WO2021223553A1 - 基站选择方法、装置、基站和存储介质 - Google Patents

基站选择方法、装置、基站和存储介质 Download PDF

Info

Publication number
WO2021223553A1
WO2021223553A1 PCT/CN2021/085002 CN2021085002W WO2021223553A1 WO 2021223553 A1 WO2021223553 A1 WO 2021223553A1 CN 2021085002 W CN2021085002 W CN 2021085002W WO 2021223553 A1 WO2021223553 A1 WO 2021223553A1
Authority
WO
WIPO (PCT)
Prior art keywords
plmn
identity
gnb
base station
mapping relationship
Prior art date
Application number
PCT/CN2021/085002
Other languages
English (en)
French (fr)
Inventor
付昂
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021223553A1 publication Critical patent/WO2021223553A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • This application relates to the field of mobile communications, for example, to a base station selection method, device, base station, and storage medium.
  • the Next Generation-Radio Access Network includes multiple Next Generation (NG) interfaces and Next Generation Node B (gNB) connected to the fifth generation core network (5th Generation Core network, 5GC).
  • NG Next Generation
  • gNB Next Generation Node B
  • 5G Globally Unique Temporary User Equipment Identifier (5G Globally) assigned by the 5GC Access and Mobility Management Function (AMF) entity to the UE Unique Temporary UE Identity, 5G-GUTI).
  • AMF 5G Access and Mobility Management Function
  • 5G-S-TMSI 5G Shorted Temporary Mobile Subscriber Identity
  • 5G-S-TMSI is a shortened form of 5G-GUTI.
  • 5G-S-TMSI reduces the fields of Public Land Mobile Network Identifier (PLMN ID) and AMF Region Identity (AMF Region ID).
  • gNBs can be interconnected through an Xn control plane (Xn-C) interface.
  • a gNB is composed of a gNB Central Unit (gNB-Central Unit, gNB-CU) and multiple gNB Distributed Units (gNB-Distributed Unit, gNB-DU) connected to the gNB-CU through an F1 interface.
  • gNB-Central Unit gNB-CU
  • gNB-DU gNB Distributed Unit
  • F1 interface gNB-Distributed Unit
  • a shared gNB-DU entity may be connected to multiple gNB-CUs.
  • the shared gNB-DU cannot determine the UE’s operator, which may lead to incorrect access selection
  • the gNB-CU has the problem of increasing gNB signaling load and UE access delay, which reduces the network experience of terminal users.
  • the present application provides a base station selection method, device, base station, and storage medium, which reduce base station signaling overhead and access delay, and improve user experience.
  • the embodiment of the application provides a base station selection method, including: receiving a radio resource control (Radio Resource Control, RRC) establishment request message sent by a UE, the RRC establishment request message includes a UE identity, and the UE identity is taken from 5G-S-TMSI According to the mapping relationship between the UE identity and the PLMN ID, determine the PLMN ID corresponding to the UE; select the base station corresponding to the UE according to the PLMN ID corresponding to the UE.
  • RRC Radio Resource Control
  • An embodiment of the present application provides a base station selection device, including: a receiving module configured to receive an RRC setup request message sent by a UE, the RRC setup request message includes a UE identifier, and the UE identifier is taken from a section in 5G-S-TMSI; processing The module is set to determine the PLMN ID corresponding to the UE according to the mapping relationship between the UE identity and the PLMN ID; the selection module is set to select the base station corresponding to the UE according to the PLMN ID corresponding to the UE.
  • An embodiment of the present application provides a base station, including a processor and a memory, and the processor is configured to run program instructions stored in the memory to execute the above-mentioned base station selection method.
  • the embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the foregoing base station selection method is implemented.
  • Figure 1 is a schematic diagram of NG-RAN networking
  • Figure 2 is a schematic diagram of the networking of two operators sharing a wireless access network
  • FIG. 3 is a schematic diagram of signaling interaction for the UE of operator B to initially access the shared gNB in the networking mode shown in FIG. 2;
  • FIG. 4 is a flowchart of a method for selecting a base station according to an embodiment
  • FIG. 5 is a flowchart of a method for selecting a base station according to another embodiment
  • Figure 6 is a schematic diagram of the mapping relationship between the UE ID and the PLMN ID
  • FIG. 7 is a flowchart of the measurement statistics module of the logical gNB selection device in the base station selection method of the first embodiment
  • FIG. 8 is a flowchart of the logical gNB allocation module of the logical gNB selection device of the base station selection method in the first embodiment
  • FIG. 9 is a flowchart of UE initial access signaling of the base station selection method in the first embodiment
  • FIG. 10 is a flowchart of the measurement statistics module of the logical gNB selection device in the base station selection method of the second embodiment
  • FIG. 11 is a flowchart of the logical gNB allocation module of the logical gNB selection device of the base station selection method in the second embodiment
  • FIG. 13 is a flowchart of the measurement statistics module of the logical gNB selection device in the base station selection method of the third embodiment
  • FIG. 14 is a flowchart of the logical gNB allocation module of the logical gNB selection device of the base station selection method of the third embodiment
  • 15 is a flowchart of UE initial access signaling of the base station selection method of the third embodiment
  • FIG. 16 is a schematic structural diagram of a base station selection device provided by an embodiment
  • Fig. 17 is a schematic structural diagram of a base station provided by an embodiment.
  • FIG. 1 is a schematic diagram of NG-RAN networking.
  • NG-RAN includes multiple gNBs connected to 5GC through NG interfaces.
  • the gNB can be interconnected through the Xn-C interface.
  • a gNB is composed of a gNB-CU and multiple gNB-DUs connected to the gNB-CU through the F1 interface.
  • PLMN ID, AMF Region ID, AMF Set Identity (AMF Set ID) and AMF Pointer (AMF Pointer) together form the globally unique AMF identifier (Globally Unique AMF Identifier, GUAMI).
  • the 5G Temporary Mobile Subscriber Identity is a unique identifier in the AMF allocated to the UE by the AMF.
  • a shared gNB-DU entity may be connected to multiple gNB-CUs.
  • Figure 2 is a schematic diagram of the networking of two operators sharing a wireless access network. Shared gNB-DU A / B entities are connected to gNB-CU B gNB-CU A and Carrier B Carrier A by F1 interfaces, gNB-CU A connection 5GC A NG interface Operator A, gNB -CU B is connected to 5GC B of operator B through the NG interface.
  • Figure 3 is a schematic diagram of the signaling interaction for the UE of operator B to initially access the shared gNB in the networking mode shown in Figure 2, as shown in Figure 3:
  • Step 3010 The UE sends an RRC Setup Request (RRCSetupRequest) message to the gNB-DU A/B , and the message carries the UE identity with a length of 39 bits.
  • the UE identity comes from the low 39 bits of 5G-S-TMSI.
  • gNB-DU A/B cannot derive the PLMN ID of the operator selected by the UE based on the UE identity. Therefore, gNB-DU A/B randomly selects the PLMN ID of operator A and connects it based on the PLMN ID of operator A. Enter gNB-CU A. gNB-DU A/B sends an initial uplink RRC message (F1-Initial Uplink Radio Resource Control Message, F1-Initial UL RRC Message) to gNB-CU A.
