WO2021225231A1 - Moving device, control method for moving device, and transport management system - Google Patents

Moving device, control method for moving device, and transport management system Download PDF

Info

Publication number
WO2021225231A1
WO2021225231A1 PCT/KR2020/012657 KR2020012657W WO2021225231A1 WO 2021225231 A1 WO2021225231 A1 WO 2021225231A1 KR 2020012657 W KR2020012657 W KR 2020012657W WO 2021225231 A1 WO2021225231 A1 WO 2021225231A1
Authority
WO
WIPO (PCT)
Prior art keywords
omni
rotation
directional wheels
directional
wheel
Prior art date
Application number
PCT/KR2020/012657
Other languages
French (fr)
Korean (ko)
Inventor
박재흥
Original Assignee
아날로그플러스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아날로그플러스 주식회사 filed Critical 아날로그플러스 주식회사
Publication of WO2021225231A1 publication Critical patent/WO2021225231A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering

Definitions

  • the present invention relates to a mobile device, a method for controlling a mobile device, and a transport management system, and more particularly, to a mobile device having omni-directional wheels, a method for controlling a mobile device having omni-directional wheels, and a transport management system.
  • a general vehicle is divided into an independent two-wheel drive method or a steering drive method.
  • Such a conventional driving method has limitations in movement. That is, it is impossible to move to the side without directly rotating the vehicle body in the state of moving forward.
  • the omni-directional driving method was developed to compensate for these shortcomings.
  • the forward driving method improves the movement ability of a vehicle or a mobile robot to enable movement in three degrees of freedom (forward, backward, left and right, rotation) in a two-dimensional plane, so that the vehicle can be driven in an arbitrary direction in an arbitrary posture.
  • a holonomic system is defined by the relationship between the degree of freedom to be controlled and the degree of freedom to be controlled. If the degree of freedom to control is greater than or equal to the degree of freedom to be controlled, it is called a holonomic system, and if the degree of freedom to control is less than the degree of freedom to control, it is called a non-holonomic system.
  • the omni wheel is composed of one main wheel and an auxiliary wheel hanging around it like a satellite.
  • the main wheel rotates around the rotating shaft of the motor like a general wheel, and the auxiliary wheel slips in the direction of the rotating shaft (direction perpendicular to the main wheel) by an external force. Thanks to the unique structure of the omni wheel, the autonomous mobile robot using the conventional omni wheel was able to implement a holonomic system capable of moving in any direction without a turning radius.
  • An object of the present invention is to provide a mobile device for individually controlling a plurality of non-directional wheels based on a pressure value, a method for controlling the mobile device, and a transport management system.
  • a moving device for achieving this object, a plurality of omni-directional wheels, a driving unit for driving the plurality of omni-directional wheels, detects rotation of each of the plurality of omni-directional wheels,
  • a detection unit including a plurality of pressure sensors corresponding to each of the omni-directional wheels of It contains a processor that controls the speed and the amount of rotation.
  • the processor compares the respective pressure values detected from the plurality of pressure sensors, decreases the rotation speed and rotation amount of the non-directional wheel as the pressure value decreases, and decreases the rotation speed and the rotation amount of the non-directional wheel as the pressure value increases. Increase the rotation speed and amount of rotation of the wheel.
  • the moving device further includes a suspension unit for each of the plurality of non-directional wheels, and the processor is configured to move the movement based on the respective pressure values detected from the plurality of pressure sensors.
  • the suspension can be controlled to adjust the balance of the device.
  • the processor may control the rotation speed and the rotation amount of each of the plurality of non-directional wheels based on the sensed rotation and each detected pressure value and simultaneously control the suspension unit.
  • the mobile device further includes a distance detection sensor and an image pickup unit for acquiring an image
  • the processor includes information about a distance obtained through the distance detection sensor and information about a distance obtained through the image pickup unit.
  • a shortest moving path may be calculated based on the information on the moving path, and the driving unit may be driven according to the calculated shortest moving path.
  • the processor may store and update the rotation speed and rotation amount of each of the plurality of non-directional wheels on the calculated shortest movement path and the calculated shortest movement path.
  • the control method of a mobile device including a plurality of omni-directional wheels includes the steps of detecting the rotation of each of the plurality of omni-directional wheels, and a pressure corresponding to each of the plurality of omni-directional wheels. detecting a value and controlling a rotation speed and a rotation amount of each of the plurality of omni-directional wheels based on the sensed rotation and each detected pressure value.
  • the transport management system calculates a shortest moving path and moves according to the calculated shortest moving path, but when another moving device is found, the shortest movement is taken in consideration of the movement of the other moving device.
  • a plurality of mobile devices for recalculating a route and a server for storing and updating movement routes and control related information of each of the plurality of mobile devices, wherein the mobile device includes a plurality of omni-directional wheels and the plurality of omni-directional wheels a driving unit for driving the , a sensing unit which detects the rotation of each of the plurality of omni-directional wheels, and a sensing unit including a plurality of pressure sensors corresponding to each of the plurality of omni-directional wheels, and the rotation and the plurality of pressures sensed by the sensing unit and a processor for controlling a rotation speed and a rotation amount of each of the plurality of non-directional wheels based on each pressure value detected from the sensor.
  • FIG. 1 is a block diagram showing the configuration of a mobile device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a mobile device according to an embodiment of the present invention.
  • FIG. 3 is a view illustrating an omni-directional wheel according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating a driving unit and a sensing unit for driving the non-directional wheel according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining an operation of controlling each of the non-directional wheels according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a suspension unit according to another embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a control operation of a mobile device according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
  • FIG. 10 is a diagram for calculating the shortest moving path according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing a specific configuration of the processor shown in FIG.
  • FIG. 12 is a diagram of a software module stored in a storage unit according to an embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a method of controlling a mobile device according to an embodiment of the present invention.
  • FIG. 14 is a block diagram of a transportation management system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a mobile device according to an embodiment of the present invention.
  • a mobile device 100 includes a plurality of non-directional wheels 110 , a driving unit 120 , a sensing unit 130 , and a processor 140 .
  • the mobile device 100 may include all movable means that are provided with non-directional wheels and can move.
  • it may be implemented as a car, an airplane, an unmanned cart, a mobile robot, and the like.
  • the omni-directional wheel includes a universal wheel, a mecanum wheel, a double wheel, an alternate wheel, a half wheel, and an orthogonal wheel. ), a ball wheel, an omni wheel, etc. may be implemented, and in the present specification, a mobile device using the omni wheel will be described as an example.
  • This omni wheel will be described in detail with reference to FIG. 3 .
  • FIG. 3 is a view illustrating an omni-directional wheel according to an embodiment of the present invention.
  • the omni-directional wheel 110 is implemented as an omni wheel, and this omni wheel 110 is composed of a main wheel 111 and a sub wheel 112 to determine the rotation direction of the main wheel 111 and the sub wheel.
  • the main wheel 111 and the sub wheel 112 are disposed so that the rotation direction of the wheel 112 is vertical.
  • the omni wheel 110 has a structure in which the main wheel 111 rotates in the same direction as the general wheel in the A direction, and the sub wheel 112 may slip in the B direction by an external force.
  • two wheels comprising the main wheel 111 and the sub-wheel 112 are overlapped and coupled, and when the two wheels overlap, the sub-wheel 112 is alternately coupled as shown in FIG. 3 . .
  • the omni wheel 110 can move forward or backward, that is, forward or backward, based on the rotation direction of the main wheel 111 .
  • the sub wheel 112 is in a stopped state.
  • the sub-wheel 112 rotates in a direction perpendicular to the rotational direction of the main wheel 111, so the omni The wheel 110 can move sideways, ie, left or right, based on the rotational direction of the main wheel 111 .
  • the omni wheel 110 becomes possible to move forward, backward, left, and right in all directions.
  • the driving unit 120 may drive such a non-directional wheel, and as described above, by adjusting the rotation speed and amount of each of the main wheel 111 and the sub wheel 112 , the overall movement of the moving device 100 .
  • the direction of movement can be adjusted.
  • the driving unit 120 may include various types of motors.
  • the sensing unit 130 detects the rotation of each of the plurality of omni-directional wheels, and includes a plurality of pressure sensors corresponding to each of the plurality of omni-directional wheels.
  • the sensing unit 130 may be implemented with various types of sensors, and these various types of sensors are connected to each of a plurality of non-directional wheels to measure the rotational direction and rotational speed of each of the wheels.
  • the sensing unit 130 may include a plurality of pressure sensors for measuring a pressure value mounted on each of the plurality of non-directional wheels, respectively.
  • a pressure sensor may measure a pressure value mounted on a rotating shaft connected to each of the plurality of omni-directional wheels, or may measure a pressure value mounted on a gear or suspension connected to the plurality of omni-directional wheels, or It is also possible to measure the pressure value transmitted to the plurality of omni-directional wheels themselves.
  • the processor 140 may control the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the rotation sensed by the sensing unit 130 and the respective pressure values detected from the plurality of pressure sensors.
  • the processor 140 compares the respective pressure values detected from the plurality of pressure sensors, reduces the rotation speed and the amount of rotation of the omni-directional wheel as the pressure value decreases, and decreases the rotation speed and the rotation amount of the omni-directional wheel as the pressure value increases.
  • the rotation speed and amount of rotation can be increased.
  • a first omni-directional wheel and a second omni-directional wheel are provided at the front end of the mobile device 100, and the rotation speed and amount of the first omni-directional wheel and the second omni-directional wheel are the same and constant. It is assumed that the mobile device 100 is moving at a constant velocity.
  • the processor 140 compares the pressure value applied to the first omni-directional wheel with the pressure value applied to the second omni-directional wheel, and the first non-directional wheel If it is determined that the pressure value acting on the directional wheel is relatively larger, it is determined that the current rotation amount and rotation speed of the first non-directional wheel detected by the sensing unit 130 are the same as the rotation amount and rotation speed of the second non-directional wheel. Based on the sensed information, the rotation amount and rotation speed of the first omni-directional wheel are increased to be distinguished from the rotation amount and rotation speed of the second omni-directional wheel.
  • the rotation amount and rotation speed of the first non-directional wheel increase in a state in which a relatively large pressure value is applied, so that the moving device 100 moves in a direction away from the state in which the large pressure value is applied.
  • the processor 140 determines that the sensed current rotation amount and rotation speed of the first omni-directional wheel are the same as the rotation amount and rotation speed of the second omni-directional wheel. Based on the information sensed to be the same, the rotation amount and rotation speed of the second omni-directional wheel are reduced to be distinguished from the rotation amount and rotation speed of the first omni-directional wheel.
  • the rotation amount and rotation speed of the second non-directional wheel are reduced in a state in which a relatively small pressure value is applied, so that the second non-directional wheel does not move significantly in a state in which a small pressure value is applied.
  • the moving device 100 moves so as to deviate from the position or state where the pressure value is relatively large.
  • the processor may increase the rotation amount and rotation speed of the corresponding wheel to move the moving device 100 so as to escape from the irregularities or obstacles as quickly as possible.
  • FIG. 2 is a diagram illustrating a mobile device according to an embodiment of the present invention.
  • a plurality of omni-directional wheels 110 are connected to the mobile device 100 through each driving unit 120 at the lower portion of the moving device 100 , and the sensing unit 130 is provided in the driving unit 120 . ) may be provided together.
  • the upper portion of the mobile device 100 may be implemented in various forms capable of loading the object, and in FIG. 2 , the object loaded in the form of a screen is implemented so as not to be separated from the mobile device 100 .
  • Such a mobile device 100 can be moved while loading goods, and can be applied and used in situations such as shopping carts, material transport, and courier transport in a mart.
  • FIG. 4 is a view illustrating a driving unit and a sensing unit for driving the non-directional wheel according to an embodiment of the present invention.
  • the driving unit 120 for driving the omni-directional wheel 110 may include various types of motors, which are connected to a rotating shaft to rotate the rotating shaft, and apply the rotational force of the rotating shaft to the non-directional wheel. It may be implemented to be transferable to 110 .
  • the driving force generated from the motor may be implemented to be transmitted to the non-directional wheel 110 through a plurality of gears.
  • the non-directional wheel 110 is connected to the rotating shaft, a gear is coupled to the rotating shaft, and the gear is coupled to the driving shaft of the motor disposed in the driving unit (!20) to be implemented in a form connected to the gear coupled to the rotating shaft.
  • the gear coupled to the motor and the gear coupled to the rotation shaft are engaged and rotate, and the rotation shaft is also rotated in association with the rotational force of the gear.
  • the method in which the motor is coupled to the omni-directional wheel 110 is not limited thereto, and other methods may be used. That is, after coupling the motor to the outside instead of the inside of the driving unit 120 , the driving force may be transmitted to each of the rotation shafts through the connection of the gear and the shaft.
  • the drive shaft portion formed in the motor may be directly connected to the non-directional wheel 110 to rotate the non-directional wheel 110 .
  • the sensing unit 130 may detect the rotation of the omni-directional wheel 110 , which exists in a position similar to that of the driving unit 120 , and detects a pressure value transmitted to the omni-directional wheel 110 .
  • the sensing unit may include various sensors, and it is natural that these sensors may be located anywhere near the omni-directional wheel 110 other than the driving unit 120 .
  • FIG. 5 is a view for explaining an operation of controlling each of the non-directional wheels according to an embodiment of the present invention.
  • the mobile device 100 includes a first omni-directional wheel 111 , a second omni-directional wheel 112 , a third omni-directional wheel 113 , and a fourth omni-directional wheel (not shown).
  • the processor 140 performs the first omni-directional The rotation speed and rotation amount 111-1 of the wheel 111 is increased, and the rotation speed and rotation amount 112-1 of the second non-directional wheel 112 is decreased.
  • the third non-directional wheel 113 is omitted.
  • the mobile device 100 may be inclined toward the first omni-directional wheel 111 , and in this case, the processor The 140 may take various actions to control the balance and posture of the moving device 100, one of which is to increase the rotational speed and amount of rotation of the first non-directional wheel 111 as described above. (100) is to rotate in the opposite direction to the inclined direction.
  • the mobile device 100 may further include a suspension structure to not only control the rotation of the omni-directional wheel, but also control the suspension to actively maintain the equilibrium of the mobile device 100 or perform posture control. will be described in more detail.
  • FIG. 6 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
  • the mobile device 100 includes a plurality of non-directional wheels 110 , a driving unit 120 , a sensing unit 130 , a processor 140 , and a suspension unit 150 . ) may be included.
  • the mobile device 100 may include a suspension unit 150 for each of the plurality of omni-directional wheels 110 , and the processor 140 is configured to operate the moving device ( The suspension unit 150 may be controlled to adjust the balance of 100 .
  • the suspension unit 150 is also called a suspension device, and mainly includes a damping unit.
  • various structures capable of maintaining the balance of the moving device 100 are implemented with a plurality of gears to raise and lower the suspension structure. It can also be implemented as a structure that can control .
  • the processor 140 controls the suspension unit 150 located on the side of the omni-directional wheel 110 to which the pressure value is relatively large, and specifically, increases the damping unit of the suspension unit 150 to move it. It is possible to maintain the balance of the device 100 or to perform a posture control operation.
  • FIG. 7 is a block diagram illustrating a suspension unit according to another embodiment of the present invention.
  • the driving unit 120 and the sensing unit 130 may be disposed in connection with the suspension unit 150 or disposed inside the sub-pension unit 150 .
  • the suspension unit 150 is connected to the main body of the moving device 100 through a spring or an elastic member, and thus the pressure acting on the ground based on the non-directional wheel 110 or acting on the upper part of the moving device 100 .
  • the processor 150 may control the suspension unit 150 to cancel the applied pressure.
  • the suspension unit 150 shown in FIG. 7 is only an example, and it is natural that it may be implemented in various structures.
  • the processor 140 may control the rotation speed and amount of each of the plurality of non-directional wheels 110 based on the sensed rotation and each detected pressure value and simultaneously control the suspension unit 150 . .
  • the processor 140 may consider the rotational state of the omni-directional wheel 110 sensed by the sensing unit 130 and the pressure value for each of the omni-directional wheels 110 detected through a plurality of pressure sensors. , for example, the processor 140 may check the rotation speed and rotation amount of the currently rotating non-directional wheel 110 through the sensing unit 130, and the non-directional wheel 110 through a plurality of pressure sensors You can check the pressure value acting on each.
  • the processor 140 considers the rotation state and pressure value checked in this way, and if the rotation amount and rotation speed of the non-directional wheel 110 are small in a state where the size of the pressure value is relatively large, it is further increased and At the same time, it is possible to reduce the influence of the corresponding pressure through the suspension unit 150 .
  • the processor 140 reduces these and at the same time reduces the influence of the pressure through the suspension unit 150 . can be reduced or maintained.
  • FIG. 8 is a diagram for explaining a control operation of a mobile device according to an embodiment of the present invention.
  • the mobile device 100 is moving on an uphill path inclined to the left.
  • the mobile device 100 is tilted to the left, the greatest pressure is applied to the third omni-directional wheel 113 , and then a medium-level pressure is applied to the first omni-directional wheel 111 , and , then the smallest pressure is applied to the second omni-directional wheel 112 .
  • the processor 140 greatly increases the rotation amount and rotation speed of the third non-directional wheel 113 , and at the same time, the body panel supporting the products so that the products loaded in the mobile device 100 can maintain a balanced state.
  • the suspension unit 150 is controlled to extend in the upward direction 151 so that the region of the body panel located on the third non-directional wheel 111 can move in the upward direction.
  • the processor 140 reduces the amount of rotation and the rotation speed of the second non-directional wheel 112 and at the same time reduces the amount of rotation and the rotation speed of the second non-directional wheel 112, and at the same time allows the products loaded in the mobile device 100 to maintain a balanced state.
  • the suspension unit 150 is controlled to be contracted in the downward direction 152 so that the region of the body panel located on the non-directional wheel 112 can move in the downward direction.
  • the processor 140 controls the rotation speed and rotation amount of the first non-directional wheel 111 in consideration of the rotation speed and rotation amount of the second and third non-directional wheels 112 and 113 and a suspension unit By controlling 150, one of the operations for maintaining the body panel in a balanced state may be selectively performed.
  • the processor 140 may selectively control the control of the rotation speed and the amount of rotation for each non-directional wheel and the control of the suspension unit 150 according to the current state of each wheel. and can be controlled at the same time.
  • FIG. 9 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
  • the mobile device 100 includes a plurality of omni-directional wheels 110 , a driving unit 120 , a sensing unit 130 , a processor 140 , a suspension unit 150 , a distance detection sensor 160 and It may include an imaging unit 170 .
  • the distance detection sensor 160 may be implemented as various types of sensors such as an infrared sensor, a radar sensor, a lidar sensor, and the like, and may be disposed in various positions of the mobile device 100 .
  • the distance detection sensor 160 may detect the presence of an obstacle, a wall, a person, or the like.
  • the imaging unit 170 may be implemented as a camera, lens, webcap, camcorder, portable terminal, etc. capable of acquiring an image, and it is possible to identify an object as well as whether an obstacle, a wall, a person, or the like exists.
  • the processor 140 calculates the shortest moving path based on the distance information obtained through the distance detection sensor 160 and the moving path information obtained through the imaging unit 170 , and the calculated shortest moving path.
  • the driving unit 120 may be driven according to a path.
  • the processor 140 may predict a path in advance based on the image acquired through the imaging unit 170 , and may calculate the shortest moving path by performing real-time correction through the distance detection sensor 160 .
  • FIG. 10 is a diagram for calculating the shortest moving path according to an embodiment of the present invention.
  • the path inside the mart 1000 is displayed.
  • a general wheeled mobile device it will move to the first path 1100 , but a mobile device 100 having omnidirectional wheels 110 .
  • the processor 140 may correct and calculate the shortest moving path while grasping the moving path of another mobile device in real time even when the other mobile device cannot move to the calculated path while moving, and thus, collisions between mobile devices can be prevented. can be avoided
  • the processor 140 may store and update the rotation speed and rotation amount of each of the plurality of non-directional wheels on the calculated shortest movement path and the calculated shortest movement path.
  • the processor 140 stores the rotation speed and rotation amount of each of the omni-directional wheels regardless of whether they move along the calculated shortest movement path, and based on the stored rotation speed and rotation amount of each of the omni-directional wheels, the processor 140 moves along the shortest movement path. It is possible to obtain information on irregularities, obstacles, the difference in height of the path, whether there is an inclination, whether there is a slip, and accordingly, it is possible to grasp detailed information about the path state of the shortest moving path as well as the distance of the shortest moving path.
  • the processor 140 can update and store this, so that the same path can be moved quickly without delay in calculation when moving the same path later, and when a change occurs, it can be updated and stored again.
  • FIG. 11 is a block diagram showing a specific configuration of the processor shown in FIG.
  • the mobile device 100 includes a plurality of omni-directional wheels 110 , a driving unit 120 , a sensing unit 130 , a processor 140 , a suspension unit 150 , a distance detection sensor 160 , an imaging unit 170 , and and a storage unit 180 .
  • the processor 140 may control the rotation speed and rotation amount of each of the plurality of non-directional wheels 110 based on the rotation sensed by the sensing unit 130 and pressure values detected from the plurality of pressure sensors.
  • the processor 140 includes the RAM 141 , the ROM 142 , the main CPU 143 , the graphic processing unit 144 , the first to n interfaces 145-1 to 145-n, and the bus 146 .
  • the RAM 141 , the ROM 142 , the main CPU 143 , the graphic processing unit 144 , the first to n interfaces 145 - 1 to 145 -n, etc. may be connected to each other through the bus 146 .
  • the first to n-th interfaces 145-1 to 145-n are connected to the various components described above.
  • One of the interfaces may be a network interface connected to an external device through a network.
  • the main CPU 143 accesses the storage unit 180 and performs booting using the O/S stored in the storage unit 180 . Then, various operations are performed using various programs, contents, data, etc. stored in the storage unit 180 .
  • the main CPU 143 controls the rotation speed and rotation amount of each of the plurality of non-directional wheels 110 based on the rotation sensed by the sensing unit 130 and the respective pressure values detected from the plurality of pressure sensors.
  • the ROM 142 stores an instruction set for system booting and the like.
  • the main CPU 143 copies the O/S stored in the storage unit 180 to the RAM 141 according to the command stored in the ROM 142, and executes the O/S. Boot the system.
  • the main CPU 143 copies various application programs stored in the storage unit 180 to the RAM 141 and executes the application programs copied to the RAM 141 to perform various operations.
  • the graphic processing unit 144 generates a screen including various objects such as icons, images, and texts by using an operation unit (not shown) and a rendering unit (not shown).
  • An operation unit (not shown) calculates attribute values such as coordinate values, shape, size, color, etc. of each object to be displayed according to the layout of the screen based on the received control command.
  • the rendering unit (not shown) generates screens of various layouts including objects based on the attribute values calculated by the calculation unit (not shown).
  • the graphic processing unit 144 may implement the object generated by the main CPU 143 as a graphic user interface (GUI), an icon, a user interface screen, and the like.
  • GUI graphic user interface
  • the above-described operation of the processor 140 may be performed by a program stored in the storage unit 180 .
  • the storage unit 180 includes a processor ( 140) and stores various data such as an O/S (Operating System) software module for driving and various multimedia contents.
  • O/S Operating System
  • the storage unit 180 controls the rotation speed and rotation amount of each of the plurality of non-directional wheels 110 based on the rotation sensed by the sensor 130 and the respective pressure values detected from the plurality of pressure sensors. It may include a software module for
  • FIG. 12 is a diagram of a software module stored in a storage unit according to an embodiment of the present invention.
  • the storage unit 180 may store programs such as the rotation speed and rotation amount control module 181 , the suspension control module 182 , and the shortest movement path calculation module 183 .
  • the above-described operation of the processor 140 may be performed by a program stored in the storage unit 180 .
  • a program stored in the storage unit 180 may be described in detail.
  • the rotation speed and rotation amount control module 181 detects the rotation of each of the plurality of non-directional wheels 110 , and based on the detected rotation and each pressure value detected from the plurality of pressure sensors, a plurality of non-directional wheels 110 . It is possible to increase or decrease the rotation speed and rotation amount of each of the directional wheels 110 .
  • the suspension control module 182 may control the suspension unit 150 to adjust the balance of the mobile device 100 based on each pressure value detected from the plurality of pressure sensors.
  • the shortest moving path calculation module 183 may calculate the shortest moving path based on the distance information obtained through the distance detection sensor 160 and the moving path information obtained through the imaging unit 170 . have.
  • FIG. 13 is a flowchart illustrating a method of controlling a mobile device according to an embodiment of the present invention.
  • the step of controlling the rotation speed and rotation amount compares each pressure value detected from a plurality of pressure sensors, and as the pressure value decreases, the rotation speed and rotation amount of the non-directional wheel is reduced, As the pressure value increases, the rotation speed and rotation amount of the corresponding omni-directional wheel are increased.
  • the method may further include adjusting the balance of the moving device based on the respective pressure values detected from the plurality of pressure sensors.
  • the method may further include controlling the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the sensed rotation and each detected pressure value and simultaneously controlling the suspension unit.
  • the method may further include calculating the shortest moving path based on the distance information obtained through the distance detection sensor and the moving path information obtained through the imaging unit.
  • the method may further include the step of storing and updating the rotation speed and rotation amount of each of the plurality of non-directional wheels on the calculated shortest movement path and the calculated shortest movement path.
  • control method of the mobile device may be implemented through various algorithms, and these algorithms may have rotation and pressure values as input values, and the equilibrium state, suspension state, and shortest movement path of the mobile device in the calculation process.
  • the state may be considered together, and the output value may be the rotation speed and amount of each of the plurality of non-directional wheels, and the adjustment direction of the suspension unit.
  • FIG. 14 is a block diagram of a transportation management system according to an embodiment of the present invention.
  • the transport management system 1400 includes a first mobile device 1410 , a second mobile device 1411 ... an n-th mobile device and a server 1420 . do.
  • the plurality of moving devices 1410 and 1411 calculate the shortest moving path and move according to the calculated shortest moving path.
  • the shortest moving path can be recalculated in consideration of the motion of the other moving device. have.
  • the server 1420 stores and updates the movement path and control related information of each of the plurality of mobile devices 1410 and 1411 .
  • control-related information includes information on the rotational speed and amount of each of the plurality of non-directional wheels that are controlled while moving each of the plurality of moving devices 1410 and 1411 along the movement path as described above, and information about the amount of rotation that can be obtained through this. It may include information about a state on the movement path, and the like.
  • each of the plurality of moving devices 1410 and 1411 detects the rotation of each of the plurality of omni-directional wheels, the driving unit for driving the plurality of omni-directional wheels, and the plurality of omni-directional wheels, and corresponds to each of the plurality of omni-directional wheels.
  • a non-transitory computer readable medium in which a program for sequentially performing the control method according to the present invention is stored may be provided.
  • a program for performing a step of controlling the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the detected rotation of each of the plurality of omni-directional wheels and each pressure value detected from the plurality of pressure sensors is stored
  • a non-transitory computer readable medium may be provided.
  • the non-transitory readable medium refers to a medium that stores data semi-permanently, rather than a medium that stores data for a short moment, such as a register, cache, memory, etc., and can be read by a device.
  • various programs for controlling the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the rotation and pressure values are non-directional such as CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM, etc. It may be provided by being stored in a temporary readable medium.
  • each device may further include a processor such as a CPU or a microprocessor that performs the various steps described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Vehicle Body Suspensions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A moving device is disclosed. The moving device comprises: a plurality of omni-directional wheels; a driving part for driving the plurality of omni-directional wheels; a sensing part for detecting rotation of each of the plurality of omni-directional wheels and comprising a plurality of pressure sensors respectively corresponding to the plurality of omni-directional wheels; and a processor for controlling the rotational speed and the rotational amount of each of the plurality of non-directional wheels on the basis of the rotation sensed by the sensing part and respective pressure values detected from the plurality of pressure sensors. Accordingly, by controlling the rotation speed and the rotation amount of each of the omni-directional wheels in response to the pressure value, the moving device using the omni-directional wheels can be accurately and quickly controlled.

