WO2021223624A1 - 智能充电能源路由系统及其实现方法 - Google Patents

智能充电能源路由系统及其实现方法 Download PDF

Info

Publication number
WO2021223624A1
WO2021223624A1 PCT/CN2021/090119 CN2021090119W WO2021223624A1 WO 2021223624 A1 WO2021223624 A1 WO 2021223624A1 CN 2021090119 W CN2021090119 W CN 2021090119W WO 2021223624 A1 WO2021223624 A1 WO 2021223624A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging pile
charging
output
routing system
Prior art date
Application number
PCT/CN2021/090119
Other languages
English (en)
French (fr)
Inventor
曾智礼
刘洪云
郎洁
张思成
Original Assignee
深圳市丁旺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市丁旺科技有限公司 filed Critical 深圳市丁旺科技有限公司
Priority to EP21800376.2A priority Critical patent/EP3979452A4/en
Publication of WO2021223624A1 publication Critical patent/WO2021223624A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the invention relates to the technical field of charging piles, in particular to an intelligent charging energy routing system and an implementation method thereof.
  • the existing charging station technology cannot use the transformer capacity of the existing grid to meet the demand for charging piles in the old community;
  • the output power efficiency of transformers in large charging stations is low.
  • the power demand of the charging vehicle is lower than the total power of the charging pile or the rated power of the charging pile, part of the power of each charging pile will be idle, resulting in low power efficiency of the charging pile, such as the actual power output of the large transformer of the general fast charging charging station
  • the efficiency is only 68%, even in the fast charging station of the charging pile, the efficiency is only 73%, and the power loss is relatively large. How to improve the utilization rate of the transformer and increase the utilization rate of the charging power of the charging pile is an urgent problem to be solved at present.
  • the design of the power distribution cabinet and the power distribution network is conservative and not suitable for the specific scenarios of the charging station. At present, it is rare that the charging piles of the connected power distribution cabinets and power distribution networks are charged at full load at the same time, and most of them are in low utilization conditions; the input power of common power distribution cabinets and power distribution networks is generally based on The total output power design basically does not take into account the fact that the actual charging pile charging load of the charging station is relatively low. Generally, the design of the power distribution cabinet and the power distribution network greatly exceeds the required power, resulting in a large amount of power distribution. Of idleness and waste.
  • the purpose of the present invention is to provide an intelligent charging energy routing system and an implementation method thereof, which aims to solve the defect that the power input in the charging pile in the prior art cannot be fully utilized, which causes a large amount of idle and wasted distribution power.
  • the present invention provides a smart charging energy routing system, including a smart charging energy router and a charging pile, the smart charging energy router includes an electrical system and a management scheduling system, wherein:
  • the electrical system is used to output the power input by the smart charging energy router for use by the charging pile, and includes an input unit and an output unit electrically connected in sequence.
  • the smart charging energy routing system limits the maximum output power to be lower than the sum of the rated power of the charging pile,
  • the output unit is electrically connected to each charging pile;
  • the management and scheduling system includes a control subsystem that is communicatively connected with the charging pile.
  • the control subsystem includes a CPU and a storage unit.
  • the CPU is used to set and read the stored maximum power output limited by the intelligent The actual power and demand power reported by each charging pile, and calculate whether the sum of the actual power of the charging pile is greater than the read maximum power output limited by the intelligent charging energy routing system, combined with the demand power, calculate the control power of the connected charging pile, Send power control instructions to the charging pile based on the calculation result; storage unit, used to save the maximum power output limited by the intelligent charging energy routing system;
  • the charging piles are respectively electrically connected to the output unit and are in communication connection with the control subsystem of the management dispatching system. Each charging pile uploads actual power and required power to the management dispatching system, and receives power control instructions issued by the execution management dispatching system.
  • the electrical system further includes an electrical protection unit arranged between the input unit and the output unit, and the maximum input power limited by the electrical protection unit is less than the sum of the maximum output power output by the electrical protection unit for each channel; When the total actual output power of the charging pile is greater than the maximum input power limited by the electrical protection unit, the electrical protection unit disconnects the loop between the input unit and the output unit.
  • the electrical system further includes an electrical protection unit arranged between the output unit and the charging pile, and the maximum input power limited by the electrical protection unit is less than the sum of the maximum output power output by the electrical protection unit for each channel; When the total actual output power of the charging pile is greater than the maximum input power limited by the electric protection unit, the electric protection unit disconnects the circuit between the output unit and the charging pile.
  • the electrical system further includes an electrical protection unit arranged in front of the input unit, the maximum input power limited by the electrical protection unit is less than the total power of the maximum output power of each output of the electrical protection unit; when the charging pile is actually When the total output power is greater than the maximum input power limited by the electrical protection unit, the electrical protection unit disconnects the circuit with the input unit.
  • the maximum power output limited by the intelligent charging energy routing system is less than the maximum input power limited by the electrical protection unit.
  • the electrical system further includes a measurement unit, which is in communication connection with the management scheduling system and is used to control the subsystem to perform power verification based on the measured power of the input unit and the smart charging energy
  • the calculation result of the maximum output power limited by the routing system, the management and dispatching system sends power control instructions to the charging pile.
  • the CPU includes a setting module, a receiving module, an arithmetic module, and a control module, wherein:
  • the setting module is used to set and read the maximum power output limited by the intelligent charging energy routing system, and the maximum power output limited by the intelligent charging energy routing system is stored in the storage unit;
  • a receiving module for receiving messages reported by the charging pile, the information reported by the charging pile including but not limited to the actual power and required power of the charging pile, and for receiving data transmitted by the measurement unit;
  • the calculation module is used to calculate the total actual power of the charging pile reported, and compare the total actual power with the read maximum power output limited by the intelligent charging energy routing system, and calculate the connected charging based on the comparison result and the required power The control power of the pile;
  • the control module is used to issue control instructions to the charging pile according to the calculation result to ensure that the actual power of the charging pile is executed in accordance with the control power and does not exceed the maximum power output limited by the set intelligent charging energy routing system.
  • the electrical protection unit adopts a thermal-magnetic trip circuit breaker.
  • the electrical protection unit adopts an AC fuse fuse.
  • the measurement unit is an AC meter with communication function.
  • the measurement unit is a programmable logic device, and the programmable logic device uses AD to measure the voltage value and then convert the success rate value.
  • the communication modes between the measurement unit and the management scheduling system include but are not limited to RS485 serial port, WiFi, Bluetooth, Zigbee, Ethernet ETH, CAN communication modes.
  • the present invention also provides an implementation method based on the above-mentioned smart charging energy routing system, applying the above-mentioned smart charging energy router, including:
  • the calculation of the control power of the connected charging pile is preset
  • a further solution is that according to the actual power of the connected charging piles and the maximum power output of the intelligent charging energy routing system, the control power of the connected charging piles is limited. Preset conditions by calculation, where the preset condition is to judge and compare the total actual power of the charging pile with the maximum output power limit configured by the intelligent charging energy routing system;
  • the maximum output power, actual power and demand power of the smart charging energy routing system are calculated to calculate the power of each connected charging pile. Control the power so that when calculating the output charging pile control power, the total actual power of the charging pile does not exceed the maximum power output limited by the intelligent charging energy routing system;
  • the calculation is based on the maximum output power, actual power and demand power limited by the intelligent charging energy routing system.
  • the control power of each connected charging pile is such that the remaining power that can be allocated by the intelligent charging energy routing system is 0 or the calculated output charging pile control power meets the demand power.
  • the present invention is based on the connection between the smart charging energy router and the charging pile. Under the premise of safety and reliability, the input power of the smart charging energy routing system is managed and dispatched. The input power is fully and reasonably distributed among all the charging piles, and the efficient use of the input power of the intelligent charging energy routing system is realized.
  • AC charging stations include but are not limited to:
  • the beneficial effects achieved include but are not limited to:
  • FIG. 1 is a block diagram of the intelligent charging energy routing system of the present invention
  • Figure 2 is a schematic diagram of the implementation device of the intelligent charging energy routing system of the present invention.
  • FIG. 3 is a schematic diagram of the structure of an input unit in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of an input unit in another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of the structure of the management scheduling system of the present invention.
  • Fig. 6 is a schematic flow diagram of a method for implementing the intelligent charging energy routing system of the present invention.
  • FIG. 7 is a flowchart of specific steps of the implementation method of the intelligent charging energy routing system of the present invention.
  • FIG. 8 is a specific flowchart of an implementation method of a smart charging energy routing system according to an embodiment of the present invention.
  • Figure 9 is a specific flow chart of a method for implementing a smart charging energy routing system in another embodiment of the present invention.
  • the purpose of the present invention is to provide an intelligent charging energy routing system and an implementation method thereof, which aims to solve the defect that the power input in the charging pile in the prior art cannot be fully utilized, which causes a large amount of idle and wasted distribution power.
  • FIG. 1 is a block diagram of the intelligent charging energy routing system of the present invention.
  • the intelligent charging energy routing system includes an intelligent charging energy router and a charging pile.
  • the intelligent charging energy router includes an electrical system 2 and a management scheduling system 1. Connect the input end of the electrical system 2 to the transformer, and connect the output end to the charging pile.
  • the intelligent charging energy routing system limits the maximum output power to be lower than the total rated power of the charging pile, and sends power control commands to the charging pile through the management and dispatching system 1. Control the actual power of the charging pile according to the control power, and does not exceed the maximum output power of the intelligent charging energy routing system, so that the limited power can be reasonably dispatched between the connected charging piles, and at the same time, the intelligent charging energy router and its input configuration are guaranteed. Safe operation of the electrical system.