  • F1-Initial Uplink Radio Resource Control Message F1-Initial UL RRC Message
  • step 3030 gNB-CU A replies a downlink RRC message transfer (F1-Downlink Radio Resource Control Message Transfer, F1-DL RRC Message Transfer) message to gNB-DU A/B .
  • F1-Downlink Radio Resource Control Message Transfer F1-DL RRC Message Transfer
  • Step 3040 gNB-DU A/B sends an RRC setup (RRCSetup) message to the UE.
  • RRC setup RRCSetup
  • step 3050 the UE sends an RRC Setup Complete (RRCSetupComplete) message to gNB-DU A/B .
  • RRCSetupComplete carries the PLMN ID information selected by the UE, and the operator corresponding to the PLMN ID information selected by the UE is operator B.
  • step 3060 the gNB-DU A/B determines that the gNB-DU B should be accessed based on the PLMN ID information selected by the UE.
  • Step 3070 gNB-DU A/B sends a UE Context Release Request (F1-UE Context Release Request) message to gNB-CU A to request the release of the UE instance.
  • F1-UE Context Release Request F1-UE Context Release Request
  • Step 3080 gNB-DU A/B sends F1-Initial UL RRC Message to gNB-CU B.
  • Fig. 4 is a flow chart of a method for selecting a base station according to an embodiment. As shown in Fig. 4, the method provided in this embodiment includes the following steps.
  • Step S4010 Receive the RRC establishment request message sent by the UE.
  • the RRC establishment request message includes the UE identity, and the UE identity is taken from a section of 5G-S-TMSI.
  • the base station selection method provided in this embodiment is implemented by the gNB in the NG-RAN.
  • the gNB in the NG-RAN is composed of one gNB-CU and multiple gNB-DUs.
  • gNB-DU can be shared and used by multiple operators, then a shared gNB-DU may be connected to multiple gNB-CUs, and each gNB-CU belongs to one operator.
  • Both the gNB-DU and the gNB-CU are logical gNBs, and the gNB-DU and gNB-CU in one gNB can be set in one physical gNB, or can be independent physical gNBs respectively.
  • the UE In the process of the UE initially accessing the network, the UE first sends an RRC Setup Request (RRCSetupRequest) message to the gNB.
  • RRCSetupRequest carries the UE identity taken from a section of the 5G-S-TMSI.
  • 5G-S-TMSI is a shortened form of 5G-GUTI.
  • 5G-S-TMSI reduces the PLMN ID and AMF Region ID fields.
  • the length of AMF Region ID is 8 bits
  • the length of AMF Set ID is 10 bits
  • the length of AMF Pointer is 6 bits
  • the length of 5G-TMSI is 32 bits.
  • the PLMN ID consists of a mobile device country code (Mobile Country Code, MCC) and a mobile device network code (Mobile Network Code, MNC), and different operators have different PLMN IDs. Different operators can be distinguished through PLMN ID.
  • gNB-DU can be shared by multiple operators.
  • the UE identity filled in the RRC establishment request message does not carry the PLMN ID, and the gNB-DU will It is impossible to determine which operator's network the UE is registered in, so it is possible to randomly select a gNB-CU to which the operator belongs to perform the RRC initialization process of the UE, that is, it is possible to establish an initial RRC connection for the UE according to the process shown in Figure 3, but This will increase the signaling load of gNB and increase the delay of UE access.
  • This embodiment proposes a base station selection method, which is used to select a gNB-CU during the UE establishing an initial RRC connection.
  • the gNB-DU receives the RRC setup request message sent by the UE.
  • the RRC setup request message includes the UE identity.
  • the gNB-DU can be a gNB-DU shared by multiple operators, or a gNB-DU to which one operator belongs. Since the RRC establishment request message received by the gNB includes the UE identity, and the UE identity does not include the PLMN ID, the gNB-DU cannot determine which operator network the UE is registered on according to the PLMN ID, and cannot determine which gNB- The CU performs the initial RRC establishment process of the UE.
  • Step S4020 Determine the PLMN ID corresponding to the UE according to the mapping relationship between the UE identity and the PLMN ID.
  • the UE ID does not include the PLMN ID
  • the UE ID includes fields that can reflect the characteristics of the operator. If the shared operators can negotiate and determine the numbering rule of the core network equipment AMF and the numbering rule of the 5G-TMSI, it will be different The UE's ⁇ UE ID> are different between operators.
  • the gNB-DU can determine the PLMN ID corresponding to the UE according to the mapping relationship between the UE identity and the PLMN ID.
  • the mapping relationship between the UE ID and the PLMN ID can be a preset mapping relationship, or it can be a different encoding rule for the UE ID negotiated between operators.
  • the operation corresponding to the UE ID can be determined Quotient, that is, determine the PLMN ID corresponding to the UE identity.
  • the UE when the UE is identified as the low-order 39 bits of 5G-S-TMSI, it includes the low-order 1 bit of AMF Set ID, AMF Pointer, and 5G-TMSI.
  • the low-order 1 bit of AMF Set ID, AMF Pointer and 5G-TMSI are all in the carrier's network to which the UE belongs.
  • When registering it is allocated to the UE by the AMF to which the operator belongs. If shared operators can negotiate and determine the numbering rule of the core network equipment AMF, then the ⁇ UE ID> of the UE between different operators is different.
  • the gNB-DU can determine the PLMN ID corresponding to the UE according to the mapping relationship between the UE identity and the PLMN ID.
  • Step S4030 Select the base station corresponding to the UE according to the PLMN ID corresponding to the UE.
  • the gNB-DU After the gNB-DU determines the PLMN ID corresponding to the UE, it can also determine the gNB-CU corresponding to the operator registered by the UE according to the PLMN ID.
  • the gNB-DU can establish an initial RRC connection for the UE through the gNB-CU corresponding to the operator registered by the UE, that is, step S3080 is performed, that is, the initial uplink RRC message is sent to the gNB CU corresponding to the PLMN ID corresponding to the UE.
  • the gNB-DU can accurately select the gNB-CU during the initial RRC connection establishment stage, thereby avoiding unnecessary increase in signaling load and increase in access delay caused by selecting the wrong gNB-CU.
  • the UE identity can be taken from the low 39 bits of the 5G-S-TMSI, which is a 5G truncated temporary mobile user identity, but the length is still relatively long.
  • the truncated UE identity can also be used as a basis for mapping with the PLMN ID.
  • the truncated UE identifier is a segment of the UE identifier, and the truncated UE identifier is a segment that can reflect the characteristics of the operator with which the UE is registered. For example, truncating the UE ID is the highest 7 bits of the UE ID, that is, the lowest 1 bit of the AMF Pointer and AMF Set ID in the 5G-S-TMSI.
  • the PLMN ID corresponding to the UE can be determined according to the mapping relationship between the truncated UE identity and the PLMN ID in the 5G-S-TMSI, so that only the mapping relationship between the truncated UE identity and the PLMN ID needs to be maintained in the gNB-DU, thus It can save space in gNB-DU.