Description

이동장치, 이동장치의 제어 방법 및 운송관리 시스템Mobile device, control method of mobile device, and transport management system
본 발명은 이동장치, 이동장치의 제어 방법 및 운송관리 시스템에 관한 것으로, 보다 상세하게는 무지향성 바퀴를 갖는 이동장치, 무지향성 바퀴를 갖는 이동장치의 제어 방법 및 운송관리 시스템에 관한 것이다.The present invention relates to a mobile device, a method for controlling a mobile device, and a transport management system, and more particularly, to a mobile device having omni-directional wheels, a method for controlling a mobile device having omni-directional wheels, and a transport management system.
일반적인 차량은 독립적인 두 바퀴 구동방식이나 조향 구동방식으로 구분된다. 이와 같은 기존의 구동방식에는 움직임에 제약이 있다. 즉, 앞으로 움직이던 상태에서 차체를 직접 회전시키지 않고는 바로 옆으로 이동할 수 없게 된다.A general vehicle is divided into an independent two-wheel drive method or a steering drive method. Such a conventional driving method has limitations in movement. That is, it is impossible to move to the side without directly rotating the vehicle body in the state of moving forward.
이러한 움직임의 제약으로 협소한 공간에서의 움직임이 어렵고, 원하는 위치에 도달하기 위하여 복잡한 경로의 계산이 필요하게 된다.It is difficult to move in a narrow space due to such movement restrictions, and it is necessary to calculate a complicated path to reach a desired position.
이와 같은 단점을 보와하기 위해서 개발된 것이 전방향 구동방식이다. 전방향 구동방식은 차량 또는 이동 로봇 등의 운동 능력을 향상시켜 2차원 평면에서 3자유도(전후, 좌우, 회전)의 운동이 가능하도록 함으로써, 임의의 자세에서 임의의 방향으로 주행이 가능하다.The omni-directional driving method was developed to compensate for these shortcomings. The forward driving method improves the movement ability of a vehicle or a mobile robot to enable movement in three degrees of freedom (forward, backward, left and right, rotation) in a two-dimensional plane, so that the vehicle can be driven in an arbitrary direction in an arbitrary posture.
또한, 최근에는 옴니휠(omni-wheel)을 이용한 새로운 주행시스템 플랫폼인 옴니휠을 이용한 자율이동 로봇이 연구되고 있다. 이러한 자율이동 로봇은, 옴니휠이라는 특이한 구조의 바퀴를 사용하여 홀로노믹 시스템(holonomic system)을 실현할 수가 있었다. 홀로노믹 시스템은, 제어하고 싶은 자유도와, 제어할 수 있는 자유도의 관계로 정의된다. 제어를 할 수 있는 자유도가 제어하고 싶은 자유도보다 많거나 같은 경우 홀로노믹 시스템이라 하고, 제어를 할 수 있는 자유도가 제어를 하고 싶은 자유도보다 적을 경우 논홀로노믹 시스템(non-holonomic system)이라 한다.In addition, recently, autonomous mobile robots using omni-wheels, a new driving system platform using omni-wheels, are being studied. This autonomous mobile robot was able to realize a holonomic system by using a wheel with a unique structure called an omni wheel. A holonomic system is defined by the relationship between the degree of freedom to be controlled and the degree of freedom to be controlled. If the degree of freedom to control is greater than or equal to the degree of freedom to be controlled, it is called a holonomic system, and if the degree of freedom to control is less than the degree of freedom to control, it is called a non-holonomic system.
옴니휠은 하나의 주바퀴와 그 주위에 위성처럼 달려있는 보조바퀴로 구성된다. 주 바퀴는 일반적인 바퀴와 같이 모터의 회전축을 중심으로 회전을 하고, 보조바퀴는 외부의 힘에 의해 회전축의 방향(주 바퀴와 직각을 이루는 방향)으로 슬립(slip)이 발생된다. 이와 같은 특이한 구조의 옴니휠 덕분에, 종래의 옴니휠을 이용한 자율이동 로봇은, 회전 반경 없이 어느 방향이든 이동이 가능한 홀로노믹 시스템을 구현할 수 있었다.The omni wheel is composed of one main wheel and an auxiliary wheel hanging around it like a satellite. The main wheel rotates around the rotating shaft of the motor like a general wheel, and the auxiliary wheel slips in the direction of the rotating shaft (direction perpendicular to the main wheel) by an external force. Thanks to the unique structure of the omni wheel, the autonomous mobile robot using the conventional omni wheel was able to implement a holonomic system capable of moving in any direction without a turning radius.
그러나, 옴니휠을 사용하는 이동장치의 경우 상술한 바와 같은 많은 장점에도 불구하고, 종래의 일반 바퀴를 사용하는 경우보다 위치 이동 및 자세 제어가 매우 어렵기 때문에 민첩하고 정확하게 주행할 수 없는 문제점이 있다.However, in the case of a moving device using an omni wheel, despite the many advantages as described above, there is a problem in that it cannot be driven quickly and accurately because position movement and posture control are very difficult than when using a conventional general wheel. .
본 발명의 목적은 압력값에 기초하여 복수의 무지향성 바퀴를 개별적으로 제어하는 이동장치, 이동장치의 제어 방법 및 운송관리 시스템을 제공함에 있다.An object of the present invention is to provide a mobile device for individually controlling a plurality of non-directional wheels based on a pressure value, a method for controlling the mobile device, and a transport management system.
이러한 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 이동장치는, 복수의 무지향성 바퀴, 상기 복수의 무지향성 바퀴를 구동하는 구동부, 상기 복수의 무지향성 바퀴 각각의 회전을 감지하며, 상기 복수의 무지향성 바퀴 각각에 대응되는 복수의 압력 센서를 포함하는 감지부 및 상기 감지부에서 감지된 회전 및 상기 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어하는 프로세서를 포함한다.A moving device according to an embodiment of the present invention for achieving this object, a plurality of omni-directional wheels, a driving unit for driving the plurality of omni-directional wheels, detects rotation of each of the plurality of omni-directional wheels, A detection unit including a plurality of pressure sensors corresponding to each of the omni-directional wheels of It contains a processor that controls the speed and the amount of rotation.
여기서, 상기 프로세서는, 상기 복수의 압력 센서로부터 검출된 각각의 압력값을 비교하고 상기 압력값이 낮아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 저감시키고, 상기 압력값이 높아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 증가시킨다.Here, the processor compares the respective pressure values detected from the plurality of pressure sensors, decreases the rotation speed and rotation amount of the non-directional wheel as the pressure value decreases, and decreases the rotation speed and the rotation amount of the non-directional wheel as the pressure value increases. Increase the rotation speed and amount of rotation of the wheel.
한편, 본 발명의, 일 실시 예에 따른 이동장치는 상기 복수의 무지향성 바퀴 각각에 대한 서스펜션부를 더 포함하며, 상기 프로세서는, 상기 복수의 압력센서로부터 검출된 각각의 압력값에 기초하여 상기 이동장치의 평형을 조정하도록 상기 서스펜션부를 제어할 수 있다.On the other hand, the moving device according to an embodiment of the present invention further includes a suspension unit for each of the plurality of non-directional wheels, and the processor is configured to move the movement based on the respective pressure values detected from the plurality of pressure sensors. The suspension can be controlled to adjust the balance of the device.
또한, 상기 프로세서는, 상기 감지된 회전 및 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어함과 동시에 상기 서스펜션부를 제어할 수 있다.In addition, the processor may control the rotation speed and the rotation amount of each of the plurality of non-directional wheels based on the sensed rotation and each detected pressure value and simultaneously control the suspension unit.
또한, 본 발명의 일 실시 예에 따른 이동장치는 거리 탐지 센서 및 이미지를 획득하는 촬상부를 더 포함하며, 상기 프로세서는, 상기 거리 탐지 센서를 통해 획득되는 거리에 관한 정보 및 상기 촬상부를 통해 획득되는 이동 경로에 관한 정보에 기초하여, 최단 이동 경로를 산출하고 상기 산출된 최단 이동 경로에 따라 상기 구동부를 구동할 수 있다.In addition, the mobile device according to an embodiment of the present invention further includes a distance detection sensor and an image pickup unit for acquiring an image, wherein the processor includes information about a distance obtained through the distance detection sensor and information about a distance obtained through the image pickup unit. A shortest moving path may be calculated based on the information on the moving path, and the driving unit may be driven according to the calculated shortest moving path.
또한, 상기 프로세서는, 상기 산출된 최단 이동 경로 및 상기 산출된 최단 이동 경로 상에서 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 저장하여 업데이트할 수 있다.Also, the processor may store and update the rotation speed and rotation amount of each of the plurality of non-directional wheels on the calculated shortest movement path and the calculated shortest movement path.
한편, 본 발명의 일 실시 예에 따른 복수의 무지향성 바퀴를 포함하는 이동장치의 제어 방법은, 상기 복수의 무지향성 바퀴 각각의 회전을 감지하는 단계, 상기 복수의 무지향성 바퀴 각각에 대응되는 압력값을 검출하는 단계 및 상기 감지된 회전 및 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어하는 단계를 포함한다.On the other hand, the control method of a mobile device including a plurality of omni-directional wheels according to an embodiment of the present invention includes the steps of detecting the rotation of each of the plurality of omni-directional wheels, and a pressure corresponding to each of the plurality of omni-directional wheels. detecting a value and controlling a rotation speed and a rotation amount of each of the plurality of omni-directional wheels based on the sensed rotation and each detected pressure value.
한편, 본 발명의 일 실시 예에 따른 운송관리 시스템은, 최단 이동 경로를 산출하고 상기 산출된 최단 이동 경로에 따라 이동하되, 다른 이동장치를 발견한 경우 상기 다른 이동장치의 움직임을 고려하여 최단 이동 경로를 재산출하는 복수의 이동장치 및 상기 복수의 이동장치 각각의 이동경로 및 제어 관련 정보를 저장하고 업데이트하는 서버를 포함하며, 상기 이동장치는, 복수의 무지향성 바퀴, 상기 복수의 무지향성 바퀴를 구동하는 구동부, 상기 복수의 무지향성 바퀴 각각의 회전을 감지하며, 상기 복수의 무지향성 바퀴 각각에 대응되는 복수의 압력 센서를 포함하는 감지부 및 상기 감지부에서 감지된 회전 및 상기 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어하는 프로세서를 포함한다.On the other hand, the transport management system according to an embodiment of the present invention calculates a shortest moving path and moves according to the calculated shortest moving path, but when another moving device is found, the shortest movement is taken in consideration of the movement of the other moving device. A plurality of mobile devices for recalculating a route and a server for storing and updating movement routes and control related information of each of the plurality of mobile devices, wherein the mobile device includes a plurality of omni-directional wheels and the plurality of omni-directional wheels a driving unit for driving the , a sensing unit which detects the rotation of each of the plurality of omni-directional wheels, and a sensing unit including a plurality of pressure sensors corresponding to each of the plurality of omni-directional wheels, and the rotation and the plurality of pressures sensed by the sensing unit and a processor for controlling a rotation speed and a rotation amount of each of the plurality of non-directional wheels based on each pressure value detected from the sensor.
이상과 같은 본 발명의 다양한 실시 예에 따르면, 압력값에 대응하여 무지향성 바퀴 각각의 회전속도 및 회전량을 제어함으로써, 무지향성 바퀴를 사용하는 이동장치를 정확하고 민첩하게 제어할 수 있다.According to various embodiments of the present invention as described above, by controlling the rotation speed and rotation amount of each of the non-directional wheels in response to the pressure value, it is possible to accurately and agilely control a moving device using the non-directional wheel.
도 1은 본 발명의 일 실시 예에 따른 이동장치의 구성을 도시한 블럭도이다.1 is a block diagram showing the configuration of a mobile device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 이동장치를 도시한 도면이다.2 is a diagram illustrating a mobile device according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 무지향성 바퀴를 도시한 도면이다.3 is a view illustrating an omni-directional wheel according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 무지향성 바퀴를 구동하기 위한 구동부 및 감지부를 도시한 도면이다.4 is a view illustrating a driving unit and a sensing unit for driving the non-directional wheel according to an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른 무지향성 바퀴 각각을 제어하는 동작을 설명하기 위한 도면이다.5 is a view for explaining an operation of controlling each of the non-directional wheels according to an embodiment of the present invention.
도 6은 본 발명의 또 다른 실시 예에 따른 이동장치의 구성을 도시한 블럭도이다.6 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
도 7은 본 발명의 또 다른 실시 예에 따른 서스펜션부를 도시한 블럭도이다.7 is a block diagram illustrating a suspension unit according to another embodiment of the present invention.
도 8은 본 발명의 일 실시 예에 따른 이동장치의 제어 동작을 설명하기 위한 도면이다.8 is a diagram for explaining a control operation of a mobile device according to an embodiment of the present invention.
도 9는 본 발명의 또 다른 실시 예에 따른 이동장치의 구성을 도시한 블럭도이다.9 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
도 10은 본 발명의 일 실시 예에 따른 최단이동 경로 산출에 관한 도면이다.10 is a diagram for calculating the shortest moving path according to an embodiment of the present invention.
도 11은 도 1에 도시된 프로세서의 구체적인 구성을 나타내는 블럭도이다.11 is a block diagram showing a specific configuration of the processor shown in FIG.
도 12는 본 발명의 일 실시 예에 따른 저장부에 저장된 소프트웨어 모듈에 관한 도면이다.12 is a diagram of a software module stored in a storage unit according to an embodiment of the present invention.
도 13은 본 발명의 일 실시 예에 따른 이동장치의 제어 방법을 설명하기 위한 흐름도이다.13 is a flowchart illustrating a method of controlling a mobile device according to an embodiment of the present invention.