  • the input end of the electrical system 2 can be connected to a transformer of a charging station, or a power distribution cabinet, a power distribution network, etc.
  • the transformer is taken as an example, which is not limited in practice.
  • the electrical system 2 is used to output the power input by the smart charging energy router for the charging pile.
  • the electrical system 2 includes an input unit 21 and an output unit 22 electrically connected in sequence.
  • the smart charging energy routing system limits the maximum output power to be lower than the charging station.
  • the output unit 22 is electrically connected to each charging pile with the sum of the rated power of the pile.
  • the input power of the electrical system 2 is three-phase five-wire input power.
  • the charging pile 1, the charging pile 2, the charging pile i, the charging pile j... the charging pile n forms a power loop 1, a power loop 2, and a power loop with the output unit 22, respectively i, power loop j...power loop n and many other power loops.
  • an electrical protection unit 23 is provided to ensure the safety of the circuit.
  • the electrical system 2 of the present invention further includes an electrical protection unit 23.
  • the electrical protection unit 23 is provided between the input unit 21 and the output unit 22, and the maximum input power limited by the electrical protection unit 23 is less than that of the electrical protection.
  • the maximum output power restricted by the intelligent charging energy routing system is less than the maximum input power restricted by the electrical protection unit 23.
  • the electrical protection unit 23 may also be arranged between the output unit 22 and the charging pile. When the total actual output power of the charging pile is greater than the maximum input power limited by the electrical protection unit 23, the electrical protection unit 23 disconnects the output unit. 22 and the circuit between the charging pile. Or, the electrical protection unit 23 is arranged before the input unit 21, that is, connected to the input end of the smart charging energy router. When the total actual output power of the charging pile is greater than the maximum input power limited by the electrical protection unit 23, the electrical protection unit 23 is disconnected from The loop between the input units 21.
  • the input unit 21 one end of which is connected to a 3-phase 5-wire AC input cable or copper bar of the smart charging energy router, that is, connected to the output end of the transformer, and the other end is connected to the electrical protection unit 23.
  • the input unit 21 can be connected to a copper bar or terminal block or directly connected to the main input circuit breaker of the electrical protection unit 23.
  • the input unit 21 of the electrical system 2 is connected by a copper bar 5, and the input 3-phase 5-wire cable or copper bar is directly connected to the wiring copper bar of the input unit 21 ,
  • the other side of the copper bar 5 of the input unit 21 is connected to the cable or copper bar of the electrical protection unit 23.
  • the copper bar of the input unit 21 for installing the phase and neutral wires can be used.
  • insulators and other devices are used to isolate and install on the metal base plate to maintain the electrical clearance and creepage distance requirements. If the grounding copper bar is used, it can be directly installed on the mounting part of the metal bottom plate.
  • the number of mounting holes is designed according to the required connection holes, and the mounting holes of the copper bar 5 can be increased to prepare for other equipment that needs to take power or need to increase the input measurement point connection.
  • the connection with the transformer and the electrical protection unit 23 adopts M6 and above studs to pass through the mounting holes, and fasten with bolts, nuts, flat washers and spring washers to prevent the connection from loosening during transportation and other conditions.
  • the copper bar 5 of the input unit 21 can be installed as a special-shaped copper bar, which passes through the opening of the metal plate, and needs to pass through the phase line and the neutral line at the same time to prevent the generation of eddy current.
  • the input unit 21 of the electrical system 2 is connected by the terminal block 6.
  • the AC input 3-phase 5-wire cable is directly connected to the terminal block 6 and the grounding copper block.
  • the terminal block 6 Connect the cable of the electrical protection unit 23 to the other side of the grounding copper bar.
  • the phase line and the neutral line are connected to the terminal block 6.
  • the electrical clearance and creepage distance requirements are maintained, and the grounding copper bar is installed directly on the metal bottom plate. Pieces.
  • the 3-phase 5-wire cable of the AC input of the smart charging energy router can be directly connected to the main input circuit breaker and the grounding copper bar of the electrical protection unit 23.
  • the electrical protection unit The total input circuit breaker of 23 generally adopts the model of 3P+N, and the grounding copper bar is directly installed on the metal bottom plate installation piece.
  • one end is connected to the electrical protection unit 23, and the other end is connected to the AC output cable or copper bar of the smart charging energy router. It can also use copper bars or terminal bars or directly connected to the output shunt circuit breaker of the electrical protection unit 23.
  • the specific connection mode is the same as that of the input unit 21, which will not be repeated here.
  • the maximum input power limited by the electrical protection unit 23 is less than the total power of the maximum output power output by the electrical protection unit 23 for each channel.
  • the maximum input power limited by the electrical protection unit 23 is selected according to the rated maximum input power of the smart charging energy router. That is, if the protection element of the electrical protection unit 23 is selected as a circuit breaker, the specification and model of the input protection circuit breaker is selected according to the rated maximum input power of the smart charging energy router.
  • the maximum output power of each output of the electrical protection unit 23 is selected according to the rated power of the connected charging pile, that is, if the electrical protection unit 23 is selected as a circuit breaker, select the specification and model of the output protection circuit breaker according to the rated power of the connected charging pile .
  • the electrical protection unit 23 disconnects the loop between the input unit 21 and the output unit 22.
  • the electrical protection unit 23 used is a circuit breaker with a thermal magnetic trip unit. When an overcurrent, overvoltage, overpower, or other fault occurs, a tripping method is used for circuit breaker protection. In other embodiments, the electrical protection unit 23 used is an AC fuse fuse, which is protected by AC fuse blowing.
  • the electrical system 2 of the smart charging energy router of the present invention may also include a measuring unit 24, which is connected to the management and dispatching system 1 in communication, and is used to control the subsystem to perform power verification based on the measured input.
  • the management scheduling system 1 Based on the calculation result of the power of the unit 21 and the maximum output power limited by the intelligent charging energy routing system, the management scheduling system 1 sends a power control command to the charging pile.
  • the measurement unit 24 is used to measure the actual output power of the smart charging energy router.
  • the management scheduling system 1 that is in communication with the measurement unit 24 actively downloads Send a power control command to the charging pile.
  • the content of the command includes power control or charging suspension.
  • the connected charging pile executes the power control or charging suspension command according to the issued control power or charging suspension command to realize the charging control and power control of the charging pile. In order to reduce the output power of the smart charging energy router to a safe output power.
  • the measuring unit 24 can measure the voltage and current of the AC input, and its communication with the management scheduling system 1 can be RS485 or other serial communication, WiFi, Bluetooth, Zigbee or other wireless communication modules, Ethernet ETH, CAN, etc. There are no specific restrictions on one or more of the ways.
  • the measuring unit 24 may be a three-phase four-wire AC meter with communication function. Specifically, when the input single-phase current is less than 60A (including 60A), directly use a three-phase four-wire AC meter to collect the input active and reactive voltage and current of each phase, and calculate the total active power, total reactive power, and Total power. When the input single-phase current is higher than 60A, a transformer is used for current conversion, and the secondary winding generally selects a current of 5A. In other embodiments, the measurement unit 24 may use other measurement voltages and currents, such as using a programmable logic device to measure the voltage value through AD, and convert the success rate value.
  • the electrical system 2 realizes the electrical circuit protection of the smart charging energy router, completes the power input and output, and electrical protection.
  • the measurement unit 24 can be added to realize the function of power measurability.
  • the power loop is: directly connect the 3-phase 5-wire AC input cable or copper bar of the smart charging energy router to the input unit 21, pass through the electrical protection unit 23, and output power to the charging pile through the output unit 22, and provide optional
  • the measuring unit 24 realizes the verifiable and measurable electrical protection output of the charging pile and the output power.
  • the management and dispatch system 1 of the present invention includes a control subsystem that is respectively connected to each charging post and a peripheral interface that supports communication.
  • the management and dispatch system 1 supports wireless communication networking Function and local networking communication function.
  • the control subsystem includes a CPU 10 and a storage unit 11.
  • the CPU 10 is used to set and read the saved maximum power output limited by the intelligent charging energy routing system, receive the actual power reported by each charging pile, and calculate the charging pile’s Whether the total actual power is greater than the read maximum power output limited by the intelligent charging energy routing system, combined with the required power, calculate the control power of the connected charging pile, and send a power control command to the charging pile based on the calculation result; the storage unit 11 uses It saves the maximum power output by the intelligent charging energy routing system set by CPU10.
  • the CPU 10 includes a setting module 101, a receiving module 102, an arithmetic module 103, and a control module 104. Among them,
  • the setting module 101 is used to set and read the saved maximum power output limited by the smart charging energy routing system, and the maximum power output limited by the set smart charging energy routing system is stored in the storage unit 11;
  • the receiving module 102 is configured to receive messages reported by the charging pile, and the information reported by the charging pile includes but is not limited to the actual power and required power of the charging pile, and is used to receive data transmitted by the measurement unit 24;
  • the calculation module 103 is used to calculate the total actual power of the charging piles reported, and compare the total actual power with the read maximum power output limited by the intelligent charging energy routing system. According to the comparison result, combine the required power to calculate the connected The control power of the charging pile;
  • the control module 104 is configured to issue a control instruction to the charging pile according to the calculation result to ensure that the actual power of the charging pile is executed according to the control power and does not exceed the maximum power output limited by the set intelligent charging energy routing system.
  • control subsystems there can be one or more control subsystems, and multiple control subsystems can be set to communicate with each connected charging pile separately for point-to-point communication.
  • the management scheduling system 1 completes the data processing of the smart charging energy router, and performs message communication with the charging pile connected to the smart charging energy router, so as to realize the configurable and schedulable power resources.
  • the communication method between the management scheduling system 1 and the charging pile adopts one or more of the methods including but not limited to Ethernet ETH, CAN, RS485 serial port, WiFi, Bluetooth, and Zigbee wireless communication module.
  • the electrical system 2 is used to output the three-phase five-wire input power input from the smart charging energy router for the charging pile.