  • the gNB-DU receives the RRC establishment request message sent by the UE, it obtains the UE identity in the RRC establishment request message, and determines the truncated UE identity according to the UE identity, and finally determines the mapping relationship between the truncated UE identity and the PLMN ID PLMN ID corresponding to the UE.
  • the PLMN ID corresponding to the UE can be determined according to the mapping relationship between the UE identity and the PLMN ID, which solves the problem of the UE identity sent by the UE. Without the PLMN ID, it is impossible to determine the operator with which the UE is registered, which causes the UE to establish an initial RRC connection with a large signaling overhead and a long access delay, which improves the user experience.
  • Fig. 5 is a flowchart of a method for selecting a base station according to another embodiment. As shown in Fig. 5, the method provided in this embodiment includes the following steps.
  • Step S5010 Receive an RRC establishment complete message sent by the UE, where the RRC establishment complete message includes the PLMN ID that the UE has selected.
  • the mapping relationship between the UE identity and the PLMN ID needs to be maintained.
  • the mapping relationship between the UE ID and the PLMN ID is calculated every time the UE completes the initial RRC connection establishment.
  • the gNB-DU will receive the RRC establishment complete message sent by the UE.
  • the UE has established a connection with the gNB-CU of the operator to which it belongs, so the RRC establishment complete message includes the PLMN that the UE has selected ID.
  • Step S5020 Count the mapping relationship between the UE ID and the PLMN ID.
  • the gNB-DU After the gNB-DU receives the RRC establishment completion message including the PLMN ID that the UE has selected from the UE, it can calculate the mapping relationship between the UE ID and the PLMN ID.
  • the gNB-DU may establish a mapping relationship table according to the mapping relationship, and whenever it receives an RRC establishment complete message including the PLMN ID that the UE has selected from a new UE, the mapping relationship table is updated.
  • the mapping relationship table shows the corresponding relationship between different PLMN IDs and UE identities. Since the UE identities allocated to the UE by the same operator have certain specific rules, the mapping relationship table shows the specific relationship between different PLMN IDs and corresponding UE identities. The law of mapping.
  • the mapping relationship table can be queried, that is, the embodiment shown in Figure 4 is executed to determine the UE’s corresponding PLMN ID.
  • Fig. 6 is a schematic diagram of the mapping relationship between the UE identity and the PLMN ID.
  • the gNB-DU adopts a 128 ⁇ m two-dimensional array structure to maintain the mapping relationship between the UE identity and the PLMN ID.
  • m represents the number of operators, if there is only one operator, m is 1, and if there are two operators, m is 2.
  • the gNB-DU may include a logical gNB selection device.
  • the logical gNB selection device is a logical device in the gNB-DU, which can be set in the gNB-DU.
  • the components complete the base station selection method shown in Figure 4 or Figure 5.
  • the logical gNB selection device can also be independently arranged outside the gNB-DU and connected to the gNB-DU to complete the base station selection method of the embodiment shown in FIG. 4 or FIG. 5.
  • the logical gNB selection device may include a measurement statistics module and a logical gNB allocation module.
  • the measurement statistics module is configured to implement the base station selection method provided in the embodiment shown in FIG.
  • the module is configured to implement the base station selection method provided in the embodiment shown in FIG. 4, that is, select the PLMN ID for the UE to determine the corresponding logical gNB according to the statistical correspondence between the UE ID and the PLMN ID.
  • the measurement statistics module of the logical gNB selection device maintains the mapping relationship table shown in FIG. 6, and the value of m is 1.
  • Fig. 7 is a flow chart of the measurement statistics module of the logical gNB selection device in the base station selection method of the first embodiment, as shown in Fig. 7:
  • Step S7010 the measurement statistics module performs an initialization operation, including the establishment of a 128 ⁇ 1 two-dimensional index table Table[128][1], where each row of Table[128][1] is associated with a truncated UE ID (S-UEID). ) Corresponds to one column corresponding to the PLMN ID (PLMN ID 1 ) of operator A.
  • S-UEID truncated UE ID
  • Step S7020 receives the measurement information of the external input module, comprising a UE identity and the UE selects the PLMN ID 1, PLMN ID 1 is the operator A PLMN ID.
  • Set the temporary variable to shorten the UE ID (S-UEID) the highest 7 bits of the UE ID.
  • the external modules include other modules in the gNB-DU or UE.
  • Step S7030 Update the Counter corresponding to PLMN ID 1 in the corresponding row of the UE's S-UEID in Table[128][1] to Counter+1.
  • Fig. 8 is a flow chart of the logical gNB allocation module of the logical gNB selection device of the base station selection method in the first embodiment, as shown in Fig. 8:
  • Step S8010 Receive a logical gNB allocation request from an external module, where the logical gNB allocation request includes the UE identity.
  • Step S8030 use the formula Calculate the probability P 1 of the PLMN ID 1 in the row corresponding to the UE’s S-UEID in Table[128][1], where Counter j represents the corresponding PLMN ID j in the row corresponding to the UE’s S-UEID in Table[128][1] Counter value.
  • Fig. 9 is a UE initial access signaling flow chart of the base station selection method in the first embodiment, as shown in Fig. 9:
  • step S9010 the UE sends an RRCSetupRequest message to gNB-DU 1 , and the message carries the UE identifier with a length of 39 bits.
  • Step S9020 gNB-DU A accesses the logical gNB allocation module of the logical gNB selection device to determine the PLMN ID 1 corresponding to the UE identifier, thereby determining the corresponding gNB-CU A.
  • Step S9030 gNB-DU A sends F1-Initial UL RRC Message to gNB-CU A.
  • Step S9040 gNB-CU A replies an F1-DL RRC Message Transfer message to gNB-DU A.
  • Step S9050 gNB-DU A sends an RRCSetup message to the UE.
  • step S9060 the UE sends an RRCSetupComplete message to gNB-DU A , and the operator corresponding to the PLMN ID information selected by the UE carried in the RRCSetupComplete message is operator A.
  • Step S9070 gNB-DU A inputs the UE ID and PLMN ID 1 to the measurement statistics module of the logical gNB selection device.
  • the measurement statistics module of the logical gNB selection device maintains the mapping relationship table shown in FIG. 6, and the value of m is 2.
  • Fig. 10 is a flowchart of the measurement statistics module of the logical gNB selection device in the base station selection method of the second embodiment, as shown in Fig. 10:
  • Step S10010 the measurement statistics module performs an initialization operation, including the establishment of a 128 ⁇ 2 two-dimensional index table Table[128][2], where each row of Table[128][2] is associated with a truncated UE ID (S-UEID). ), the first column of Table[128][2] corresponds to the PLMN ID of operator A (PLMN ID 1 ), and the second column of Table[128][2] corresponds to the PLMN ID of operator B (PLMN ID 2). )correspond.
  • S-UEID truncated UE ID
  • Step S10030 record the column position of the PLMN ID selected by the UE corresponding to Table[128][2] as x, and update the Counter corresponding to the PLMN ID x in the corresponding row of the UE’s S-UEID in Table[128][2] to Counter+1 .
  • Fig. 11 is a flow chart of the logical gNB allocation module of the logical gNB selection device of the base station selection method of the second embodiment, as shown in Fig. 11:
  • Step S11010 Receive a logical gNB allocation request from an external module, where the logical gNB allocation request includes the UE identity.