도 14는 본 발명의 일 실시 예에 따른 운송관리 시스템에 관한 블럭도이다.14 is a block diagram of a transportation management system according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관계 등에 따라 달라질 수 있다. 그러므로, 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, the present invention will be described in more detail with reference to the drawings. And, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. And, the terms to be described later are terms defined in consideration of functions in the present invention, which may vary depending on the intention or relationship of a user or an operator. Therefore, the definition should be made based on the content throughout this specification.
도 1은 본 발명의 일 실시 예에 따른 이동장치의 구성을 도시한 블럭도이다.1 is a block diagram showing the configuration of a mobile device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 이동장치(100)는 복수의 무지향성 바퀴(110), 구동부(120), 감지부(130) 및 프로세서(140)를 포함한다. 여기서, 이동장치(100)는 무지향성 바퀴가 구비되어 이동이 가능한 이동 가능 수단을 모두 포함할 수 있다. 예를 들어, 자동차, 비행기, 무인 카트, 이동 로봇 등으로 구현될 수 있다.Referring to FIG. 1 , a mobile device 100 according to an embodiment of the present invention includes a plurality of non-directional wheels 110 , a driving unit 120 , a sensing unit 130 , and a processor 140 . Here, the mobile device 100 may include all movable means that are provided with non-directional wheels and can move. For example, it may be implemented as a car, an airplane, an unmanned cart, a mobile robot, and the like.
또한, 무지향성 바퀴는 유니버셜 휠(universal wheel), 메카넘 휠(mecanum wheel), 더블 휠(double wheel), 얼터닛 휠(alternate wheel), 하프 휠(half wheel), 오쏘고날 휠(orthogonal wheel), 볼 휠(ball wheel), 옴니 휠(omni wheel) 등으로 구현될 수 있으며, 본 명세서에서는 옴니 휠을 사용하는 이동장치를 예로 들어 설명하기로 한다.In addition, the omni-directional wheel includes a universal wheel, a mecanum wheel, a double wheel, an alternate wheel, a half wheel, and an orthogonal wheel. ), a ball wheel, an omni wheel, etc. may be implemented, and in the present specification, a mobile device using the omni wheel will be described as an example.
이러한 옴니 휠에 대해 도 3을 참조하여 상세하게 설명하기로 한다.This omni wheel will be described in detail with reference to FIG. 3 .
도 3은 본 발명의 일 실시 예에 따른 무지향성 바퀴를 도시한 도면이다.3 is a view illustrating an omni-directional wheel according to an embodiment of the present invention.
도 3을 참조하면, 무지향성 바퀴(110)는 옴니 휠로 구현되어 있으며, 이러한 옴니 휠(110)은 메인휠(111)과 서브휠(112)로 구성되어 메인휠(111)의 회전방향과 서브휠(112)의 회전방향이 수직이 되도록 메인휠(111)과 서브휠(112)이 배치된다.Referring to FIG. 3 , the omni-directional wheel 110 is implemented as an omni wheel, and this omni wheel 110 is composed of a main wheel 111 and a sub wheel 112 to determine the rotation direction of the main wheel 111 and the sub wheel. The main wheel 111 and the sub wheel 112 are disposed so that the rotation direction of the wheel 112 is vertical.
이에 따라, 옴니 휠(110)은 메인휠(111)이 A방향으로 일반적인 바퀴와 동일하게 회전을 하고, 서브휠(112)이 외부의 힘에 의해 B방향으로 슬립이 발생할 수 있는 구조로 이루어진다.Accordingly, the omni wheel 110 has a structure in which the main wheel 111 rotates in the same direction as the general wheel in the A direction, and the sub wheel 112 may slip in the B direction by an external force.
그리고, 이러한 메인휠(111)과 서브휠(112)이 구성되는 바퀴가 2개 겹쳐서 결합되되, 2개의 바퀴가 겹쳐지는 경우 서브휠(112)이 도 3에 도시된 바와 같이 엇갈려서 결합되도록 구성된다.In addition, two wheels comprising the main wheel 111 and the sub-wheel 112 are overlapped and coupled, and when the two wheels overlap, the sub-wheel 112 is alternately coupled as shown in FIG. 3 . .
이에 의해, 옴니 휠(110)의 메인휠(111)이 회전시 적어도 하나의 서브휠(112)이 지면에 접촉될 수 있게 되며, 서브휠(112)이 임의의 지점에서 지면에 접촉되어 힘을 받게 되면, 서브휠(120)의 회전에 의해 메인휠(111)의 회전방향과 수직한 방향으로의 회전이동이 가능해진다.Thereby, when the main wheel 111 of the omni wheel 110 rotates, at least one sub-wheel 112 can be in contact with the ground, and the sub-wheel 112 is in contact with the ground at any point to apply a force. When received, rotational movement in a direction perpendicular to the rotational direction of the main wheel 111 is possible by rotation of the sub-wheel 120 .
즉, 메인휠(111)이 회전축을 따라 회전하는 경우 옴니휠(110)은 메인휠(111)의 회전방향을 기준으로 할 때, 앞뒤로 즉, 전진 또는 후진을 할 수 있게 된다. 이때 옴니휠(110)의 전진 또는 후진 중에는 서브휠(112)은 정지된 상태이다.That is, when the main wheel 111 rotates along the axis of rotation, the omni wheel 110 can move forward or backward, that is, forward or backward, based on the rotation direction of the main wheel 111 . At this time, during the forward or backward of the omni wheel 110, the sub wheel 112 is in a stopped state.
한편, 메인휠(111)의 회전이 정지된 후 서브휠(112)의 회전방향으로 힘이 가해지면 서브휠(112)은 메인휠(111)의 회전방향과 수직한 방향으로 회전하게 되므로, 옴니휠(110)은 메인휠(111)의 회전방향을 기준으로 할 때, 양 옆으로, 즉, 좌측 또는 우측으로 이동할 수 있게 된다.On the other hand, when a force is applied in the rotational direction of the sub-wheel 112 after the rotation of the main wheel 111 is stopped, the sub-wheel 112 rotates in a direction perpendicular to the rotational direction of the main wheel 111, so the omni The wheel 110 can move sideways, ie, left or right, based on the rotational direction of the main wheel 111 .
이에 따라, 옴니 휠(110)은 전후좌우 전방향으로의 이동이 가능해진다.Accordingly, the omni wheel 110 becomes possible to move forward, backward, left, and right in all directions.
한편, 구동부(120)는 이러한 무지향성 바퀴를 구동할 수 있으며, 상술한 바와 같이, 메인휠(111)과 서브휠(112) 각각의 회전속도 및 회전량을 조절하여 이동장치(100)의 전체적인 이동 방향을 조정할 수 있다. 이러한 구동부(120)는 다양한 종류의 모터를 포함할 수 있다.On the other hand, the driving unit 120 may drive such a non-directional wheel, and as described above, by adjusting the rotation speed and amount of each of the main wheel 111 and the sub wheel 112 , the overall movement of the moving device 100 . The direction of movement can be adjusted. The driving unit 120 may include various types of motors.
또한, 감지부(130)는 복수의 무지향성 바퀴 각각의 회전을 감지하며, 복수의 무지향성 바퀴 각각에 대응되는 복수의 압력 센서를 포함한다.In addition, the sensing unit 130 detects the rotation of each of the plurality of omni-directional wheels, and includes a plurality of pressure sensors corresponding to each of the plurality of omni-directional wheels.
여기서, 감지부(130)는 다양한 종류의 센서로 구현될 수 있으며, 이러한 다양한 종류의 센서가 복수의 무지향성 바퀴 각각에 연결되어 바퀴 각각의 회전방향과 회전속도를 측정하게 된다.Here, the sensing unit 130 may be implemented with various types of sensors, and these various types of sensors are connected to each of a plurality of non-directional wheels to measure the rotational direction and rotational speed of each of the wheels.
또한, 감지부(130)는 복수의 무지향성 바퀴 각각에 대응하여 바퀴 각각에 실리는 압력값을 측정하기 위한 복수의 압력 센서를 포함할 수 있다. 이러한 압력 센서는 복수의 무지향성 바퀴 각각에 연결되는 회전축 상에 실리는 압력값을 측정할 수도 있고, 또는 복수의 무지향성 바퀴에 연결되는 기어 또는 서스펜션 등에 실리는 압력값을 측정할 수도 있으며, 또는 복수의 무지향성 바퀴 자체에 전달되는 압력값을 측정할 수도 있다.Also, the sensing unit 130 may include a plurality of pressure sensors for measuring a pressure value mounted on each of the plurality of non-directional wheels, respectively. Such a pressure sensor may measure a pressure value mounted on a rotating shaft connected to each of the plurality of omni-directional wheels, or may measure a pressure value mounted on a gear or suspension connected to the plurality of omni-directional wheels, or It is also possible to measure the pressure value transmitted to the plurality of omni-directional wheels themselves.
한편, 프로세서(140)는 감지부(130)에서 감지된 회전 및 복수의 압력센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어할 수 있다.Meanwhile, the processor 140 may control the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the rotation sensed by the sensing unit 130 and the respective pressure values detected from the plurality of pressure sensors.
구체적으로, 프로세서(140)는 복수의 압력 센서로부터 검출된 각각의 압력값을 비교하고 압력값이 낮아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 저감시키고, 압력값이 높아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 증가시킬 수 있다.Specifically, the processor 140 compares the respective pressure values detected from the plurality of pressure sensors, reduces the rotation speed and the amount of rotation of the omni-directional wheel as the pressure value decreases, and decreases the rotation speed and the rotation amount of the omni-directional wheel as the pressure value increases. The rotation speed and amount of rotation can be increased.
예를 들어, 이동장치(100)의 앞단에 제1 무지향성 바퀴와 제2 무지향성 바퀴가 구비되어 있고, 제1 무지향성 바퀴와 제2 무지향성 바퀴의 회전속도 및 회전량이 서로 동일하고 일정하여 이동장치(100)가 등속도 운동을 하는 것으로 가정한다.For example, a first omni-directional wheel and a second omni-directional wheel are provided at the front end of the mobile device 100, and the rotation speed and amount of the first omni-directional wheel and the second omni-directional wheel are the same and constant. It is assumed that the mobile device 100 is moving at a constant velocity.
이때, 제1 무지향성 바퀴쪽으로 압력이 쏠리는 현상이 발생하게 되면, 프로세서(140)는 제1 무지향성 바퀴에 작용하는 압력값과 제2 무지향성 바퀴에 작용하는 압력값을 비교하고, 제1 무지향성 바퀴에 작용하는 압력값이 상대적으로 더 크다고 판단되면, 감지부(130)에서 감지된 현재 제1 무지향성 바퀴의 회전량 및 회전 속도가 제2 무지향성 바퀴의 회전량 및 회전속도와 동일하다고 감지된 정보를 토대로 제1 무지향성 바퀴의 회전량 및 회전 속도를 제2 무지향성 바퀴의 회전량 및 회전 속도와 구별될 수 있도록 증가시키게 된다.At this time, when a phenomenon in which the pressure is concentrated toward the first omni-directional wheel occurs, the processor 140 compares the pressure value applied to the first omni-directional wheel with the pressure value applied to the second omni-directional wheel, and the first non-directional wheel If it is determined that the pressure value acting on the directional wheel is relatively larger, it is determined that the current rotation amount and rotation speed of the first non-directional wheel detected by the sensing unit 130 are the same as the rotation amount and rotation speed of the second non-directional wheel. Based on the sensed information, the rotation amount and rotation speed of the first omni-directional wheel are increased to be distinguished from the rotation amount and rotation speed of the second omni-directional wheel.
이에 따라, 제1 무지향성 바퀴는 상대적으로 큰 압력값이 작용하는 상태에서 회전량과 회전 속도가 증가하게 되어 큰 압력값이 작용하는 상태로부터 벗어나는 방향으로 이동장치(100)는 이동하게 된다.Accordingly, the rotation amount and rotation speed of the first non-directional wheel increase in a state in which a relatively large pressure value is applied, so that the moving device 100 moves in a direction away from the state in which the large pressure value is applied.
또한, 동시에 제2 무지향성 바퀴쪽으로는 압력이 상대적으로 작다고 판단되므로, 프로세서(140)는 감지된 현재 제1 무지향성 바퀴의 회전량 및 회전 속도가 제2 무지향성 바퀴의 회전량 및 회전속도와 동일하다고 감지된 정보를 토대로 제2 무지향성 바퀴의 회전량 및 회전 속도를 제1 무지향성 바퀴의 회전량 및 회전 속도와 구별될 수 있도록 저감시키게 된다.Also, since it is determined that the pressure is relatively small toward the second omni-directional wheel at the same time, the processor 140 determines that the sensed current rotation amount and rotation speed of the first omni-directional wheel are the same as the rotation amount and rotation speed of the second omni-directional wheel. Based on the information sensed to be the same, the rotation amount and rotation speed of the second omni-directional wheel are reduced to be distinguished from the rotation amount and rotation speed of the first omni-directional wheel.
이에 따라, 제2 무지향성 바퀴는 상대적으로 작은 압력값이 작용하는 상태에서 회전량과 회전 속도가 감소하게 되어 작은 압력값이 작용하는 상태에서 크게 움직이지 않게 된다.Accordingly, the rotation amount and rotation speed of the second non-directional wheel are reduced in a state in which a relatively small pressure value is applied, so that the second non-directional wheel does not move significantly in a state in which a small pressure value is applied.
이러한 제1 무지향성 바퀴 및 제2 무지향성 바퀴의 회전량 차이와 회전 속도 차이에 따라 이동장치(100)는 압력값이 상대적으로 크게 작용하는 위치 또는 상태로부터 벗어나도록 움직이게 된다.According to the difference in the rotation amount and the rotation speed of the first omni-directional wheel and the second omni-directional wheel, the moving device 100 moves so as to deviate from the position or state where the pressure value is relatively large.
상술한 설명은 주로, 이동장치(100)의 한쪽 바퀴만 요철을 넘거나 장애물을 넘는 경우 또는 한쪽 바퀴에만 지면으로부터의 압력값이 커지는 경우, 해당 바퀴에 대해서만 압력값이 증가하게 되는바, 프로세서(140)는 이러한 경우 해당 바퀴의 회전량 및 회전속도를 증가시켜 요철 또는 장애물로부터 최대한 빠르게 벗어나도록 이동장치(100)를 움직일 수 있다.The above description is mainly, when only one wheel of the mobile device 100 crosses the unevenness or the obstacle, or when the pressure value from the ground increases only on one wheel, the pressure value increases only for the corresponding wheel, the processor ( In this case, 140 may increase the rotation amount and rotation speed of the corresponding wheel to move the moving device 100 so as to escape from the irregularities or obstacles as quickly as possible.
