuit including at least one of components such as a communication module and a communication chip corresponding to various types of wireless communication protocols.
  • the wireless interface unit 112 includes a Wi-Fi communication chip that performs wireless communication with an AP (Access Point) according to a Wi-Fi method, Bluetooth, Zigbee, Z-Wave, WirelessHD, WiGig, NFC, etc. It includes a communication chip for performing wireless communication, an IR module for IR communication, and a mobile communication chip for performing mobile communication with a mobile device.
  • the image processing device 100 may include a user input unit 120 .
  • the user input unit 120 includes various types of user input interface related circuits that are provided to allow a user to manipulate the user to perform a user input.
  • the user input unit 120 may be configured in various forms depending on the type of the image processing device 100 , for example, a mechanical or electronic button unit of the image processing device 100 , a touch pad, a sensor, a camera, and a touch screen. , and a remote controller separated from the image processing device 100 .
  • the image processing device 100 may include a storage unit 130 .
  • the storage unit 130 stores digitized data.
  • the storage unit 130 has a non-volatile property that can preserve data regardless of whether or not power is provided, and data to be processed by the processor 150 is loaded, and data is stored when power is not provided. It includes memory of volatile properties that cannot.
  • Storage includes flash-memory, hard-disc drive (HDD), solid-state drive (SSD), read-only memory (ROM), etc., and memory includes buffer and random access memory (RAM). etc.
  • the image processing device 100 may include a power supply unit 140 .
  • the power supply unit 140 delivers power required for operation to each component.
  • the power supply unit 140 converts AC power input from an external power source into DC power, and outputs electric energy adjusted to a current or voltage suitable for each component of the image processing device 100 .
  • the power supply unit 140 may include an AC-DC converter circuit for converting AC into DC, which will be described later.
  • the image processing device 100 may include a processor 150 .
  • the processor 150 includes one or more hardware processors implemented with a CPU, a chipset, a buffer, a circuit, etc. mounted on a printed circuit board, and may be implemented as a system on chip (SOC) depending on a design method.
  • SOC system on chip
  • the processor 150 includes modules corresponding to various processes such as a demultiplexer, a decoder, a scaler, an audio digital signal processor (DSP), and an amplifier.
  • DSP audio digital signal processor
  • some or all of these modules may be implemented as SOC.
  • a module related to image processing such as a demultiplexer, a decoder, and a scaler may be implemented as an image processing SOC
  • an audio DSP may be implemented as a chipset separate from the SOC.
  • FIG. 3 is a block diagram of the AC-DC converter of the power supply unit.
  • the AC-DC converter 1000 of the power supply receives AC power and outputs DC power.
  • the AC-DC converter 1000 may have various circuit structures according to a design method.
  • the CLL circuit structure is applied.
  • C refers to a capacitor that charges and discharges a voltage
  • L refers to an inductor that charges and discharges a current.
  • the AC-DC converter 1000 is not limited to a CLL circuit structure, and may have an LLC circuit structure depending on a design method.
  • AC-DC converter 1000 having a CLL circuit structure is an EMI filter 1100, a rectifier 1200, a switching unit 1300, a resonance capacitor 1400, It includes a transformer 1500 , a resonance coil unit 1600 , a power factor correction unit 1700 , and an output unit 1800 .
  • the front end of the transformer 1500 is referred to as an input side or a primary side, and the rear end of the transformer 1500 is referred to as an output side or a secondary side.
  • the AC-DC converter 1000 includes a controller 1900 that controls the switching unit 1300 and/or the power factor correcting unit 1700 according to a feedback signal input from the output unit 1800 .
  • the EMI filter 1100 filters or blocks various noises mixed in the frequency of the input electrical energy. In general, AC power supplied from the outside is mixed with electrical noise due to various reasons such as power lines. The EMI filter 1100 removes such noise in the initial stage of processing the electrical energy in the AC-DC converter 1000 .
  • the rectifier 1200 converts the input AC power into full-wave or half-wave rectified power, and operates so that the current flows in one direction. As the capacitance of the capacitor C1 increases, the power factor decreases, and as the capacitance decreases, the power ripple due to the input frequency appears at the output terminal.
  • the rectifying unit 1200 converts AC input power into full-wave or half-wave power to perform the power factor correction function of the AC-DC converter 1000 .
  • the switching unit 1300 converts the rectified power output from the rectifying unit 1200 back into AC.
  • the switching unit 1300 includes a plurality of switches, and through individual switching operations of each switch, the direction of the current transmitted through the switching unit 1300 is switched.
  • the resonance capacitor 1400 charges electric energy transferred through the switching unit 1300 .
  • the transformer 1500 transforms the input electrical energy and outputs it.
  • the transformer 1500 may include, for example, a transformer.
  • the resonance coil unit 1600 charges electric energy transferred from the input side to the output side of the AC-DC converter 1000 through the transformer 1500 .
  • the power factor correction unit 1700 is provided between the transformer 1500 and the output unit 1800 and performs a rectification function together with a function of improving the power factor of the AC-DC converter 1000, thereby providing a direct current to the output unit 1800. Power can be output. Since the power factor correction unit 1700 has a voltage multiplier structure, the number of turns of the output-side coil of the transformer 1500 and thus the number of turns of the resonance coil unit 1600 can be designed to a smaller value. For example, if the power factor correction unit 1700 is not used as a voltage multiplier structure, the turns ratio of the transformer 1500 is 1:2 and the resonance coil unit 1600 is designed to be 4 times the power of 2 to achieve the voltage multiplier. Should be. On the other hand, if the power factor correction unit 1700 has a voltage multiplier structure, the turns ratio of the transformer 1500 may be 1:1 and the resonance coil unit 1600 may be designed to be 1 times.
  • the output unit 1800 includes components such as a capacitor and is connected to a load to transmit electrical energy output from the power factor correction unit 1700 to the load.
  • the controller 1900 controls the overall operation of the AC-DC converter 1000 .
  • the controller 1900 may be implemented as a processor 150 (refer to FIG. 2 ), or may be a separate component provided in the AC-DC converter 1000 .
  • the control unit 1900 is implemented as a hardware chipset provided with a microprocessor, a microcontroller, or the like.
  • the control unit 1900 includes a switching control unit 1910 for controlling the switching unit 1300 and a power factor correction unit 1700 for controlling the power factor correcting unit 1700 .
  • the control unit 1900 is divided into a plurality according to roles, and a single control unit 1900 may be provided to control a plurality of components together depending on a design method.
  • the controller 1900 receives a feedback signal from some components of the AC-DC converter 1000 and also transmits a control signal to each component based on the received feedback signal.
  • the control unit 1900 receives a feedback signal regarding the voltage and current of the input power from the rectifier 1200 and a feedback signal regarding the output voltage from the output unit 1800 .
  • the control unit 1900 outputs a control signal for controlling the operations of the switching unit 1300 and the power factor correcting unit 1700 based on the feedback signal.
  • These control signals are provided to control the switching operation of the switches provided in the switching unit 1300 and the power factor correcting unit 1700, respectively, and specific details will be described later in relation to the circuit structure of the AC-DC converter 1000 .
  • control unit 1900 According to an embodiment of the present invention will be described.
  • the control unit 1900 controls the switching unit 1300 so that the output power of the output unit 1800 with respect to the load becomes a target value.
  • the controller 1900 controls the switching operation of the switching unit 1300 so that the output voltage becomes a preset target value based on information on the output voltage fed back from the output unit 1800 .
  • the control unit 1900 charges the charging element connected to the transformer 1500 based on the output of the transformer 1500 .
  • the charging element is a component provided in the power factor correction unit 1700 , and is provided to charge or discharge electric energy output from the transformer 1500 . A detailed description of the charging device will be described later.
  • the control unit 1900 controls the power factor correction unit 1700 so that the output of the charged charging element is added to the output of the transformer 1500 and transmitted to the output unit 1800 .
  • the controller 1900 may achieve a power factor improvement function in the AC-DC converter 1000 with a simpler structure, and reduce the volume and heat generation of the AC-DC converter 1000 .
  • the components of the AC-DC converter 1000 controlled by the controller 1900 may be implemented based on various circuit designs.
  • an example of the circuit structure of the AC-DC converter 1000 according to the present embodiment will be described.
  • FIG. 4 is an exemplary diagram illustrating a circuit structure of the AC-DC converter of FIG. 3 .
  • the AC-DC converter 1000 is implemented as a circuit using various components and wiring.
  • the circuit structure shown in this figure is only one of various design methods of the AC-DC converter 1000 .
  • the circuit of each component will be described.
  • the rectifier 1200 includes a plurality of diodes, and performs full wave rectification on the input AC power.
  • the rectifying unit 1200 has a capacitor C1.
  • Capacitor C1 has a small capacitance of several ⁇ F to maintain the shape of the full-wave rectified voltage.
  • the switching unit 1300 includes a plurality of switching elements.
  • the switching unit 1300 includes four switching elements M1, M2, M3, and M4 arranged in a full bridge form, but the configuration of the switching unit 1300 is not limited only to the example of this embodiment.
  • the switching unit 1300 may include two switching elements arranged in the form of a half-bridge.
  • the switching unit 1300 includes a plurality of switching elements is to change the direction of a current applied to an input-side coil of the transformer 1500, which will be described later. That is, the switching unit 1300 may change the direction of the current applied to the transformer 1500 by selectively opening and closing the four switching elements M1, M2, M3, and M4.
  • the transformer 1500 includes an input-side coil and an output-side coil insulated from each other.
  • the resonance capacitor Cr is connected in series to the input coil of the transformer 1500
  • the magnetizing inductor Lm is connected in parallel to the input coil of the transformer 1500 .
  • the transformer 1500 preferably has a high degree of coupling between the input-side coil and the output-side coil, thereby minimizing leakage inductance.
  • the resonance coil unit 1600 includes an inductor Ls.
  • the resonant coil unit 1600 is arranged to be connected in series to the output side coil as in the present embodiment.
  • the resonant coil unit 1600 may be disposed between the magnetizing inductor Lm and the input side coil of the transformer 1500 .
  • the inductance setting is necessary in consideration of the turn ratio.
  • N2/N1 an inductance design proportional to the square of (N2/N1) is required when the resonant coil unit 1600 is disposed on the output side.
  • N2/N1 an inductance design proportional to the square of (N2/N1) is required when the resonant coil unit 1600 is disposed on the output side.
  • NP is the number of windings of the input-side coil of the transformer 1500
  • NS is the number of windings of the output-side coil of the transformer 1500 .
  • the power factor correction unit 1700 includes a diode D1, a switching device M5, and capacitors C2 and C3.
  • the node N1 is one end of the output side coil of the transformer 1500
  • the node N2 is the other end of the output side coil of the transformer 1500 .
  • An inductor Ls is disposed between the node N1 and the transformer 1500 .
  • the front end of the diode D1 is connected to one end of the inductor Ls at the node N1.
  • the diode D1 and the switching device D5 are connected in parallel with the inductor Ls at the node N1.
  • Capacitors C2 and C3 are connected in parallel with the output coil of the transformer 1600 at the node N2.
  • the diode D1 performs a rectification function in the power factor correction unit 1700 . Due to the characteristics of the diode, when the voltage applied to the node N1 is higher than the voltage applied to the output unit 1800 , electric energy may flow from the front end to the rear end of the diode D1 . No electric energy flows from the rear end of the diode D1 to the front end. In addition, when the voltage applied to the node N1 is lower than the voltage applied to the output unit 1800 , electric energy does not flow from the front end to the rear end of the diode D1 . Depending on the design method, the diode D1 may be replaced with a switching device. In this case, the controller 1900 is provided to control the replaced switching device.
  • the capacitor C3 serves as a charging device in the power factor correction unit 1700 .
  • the capacitor C3 charges or discharges electrical energy according to the direction of the current flowing in the output coil of the transformer 1500 and the condition of the turn-on/turn-off state of the switching element M5.
  • the capacitor C2 charges electric energy from the output coil of the transformer 1500 and transfers it to the output unit 1800 , and forms a path through which a current flows to the output coil of the transformer 1500 during charging. Capacitor C2 thereby inhibits capacitor C3 from discharging during this period. Depending on the design method, a structure in which the capacitor C2 is omitted is also possible.
  • the control unit 1900 receives the feedback of the input voltage V_in and the input current I_in from the rectifying unit 1200 , and receives the feedback of the output voltage Vdc_out from the output unit 1800 . Based on this feedback, the controller 1900 controls the switching elements M1, M2, M3, and M4 of the switching unit 1300 and the power factor correction switching element of the power factor correction unit 1700 (hereinafter simply referred to as a switching element) M5 of Each of the switching operations is controlled. A specific control operation of the control unit 1900 will be described later.
  • 5 is a graph showing signal waveforms in each part of the AC-DC converter.
  • the controller 1900 alternately switches the combination of the switching elements M1 and M4 and the combination of the switching elements M2 and M3 over time.
  • the switching elements M2 and M3 are turned off in the time period from T0 to T3 when the switching elements M1 and M4 are turned on, and the switching elements M2 and M3 are turned on in the time period from T3 to T0 when the switching elements M1 and M4 are turned off. do.
  • the direction of the current flowing through the input-side coil of the transformer 1500 is changed by the control of these switching elements.
  • the direction of the current does not change immediately when the switching elements M1 and M4 are turned on and M2 and M3 are turned off, or when the switching elements M1 and M4 are turned off and M2 and M3 are turned on.
  • Due to the presence of the inductors Lm, Ls, and the like the direction of the current is changed after the lapse of a predetermined time, not when the switching element is turned on/off.
  • An inductor is a component that charges and discharges current. Therefore, even if the current is controlled to change from the first direction to the second direction in the circuit, the inductor serves to cause the inertia of the current to continuously flow in the first direction for a predetermined time.
  • I Cr represents the current of the capacitor Cr
  • V Cr represents the voltage of the capacitor Cr
  • I Lm represents the current of the inductor Lm, respectively.
  • the waveform of the current indicates the direction of the current. For example, in a region where the current is (+) and a region where the current is (-), the direction of the current is opposite to each other.
  • the control unit 1900 turns on the switching device M5 from time point T0 to time T2 and turns it off during the remaining time period.
  • the control unit 1900 may turn on the switching device M5 at a time preceding the time point T0, specifically, at a time point between the time points T4 and T0. That is, at the turn-on time of the switching element M5, the direction of the current of the inductor Ls is the direction of the transformer 1500 after the drain-source voltage of the switching element M5 becomes 0 in the section in which the current flows in the inductor Ls in the direction toward the diode D1. It only needs to be performed before changing the direction toward the output side coil. Since a zero voltage switching operation (ZVS) of the switching element M5 is possible, a load during operation of the switching element M5 can be reduced.
  • ZVS zero voltage switching operation
  • FIG. 6 is a circuit diagram illustrating an operation of an AC-DC converter in a time period T0 to T1 of the time period of FIG. 5 .
  • the AC-DC converter 1000 operates to charge the capacitor C3 with electrical energy during the time period from time T0 to T1 (refer to FIG. 5 ).
  • the switching element M5 since the switching element M5 is turned on, the electric energy flowing through the output-side coil Lsm of the transformer is charged in the capacitor C3.
  • the switching device M5 may have the parasitic diode D2. In this case, the current flows through the parasitic diode D2 regardless of whether the switching device M5 is turned on or off. However, in order to reduce the load on the parasitic diode D2, the switching device M5 is turned on at the time T0 to allow a current to flow.
  • FIG. 7 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T1 to T2 among the time period of FIG. 5 .
  • the AC-DC converter 1000 is charged with electrical energy transferred from the input side of the transformer to the output side coil Lsm and the capacitor C3. It operates to charge electrical energy into the inductor Ls.
  • the inertia of the current flow in the first direction (counterclockwise in the drawing) is overcome by the current flowing in the second direction (clockwise in the drawing) do. Accordingly, after the time point T1, the current in the second direction flows through the input coil of the transformer, and correspondingly, the current in the second direction also flows through the output coil Lsm of the transformer.
  • the electric energy charged in the capacitor C3 is discharged from the capacitor C3.
  • the sum of the electrical energy transferred from the input side of the transformer to the output side coil Lsm plus the electrical energy from the capacitor C3 is charged in the inductor Ls.
  • FIG. 8 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T2 to T3 among the time period of FIG. 5 .
  • the AC-DC converter 1000 uses the electric energy transferred from the input side of the transformer to the output coil Lsm and the electric energy charged in the inductor Ls. Passes the sum to the output.
  • the switching device M5 is turned off at the time T2
  • the electric energy charged in the inductor Ls is released, and the voltage at the node N1 increases relatively significantly compared to the rear end of the diode D1.
  • the condition that electric energy can be transferred from the front end to the rear end of the diode D1 is satisfied. Therefore, the sum of the electric energy transferred from the input side of the transformer to the output coil Lsm and the electric energy charged in the inductor Ls passes through the diode D1. transmitted to the output.
  • the diode C2 provides a path for directing the electrical energy flowing to the output unit to the output-side coil Lsm of the transformer.
  • a configuration in which only the wiring is connected without the diode C2 is also possible.
  • the diode C2 is not present, since electric energy is emitted from the diode C3 in the current time period, the efficiency may be reduced.
  • the AC-DC converter has a circuit combining a rectifying function and a power factor correction function on the output side, and by repeating such an operation cycle, the power factor can be improved with a simple structure.
  • the flow of current transmitted to the output side occurs even in a section in which the input voltage is lower than the output voltage, thereby improving the power factor in the circuit.
  • the control unit 1900 performs constant voltage output and power factor improvement by a control signal transmitted to each switching element.
  • the switching control unit 1910 receives the output voltage from the output unit 1800 (refer to FIG. 3) as feedback, and the duty ratio and operating frequency of the control signal transmitted to the switching unit 1300 (refer to FIG. 3) adjust the
  • the power factor control unit 1920 controls the output voltage Vdc_out, the input voltage V_in, and the control signal supplied to the switching element M5 based on the value of the current I_in flowing between the input capacitor C1 and the switching unit. Adjust the fertilization ratio.
  • the operating frequency of the control signal transmitted to the switching element M5 is synchronized with the operating frequency of the switching unit.
  • the turn-off time of the switching element M5 is, during the period of time T1 to T2 (refer to FIG. 4), sufficient time for the energy accumulated in the inductor Ls to be transferred to the capacitor C2, but before the switching elements M1 and M4 are turned off is carried out Since the switching operation by the switching element M5 transfers the accumulated energy to the output side together with the energy transferred from the input side, it affects not only the power factor improvement function but also the voltage gain of the circuit. Accordingly, the switching operation by the switching device M5 can compensate for insufficient voltage gain when designing a resonance type circuit at, for example, 90 to 264 Vrms input.
  • FIG. 9 is a graph illustrating an example of a time ratio according to a signal transmitted by the power factor control unit to the switching element M5 and an output terminal load.
  • the graph showing the waveform change of the input voltage and input current and the graph showing the time ratio of the control signal to the switching element M5 of the power factor control unit 1920 are matched over time have.
  • I_in denotes an input current that flows when power consumption is relatively high in the load
  • I_in' denotes an input current that flows when power consumption is relatively low in the load.
  • the time ratio of the switching device M5 that enables power factor improvement increases in the section where the magnitude of the input AC voltage is small and decreases in the section where the magnitude of the input AC voltage is large, so that a downwardly concave parabolic curve is formed.
  • the concave degree of the parabola changes according to the state of the load and the output voltage.
  • a solid line indicates a case corresponding to I_in
  • a dotted line indicates a case corresponding to I_in'.
  • the higher the input voltage and the smaller the load the higher the output voltage, and the lower the input voltage and the larger the load, the lower the output voltage.
  • the concavity of the parabola varies depending on the load condition.
  • the power factor control unit may control the switching operation of the switching element M5 based on various values of the time ratio.
  • FIG. 10 is a graph showing the simulation results of the phases of the input current and the input voltage in the AC-DC converter according to the related art to which the switching device M5 of the present embodiment is not applied.
  • the AC-DC converter according to the related art corresponds to a case in which a rectifier circuit including only a diode is applied to the output side without applying the switching device M5 as in the present embodiment.
  • the first graph relates to the output voltage V_out
  • the second graph relates to the input current I_in and the input voltage V_in.
  • the second graph shows the result of dividing the input voltage by 10 to fit the scale.
  • the third graph relates to a voltage (V_Lm) applied to the input side of the transformer and a voltage (V_Sm) applied to the output side of the transformer.
  • the fourth graph relates to the current (I(Ls)) flowing through the inductor Ls on the output side.
  • the section where electric energy is delivered to the load is the section where V_Lm is higher than V_Sm.
  • V_Lm the section where V_Sm.
  • the difference between I_in and V_in should be relatively small, and the phase difference between the two is large.
  • FIG. 11 is a graph showing simulation results of input current and input voltage phase due to a power factor correction operation of the switching device M5 according to the present embodiment.
  • each feedback signal according to the switching operation of the switching element M5 may be obtained through simulation, and a graph of these feedback signals may be shown.
  • the meaning of each graph is applied mutatis mutandis to the case of FIG. 10 above.
  • a curve of I_in may be derived as shown in the second graph through full-wave rectification by the rectifying unit 1200 (refer to FIG. 3) and the switching unit 1300 (refer to FIG. 3).
  • the capacitance of the capacitor C1 (refer to FIG. 4) is designed to be low, the curve of V_in of this graph maintains a shape evenly distributed for each section.
  • a section in which I_In is greater than 0 is relatively increased, and accordingly, a section in which V_Lm is larger than V_Sm also increases. That is, in this embodiment, since the section in which the electric energy is transmitted to the load is increased compared to the case of the related art, the electric energy transfer efficiency is increased. In addition, in the present embodiment, the phase difference between the current and the voltage is relatively reduced by strengthening the voltage under the control of the switching element M5. As a result, the present embodiment can improve the power factor compared to the case of the related art.
  • FIG. 12 is an exemplary diagram of an AC-DC converter circuit in which a design of a switching unit is changed.
  • the AC-DC converter 2000 includes an EMI filter 2100 , a rectifier 2200 , a switching unit 2300 , a resonance capacitor 2400 , a transformer 2500 , and a resonance coil part 2600 . ), a power factor correction unit 2700 , and an output unit 2800 .
  • the remaining components except for the switching unit 2300 have the same circuit structure as the components of the same name in the previous embodiment (refer to FIG. 4 ), so these A description will be omitted.
  • two switching elements M1 and M2 are provided in the form of a half-bridge.
  • the switching elements M1 and M2 are connected in parallel to the rectifying unit 2200, the resonance capacitor 2400 is connected to a node connecting one end of the switching element M1 and one end of M2, and the other end of each of the switching elements M2 is a transformer It is connected to the other end of the input side coil of 2500.
  • FIG. 13 is an exemplary diagram of a circuit of an AC-DC converter in which the design of the transformer is changed.
  • the AC-DC converter 3000 includes an EMI filter 3100 , a rectifier 3200 , a switching unit 3300 , a resonance capacitor 3400 , a transformer 3500 , and a resonance coil part 3600 . ), a power factor correction unit 3700 , and an output unit 3800 .
  • the remaining components except for the transformer 3500 and the resonance coil 3600 are the same as the components of the same name in the previous embodiment (refer to FIG. 4 ). Since it has a circuit structure, description is abbreviate
  • the transformer 3500 has a structure in which the inductor Ls, which is the resonance coil unit 3600 , is disposed between the input-side coil of the transformer 3500 and the inductor Lm. Since the inductor Ls is disposed on the input side, the output coil of the transformer 3500 plays a role in emitting the electric energy transferred from the input coil of the transformer 3500, and the electric energy transferred from the input coil is emitted from the capacitor C3. It also serves to transfer electrical energy to the diode D1. That is, after the electric energy charged in the capacitor C3 is released, it is transferred to the primary side by the transformer 3500 and charged in the inductor Ls.
  • the arrangement of the transformer 3500 and the resonant coil unit 3600 is a structure in which the resonant coil unit 1600 is located at the rear end of the transformer 1500 as shown in FIG. 4 according to the requirements of the AC-DC converter 3000, Alternatively, it may be implemented as a structure in which the resonance coil unit 3600 is located in the transformer 3500 as shown in FIG. 13, and either of them may perform a power factor improvement function.
  • the following operation is performed by the power supply unit or the control unit of the AC-DC converter.
  • step 4100 the control unit converts the input power rectified by the switching unit into AC power so that the output voltage to the load becomes a target value.
  • step 4200 the control unit charges the charging device by the power factor correction unit based on the AC power transformed by the transformer unit.
  • step 4300 the control unit controls the AC power transformed by the transformer to be transferred to the load by adding the power of the charged charging device to the AC power.
  • Methods according to an exemplary embodiment of the present invention may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer-readable medium.
  • Such computer-readable media may include program instructions, data files, data structures, etc. alone or in combination.
  • a computer-readable medium whether removable or rewritable, may be a non-volatile storage device, such as a USB memory device, or memory, such as, for example, RAM, ROM, flash memory, memory chips, integrated circuits, or
  • it may be stored in an optically or magnetically recordable storage medium such as a CD, DVD, magnetic disk, or magnetic tape, and at the same time, a machine (eg, computer) readable storage medium.
  • a memory that may be included in a mobile terminal is an example of a machine-readable storage medium suitable for storing a program or programs including instructions for implementing embodiments of the present invention.
  • the program instructions recorded in the present storage medium may be specially designed and configured for the present invention, or may be known and available to those skilled in the art of computer software.
  • the computer program instructions may be implemented by a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