  • Step S11030 use the formula Probability Table [128] [2] Column 1 S-UEID corresponding row UE in the PLMN ID. 1 to P 1 and PLMN ID of two probability 2 P 2, where Counter j represents Table [128] [ The S-UEID of the UE in 2] corresponds to the Counter value corresponding to the PLMN ID j in the row. Of P 1 and P 2 , one is 1 and the other is 0. This is because the AMF Pointer number ranges of operators A and B are different, which determines that the UE identities of the two operators are different. More precisely In other words, the highest 7bit of the UE ID is different.
  • Step S11040 generate a random number (rand) uniformly distributed in [0,1], take the value according to rand and Select PLMN ID n . Select and output the PLMN ID with probability 1.
  • Figure 12 is a UE initial access signaling flow chart of the base station selection method of the second embodiment, as shown in Figure 12:
  • a UE of the operator B sends an RRCSetupRequest message to the gNB-DU A/B , and the RRCSetupRequest message carries a UE identifier with a length of 39 bits.
  • step S12020 the gNB-DU A/B accesses the logical gNB allocation module of the logical gNB selection device to determine the PLMN ID 2 corresponding to the UE identifier, thereby determining the corresponding gNB-CU B.
  • Step S12030 gNB-DU A/B sends F1-Initial UL RRC Message to gNB-CU B.
  • step S12040 gNB-CU B replies an F1-DL RRC Message Transfer message to gNB-DU A/B .
  • Step S12050 gNB-DU A/B sends an RRCSetup message to the UE.
  • step S12060 the UE sends an RRCSetupComplete message to gNB-DU A/B .
  • the RRCSetupComplete message carries the PLMN ID information selected by the UE, and the operator corresponding to the PLMN ID information selected by the UE is operator B.
  • step S12070 the gNB-DU A/B determines based on the PLMN ID information selected by the UE that the gNB-DU B should be accessed, and the gNB-DU B inputs the UE ID and PLMN ID 2 to the measurement statistics module of the logical gNB selection device.
  • operator A and operator B which use a gNB sharing mode in which multiple cell identities are broadcast and the operators have independent F1 interfaces.
  • the two operators did not negotiate, resulting in a partial overlap of the AMF numbers of the core network equipment of the two operators, that is, the value of AMF Pointer is the same, and the lowest 1bit of the AMF Set ID is also the same.
  • the measurement statistics module of the logical gNB selection device maintains the mapping relationship table shown in FIG. 6, and the value of m is 2.
  • Fig. 13 is a flowchart of the measurement statistics module of the logical gNB selection device in the base station selection method of the third embodiment, as shown in Fig. 13:
  • Step S13010 the measurement and statistics module performs an initialization operation, including the establishment of a 128 ⁇ 2 two-dimensional index table Table[128][2], where each row of Table[128][2] is associated with a truncated UE identifier (S- UEID), the first column of Table[128][2] corresponds to operator A’s PLMN ID (PLMN ID 1 ), and the second column of Table[128][2] corresponds to operator B’s PLMN ID (PLMN ID) 2 ) Correspondence.
  • S- UEID truncated UE identifier
  • Step S13030 record the column position of the PLMN ID selected by the UE corresponding to Table[128][2] as x, and update the Counter corresponding to the PLMN ID x in the corresponding row of the UE’s S-UEID in Table[128][2] to Counter+ 1.
  • Fig. 14 is a flow chart of the logical gNB allocation module of the logical gNB selection device of the base station selection method in the third embodiment, as shown in Fig. 14:
  • Step S14010 Receive a logical gNB allocation request from an external module, where the logical gNB allocation request includes the UE identity.
  • Step S14030 use the formula Probability Table [128] [2] Column 1 S-UEID corresponding row UE in the PLMN ID. 1 to P 1 and PLMN ID of two probability 2 P 2, where Counter j represents Table [128] [ The S-UEID of the UE in 2] corresponds to the Counter value corresponding to the PLMN ID j in the row.
  • Step S14040 generate a random number (rand) uniformly distributed in [0,1], take the value according to rand and Select PLMN ID n .
  • a PLMN ID is selected and output based on P 1 and P 2 , that is, the probability of selecting PLMN ID 1 is P 1 , and the probability of selecting PLMN ID 2 is P 2 .
  • Fig. 15 is a UE initial access signaling flow chart of the base station selection method of the third embodiment, as shown in Fig. 15:
  • a UE of the operator B sends an RRCSetupRequest message to the gNB-DU A/B , and the message carries a UE identifier with a length of 39 bits.
  • step S15020 the gNB-DU A/B accesses the logical gNB allocation module of the logical gNB selection device, and determines the PLMN ID 2 corresponding to the UE identifier based on statistical probability, thereby determining the corresponding gNB-CU B.
  • Step S15030 gNB-DU A/B sends F1-Initial UL RRC Message to gNB-CU B.
  • step S15040 gNB-CU B replies an F1-DL RRC Message Transfer message to gNB-DU A/B .
  • Step S15050 gNB-DU A/B sends an RRCSetup message to the UE.
  • step S15060 the UE sends an RRCSetupComplete message to gNB-DU A/B .
  • the RRCSetupComplete message carries the PLMN ID information selected by the UE, and the operator corresponding to the PLMN ID information selected by the UE is operator B.
  • step S15070 the gNB-DU A/B determines that the gNB-DU B should be accessed based on the PLMN ID information selected by the UE, and the gNB-DU B inputs the UE ID and PLMN ID 2 to the measurement statistics module of the logical gNB selection device.
  • FIG. 16 is a schematic structural diagram of a base station selection apparatus provided by an embodiment.
  • the base station selection apparatus provided in this embodiment includes: a receiving module 161 configured to receive an RRC establishment request message sent by a UE, and an RRC establishment
  • the request message includes the UE identity, which is taken from a section of 5G-S-TMSI;
  • the processing module 162 is set to determine the PLMN ID corresponding to the UE according to the mapping relationship between the UE identity and the PLMN ID;
  • the selection module 163 is set to be based on The PLMN ID corresponding to the UE selects the base station corresponding to the UE.
  • the base station selection device provided in this embodiment is set in the gNB-DU and is used to implement the base station selection method in the embodiment shown in FIG.
  • FIG. 17 is a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 171, a memory 172, a transmitter 173, and a receiver 174; the number of processors 171 in the base station can be one or There are multiple.
  • One processor 171 is taken as an example in FIG. 17; the processor 171 and the memory 172, the transmitter 173 and the receiver 174 in the base station can be connected by a bus or other methods. In FIG. 17, the connection by a bus is taken as an example.
  • the memory 172 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the base station selection method in the embodiment of FIG. 4 to FIG. 5 of this application (for example, base station Select the receiving module 161 and the processing module 162 in the device).
  • the processor 171 executes the software programs, instructions, and modules stored in the memory 172 to complete at least one functional application and data processing of the base station, that is, to implement the above-mentioned base station selection method.
  • the memory 172 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the base station, and the like.
  • the memory 172 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the transmitter 173 is a module or combination of devices capable of sending data through any wired or wireless network.