  • the TCU of the charging pile is respectively connected with the management and dispatching system 1 through TCP/IP communication.
  • the electrical system 2 includes a main circuit breaker, a main input transformer, and a shunt circuit breaker that are electrically connected in sequence.
  • the shunt circuit breakers are electrically connected to each charging pile through a power circuit to ensure that each power circuit is charged in a safe state. , Used to protect the circuit.
  • the measuring unit 24 is a total input measuring device, which is connected to the management scheduling system 1 through RS485 serial communication.
  • the present invention also provides an implementation method based on a smart charging energy routing system.
  • Figure 6 is a schematic flow diagram of the implementation method of the smart charging energy routing system of the present invention. The method applies the above-mentioned smart charging energy router. The method includes the steps:
  • S1 Receive a message reported by the charging pile, which includes but is not limited to the required power and actual power of the connected charging pile; the message also includes the charging time and charging status of the connected charging pile;
  • the smart charging energy router sends a power control instruction to the connected charging piles, where the control instruction includes the control power of each connected charging pile, and the control power is the maximum power allowed to be output by the connected charging pile.
  • the process of the implementation method for the smart charging energy routing system includes specific steps.
  • the connected charging pile reports a message to the smart charging energy router, and the message includes, but is not limited to, the required power and actual power of the connected charging pile;
  • the smart charging energy router receives the message reported by the charging pile, and the message includes but is not limited to the required power and actual power of the connected charging pile;
  • S40 Determine whether the calculation of the control power of the connected charging pile by the smart charging energy router meets the preset condition; if the calculation of the control power of the connected charging pile meets the preset condition, go to S50 to calculate the control power; otherwise, go to S70, Output the control power of the connected charging pile;
  • the smart charging energy router calculates the control power of the currently connected charging pile according to its limited maximum output power, actual power and demand power;
  • the smart charging energy router substitutes the calculated current control power of the charging pile into the actual power of the charging pile; enter S30, and re-enter the calculation process of controlling the power of the connected charging pile;
  • the intelligent charging energy routing system completes the calculation of the control power of each connected charging pile. For the connected charging piles that have not obtained the newly added remaining power, the control power of the charging pile is the actual power of the charging pile;
  • the smart charging energy router sends a power control instruction to the connected charging pile, where the control instruction includes the control power of each connected charging pile, and the control power is the maximum power allowed to be output by the connected charging pile;
  • the charging pile receives the power control instruction issued by the smart charging energy router, so that the connected charging pile is charged according to the control power provided in the control instruction.
  • condition preset in step S2 and step S30 is to judge and compare the total actual power of the charging pile with the maximum output power limit configured by the intelligent charging energy routing system;
  • the maximum output power, actual power and demand power of the smart charging energy routing system are calculated to calculate the power of each connected charging pile. Control the power so that when calculating the output charging pile control power, the total actual power of the charging pile does not exceed the maximum power output limited by the intelligent charging energy routing system;
  • the calculation is based on the maximum output power, actual power and demand power limited by the intelligent charging energy routing system.
  • the control power of each connected charging pile is such that the remaining power that can be allocated by the intelligent charging energy routing system is 0 or the calculated output charging pile control power meets the demand power.
  • the condition preset is to determine and compare whether the total actual power of charging piles is greater than the maximum output power limit configured by the intelligent charging energy routing system, and the connected charging piles
  • the initial value of the control power is 0.
  • the specific process includes the following steps:
  • the connected charging pile reports a message to the smart charging energy router, and the message includes, but is not limited to, the required power and actual power of the connected charging pile;
  • the smart charging energy router receives the message reported by the charging pile, and the message includes but is not limited to the required power and actual power of the connected charging pile;
  • the smart charging energy router calculates the sum of the actual power reported by the connected charging piles; compares the total actual power of the connected charging piles with the maximum output power limit configured by the smart charging energy routing system;
  • S400 Judge and compare the total actual power reported by the connected charging piles and the preset condition of the intelligent charging energy routing system to limit the maximum output power; if the calculation of the control power of the connected charging pile meets the preset condition: namely The total actual power reported by the connected charging piles is greater than the maximum power output limited by the intelligent charging energy routing system, and enters the S500 calculation control power; until the total actual power reported by the charging pile does not exceed the maximum output power limited by the intelligent charging energy routing system, Indicates that the calculation of the control power of the connected charging pile has been completed, and enter S70 to output the control power of the connected charging pile;
  • the smart charging energy router calculates the control power of the currently connected charging pile according to its limited maximum output power, actual power and demand power;
  • control power of the connected charging pile can be calculated according to a certain algorithm, so that the control power is less than the maximum power output limited by the intelligent charging energy routing system;
  • the smart charging energy router substitutes the calculated current control power of the charging pile into the actual power of the charging pile; enters S30, and re-enters the calculation and judgment process of controlling the power of the connected charging pile;
  • the intelligent charging energy routing system completes the calculation of the control power of each connected charging pile. For the connected charging piles that have not obtained the newly added remaining power, the control power of the charging pile is the actual power of the charging pile;
  • the smart charging energy router sends a power control instruction to the connected charging pile, where the control instruction includes the control power of each connected charging pile, and the control power is the maximum power allowed to be output by the connected charging pile;
  • the charging pile receives the power control instruction issued by the smart charging energy router, so that the connected charging pile is charged according to the control power provided in the control instruction.
  • condition preset is to determine whether there is an allocatable surplus power between the total actual power of the charging pile and the maximum output power limit configured by the intelligent charging energy routing system.
  • specific steps of the method for implementing the intelligent charging energy routing system include:
  • the connected charging pile reports a message to the smart charging energy router, and the message includes but is not limited to the required power and actual power of the connected charging pile;
  • the smart charging energy router receives the message reported by the charging pile, and the message includes but is not limited to the required power and actual power of the connected charging pile;
  • S301 Calculate the power difference between the sum of the actual power reported by the connected charging piles and the maximum power output limited by the intelligent charging energy routing system as the allocatable remaining power;
  • S401 Determine whether the allocatable remaining power between the total actual power reported by the connected charging piles and the maximum power output limited by the intelligent charging energy routing system is greater than 0, and whether the connected charging piles demand power is not met, such as the connected charging piles
  • the distributable remaining power of the charging pile is greater than 0 and the required power of the connected charging pile is not met, enter S500 to calculate the control power; otherwise, it means that the calculation of the power of the connected charging pile has been completed, and then enter S70 to output the connected charging The control power of the pile;
  • the smart charging energy router calculates the control power of the currently connected charging pile according to its limited maximum output power, actual power and demand power;
  • control power of the connected charging piles can be calculated according to a certain algorithm.
  • the algorithm includes but not limited to a proportional distribution or a first-come-first-served distribution algorithm.
  • each connected charging pile is charged according to the order of charging. Sequential processing
  • the required power of the connected charging pile is greater than the actual power of the charging pile, the required power of the charging pile is used as the control power; and the required power of the charging pile and the actual power of the charging pile are subtracted from the remaining power. The difference in power;
  • the smart charging energy router substitutes the calculated current control power of the charging pile into the actual power of the charging pile; enter S30, and re-enter the calculation process of controlling the power of the connected charging pile;
  • the intelligent charging energy routing system completes the calculation of the control power of each connected charging pile; in this embodiment, for the connected charging piles that do not get the newly added remaining power, the control power of the charging pile is the charging pile The actual power;
  • the smart charging energy router sends a power control instruction to the connected charging pile, where the control instruction includes the control power of each connected charging pile, and the control power is the maximum power allowed to be output by the connected charging pile;
  • the charging pile receives the power control instruction issued by the smart charging energy router, so that the connected charging pile is charged according to the control power provided in the control instruction.
  • the intelligent charging energy routing system determines whether there is any remaining power that can be allocated between the total actual power reported by the connected charging pile and the maximum power output limited by the intelligent charging energy routing system. If so, the remaining power that can be allocated is allocated at this time For the connected charging pile, the actual power of the charging pile is increased without exceeding the maximum output power limit of the intelligent charging energy routing system, thereby improving the charging efficiency and efficiently using the output power of the intelligent charging energy routing system.
  • the smart charging energy routing system realizes that the input power of the smart charging energy router is less than the sum of the rated power of all connected charging piles, and sends control power information to the charging piles through the management and scheduling system, so that the limited power is in the connected charging station. Realize reasonable scheduling between piles.
  • control instructions are issued through the control and dispatch system, an electrical protection unit is set in the electrical system, and a measurement unit that is connected to the control and dispatch system is added, and the triple protection of algorithm active protection, electrical protection and measurement feedback protection is used to prevent the output of the smart charging energy router The power exceeds the maximum output power limit of the smart charging energy router to ensure the safe operation of the smart charging energy router and its input power distribution system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种智能充电能源路由系统及其实现方法,智能充电能源路由系统包括智能充电能源路由器及充电桩,智能充电能源路由器包括电气系统及管理调度系统,智能充电能源路由系统限制输出的最大功率低于充电桩额定功率总和;管理调度系统包括控制子系统,控制子系统包括CPU,CPU设置和读取智能充电能源路由系统限制输出的最大功率,基于充电桩实际功率总和与智能充电能源路由系统限制输出的最大功率及需求功率运算的结果向充电桩发送功率控制指令;充电桩接收执行管理调度系统下发的功率控制指令。智能充电能源路由系统控制充电桩的实际功率总和不高于其所限制输出的最大功率,从而达到充分并有效利用智能充电能源路由系统输入功率的目的。