An electronic device comprises: a first switching unit that converts rectified input power into AC power; a transforming unit that transforms and transfers the AC power; an output unit that outputs a DC output voltage on the basis of an output of the transforming unit; a power factor correcting unit that includes a charging element and a second switching unit connected to the transforming unit; and a control unit that controls the first switching unit to adjust the output voltage output by the output unit, and controls the second switching unit such that energy transferred through the transforming unit is charged to the charging element, and the energy charged in the charging element is discharged so as to increase the energy transferred to the output unit through the transforming unit.

Description

전자장치 및 그 제어방법 Electronic device and its control method
본 발명은 외부로부터 전달되는 교류 전원에 기반한 동작 에너지를 공급하는 전원공급부를 가진 전자장치 및 그 제어방법에 관한 것으로서, 상세하게는 전원공급부 내 교류 전원을 직류 전원으로 변환하는 변환회로에 역률보정 기능이 구현된 전자장치 및 그 제어방법에 관한 것이다.The present invention relates to an electronic device having a power supply for supplying operating energy based on AC power transmitted from the outside and a control method therefor, and more particularly, a power factor correction function in a conversion circuit that converts AC power in the power supply to DC power. It relates to the implemented electronic device and its control method.
소정의 정보를 특정 프로세스에 따라서 연산 및 처리하기 위해, 연산을 위한 CPU, 칩셋, 메모리 등의 전자부품들을 기본적으로 포함하는 전자장치는, 처리 대상이 되는 정보 또는 사용 용도가 무엇인지에 따라서 다양한 종류로 구분될 수 있다. 예를 들면, 전자장치에는 범용의 정보를 처리하는 PC나 서버 등의 정보처리장치, 영상데이터를 처리하는 영상처리장치, 처리된 영상데이터를 화면 상에 영상으로 표시하는 디스플레이장치, 오디오를 처리하는 오디오장치, 가정 내 잡무를 수행하는 생활가전 등이 있다. 어떠한 종류의 장치라고 하더라도, 전자장치는 외부로부터의 교류 전원에 기반하여 동작을 위한 전기에너지를 제공하는 전원공급부를 가진다. 전원공급부는 전자장치에 내장되거나 또는 아답터 형태로 전자장치에 접속되도록 제공될 수 있다.In order to calculate and process predetermined information according to a specific process, an electronic device that basically includes electronic components such as a CPU, a chipset, and a memory for arithmetic operation may be of various types depending on the information to be processed or the purpose of use. can be divided into For example, an electronic device includes an information processing device such as a PC or server that processes general-purpose information, an image processing device that processes image data, a display device that displays the processed image data as an image on a screen, and an audio processing device. There are audio devices and household appliances that perform chores in the home. Whatever kind of device is, the electronic device has a power supply that provides electrical energy for operation based on an external AC power supply. The power supply unit may be embedded in the electronic device or provided to be connected to the electronic device in the form of an adapter.
전원공급부의 회로 설계에서 고려되어야 할 여러 가지 사항 중의 한 가지로는 역률이 있다. 역률은 전원공급부로부터 부하에 실제로 전달됨으로써 부하에서 사용되는 유효전력에 비해, 전원공급부에 공급은 되었으나 부하에 전달되지 못하고 소모된 무효전력이 얼마나 적게 차지하는가의 비율을 나타낸다. 역률이 좋지 않은 전원공급부는 외부로부터 공급되는 전기에너지에 비해 부하에 전달되는 전기에너지가 상대적으로 적다는 것을 의미한다. 따라서, 전원공급부에는 무효전력을 줄여서 역률을 개선하기 위한 역률보정기능의 설계가 적용될 수 있다.Power factor is one of the many things to be considered in the circuit design of the power supply. The power factor represents the ratio of how little reactive power is supplied to the power supply but not delivered to the load and consumed as compared to the active power used in the load by being actually delivered to the load from the power supply. The power supply part having a poor power factor means that the electric energy delivered to the load is relatively small compared to the electric energy supplied from the outside. Accordingly, a design of a power factor correction function for improving the power factor by reducing reactive power may be applied to the power supply unit.
전원공급부에서 역률보정기능을 구현하기 위하여 여러 가지의 구조가 제안되고 있다. 그런데, 종래의 역률보정기능 구조는 상대적으로 코일 등의 많은 회로 부품들이 사용되므로, 전원공급부의 부피가 커지고, 발열이 증가하며, 재료비가 상승하는 문제가 있다.Various structures have been proposed to implement the power factor correction function in the power supply unit. However, since the conventional structure of the power factor correction function relatively uses many circuit components such as a coil, there are problems in that the volume of the power supply is large, heat is increased, and the material cost is increased.
따라서, 전원공급부에 역률보정기능을 구현하되, 상대적으로 전원공급부의 부피를 줄이고, 발열이 감소하며, 재료비를 절감할 수 있는 구조가 필요할 수 있다.Therefore, a structure capable of implementing a power factor correction function in the power supply unit, but relatively reducing the volume of the power supply unit, reducing heat generation, and reducing material cost may be required.
본 발명의 실시예에 따른 전자장치는, 정류된 입력전원을 교류전원으로 변환하는 제1스위칭부와, 상기 교류전원을 변압시켜 전달하는 변압부와, 상기 변압부의 출력에 기초하여 직류의 출력전압을 출력하는 출력부와, 상기 변압부에 연결된 충전소자 및 제2스위칭부를 포함하는 역률보정부와, 상기 출력부에 의해 출력되는 출력전압을 조정하도록 상기 제1스위칭부를 제어하고, 상기 변압부를 통해 전달되는 에너지가 상기 충전소자에 충전되도록 하고, 상기 충전소자에 충전된 에너지를 방전시켜 상기 변압부를 통해 상기 출력부로 전달되는 에너지가 상승하도록 상기 제2스위칭부를 제어하는 제어부를 포함할 수 있다.An electronic device according to an embodiment of the present invention includes a first switching unit that converts rectified input power into AC power, a transformer that transforms and transmits the AC power, and a DC output voltage based on the output of the transformer. A power factor correcting unit including an output unit for outputting a , a charging element connected to the transformer and a second switching unit, and controlling the first switching unit to adjust the output voltage output by the output unit, through the transformer It may include a controller for controlling the second switching unit so that the transferred energy is charged in the charging element, the energy charged in the charging element is discharged to increase the energy transferred to the output unit through the transforming unit.
또한, 상기 제어부는, 상기 변압부를 통해 전달되는 전류를 제어함으로써 상기 충전소자가 충전되도록 하고, 상기 변압부를 통해 전달되는 전압이 상승하도록 상기 충전소자에 충전된 에너지를 방전시킬 수 있다.Also, the controller may control the current transmitted through the transformer to charge the charging device, and discharge energy charged in the charging device to increase the voltage transmitted through the transformer.
또한, 상기 제2스위칭부는, 상기 충전소자 및 상기 변압부 사이에 개폐 가능하게 마련된 스위칭소자를 포함하며, 상기 제어부는, 상기 변압부를 통해 전달되는 에너지에 상기 충전소자에 충전된 에너지가 부가되도록 상기 스위칭소자를 제어할 수 있다.In addition, the second switching unit includes a switching element provided to be open and closed between the charging element and the transformer, and the control unit is configured to add the energy charged to the charging element to the energy transmitted through the transformer. The switching element can be controlled.
또한, 상기 제어부는, 상기 변압부에 흐르는 전류의 방향이 전환되도록 상기 제1스위칭부가 동작하는 시점에 대응하여 상기 스위칭소자를 턴온시킬 수 있다.In addition, the control unit may turn on the switching element in response to the time when the first switching unit operates so that the direction of the current flowing through the transformer is switched.
또한, 상기 제어부는, 상기 제1스위칭소자의 스위칭 동작을 제어하기 위한 신호의 시비율(duty ratio)을, 입력 교류전압의 크기가 작은 구간에서는 증가시키고 입력 교류전압의 크기가 큰 구간에서는 감소시킬 수 있다.In addition, the controller increases the duty ratio of the signal for controlling the switching operation of the first switching element in a section where the magnitude of the input AC voltage is small and decreases it in the section where the magnitude of the input AC voltage is large. can
또한, 상기 역률보정부는, 상기 변압부 및 상기 출력부 사이에 배치된 다이오드를 더 포함하며, 상기 제어부는, 상기 변압부를 통해 상기 출력부로 전달되는 에너지가 상기 다이오드를 거쳐서 흐를 수 있도록 상승시킬 수 있다.In addition, the power factor correction unit may further include a diode disposed between the transformer and the output unit, and the control unit may increase the energy transferred to the output unit through the transformer to flow through the diode. .
또한, 상기 역률보정부는, 상기 변압부를 통해 상기 출력부로 전달되는 에너지에 기초하여 충전되고, 상기 충전된 전기에너지가 상기 출력부로 전달되도록 마련되는 커패시터를 더 포함할 수 있다.In addition, the power factor correction unit may further include a capacitor charged based on the energy transmitted to the output unit through the transformer, and provided to transmit the charged electric energy to the output unit.
또한, 상기 변압부를 통해 전달되는 에너지 및 상기 충전소자에 충전된 에너지에 기초하여 충전되고, 상기 충전된 전기에너지가 상기 다이오드를 통해 전달되도록 마련된 공진코일부를 더 포함할 수 있다.In addition, it may further include a resonance coil unit charged based on the energy transferred through the transformer and the energy charged in the charging device, the charged electric energy is transmitted through the diode.
또한, 상기 충전소자는 커패시터를 포함할 수 있다.In addition, the charging device may include a capacitor.
또한, 상기 제1스위칭부는 복수의 스위치를 포함하며, 상기 제어부는, 상기 복수의 스위치를 개별적으로 개폐함으로써 상기 변압부에 전달되는 전류의 방향이 변화하도록 제어할 수 있다.In addition, the first switching unit may include a plurality of switches, and the control unit may control the direction of the current delivered to the transformer to change by individually opening and closing the plurality of switches.
또한, 상기 변압부를 통해 전달되는 에너지는, 상기 변압부의 입력측 코일로부터 출력측 코일로 전달되는 전기에너지일 수 있다.In addition, the energy transferred through the transformer may be electrical energy transferred from the input coil of the transformer to the output coil.
또한, 본 발명의 실시예에 따른 전자장치의 제어방법은, 제1스위칭부에 의해, 정류된 입력전원을 교류전원으로 변환하는 단계와, 충전소자 및 제2스위칭부를 포함하는 역률보정부에 의해, 변압부를 통해 전달되는 에너지에 기초하여 상기 충전소자를 충전시키는 단계와, 상기 충전소자에 충전된 에너지를 방전시켜 상기 변압부를 통해 출력부로 전달되는 에너지를 상승시키도록 상기 제2스위칭부를 제어하는 단계를 포함한다.In addition, the method for controlling an electronic device according to an embodiment of the present invention comprises the steps of converting the rectified input power into AC power by a first switching unit, and a power factor correction unit including a charging element and a second switching unit. , the steps of charging the charging element based on the energy transmitted through the transformer, and controlling the second switching unit to discharge the energy charged in the charging element to increase the energy transferred to the output unit through the transformer. include
도 1은 전자장치의 예시도이다.1 is an exemplary diagram of an electronic device.
도 2는 전자장치의 영상처리 디바이스의 구성 블록도이다.2 is a block diagram of an image processing device of an electronic apparatus.
도 3은 전원공급부의 교류-직류 컨버터의 구성 블록도이다.3 is a block diagram of the AC-DC converter of the power supply unit.
도 4는 도 3의 교류-직류 컨버터의 회로 구조를 나타내는 예시도이다.4 is an exemplary diagram illustrating a circuit structure of the AC-DC converter of FIG. 3 .
도 5는 교류-직류 컨버터의 각 부분에서의 신호 파형을 나타내는 그래프이다.5 is a graph showing signal waveforms in each part of the AC-DC converter.
도 6은 도 5의 시구간 중 T0 내지 T1의 시구간에서 교류-직류 컨버터의 동작을 나타내는 요부 회로도이다.6 is a circuit diagram illustrating an operation of an AC-DC converter in a time period T0 to T1 of the time period of FIG. 5 .
도 7은 도 5의 시구간 중 T1 내지 T2의 시구간에서 교류-직류 컨버터의 동작을 나타내는 요부 회로도이다.7 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T1 to T2 among the time period of FIG. 5 .
도 8은 도 5의 시구간 중 T2 내지 T3의 시구간에서 교류-직류 컨버터의 동작을 나타내는 요부 회로도이다.8 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T2 to T3 among the time period of FIG. 5 .
도 9는 역률제어부가 스위칭소자 M5에 전달하는 신호와 출력단 부하에 따른 시비율의 한 예시를 나타내는 그래프이다.9 is a graph illustrating an example of a time ratio according to a signal transmitted by the power factor control unit to the switching element M5 and an output terminal load.
도 10은 본 실시예의 스위칭소자 M5를 적용하지 않은 관련기술에 따른 교류-직류 컨버터에서 입력전류 및 입력전압의 위상의 시뮬레이션 결과를 나타내는 그래프이다.10 is a graph showing the simulation results of the phases of the input current and the input voltage in the AC-DC converter according to the related art to which the switching device M5 of the present embodiment is not applied.
도 11은 본 실시에 따른 스위칭소자 M5의 역률보정 동작으로 인한 입력전류 및 입력전압의 위상의 시뮬레이션 결과를 나타내는 그래프이다.11 is a graph showing simulation results of input current and input voltage phase due to a power factor correction operation of the switching device M5 according to the present embodiment.
도 12는 스위칭부의 설계가 변경된 교류-직류 컨버터의 회로의 예시도이다.12 is an exemplary diagram of an AC-DC converter circuit in which a design of a switching unit is changed.
도 13은 변압부의 설계가 변경된 교류-직류 컨버터의 회로의 예시도이다.13 is an exemplary diagram of a circuit of an AC-DC converter in which the design of the transformer is changed.
도 14는 제어부가 교류-직류 컨버터를 제어하는 동작에 관한 플로우차트이다.14 is a flowchart of an operation in which the control unit controls the AC-DC converter.
이하에서는 첨부도면을 참조하여 본 발명에 따른 실시예들에 관해 상세히 설명한다. 각 도면을 참조하여 설명하는 실시예들은 특별한 언급이 없는 한 상호 배타적인 구성이 아니며, 하나의 장치 내에서 복수 개의 실시예가 선택적으로 조합되어 구현될 수 있다. 이러한 복수의 실시예의 조합은 본 발명의 기술분야에서 숙련된 기술자가 본 발명의 사상을 구현함에 있어서 임의로 선택되어 적용될 수 있다.Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. The embodiments described with reference to the drawings are not mutually exclusive unless otherwise stated, and a plurality of embodiments may be selectively combined and implemented in one device. A combination of a plurality of these embodiments may be arbitrarily selected and applied by a person skilled in the art in implementing the spirit of the present invention.
만일, 실시예에서 제1구성요소, 제2구성요소 등과 같이 서수를 포함하는 용어가 있다면, 이러한 용어는 다양한 구성요소들을 설명하기 위해 사용되는 것이며, 용어는 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용되는 바, 이들 구성요소는 용어에 의해 그 의미가 한정되지 않는다. 실시예에서 사용하는 용어는 해당 실시예를 설명하기 위해 적용되는 것으로서, 본 발명의 사상을 한정하지 않는다.If, in the embodiment, there is a term including an ordinal number such as a first component, a second component, etc., these terms are used to describe various components, and the term distinguishes one component from another component. As used herein, these components are not limited in meaning by terms. Terms used in the embodiments are applied to describe the embodiments, and do not limit the spirit of the present invention.
또한, 본 명세서에서의 복수의 구성요소 중 "적어도 하나(at least one)"라는 표현이 나오는 경우에, 본 표현은 복수의 구성요소 전체 뿐만 아니라, 복수의 구성요소 중 나머지를 배제한 각 하나 혹은 이들의 조합 모두를 지칭한다.In addition, when the expression “at least one” among a plurality of components in the present specification appears, this expression refers not only to all of the plurality of components, but also each one or these excluding the rest of the plurality of components. refers to any combination of
도 1은 전자장치의 예시도이다.1 is an exemplary diagram of an electronic device.
도 1에 도시된 바와 같이, 본 실시예에 따른 전자장치(1)는 디스플레이장치(1)로 구현된다. 다만, 디스플레이장치(1)는 구현 가능한 전자장치(1) 중 한 가지 예시일 뿐으로서, 전자장치는 외부 전원에 의해 동작하는 정보처리장치, 생활가전, 영상처리장치 등 다양한 종류의 장치로 구현될 수 있다. 또한, 전자장치(1)는 영상신호를 처리하여 영상을 표시하기 위한 화면(201)을 가지며, 예를 들면 TV로 구현된다. 다만, 전자장치(1)는 TV 이외에도 다양한 종류의 장치로 구현될 수 있는 바, 예를 들면 TV, 모니터, 디지털 사이니지(signage), 전자칠판, 전자액자 등을 포함하는 고정형 디스플레이장치이거나; 셋탑박스, 광학미디어 재생기기 등을 포함하는 영상처리장치이거나; 컴퓨터본체 등을 포함하는 정보처리장치이거나; 스마트폰, 태블릿기기 등을 포함하는 모바일기기이거나; 웨어러블 디바이스 등의 다양한 종류의 장치로 구현될 수 있다.As shown in FIG. 1 , the electronic device 1 according to the present embodiment is implemented as a display device 1 . However, the display device 1 is only one example of the electronic devices 1 that can be implemented, and the electronic device can be implemented as various types of devices such as information processing devices, household appliances, and image processing devices operated by an external power source. can In addition, the electronic device 1 has a screen 201 for displaying an image by processing an image signal, and is implemented as, for example, a TV. However, the electronic device 1 may be implemented as various types of devices other than the TV, for example, a fixed display device including a TV, a monitor, a digital signage, an electronic blackboard, and an electronic picture frame; or an image processing apparatus including a set-top box, an optical media player, and the like; It is an information processing device including a computer body or the like; or a mobile device including a smart phone, a tablet device, and the like; It may be implemented in various types of devices, such as wearable devices.
