WO2021223735A1 - 一种自动喷涂机器人的控制系统及其控制方法 - Google Patents

一种自动喷涂机器人的控制系统及其控制方法 Download PDF

Info

Publication number
WO2021223735A1
WO2021223735A1 PCT/CN2021/092093 CN2021092093W WO2021223735A1 WO 2021223735 A1 WO2021223735 A1 WO 2021223735A1 CN 2021092093 W CN2021092093 W CN 2021092093W WO 2021223735 A1 WO2021223735 A1 WO 2021223735A1
Authority
WO
WIPO (PCT)
Prior art keywords
spraying
robot
control
product
automatic
Prior art date
Application number
PCT/CN2021/092093
Other languages
English (en)
French (fr)
Inventor
王传存
杨晓华
王绪光
Original Assignee
上海振华港机重工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海振华港机重工有限公司 filed Critical 上海振华港机重工有限公司
Publication of WO2021223735A1 publication Critical patent/WO2021223735A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target

Definitions

  • the invention relates to the technical field of spraying robots, and more specifically, to a control system of an automatic spraying robot and a control method thereof.
  • the programming methods used in spraying robots mainly include online teaching programming and offline programming. These two programming modes have many limitations in the application of automatic spraying, such as poor working flexibility and large programming workload, and cannot be adapted to automatic spraying.
  • the purpose of the present invention is to provide a control system and a control method of an automatic spraying robot, which solves the problem of small batches and multiple varieties.
  • a control system of an automatic spraying robot includes:
  • the three-dimensional scanning unit is used to scan and collect the shape and size of the outer surface of the product on the air accumulation chain on site, and transmit it;
  • the calculation unit is used to receive the transmission signal of the three-dimensional scanning unit, perform calculation processing of the three-dimensional model, and output the calculation result;
  • the spraying unit is used to receive the calculation result of the calculation unit, and perform spraying operations on the product according to the calculation result.
  • the three-dimensional scanning unit includes a plurality of laser scanners arranged on both sides of the aerial accumulation chain, and a dual-camera sensor connected to the laser scanner in a network, and the dual-camera sensor is connected with the computing unit, so
  • the laser scanner is used in conjunction with the robot to improve the efficiency and comprehensiveness of online scanning.
  • the laser scanner can be used in conjunction with multiple dual-camera sensors to scan products from multiple angles, form a network and network with the computing unit, thereby increasing the stability and reliability of the system.
  • the laser scanner is an assembled optical CMM scanner, which has the advantages of fast speed and high scanning accuracy.
  • the resolution is 0.05mm, and the accuracy is 0.03mm.
  • the measurement speed of the dual-camera sensor can be measured 84 times per second, and signals from the laser scanner can be received in a space of 18.8 m 3.
  • the spraying unit is a spraying robot.
  • the spraying robot has an explosion-proof structure and includes a robot body and a spray gun arranged on the robot body.
  • a control method of an automatic spraying robot obtains the shape and size information of the outer surface of the product through the system, and processes the three-dimensional model to form a spraying trajectory to perform spraying operations on the product.
  • the laser scanner scans the shape and size of the outer surface of the product and transmits it to the dual-camera sensor, and the dual-camera sensor transmits the collected shape and size of the outer surface to the calculation unit, and the calculation unit performs three-dimensional model calculation deal with.
  • the calculation unit calculates the spraying trajectory and the starting point of the robot spraying according to the three-dimensional model and the built-in space coordinates of the product placement to form spraying trajectory control.
  • the spraying path is planned according to the position relationship and the spraying trajectory control, and the spraying path is converted For the agreed robot spraying control, control the spraying robot to perform spraying operations.
  • the robot spraying control includes spraying process, paint supply control and spraying robot driving.
  • the product adopts a multi-point hanging mode and is transported from the air by an accumulation chain, which increases the spraying area of the product.
  • the product adopts a multi-point hanging mode and is transported from the air by an accumulation chain, which ensures the consistency of the origin of the spatial coordinates of the product from the scanning modeling room to the painting room, and improves the reliability of robot spraying.
  • the present invention provides a control system for an automatic spraying robot and a control method thereof, which solves the existing problems of small batches and multiple varieties, improves production efficiency, increases the spraying area of products, and improves The reliability of robot spraying.
  • Fig. 1 is a schematic diagram of on-site layout of a system embodiment of the present invention.
  • M1 is the scanning modeling room
  • M2 is the spraying room
  • S1 is the dual camera sensor
  • S2 is the robot with the laser scanner
  • S3 is the calculation unit
  • S4 is the spraying robot
  • N1 is the starting point of the scanning modeling room product
  • N2 It is the starting point for spray booth products.
  • the present invention provides an automatic spraying robot control system and its control method, through the air accumulation chain to transport products from the outside to the scanning modeling room M1, stop in the scanning modeling room products Starting point N1, two robots cooperate with the laser scanner S2 to scan from the starting point N1 of the product in the scanning modeling room at the same time.
  • the scanning space is arbitrarily preset according to the maximum size of the product. In this embodiment, 9 meters * width 2 meters * height 2.5 The giant size of meters is preset in the robot with the laser scanner S2.
  • the shape and size of the outer surface of the product scanned by the robot with the laser scanner S2 are wirelessly transmitted to the dual camera sensor S1, and the dual camera sensor S1 transmits the shape and size of the collected product outer surface to the computing unit S3 for 3D model calculation deal with.
  • the product is transported from the scanning modeling room M1 to the spray booth M2 through the aerial accumulation chain, and stops at the product starting point N2 in the spray booth.
  • the calculation unit S3 calculates the spraying trajectory and the start of the robot spraying according to the three-dimensional model and the built-in space coordinates of the product placement.
  • a spraying trajectory control program is formed, and the spraying path is planned according to the position relationship and the spraying trajectory control program, and the spraying path is converted into the agreed control program of the spraying robot S4, and the spraying robot S4 is controlled to perform the spraying operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Spray Control Apparatus (AREA)