  • the receiver 174 is a module or a combination of devices that receives data through any wired or wireless network.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to perform a base station selection method.
  • the method includes: receiving an RRC setup sent by a user equipment UE.
  • Request message the RRC establishment request message includes the UE identity, the UE identity is taken from a section of 5G-S-TMSI; the PLMN ID corresponding to the UE is determined according to the mapping relationship between the UE identity and the PLMN ID; the UE is selected according to the PLMN ID corresponding to the UE The corresponding base station.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种基站选择方法、装置、基站和存储介质,包括:接收UE发送的RRC建立请求消息,RRC建立请求消息中包括取自UE的5G-S-TMSI中的一段的UE标识;根据UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID;根据UE对应的PLMN ID选择UE对应的基站。

Description

基站选择方法、装置、基站和存储介质 技术领域
本申请涉及移动通信领域,例如涉及一种基站选择方法、装置、基站和存储介质。
背景技术
根据第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的技术标准,下一代无线接入网(Next Generation-Radio Access Network,NG-RAN)包含多个下一代(Next Generation,NG)接口与第五代核心网(5th Generation Core network,5GC)连接的下一代节点B(Next Generation Node B,gNB)。
5G用户设备(User Equipment,UE)在5GC注册成功后,会得到5GC的接入和移动性管理功能(Access and Mobility Management Function,AMF)实体给UE分配的5G全球唯一临时用户设备标识(5G Globally Unique Temporary UE Identity,5G-GUTI)。为了使空口信令更小,提高空口效率,引入了5G截短的临时移动用户标识(5G Shorted Temporary Mobile Subscriber Identity,5G-S-TMSI),5G-S-TMSI是5G-GUTI的缩短形式,在5G-GUTI的基础上,5G-S-TMSI缩减了公用陆地移动网络标识(Public Land Mobile Network Identifier,PLMN ID)和AMF区域标识(AMF Region Identity,AMF Region ID)字段。
但是在NG-RAN中,gNB之间可以通过Xn控制面(Xn Control plane,Xn-C)接口互联。一个gNB由一个gNB集中单元(gNB Central Unit,gNB-CU)和多个通过F1接口与gNB-CU连接的gNB分布单元(gNB Distributed Unit,gNB-DU)组成。在采用广播多个小区标识,且运营商有独立F1接口的无线接入网共享场景下,一个共享gNB-DU实体可能连接多个gNB-CU。若UE接入共享gNB时采用5G-S-TMSI,由于5G-S-TMSI中没有携带PLMN ID和AMF Region ID,导致共享gNB-DU无法确定UE的所属运营商,可能导致接入选择错误的gNB-CU,存在增加gNB信令负荷和UE接入时延的问题,降低终端用户的网络体验。
发明内容
本申请提供一种基站选择方法、装置、基站和存储介质,降低基站信令开销和接入时延,提高了用户体验。
本申请实施例提供一种基站选择方法,包括:接收UE发送的无线资源控制 (Radio Resource Control,RRC)建立请求消息,RRC建立请求消息中包括UE标识,UE标识取自5G-S-TMSI中的一段;根据UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID;根据UE对应的PLMN ID选择UE对应的基站。
本申请实施例提供一种基站选择装置,包括:接收模块,设置为接收UE发送的RRC建立请求消息,RRC建立请求消息中包括UE标识,UE标识取自5G-S-TMSI中的一段;处理模块,设置为根据UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID;选择模块,设置为根据UE对应的PLMN ID选择UE对应的基站。
本申请实施例提供一种基站,包括处理器和存储器,处理器设置为运行储存在存储器里的程序指令以执行上述基站选择方法。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述基站选择方法。
附图说明
图1为NG-RAN组网示意图;
图2为两家运营商共享无线接入网的组网示意图;
图3为图2所示组网方式下运营商B的UE初始接入共享gNB的信令交互示意图;
图4为一实施例提供的一种基站选择方法的流程图;
图5为另一实施例提供的一种基站选择方法的流程图;
图6为UE标识和PLMN ID的映射关系示意图;
图7为实施例一的基站选择方法中逻辑gNB选择装置的测量统计模块的流程图;
图8为实施例一的基站选择方法的逻辑gNB选择装置的逻辑gNB分配模块流程图;
图9为实施例一的基站选择方法的UE初始接入信令流程图;
图10为实施例二的基站选择方法中逻辑gNB选择装置的测量统计模块的流程图;
图11为实施例二的基站选择方法的逻辑gNB选择装置的逻辑gNB分配模块流程图;
图12为实施例二的基站选择方法的UE初始接入信令流程图;
图13为实施例三的基站选择方法中逻辑gNB选择装置的测量统计模块的流程图;
图14为实施例三的基站选择方法的逻辑gNB选择装置的逻辑gNB分配模块流程图;
图15为实施例三的基站选择方法的UE初始接入信令流程图;
图16为一实施例提供的一种基站选择装置的结构示意图;
图17为一实施例提供的一种基站的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
图1为NG-RAN组网示意图,如图1所示,NG-RAN包含多个通过NG接口与5GC连接的gNB。gNB之间可以通过Xn-C接口互联。一个gNB由一个gNB-CU和多个通过F1接口与gNB-CU连接的gNB-DU组成。
5G UE在5GC注册成功后,会得到5GC的AMF实体给UE分配的5G-GUTI。5G-GUTI的组成为:<5G-GUTI>=<PLMN ID><AMF Region ID><AMF Set ID><AMF Pointer><5G-TMSI>。其中,PLMN ID,AMF Region ID,AMF集合标识(AMF Set Identity,AMF Set ID)和AMF指针(AMF Pointer)共同组成了全球唯一的AMF标识(Globally Unique AMF Identifier,GUAMI)。5G临时移动用户标识(5G Temporary Mobile Subscriber Identity,5G-TMSI)是AMF给UE分配的在AMF内唯一的标识。