전자장치(1)는 외부로부터 수신되거나 또는 자체 저장된 영상컨텐트에 기반한 영상신호를 처리하는 영상처리 디바이스(100)와, 영상처리 디바이스(100)로부터 출력되는 영상신호에 기초하여 영상을 표시하는 디스플레이부(200)를 포함한다. 본 실시예에서는 영상처리 디바이스(100)가 디스플레이부(200)와 분리된 미디어박스 형태인 경우의 전자장치(1)에 관해 설명하지만, 영상처리 디바이스(100) 및 디스플레이부(200)가 하나의 프레임에 결합되거나 또는 하나의 하우징 내에 수용되는 형태의 전자장치(1)도 가능하다.The electronic apparatus 1 includes an image processing device 100 that processes an image signal based on image content received from the outside or stored therein, and a display unit that displays an image based on an image signal output from the image processing device 100 . (200). In this embodiment, the electronic apparatus 1 in the case where the image processing device 100 is in the form of a media box separated from the display unit 200 is described, but the image processing device 100 and the display unit 200 are one The electronic device 1 coupled to the frame or accommodated in one housing is also possible.
영상처리 디바이스(100)는 PC, 셋탑박스 등과 같은 외부장치와 근거리 통신을 통하거나, 서버와 광역 네트워크 통신을 통하거나, RF 형태의 방송신호를 수신하는 등의 다양한 전송방식에 따라서 영상신호를 수신한다. 또는, 영상처리 디바이스(100)는 내부의 스토리지에 저장되어 있는 영상컨텐트 데이터를 읽음으로써 영상신호를 획득할 수 있다. 영상처리 디바이스(100)는 획득한 영상신호에 디코딩, 스케일링 등과 같은 영상 관련 처리를 수행하여 디스플레이부(200)에 출력한다. 영상처리 디바이스(100) 및 디스플레이부(200) 사이의 신호 전송 방식은 유선 및 무선이 모두 가능하다.The image processing device 100 receives an image signal according to various transmission methods, such as through short-distance communication with an external device such as a PC or a set-top box, through wide-area network communication with a server, or receiving a broadcast signal in an RF format. do. Alternatively, the image processing device 100 may acquire an image signal by reading image content data stored in an internal storage. The image processing device 100 performs image-related processing such as decoding and scaling on the obtained image signal, and outputs the image-related processing to the display unit 200 . A signal transmission method between the image processing device 100 and the display unit 200 may be both wired and wireless.
디스플레이부(200)는 영상처리 디바이스(100)로부터의 영상신호를 영상으로 표시하기 위한 화면(201)을 형성한다. 디스플레이부(200)는 디스플레이 패널을 포함하는데, 디스플레이 패널의 구조에는 여러 가지 설계방식이 적용될 수 있다. 본 실시예에 따른 디스플레이부(200)는 micro LED 또는 OLED 등과 같은 자발광 구조를 가지는 복수의 디스플레이 패널 또는 복수의 디스플레이 모듈에 의해 하나의 큰 화면(201)을 형성하는 구조로 마련된다. 또는, 디스플레이부(200)는 액정 방식과 같은 수광 구조 또는 OLED 방식과 같은 자발광 구조로 마련된 단일 디스플레이 패널의 구조로 마련될 수도 있다.The display unit 200 forms a screen 201 for displaying an image signal from the image processing device 100 as an image. The display unit 200 includes a display panel, and various design methods may be applied to the structure of the display panel. The display unit 200 according to the present embodiment is provided in a structure in which a single large screen 201 is formed by a plurality of display panels or a plurality of display modules having a self-luminous structure such as micro LED or OLED. Alternatively, the display unit 200 may be provided in the structure of a single display panel provided with a light-receiving structure such as a liquid crystal method or a self-luminous structure such as an OLED method.
이하, 전자장치(1)의 구성에 관해 설명한다.Hereinafter, the configuration of the electronic device 1 will be described.
도 2는 전자장치의 영상처리 디바이스의 구성 블록도이다.2 is a block diagram of an image processing device of an electronic apparatus.
도 2에 도시된 바와 같이, 전자장치의 영상처리 디바이스(100)는 인터페이스부(110)를 포함할 수 있다. 인터페이스부(110)는 영상처리 디바이스(100)가 다양한 종류의 외부장치 또는 서버와 통신을 수행하고, 또한 데이터를 송수신하기 위한 인터페이스 회로를 포함한다. 인터페이스부(110)는 접속 방식에 따라서, 유선 통신연결을 위한 하나 이상의 유선인터페이스부(111)와, 무선 통신연결을 위한 하나 이상의 무선인터페이스부(112)를 포함한다.As shown in FIG. 2 , the image processing device 100 of the electronic apparatus may include an interface unit 110 . The interface unit 110 includes an interface circuit for the image processing device 100 to communicate with various types of external devices or servers, and to transmit and receive data. The interface unit 110 includes one or more wired interface units 111 for wired communication connection and one or more wireless interface units 112 for wireless communication connection according to a connection method.
유선인터페이스부(111)는 기 정의된 전송규격의 케이블이 접속되는 커넥터 또는 포트를 포함한다. 예를 들면, 유선인터페이스부(111)는 방송신호를 수신하도록 지상파 또는 위성방송 안테나에 접속되거나 케이블방송의 케이블이 접속되는 포트를 포함한다. 또는, 유선인터페이스부(111)는 다양한 영상처리장치와 접속하도록 HDMI, DP, DVI, 컴포넌트, 컴포지트, S-Video, 썬더볼트 등 다양한 유선전송규격의 케이블이 접속되는 포트를 포함한다. 또는, 유선인터페이스부(111)는 USB 기기와 접속하기 위한 USB 규격의 포트를 포함한다. 또는, 유선인터페이스부(111)는 광케이블이 접속되는 광포트를 포함한다. 또는, 유선인터페이스부(111)는 외부 마이크로폰이 접속되는 오디오 입력 포트와, 헤드셋, 이어폰, 외부 스피커 등이 접속되는 오디오 출력 포트를 포함한다. 또는, 유선인터페이스부(111)는 광역 네트워크에 접속하기 위해 게이트웨이, 라우터, 허브 등에 접속하는 이더넷 포트를 포함한다.The wired interface unit 111 includes a connector or port to which a cable of a predefined transmission standard is connected. For example, the wired interface unit 111 includes a port to which a terrestrial or satellite broadcasting antenna is connected to receive a broadcast signal, or a cable for cable broadcasting is connected. Alternatively, the wired interface unit 111 includes ports to which cables of various wired transmission standards such as HDMI, DP, DVI, Component, Composite, S-Video, and Thunderbolt are connected to be connected to various image processing devices. Alternatively, the wired interface unit 111 includes a USB standard port for connecting to a USB device. Alternatively, the wired interface unit 111 includes an optical port to which an optical cable is connected. Alternatively, the wired interface unit 111 includes an audio input port to which an external microphone is connected, and an audio output port to which a headset, earphone, external speaker, and the like are connected. Alternatively, the wired interface unit 111 includes an Ethernet port connected to a gateway, a router, a hub, or the like to access a wide area network.
무선인터페이스부(112)는 다양한 종류의 무선통신 프로토콜에 대응하는 통신모듈, 통신칩 등의 구성요소들 중 적어도 하나 이상을 포함하는 양방향 통신회로를 포함한다. 예를 들면, 무선인터페이스부(112)는 와이파이(Wi-Fi) 방식에 따라서 AP(Access Point)와 무선통신을 수행하는 와이파이 통신칩과, 블루투스, Zigbee, Z-Wave, WirelessHD, WiGig, NFC 등의 무선통신을 수행하는 통신칩, IR 통신을 위한 IR 모듈, 모바일기기와 이동통신을 수행하는 이동통신칩 등을 포함한다.The wireless interface unit 112 includes a bidirectional communication circuit including at least one of components such as a communication module and a communication chip corresponding to various types of wireless communication protocols. For example, the wireless interface unit 112 includes a Wi-Fi communication chip that performs wireless communication with an AP (Access Point) according to a Wi-Fi method, Bluetooth, Zigbee, Z-Wave, WirelessHD, WiGig, NFC, etc. It includes a communication chip for performing wireless communication, an IR module for IR communication, and a mobile communication chip for performing mobile communication with a mobile device.
영상처리 디바이스(100)는 사용자입력부(120)를 포함할 수 있다. 사용자입력부(120)는 사용자의 입력을 수행하기 위해 사용자가 조작할 수 있도록 마련된 다양한 종류의 사용자 입력 인터페이스 관련 회로를 포함한다. 사용자입력부(120)는 영상처리 디바이스(100)의 종류에 따라서 여러 가지 형태의 구성이 가능하며, 예를 들면 영상처리 디바이스(100)의 기계적 또는 전자적 버튼부, 터치패드, 센서, 카메라, 터치스크린, 영상처리 디바이스(100)와 분리된 리모트 컨트롤러 등이 있다.The image processing device 100 may include a user input unit 120 . The user input unit 120 includes various types of user input interface related circuits that are provided to allow a user to manipulate the user to perform a user input. The user input unit 120 may be configured in various forms depending on the type of the image processing device 100 , for example, a mechanical or electronic button unit of the image processing device 100 , a touch pad, a sensor, a camera, and a touch screen. , and a remote controller separated from the image processing device 100 .
영상처리 디바이스(100)는 저장부(130)를 포함할 수 있다. 저장부(130)는 디지털화된 데이터를 저장한다. 저장부(130)는 전원의 제공 유무와 무관하게 데이터를 보존할 수 있는 비휘발성 속성의 스토리지(storage)와, 프로세서(150)에 의해 처리되기 위한 데이터가 로딩되며 전원이 제공되지 않으면 데이터를 보존할 수 없는 휘발성 속성의 메모리(memory)를 포함한다. 스토리지에는 플래시메모리(flash-memory), HDD(hard-disc drive), SSD(solid-state drive) ROM(Read Only Memory) 등이 있으며, 메모리에는 버퍼(buffer), 램(RAM; Random Access Memory) 등이 있다.The image processing device 100 may include a storage unit 130 . The storage unit 130 stores digitized data. The storage unit 130 has a non-volatile property that can preserve data regardless of whether or not power is provided, and data to be processed by the processor 150 is loaded, and data is stored when power is not provided. It includes memory of volatile properties that cannot. Storage includes flash-memory, hard-disc drive (HDD), solid-state drive (SSD), read-only memory (ROM), etc., and memory includes buffer and random access memory (RAM). etc.
영상처리 디바이스(100)는 전원공급부(140)를 포함할 수 있다. 전원공급부(140)는 각 구성요소들에게 동작에 필요한 전원을 전달한다. 예를 들면, 전원공급부(140)는 외부 전원으로부터 입력되는 교류 전원을 직류로 변환하고, 영상처리 디바이스(100)의 각 구성요소에 맞는 전류 또는 전압으로 조정된 전기에너지를 출력한다. 전원공급부(140)는 이를 위한 회로 구성 중 하나로, 교류를 직류로 전환하는 교류-직류 컨버터(converter) 회로를 포함할 수 있는데, 이에 관한 설명은 후술한다.The image processing device 100 may include a power supply unit 140 . The power supply unit 140 delivers power required for operation to each component. For example, the power supply unit 140 converts AC power input from an external power source into DC power, and outputs electric energy adjusted to a current or voltage suitable for each component of the image processing device 100 . As one of the circuit configurations for this purpose, the power supply unit 140 may include an AC-DC converter circuit for converting AC into DC, which will be described later.
영상처리 디바이스(100)는 프로세서(150)를 포함할 수 있다. 프로세서(150)는 인쇄회로기판 상에 장착되는 CPU, 칩셋, 버퍼, 회로 등으로 구현되는 하나 이상의 하드웨어 프로세서를 포함하며, 설계 방식에 따라서는 SOC(system on chip)로 구현될 수도 있다. 프로세서(150)는 전자장치가 디스플레이장치로 구현되는 경우에 디멀티플렉서, 디코더, 스케일러, 오디오 DSP(Digital Signal Processor), 앰프 등의 다양한 프로세스에 대응하는 모듈들을 포함한다. 여기서, 이러한 모듈들 중 일부 또는 전체가 SOC로 구현될 수 있다. 예를 들면, 디멀티플렉서, 디코더, 스케일러 등 영상처리와 관련된 모듈이 영상처리 SOC로 구현되고, 오디오 DSP는 SOC와 별도의 칩셋으로 구현되는 것이 가능하다.The image processing device 100 may include a processor 150 . The processor 150 includes one or more hardware processors implemented with a CPU, a chipset, a buffer, a circuit, etc. mounted on a printed circuit board, and may be implemented as a system on chip (SOC) depending on a design method. When the electronic device is implemented as a display device, the processor 150 includes modules corresponding to various processes such as a demultiplexer, a decoder, a scaler, an audio digital signal processor (DSP), and an amplifier. Here, some or all of these modules may be implemented as SOC. For example, a module related to image processing such as a demultiplexer, a decoder, and a scaler may be implemented as an image processing SOC, and an audio DSP may be implemented as a chipset separate from the SOC.
이하, 전원공급부(140)의 교류-직류 컨버터 회로에 관해 설명한다.Hereinafter, the AC-DC converter circuit of the power supply unit 140 will be described.
도 3은 전원공급부의 교류-직류 컨버터의 구성 블록도이다.3 is a block diagram of the AC-DC converter of the power supply unit.
도 3에 도시된 바와 같이, 전원공급부의 교류-직류 컨버터(1000)는 교류 전원을 공급받아서 직류 전원을 출력한다. 교류-직류 컨버터(1000)는 설계 방식에 따라서 다양한 회로 구조를 가질 수 있는데, 본 실시예의 경우에는 CLL 회로 구조가 적용된다. CLL 회로에서 "C"는 전압을 충전 및 방전하는 커패시터(capacitor)를 지칭하며, "L"은 전류를 충전 및 방전하는 인덕터(inductor)를 지칭한다. 다만, 교류-직류 컨버터(1000)가 CLL 회로 구조로만 한정되는 것은 아니며, 설계 방식에 따라서는 LLC 회로 구조를 가질 수도 있다.As shown in FIG. 3 , the AC-DC converter 1000 of the power supply receives AC power and outputs DC power. The AC-DC converter 1000 may have various circuit structures according to a design method. In this embodiment, the CLL circuit structure is applied. In a CLL circuit, "C" refers to a capacitor that charges and discharges a voltage, and "L" refers to an inductor that charges and discharges a current. However, the AC-DC converter 1000 is not limited to a CLL circuit structure, and may have an LLC circuit structure depending on a design method.
본 실시예에 따른 CLL 회로 구조를 가진 교류-직류 컨버터(1000)는 전기에너지가 전달되는 순서에 따라서, EMI필터(1100), 정류부(1200), 스위칭부(1300), 공진커패시터(1400), 변압부(1500), 공진코일부(1600), 역률보정부(1700), 출력부(1800)를 포함한다. 편의상 변압부(1500)를 기준으로 하여, 변압부(1500)의 전단을 입력측 또는 1차측이라고 지칭하며, 변압부(1500)의 후단을 출력측 또는 2차측이라고 지칭한다. 또한, 교류-직류 컨버터(1000)는 출력부(1800)로부터 입력되는 피드백 신호에 따라서 스위칭부(1300) 및/또는 역률보정부(1700)를 제어하는 제어부(1900)를 포함한다.AC-DC converter 1000 having a CLL circuit structure according to this embodiment is an EMI filter 1100, a rectifier 1200, a switching unit 1300, a resonance capacitor 1400, It includes a transformer 1500 , a resonance coil unit 1600 , a power factor correction unit 1700 , and an output unit 1800 . For convenience, with reference to the transformer 1500 , the front end of the transformer 1500 is referred to as an input side or a primary side, and the rear end of the transformer 1500 is referred to as an output side or a secondary side. Also, the AC-DC converter 1000 includes a controller 1900 that controls the switching unit 1300 and/or the power factor correcting unit 1700 according to a feedback signal input from the output unit 1800 .
EMI필터(1100)는 입력되는 전기에너지의 주파수 상에 섞여있는 다양한 노이즈를 걸러내거나 차단한다. 통상적으로 외부로부터 공급되는 교류 전원은, 전력선 등과 같은 다양한 이유로 인해 전기적인 노이즈가 섞인다. EMI필터(1100)는 교류-직류 컨버터(1000)에서 전기에너지를 처리하는 초기 단계에서 이러한 노이즈를 제거한다.The EMI filter 1100 filters or blocks various noises mixed in the frequency of the input electrical energy. In general, AC power supplied from the outside is mixed with electrical noise due to various reasons such as power lines. The EMI filter 1100 removes such noise in the initial stage of processing the electrical energy in the AC-DC converter 1000 .
정류부(1200)는 입력되는 교류 전원을 전파 혹은 반파의 정류된 전원으로 변환하며, 한 방향으로 전류가 흐르도록 동작한다. 커패시터(C1)는 그 용량이 클수록 역률이 저하되고, 그 용량이 작을수록 입력 주파수에 의한 전원 리플이 출력단에 크게 나타나므로, 전원공급부의 구조 및 회로 특성에 따른 적절한 용량 설정이 필요하다. 정류부(1200)는 교류-직류 컨버터(1000)의 역률보정 기능 수행을 위해 교류의 입력전원을 전파 혹은 반파된 전원으로 변환한다.The rectifier 1200 converts the input AC power into full-wave or half-wave rectified power, and operates so that the current flows in one direction. As the capacitance of the capacitor C1 increases, the power factor decreases, and as the capacitance decreases, the power ripple due to the input frequency appears at the output terminal. The rectifying unit 1200 converts AC input power into full-wave or half-wave power to perform the power factor correction function of the AC-DC converter 1000 .
스위칭부(1300)는 정류부(1200)로부터 출력되는 정류된 전원을 다시 교류로 변환시킨다. 스위칭부(1300)는 복수의 스위치를 포함하며, 각 스위치의 개별적인 스위칭 동작을 통해, 스위칭부(1300)를 통해 전달되는 전류의 방향이 전환되도록 한다.The switching unit 1300 converts the rectified power output from the rectifying unit 1200 back into AC. The switching unit 1300 includes a plurality of switches, and through individual switching operations of each switch, the direction of the current transmitted through the switching unit 1300 is switched.
공진커패시터(1400)는 스위칭부(1300)를 통해 전달되는 전기에너지를 충전한다.The resonance capacitor 1400 charges electric energy transferred through the switching unit 1300 .
변압부(1500)는 입력되는 전기에너지를 변압시켜 출력한다. 변압부(1500)는 예를 들면 트랜스포머를 포함할 수 있다.The transformer 1500 transforms the input electrical energy and outputs it. The transformer 1500 may include, for example, a transformer.
공진코일부(1600)는 변압부(1500)를 통해 교류-직류 컨버터(1000)의 입력측으로부터 출력측으로 전달되는 전기에너지를 충전한다.The resonance coil unit 1600 charges electric energy transferred from the input side to the output side of the AC-DC converter 1000 through the transformer 1500 .