한편, 지면으로부터 무지향성 바퀴에 전달되는 압력뿐만 아니라, 이동장치(100)의 본체로부터 무지향성 바퀴쪽으로 눌리는 압력도 존재할 수 있는데, 이러한 경우 프로세서(140)의 동작에 대해서는 후술하기로 한다.Meanwhile, in addition to the pressure transmitted from the ground to the omni-directional wheel, there may also be a pressure from the main body of the mobile device 100 toward the omni-directional wheel. In this case, the operation of the processor 140 will be described later.
도 2는 본 발명의 일 실시 예에 따른 이동장치를 도시한 도면이다.2 is a diagram illustrating a mobile device according to an embodiment of the present invention.
도 2를 참조하면, 이동장치(100)의 하부에는 복수의 무지향성 바퀴(110)가 각각의 구동부(120)를 통해 이동장치(100)와 연결되고, 이러한 구동부(120)에는 감지부(130)가 함께 구비될 수 있다.Referring to FIG. 2 , a plurality of omni-directional wheels 110 are connected to the mobile device 100 through each driving unit 120 at the lower portion of the moving device 100 , and the sensing unit 130 is provided in the driving unit 120 . ) may be provided together.
그리고, 이동장치(100)의 상부에는 물건의 적재가 가능한 다양한 형태로 구현될 수 있으며, 도 2에서는 가림막 형태로 적재된 물건이 이동장치(100)로부터 이탈되지 않도록 구현되었다.In addition, the upper portion of the mobile device 100 may be implemented in various forms capable of loading the object, and in FIG. 2 , the object loaded in the form of a screen is implemented so as not to be separated from the mobile device 100 .
이러한 이동장치(100)는 물건을 적재한 채로 이동이 가능하며, 마트에서 장보기용 카트, 자재 운송, 택배 운송 등의 상황에 적용되어 사용될 수 있다.Such a mobile device 100 can be moved while loading goods, and can be applied and used in situations such as shopping carts, material transport, and courier transport in a mart.
도 4는 본 발명의 일 실시 예에 따른 무지향성 바퀴를 구동하기 위한 구동부 및 감지부를 도시한 도면이다.4 is a view illustrating a driving unit and a sensing unit for driving the non-directional wheel according to an embodiment of the present invention.
도 4를 참조하면, 무지향성 바퀴(110)를 구동하기 위한 구동부(120)는 다양한 종류의 모터를 포함할 수 있으며, 이러한 모터는 회전축에 연결되어 회전축을 회전시키며, 회전축의 회전력을 무지향성 바퀴(110)에 전달가능하도록 구현될 수 있다.Referring to FIG. 4 , the driving unit 120 for driving the omni-directional wheel 110 may include various types of motors, which are connected to a rotating shaft to rotate the rotating shaft, and apply the rotational force of the rotating shaft to the non-directional wheel. It may be implemented to be transferable to 110 .
또한, 모터에서 발생된 구동력이 복수의 기어를 통해 무지향성 바퀴(110)에 전달되도록 구현될 수도 있다.In addition, the driving force generated from the motor may be implemented to be transmitted to the non-directional wheel 110 through a plurality of gears.
즉, 무지향성 바퀴(110)가 회전축에 연결되고, 회전축에는 기어가 결합되어 있으며, 구동부(!20)에 배치된 모터의 구동축에도 기어가 결합되어 회전축에 결합된 기어에 연결되는 형태로 구현될 수 있다.That is, the non-directional wheel 110 is connected to the rotating shaft, a gear is coupled to the rotating shaft, and the gear is coupled to the driving shaft of the motor disposed in the driving unit (!20) to be implemented in a form connected to the gear coupled to the rotating shaft. can
여기서, 모터가 전원공급부(미도시)로부터 전원을 공급받아 회전하게 되면, 모터에 결합된 기어와 회전축에 결합된 기어가 맞물려 회전하며, 기어의 회전력에 연동되어 회전축도 회전하게 된다.Here, when the motor rotates by receiving power from the power supply unit (not shown), the gear coupled to the motor and the gear coupled to the rotation shaft are engaged and rotate, and the rotation shaft is also rotated in association with the rotational force of the gear.
물론, 무지향성 바퀴(110)에 모터가 결합되는 방식은 이에 한정되지 않으며, 다른 방식을 이용할 수도 있다. 즉, 모터를 구동부(120) 내부가 아닌 외부에 결합시킨 후 기어와 축의 연결을 통해 각각의 회전축에 구동력이 전달되도록 구현될 수도 있다.Of course, the method in which the motor is coupled to the omni-directional wheel 110 is not limited thereto, and other methods may be used. That is, after coupling the motor to the outside instead of the inside of the driving unit 120 , the driving force may be transmitted to each of the rotation shafts through the connection of the gear and the shaft.
한편, 도 4와 같이 모터에 형성된 구동축 부분이 직접 무지향성 바퀴(110)에 연결되어 무지향성 바퀴(110)를 회전시키는 방식으로 구현될 수도 있음은 당연하다.Meanwhile, as shown in FIG. 4 , it is natural that the drive shaft portion formed in the motor may be directly connected to the non-directional wheel 110 to rotate the non-directional wheel 110 .
또한, 감지부(130)는 구동부(120)와 비슷한 위치에 존재하여 회전하는 무지향성 바퀴(110)의 회전을 감지하고, 무지향성 바퀴(110)에 전달되는 압력값을 검출할 수 있다.Also, the sensing unit 130 may detect the rotation of the omni-directional wheel 110 , which exists in a position similar to that of the driving unit 120 , and detects a pressure value transmitted to the omni-directional wheel 110 .
이러한 감지부는 다양한 센서들을 포함할 수 있으며, 이러한 센서들은 구동부(120)가 아닌 무지향성 바퀴(110) 근처의 어디에도 위치될 수 있음은 당연하다.The sensing unit may include various sensors, and it is natural that these sensors may be located anywhere near the omni-directional wheel 110 other than the driving unit 120 .
도 5는 본 발명의 일 실시 예에 따른 무지향성 바퀴 각각을 제어하는 동작을 설명하기 위한 도면이다.5 is a view for explaining an operation of controlling each of the non-directional wheels according to an embodiment of the present invention.
도 5를 참조하면, 이동장치(100)는 제1 무지향성 바퀴(111), 제2 무지향성 바퀴(112), 제3 무지향성 바퀴(113) 및 제4 무지향성 바퀴(미도시)를 포함하고 있으며, 이때 만약 제1 무지향성 바퀴(111)에 작용되는 압력값이 제2 및 제3 무지향성 바퀴(112, 113)에 작용되는 압력값보다 큰 경우, 프로세서(140)는 제1 무지향성 바퀴(111)의 회전속도 및 회전량(111-1)을 증가시키고, 제2 무지향성 바퀴(112)의 회전속도 및 회전량(112-1)을 감소시킨다. 제3 무지향성 바퀴(113)에 대해서는 생략하였다.Referring to FIG. 5 , the mobile device 100 includes a first omni-directional wheel 111 , a second omni-directional wheel 112 , a third omni-directional wheel 113 , and a fourth omni-directional wheel (not shown). At this time, if the pressure value applied to the first omni-directional wheel 111 is greater than the pressure value applied to the second and third omni- directional wheels 112 and 113, the processor 140 performs the first omni-directional The rotation speed and rotation amount 111-1 of the wheel 111 is increased, and the rotation speed and rotation amount 112-1 of the second non-directional wheel 112 is decreased. The third non-directional wheel 113 is omitted.
이는 이동장치(100)에 적재된 상품의 무게가 상대적으로 제1 무지향성 바퀴(111) 쪽으로 실리는 경우 이동장치(100)는 제1 무지향성 바퀴(111) 쪽으로 기울어질 수 있고, 이러한 경우 프로세서(140)는 이동장치(100)의 평형 및 자세 제어를 위해 다양한 동작을 취할 수 있는데, 그 중 하나가 앞서 설명한 바와 같이 제1 무지향성 바퀴(111)의 회전속도 및 회전량을 증가시켜 이동장치(100)가 기울어지는 방향과 반대 방향으로 회전시키도록 하는 것이다.This means that when the weight of the product loaded on the mobile device 100 is relatively loaded toward the first omni-directional wheel 111 , the mobile device 100 may be inclined toward the first omni-directional wheel 111 , and in this case, the processor The 140 may take various actions to control the balance and posture of the moving device 100, one of which is to increase the rotational speed and amount of rotation of the first non-directional wheel 111 as described above. (100) is to rotate in the opposite direction to the inclined direction.
한편, 이동장치(100)는 서스펜션 구조를 더 포함하여 무지향성 바퀴의 회전을 제어하는 것뿐만 아니라 서스펜션을 제어하여 적극적으로 이동장치(100)의 평형을 유지하거나 자세 제어를 수행할 수 있는데, 이에 대해 좀더 상세히 설명하기로 한다.On the other hand, the mobile device 100 may further include a suspension structure to not only control the rotation of the omni-directional wheel, but also control the suspension to actively maintain the equilibrium of the mobile device 100 or perform posture control. will be described in more detail.
도 6은 본 발명의 또 다른 실시 예에 따른 이동장치의 구성을 도시한 블럭도이다.6 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
도 6을 참조하면, 본 발명의 또 다른 실시 예에 따른 이동장치(100)는 복수의 무지향성 바퀴(110), 구동부(120), 감지부(130), 프로세서(140) 및 서스펜션부(150)를 포함할 수 있다.Referring to FIG. 6 , the mobile device 100 according to another embodiment of the present invention includes a plurality of non-directional wheels 110 , a driving unit 120 , a sensing unit 130 , a processor 140 , and a suspension unit 150 . ) may be included.
이동장치(100)는 복수의 무지향성 바퀴(110) 각각에 대한 서스펜션부(150)를 포함할 수 있으며, 프로세서(140)는 복수의 압력센서로부터 검출된 각각의 압력값에 기초하여 이동장치(100)의 평형을 조정하도록 서스펜션부(150)를 제어할 수 있다.The mobile device 100 may include a suspension unit 150 for each of the plurality of omni-directional wheels 110 , and the processor 140 is configured to operate the moving device ( The suspension unit 150 may be controlled to adjust the balance of 100 .
여기서, 서스펜션부(150)는 현가 장치로도 불리며, 주로 댐핑부를 포함하는데, 이러한 서스펜션 구조뿐만 아니라, 이동장치(100)의 평형을 유지할 수 있는 다양한 구조, 예를 들어 복수의 기어로 구현되어 높낮이를 조절할 수 있는 구조 등으로 구현될 수도 있다.Here, the suspension unit 150 is also called a suspension device, and mainly includes a damping unit. In addition to this suspension structure, various structures capable of maintaining the balance of the moving device 100 , for example, are implemented with a plurality of gears to raise and lower the suspension structure. It can also be implemented as a structure that can control .
그리고, 프로세서(140)는 압력값이 상대적으로 크게 작용되는 무지향성 바퀴(110) 측에 위치하는 서스펜션부(150)를 제어하여 구체적으로, 서스펜션부(150)의 댐핑부를 늘리는 동작을 수행하여 이동장치(100)의 평형을 유지하거나 자세 제어 동작을 수행할 수 있다.Then, the processor 140 controls the suspension unit 150 located on the side of the omni-directional wheel 110 to which the pressure value is relatively large, and specifically, increases the damping unit of the suspension unit 150 to move it. It is possible to maintain the balance of the device 100 or to perform a posture control operation.
도 7은 본 발명의 또 다른 실시 예에 따른 서스펜션부를 도시한 블럭도이다.7 is a block diagram illustrating a suspension unit according to another embodiment of the present invention.
도 7을 참조하면, 도 4와 달리 구동부(120) 및 감지부(130)는 서스펜션부(150)와 연결되어 배치되거나 서브펜션부(150) 내부에 배치될 수 있다.Referring to FIG. 7 , unlike FIG. 4 , the driving unit 120 and the sensing unit 130 may be disposed in connection with the suspension unit 150 or disposed inside the sub-pension unit 150 .
서스펜션부(150)는 스프링 또는 탄성부재를 통해 이동장치(100)의 본체와 연결되며, 이에 따라 무지향성 바퀴(110)를 기준으로 지면에서 작용하는 압력 또는 이동장치(100)의 상부에서 작용하는 압력에 대응하여 프로세서(150)는 서스펜션부(150)를 제어하여 작용되는 압력값을 상쇄시키도록 할 수 있다.The suspension unit 150 is connected to the main body of the moving device 100 through a spring or an elastic member, and thus the pressure acting on the ground based on the non-directional wheel 110 or acting on the upper part of the moving device 100 . In response to the pressure, the processor 150 may control the suspension unit 150 to cancel the applied pressure.
도 7에 도시된 서스펜션부(150)는 일 예일 뿐이며, 다양한 구조로 구현될 수 있음은 당연하다.The suspension unit 150 shown in FIG. 7 is only an example, and it is natural that it may be implemented in various structures.
한편, 프로세서(140)는 감지된 회전 및 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴(110) 각각의 회전속도 및 회전량을 제어함과 동시에 서스펜션부(150)를 제어할 수 있다.Meanwhile, the processor 140 may control the rotation speed and amount of each of the plurality of non-directional wheels 110 based on the sensed rotation and each detected pressure value and simultaneously control the suspension unit 150 . .
구체적으로, 프로세서(140)는 감지부(130)를 통해 감지된 무지향성 바퀴(110)의 회전 상태 및 복수의 압력센서를 통해 검출된 무지향성 바퀴(110) 각각에 대한 압력값을 고려할 수 있는데, 예를 들어, 프로세서(140)는 감지부(130)를 통해 현재 회전중인 무지향성 바퀴(110)의 회전속도 및 회전량을 체크할 수 있고, 복수의 압력센서를 통해 무지향성 바퀴(110) 각각에 대해 작용하는 압력값을 체크할 수 있다.Specifically, the processor 140 may consider the rotational state of the omni-directional wheel 110 sensed by the sensing unit 130 and the pressure value for each of the omni-directional wheels 110 detected through a plurality of pressure sensors. , for example, the processor 140 may check the rotation speed and rotation amount of the currently rotating non-directional wheel 110 through the sensing unit 130, and the non-directional wheel 110 through a plurality of pressure sensors You can check the pressure value acting on each.
그리고, 프로세서(140)는 이렇게 체크된 회전상태와 압력값을 고려하여, 압력값의 크기가 상대적으로 큰 상태에서 해당 무지향성 바퀴(110)의 회전량 및 회전속도가 작다면 이를 더 증가시킴과 동시에 서스펜션부(150)를 통해 해당 압력의 영향을 저감시키도록 할 수 있다.And, the processor 140 considers the rotation state and pressure value checked in this way, and if the rotation amount and rotation speed of the non-directional wheel 110 are small in a state where the size of the pressure value is relatively large, it is further increased and At the same time, it is possible to reduce the influence of the corresponding pressure through the suspension unit 150 .