Abstract

本发明公开了一种自动喷涂机器人的控制系统及其控制方法,包括:三维扫描单元,用以现场扫描、采集空中积放链上产品外表面的形状及尺寸,并传输;计算单元,用以接收所述三维扫描单元的传输信号,进行三维模型的计算处理,并输出计算结果;喷涂单元,用以接收所述计算单元的计算结果,并根据计算结果对产品进行喷涂作业。本发明解决了小批量多品种的问题。

Description

一种自动喷涂机器人的控制系统及其控制方法 技术领域
本发明涉及喷涂机器人技术领域,更具体地说,涉及一种自动喷涂机器人的控制系统及其控制方法。
背景技术
目前,在喷涂机器人采用的编程方式主要有在线示教编程和离线编程两种方式。这两种编程模式在自动喷涂的应用中存在着工作柔性差,编程工作量大等诸多局限性,不能适应自动化喷涂。
随着喷涂机器人应用和发展,为适应流水线作业,并能适应小批量多品种的产品,开发一种自动扫描、自动建模、自动编程和自动喷漆的工艺技术是必然趋势。
针对小批量多品种的产品,同件产品由于改变了位置或角度,采用机器人喷涂需要重新进行编程,生产效率低。不论编程是采用现场示教还是离线编程,对其专业技术要求较高,由于人工的参入难免会出现差错,影响机器人喷涂的安全性。
发明内容
针对现有技术中存在的上述缺陷,本发明的目的是提供一种自动喷涂机器人的控制系统及其控制方法,解决了小批量多品种的问题。
为实现上述目的,本发明采用如下技术方案:
一方面,一种自动喷涂机器人的控制系统,包括:
三维扫描单元,用以现场扫描、采集空中积放链上产品外表面的形状及尺寸,并传输;
计算单元,用以接收所述三维扫描单元的传输信号,进行三维模型的计算处理,并输出计算结果;
喷涂单元,用以接收所述计算单元的计算结果,并根据计算结果对产 品进行喷涂作业。
所述三维扫描单元包括布置于所述空中积放链两侧的多台激光扫描仪,及与所述激光扫描仪网络连接的双摄像头传感器,所述双摄像头传感器与所述计算单元相连,所述激光扫描仪与机器人配合使用,可提高在线扫描的效率和全面性。所述激光扫描仪可与多台所述双摄像头传感器配合使用,可从多角度对产品进行扫描,组成网络并与所述计算单元进行联网,增加系统的稳定性和可靠性。
所述激光扫描仪为装配式光学CMM扫描仪,具有快速且扫描精度高的优点。分辨率为0.05mm,精度为0.03mm,对被测面基本没有要求,且可以动态测量,满足产品在生产线上边移动边测量的要求。
所述激光扫描仪与所述双摄像头传感器之间为无线网络连接,所述双摄像头传感器测量速度每秒可测84次,可在18.8m 3空间里接收到所述激光扫描仪的信号。
所述喷涂单元为喷涂机器人。
所述喷涂机器人为防爆结构,包括机器人本体,及设于所述机器人本体上的喷枪。