Description

智能充电能源路由系统及其实现方法
本申请要求于2020年05月08日提交中国专利局、申请号为202010382330.7、发明名称为“智能充电能源路由系统及其实现方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及充电桩技术领域,特别是涉及一种智能充电能源路由系统及其实现方法。
背景技术
随着国家对新能源规划的逐步落实,以及日益增长的对新能源的实施和应用的需求,我国已经把新能源充电桩列入了新基建七大领域的第四大领域之中;因而,如何不断满足日益增长的对新能源汽车充电桩的需求,成为目前充电站亟待需要解决的问题。目前,现有的充电站技术仍然存在以下重大问题:
1.现有充电站技术不能利用现有电网的变压器容量满足老小区对充电桩的需求;
充电桩的安装和使用没有为老小区在功率分配上预留空间,同时由于场地及电网功率的限制,在居民用电高峰时段,充电站基本不能满足住建部对小区实现充电站建设或者扩容建设的需求;而实现老小区充电站建设需要的供电网配网改造耗资巨大(据考察一线城市满足该需求的供电配网改造耗资超过百亿);而在夜间用电低谷时,又存在70%功率资源的严重浪费情况。
2.现有充电站存在需要充电的车辆不能得到充电服务的现状,如何保证在变压器不超容的前提下,提高充电桩的安装率,是目前亟待解决的问题。
3.大型充电站变压器输出功率效率低。当充电车辆的功率需求低于充电桩总功率或者充电桩额定功率时,会使各充电桩出现部分功率处于闲置的状况,致使充电桩功率效率低,如一般快充充电站大型变压器功率输出实际效率仅为68%,即使是充电堆快充充电站,效率也仅为73%,功率 损失较大。如何提高变压器的利用率,提高充电桩充电功率的利用率,是目前亟待解决的问题。
4.配电柜、配电网设计比较保守,不太适应充电场站具体的场景。目前所连接配电柜、配电网的充电桩在同一时间都处于满载充电的情况是很少的,大部分处于低利用率的使用情况;常用配电柜、配电网的输入功率一般按照输出功率总和设计,基本没有考虑到充电场站实际的充电桩充电负荷比较低的情况,一般配电柜和配电网的配电的设计都大大超过了所需功率,造成了配电功率大量的闲置和浪费。
从以上分析可以看出,本领域亟需一种更好的结合需求功率提高配电功率利用率的技术方案。
发明内容
本发明的目的是提供一种智能充电能源路由系统及其实现方法,旨在解决现有技术中充电桩中输入的功率不能充分利用,造成配电功率大量闲置和浪费的缺陷。
为实现上述目的,本发明提供了一种智能充电能源路由系统,包括智能充电能源路由器及充电桩,所述智能充电能源路由器包括电气系统及管理调度系统,其中,
电气系统,用于将智能充电能源路由器输入的功率输出供充电桩使用,包括依次电连接的输入单元及输出单元,所述智能充电能源路由系统限制输出的最大功率低于充电桩额定功率总和,输出单元分别与每个充电桩电连接;
管理调度系统包括与充电桩通讯连接的控制子系统,所述控制子系统包括CPU及存储单元,所述CPU用于设置及读取所保存的智能充电能源路由系统限制输出的最大功率,接收每个充电桩上报的实际功率及需求功率,并运算充电桩的实际功率总和是否大于所读取的智能充电能源路由系统限制输出的最大功率,结合需求功率,运算出连接的充电桩的控制功率,基于运算结果向充电桩发送功率控制指令;存储单元,用于保存智能充电能源路由系统限制输出的最大功率;
充电桩,分别与输出单元电连接,与管理调度系统的控制子系统通讯 连接,每个充电桩上传实际功率及需求功率至管理调度系统,并接收执行管理调度系统下发的功率控制指令。
在一个实施例中,所述电气系统还包括设置于输入单元及输出单元之间的电气保护单元,电气保护单元限制的最大输入功率小于电气保护单元对每一路输出的最大输出功率的功率总和;当充电桩实际输出功率总和大于电气保护单元限制的最大输入功率时,电气保护单元断开输入单元与输出单元之间的回路。
在一个实施例中,所述电气系统还包括设置于输出单元与充电桩之间的电气保护单元,电气保护单元限制的最大输入功率小于电气保护单元对每一路输出的最大输出功率的功率总和;当充电桩实际输出功率总和大于电气保护单元限制的最大输入功率时,电气保护单元断开输出单元与充电桩之间的回路。
在一个实施例中,所述电气系统还包括设置于输入单元之前的电气保护单元,电气保护单元限制的最大输入功率小于电气保护单元对每一路输出的最大输出功率的功率总和;当充电桩实际输出功率总和大于电气保护单元限制的最大输入功率时,电气保护单元断开与输入单元之间的回路。
在一个实施例中,所述智能充电能源路由系统限制输出的最大功率小于电气保护单元限制的最大输入功率。
在一个实施例中,所述电气系统还包括测量单元,所述测量单元与所述管理调度系统通讯连接,用于控制子系统进行功率校验,基于所测的输入单元的功率与智能充电能源路由系统限制的最大输出功率的运算结果,管理调度系统向充电桩发送功率控制指令。
在一个实施例中,所述CPU包括设置模块、接收模块、运算模块及控制模块,其中,
设置模块,用于设置和读取智能充电能源路由系统限制输出的最大功率,所设置的智能充电能源路由系统限制输出的最大功率存储于存储单元;
接收模块,用于接收充电桩上报的消息,所述充电桩上报的信息包括但不限于充电桩的实际功率及需求功率,以及用于接收测量单元所传输的数据;
运算模块,用于运算上报的充电桩实际功率总和,并将该实际功率总和与所读取的智能充电能源路由系统限制输出的最大功率比较,根据比较结果,结合需求功率,运算出连接的充电桩的控制功率;
控制模块,用于根据运算结果向充电桩下发控制指令,以确保充电桩的实际功率按照控制功率执行,并且不超过设置的智能充电能源路由系统限制输出的最大功率。
在一个实施例中,所述电气保护单元采用热磁脱扣的断路器。
在一个实施例中,所述电气保护单元采用交流熔丝的熔断器。
在一个实施例中,所述测量单元为带通讯功能的交流电表。
在一个实施例中,所述测量单元为可编程的逻辑器件,所述可编程的逻辑器件通过AD测量电压值后转换成功率值。
在一个实施例中,所述测量单元与所述管理调度系统的通讯方式包括但不限于采用RS485串口、WiFi、蓝牙、Zigbee、以太网ETH、CAN通讯方式。
另一方面,本发明还提供了基于上述智能充电能源路由系统的实现方法,应用上述智能充电能源路由器,包括,
接收充电桩上报的消息,所述消息中包括但不限于连接的充电桩的需求功率和实际功率;
根据所连接的充电桩的实际功率和智能充电能源路由系统限制输出的最大功率,对连接的充电桩的控制功率的运算进行条件预置;
在运算连接的充电桩的控制功率的预置条件下,根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率;
向连接的充电桩发送功率控制指令,所述控制指令中包括每个连接的充电桩的控制功率,该控制功率即为连接的充电桩允许输出的最大功率。
对于本发明的智能充电能源路由系统的实现方法,其进一步方案为,所述根据所连接的充电桩的实际功率和智能充电能源路由系统限制输出的最大功率,对连接的充电桩的控制功率的运算进行条件预置,其中预置条件为判断并比较充电桩的实际功率总和与智能充电能源路由系统配置的限制输出的最大功率;
如所连接的充电桩上报的实际功率总和大于智能充电能源路由系统限制输出的最大功率,则根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率,以使运算输出充电桩控制功率时,充电桩的实际功率总和不超过智能充电能源路由系统限制输出的最大功率;
如所连接充电桩上报的实际功率总和与智能充电能源路由系统限制输出的最大功率之间具有可分配的剩余功率,则根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率,以使智能充电能源路由系统可分配的剩余功率为0或者运算输出的充电桩控制功率满足需求功率。
针对该发明的技术背景中提到的在业界存在的问题,本发明基于智能充电能源路由器与充电桩的连接,在安全可靠的前提下,通过将智能充电能源路由系统的输入功率进行管理调度,使该输入功率在所有的充电桩之间进行充分并合理的分配,实现了智能充电能源路由系统的输入功率的高效利用。
采用本发明的智能充电能源路由系统,针对交流充电站,其所带来的有益效果包括但不限于:
1)解决了变压器容量不够的条件下充电桩的安装扩容及充电保障问题;
2)解决了在安全条件下的充电桩安装扩容问题;
3)实现充电桩的功率调节和控制。
针对直流充电站,其实现的有益效果包括但不限于:
1)对于以非车载直流充电机为主的快充充电站,优化了充电站存在的变压器功率利用率低和功率空闲问题;
2)对于以分体式非车载直流充电机为主的快充充电站,优化了充电站的变压器存在的功率利用率低和功率空闲问题。
针对业界充电站的技术问题,本发明的效益如下:
1)充分利用现有电力资源实现充电站或者扩容建设,有效地降低充电站的运营成本,实现电网公司、用户和充电站运营商的多赢,节省供电配网改造的巨大耗资;
2)保证在变压器不超容的前提下,提高充电桩的安装率,实现无限极充电桩的扩容;并能按照优先级满足用户车辆充电需求;
3)提高了充电站变压器的利用率,提高充电桩充电功率的利用率,极大减少因功率损耗带来的经济损失,实现客户、充电站和运营商的多赢。
说明书附图
下面结合附图对本发明作进一步说明:
图1是本发明智能充电能源路由系统方框示意图;
图2是本发明智能充电能源路由系统的实施装置示意图;
图3是本发明一个实施例中输入单元的结构示意图;
图4是本发明另一个实施例中输入单元的结构示意图;