역률보정부(1700)는 변압부(1500) 및 출력부(1800) 사이에 마련되며 교류-직류 컨버터(1000)의 역률을 개선하는 기능과 함께 정류 기능을 수행하여, 출력부(1800)에 직류 전원을 출력할 수 있다. 역률보정부(1700)는 배전압 구조를 가짐으로써, 변압부(1500)의 출력측 코일의 권선수 및 이에 따른 공진코일부(1600)의 권선수를 보다 작은 값으로 설계할 수 있도록 한다. 예를 들어 역률보정부(1700)를 배전압 구조로 하지 않는다면, 배전압을 달성하기 위해서는 변압부(1500)의 권선비를 1:2로 하고 공진코일부(1600)를 2의 제곱인 4배로 설계해야 한다. 반면, 역률보정부(1700)를 배전압 구조로 하면, 변압부(1500)의 권선비를 1:1로 하고 공진코일부(1600)를 1배로 설계할 수 있다.The power factor correction unit 1700 is provided between the transformer 1500 and the output unit 1800 and performs a rectification function together with a function of improving the power factor of the AC-DC converter 1000, thereby providing a direct current to the output unit 1800. Power can be output. Since the power factor correction unit 1700 has a voltage multiplier structure, the number of turns of the output-side coil of the transformer 1500 and thus the number of turns of the resonance coil unit 1600 can be designed to a smaller value. For example, if the power factor correction unit 1700 is not used as a voltage multiplier structure, the turns ratio of the transformer 1500 is 1:2 and the resonance coil unit 1600 is designed to be 4 times the power of 2 to achieve the voltage multiplier. Should be. On the other hand, if the power factor correction unit 1700 has a voltage multiplier structure, the turns ratio of the transformer 1500 may be 1:1 and the resonance coil unit 1600 may be designed to be 1 times.
출력부(1800)는 커패시터 등의 부품을 포함하고, 부하에 연결됨으로써 역률보정부(1700)로부터 출력되는 전기에너지를 부하에 전달한다.The output unit 1800 includes components such as a capacitor and is connected to a load to transmit electrical energy output from the power factor correction unit 1700 to the load.
제어부(1900)는 교류-직류 컨버터(1000)의 전체적인 동작을 제어한다. 제어부(1900)는 프로세서(150, 도 2 참조)로 구현될 수도 있고, 교류-직류 컨버터(1000)에 마련된 별도의 구성일 수도 있다. 제어부(1900)는 마이크로프로세서, 마이크로컨트롤러 등으로 마련된 하드웨어 칩셋으로 구현된다. 제어부(1900)는 스위칭부(1300)를 제어하는 스위칭제어부(1910)와, 역률보정부(1700)를 제어하는 역률보정부(1700)를 포함한다. 다만, 제어부(1900)가 반드시 역할에 따라서 복수 개로 구분되어 있을 필요는 없으며, 설계 방식에 따라서는 단일 제어부(1900)가 복수의 구성요소를 함께 제어하도록 마련될 수도 있다.The controller 1900 controls the overall operation of the AC-DC converter 1000 . The controller 1900 may be implemented as a processor 150 (refer to FIG. 2 ), or may be a separate component provided in the AC-DC converter 1000 . The control unit 1900 is implemented as a hardware chipset provided with a microprocessor, a microcontroller, or the like. The control unit 1900 includes a switching control unit 1910 for controlling the switching unit 1300 and a power factor correction unit 1700 for controlling the power factor correcting unit 1700 . However, it is not necessary that the control unit 1900 is divided into a plurality according to roles, and a single control unit 1900 may be provided to control a plurality of components together depending on a design method.
제어부(1900)는 교류-직류 컨버터(1000)의 일부 구성요소로부터 피드백 신호를 수신하고, 또한, 수신되는 피드백 신호에 기초하여 각 구성요소에 제어신호를 전송한다. 예를 들면, 제어부(1900)는 정류부(1200)로부터 입력전원의 전압 및 전류에 관한 피드백 신호와, 출력부(1800)로부터 출력 전압에 관한 피드백 신호를 수신한다. 또한, 제어부(1900)는 이러한 피드백 신호에 기초하여 스위칭부(1300) 및 역률보정부(1700)의 동작을 제어하는 제어신호를 출력한다. 이러한 제어신호는 스위칭부(1300) 및 역률보정부(1700)에 각기 마련된 스위치의 스위칭 동작을 제어하도록 마련되는데, 구체적인 내용에 관해서는 교류-직류 컨버터(1000)의 회로 구조와 관련시켜 후술한다.The controller 1900 receives a feedback signal from some components of the AC-DC converter 1000 and also transmits a control signal to each component based on the received feedback signal. For example, the control unit 1900 receives a feedback signal regarding the voltage and current of the input power from the rectifier 1200 and a feedback signal regarding the output voltage from the output unit 1800 . Also, the control unit 1900 outputs a control signal for controlling the operations of the switching unit 1300 and the power factor correcting unit 1700 based on the feedback signal. These control signals are provided to control the switching operation of the switches provided in the switching unit 1300 and the power factor correcting unit 1700, respectively, and specific details will be described later in relation to the circuit structure of the AC-DC converter 1000 .
이하, 본 발명의 실시예에 따른 제어부(1900)의 동작에 관해 설명한다.Hereinafter, the operation of the control unit 1900 according to an embodiment of the present invention will be described.
제어부(1900)는 부하에 대한 출력부(1800)의 출력전원이 목표값이 되도록 스위칭부(1300)를 제어한다. 제어부(1900)는 출력부(1800)로부터 피드백되는 출력 전압의 정보에 기초하여, 출력 전압이 기 설정된 목표값이 되도록 스위칭부(1300)의 스위칭 동작을 제어한다.The control unit 1900 controls the switching unit 1300 so that the output power of the output unit 1800 with respect to the load becomes a target value. The controller 1900 controls the switching operation of the switching unit 1300 so that the output voltage becomes a preset target value based on information on the output voltage fed back from the output unit 1800 .
제어부(1900)는 변압부(1500)의 출력에 기초하여 변압부(1500)에 연결된 충전소자를 충전시킨다. 여기서, 충전소자는 역률보정부(1700)에 마련된 구성요소로서, 변압부(1500)로부터 출력되는 전기에너지를 충전 또는 방전시키도록 마련된다. 충전소자에 관한 자세한 설명은 후술한다.The control unit 1900 charges the charging element connected to the transformer 1500 based on the output of the transformer 1500 . Here, the charging element is a component provided in the power factor correction unit 1700 , and is provided to charge or discharge electric energy output from the transformer 1500 . A detailed description of the charging device will be described later.
제어부(1900)는 변압부(1500)의 출력에, 충전된 충전소자의 출력이 부가되어 출력부(1800)에 전달되도록 역률보정부(1700)를 제어한다.The control unit 1900 controls the power factor correction unit 1700 so that the output of the charged charging element is added to the output of the transformer 1500 and transmitted to the output unit 1800 .
이와 같은 동작을 반복하여 수행함으로써, 제어부(1900)는 교류-직류 컨버터(1000)에서 역률 개선 기능을 보다 간단한 구조에 의해 달성하고, 교류-직류 컨버터(1000)의 부피 및 발열을 줄일 수 있다.By repeatedly performing these operations, the controller 1900 may achieve a power factor improvement function in the AC-DC converter 1000 with a simpler structure, and reduce the volume and heat generation of the AC-DC converter 1000 .
한편, 제어부(1900)에 의해 제어되는 교류-직류 컨버터(1000)의 구성요소들은 다양한 회로 설계에 기반하여 구현될 수 있다. 이하, 본 실시예에 따른 교류-직류 컨버터(1000)의 회로 구조의 예시에 관해 설명한다.Meanwhile, the components of the AC-DC converter 1000 controlled by the controller 1900 may be implemented based on various circuit designs. Hereinafter, an example of the circuit structure of the AC-DC converter 1000 according to the present embodiment will be described.
도 4는 도 3의 교류-직류 컨버터의 회로 구조를 나타내는 예시도이다.4 is an exemplary diagram illustrating a circuit structure of the AC-DC converter of FIG. 3 .
도 4에 도시된 바와 같이, 교류-직류 컨버터(1000)는 다양한 부품 및 배선을 사용한 회로로 구현된다. 본 도면에 나타난 회로 구조는 교류-직류 컨버터(1000)의 다양한 설계 방식 중 하나에 불과하다. 이하, 각 구성요소의 회로에 관해 설명한다.As shown in FIG. 4 , the AC-DC converter 1000 is implemented as a circuit using various components and wiring. The circuit structure shown in this figure is only one of various design methods of the AC-DC converter 1000 . Hereinafter, the circuit of each component will be described.
정류부(1200)는 복수의 다이오드를 포함하며, 입력되는 교류전원에 대한 전파정류(Full Wave Rectification)를 수행한다. 또한, 정류부(1200)는 커패시터 C1을 가진다. 커패시터 C1은 전파정류된 전압의 형태를 유지하기 위해, 수 μF의 적은 용량을 가진다.The rectifier 1200 includes a plurality of diodes, and performs full wave rectification on the input AC power. In addition, the rectifying unit 1200 has a capacitor C1. Capacitor C1 has a small capacitance of several μF to maintain the shape of the full-wave rectified voltage.
스위칭부(1300)는 복수의 스위칭소자를 포함한다. 본 실시예에서 스위칭부(1300)는 풀 브릿지 형태로 배치된 네 스위칭소자 M1, M2, M3, M4를 포함하는데, 스위칭부(1300)의 구성이 본 실시예의 예시만으로 한정되는 것은 아니다. 설계 방식에 따라서는, 스위칭부(1300)는 하프 브릿지 형태로 배치된 두 스위칭소자를 포함할 수도 있다.The switching unit 1300 includes a plurality of switching elements. In the present embodiment, the switching unit 1300 includes four switching elements M1, M2, M3, and M4 arranged in a full bridge form, but the configuration of the switching unit 1300 is not limited only to the example of this embodiment. Depending on the design method, the switching unit 1300 may include two switching elements arranged in the form of a half-bridge.
스위칭부(1300)가 복수의 스위칭소자를 포함하는 이유는 후술할 변압부(1500)의 입력측 코일에 인가되는 전류의 방향을 전환시키기 위함이다. 즉, 스위칭부(1300)는 네 스위칭소자 M1, M2, M3, M4를 선택적으로 개폐시킴으로써, 변압부(1500)에 인가되는 전류의 방향을 바꿀 수 있다.The reason why the switching unit 1300 includes a plurality of switching elements is to change the direction of a current applied to an input-side coil of the transformer 1500, which will be described later. That is, the switching unit 1300 may change the direction of the current applied to the transformer 1500 by selectively opening and closing the four switching elements M1, M2, M3, and M4.
변압부(1500)는 상호 절연된 입력측 코일 및 출력측 코일을 포함한다. 공진커패시터 Cr은 변압부(1500)의 입력측 코일에 직렬로 연결되며, 자화 인덕터 Lm은 변압부(1500)의 입력측 코일에 병렬로 연결된다. 변압부(1500)는 입력측 코일 및 출력측 코일 사이에 높은 결합도를 가지도록 함으로써, 누설 인덕턴스를 최소화하는 것이 바람직하다.The transformer 1500 includes an input-side coil and an output-side coil insulated from each other. The resonance capacitor Cr is connected in series to the input coil of the transformer 1500 , and the magnetizing inductor Lm is connected in parallel to the input coil of the transformer 1500 . The transformer 1500 preferably has a high degree of coupling between the input-side coil and the output-side coil, thereby minimizing leakage inductance.
공진코일부(1600)는 인덕터 Ls를 포함한다. 공진코일부(1600)는 자화 인덕터 Lm이 변압기 자체 인덕턴스를 활용하도록 설계되는 경우에, 본 실시예와 같이 출력측 코일에 직렬로 연결되도록 배치된다. 설계 방식에 따라서는, 공진코일부(1600)가 자화 인덕터 Lm 및 변압부(1500)의 입력측 코일 사이에 배치되는 것도 가능하다. 공진코일부(1600)를 입력측 또는 출력측 중 어디에 배치하는가에 따라서, 턴비를 고려하여 인덕턴스 설정이 필요하다. 예를 들어 공진코일부(1600)를 입력측에 배치하였을 때 200μH가 필요하다면, 공진코일부(1600)를 출력측에 배치하였을 때에는 (N2/N1)의 제곱에 비례하는 인덕턴스 설계가 필요하다. 여기서, NP는 변압부(1500)의 입력측 코일의 권선 수이며, NS는 변압부(1500)의 출력측 코일의 권선 수이다.The resonance coil unit 1600 includes an inductor Ls. When the magnetizing inductor Lm is designed to utilize the transformer's own inductance, the resonant coil unit 1600 is arranged to be connected in series to the output side coil as in the present embodiment. Depending on the design method, the resonant coil unit 1600 may be disposed between the magnetizing inductor Lm and the input side coil of the transformer 1500 . Depending on whether the resonance coil unit 1600 is disposed on the input side or the output side, the inductance setting is necessary in consideration of the turn ratio. For example, if 200 μH is required when the resonant coil unit 1600 is disposed on the input side, an inductance design proportional to the square of (N2/N1) is required when the resonant coil unit 1600 is disposed on the output side. Here, NP is the number of windings of the input-side coil of the transformer 1500 , and NS is the number of windings of the output-side coil of the transformer 1500 .
역률보정부(1700)는 다이오드 D1, 스위칭소자 M5, 커패시터 C2, C3를 포함한다. 노드 N1은 변압부(1500)의 출력측 코일의 일단이며, 노드 N2는 변압부(1500)의 출력측 코일의 타단이다. 노드 N1 및 변압부(1500) 사이에는 인덕터 Ls가 배치된다. 다이오드 D1의 전단은 노드 N1에서 인덕터 Ls의 일단과 연결된다. 다이오드 D1 및 스위칭소자 D5는 노드 N1에서 인덕터 Ls와 병렬 연결된다. 커패시터 C2, C3는 노드 N2에서 변압부(1600)의 출력측 코일과 병렬 연결된다.The power factor correction unit 1700 includes a diode D1, a switching device M5, and capacitors C2 and C3. The node N1 is one end of the output side coil of the transformer 1500 , and the node N2 is the other end of the output side coil of the transformer 1500 . An inductor Ls is disposed between the node N1 and the transformer 1500 . The front end of the diode D1 is connected to one end of the inductor Ls at the node N1. The diode D1 and the switching device D5 are connected in parallel with the inductor Ls at the node N1. Capacitors C2 and C3 are connected in parallel with the output coil of the transformer 1600 at the node N2.
다이오드 D1은 역률보정부(1700)에서 정류 역할을 수행한다. 다이오드의 특성 상 노드 N1에 걸리는 전압이 출력부(1800)에 걸리는 전압보다 높은 경우에 다이오드 D1의 전단으로부터 후단으로 전기에너지가 흐를 수 있다. 다이오드 D1의 후단으로부터 전단으로는 전기에너지가 흐르지 않는다. 또한, 노드 N1에 걸리는 전압이 출력부(1800)에 걸리는 전압보다 낮은 경우에는 다이오드 D1의 전단으로부터 후단으로 전기에너지가 흐르지 않는다. 설계 방식에 따라서는 다이오드 D1을 스위칭소자로 대체할 수 있으며, 이 경우에는 제어부(1900)가 이 대체된 스위칭소자를 제어하도록 마련된다.The diode D1 performs a rectification function in the power factor correction unit 1700 . Due to the characteristics of the diode, when the voltage applied to the node N1 is higher than the voltage applied to the output unit 1800 , electric energy may flow from the front end to the rear end of the diode D1 . No electric energy flows from the rear end of the diode D1 to the front end. In addition, when the voltage applied to the node N1 is lower than the voltage applied to the output unit 1800 , electric energy does not flow from the front end to the rear end of the diode D1 . Depending on the design method, the diode D1 may be replaced with a switching device. In this case, the controller 1900 is provided to control the replaced switching device.
커패시터 C3는 역률보정부(1700)에서 충전소자 역할을 수행한다. 변압부(1500)의 출력측 코일에 흐르는 전류의 방향 및 스위칭소자 M5의 턴온/턴오프 상태의 조건에 따라서, 커패시터 C3는 전기에너지를 충전하거나 또는 방출한다.The capacitor C3 serves as a charging device in the power factor correction unit 1700 . The capacitor C3 charges or discharges electrical energy according to the direction of the current flowing in the output coil of the transformer 1500 and the condition of the turn-on/turn-off state of the switching element M5.
커패시터 C2는 변압부(1500)의 출력측 코일로부터의 전기에너지를 충전하여 출력부(1800)로 전달하고, 충전 시 전류가 변압부(1500)의 출력측 코일로 흐르도록 하는 경로를 형성한다. 이로써, 커패시터 C2는 이 시기 동안에 커패시터 C3가 방전되는 것을 억제한다. 설계 방식에 따라서는 커패시터 C2가 생략되는 구조도 가능하지만, 이 경우에는 커패시터 C3의 전류 실효치인 RMS(Root Mean Square)가 크게 증가한다.The capacitor C2 charges electric energy from the output coil of the transformer 1500 and transfers it to the output unit 1800 , and forms a path through which a current flows to the output coil of the transformer 1500 during charging. Capacitor C2 thereby inhibits capacitor C3 from discharging during this period. Depending on the design method, a structure in which the capacitor C2 is omitted is also possible.
제어부(1900)는 정류부(1200)로부터 입력전압 V_in, 입력전류 I_in의 피드백을 받으며, 출력부(1800)로부터 출력전압 Vdc_out의 피드백을 받는다. 이러한 피드백에 기초하여, 제어부(1900)는 스위칭부(1300)의 스위칭소자 M1, M2, M3, M4와, 역률보정부(1700)의 역률보정 스위칭소자(이후, 간단히 스위칭소자로 지칭함) M5의 스위칭 동작을 각각 제어한다. 제어부(1900)의 구체적인 제어 동작에 관해서는 후술한다.The control unit 1900 receives the feedback of the input voltage V_in and the input current I_in from the rectifying unit 1200 , and receives the feedback of the output voltage Vdc_out from the output unit 1800 . Based on this feedback, the controller 1900 controls the switching elements M1, M2, M3, and M4 of the switching unit 1300 and the power factor correction switching element of the power factor correction unit 1700 (hereinafter simply referred to as a switching element) M5 of Each of the switching operations is controlled. A specific control operation of the control unit 1900 will be described later.
이하, 변압부(1500)의 입력측 코일에 흐르는 전류의 방향 및 스위칭소자 M5의 턴온/턴오프 상태의 조건에 따른 교류-직류 컨버터(1000)의 동작에 관해 설명한다.Hereinafter, the operation of the AC-DC converter 1000 according to the direction of the current flowing in the input-side coil of the transformer 1500 and the condition of the turn-on/turn-off state of the switching element M5 will be described.
도 5는 교류-직류 컨버터의 각 부분에서의 신호 파형을 나타내는 그래프이다.5 is a graph showing signal waveforms in each part of the AC-DC converter.
도 4 및 도 5에 도시된 바와 같이, 제어부(1900)는 시간 경과에 따라서 스위칭소자 M1 및 M4의 조합과, 스위칭소자 M2 및 M3의 조합을 교대로 스위칭한다. 스위칭소자 M1 및 M4가 턴온되는 시점 T0부터 T3까지의 시구간에는 스위칭소자 M2 및 M3이 턴오프되고, 스위칭소자 M1 및 M4가 턴오프되는 시점 T3부터 T0까지의 시구간에는 스위칭소자 M2 및 M3가 턴온된다.4 and 5 , the controller 1900 alternately switches the combination of the switching elements M1 and M4 and the combination of the switching elements M2 and M3 over time. The switching elements M2 and M3 are turned off in the time period from T0 to T3 when the switching elements M1 and M4 are turned on, and the switching elements M2 and M3 are turned on in the time period from T3 to T0 when the switching elements M1 and M4 are turned off. do.