另一方面,一种自动喷涂机器人的控制方法,通过所述系统获取产品外表面的形状及尺寸信息,并进行三维模型的处理,形成喷涂轨迹对产品进行喷涂作业。
所述激光扫描仪扫描产品外表面的形状及尺寸传给所述双摄像头传感器,所述双摄像头传感器将采集的外表面的形状及尺寸传给所述计算单元,所述计算单元进行三维模型的处理。
所述计算单元按三维模型和产品放置的内置空间坐标计算喷涂轨迹和机器人喷涂的起始点,形成喷涂轨迹控制,在根据位置关系以及所述喷涂轨迹控制规划喷涂路径,并将所述喷涂路径转换为约定的机器人喷涂控制,控制喷涂机器人进行喷涂作业。
所述机器人喷涂控制包括喷涂工艺、供漆控制和喷涂机器人驱动。
所述产品采用多点吊挂方式,用积放链从空中输送,提高了产品的喷涂面积。
所述产品采用多点吊挂方式,用积放链从空中输送,保证了产品从扫描建模室到喷漆室空间坐标原点的一致性,提高了机器人喷涂的可靠性。
在上述的技术方案中,本发明所提供的一种自动喷涂机器人的控制系统及其控制方法,解决了现有小批量多品种的问题,提高了生产效率,提高了产品的喷涂面积,提高了机器人喷涂的可靠性。
附图说明
图1是本发明系统实施例的现场布置示意图。
图中,M1为扫描建模室,M2为喷涂室,S1为双摄像头传感器,S2为机器人配合激光扫描仪,S3为计算单元,S4为喷涂机器人,N1为扫描建模室产品起始点,N2为喷涂室产品起始点。
具体实施方式
下面结合附图和实施例进一步说明本发明的技术方案。
请结合图1所示,本发明所提供的一种自动喷涂机器人的控制系统及其控制方法,通过空中积放链将产品由外部输送到扫描建模室M1,停止在扫描建模室产品起始点N1,两台机器人配合激光扫描仪S2同时从扫描建模室产品起始点N1开始扫描,扫描的空间根据产品最大的尺寸任意进行预设,本实施例以9米*宽2米*高2.5米的巨型尺寸预设在机器人配合激光扫描仪S2里。
机器人配合激光扫描仪S2扫描的产品外表面的形状及尺寸通过无线的方式传给双摄像头传感器S1,双摄像头传感器S1将采集到的产品外表面的形状及尺寸传给计算单元S3进行三维模型的处理。
产品由扫描建模室M1通过空中积放链输送到喷漆室M2,停止在喷漆室产品起始点N2,同时,计算单元S3按三维模型和产品放置的内置空间坐标计算喷涂轨迹和机器人喷涂的起始点,形成喷涂轨迹控制程序,根据位置关系以及喷涂轨迹控制程序规划喷涂路径,并将喷涂路径转换为约定的喷涂机器人S4的控制程序,控制喷涂机器人S4进行喷涂作业。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说 明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (9)