在采用广播多个小区标识,且运营商有独立F1接口的无线接入网共享场景下,一个共享gNB-DU实体可能连接多个gNB-CU。如图2所示,图2为两家运营商共享无线接入网的组网示意图。共享的gNB-DU A/B实体通过F1接口分别与运营商A的gNB-CU A和运营商B的gNB-CU B连接,gNB-CU A通过NG接口与运营商A的5GC A连接,gNB-CU B通过NG接口与运营商B的5GC B连接。
图3为图2所示组网方式下运营商B的UE初始接入共享gNB的信令交互示意图,如图3所示:
步骤3010,UE发送RRC建立请求(RRCSetupRequest)消息给gNB-DU A/B,消息中携带长度为39比特(bit)的UE标识。该UE标识来自于5G-S-TMSI的低位39bit。5G-S-TMSI是5G-GUTI的缩短形式,<5G-S-TMSI>=<AMF Set ID><AMF Pointer><5G-TMSI>。
步骤3020,gNB-DU A/B无法基于该UE标识推导出UE选择的运营商的 PLMN ID,因此gNB-DU A/B随机选定运营商A的PLMN ID并基于运营商A的PLMN ID接入gNB-CU A。gNB-DU A/B发送初始上行RRC消息(F1-Initial Uplink Radio Resource Control Message,F1-Initial UL RRC Message)给gNB-CU A
步骤3030,gNB-CU A回复下行RRC消息传送(F1-Downlink Radio Resource Control Message Transfer,F1-DL RRC Message Transfer)消息给gNB-DU A/B
步骤3040,gNB-DU A/B发送RRC建立(RRCSetup)消息给UE。
步骤3050,UE发送RRC建立完成(RRCSetupComplete)消息给gNB-DU A/B,RRCSetupComplete消息中携带UE选择的PLMN ID信息,UE选择的PLMN ID信息对应的运营商为运营商B。
步骤3060,gNB-DU A/B基于UE选择的PLMN ID信息确定应该接入gNB-DU B
步骤3070,gNB-DU A/B发送UE上下文释放请求(F1-UE Context Release Request)消息给gNB-CU A,请求释放UE实例。
步骤3080,gNB-DU A/B发送F1-Initial UL RRC Message给gNB-CU B
从图3所示信令交互流程可以看出,在采用广播多个小区标识且运营商有独立F1接口的无线接入网共享的场景下,gNB-DU有一定概率选择错误的gNB-CU,存在增加gNB信令负荷和UE接入时延的问题,将降低终端用户的网络体验。
图4为一实施例提供的一种基站选择方法的流程图,如图4所示,本实施例提供的方法包括如下步骤。
步骤S4010,接收UE发送的RRC建立请求消息,RRC建立请求消息中包括UE标识,UE标识取自5G-S-TMSI中的一段。
本实施例提供的基站选择方法由NG-RAN中的gNB实现,根据图1所示NG-RAN网络架构可知,NG-RAN中的gNB由一个gNB-CU和多个gNB-DU组成。在共享无线接入网的场景中,gNB-DU可以被多个运营商共享使用,那么一个共享gNB-DU可能与多个gNB-CU连接,每个gNB-CU都属于一个运营商。gNB-DU和gNB-CU均为逻辑gNB,一个gNB中的gNB-DU和gNB-CU可以设置于一个物理gNB中,也可以分别为独立的物理gNB。
在UE初始接入网络的过程中,首先UE向gNB发送RRC建立请求(RRCSetupRequest)消息,RRCSetupRequest消息中携带取自5G-S-TMSI中的一段的UE标识。5G-S-TMSI是5G-GUTI的缩短形式,在5G-GUTI的基础上,5G-S-TMSI缩减了PLMN ID和AMF Region ID字段。
5G-GUTI和5G-S-TMSI的组成为:<5G-GUTI>=<PLMN ID><AMF Region ID 8bit><AMF Set ID 10bit><AMF Pointer 6bit><5G-TMSI 32bit>,<5G-S-TMSI>=<AMF Set ID 10bit><AMF Pointer 6bit><5G-TMSI 32bit>。
AMF Region ID长度为8bit,AMF Set ID长度为10bit,AMF Pointer长度为6bit,5G-TMSI长度为32bit。PLMN ID由移动设备国家代码(Mobile Country Code,MCC)和移动设备网络代码(Mobile Network Code,MNC)组成,不同运营商的PLMN ID均不相同。通过PLMN ID可以对不同运营商进行区分。
但在如图2所示的无线接入网共享的场景中,gNB-DU可以被多个运营商所共享,UE在RRC建立请求消息中填写的UE标识中未携带PLMN ID,gNB-DU将无法确定UE注册在哪个运营商的网路中,那么将可能随机选择一运营商所属的gNB-CU进行UE的RRC初始化过程,也就是可能根据图3所示流程为UE建立初始RRC连接,但这将增加gNB的信令负荷,增加UE接入的时延。
本实施例提出了一种基站选择方法,用于在UE建立初始RRC连接的过程中对gNB-CU进行选择。首先,gNB-DU接收UE发送的RRC建立请求消息,RRC建立请求消息中包括UE标识,gNB-DU可以为多个运营商共享的gNB-DU,也可以是一个运营商所属的gNB-DU。由于gNB接收到的RRC建立请求消息中包括UE标识,而UE标识中不包括PLMN ID,因此gNB-DU无法根据PLMN ID确定UE注册在哪个运营商网络中,也就无法确定需要通过哪个gNB-CU进行UE的初始RRC建立过程。
UE标识可以为5G-S-TMSI中的一段,由于AMF为多个运营商所属的网络设备,因此多个运营商可以采用不同的编码规则对AMF Set ID和AMF Pointer进行编码,另外,5G-TMSI也可以根据不同运营商制定不同的编码规则,因此,可以采用5G-S-TMSI中能够体现出不同运营商特征的一段,作为UE标识。例如,UE标识可以为5G-S-TMSI的低位39bit。也就是<UE标识>=<AMF Set ID低位1bit><AMF Pointer 6bit><5G-TMSI 32bit>。
步骤S4020,根据UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID。
虽然UE标识中未包括PLMN ID,但UE标识中包括能够体现运营商特征的字段,如果共享的运营商之间能够协商确定核心网设备AMF的编号规则,以及5G-TMSI的编号规则,那么不同运营商间UE的<UE标识>就是不相同的。gNB-DU在获取UE标识后,根据UE标识与PLMN ID的映射关系,可以确定UE对应的PLMN ID。UE标识与PLMN ID的映射关系可以为预设的映射关系,或者可以是运营商之间协商不同的UE标识的编码规则,通过对UE标识的解析处理后,即可确定UE标识所对应的运营商,也即确定UE标识对应的PLMN ID。
例如,当UE标识为5G-S-TMSI的低位39bit时,包括AMF Set ID低位1bit、AMF Pointer、5G-TMSI,AMF Set ID低位1bit、AMF Pointer和5G-TMSI均为UE在所属运营商网络中注册时,由运营商所属AMF为UE分配的。如果共享的运营商之间能够协商确定核心网设备AMF的编号规则,那么不同运营商间UE的<UE标识>就是不相同的。gNB-DU在获取UE标识后,根据UE标识与PLMN ID的映射关系,可以确定UE对应的PLMN ID。
步骤S4030,根据UE对应的PLMN ID选择UE对应的基站。