이러한 스위칭소자들의 제어에 의하여 변압부(1500)의 입력측 코일에 흐르는 전류의 방향이 바뀌게 된다. 그러나, 스위칭소자 M1 및 M4가 턴온되고 M2 및 M3이 턴오프되는 시점, 또는 스위칭소자 M1 및 M4가 턴오프되고 M2 및 M3가 턴온되는 시점에 바로 전류의 방향이 바뀌지는 않는다. 인덕터 Lm, Ls 등의 존재 때문에, 스위칭소자가 턴온/턴오프되는 시점이 아니라 소정 시간의 경과 이후에 전류의 방향이 바뀌게 된다. 인덕터는 전류를 충전 및 방출하는 부품이다. 따라서, 회로에서 전류가 제1방향에서 제2방향으로 바뀌도록 제어되더라도, 인덕터는 소정 시간 동안에는 전류가 제1방향으로 계속 흐르는 관성이 작용하도록 하는 역할을 수행한다.The direction of the current flowing through the input-side coil of the transformer 1500 is changed by the control of these switching elements. However, the direction of the current does not change immediately when the switching elements M1 and M4 are turned on and M2 and M3 are turned off, or when the switching elements M1 and M4 are turned off and M2 and M3 are turned on. Due to the presence of the inductors Lm, Ls, and the like, the direction of the current is changed after the lapse of a predetermined time, not when the switching element is turned on/off. An inductor is a component that charges and discharges current. Therefore, even if the current is controlled to change from the first direction to the second direction in the circuit, the inductor serves to cause the inertia of the current to continuously flow in the first direction for a predetermined time.
ICr은 커패시터 Cr의 전류를, VCr은 커패시터 Cr의 전압을, ILm은 인덕터 Lm의 전류를 각각 나타낸다. 특히 전류의 파형은 전류의 방향을 나타내는데, 예를 들어 전류가 (+)인 영역 및 (-)인 영역에서는 전류의 방향이 서로 반대이다.I Cr represents the current of the capacitor Cr, V Cr represents the voltage of the capacitor Cr, and I Lm represents the current of the inductor Lm, respectively. In particular, the waveform of the current indicates the direction of the current. For example, in a region where the current is (+) and a region where the current is (-), the direction of the current is opposite to each other.
스위칭소자의 제어와 전류의 파형을 함께 보면, 전류의 방향이 어떻게 바뀌는지 알 수 있다. 예를 들어 시점 T0에서 스위칭소자 M1 및 M4가 턴온되고 M2 및 M3가 턴오프되면, 시점 T0에서 ICr이 (-) 영역에서 바로 (+) 영역으로 바뀌는 것이 아니라, ICr의 커브는 (-) 영역에서 (+) 영역을 향해 상승한다. 전류가 0을 지나는 T1 시점부터 ICr의 방향이 완전히 바뀌게 된다. 반대로 시점 T3에서 스위칭소자 M1 및 M4가 턴오프되고 M2 및 M3가 턴온되면, ICr의 커브는 (+) 영역에서 (-) 영역을 향해 하강하며, ICr이 0을 지나는 T4 시점부터 ICr의 방향이 완전히 바뀌게 된다.If you look at the control of the switching element and the waveform of the current, you can see how the direction of the current changes. For example, when the switching elements M1 and M4 are turned on and M2 and M3 are turned off at the time point T0, I Cr does not change directly from the (-) region to the (+) region at the time point T0, but the curve of I Cr is (- ) to the (+) area. From the time T1 when the current passes through 0, the direction of I Cr is completely changed. Conversely, the switching elements M1 and M4 is turned off at the time point T3, and M2 and M3 are turned on, the curve (+) zone in the I Cr (-) fall toward the region, and, I Cr is from T4 time point passing through the 0 I Cr direction is completely changed.
제어부(1900)는 스위칭소자 M5를 시점 T0부터 T2까지 턴온시키고 나머지 시구간에서는 턴오프시킨다. 설계 방식에 따라서는, 제어부(1900)는 스위칭소자 M5를 시점 T0보다 앞선 시점, 구체적으로는 시점 T4 및 T0 사이의 일 시점에 턴온시킬 수도 있다. 즉, 스위칭소자 M5의 턴온 시점은, 인덕터 Ls에 전류가 다이오드 D1을 향하는 방향으로 흐르는 구간에서 스위칭 소자 M5의 드레인 소스 전압이 0이 된 이후부터 인덕터 Ls의 전류의 방향이 변압부(1500)의 출력측 코일을 향하는 방향으로 변경되기 이전에 수행되면 된다. 스위칭 소자 M5의 영전압 스위칭 동작(ZVS, Zero Voltage Switching)이 가능해지기 때문에, 스위칭 소자 M5의 동작 시 부하를 줄일 수 있다.The control unit 1900 turns on the switching device M5 from time point T0 to time T2 and turns it off during the remaining time period. Depending on the design method, the control unit 1900 may turn on the switching device M5 at a time preceding the time point T0, specifically, at a time point between the time points T4 and T0. That is, at the turn-on time of the switching element M5, the direction of the current of the inductor Ls is the direction of the transformer 1500 after the drain-source voltage of the switching element M5 becomes 0 in the section in which the current flows in the inductor Ls in the direction toward the diode D1. It only needs to be performed before changing the direction toward the output side coil. Since a zero voltage switching operation (ZVS) of the switching element M5 is possible, a load during operation of the switching element M5 can be reduced.
이하, 각 시구간 별 회로의 동작에 관해 설명한다.Hereinafter, the operation of the circuit for each time period will be described.
도 6은 도 5의 시구간 중 T0 내지 T1의 시구간에서 교류-직류 컨버터의 동작을 나타내는 요부 회로도이다.6 is a circuit diagram illustrating an operation of an AC-DC converter in a time period T0 to T1 of the time period of FIG. 5 .
도 4 및 6에 도시된 바와 같이, 시점 T0 내지 T1의 시구간(도 5 참조) 동안에 교류-직류 컨버터(1000)는 커패시터 C3에 전기에너지를 충전시키도록 동작한다.As shown in FIGS. 4 and 6 , the AC-DC converter 1000 operates to charge the capacitor C3 with electrical energy during the time period from time T0 to T1 (refer to FIG. 5 ).
시점 T0에서 스위칭소자들 중 M1 및 M4가 턴온되고, M2 및 M3가 턴오프되며, M5가 턴온된다. 스위칭소자 M1 및 M4가 턴온되어 있더라도, 인덕터 Ls로 인해 T0 이전 시구간(T4 내지 T0)에서의 전류가 흐르는 관성이 계속 작용한다. 따라서, 변압부의 출력측 코일 Lsm에는 제1방향(도면 상에서는 시계반대방향)의 전류가 흐르며, 이에 대응하여 변압부의 입력측 코일에도 전류가 제1방향으로 흐른다.At time point T0, M1 and M4 of the switching elements are turned on, M2 and M3 are turned off, and M5 is turned on. Even when the switching elements M1 and M4 are turned on, the inertia through which the current flows in the time period T4 to T0 before T0 continues to act due to the inductor Ls. Accordingly, a current in the first direction (counterclockwise in the drawing) flows in the output coil Lsm of the transformer, and correspondingly, current also flows in the input coil of the transformer in the first direction.
이 때 스위칭소자 M5가 턴온되어 있으므로, 변압부의 출력측 코일 Lsm에 흐르는 전기에너지는 커패시터 C3에 충전된다. 설계 방식에 따라서는 스위칭소자 M5가 기생 다이오드 D2를 가질 수 있는데, 이 경우에는 스위칭소자 M5의 턴온/턴오프 여부와 무관하게 기생 다이오드 D2를 통해 전류가 흐르도록 마련된다. 다만, 기생 다이오드 D2의 부하를 줄이기 위해, T0 시점에 스위칭소자 M5가 턴온되어 전류가 흐르도록 한다.At this time, since the switching element M5 is turned on, the electric energy flowing through the output-side coil Lsm of the transformer is charged in the capacitor C3. Depending on the design method, the switching device M5 may have the parasitic diode D2. In this case, the current flows through the parasitic diode D2 regardless of whether the switching device M5 is turned on or off. However, in order to reduce the load on the parasitic diode D2, the switching device M5 is turned on at the time T0 to allow a current to flow.
한편, 정류 기능을 수행하는 다이오드 D1의 전단인 노드 N1에서의 전압은 다이오드 D1의 후단보다 낮으므로, 다이오드 D1 전단으로부터 후단으로는 전류가 흐르지 않는다.Meanwhile, since the voltage at the node N1, which is the front end of the diode D1 performing the rectification function, is lower than the rear end of the diode D1, no current flows from the front end to the rear end of the diode D1.
도 7은 도 5의 시구간 중 T1 내지 T2의 시구간에서 교류-직류 컨버터의 동작을 나타내는 요부 회로도이다.7 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T1 to T2 among the time period of FIG. 5 .
도 4 및 도 7에 도시된 바와 같이, 시점 T1 내지 T2의 시구간(도 5 참조) 동안에 교류-직류 컨버터(1000)는 변압부의 입력측으로부터 출력측 코일 Lsm에 전달되는 전기에너지 및 커패시터 C3에 충전된 전기에너지를 인덕터 Ls에 충전시키도록 동작한다.As shown in FIGS. 4 and 7 , during the time period of time T1 to T2 (see FIG. 5 ), the AC-DC converter 1000 is charged with electrical energy transferred from the input side of the transformer to the output side coil Lsm and the capacitor C3. It operates to charge electrical energy into the inductor Ls.
시점 T0에 스위칭 소자 M1 및 M4이 턴온된 이후 시점 T1이 지나면서, 제2방향(도면 상에서 시계방향)으로 흐르는 전류에 의해, 제1방향(도면 상에서 시계반대방향)의 전류 흐름의 관성이 극복된다. 따라서, 시점 T1 이후에는 변압부의 입력측 코일에는 제2방향의 전류가 흐르며, 이에 대응하여 변압부의 출력측 코일 Lsm에도 제2방향의 전류가 흐른다.After the switching elements M1 and M4 are turned on at the time T0, as the time point T1 passes, the inertia of the current flow in the first direction (counterclockwise in the drawing) is overcome by the current flowing in the second direction (clockwise in the drawing) do. Accordingly, after the time point T1, the current in the second direction flows through the input coil of the transformer, and correspondingly, the current in the second direction also flows through the output coil Lsm of the transformer.
이 때, 커패시터 C3에 충전된 전기에너지가 커패시터 C3로부터 방출된다. 변압부의 입력측으로부터 출력측 코일 Lsm에 전달되는 전기에너지에 커패시터 C3로부터의 전기에너지가 부가된 전기에너지의 합은 인덕터 Ls에 충전된다.At this time, the electric energy charged in the capacitor C3 is discharged from the capacitor C3. The sum of the electrical energy transferred from the input side of the transformer to the output side coil Lsm plus the electrical energy from the capacitor C3 is charged in the inductor Ls.
한편, 다이오드 D1의 전단인 노드 N1에서의 전압은 다이오드 D1의 후단보다 여전히 낮으므로, 다이오드 D1 전단으로부터 후단으로는 전류가 흐르지 않는다.On the other hand, since the voltage at the node N1, which is the front end of the diode D1, is still lower than the downstream end of the diode D1, no current flows from the front end to the rear end of the diode D1.
도 8은 도 5의 시구간 중 T2 내지 T3의 시구간에서 교류-직류 컨버터의 동작을 나타내는 요부 회로도이다.8 is a main circuit diagram illustrating an operation of an AC-DC converter in a time period of T2 to T3 among the time period of FIG. 5 .
도 8에 도시된 바와 같이, 시점 T2 내지 T3의 시구간(도 5 참조) 동안에 교류-직류 컨버터(1000)는 변압부의 입력측으로부터 출력측 코일 Lsm에 전달되는 전기에너지 및 인덕터 Ls에 충전된 전기에너지의 합을 출력부로 전달한다.As shown in FIG. 8 , during the time period of time T2 to T3 (see FIG. 5 ), the AC-DC converter 1000 uses the electric energy transferred from the input side of the transformer to the output coil Lsm and the electric energy charged in the inductor Ls. Passes the sum to the output.
변압부의 입력측 코일에는 제2방향(도면 상에서 시계방향)으로 전류가 흐르며, 이에 대응하여 변압부의 출력측 코일 Lsm에도 제2방향으로 전류가 흐른다. 여기서, 시점 T2에 스위칭소자 M5가 턴오프되면, 인덕터 Ls에 충전되어 있던 전기에너지가 방출되면서, 노드 N1에서의 전압이 다이오드 D1의 후단에 비해 상대적으로 크게 상승한다. 이 때문에 다이오드 D1의 전단으로부터 후단으로 전기에너지가 전달될 수 있는 조건을 만족하게 되므로, 변압부의 입력측으로부터 출력측 코일 Lsm에 전달되는 전기에너지 및 인덕터 Ls에 충전되어 있던 전기에너지의 합은 다이오드 D1을 지나서 출력부로 전달된다.A current flows in the second direction (clockwise in the drawing) in the input coil of the transformer, and correspondingly, current also flows in the output coil Lsm of the transformer in the second direction. Here, when the switching device M5 is turned off at the time T2, the electric energy charged in the inductor Ls is released, and the voltage at the node N1 increases relatively significantly compared to the rear end of the diode D1. For this reason, the condition that electric energy can be transferred from the front end to the rear end of the diode D1 is satisfied. Therefore, the sum of the electric energy transferred from the input side of the transformer to the output coil Lsm and the electric energy charged in the inductor Ls passes through the diode D1. transmitted to the output.
한편, 다이오드 C2는 출력부로 흐르는 전기에너지를 변압부의 출력측 코일 Lsm으로 향하도록 하는 경로를 제공한다. 설계 방식에 따라서는 다이오드 C2가 없이 배선만 연결되는 구성도 가능하다. 다만, 다이오드 C2가 없으면 현 시구간에서 다이오드 C3로부터 전기에너지가 방출되므로 효율성이 떨어질 수 있다.On the other hand, the diode C2 provides a path for directing the electrical energy flowing to the output unit to the output-side coil Lsm of the transformer. Depending on the design method, a configuration in which only the wiring is connected without the diode C2 is also possible. However, if the diode C2 is not present, since electric energy is emitted from the diode C3 in the current time period, the efficiency may be reduced.
한편, 도 5의 시구간 중에서 시점 T3 내지 T4 사이의 구간에서는, 스위칭소자 M2 및 M3의 턴온과 M1 및 M4의 턴오프에 의해 입력 전류의 방향이 바뀌게 된다. 그러나, 인덕터에 의한 전류의 관성 작용으로 인해, 이 시구간에서의 회로의 동작은 도 8의 형태를 유지한다.Meanwhile, in the period between time points T3 to T4 in FIG. 5 , the direction of the input current is changed by turning on the switching elements M2 and M3 and turning off the M1 and M4. However, due to the inertial action of the current by the inductor, the operation of the circuit in this time period maintains the shape of FIG. 8 .
전류의 관성이 극복되는 시점 T4 내지 T0 사이의 구간에서는, 회로의 동작은 도 6의 형태를 나타낸다.In the section between the time points T4 to T0 when the inertia of the current is overcome, the operation of the circuit is shown in the form of FIG. 6 .
교류-직류 컨버터는 출력측에서 정류 기능 및 역률보정 기능을 결합시킨 회로를 가지고, 이와 같은 동작의 사이클을 반복함으로써, 간단한 구조로 역률을 개선시킬 수 있다. 본 발명의 실시예는, 입력전압이 출력전압 대비 낮은 구간에서도 출력측으로 전달되는 전류의 흐름이 발생되어 회로 내 역률을 개선하는 효과를 가져온다.The AC-DC converter has a circuit combining a rectifying function and a power factor correction function on the output side, and by repeating such an operation cycle, the power factor can be improved with a simple structure. In the embodiment of the present invention, the flow of current transmitted to the output side occurs even in a section in which the input voltage is lower than the output voltage, thereby improving the power factor in the circuit.
이상 실시예에서 설명한 바와 같이, 제어부(1900, 도 3 참조)는 각 스위칭소자에 전달하는 제어신호에 의해 일정한 전압 출력 및 역률 개선을 수행한다. 스위칭제어부(1910, 도 3 참조)는 출력부(1800, 도 3 참조)로부터 출력전압을 피드백 받아, 스위칭부(1300, 도 3 참조)에 전달하는 제어신호의 시비율(Duty Ratio) 및 동작 주파수를 조절한다. 역률제어부(1920, 도 3 참조)는 출력전압(Vdc_out), 입력전압(V_in), 입력측의 커패시터 C1과 스위칭부 사이에 흐르는 전류(I_in)의 값에 기초하여 스위칭소자 M5에 공급되는 제어신호의 시비율을 조절한다.As described in the above embodiment, the control unit 1900 (refer to FIG. 3 ) performs constant voltage output and power factor improvement by a control signal transmitted to each switching element. The switching control unit 1910 (refer to FIG. 3) receives the output voltage from the output unit 1800 (refer to FIG. 3) as feedback, and the duty ratio and operating frequency of the control signal transmitted to the switching unit 1300 (refer to FIG. 3) adjust the The power factor control unit 1920 (refer to FIG. 3) controls the output voltage Vdc_out, the input voltage V_in, and the control signal supplied to the switching element M5 based on the value of the current I_in flowing between the input capacitor C1 and the switching unit. Adjust the fertilization ratio.
스위칭소자 M5에 전달되는 제어신호의 동작 주파수는 스위칭부의 동작 주파수와 동기화된다. 스위칭소자 M5의 턴오프 시점은, 시점 T1 내지 T2의 구간(도 4 참조) 동안에, 인덕터 Ls에 축적된 에너지가 커패시터 C2에 전달될 충분한 시간을 확보하되, 스위칭소자 M1 및 M4가 턴오프되기 전에 수행된다. 스위칭소자 M5에 의한 스위칭 동작은, 축적된 에너지를 입력측으로부터 전달되는 에너지와 함께 출력측으로 전달하는 동작을 하기 때문에, 단순히 역률개선 기능 뿐만 아니라 회로의 전압이득에 영향을 준다. 이로써, 스위칭소자 M5에 의한 스위칭 동작은, 예를 들면 90 내지 264 Vrms 입력에서 공진형 회로 설계 시, 부족한 전압 이득을 보상할 수 있다.The operating frequency of the control signal transmitted to the switching element M5 is synchronized with the operating frequency of the switching unit. The turn-off time of the switching element M5 is, during the period of time T1 to T2 (refer to FIG. 4), sufficient time for the energy accumulated in the inductor Ls to be transferred to the capacitor C2, but before the switching elements M1 and M4 are turned off is carried out Since the switching operation by the switching element M5 transfers the accumulated energy to the output side together with the energy transferred from the input side, it affects not only the power factor improvement function but also the voltage gain of the circuit. Accordingly, the switching operation by the switching device M5 can compensate for insufficient voltage gain when designing a resonance type circuit at, for example, 90 to 264 Vrms input.
이하, 역률제어부가 제어신호를 제어하는 예시에 관해 설명한다.Hereinafter, an example in which the power factor control unit controls the control signal will be described.
도 9는 역률제어부가 스위칭소자 M5에 전달하는 신호와 출력단 부하에 따른 시비율의 한 예시를 나타내는 그래프이다.9 is a graph illustrating an example of a time ratio according to a signal transmitted by the power factor control unit to the switching element M5 and an output terminal load.
도 9에 도시된 바와 같이, 입력전압 및 입력전류의 파형 변화를 나타내는 그래프와, 역률제어부(1920, 도 3 참조)의 스위칭소자 M5에 대한 제어신호의 시비율을 나타내는 그래프가 시간에 따라서 매칭되어 있다.As shown in FIG. 9, the graph showing the waveform change of the input voltage and input current and the graph showing the time ratio of the control signal to the switching element M5 of the power factor control unit 1920 (refer to FIG. 3) are matched over time have.