  1. 一种自动喷涂机器人的控制系统,其特征在于,包括:
    三维扫描单元,用以现场扫描、采集空中积放链上产品外表面的形状及尺寸,并传输;
    计算单元,用以接收所述三维扫描单元的传输信号,进行三维模型的计算处理,并输出计算结果;
    喷涂单元,用以接收所述计算单元的计算结果,并根据计算结果对产品进行喷涂作业。
  2. 如权利要求1所述的自动喷涂机器人的控制系统,其特征在于:所述三维扫描单元包括布置于所述空中积放链两侧的多台激光扫描仪,及与所述激光扫描仪网络连接的双摄像头传感器,所述双摄像头传感器与所述计算单元相连。
  3. 如权利要求2所述的自动喷涂机器人的控制系统,其特征在于:所述激光扫描仪为装配式光学CMM扫描仪,分辨率为0.05mm,精度为0.03mm。
  4. 如权利要求2所述的自动喷涂机器人的控制系统,其特征在于:所述激光扫描仪与所述双摄像头传感器之间为无线网络连接。
  5. 一种自动喷涂机器人的控制方法,其特征在于:通过如权利要求1-4任一项所述系统获取产品外表面的形状及尺寸信息,并进行三维模型的处理,形成喷涂轨迹对产品进行喷涂作业。
  6. 如权利要求5所述的自动喷涂机器人的控制方法,其特征在于:所述激光扫描仪扫描产品外表面的形状及尺寸传给所述双摄像头传感器,所述双摄像头传感器将采集的外表面的形状及尺寸传给所述计算单元,所述计算单元进行三维模型的处理。
  7. 如权利要求6所述的自动喷涂机器人的控制方法,其特征在于:所述计算单元按三维模型和产品放置的内置空间坐标计算喷涂轨迹和机器人喷涂的起始点,形成喷涂轨迹控制,在根据位置关系以及所述喷涂轨迹控制规划喷涂路径,并将所述喷涂路径转换为约定的机器人喷涂控制,控制喷涂机器人进行喷涂作业。
  8. 如权利要求7所述的自动喷涂机器人的控制方法,其特征在于:所述机器人喷涂控制包括喷涂工艺、供漆控制和喷涂机器人驱动。
  9. 如权利要求5所述的自动喷涂机器人的控制方法,其特征在于:所述产品采用多点吊挂方式,采用积放链方式从空中输送。
PCT/CN2021/092093 2020-05-07 2021-05-07 一种自动喷涂机器人的控制系统及其控制方法 WO2021223735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010375984.7 2020-05-07
CN202010375984.7A CN111389623A (zh) 2020-05-07 2020-05-07 一种自动喷涂机器人的控制系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2021223735A1 true WO2021223735A1 (zh) 2021-11-11

Family

ID=71418600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092093 WO2021223735A1 (zh) 2020-05-07 2021-05-07 一种自动喷涂机器人的控制系统及其控制方法

Country Status (2)