gNB-DU在确定了UE对应的PLMN ID后,也就可以根据PLMN ID确定UE注册的运营商对应的gNB-CU。gNB-DU即可通过UE注册的运营商对应的gNB-CU为UE建立初始RRC连接,即执行步骤S3080,也就是向UE对应的PLMN ID对应的gNB CU发送初始上行RRC消息。
这样就使得gNB-DU在初始RRC连接建立阶段可以准确选择gNB-CU,从而避免因为选择错误的gNB-CU而造成不必要的信令负荷的增加和接入时延的增加。
在一实施例中,UE标识可以取自5G截短的临时移动用户标识5G-S-TMSI的低位39bit,但长度仍然较长,还可以采用截短UE标识作为与PLMN ID的映射基础。截短UE标识为UE标识中的一段,且截短UE标识为能够体现出UE注册的运营商特征的一段。例如截短UE标识为UE标识的最高7bit,也就是5G-S-TMSI中的AMF Pointer和AMF Set ID的最低1bit。截短UE标识组成如下:<截短UE标识>=<AMF Set ID低位1bit><AMF Pointer 6bit>。
那么就可以根据5G-S-TMSI中的截短UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID,这样在gNB-DU中仅需维护截短UE标识与PLMN ID的映射关系,从而可以节约gNB-DU中的空间。那么在gNB-DU接收到UE发送的RRC建立请求消息后,获取RRC建立请求消息中的UE标识,并根据UE标识确定截短UE标识,最后根据截短UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID。不同运营商需要协商AMF的编号规则,不同运营商间的<AMF Set ID><AMF Pointer>的最低7bit取值不能相同,也就意味着不同运营商间<AMF Set ID>的最低1bit和<AMF Pointer>组成的7bit数值不能相同。
本实施例提供的基站选择方法,在接收到UE发送的包括UE标识的RRC建立请求消息后,可以根据UE标识与PLMN ID的映射关系确定UE对应的PLMN ID,解决了UE发送的UE标识中没有PLMN ID,无法确定UE注册的运营商而导致的UE建立初始RRC连接的信令开销较大,接入时延较长的问题,提高了用户体验。
图5为另一实施例提供的一种基站选择方法的流程图,如图5所示,本实施例提供的方法包括如下步骤。
步骤S5010,接收UE发送的RRC建立完成消息,RRC建立完成消息中包括UE已选择的PLMN ID。
根据图4所示实施例可知,若要根据UE标识确定UE对应的PLMN ID,那么就需要维护UE标识与PLMN ID的映射关系。而UE标识与PLMN ID的映射关系是在每次UE完成初始RRC连接建立之后进行统计的。当UE完成初始RRC连接建立,gNB-DU会接收到UE发送的RRC建立完成消息,此时UE已经与所属运营商的gNB-CU建立了连接,因此RRC建立完成消息中包括UE已选择的PLMN ID。
步骤S5020,统计UE标识与PLMN ID的映射关系。
当gNB-DU接收到UE发送的包括UE已选择的PLMN ID的RRC建立完成消息后,即可统计UE标识与PLMN ID的映射关系。gNB-DU可以根据该映射关系建立映射关系表,每当接收到新的UE发送的包括UE已选择的PLMN ID的RRC建立完成消息,即更新该映射关系表。映射关系表中表示了不同PLMN ID与UE标识的对应关系,由于同一个运营商为UE分配的UE标识具有一定的特定规律,因此映射关系表中表示了不同PLMN ID与对应的UE标识的特定映射规律。那么当gNB-DU再次接收到UE发送的RRC建立请求消息后,若RRC建立请求消息中包括UE标识,即可查询该映射关系表,也即执行图4所示实施例,从而确定UE对应的PLMN ID。
图6为UE标识和PLMN ID的映射关系示意图,如图6所示,gNB-DU采用128×m的二维数组结构方式维护UE标识和PLMN ID的映射关系。m表示运营商的数量,若仅有一家运营商则m为1,若有两家运营商则m为2。每行中的Counter表示计数,每当根据接收到的UE已选择的PLMN ID,更新映射关系表时,即令对应PLMN ID行中的Counter=Counter+1。
为了实现上述实施例提供的基站选择方法,gNB-DU中可以包括逻辑gNB选择装置,逻辑gNB选择装置为gNB-DU中的逻辑装置,可以设置于gNB-DU内,由gNB-DU中的相关部件完成图4或图5所示的基站选择方法。或者逻辑gNB选择装置还可以独立设置于gNB-DU之外,与gNB-DU连接,完成图4或图5所示实施例的基站选择方法。逻辑gNB选择装置可以包括测量统计模块和逻辑gNB分配模块,其中测量统计模块设置为实现图5所示实施例提供的基站选择方法,也即统计UE标识与PLMN ID的映射关系,而逻辑gNB分配模块设置为实现图4所示实施例提供的基站选择方法,也即根据已统计的UE标识与PLMN ID的对应关系,为UE选择PLMN ID以确定对应的逻辑gNB。
下面以几个实施例对本申请实施例提供的基站选择方法进行说明。
实施例一
在本实施例中,仅有一家运营商A,那么逻辑gNB选择装置的测量统计模块维护如图6所示的映射关系表,m取值为1。
图7为实施例一的基站选择方法中逻辑gNB选择装置的测量统计模块的流程图,如图7所示:
步骤S7010,测量统计模块执行初始化操作,包括建立128×1的二维索引表Table[128][1],其中,Table[128][1]的每一行与一个截短UE标识(S-UEID)对应,一列与运营商A的PLMN ID(PLMN ID 1)对应。
步骤S7020,接收外部模块输入的测量信息,包括UE标识和UE选择的PLMN ID 1,PLMN ID 1为运营商A的PLMN ID。设置临时变量截短UE标识(S-UEID)=UE标识的最高7bit。外部模块包括gNB-DU中的其他模块或者UE。
步骤S7030,更新Table[128][1]中UE的S-UEID对应行中PLMN ID 1对应的Counter为Counter+1。
图8为实施例一的基站选择方法的逻辑gNB选择装置的逻辑gNB分配模块流程图,如图8所示:
步骤S8010,接收外部模块的逻辑gNB分配请求,逻辑gNB分配请求中包括UE标识。
步骤S8020,根据UE标识设置临时变量截短UE标识(S-UEID)=UE标识的最高7bit。
步骤S8030,使用公式
Figure PCTCN2021085002-appb-000001
计算Table[128][1]中UE的S-UEID对应行中PLMN ID 1的概率P 1,其中Counter j表示Table[128][1]中UE的S-UEID对应行中PLMN ID j对应的Counter值。计算得出PLMN ID 1的概率为P 1=1。
步骤S8040,产生一个在[0,1]内均匀分布的随机数(rand),根据rand取值以及
Figure PCTCN2021085002-appb-000002
得到n=1,最终选择并输出PLMN ID 1
图9为实施例一的基站选择方法的UE初始接入信令流程图,如图9所示:
步骤S9010,UE发送RRCSetupRequest消息给gNB-DU 1,消息中携带长度为39bit的UE标识。该UE标识来自于5G-S-TMSI的低位39bit, <5G-S-TMSI>=<AMF Set ID><AMF Pointer><5G-TMSI>。
步骤S9020,gNB-DU A访问逻辑gNB选择装置的逻辑gNB分配模块,确定UE标识对应的PLMN ID 1,由此确定对应gNB-CU A
步骤S9030,gNB-DU A发送F1-Initial UL RRC Message给gNB-CU A
步骤S9040,gNB-CU A回复F1-DL RRC Message Transfer消息给gNB-DU A
步骤S9050,gNB-DU A发送RRCSetup消息给UE。
步骤S9060,UE发送RRCSetupComplete消息给gNB-DU A,RRCSetupComplete消息中携带的UE选择的PLMN ID信息对应的运营商为运营商A。