图5是本发明管理调度系统的结构示意框图;
图6是本发明智能充电能源路由系统的实现方法流程示意图;
图7是本发明智能充电能源路由系统的实现方法的具体步骤流程图;
图8是本发明一个实施例智能充电能源路由系统的实现方法的具体流程图;
图9是本发明另一个实施例中智能充电能源路由系统的实现方法的具体流程图;
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种智能充电能源路由系统及其实现方法,旨在解决现有技术中充电桩中输入的功率不能充分利用,造成配电功率大量闲置和浪费的缺陷。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1所示,图1是本发明智能充电能源路由系统方框示意图,智能充电能源路由系统包括智能充电能源路由器及充电桩,其中智能充电能源路由器包括电气系统2及与管理调度系统1,将电气系统2的输入端接入变压器,输出端与充电桩连接,智能充电能源路由系统限制输出的最大功率低于充电桩额定功率总和,通过管理调度系统1下发功率控制指令给充电桩,控制充电桩的实际功率按照控制功率执行,并且不超过智能充电能源路由系统限制输出的最大功率,使得有限的功率在连接的充电桩之间实现合理调度,同时保证智能充电能源路由器及其输入配电系统的安全运行。
结合附图1及附图2,在本发明中,电气系统2的输入端可以连接充电站的变压器,或者配电柜、配电网等,在此以变压器为例,实际不受限制。
电气系统2用于将智能充电能源路由器输入的功率输出供充电桩使用,电气系统2包括依次电连接的输入单元21及输出单元22,所述智能充电能源路由系统限制输出的最大功率低于充电桩额定功率总和,输出单元22分别与每个充电桩电连接。电气系统2的输入功率为三相五线输入功率,设置充电桩1、充电桩2、充电桩i、充电桩j…充电桩n分别与输出单元22形成功率回路1,功率回路2,功率回路i,功率回路j…功率回路n等多个功率回路。
更进一步的,本发明的智能充电能源路由器输出连接的充电桩的额定功率总和大于智能充电能源路由器的额定最大输入功率时,智能充电能源路由器需采用防止过电流、过电压、过功率的安全器件,因此设置电气保护单元23保证电路的安全性。
因此本发明的电气系统2还包括电气保护单元23,在一个实施例中,所述电气保护单元23设置于输入单元21及输出单元22之间,电气保护单元23限制的最大输入功率小于电气保护单元23对每一路输出的最大输出功率的功率总和;当充电桩实际输出功率总和大于电气保护单元23限制的最大输入功率时,电气保护单元23断开输入单元21与输出单元22 之间的回路。所述智能充电能源路由系统限制输出的最大功率小于电气保护单元23限制的最大输入功率。
在其他实施例中,电气保护单元23还可以设置于输出单元22与充电桩之间,当充电桩实际输出功率总和大于电气保护单元23限制的最大输入功率时,电气保护单元23断开输出单元22与充电桩之间的回路。又或者,电气保护单元23设置于输入单元21之前,即连接智能充电能源路由器的输入端,当充电桩实际输出功率总和大于电气保护单元23限制的最大输入功率时,电气保护单元23断开与输入单元21之间的回路。
具体的,对于输入单元21:其一端连接智能充电能源路由器的3相5线交流输入的线缆或铜排,即与变压器的输出端连接,另一端连接电气保护单元23。输入单元21可连接在铜排或端子排或直接连接在电气保护单元23的总输入断路器上。
在一个实施例中,结合附图3,所述电气系统2的输入单元21采用铜排5连接,将输入的3相5线的线缆或铜排直接连接在输入单元21的接线铜排上,输入单元21的铜排5的另一侧连接电气保护单元23的线缆或铜排。更具体的,可以采用安装相线和零线的输入单元21铜排,此时采用绝缘子等器件隔离安装在金属底板上,以保持电气间隙和爬电距离要求。如采用接地铜排,则可以直接安装在金属底板的安装件上。对于输入单元21的铜排5,按照需要的连接孔设计安装孔的数目,可增加铜排5的安装孔以备其他需要取电设备或者需要增加输入测量点连接。与变压器及电气保护单元23的连接采用M6及以上规格的螺柱穿过安装孔,用螺栓螺母平垫加弹簧垫片的紧固方式,防止连接处在运输和其他情况下的松动。输入单元21的铜排5可以做异形铜排安装,穿过金属板件的开孔,需要由相线和零线同时穿过,防止涡流的产生。
在另一个实施例中,结合附图4,电气系统2的输入单元21采用端子排6连接,将交流输入的3相5线的线缆直接连接在端子排6和接地铜排上,端子排6和接地铜排的另一侧连接电气保护单元23的线缆,相线和零线的连接在端子排6上,保持电气间隙和爬电距离要求,安装接地铜排直接安装在金属底板安装件上。
结合附图2,在其他实施例中,可以将智能充电能源路由器交流输入 的3相5线的线缆直接连接在电气保护单元23的总输入断路器和接地铜排上,此时电气保护单元23的总输入断路器一般采用3P+N的型号,接地铜排直接安装在金属底板安装件上。
对于本发明的输出单元22,其一端连接电气保护单元23,另一端连接智能充电能源路由器的交流输出的线缆或铜排。其亦可采用铜排或端子排或直接连接在电气保护单元23的输出分路断路器上的方式,具体连接方式与输入单元21一致,在此不赘述。
作为本发明的一个实施方案,电气保护单元23限制的最大输入功率小于电气保护单元23对每一路输出的最大输出功率的功率总和。按智能充电能源路由器的额定最大输入功率选择电气保护单元23限制的最大输入功率。即,如果电气保护单元23的保护元件选择为断路器,则按智能充电能源路由器的额定最大输入功率来选择输入保护断路器的规格型号。电气保护单元23每一路输出的最大输出功率按连接的充电桩的额定功率来选择,即,如果电气保护单元23选择为断路器,按连接的充电桩的额定功率选择输出保护断路器的规格型号。
当充电桩实际输出功率总和大于电气保护单元23限制的最大输入功率时,电气保护单元23断开输入单元21与输出单元22之间的回路。在本实施例中,所采用的电气保护单元23为含热磁脱扣器的断路器,当过电流、过电压、过功率等故障发生,采用脱扣方式进行断路保护。在其他实施例中,所采用的电气保护单元23为交流熔丝的熔断器,通过交流熔丝熔断方式进行保护。
更进一步的,本发明的智能充电能源路由器的电气系统2还可以包括测量单元24,所述测量单元24与管理调度系统1通讯连接,用于控制子系统进行功率校验,基于所测的输入单元21的功率与智能充电能源路由系统限制的最大输出功率的运算结果,管理调度系统1向充电桩发送功率控制指令。采用测量单元24测量智能充电能源路由器的实际输出功率,当测量单元24获取的输入单元21的功率超过智能充电能源路由系统限制的最大输出功率,与测量单元24通讯连接的管理调度系统1主动下发功率控制指令至充电桩,指令内容包括控制功率或暂停充电,连接的充电桩按照下发的控制功率或暂停充电的指令执行控制功率或暂停充电指令,实 现充电桩的充电控制和功率控制,以降低智能充电能源路由器的输出功率到安全的输出功率。
其中,测量单元24可测量交流输入的电压、电流,其与管理调度系统1的通讯方式可采用RS485或其他串口通讯、WiFi、蓝牙、Zigbee或其他无线通信模组、以太网ETH、CAN等通讯方式的一种或者多种方式,在此不做具体限制。
在一个实施例中,测量单元24可以为带通讯功能的三相四线交流电表。具体的,当输入单相电流低于60A(包含60A),直接采用三相四线交流电表采集输入的每相的有功、无功的电压电流,并运算出总有功功率、总无功功率以及总功率。而当输入单相电流高于60A时,则采用互感器做电流转化,二次绕组一般选择电流为5A。在其他实施例中,测量单元24可采用其他测量电压电流,如采用可编程的逻辑器件,通过AD测量电压值,并转换成功率值。
电气系统2实现智能充电能源路由器的电气回路保护,完成对功率的输入和输出、电气保护,同时可增加测量单元24实现功率可测量的功能。其中功率回路为:将智能充电能源路由器的3相5线交流输入的线缆或铜排直接连接输入单元21,经过电气保护单元23,通过输出单元22输出功率到充电桩,并提供可选的测量单元24实现对充电桩输出的电气保护和输出功率的可校验和可测量。
进一步的,结合附图2及附图5,对于本发明的管理调度系统1,包括分别与每个充电桩通讯连接的控制子系统和支持通讯的外围接口,管理调度系统1支持无线通讯组网功能和本地组网通讯功能。所述控制子系统包括CPU10及存储单元11,其中,CPU10用于设置及读取所保存的智能充电能源路由系统限制输出的最大功率,接收每个充电桩上报的实际功率,并运算充电桩的实际功率总和是否大于所读取的智能充电能源路由系统限制输出的最大功率,结合需求功率,运算出连接的充电桩的控制功率,基于运算结果向充电桩发送功率控制指令;存储单元11,用于保存CPU10所设置的智能充电能源路由系统限制输出的最大功率。
更进一步的,所述CPU10包括设置模块101、接收模块102、运算模块103及控制模块104,其中,
设置模块101,用于设置和读取所保存的智能充电能源路由系统限制输出的最大功率,所设置的智能充电能源路由系统限制输出的最大功率存储于存储单元11;
接收模块102,用于接收充电桩上报的消息,所述充电桩上报的信息包括但不限于充电桩的实际功率及需求功率,以及用于接收测量单元24所传输的数据;
运算模块103,用于运算上报的充电桩实际功率总和,并将该实际功率总和与所读取的智能充电能源路由系统限制输出的最大功率比较,根据比较结果,结合需求功率,运算出连接的充电桩的控制功率;
控制模块104,用于根据运算结果向充电桩下发控制指令,以确保充电桩的实际功率按照控制功率执行,并且不超过设置的智能充电能源路由系统限制输出的最大功率。