Country Link
CN (1) CN111389623A (zh)
WO (1) WO2021223735A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389623A (zh) * 2020-05-07 2020-07-10 上海振华港机重工有限公司 一种自动喷涂机器人的控制系统及其控制方法
CN117440308B (zh) * 2023-12-21 2024-04-26 深圳市好兄弟电子有限公司 一种麦克风话筒生产产线智能控制方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104161353A (zh) * 2014-07-31 2014-11-26 黑金刚(福建)自动化科技股份公司 一种鞋面的自动化喷胶设备及自动喷胶方法
CN106273452A (zh) * 2015-06-05 2017-01-04 成都金采科技有限公司 一种3d打印机
US20170069052A1 (en) * 2015-09-04 2017-03-09 Qiang Li Systems and Methods of 3D Scanning and Robotic Application of Cosmetics to Human
CN207123259U (zh) * 2017-07-13 2018-03-20 福建(泉州)哈工大工程技术研究院 一种自动化工件测量与喷涂流水线
CN109759254A (zh) * 2019-01-17 2019-05-17 河北省科学院应用数学研究所 一种三维立体喷涂的系统和方法
CN110404713A (zh) * 2019-08-09 2019-11-05 北京曲线智能装备有限公司 一种铝型材智能喷涂系统及其喷涂方法
CN110976325A (zh) * 2019-12-12 2020-04-10 滨州戴森车轮科技有限公司 一种轮毂涂装线喷漆后自检装置及方法
CN111389623A (zh) * 2020-05-07 2020-07-10 上海振华港机重工有限公司 一种自动喷涂机器人的控制系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899814A (zh) * 2017-12-20 2018-04-13 芜湖哈特机器人产业技术研究院有限公司 一种机器人喷涂系统及其控制方法
CN108031588A (zh) * 2017-12-29 2018-05-15 深圳海桐防务装备技术有限责任公司 自动喷涂装置及使用其的自动喷涂方法
CN110181516A (zh) * 2019-06-18 2019-08-30 苏州大学 一种喷涂机器人的路径规划方法、装置、系统及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104161353A (zh) * 2014-07-31 2014-11-26 黑金刚(福建)自动化科技股份公司 一种鞋面的自动化喷胶设备及自动喷胶方法
CN106273452A (zh) * 2015-06-05 2017-01-04 成都金采科技有限公司 一种3d打印机
US20170069052A1 (en) * 2015-09-04 2017-03-09 Qiang Li Systems and Methods of 3D Scanning and Robotic Application of Cosmetics to Human
CN207123259U (zh) * 2017-07-13 2018-03-20 福建(泉州)哈工大工程技术研究院 一种自动化工件测量与喷涂流水线
CN109759254A (zh) * 2019-01-17 2019-05-17 河北省科学院应用数学研究所 一种三维立体喷涂的系统和方法
CN110404713A (zh) * 2019-08-09 2019-11-05 北京曲线智能装备有限公司 一种铝型材智能喷涂系统及其喷涂方法
CN110976325A (zh) * 2019-12-12 2020-04-10 滨州戴森车轮科技有限公司 一种轮毂涂装线喷漆后自检装置及方法
CN111389623A (zh) * 2020-05-07 2020-07-10 上海振华港机重工有限公司 一种自动喷涂机器人的控制系统及其控制方法

Also Published As

Publication number Publication date
CN111389623A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021223735A1 (zh) 一种自动喷涂机器人的控制系统及其控制方法
Wang et al. A mobile robotic measurement system for large-scale complex components based on optical scanning and visual tracking
Mineo et al. Robotic path planning for non-destructive testing–A custom MATLAB toolbox approach
CN110906863B (zh) 一种用于线结构光传感器的手眼标定系统及标定方法
CN109967292A (zh) 一种基于工件轮廓信息三维重构的自动喷涂系统及其方法
CN102825602B (zh) 一种基于psd的工业机器人自标定方法及装置
CN110900609A (zh) 一种机器人示教装置及其方法
CN106091931B (zh) 一种基于三维模型的自适应扫描测量系统及其控制方法
CN108942918B (zh) 一种基于线结构光的立体定位方法
TWI609750B (zh) 用於機械系統校正及監測的裝置與方法
CN102494657A (zh) 一种曲面轮廓测量及检测的测头半径补偿方法
CN102991724A (zh) 利用工作空间测量定位系统进行飞机大部件对接的方法
CN105651192A (zh) 旋转靶材表面厚度、平面度的检测方法及检测系统
JP7145851B2 (ja) 作業システム
CN105509671A (zh) 一种利用平面标定板的机器人工具中心点标定方法
CN109623822B (zh) 机器人手眼标定方法
CN113246142B (zh) 一种基于激光引导的测量路径规划方法
CN207123259U (zh) 一种自动化工件测量与喷涂流水线
CN112001945B (zh) 一种适用于生产线作业的多机器人监控方法
CN115042175A (zh) 一种机器人机械臂末端姿态的调整方法
Yin et al. A novel TCF calibration method for robotic visual measurement system
CN106546184B (zh) 大型复杂曲面三维形貌机器人柔性测量系统
CN104525424A (zh) 一种用于喷涂机器人喷涂路径设定的光学测量设备
CN110961583B (zh) 采用激光扫描的钢包定位装置及其使用方法
CN109746603B (zh) 一种船舶组立板架结构的焊接系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800219

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21800219

Country of ref document: EP

Kind code of ref document: A1