마찬가지로, 프로세서(140)는 압력값의 크기가 상대적으로 작은 상태에서 해당 무지향성 바퀴(110)의 회전량 및 회전 속도가 크다면 이를 감소시킴과 동시에 서스펜션부(150)를 통해 해당 압력의 영향을 저감시키거나 유지하도록 할 수 있다.Similarly, if the amount of rotation and the rotation speed of the omni-directional wheel 110 are large in a state where the magnitude of the pressure value is relatively small, the processor 140 reduces these and at the same time reduces the influence of the pressure through the suspension unit 150 . can be reduced or maintained.
도 8은 본 발명의 일 실시 예에 따른 이동장치의 제어 동작을 설명하기 위한 도면이다.8 is a diagram for explaining a control operation of a mobile device according to an embodiment of the present invention.
도 8을 참조하면, 이동장치(100)가 왼쪽으로 경사진 오르막 경로로 이동하고 있다.Referring to FIG. 8 , the mobile device 100 is moving on an uphill path inclined to the left.
이때, 이동장치(100)가 왼쪽으로 기울어지게 되면서 제3 무지향성 바퀴(113)에 가장 큰 압력이 작용하게 되고, 그 다음으로 제1 무지향성 바퀴(111)에 중간 수준의 압력이 작용하게 되며, 그 다음으로 제2 무지향성 바퀴(112)에 가장 작은 압력이 작용하게 된다.At this time, as the mobile device 100 is tilted to the left, the greatest pressure is applied to the third omni-directional wheel 113 , and then a medium-level pressure is applied to the first omni-directional wheel 111 , and , then the smallest pressure is applied to the second omni-directional wheel 112 .
이러한 경우, 프로세서(140)는 제3 무지향성 바퀴(113)의 회전량 및 회전 속도를 크게 증가시키면서 이와 동시에 이동장치(100)에 적재된 상품들이 평형상태를 유지할 수 있도록 상품들을 받치고 있는 본체 패널 중 제3 무지향성 바퀴(111)에 위치한 본체 패널의 영역이 위쪽 방향으로 움직일 수 있도록 서스펜션부(150)가 위쪽 방향(151)으로 늘어날 수 있게 제어한다.In this case, the processor 140 greatly increases the rotation amount and rotation speed of the third non-directional wheel 113 , and at the same time, the body panel supporting the products so that the products loaded in the mobile device 100 can maintain a balanced state. The suspension unit 150 is controlled to extend in the upward direction 151 so that the region of the body panel located on the third non-directional wheel 111 can move in the upward direction.
또한, 프로세서(140)는 제2 무지향성 바퀴(112)의 회전량 및 회전 속도를 감소시키면서 이와 동시에 이동장치(100)에 적재된 상품들이 평형상태를 유지할 수 있도록 상품들을 받치고 있는 본체 패널 중 제2 무지향성 바퀴(112)에 위치한 본체 패널의 영역이 아래쪽 방향으로 움직일 수 있도록 서스펜션부(150)가 아래쪽 방향(152)으로 수축될 수 있게 제어한다.In addition, the processor 140 reduces the amount of rotation and the rotation speed of the second non-directional wheel 112 and at the same time reduces the amount of rotation and the rotation speed of the second non-directional wheel 112, and at the same time allows the products loaded in the mobile device 100 to maintain a balanced state. 2 The suspension unit 150 is controlled to be contracted in the downward direction 152 so that the region of the body panel located on the non-directional wheel 112 can move in the downward direction.
한편, 프로세서(140)는 제2 및 제3 무지향성 바퀴(112, 113)의 회전 속도 및 회전량을 고려하여 제1 무지향성 바퀴(111)의 회전 속도 및 회전량을 조절하는 동작 및 서스펜션부(150)를 제어하여 본체 패널이 평형상태를 유지하도록 하는 동작 중 하나를 선택적으로 수행할 수 있다.Meanwhile, the processor 140 controls the rotation speed and rotation amount of the first non-directional wheel 111 in consideration of the rotation speed and rotation amount of the second and third non-directional wheels 112 and 113 and a suspension unit By controlling 150, one of the operations for maintaining the body panel in a balanced state may be selectively performed.
즉, 프로세서(140)는 각각의 무지향성 바퀴에 대해 각각의 바퀴에 대한 회전 속도 및 회전량을 제어하는 것과 서스펜션부(150)를 제어하는 것을 각각의 바퀴의 현재 상태에 따라 선택적으로 제어할 수도 있고 동시에 제어할 수도 있다.That is, the processor 140 may selectively control the control of the rotation speed and the amount of rotation for each non-directional wheel and the control of the suspension unit 150 according to the current state of each wheel. and can be controlled at the same time.
도 9는 본 발명의 또 다른 실시 예에 따른 이동장치의 구성을 도시한 블럭도이다.9 is a block diagram showing the configuration of a mobile device according to another embodiment of the present invention.
도 9를 참조하면, 이동장치(100)는 복수의 무지향성 바퀴(110), 구동부(120), 감지부(130), 프로세서(140), 서스펜션부(150), 거리 탐지 센서(160) 및 촬상부(170)을 포함할 수 있다.Referring to FIG. 9 , the mobile device 100 includes a plurality of omni-directional wheels 110 , a driving unit 120 , a sensing unit 130 , a processor 140 , a suspension unit 150 , a distance detection sensor 160 and It may include an imaging unit 170 .
여기서 거리 탐지 센서(160)는 적외선 센서, 레이더 센서, 라이더 센서 등과 같은 다양한 종류의 센서로 구현될 수 있으며, 이동 장치(100)의 다양한 위치에 배치될 수 있다.Here, the distance detection sensor 160 may be implemented as various types of sensors such as an infrared sensor, a radar sensor, a lidar sensor, and the like, and may be disposed in various positions of the mobile device 100 .
이러한 거리 탐지 센서(160)는 장애물, 벽, 사람 등의 존재 여부를 감지할 수 있다.The distance detection sensor 160 may detect the presence of an obstacle, a wall, a person, or the like.
촬상부(170)는 이미지를 획득할 수 있는 카메라, 렌즈, 웹캡, 캠코더, 휴대용 단말기 등으로 구현될 수 있으며, 장애물, 벽, 사람 등의 존재 여부 뿐만 아니라 피사체 식별이 가능하다.The imaging unit 170 may be implemented as a camera, lens, webcap, camcorder, portable terminal, etc. capable of acquiring an image, and it is possible to identify an object as well as whether an obstacle, a wall, a person, or the like exists.
그리고, 프로세서(140)는 거리 탐지 센서(160)를 통해 획득되는 거리에 관한 정보 및 촬상부(170)를 통해 획득되는 이동 경로에 관한 정보에 기초하여, 최단 이동 경로를 산출하고 산출된 최단 이동 경로에 따라 구동부(120)를 구동할 수 있다.Then, the processor 140 calculates the shortest moving path based on the distance information obtained through the distance detection sensor 160 and the moving path information obtained through the imaging unit 170 , and the calculated shortest moving path. The driving unit 120 may be driven according to a path.
구체적으로, 프로세서(140)는 촬상부(170)를 통해 획득되는 이미지를 통해 미리 경로를 예측할 수 있고, 거리 탐지 센서(160)를 통해 실시간 보정을 수행하여 최단 이동 경로를 산출할 수 있다.Specifically, the processor 140 may predict a path in advance based on the image acquired through the imaging unit 170 , and may calculate the shortest moving path by performing real-time correction through the distance detection sensor 160 .
도 10은 본 발명의 일 실시 예에 따른 최단이동 경로 산출에 관한 도면이다.10 is a diagram for calculating the shortest moving path according to an embodiment of the present invention.
도 10을 참조하면, 마트(1000) 내부의 경로를 표시한 것으로, 일반적인 바퀴를 가진 이동장치의 경우 제1 경로(1100)로 이동할 것이나, 무지향성 바퀴(110)를 구비한 이동장치(100)의 경우 최단 이동 경로(1200)를 산출하고 이에 따라 이동할 수 있게 된다.Referring to FIG. 10 , the path inside the mart 1000 is displayed. In the case of a general wheeled mobile device, it will move to the first path 1100 , but a mobile device 100 having omnidirectional wheels 110 . In the case of , it is possible to calculate the shortest moving path 1200 and move accordingly.
한편, 프로세서(140)는 다른 이동 장치가 이동하면서 산출된 경로로 이동하지 못하는 경우에도 실시간으로 다른 이동 장치의 이동 경로를 파악하면서 최단 이동 경로를 수정하여 산출할 수 있으며 이에 따라 이동 장치 간의 충돌을 피할 수 있게 된다.Meanwhile, the processor 140 may correct and calculate the shortest moving path while grasping the moving path of another mobile device in real time even when the other mobile device cannot move to the calculated path while moving, and thus, collisions between mobile devices can be prevented. can be avoided
또한, 프로세서(140)는 산출된 최단 이동 경로 및 산출된 최단 이동 경로 상에서 복수의 무지향성 바퀴 각각의 회전 속도 및 회전량을 저장하여 업데이트할 수 있다.Also, the processor 140 may store and update the rotation speed and rotation amount of each of the plurality of non-directional wheels on the calculated shortest movement path and the calculated shortest movement path.
구체적으로, 프로세서(140)는 산출된 최단 이동 경로를 따라 움직이든 무지향성 바퀴 각각의 회전 속도 및 회전량을 저장하고, 저장된 무지향성 바퀴 각각의 회전 속도 및 회전량에 기초하여 최단 이동 경로 상에서의 요철, 장애물, 경로의 높낮이 차이, 경사 여부, 미끄러짐 여부 등에 관한 정보를 획득할 수 있으며, 이에 따라, 최단 이동 경로의 거리뿐만 아니라 최단 이동 경로의 경로 상태에 관한 세부 정보를 파악할 수 있다.Specifically, the processor 140 stores the rotation speed and rotation amount of each of the omni-directional wheels regardless of whether they move along the calculated shortest movement path, and based on the stored rotation speed and rotation amount of each of the omni-directional wheels, the processor 140 moves along the shortest movement path. It is possible to obtain information on irregularities, obstacles, the difference in height of the path, whether there is an inclination, whether there is a slip, and accordingly, it is possible to grasp detailed information about the path state of the shortest moving path as well as the distance of the shortest moving path.
그리고, 프로세서(140)는 이를 업데이트하여 저장함으로써, 추후 동일한 경로를 이동시 산출에 대한 딜레이없이 빠르게 이동할 수 있도록 제어할 수 있으며, 또한 변동 상황이 발생하게 되면 이를 다시 업데이트 하여 저장할 수 있다.In addition, the processor 140 can update and store this, so that the same path can be moved quickly without delay in calculation when moving the same path later, and when a change occurs, it can be updated and stored again.
도 11은 도 1에 도시된 프로세서의 구체적인 구성을 나타내는 블럭도이다.11 is a block diagram showing a specific configuration of the processor shown in FIG.
이동장치(100)는 복수의 무지향성 바퀴(110), 구동부(120), 감지부(130), 프로세서(140), 서스펜션부(150), 거리 탐지 센서(160), 촬상부(170) 및 저장부(180)를 포함한다.The mobile device 100 includes a plurality of omni-directional wheels 110 , a driving unit 120 , a sensing unit 130 , a processor 140 , a suspension unit 150 , a distance detection sensor 160 , an imaging unit 170 , and and a storage unit 180 .
프로세서(140)는 감지부(130)에서 감지된 회전 및 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴(110) 각각의 회전 속도 및 회전량을 제어할 수 있다.The processor 140 may control the rotation speed and rotation amount of each of the plurality of non-directional wheels 110 based on the rotation sensed by the sensing unit 130 and pressure values detected from the plurality of pressure sensors.
구체적으로, 프로세서(140)는 RAM(141), ROM(142), 메인 CPU(143), 그래픽 처리부(144), 제1 내지 n 인터페이스(145-1 ~ 145-n), 버스(146)를 포함한다.Specifically, the processor 140 includes the RAM 141 , the ROM 142 , the main CPU 143 , the graphic processing unit 144 , the first to n interfaces 145-1 to 145-n, and the bus 146 . include
RAM(141), ROM(142), 메인 CPU(143), 그래픽 처리부(144), 제1 내지 n 인터페이스(145-1 ~ 145-n) 등은 버스(146)를 통해 서로 연결될 수 있다. The RAM 141 , the ROM 142 , the main CPU 143 , the graphic processing unit 144 , the first to n interfaces 145 - 1 to 145 -n, etc. may be connected to each other through the bus 146 .
제1 내지 n 인터페이스(145-1 내지 145-n)는 상술한 각종 구성요소들과 연결된다. 인터페이스들 중 하나는 네트워크를 통해 외부 장치와 연결되는 네트워크 인터페이스가 될 수도 있다.The first to n-th interfaces 145-1 to 145-n are connected to the various components described above. One of the interfaces may be a network interface connected to an external device through a network.
메인 CPU(143)는 저장부(180)에 액세스하여, 저장부(180)에 저장된 O/S를 이용하여 부팅을 수행한다. 그리고, 저장부(180)에 저장된 각종 프로그램, 컨텐츠, 데이터 등을 이용하여 다양한 동작을 수행한다.The main CPU 143 accesses the storage unit 180 and performs booting using the O/S stored in the storage unit 180 . Then, various operations are performed using various programs, contents, data, etc. stored in the storage unit 180 .
특히, 메인 CPU(143)는 감지부(130)에서 감지된 회전 및 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴(110) 각각의 회전 속도 및 회전량을 제어할 수 있다.In particular, the main CPU 143 controls the rotation speed and rotation amount of each of the plurality of non-directional wheels 110 based on the rotation sensed by the sensing unit 130 and the respective pressure values detected from the plurality of pressure sensors. can
ROM(142)에는 시스템 부팅을 위한 명령어 세트 등이 저장된다. 턴온 명령이 입력되어 전원이 공급되면, 메인 CPU(143)는 ROM(142)에 저장된 명령어에 따라 저장부(180)에 저장된 O/S를 RAM(141)에 복사하고, O/S를 실행시켜 시스템을 부팅시킨다. 부팅이 완료되면, 메인 CPU(143)는 저장부(180)에 저장된 각종 어플리케이션 프로그램을 RAM(141)에 복사하고, RAM(141)에 복사된 어플리케이션 프로그램을 실행시켜 각종 동작을 수행한다. The ROM 142 stores an instruction set for system booting and the like. When a turn-on command is input and power is supplied, the main CPU 143 copies the O/S stored in the storage unit 180 to the RAM 141 according to the command stored in the ROM 142, and executes the O/S. Boot the system. When booting is completed, the main CPU 143 copies various application programs stored in the storage unit 180 to the RAM 141 and executes the application programs copied to the RAM 141 to perform various operations.