其中,控制子系统可以为一个或者多个,可设置多个控制子系统分别和每一个连接的充电桩做点对点的单独通讯。
管理调度系统1完成智能充电能源路由器的数据处理,并对与智能充电能源路由器连接的充电桩进行消息通信,实现功率资源的可配置和可调度。管理调度系统1与充电桩的通讯方式采用包括但不限于以太网ETH、CAN、RS485串口、WiFi、蓝牙、Zigbee无线通信模组的方式中一种或多种。
在其中一个具体应用中,电气系统2,用于将智能充电能源路由器输入的三相五线输入功率输出供充电桩使用。充电桩的TCU分别与管理调度系统1采用TCP/IP通通讯连接。电气系统2包括依次电连接的总断路器、总输入互感器、及分路断路器,分路断路器分别与每个充电桩通过功率回路电连接,保证每个功率回路均在安全状态进行充电,用于保护电路。测量单元24为总输入测量器件,其与管理调度系统1通过RS485串口通讯连接。
本发明还提供了一种基于智能充电能源路由系统的实现方法,结合附图6,附图6是本发明智能充电能源路由系统的实现方法的流程示意图,所述方法应用上述智能充电能源路由器,所述方法包括步骤:
S1:接收充电桩上报的消息,所述消息中包括但不限于连接的充电 桩的需求功率和实际功率;所述消息还包括所连接的充电桩的充电时间、充电状态等;
S2:根据所连接的充电桩的实际功率和智能充电能源路由系统限制输出的最大功率,对连接的充电桩的控制功率的运算进行条件预置;
S3:在运算连接的充电桩的控制功率的预置条件下,根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率;
S4:智能充电能源路由器向连接的充电桩发送功率控制指令,所述控制指令中包括每个连接的充电桩的控制功率,该控制功率即为连接的充电桩允许输出的最大功率。
具体的,参见图7,针对智能充电能源路由系统的实现方法流程包括具体步骤,
S10:连接的充电桩向智能充电能源路由器上报消息,所述消息中包括但不限于连接的充电桩的需求功率和实际功率;
S20:智能充电能源路由器接收充电桩上报的消息,所述消息中包括但不限于连接的充电桩的需求功率和实际功率;
S30:根据所连接的充电桩的实际功率和智能充电能源路由系统限制输出的最大功率,对连接的充电桩的控制功率的运算进行条件预置;
S40:判断智能充电能源路由器对连接的充电桩的控制功率的运算是否满足预置条件;如果对连接的充电桩的控制功率的运算满足预置条件,进入S50运算控制功率;否则,进入S70,输出连接的充电桩的控制功率;
S50:智能充电能源路由器根据其限制输出的最大功率、实际功率和需求功率运算出当前连接的充电桩的控制功率;
S60:智能充电能源路由器把运算出的当前充电桩的控制功率代入该充电桩的实际功率;进入S30,重新进入对连接的充电桩进行控制功率的运算流程;
S70:智能充电能源路由系统完成每个连接的充电桩的控制功率的运算,对于没有得到新增剩余功率的连接的充电桩,所述充电桩的控制功率即为充电桩的实际功率;
S80:智能充电能源路由器向连接的充电桩发送功率控制指令,所述 控制指令中包括每个连接的充电桩的控制功率,该控制功率即为连接的充电桩允许输出的最大功率;
S90:充电桩接收智能充电能源路由器的下发功率控制指令,使连接的充电桩按照控制指令中提供的控制功率充电。
其中,对于步骤S2及步骤S30中所述的条件预置为判断并比较充电桩的实际功率总和与智能充电能源路由系统配置的限制输出的最大功率;
如所连接的充电桩上报的实际功率总和大于智能充电能源路由系统限制输出的最大功率,则根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率,以使运算输出充电桩控制功率时,充电桩的实际功率总和不超过智能充电能源路由系统限制输出的最大功率;
如所连接充电桩上报的实际功率总和与智能充电能源路由系统限制输出的最大功率之间具有可分配的剩余功率,则根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率,以使智能充电能源路由系统可分配的剩余功率为0或者运算输出的充电桩控制功率满足需求功率。
具体的,结合附图8,在一个实施例中,所述的条件预置为判断并比较充电桩的实际功率总和是否大于智能充电能源路由系统配置的限制输出的最大功率,连接的充电桩的控制功率的初始值为0,此时,其具体流程包括步骤:
S10:连接的充电桩向智能充电能源路由器上报消息,所述消息中包括但不限于连接的充电桩的需求功率和实际功率;
S20:智能充电能源路由器接收充电桩上报的消息,所述消息中包括但不限于连接的充电桩的需求功率和实际功率;
S300:智能充电能源路由器对所连接的充电桩上报的实际功率进行求和计算;并对所连接的充电桩实际功率总和与智能充电能源路由系统配置的限制输出的最大功率进行比较;
S400:对所连接的充电桩上报的实际功率总和与智能充电能源路由系统限制输出的最大功率的预置条件进行判断并比较;如果对连接的充电桩的控制功率的运算满足预置条件:即所连接的充电桩上报的实际功率总 和大于智能充电能源路由系统限制输出的最大功率,进入S500运算控制功率;直至充电桩所上报的实际功率总和不超过智能充电能源路由系统限制输出的最大功率,说明已经完成所连接的充电桩的控制功率的运算,进入S70,输出连接的充电桩的控制功率;
S500:智能充电能源路由器根据其限制输出的最大功率、实际功率和需求功率运算出当前连接的充电桩的控制功率;
具体的,可以按照一定的算法运算出连接的充电桩的控制功率,使所述控制功率小于智能充电能源路由系统限制输出的最大功率;
S60:智能充电能源路由器把运算出的当前充电桩的控制功率代入该充电桩的实际功率;进入S30,重新进入对连接的充电桩进行控制功率的运算判断流程;
S70:智能充电能源路由系统完成每个连接的充电桩的控制功率的运算,对于没有得到新增剩余功率的连接的充电桩,所述充电桩的控制功率即为充电桩的实际功率;
S80:智能充电能源路由器向连接的充电桩发送功率控制指令,所述控制指令中包括每个连接的充电桩的控制功率,该控制功率即为连接的充电桩允许输出的最大功率;
S90:充电桩接收智能充电能源路由器的下发功率控制指令,使连接的充电桩按照控制指令中提供的控制功率充电。
结合附图9,在另一个实施例中,所述的条件预置为判断充电桩的实际功率总和与智能充电能源路由系统配置的限制输出的最大功率之间是否具有可分配的剩余功率。在此实施例中,所述智能充电能源路由系统的实现方法的具体步骤流程包括:
S10:连接的充电桩向智能充电能源路由器上报消息,所述消息中包括但不限于连接的充电桩的需求功率和实际功率;
S20:智能充电能源路由器接收充电桩上报的消息,所述消息中包括但不限于连接的充电桩的需求功率和实际功率;
S301:计算连接的充电桩的上报的实际功率的总和与智能充电能源路由系统限制输出的最大功率的功率差值作为可分配的剩余功率;
S401:判断所连接充电桩上报的实际功率总和与智能充电能源路由 系统限制输出的最大功率之间的可分配的剩余功率是否大于0,且连接的充电桩需求功率是否未满足,如所连接的充电桩的可分配的剩余功率大于0并且连接的充电桩的需求功率未满足,进入S500运算控制功率;否则,说明已经完成对所连接的充电桩的功率的运算,进入S70,输出连接的充电桩的控制功率;
S501:智能充电能源路由器根据其限制输出的最大功率、实际功率和需求功率运算出当前连接的充电桩的控制功率;
具体的,可以按照一定的算法运算出连接的充电桩的控制功率,所述算法包括但不限于按比例分配均分或者先到先得的分配算法,如每个连接的充电桩按照充电的先后顺序处理;
如果连接的充电桩的需求功率大于所述充电桩的实际功率,则把所述充电桩的需求功率作为控制功率;并从剩余功率中减去所述充电桩的需求功率与该充电桩的实际功率的差值;
S60:智能充电能源路由器把运算出的当前充电桩的控制功率代入该充电桩的实际功率;进入S30,重新进入对连接的充电桩进行控制功率的运算流程;
S70:智能充电能源路由系统完成每个连接的充电桩的控制功率的运算;在此实施例中,对于没有得到新增剩余功率的连接的充电桩,所述充电桩的控制功率即为充电桩的实际功率;
S80:智能充电能源路由器向连接的充电桩发送功率控制指令,所述控制指令中包括每个连接的充电桩的控制功率,该控制功率即为连接的充电桩允许输出的最大功率;
S90:充电桩接收智能充电能源路由器的下发功率控制指令,使连接的充电桩按照控制指令中提供的控制功率充电。
在此实施例中,判断连接充电桩上报的实际功率总和与智能充电能源路由系统限制输出的最大功率之间是否具有可分配的剩余功率,如果有的话,此时将可分配的剩余功率分配给所连接的充电桩,在不超出智能充电能源路由系统限制输出的最大功率情况下,提高了充电桩的实际功率,以此提高充电效率,高效利用了智能充电能源路由系统的输出功率。
在本发明中,智能充电能源路由系统实现智能充电能源路由器的输入 功率小于连接的所有充电桩额定功率总和,并通过管理调度系统下发控制功率信息给充电桩,使得有限的功率在连接的充电桩之间实现合理调度。同时通过控制调度系统下发控制指令、电气系统中设置电气保护单元、增设与控制调度系统通讯连接的测量单元,通过算法主动保护、电气保护和测量反馈保护这三重保护,防止智能充电能源路由器输出功率超过智能充电能源路由器限制输出的最大功率,以保证智能充电能源路由器及其输入配电系统的安全运行。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (13)