I_in은 부하에서 전력소모가 상대적으로 많을 때 흐르는 입력전류, I_in'는 부하에서 전력소모가 상대적으로 적을 때 흐르는 입력전류를 의미한다. 본 실시예에서 역률개선을 가능하게 하는 스위칭소자 M5의 시비율은, 입력 교류전압의 크기가 작은 구간에서는 증가하고 입력 교류전압의 크기가 큰 구간에서는 감소함으로써, 아래방향으로 오목한 포물선 형태의 곡선을 가진다. 또한, 해당 포물선의 오목한 정도는 부하와 출력전압의 상태에 따라 변한다.I_in denotes an input current that flows when power consumption is relatively high in the load, and I_in' denotes an input current that flows when power consumption is relatively low in the load. In this embodiment, the time ratio of the switching device M5 that enables power factor improvement increases in the section where the magnitude of the input AC voltage is small and decreases in the section where the magnitude of the input AC voltage is large, so that a downwardly concave parabolic curve is formed. have In addition, the concave degree of the parabola changes according to the state of the load and the output voltage.
본 그래프에서 시비율을 나타내는 두 개의 커브 중에서, 실선은 I_in에 대응하는 케이스이며, 점선은 I_in'에 대응하는 케이스이다. 통상적으로 입력전압이 높고 부하가 작을수록 출력전압이 상승하고, 입력전압이 낮고 부하가 클수록 출력전압이 낮아진다. 이 때문에 포물선의 오목한 정도는 부하조건에 따라 달라지게 된다. 또한 출력전압에 대해서도, 출력전압이 낮을 경우에는 시비율의 전체 비율이 증가하는 방향으로 변경되며, 출력전압이 높을 경우에는 시비율의 전체 비율이 낮아지는 방향으로 변경된다. 본 그래프에서 시비율 25%는 하나의 예시이며, 설계 방식에 따라서 역률제어부는 다양한 시비율 값에 기반하여 스위칭소자 M5의 스위칭 동작을 제어할 수 있다.Among the two curves representing the fertility ratio in this graph, a solid line indicates a case corresponding to I_in, and a dotted line indicates a case corresponding to I_in'. In general, the higher the input voltage and the smaller the load, the higher the output voltage, and the lower the input voltage and the larger the load, the lower the output voltage. For this reason, the concavity of the parabola varies depending on the load condition. In addition, with respect to the output voltage, when the output voltage is low, the total ratio of the fertilization ratio is changed in an increasing direction, and when the output voltage is high, the total ratio of the fertilization ratio is changed in a direction to decrease. In this graph, 25% of the time ratio is an example, and according to a design method, the power factor control unit may control the switching operation of the switching element M5 based on various values of the time ratio.
이하, 관련기술 및 본 발명의 실시예 사이의 시뮬레이션 결과의 비교에 관해 설명한다.Hereinafter, comparison of simulation results between the related art and the embodiment of the present invention will be described.
도 10은 본 실시예의 스위칭소자 M5를 적용하지 않은 관련기술에 따른 교류-직류 컨버터에서 입력전류 및 입력전압의 위상의 시뮬레이션 결과를 나타내는 그래프이다.10 is a graph showing the simulation results of the phases of the input current and the input voltage in the AC-DC converter according to the related art to which the switching device M5 of the present embodiment is not applied.
도 10에 도시된 바와 같이, 관련기술에 따른 교류-직류 컨버터에서, 시뮬레이션을 통해 여러 피드백 신호를 획득할 수 있으며, 이들 피드백 신호의 그래프를 도시할 수 있다. 여기서, 관련기술에 따른 교류-직류 컨버터는 본 실시예와 같은 스위칭소자 M5를 적용하지 않고, 출력측에 다이오드만을 포함하는 정류회로를 적용하는 경우에 해당한다.As shown in FIG. 10 , in the AC-DC converter according to the related art, several feedback signals may be obtained through simulation, and a graph of these feedback signals may be shown. Here, the AC-DC converter according to the related art corresponds to a case in which a rectifier circuit including only a diode is applied to the output side without applying the switching device M5 as in the present embodiment.
첫 번째 그래프는 출력전압(V_out)에 관한 것이며, 두 번째 그래프는 입력전류(I_in) 및 입력전압(V_in)에 관한 것이다. 두 번째 그래프에서는 스케일을 맞추기 위해 입력전압을 10으로 나눈 결과를 나타내었다. 세 번째 그래프는 변압부의 입력측에 걸리는 전압(V_Lm) 및 변압부의 출력측에 걸리는 전압(V_Sm)에 관한 것이다. 네 번째 그래프는 출력측의 인덕터 Ls에 흐르는 전류(I(Ls))에 관한 것이다.The first graph relates to the output voltage V_out, and the second graph relates to the input current I_in and the input voltage V_in. The second graph shows the result of dividing the input voltage by 10 to fit the scale. The third graph relates to a voltage (V_Lm) applied to the input side of the transformer and a voltage (V_Sm) applied to the output side of the transformer. The fourth graph relates to the current (I(Ls)) flowing through the inductor Ls on the output side.
부하에 전기에너지가 전달되는 구간은 V_Lm이 V_Sm보다 높은 구간이다. 본 그래프에서는 전체적으로 I_in이 0보다 큰 구간이 상대적으로 적으므로, 실질적으로 부하에 전기에너지가 전달되는 구간은 상대적으로 적다. 또한, 역률이 개선되기 위해서는 I_in 및 V_in의 차이가 상대적으로 적어야 하는데, 양자간의 위상 차이가 크게 나타난다. V_Lm의 진폭을 크게 해서 어느 정도의 역률 개선의 효과는 볼 수 있겠지만, 관련 기술에서는 전류 및 전압의 위상 차이로 인해 오히려 역률 개선의 효과가 떨어지게 될 것으로 예상된다.The section where electric energy is delivered to the load is the section where V_Lm is higher than V_Sm. In this graph, since there are relatively few sections in which I_in is greater than 0 as a whole, the sections in which electrical energy is actually delivered to the load are relatively small. In addition, in order to improve the power factor, the difference between I_in and V_in should be relatively small, and the phase difference between the two is large. Although the effect of improving the power factor can be seen to some extent by increasing the amplitude of V_Lm, it is expected that the effect of improving the power factor will decrease due to the phase difference between current and voltage in the related technology.
이러한 관련 기술에 비해, 본 발명의 실시예의 경우는 다음과 같다.Compared to these related technologies, the case of the embodiment of the present invention is as follows.
도 11은 본 실시에 따른 스위칭소자 M5의 역률보정 동작으로 인한 입력전류 및 입력전압의 위상의 시뮬레이션 결과를 나타내는 그래프이다.11 is a graph showing simulation results of input current and input voltage phase due to a power factor correction operation of the switching device M5 according to the present embodiment.
도 11에 도시된 바와 같이, 본 실시예에 따른 교류-직류 컨버터에서, 시뮬레이션을 통해 스위칭소자 M5의 스위칭 동작에 따른 각 피드백 신호를 획득할 수 있으며, 이들 피드백 신호의 그래프를 도시할 수 있다. 각 그래프의 의미는 앞선 도 10의 경우에 준용한다.11 , in the AC-DC converter according to the present embodiment, each feedback signal according to the switching operation of the switching element M5 may be obtained through simulation, and a graph of these feedback signals may be shown. The meaning of each graph is applied mutatis mutandis to the case of FIG. 10 above.
본 실시예에서는 정류부(1200, 도 3 참조) 및 스위칭부(1300, 도 3 참조)에 의한 전파정류를 통해, 두 번째 그래프와 같이 I_in의 커브가 도출될 수 있다. 여기서, 커패시터 C1(도 4 참조)의 용량을 낮게 설계하면, 본 그래프의 V_in의 커브가 구간 별로 고르게 분포된 형태를 유지한다.In the present embodiment, a curve of I_in may be derived as shown in the second graph through full-wave rectification by the rectifying unit 1200 (refer to FIG. 3) and the switching unit 1300 (refer to FIG. 3). Here, if the capacitance of the capacitor C1 (refer to FIG. 4) is designed to be low, the curve of V_in of this graph maintains a shape evenly distributed for each section.
본 실시예에서는 앞선 관련기술의 경우와 달리 I_In이 0보다 큰 구간이 상대적으로 늘어나며, 이에 따라서 V_Lm이 V_Sm보다 큰 구간 또한 늘어난다. 즉, 본 실시예에서는 관련기술의 경우에 비해 부하에 전기에너지가 전달되는 구간이 늘어나므로, 전기에너지의 전달 효율이 높아진다. 또한, 본 실시예에서는 스위칭소자 M5의 제어에 의해 전압의 강화를 통해 전류 및 전압의 위상차이를 상대적으로 줄인다. 결과적으로, 본 실시예는 관련기술의 경우에 비해 역률을 개선시킬 수 있다.In the present embodiment, unlike the case of the related art, a section in which I_In is greater than 0 is relatively increased, and accordingly, a section in which V_Lm is larger than V_Sm also increases. That is, in this embodiment, since the section in which the electric energy is transmitted to the load is increased compared to the case of the related art, the electric energy transfer efficiency is increased. In addition, in the present embodiment, the phase difference between the current and the voltage is relatively reduced by strengthening the voltage under the control of the switching element M5. As a result, the present embodiment can improve the power factor compared to the case of the related art.
이하, 앞선 실시예의 경우와 상이하게 설계된 교류-직류 컨버터의 회로의 예시에 관해 설명한다.Hereinafter, an example of an AC-DC converter circuit designed to be different from that of the previous embodiment will be described.
도 12는 스위칭부의 설계가 변경된 교류-직류 컨버터의 회로의 예시도이다.12 is an exemplary diagram of an AC-DC converter circuit in which a design of a switching unit is changed.
도 12에 도시된 바와 같이, 교류-직류 컨버터(2000)는 EMI필터(2100), 정류부(2200), 스위칭부(2300), 공진커패시터(2400), 변압부(2500), 공진코일부(2600), 역률보정부(2700), 출력부(2800)를 포함한다. 본 실시예에 따른 교류-직류 컨버터(2000)에서, 스위칭부(2300)를 제외한 나머지 구성요소들은 앞선 실시예(도 4 참조)에서의 동일 명칭의 구성요소들과 동일한 회로 구조를 가지므로, 이들에 관해서는 설명을 생략한다.As shown in FIG. 12 , the AC-DC converter 2000 includes an EMI filter 2100 , a rectifier 2200 , a switching unit 2300 , a resonance capacitor 2400 , a transformer 2500 , and a resonance coil part 2600 . ), a power factor correction unit 2700 , and an output unit 2800 . In the AC-DC converter 2000 according to the present embodiment, the remaining components except for the switching unit 2300 have the same circuit structure as the components of the same name in the previous embodiment (refer to FIG. 4 ), so these A description will be omitted.
본 실시예에 따른 스위칭부(2300)는 두 개의 스위칭소자 M1 및 M2가 하프 브릿지 형태로 마련된다. 스위칭소자 M1 및 M2는 정류부(2200)에 병렬로 연결되며, 공진커패시터(2400)는 스위칭소자 M1의 일단부 및 M2의 일단부를 연결하는 노드에 연결되며, 스위칭소자 M2 각각의 타단부는 변압부(2500)의 입력측 코일의 타단부에 연결된다.In the switching unit 2300 according to the present embodiment, two switching elements M1 and M2 are provided in the form of a half-bridge. The switching elements M1 and M2 are connected in parallel to the rectifying unit 2200, the resonance capacitor 2400 is connected to a node connecting one end of the switching element M1 and one end of M2, and the other end of each of the switching elements M2 is a transformer It is connected to the other end of the input side coil of 2500.
스위칭소자 M1을 턴온하고 M2를 턴오프하는 동작과, 스위칭소자 M1을 턴오프하고 M2를 턴온하는 동작 사이가 전환됨으로써, 변압부(2500)의 입력측 코일에 흐르는 전류의 방향이 바뀌도록 마련된다. By switching between the operation of turning on the switching element M1 and turning off M2, and the operation of turning off the switching element M1 and turning on M2, the direction of the current flowing in the input-side coil of the transformer 2500 is changed.
도 13은 변압부의 설계가 변경된 교류-직류 컨버터의 회로의 예시도이다.13 is an exemplary diagram of a circuit of an AC-DC converter in which the design of the transformer is changed.
도 13에 도시된 바와 같이, 교류-직류 컨버터(3000)는 EMI필터(3100), 정류부(3200), 스위칭부(3300), 공진커패시터(3400), 변압부(3500), 공진코일부(3600), 역률보정부(3700), 출력부(3800)를 포함한다. 본 실시예에 따른 교류-직류 컨버터(3000)에서, 변압부(3500) 및 공진코일부(3600)를 제외한 나머지 구성요소들은 앞선 실시예(도 4 참조)에서의 동일 명칭의 구성요소들과 동일한 회로 구조를 가지므로, 이들에 관해서는 설명을 생략한다.As shown in FIG. 13 , the AC-DC converter 3000 includes an EMI filter 3100 , a rectifier 3200 , a switching unit 3300 , a resonance capacitor 3400 , a transformer 3500 , and a resonance coil part 3600 . ), a power factor correction unit 3700 , and an output unit 3800 . In the AC-DC converter 3000 according to the present embodiment, the remaining components except for the transformer 3500 and the resonance coil 3600 are the same as the components of the same name in the previous embodiment (refer to FIG. 4 ). Since it has a circuit structure, description is abbreviate|omitted about these.
본 실시예에 따른 변압부(3500)는 공진코일부(3600)인 인덕터 Ls가 변압부(3500)의 입력측 코일 및 인덕터 Lm 사이에 배치되는 구조를 가진다. 인덕터 Ls가 입력측에 배치되므로, 변압부(3500)의 출력측 코일은 변압부(3500)의 입력측 코일로부터 전달되는 전기에너지를 방출하는 역할과 함께, 입력측 코일로부터 전달되는 전기에너지에 커패시터 C3로부터 방출되는 전기에너지를 부가하여 다이오드 D1에 전달하는 역할도 수행한다. 즉, 커패시터 C3에 충전된 전기에너지는, 방출된 이후에 변압부(3500)에 의해 1차측으로 전달되어 인덕터 Ls에 충전된다.The transformer 3500 according to the present embodiment has a structure in which the inductor Ls, which is the resonance coil unit 3600 , is disposed between the input-side coil of the transformer 3500 and the inductor Lm. Since the inductor Ls is disposed on the input side, the output coil of the transformer 3500 plays a role in emitting the electric energy transferred from the input coil of the transformer 3500, and the electric energy transferred from the input coil is emitted from the capacitor C3. It also serves to transfer electrical energy to the diode D1. That is, after the electric energy charged in the capacitor C3 is released, it is transferred to the primary side by the transformer 3500 and charged in the inductor Ls.
변압부(3500) 및 공진코일부(3600)의 배치는 교류-직류 컨버터(3000)의 요구 조건에 따라서 도 4와 같이 공진코일부(1600)가 변압부(1500)의 후단에 위치하는 구조, 또는 도 13과 같이 변압부(3500) 내에 공진코일부(3600)가 위치하는 구조로도 구현될 수 있는데, 어느 쪽이라도 역률 개선 기능을 수행할 수 있다.The arrangement of the transformer 3500 and the resonant coil unit 3600 is a structure in which the resonant coil unit 1600 is located at the rear end of the transformer 1500 as shown in FIG. 4 according to the requirements of the AC-DC converter 3000, Alternatively, it may be implemented as a structure in which the resonance coil unit 3600 is located in the transformer 3500 as shown in FIG. 13, and either of them may perform a power factor improvement function.
이하, 본 발명의 실시예에 따른 전자장치에서, 전원공급부의 제어부가 교류-직류 컨버터를 제어하는 동작에 관해 설명한다.Hereinafter, in the electronic device according to an embodiment of the present invention, an operation of the control unit of the power supply unit controlling the AC-DC converter will be described.
도 14는 제어부가 교류-직류 컨버터를 제어하는 동작에 관한 플로우차트이다.14 is a flowchart of an operation in which the control unit controls the AC-DC converter.
도 14에 도시된 바와 같이, 하기 동작은 전원공급부 또는 교류-직류 컨버터의 제어부에 의해 수행된다.As shown in FIG. 14 , the following operation is performed by the power supply unit or the control unit of the AC-DC converter.
4100 단계에서 제어부는 부하에 대한 출력전압이 목표값이 되도록, 스위칭부에 의해 정류된 입력전원을 교류전원으로 변환한다.In step 4100, the control unit converts the input power rectified by the switching unit into AC power so that the output voltage to the load becomes a target value.
4200 단계에서 제어부는 변압부에 의해 변압되는 교류전원에 기초하여, 역률보정부에 의해 충전소자를 충전시킨다.In step 4200, the control unit charges the charging device by the power factor correction unit based on the AC power transformed by the transformer unit.
4300 단계에서 제어부는 변압부에 의해 변압되는 교류전원에, 충전된 충전소자의 전원을 부가하여 부하에 전달되도록 제어한다.In step 4300, the control unit controls the AC power transformed by the transformer to be transferred to the load by adding the power of the charged charging device to the AC power.
본 발명의 예시적 실시예에 따른 방법들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 이러한 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 예를 들어, 컴퓨터 판독 가능 매체는 삭제 가능 또는 재기록 가능 여부와 상관없이, USB 메모리장치와 같은 비휘발성 저장 장치, 또는 예를 들어 RAM, ROM, 플래시메모리, 메모리 칩, 집적 회로와 같은 메모리, 또는 예를 들어 CD, DVD, 자기 디스크 또는 자기 테이프 등과 같은 광학 또는 자기적으로 기록 가능함과 동시에 기계(예를 들어, 컴퓨터)로 읽을 수 있는 저장 매체에 저장될 수 있다. 이동 단말 내에 포함될 수 있는 메모리는 본 발명의 실시 예들을 구현하는 지시들을 포함하는 프로그램 또는 프로그램들을 저장하기에 적합한 기계로 읽을 수 있는 저장 매체의 한 예임을 알 수 있을 것이다. 본 저장 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어의 기술 분야에서 숙련된 기술자에게 공지되어 사용 가능한 것일 수도 있다. 또는, 본 컴퓨터 프로그램 명령은 컴퓨터 프로그램 프로덕트에 의해 구현될 수도 있다.Methods according to an exemplary embodiment of the present invention may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer-readable medium. Such computer-readable media may include program instructions, data files, data structures, etc. alone or in combination. For example, a computer-readable medium, whether removable or rewritable, may be a non-volatile storage device, such as a USB memory device, or memory, such as, for example, RAM, ROM, flash memory, memory chips, integrated circuits, or For example, it may be stored in an optically or magnetically recordable storage medium such as a CD, DVD, magnetic disk, or magnetic tape, and at the same time, a machine (eg, computer) readable storage medium. It will be appreciated that a memory that may be included in a mobile terminal is an example of a machine-readable storage medium suitable for storing a program or programs including instructions for implementing embodiments of the present invention. The program instructions recorded in the present storage medium may be specially designed and configured for the present invention, or may be known and available to those skilled in the art of computer software. Alternatively, the computer program instructions may be implemented by a computer program product.