그래픽 처리부(144)는 연산부(미도시) 및 렌더링부(미도시)를 이용하여 아이콘, 이미지, 텍스트 등과 같은 다양한 객체를 포함하는 화면을 생성한다. 연산부(미도시)는 수신된 제어 명령에 기초하여 화면의 레이아웃에 따라 각 객체들이 표시될 좌표값, 형태, 크기, 컬러 등과 같은 속성값을 연산한다. 렌더링부(미도시)는 연산부(미도시)에서 연산한 속성값에 기초하여 객체를 포함하는 다양한 레이아웃의 화면을 생성한다.The graphic processing unit 144 generates a screen including various objects such as icons, images, and texts by using an operation unit (not shown) and a rendering unit (not shown). An operation unit (not shown) calculates attribute values such as coordinate values, shape, size, color, etc. of each object to be displayed according to the layout of the screen based on the received control command. The rendering unit (not shown) generates screens of various layouts including objects based on the attribute values calculated by the calculation unit (not shown).
특히, 그래픽 처리부(144)는 메인 CPU(143)에 의해 생성된 오브젝트를 GUI(Graphic User Interface), 아이콘, 사용자 인터페이스 화면 등으로 구현할 수 있다.In particular, the graphic processing unit 144 may implement the object generated by the main CPU 143 as a graphic user interface (GUI), an icon, a user interface screen, and the like.
한편, 상술한 프로세서(140)의 동작은 저장부(180)에 저장된 프로그램에 의해 이루어질 수 있다.Meanwhile, the above-described operation of the processor 140 may be performed by a program stored in the storage unit 180 .
저장부(180)는 감지부(130)에서 감지된 회전 및 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴(110) 각각의 회전 속도 및 회전량을 제어하는 프로세서(140)를 구동시키기 위한 O/S(Operating System) 소프트웨어 모듈, 각종 멀티미디어 컨텐츠와 같은 다양한 데이터를 저장한다.The storage unit 180 includes a processor ( 140) and stores various data such as an O/S (Operating System) software module for driving and various multimedia contents.
특히, 저장부(180)는 감지부(130)에서 감지된 회전 및 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴(110) 각각의 회전 속도 및 회전량을 제어하기 위한 소프트웨어 모듈을 포함할 수 있다.In particular, the storage unit 180 controls the rotation speed and rotation amount of each of the plurality of non-directional wheels 110 based on the rotation sensed by the sensor 130 and the respective pressure values detected from the plurality of pressure sensors. It may include a software module for
도 12는 본 발명의 일 실시 예에 따른 저장부에 저장된 소프트웨어 모듈에 관한 도면이다.12 is a diagram of a software module stored in a storage unit according to an embodiment of the present invention.
도 12를 참조하면, 저장부(180)는 회전속도 및 회전량 제어 모듈(181), 서스펜션 제어 모듈(182) 및 최단 이동 경로 산출 모듈(183) 등의 프로그램을 저장할 수 있다.Referring to FIG. 12 , the storage unit 180 may store programs such as the rotation speed and rotation amount control module 181 , the suspension control module 182 , and the shortest movement path calculation module 183 .
한편, 상술한 프로세서(140)의 동작은 저장부(180)에 저장된 프로그램에 의해 이루어질 수 있다. 이하에서는 저장부(180)에 저장된 프로그램을 이용한 프로세서(140)의 세부 동작에 대해 자세히 설명하도록 한다.Meanwhile, the above-described operation of the processor 140 may be performed by a program stored in the storage unit 180 . Hereinafter, detailed operations of the processor 140 using the program stored in the storage unit 180 will be described in detail.
구체적으로, 회전속도 및 회전량 제어 모듈(181)은 복수의 무지향성 바퀴(110) 각각의 회전을 감지하고, 감지된 회전 및 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴(110) 각각의 회전 속도 및 회전량을 증가시키거나 감소시킬 수 있다.Specifically, the rotation speed and rotation amount control module 181 detects the rotation of each of the plurality of non-directional wheels 110 , and based on the detected rotation and each pressure value detected from the plurality of pressure sensors, a plurality of non-directional wheels 110 . It is possible to increase or decrease the rotation speed and rotation amount of each of the directional wheels 110 .
또한, 서스펜션 제어 모듈(182)은 복수의 압력센서로부터 검출된 각각의 압력값에 기초하여 이동장치(100)의 평형을 조정하도록 서스펜션부(150)를 제어할 수 있다.Also, the suspension control module 182 may control the suspension unit 150 to adjust the balance of the mobile device 100 based on each pressure value detected from the plurality of pressure sensors.
또한, 최단 이동 경로 산출 모듈(183)은 거리 탐지 센서(160)를 통해 획득되는 거리에 관한 정보 및 촬상부(170)를 통해 획득되는 이동 경로에 관한 정보에 기초하여 최단 이동 경로를 산출할 수 있다.In addition, the shortest moving path calculation module 183 may calculate the shortest moving path based on the distance information obtained through the distance detection sensor 160 and the moving path information obtained through the imaging unit 170 . have.
도 13은 본 발명의 일 실시 예에 따른 이동장치의 제어 방법을 설명하기 위한 흐름도이다.13 is a flowchart illustrating a method of controlling a mobile device according to an embodiment of the present invention.
도 13에 도시된 방법에 따르면, 복수의 무지향성 바퀴 각각의 회전을 감지한다(S1310).According to the method shown in FIG. 13 , the rotation of each of the plurality of omni-directional wheels is sensed ( S1310 ).
그리고, 복수의 무지향성 바퀴 각각에 대응되는 압력값을 검출한다(S1320).Then, a pressure value corresponding to each of the plurality of non-directional wheels is detected (S1320).
그리고, 감지된 회전 및 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어한다(S1330).Then, the rotation speed and the rotation amount of each of the plurality of non-directional wheels are controlled based on the sensed rotation and each detected pressure value (S1330).
이때, 회전속도 및 회전량을 제어하는 단계(S1330)는, 복수의 압력센서로부터 검출된 각각의 압력값을 비교하고, 압력값이 낮아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 저감시키고, 압력값이 높아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 증가시킨다.At this time, the step of controlling the rotation speed and rotation amount (S1330) compares each pressure value detected from a plurality of pressure sensors, and as the pressure value decreases, the rotation speed and rotation amount of the non-directional wheel is reduced, As the pressure value increases, the rotation speed and rotation amount of the corresponding omni-directional wheel are increased.
또한, 복수의 압력센서로부터 검출된 각각의 압력값에 기초하여 이동장치의 평형을 조정하는 단계를 더 포함할 수 있다.In addition, the method may further include adjusting the balance of the moving device based on the respective pressure values detected from the plurality of pressure sensors.
또한, 감지된 회전 및 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴 각각의 회전 속도 및 회전량을 제어함과 동시에 서스펜션부를 제어하는 단계를 더 포함할 수 있다.The method may further include controlling the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the sensed rotation and each detected pressure value and simultaneously controlling the suspension unit.
또한, 거리 탐지 센서를 통해 획득되는 거리에 관한 정보 및 촬상부를 통해 획득되는 이동 경로에 관한 정보에 기초하여 최단 이동 경로를 산출하는 단계를 더 포함할 수 있다.The method may further include calculating the shortest moving path based on the distance information obtained through the distance detection sensor and the moving path information obtained through the imaging unit.
또한, 산출된 최단 이동 경로 및 산출된 최단 이동 경로 상에서 복수의 무지향성 바퀴 각각의 회전 속도 및 회전량을 저장하여 업데이트 하는 단계를 더 포함할 수 있다.In addition, the method may further include the step of storing and updating the rotation speed and rotation amount of each of the plurality of non-directional wheels on the calculated shortest movement path and the calculated shortest movement path.
한편, 상술한 이동장치의 제어 방법은 다양한 알고리즘을 통해 구현될 수 있으며, 이러한 알고리즘은 입력값이 회전 및 압력값이 될 수 있고, 연산 과정에서 이동 장치의 평형 상태, 서스펜션 상태, 최단 이동 경로의 상태 등이 함께 고려될 수 있으며, 출력값은 복수의 무지향성 바퀴 각각의 회전속도 및 회전량과 서스펜션부의 조정방향이 될 수 있다.On the other hand, the above-described control method of the mobile device may be implemented through various algorithms, and these algorithms may have rotation and pressure values as input values, and the equilibrium state, suspension state, and shortest movement path of the mobile device in the calculation process. The state may be considered together, and the output value may be the rotation speed and amount of each of the plurality of non-directional wheels, and the adjustment direction of the suspension unit.
도 14는 본 발명의 일 실시 예에 따른 운송관리 시스템에 관한 블럭도이다.14 is a block diagram of a transportation management system according to an embodiment of the present invention.
도 14를 참조하면, 본 발명의 일 실시 예에 따른 운송관리 시스템(1400)는 제1 이동 장치(1410), 제2 이동 장치(1411)... 제n 이동 장치 및 서버(1420)를 포함한다.Referring to FIG. 14 , the transport management system 1400 according to an embodiment of the present invention includes a first mobile device 1410 , a second mobile device 1411 ... an n-th mobile device and a server 1420 . do.
여기서, 복수의 이동장치(1410, 1411)는 최단 이동 경로를 산출하고 산출된 최단 이동 경로에 따라 이동하되, 다른 이동장치를 발견한 경우 다른 이동장치의 움직임을 고려하여 최단 이동 경로를 재산출할 수 있다.Here, the plurality of moving devices 1410 and 1411 calculate the shortest moving path and move according to the calculated shortest moving path. When another moving device is found, the shortest moving path can be recalculated in consideration of the motion of the other moving device. have.
그리고, 서버(1420)는 복수의 이동장치 각각(1410, 1411)의 이동 경로 및 제어 관련 정보를 저장하고 업데이트한다.Then, the server 1420 stores and updates the movement path and control related information of each of the plurality of mobile devices 1410 and 1411 .
여기서, 제어 관련 정보는 상술한 바와 같이 복수의 이동장치 각각(1410, 1411)이 이동 경로를 따라 움직이면서 제어되는 복수의 무지향성 바퀴 각각의 회전속도 및 회전량에 관한 정보 및 이를 통해 획득될 수 있는 이동 경로 상의 상태 등에 관한 정보를 포함할 수 있다.Here, the control-related information includes information on the rotational speed and amount of each of the plurality of non-directional wheels that are controlled while moving each of the plurality of moving devices 1410 and 1411 along the movement path as described above, and information about the amount of rotation that can be obtained through this. It may include information about a state on the movement path, and the like.
또한 여기서, 복수의 이동장치 각각(1410, 1411)은 복수의 무지향성 바퀴, 복수의 무지향성 바퀴를 구동하는 구동부, 복수의 무지향성 바퀴 각각의 회전을 감지하며, 복수의 무지향성 바퀴 각각에 대응되는 복수의 압력 센서를 포함하는 감지부 및 감지부에서 감지된 회전 및 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴 각각의 회전 속도 및 회전량을 제어하는 프로세서를 포함한다.Also, here, each of the plurality of moving devices 1410 and 1411 detects the rotation of each of the plurality of omni-directional wheels, the driving unit for driving the plurality of omni-directional wheels, and the plurality of omni-directional wheels, and corresponds to each of the plurality of omni-directional wheels. A processor for controlling the rotation speed and rotation amount of each of the plurality of omni-directional wheels based on the rotation sensed by the sensing unit and each pressure value detected from the plurality of pressure sensors. do.
한편, 본 발명에 따른 제어 방법을 순차적으로 수행하는 프로그램이 저장된 비일시적 판독 가능 매체(non-transitory computer readable medium)가 제공될 수 있다. Meanwhile, a non-transitory computer readable medium in which a program for sequentially performing the control method according to the present invention is stored may be provided.
일 예로, 감지된 복수의 무지향성 바퀴 각각의 회전 및 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 복수의 무지향성 바퀴 각각의 회전 속도 및 회전량을 제어하는 단계를 수행하는 프로그램이 저장된 비일시적 판독 가능 매체(non-transitory computer readable medium)가 제공될 수 있다.For example, a program for performing a step of controlling the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the detected rotation of each of the plurality of omni-directional wheels and each pressure value detected from the plurality of pressure sensors is stored A non-transitory computer readable medium may be provided.
비일시적 판독 가능 매체란 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로는, 회전 및 압력값에 기초하여 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어하기 위한 다양한 프로그램들은 CD, DVD, 하드 디스크, 블루레이 디스크, USB, 메모리카드, ROM 등과 같은 비일시적 판독 가능 매체에 저장되어 제공될 수 있다.The non-transitory readable medium refers to a medium that stores data semi-permanently, rather than a medium that stores data for a short moment, such as a register, cache, memory, etc., and can be read by a device. Specifically, various programs for controlling the rotation speed and rotation amount of each of the plurality of non-directional wheels based on the rotation and pressure values are non-directional such as CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM, etc. It may be provided by being stored in a temporary readable medium.
또한, 이동장치 및 프로세서에 대해 도시한 상술한 블록도에서는 버스(bus)를 미도시하였으나, 이동장치에서 각 구성요소 간의 통신은 버스를 통해 이루어질 수도 있다. 또한, 각 디바이스에는 상술한 다양한 단계를 수행하는 CPU, 마이크로 프로세서 등과 같은 프로세서가 더 포함될 수도 있다. In addition, although the bus is not shown in the above block diagram of the mobile device and the processor, communication between the respective components in the mobile device may be made through the bus. In addition, each device may further include a processor such as a CPU or a microprocessor that performs the various steps described above.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention pertains without departing from the gist of the present invention as claimed in the claims In addition, various modifications may be made by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.