  1. 一种智能充电能源路由系统,其特征在于,包括智能充电能源路由器及充电桩,所述智能充电能源路由器包括电气系统及管理调度系统,其中,
    电气系统,用于将智能充电能源路由器输入的功率输出供充电桩使用,包括依次电连接的输入单元及输出单元,所述智能充电能源路由系统限制输出的最大功率低于充电桩额定功率总和,输出单元分别与每个充电桩电连接;所述电气系统还包括电气保护单元,电气保护单元限制的最大输入功率小于电气保护单元对每一路输出的最大输出功率的功率总和,智能充电能源路由系统限制输出的最大功率小于电气保护单元限制的最大输入功率;
    管理调度系统包括与充电桩通讯连接的控制子系统,所述控制子系统包括CPU及存储单元,所述CPU用于设置及读取所保存的智能充电能源路由系统限制输出的最大功率,接收每个充电桩上报的实际功率及需求功率,并运算充电桩的实际功率总和是否大于所读取的智能充电能源路由系统限制输出的最大功率,结合需求功率,运算出连接的充电桩的控制功率,基于运算结果向充电桩发送功率控制指令;存储单元,用于保存智能充电能源路由系统限制输出的最大功率;
    充电桩,分别与输出单元电连接,与管理调度系统的控制子系统通讯连接,每个充电桩上传实际功率及需求功率至管理调度系统,并接收执行管理调度系统下发的功率控制指令。
  2. 根据权利要求1所述的智能充电能源路由系统,其特征在于,所述电气系统还包括设置于所述输入单元及所述输出单元之间的电气保护单元,所述电气保护单元限制的最大输入功率小于所述电气保护单元对每一路输出的最大输出功率的功率总和;当充电桩实际输出功率总和大于所述电气保护单元限制的最大输入功率时,所述电气保护单元断开所述输入单元与所述输出单元之间的回路。
  3. 根据权利要求1所述的智能充电能源路由系统,其特征在于,所述电气系统还包括设置于所述输出单元与充电桩之间的电气保护单元,所述电气保护单元限制的最大输入功率小于所述电气保护单元对每一路输出的最大输出功率的功率总和;当充电桩实际输出功率总和大于所述电气保 护单元限制的最大输入功率时,所述电气保护单元断开所述输出单元与充电桩之间的回路。
  4. 根据权利要求1所述的智能充电能源路由系统,其特征在于,所述电气系统还包括设置于所述输入单元之前的电气保护单元,所述电气保护单元限制的最大输入功率小于所述电气保护单元对每一路输出的最大输出功率的功率总和;当充电桩实际输出功率总和大于所述电气保护单元限制的最大输入功率时,所述电气保护单元断开与所述输入单元之间的回路。
  5. 根据权利要求2-4任一所述的智能充电能源路由系统,其特征在于,所述电气系统还包括测量单元,所述测量单元与所述管理调度系统通讯连接,用于控制子系统进行功率校验,基于所测的输入单元的功率与智能充电能源路由系统限制的最大输出功率的运算结果,所述管理调度系统向所述充电桩发送功率控制指令。
  6. 根据权利要求5所述的智能充电能源路由系统,其特征在于,所述CPU包括设置模块、接收模块、运算模块及控制模块,其中,
    所述设置模块,用于设置和读取智能充电能源路由系统限制输出的最大功率,所设置的智能充电能源路由系统限制输出的最大功率存储于存储单元;
    所述接收模块,用于接收充电桩上报的消息,所述充电桩上报的信息包括充电桩的实际功率及需求功率,以及用于接收测量单元所传输的数据;
    所述运算模块,用于运算上报的充电桩实际功率总和,并将该实际功率总和与所读取的智能充电能源路由系统限制输出的最大功率比较,根据比较结果,结合需求功率,运算出连接的所述充电桩的控制功率;
    所述控制模块,用于根据运算结果向所述充电桩下发控制指令,以确保所述充电桩的实际功率按照控制功率执行,并且不超过设置的智能充电能源路由系统限制输出的最大功率。
  7. 根据权利要求1所述的智能充电能源路由系统,其特征在于,所述电气保护单元采用热磁脱扣的断路器。
  8. 根据权利要求1所述的智能充电能源路由系统,其特征在于,所述 电气保护单元采用交流熔丝的熔断器。
  9. 根据权利要求5所述的智能充电能源路由系统,其特征在于,所述测量单元为带通讯功能的交流电表。
  10. 根据权利要求5所述的智能充电能源路由系统,其特征在于,所述测量单元为可编程的逻辑器件,所述可编程的逻辑器件通过AD测量电压值后转换成功率值。
  11. 根据权利要求5所述的智能充电能源路由系统,其特征在于,所述测量单元与所述管理调度系统的通讯方式包括采用RS485串口、WiFi、蓝牙、Zigbee、以太网ETH和CAN通讯方式。
  12. 一种基于权利要求1所述的智能充电能源路由系统的实现方法,其特征在于,包括,
    接收充电桩上报的消息,所述消息中包括连接的充电桩的需求功率和实际功率;
    根据所连接的充电桩的实际功率和智能充电能源路由系统限制输出的最大功率,对连接的充电桩的控制功率的运算进行条件预置;
    在运算连接的充电桩的控制功率的预置条件下,根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率;
    向连接的充电桩发送功率控制指令,所述控制指令中包括每个连接的充电桩的控制功率,该控制功率即为连接的充电桩允许输出的最大功率。
  13. 根据权利要求12所述的智能充电能源路由系统的实现方法,其特征在于,
    所述根据所连接的充电桩的实际功率和智能充电能源路由系统限制输出的最大功率,对连接的充电桩的控制功率的运算进行条件预置,其中预置条件为判断并比较充电桩的实际功率总和与智能充电能源路由系统配置的限制输出的最大功率;
    如所连接的充电桩上报的实际功率总和大于智能充电能源路由系统限制输出的最大功率,则根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率,以使运算输出充电桩控制功率时,所述充电桩的实际功率总和不超过智能充电能源 路由系统限制输出的最大功率;
    如所连接充电桩上报的实际功率总和与智能充电能源路由系统限制输出的最大功率之间具有可分配的剩余功率,则根据智能充电能源路由系统限制输出的最大功率、实际功率和需求功率运算出每个连接的充电桩的控制功率,以使智能充电能源路由系统可分配的剩余功率为0或者运算输出的充电桩控制功率满足需求功率。
PCT/CN2021/090119 2020-05-08 2021-04-27 智能充电能源路由系统及其实现方法 WO2021223624A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21800376.2A EP3979452A4 (en) 2020-05-08 2021-04-27 SYSTEM FOR ROUTING AN INTELLIGENT CHARGING POWER SOURCE AND IMPLEMENTATION METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010382330.7A CN111313422B (zh) 2020-05-08 2020-05-08 智能充电能源路由系统及其实现方法
CN202010382330.7 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021223624A1 true WO2021223624A1 (zh) 2021-11-11