Claims (15)

  1. 전자장치에 있어서,In an electronic device,
    정류된 입력전원을 교류전원으로 변환하는 제1스위칭부와,A first switching unit for converting the rectified input power into AC power;
    상기 교류전원을 변압시켜 전달하는 변압부와,a transformer that transforms and transmits the AC power;
    상기 변압부의 출력에 기초하여 직류의 출력전압을 출력하는 출력부와,an output unit for outputting a direct current output voltage based on the output of the transformer;
    상기 변압부에 연결된 충전소자 및 제2스위칭부를 포함하는 역률보정부와,a power factor correction unit including a charging element connected to the transformer and a second switching unit;
    상기 출력부에 의해 출력되는 출력전압을 조정하도록 상기 제1스위칭부를 제어하고,controlling the first switching unit to adjust the output voltage output by the output unit;
    상기 변압부를 통해 전달되는 에너지가 상기 충전소자에 충전되도록 하고, 상기 충전소자에 충전된 에너지를 방전시켜 상기 변압부를 통해 상기 출력부로 전달되는 에너지가 상승하도록 상기 제2스위칭부를 제어하는 제어부를 포함하는 전자장치.A control unit for controlling the second switching unit so that the energy transferred through the transformer is charged to the charging element, and the energy transferred to the output unit through the transformer increases by discharging the energy charged in the charging element electronics.
  2. 제1항에 있어서,According to claim 1,
    상기 제어부는, 상기 변압부를 통해 전달되는 전류를 제어함으로써 상기 충전소자가 충전되도록 하고, 상기 변압부를 통해 전달되는 전압이 상승하도록 상기 충전소자에 충전된 에너지를 방전시키는 전자장치.The control unit controls the current transmitted through the transformer to charge the charging element, and the electronic device discharges energy charged in the charging element to increase the voltage transmitted through the transformer.
  3. 제1항에 있어서,According to claim 1,
    상기 제2스위칭부는, 상기 충전소자 및 상기 변압부 사이에 개폐 가능하게 마련된 스위칭소자를 포함하며,The second switching unit includes a switching element provided so as to be able to open and close between the charging element and the transformer,
    상기 제어부는, 상기 변압부를 통해 전달되는 에너지에 상기 충전소자에 충전된 에너지가 부가되도록 상기 스위칭소자를 제어하는 전자장치.The control unit may control the switching element so that energy charged in the charging element is added to the energy transferred through the transformer.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 제어부는, 상기 변압부에 흐르는 전류의 방향이 전환되도록 상기 제1스위칭부가 동작하는 시점에 대응하여 상기 스위칭소자를 턴온시키는 전자장치.The control unit may turn on the switching element in response to a time when the first switching unit operates so that the direction of the current flowing through the transformer is switched.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 제어부는, 상기 제1스위칭소자의 스위칭 동작을 제어하기 위한 신호의 시비율(duty ratio)을, 입력 교류전압의 크기가 작은 구간에서는 증가시키고 입력 교류전압의 크기가 큰 구간에서는 감소시키는 전자장치.The control unit is an electronic device for increasing a duty ratio of a signal for controlling a switching operation of the first switching element in a section in which the magnitude of the input AC voltage is small and decreasing in a section in which the magnitude of the input AC voltage is large. .
  6. 제3항에 있어서,4. The method of claim 3,
    상기 역률보정부는, 상기 변압부 및 상기 출력부 사이에 배치된 다이오드를 더 포함하며,The power factor correction unit further includes a diode disposed between the transformer and the output unit,
    상기 제어부는, 상기 변압부를 통해 상기 출력부로 전달되는 에너지가 상기 다이오드를 거쳐서 흐를 수 있도록 상승시키는 전자장치.The control unit may increase the energy transferred to the output unit through the transformer to flow through the diode.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 역률보정부는, 상기 변압부를 통해 상기 출력부로 전달되는 에너지에 기초하여 충전되고, 상기 충전된 전기에너지가 상기 출력부로 전달되도록 마련되는 커패시터를 더 포함하는 전자장치.The power factor correction unit may further include a capacitor charged based on energy transmitted to the output unit through the transformer, and configured to transmit the charged electric energy to the output unit.
  8. 제6항에 있어서,7. The method of claim 6,
    상기 변압부를 통해 전달되는 에너지 및 상기 충전소자에 충전된 에너지에 기초하여 충전되고, 상기 충전된 전기에너지가 상기 다이오드를 통해 전달되도록 마련된 공진코일부를 더 포함하는 전자장치.The electronic device further comprising a resonance coil unit charged based on the energy transferred through the transformer and the energy charged in the charging element, and provided to transmit the charged electric energy through the diode.
  9. 제1항에 있어서,According to claim 1,
    상기 충전소자는 커패시터를 포함하는 전자장치.The charging element is an electronic device including a capacitor.
  10. 제1항에 있어서,According to claim 1,
    상기 제1스위칭부는 복수의 스위치를 포함하며,The first switching unit includes a plurality of switches,
    상기 제어부는, 상기 복수의 스위치를 개별적으로 개폐함으로써 상기 변압부에 전달되는 전류의 방향이 변화하도록 제어하는 전자장치.The control unit may individually open and close the plurality of switches, thereby controlling the direction of the current delivered to the transformer to change.
  11. 제1항에 있어서,According to claim 1,
    상기 변압부를 통해 전달되는 에너지는, 상기 변압부의 입력측 코일로부터 출력측 코일로 전달되는 전기에너지인 전자장치.The energy transferred through the transformer is electrical energy transferred from an input coil of the transformer to an output coil of the transformer.
  12. 전자장치의 제어방법에 있어서,In the control method of an electronic device,
    제1스위칭부에 의해, 정류된 입력전원을 교류전원으로 변환하는 단계와,converting the rectified input power into AC power by the first switching unit;
    충전소자 및 제2스위칭부를 포함하는 역률보정부에 의해, 변압부를 통해 전달되는 에너지에 기초하여 상기 충전소자를 충전시키는 단계와,Charging the charging element based on the energy transferred through the transformer by the power factor correction unit including the charging element and the second switching unit;
    상기 충전소자에 충전된 에너지를 방전시켜 상기 변압부를 통해 출력부로 전달되는 에너지를 상승시키도록 상기 제2스위칭부를 제어하는 단계를 포함하는 전자장치의 제어방법.and controlling the second switching unit to discharge the energy charged in the charging element to increase the energy transferred to the output unit through the transformer.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 변압부를 통해 전달되는 전류를 제어함으로써 상기 충전소자가 충전되도록 하고, 상기 변압부를 통해 전달되는 전압이 상승하도록 상기 충전소자에 충전된 에너지를 방전시키는 전자장치의 제어방법.A control method of an electronic device for charging the charging element by controlling the current transmitted through the transformer, and discharging the energy charged in the charging element to increase the voltage transmitted through the transformer.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 제2스위칭부는, 상기 충전소자 및 상기 변압부 사이에 개폐 가능하게 마련된 스위칭소자를 포함하며,The second switching unit includes a switching element provided so as to be able to open and close between the charging element and the transformer,
    상기 변압부를 통해 전달되는 에너지에 상기 충전소자에 충전된 에너지가 부가되도록 상기 스위칭소자를 제어하는 전자장치의 제어방법.A control method of an electronic device for controlling the switching element so that the energy charged in the charging element is added to the energy transferred through the transformer.
  15. 제14항에 있어서,15. The method of claim 14,
    상기 변압부에 흐르는 전류의 방향이 전환되도록 상기 제1스위칭부가 동작하는 시점에 대응하여 상기 스위칭소자를 턴온시키는 전자장치의 제어방법.A control method of an electronic device of turning on the switching element in response to a time when the first switching unit operates so that the direction of the current flowing through the transformer is switched.
PCT/KR2021/005223 2020-05-08 2021-04-26 Electronic device, and control method therefor WO2021225318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0055018 2020-05-08
KR1020200055018A KR20210136576A (en) 2020-05-08 2020-05-08 Electronic apparatus and control method thereof