Claims (8)

  1. 복수의 무지향성 바퀴;a plurality of omni-directional wheels;
    상기 복수의 무지향성 바퀴를 구동하는 구동부;a driving unit for driving the plurality of omni-directional wheels;
    상기 복수의 무지향성 바퀴 각각의 회전을 감지하며, 상기 복수의 무지향성 바퀴 각각에 대응되는 복수의 압력 센서를 포함하는 감지부; 및a sensing unit sensing rotation of each of the plurality of omni-directional wheels and including a plurality of pressure sensors corresponding to each of the plurality of omni-directional wheels; and
    상기 감지부에서 감지된 회전 및 상기 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어하는 프로세서;를 포함하는 이동장치.A processor for controlling the rotational speed and the rotational amount of each of the plurality of non-directional wheels based on the rotation sensed by the sensing unit and the respective pressure values detected from the plurality of pressure sensors.
  2. 제1항에 있어서,According to claim 1,
    상기 프로세서는,The processor is
    상기 복수의 압력 센서로부터 검출된 각각의 압력값을 비교하고 상기 압력값이 낮아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 저감시키고, 상기 압력값이 높아질수록 해당 무지향성 바퀴의 회전속도 및 회전량을 증가시키는 것인, 이동장치.Each pressure value detected from the plurality of pressure sensors is compared, and as the pressure value decreases, the rotation speed and rotation amount of the corresponding omni-directional wheel is reduced, and as the pressure value increases, the rotation speed and rotation of the corresponding omni-directional wheel is increased. A mobile device that increases the total amount.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 복수의 무지향성 바퀴 각각에 대한 서스펜션부;를 더 포함하며,It further includes; a suspension unit for each of the plurality of non-directional wheels,
    상기 프로세서는,The processor is
    상기 복수의 압력센서로부터 검출된 각각의 압력값에 기초하여 상기 이동장치의 평형을 조정하도록 상기 서스펜션부를 제어하는 것인, 이동장치.and controlling the suspension unit to adjust the balance of the moving device based on each pressure value detected from the plurality of pressure sensors.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 프로세서는,The processor is
    상기 감지된 회전 및 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어함과 동시에 상기 서스펜션부를 제어하는 것인, 이동장치.Based on the sensed rotation and each of the detected pressure values, the plurality of non-directional wheels respectively control the rotation speed and rotation amount and at the same time control the suspension unit.
  5. 제4항에 있어서,5. The method of claim 4,
    거리 탐지 센서; 및distance detection sensor; and
    이미지를 획득하는 촬상부;를 더 포함하며,It further includes; an imaging unit for acquiring an image,
    상기 프로세서는,The processor is
    상기 거리 탐지 센서를 통해 획득되는 거리에 관한 정보 및 상기 촬상부를 통해 획득되는 이동 경로에 관한 정보에 기초하여, 최단 이동 경로를 산출하고 상기 산출된 최단 이동 경로에 따라 상기 구동부를 구동하는 것인, 이동장치.Calculating the shortest moving path based on the distance information obtained through the distance detection sensor and the moving path information obtained through the imaging unit, and driving the driving unit according to the calculated shortest moving path, mobile device.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 프로세서는,The processor is
    상기 산출된 최단 이동 경로 및 상기 산출된 최단 이동 경로 상에서 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 저장하여 업데이트하는 것인, 이동장치.The moving device, which stores and updates the rotation speed and rotation amount of each of the plurality of non-directional wheels on the calculated shortest movement path and the calculated shortest movement path.
  7. 복수의 무지향성 바퀴를 포함하는 이동장치의 제어 방법에 있어서,A method for controlling a mobile device including a plurality of omni-directional wheels, the method comprising:
    상기 복수의 무지향성 바퀴 각각의 회전을 감지하는 단계;detecting rotation of each of the plurality of omni-directional wheels;
    상기 복수의 무지향성 바퀴 각각에 대응되는 압력값을 검출하는 단계; 및detecting a pressure value corresponding to each of the plurality of non-directional wheels; and
    상기 감지된 회전 및 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어하는 단계;를 포함하는 이동장치의 제어 방법.and controlling the rotational speed and the rotational amount of each of the plurality of non-directional wheels based on the sensed rotation and the detected pressure values.
  8. 운송관리 시스템에 있어서,In the transportation management system,
    최단 이동 경로를 산출하고 상기 산출된 최단 이동 경로에 따라 이동하되, 다른 이동장치를 발견한 경우 상기 다른 이동장치의 움직임을 고려하여 최단 이동 경로를 재산출하는 복수의 이동장치; 및a plurality of mobile devices calculating a shortest moving path and moving according to the calculated shortest moving path, and recalculating the shortest moving path in consideration of the movement of the other moving device when another moving device is found; and
    상기 복수의 이동장치 각각의 이동경로 및 제어 관련 정보를 저장하고 업데이트하는 서버;를 포함하며,It includes; a server for storing and updating the movement path and control related information of each of the plurality of mobile devices;
    상기 이동장치는,The mobile device is
    복수의 무지향성 바퀴;a plurality of omni-directional wheels;
    상기 복수의 무지향성 바퀴를 구동하는 구동부;a driving unit for driving the plurality of omni-directional wheels;
    상기 복수의 무지향성 바퀴 각각의 회전을 감지하며, 상기 복수의 무지향성 바퀴 각각에 대응되는 복수의 압력 센서를 포함하는 감지부; 및a sensing unit detecting rotation of each of the plurality of omni-directional wheels and including a plurality of pressure sensors corresponding to each of the plurality of omni-directional wheels; and
    상기 감지부에서 감지된 회전 및 상기 복수의 압력 센서로부터 검출된 각각의 압력값에 기초하여 상기 복수의 무지향성 바퀴 각각의 회전속도 및 회전량을 제어하는 프로세서;를 포함하는 것인, 운송관리 시스템.A processor for controlling the rotational speed and the amount of rotation of each of the plurality of non-directional wheels based on the rotation sensed by the sensing unit and the respective pressure values detected from the plurality of pressure sensors; .
PCT/KR2020/012657 2020-05-07 2020-09-18 Moving device, control method for moving device, and transport management system WO2021225231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200054242A KR102123692B1 (en) 2020-05-07 2020-05-07 Moving device, controlling method for moving device and transportation management system
KR10-2020-0054242 2020-05-07