Family

ID=71146425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090119 WO2021223624A1 (zh) 2020-05-08 2021-04-27 智能充电能源路由系统及其实现方法

Country Status (3)

Country Link
EP (1) EP3979452A4 (zh)
CN (1) CN111313422B (zh)
WO (1) WO2021223624A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313422B (zh) * 2020-05-08 2020-09-18 深圳市丁旺科技有限公司 智能充电能源路由系统及其实现方法
CN111703326B (zh) * 2020-08-17 2020-11-27 深圳市丁旺科技有限公司 智能充电能源路由系统的快速启动充电方法
CN111817331B (zh) * 2020-09-07 2021-01-15 深圳市丁旺科技有限公司 基于智能充电能源路由器的配电协同系统及其协同方法
CN113022360B (zh) * 2021-03-16 2022-09-30 开迈斯新能源科技有限公司 充电场站的能源分配方法及装置
CN113258594B (zh) * 2021-07-16 2023-01-10 深圳市丁旺科技有限公司 智能充电能源路由器三相平衡调控方法及其调控装置
CN113725984A (zh) * 2021-07-27 2021-11-30 华为数字能源技术有限公司 一种多脉波整流电路以及充电装置
CN114274821A (zh) * 2021-11-30 2022-04-05 南瑞集团有限公司 一种智能交流充放电桩
CN114506239A (zh) * 2022-03-10 2022-05-17 蔚来汽车科技(安徽)有限公司 充电设备的功率分配方法、系统、介质、装置和充换电站
DE102022117640A1 (de) * 2022-07-14 2024-01-25 Liebherr-Electronics and Drives GmbH Verfahren zum Versorgen einer Baustelle mit elektrischer Energie sowie Energieversorgungsstation für die Elektrifizierung von Baustellen
CN115224711B (zh) * 2022-09-20 2022-12-02 云南丁旺科技有限公司 智能充电能源路由器级联系统及级联控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185343A (zh) * 2011-03-23 2011-09-14 田鹰 一种利用电力线载波通信的电动汽车自动充电装置及方法
KR20130011811A (ko) * 2011-07-22 2013-01-30 한국산업기술대학교산학협력단 프로그램 로직 기반의 스마트 최대전력 관리 시스템
CN104810894A (zh) * 2015-05-08 2015-07-29 山东鲁能智能技术有限公司 一种电动汽车分体式直流充电桩、系统及方法
CN106096533A (zh) * 2015-03-20 2016-11-09 通用电气公司 用于确定电可操作机器的身份信息的系统和方法
CN106684968A (zh) * 2016-12-05 2017-05-17 杭州嘉畅科技有限公司 一种充电调度系统及其控制方法
CN107994654A (zh) * 2017-12-29 2018-05-04 长园深瑞继保自动化有限公司 充电桩集群控制自适应功率分配方法
CN109378879A (zh) * 2018-11-28 2019-02-22 北京动力源科技股份有限公司 一种充电站功率控制方法及系统
CN111313422A (zh) * 2020-05-08 2020-06-19 深圳市丁旺科技有限公司 智能充电能源路由系统及其实现方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551987A4 (en) * 2010-03-23 2015-12-23 Panasonic Corp CHARGING DEVICE, CHARGING SYSTEM AND CHARGING CONTROL METHOD
NL2008058C2 (en) * 2011-12-29 2013-07-03 Epyon B V Method, system and charger for charging a battery of an electric vehicle.
IL218927A0 (en) * 2012-03-29 2012-07-31 Better Place GmbH System and method for managing electric grid power supply
JP5686114B2 (ja) * 2012-04-05 2015-03-18 株式会社デンソー 充電制御装置
CN106026306A (zh) * 2016-07-29 2016-10-12 中山市粤盛电气设备有限公司 新能源汽车充电动态响应系统
CN106253268B (zh) * 2016-08-11 2019-02-26 国网江西省电力公司电力科学研究院 基于多电源-多电压等级负荷家用智能能量路由器装置
WO2018077427A1 (en) * 2016-10-28 2018-05-03 Zaptec Ip As Electric vehicle charging system for existing infrastructure
CN110303929B (zh) * 2019-06-29 2023-04-18 华为数字能源技术有限公司 充电桩系统的管理方法及充电桩系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185343A (zh) * 2011-03-23 2011-09-14 田鹰 一种利用电力线载波通信的电动汽车自动充电装置及方法
KR20130011811A (ko) * 2011-07-22 2013-01-30 한국산업기술대학교산학협력단 프로그램 로직 기반의 스마트 최대전력 관리 시스템
CN106096533A (zh) * 2015-03-20 2016-11-09 通用电气公司 用于确定电可操作机器的身份信息的系统和方法
CN104810894A (zh) * 2015-05-08 2015-07-29 山东鲁能智能技术有限公司 一种电动汽车分体式直流充电桩、系统及方法
CN106684968A (zh) * 2016-12-05 2017-05-17 杭州嘉畅科技有限公司 一种充电调度系统及其控制方法
CN107994654A (zh) * 2017-12-29 2018-05-04 长园深瑞继保自动化有限公司 充电桩集群控制自适应功率分配方法
CN109378879A (zh) * 2018-11-28 2019-02-22 北京动力源科技股份有限公司 一种充电站功率控制方法及系统
CN111313422A (zh) * 2020-05-08 2020-06-19 深圳市丁旺科技有限公司 智能充电能源路由系统及其实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG LIJUN: "Analysis of Optimization Strategy and Effects of Electric Vehicle Charging Load on Distribution System", ZHONGGUO GAO-XIN JISHU QIYE = CHINA HIGH TECHNOLOGY ENTERPRISES, ZHONGGUO GAO-XIN JISHU QIYE FAZHAN PINGJIA ZHONGXIN, CN, no. 4, 28 February 2017 (2017-02-28), CN , pages 23 - 25, XP055863291, ISSN: 1009-2374, DOI: 10.13535/j.cnki.11-4406/n.2017.04.012 *

Also Published As

Publication number Publication date
CN111313422A (zh) 2020-06-19
CN111313422B (zh) 2020-09-18
EP3979452A1 (en) 2022-04-06
EP3979452A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021223624A1 (zh) 智能充电能源路由系统及其实现方法
US20120019203A1 (en) Energy storage and vehicle charging system and method of operation
US9450413B2 (en) Power regulating system for solar power station
EP2672603A1 (en) A device for connecting a single-phase device into a multiphase electric network
CN102916481A (zh) 一种直流微网系统及其能量管理方法
US11982544B2 (en) Distributed control of energy storage device charging and grid stability
Quadros et al. Implementation of microgrid on the university campus of UNICAMP-Brazil: Case study
CN107181321B (zh) 一种基于电网拓扑结构实现快速拉荷的方法
CN201868896U (zh) 变压器经济运行系统
CN111452649A (zh) 一种基于台区负荷监视和预测的公共充电桩管理方法
Yu et al. Enhancing electric vehicle penetration and grid operation performance in old residential communities through hybrid AC/DC microgrid reconstruction
CN112491092B (zh) 一种柔性台区的安全调度方法
CN115224711B (zh) 智能充电能源路由器级联系统及级联控制方法
CN111426983A (zh) 一种配电架空电缆混合线路单相接地故障定位系统
CN108336818B (zh) 一种智能配电终端及充电站充电管理系统
Emhemed et al. Protection analysis for plant rating and power quality issues in LVDC distribution power systems
Melo et al. Optimal distribution feeder reconfiguration for integration of electric vehicles
CN111404161B (zh) 智慧用电管理及台区间互济转供系统及方法
Zhao et al. Feasibility study of using flexible substations in distribution systems in China
Kumar et al. High-Density Electric Vehicle Charging using Wide Bandgap Semiconductors
Ciancetta et al. Some practical solutions to improving power quality at LV distribution customers’: a case study
CN203135460U (zh) 电站型储能系统
Thomas et al. Cloud Based Dynamic Energy Management in Power System Using Message Queuing Telemetry Transport (MQTT) Protocol
CN215300168U (zh) 台区三相不平衡调节装置
CN108258704A (zh) 一种主动负荷调控方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021800376

Country of ref document: EP

Effective date: 20211231

NENP Non-entry into the national phase

Ref country code: DE