Publications (1)

Publication Number Publication Date
WO2021225318A1 true WO2021225318A1 (en) 2021-11-11

Family

ID=78468085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005223 WO2021225318A1 (en) 2020-05-08 2021-04-26 Electronic device, and control method therefor

Country Status (2)

Country Link
KR (1) KR20210136576A (en)
WO (1) WO2021225318A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115769A (en) * 2011-04-11 2012-10-19 명지대학교 산학협력단 Battery charging device for electric vehicle
CN204707034U (en) * 2015-01-30 2015-10-14 西南交通大学 A kind of secondary resonant mode single step arrangement Single switch multiple constant current exports pfc converter
KR20180009175A (en) * 2016-07-18 2018-01-26 삼성전자주식회사 Electronic Apparatus, Display Apparatus, and Driving Method Thereof
US9887616B2 (en) * 2015-07-01 2018-02-06 Hella Corporate Center Usa, Inc. Electric power conversion apparatus with active filter
US20200099311A1 (en) * 2018-09-21 2020-03-26 Delta-Q Technologies Corp. Bridgeless single-stage ac/dc converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115769A (en) * 2011-04-11 2012-10-19 명지대학교 산학협력단 Battery charging device for electric vehicle
CN204707034U (en) * 2015-01-30 2015-10-14 西南交通大学 A kind of secondary resonant mode single step arrangement Single switch multiple constant current exports pfc converter
US9887616B2 (en) * 2015-07-01 2018-02-06 Hella Corporate Center Usa, Inc. Electric power conversion apparatus with active filter
KR20180009175A (en) * 2016-07-18 2018-01-26 삼성전자주식회사 Electronic Apparatus, Display Apparatus, and Driving Method Thereof
US20200099311A1 (en) * 2018-09-21 2020-03-26 Delta-Q Technologies Corp. Bridgeless single-stage ac/dc converter

Also Published As

Publication number Publication date
KR20210136576A (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2016048030A1 (en) Wireless power transmitter and wireless power receiver
WO2020133991A1 (en) Television power supply driving device and television
US20080238205A1 (en) Hybrid green uninterruptible power system and bi-directional converter module and power conversion method thereof
JP6374261B2 (en) Insulation synchronous rectification type DC / DC converter and synchronous rectification controller thereof, power supply device using the same, power supply adapter, and electronic device
TW201222186A (en) Voltage regulator, envelope tracking power supply system, transmitter module, and integrated circuit device therefor
WO2017084291A1 (en) High-power power supply for use in display apparatus, and display apparatus
WO2022155837A1 (en) Resonant ac/dc converter, electronic device, and adapter
WO2018203608A1 (en) Wireless power transmission apparatus that is turned off in standby state and electronic apparatus including wireless power transmission apparatus
EP3934239B1 (en) Power supply control circuit and display device
WO2020013635A1 (en) Electronic device
WO2022014968A1 (en) Power supply device and electronic device comprising same
KR102291764B1 (en) INTERGRATED MODULE OF LOW ELECTRIC POWER PART OF PFC AND OUTPUT PART OF AMPLIFIER HAVING Gan FET AND APPARATUS EQUIPPED WITH THE SAME FOR PUBLIC ADDRESS SYSTEM
WO2021225318A1 (en) Electronic device, and control method therefor
WO2019212147A1 (en) Adaptor, power supply system and power supply method thereof
WO2018203597A1 (en) Power conversion apparatus and method, and electronic apparatus using same apparatus
WO2022108107A1 (en) Display device
WO2009131325A2 (en) Power supply device, panel driving device and power supply control method for display device
WO2018097474A1 (en) Electronic device including wireless power reception function and wireless signal transmission function
WO2019199020A1 (en) System for transmitting/receiving wireless power and display apparatus comprising same system
WO2020027558A1 (en) Wireless power reception device, and control method therefor
WO2023158083A1 (en) Display device and method for adjusting power consumption of signal receiving unit
WO2024085377A1 (en) Power supply device and control method therefor
CN215897587U (en) Display device
WO2023204450A1 (en) Wireless power receiving device and operation method therefor
WO2024128500A1 (en) Adapter performing operation to save power, electronic device, and operation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800781

Country of ref document: EP

Kind code of ref document: A1