Publications (1)

Publication Number Publication Date
WO2021225231A1 true WO2021225231A1 (en) 2021-11-11

Family

ID=71141791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012657 WO2021225231A1 (en) 2020-05-07 2020-09-18 Moving device, control method for moving device, and transport management system

Country Status (2)

Country Link
KR (1) KR102123692B1 (en)
WO (1) WO2021225231A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123692B1 (en) * 2020-05-07 2020-06-16 아날로그플러스 주식회사 Moving device, controlling method for moving device and transportation management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266820B1 (en) * 1993-12-16 2000-10-02 밍 루 Tire pressure detecting apparatus and method
JP2005219577A (en) * 2004-02-04 2005-08-18 Toyota Motor Corp Vehicular tire abnormality detection device
KR20130099441A (en) * 2012-02-29 2013-09-06 주식회사 만도 Steering state displaying device and steering state displaying method
KR20140080972A (en) * 2012-12-21 2014-07-01 현대오트론 주식회사 A Tire Management System and A Vehicle comprising the same
KR102123692B1 (en) * 2020-05-07 2020-06-16 아날로그플러스 주식회사 Moving device, controlling method for moving device and transportation management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266820B1 (en) * 1993-12-16 2000-10-02 밍 루 Tire pressure detecting apparatus and method
JP2005219577A (en) * 2004-02-04 2005-08-18 Toyota Motor Corp Vehicular tire abnormality detection device
KR20130099441A (en) * 2012-02-29 2013-09-06 주식회사 만도 Steering state displaying device and steering state displaying method
KR20140080972A (en) * 2012-12-21 2014-07-01 현대오트론 주식회사 A Tire Management System and A Vehicle comprising the same
KR102123692B1 (en) * 2020-05-07 2020-06-16 아날로그플러스 주식회사 Moving device, controlling method for moving device and transportation management system

Also Published As

Publication number Publication date
KR102123692B1 (en) 2020-06-16

Similar Documents

Publication Publication Date Title
EP3525992A1 (en) Mobile robot system and mobile robot
WO2016015232A1 (en) Systems and methods for payload stabilization
WO2017008224A1 (en) Moving object distance detection method, device and aircraft
WO2018043957A1 (en) Robot cleaner
WO2021225231A1 (en) Moving device, control method for moving device, and transport management system
WO2017131427A1 (en) Method for displaying image and electronic device thereof
EP2812773A1 (en) Portable device and method for controlling the same
WO2021045577A1 (en) Multi-sensor-based unmanned aerial vehicle and method for controlling same
WO2020209394A1 (en) Method for controlling movement of cart robot adaptively to change in travel surface by using artificial intelligence, and cart robot
WO2021158009A1 (en) Tracking device, tracking system including same, and tracking method for tracking device
WO2017146419A1 (en) Moving robot and control method thereof
WO2019208950A1 (en) Mobile robot device and method for providing service to user
CN106133631A (en) Stabilized platform and following control system thereof and method
WO2021158062A1 (en) Position recognition method and position recognition system for vehicle
WO2021157904A1 (en) Electronic apparatus and controlling method thereof
WO2019194415A1 (en) Mover robot system and controlling method for the same
WO2019245320A1 (en) Mobile robot device for correcting position by fusing image sensor and plurality of geomagnetic sensors, and control method
WO2016010288A1 (en) Method for calibrating odometry error of car-type mobile robot using heading angle error
WO2020204500A1 (en) Electronic apparatus and method for assisting with driving of vehicle
WO2021040179A1 (en) Robot and method for controlling same
WO2020116986A1 (en) Autonomously traveling mobile robot and traveling control method therefor
KR20200020369A (en) A wall-climbing drone unit for maintaining and managing of high-storied building and the control method thereof
WO2020087490A1 (en) Manual direction control for self-driving vehicle
WO2022225135A1 (en) Robot, system comprising robot and user terminal, and control method therefor
EP3478143A1 (en) Robot cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934759

Country of ref document: EP

Kind code of ref document: A1