步骤S9070,gNB-DU A输入UE标识和PLMN ID 1给逻辑gNB选择装置的测量统计模块。
实施例二
在本实施例中,存在两家运营商,运营商A和运营商B,采用广播多个小区标识且运营商有独立F1接口的gNB共享方式。两家运营商经过协商,运营商A的核心网设备AMF的编号规则为AMF Pointer取值范围[0,9],运营商B的核心网设备AMF的编号规则为AMF Pointer取值范围[10,19]。那么逻辑gNB选择装置的测量统计模块维护如图6所示的映射关系表,m取值为2。
图10为实施例二的基站选择方法中逻辑gNB选择装置的测量统计模块的流程图,如图10所示:
步骤S10010,测量统计模块执行初始化操作,包括建立128×2的二维索引表Table[128][2],其中,Table[128][2]的每一行与一个截短UE标识(S-UEID)对应,Table[128][2]的第1列与运营商A的PLMN ID(PLMN ID 1)对应,Table[128][2]的第2列与运营商B的PLMN ID(PLMN ID 2)对应。
步骤S10020,接收外部模块输入的测量信息,包括UE标识和UE选择的PLMN ID。设置临时变量截短UE标识(S-UEID)=UE标识的最高7bit。
步骤S10030,记UE选择的PLMN ID对应Table[128][2]的列位置为x,更新Table[128][2]中UE的S-UEID对应行中PLMN ID x对应的Counter为Counter+1。
图11为实施例二的基站选择方法的逻辑gNB选择装置的逻辑gNB分配模块流程图,如图11所示:
步骤S11010,接收外部模块的逻辑gNB分配请求,逻辑gNB分配请求中包括UE标识。
步骤S11020,根据UE标识设置临时变量截短UE标识(S-UEID)=UE标识的最高7bit。
步骤S11030,使用公式
Figure PCTCN2021085002-appb-000003
计算Table[128][2]中UE的S-UEID对应行中第1列的PLMN ID 1的概率P 1和第2列的PLMN ID 2的概率P 2,其中Counter j表示Table[128][2]中UE的S-UEID对应行中PLMN ID j对应的Counter值。P 1和P 2两者中,一个为1,另一个为0,这是因为运营商A,B的AMF Pointer编号范围不一样,决定了两家运营商UE标识是不一样的,更确切地说,UE标识的最高7bit是不一样的。
步骤S11040,产生一个在[0,1]内均匀分布的随机数(rand),根据rand取值以及
Figure PCTCN2021085002-appb-000004
选择PLMN ID n。选择并输出概率为1的PLMN ID。
图12为实施例二的基站选择方法的UE初始接入信令流程图,如图12所示:
步骤S12010,运营商B的一个UE发送RRCSetupRequest消息给gNB-DU A/B,RRCSetupRequest消息中携带长度为39bit的UE标识。该UE标识来自于5G-S-TMSI的低位39bit,<5G-S-TMSI>=<AMF Set ID><AMF Pointer><5G-TMSI>。
步骤S12020,gNB-DU A/B访问逻辑gNB选择装置的逻辑gNB分配模块,确定UE标识对应的PLMN ID 2,由此确定对应gNB-CU B
步骤S12030,gNB-DU A/B发送F1-Initial UL RRC Message给gNB-CU B
步骤S12040,gNB-CU B回复F1-DL RRC Message Transfer消息给gNB-DU A/B
步骤S12050,gNB-DU A/B发送RRCSetup消息给UE。
步骤S12060,UE发送RRCSetupComplete消息给gNB-DU A/B,RRCSetupComplete消息中携带UE选择的PLMN ID信息,UE选择的PLMN ID信息对应的运营商为运营商B。
步骤S12070,gNB-DU A/B基于UE选择的PLMN ID信息确定应该接入gNB-DU B,gNB-DU B输入UE标识和PLMN ID 2给逻辑gNB选择装置的测量统计模块。
实施例三
在本实施例中,存在两家运营商,运营商A和运营商B,采用广播多个小区标识且运营商有独立F1接口的gNB共享方式。两家运营商未经过协商,导致两家运营商核心网设备AMF的编号恰好发生部分重叠,即AMF Pointer取值一样,且AMF Set ID的最低1bit也一样。那么逻辑gNB选择装置的测量统计模块维护如图6所示的映射关系表,m取值为2。
图13为实施例三的基站选择方法中逻辑gNB选择装置的测量统计模块的流程图,如图13所示:
步骤S13010,测量统计模块工作执行初始化操作,包括建立128×2的二维索引表Table[128][2],其中,Table[128][2]的每一行与一个截短UE标识(S-UEID)对应,Table[128][2]的第1列与运营商A的PLMN ID(PLMN ID 1)对应,Table[128][2]的第2列与运营商B的PLMN ID(PLMN ID 2)对应。
步骤S13020,接收外部模块输入的测量信息,包括UE标识和UE选择的PLMN ID。设置临时变量截短UE标识S-UEID=UE标识的最高7bit。
步骤S13030,记UE选择的PLMN ID对应Table[128][2]的列位置为x,更新Table[128][2]中UE的S-UEID的对应行中PLMN ID x对应的Counter为Counter+1。
图14为实施例三的基站选择方法的逻辑gNB选择装置的逻辑gNB分配模块流程图,如图14所示:
步骤S14010,接收外部模块的逻辑gNB分配请求,逻辑gNB分配请求中包括UE标识。
步骤S14020,根据UE标识设置临时变量截短UE标识(S-UEID)=UE标识的最高7bit。
步骤S14030,使用公式
Figure PCTCN2021085002-appb-000005
计算Table[128][2]中UE的S-UEID对应行中第1列的PLMN ID 1的概率P 1和第2列的PLMN ID 2的概率P 2,其中Counter j表示Table[128][2]中UE的S-UEID对应行中PLMN ID j对应的Counter值。
步骤S14040,产生一个在[0,1]内均匀分布的随机数(rand),根据rand取值以及
Figure PCTCN2021085002-appb-000006
选择PLMN ID n。基于P 1和P 2选择并输出一个PLMN ID,即选择PLMN ID 1的概率为P 1,选择PLMN ID 2的概率为P 2
图15为实施例三的基站选择方法的UE初始接入信令流程图,如图15所示:
步骤S15010,运营商B的一个UE发送RRCSetupRequest消息给gNB-DU A/B,消息中携带长度为39bit的UE标识。该UE标识来自于5G-S-TMSI的低位39bit。<5G-S-TMSI>=<AMF Set ID><AMF Pointer><5G-TMSI>。
步骤S15020,gNB-DU A/B访问逻辑gNB选择装置的逻辑gNB分配模块,基于统计概率性确定UE标识对应的PLMN ID 2,由此确定对应gNB-CU B
步骤S15030,gNB-DU A/B发送F1-Initial UL RRC Message给gNB-CU B
步骤S15040,gNB-CU B回复F1-DL RRC Message Transfer消息给gNB-DU A/B
步骤S15050,gNB-DU A/B发送RRCSetup消息给UE。
步骤S15060,UE发送RRCSetupComplete消息给gNB-DU A/B,RRCSetupComplete消息中携带UE选择的PLMN ID信息,UE选择的PLMN ID信息对应的运营商为运营商B。
步骤S15070,gNB-DU A/B基于UE选择的PLMN ID信息确定应该接入gNB-DU B,gNB-DU B输入UE标识和PLMN ID 2给逻辑gNB选择装置的测量统计模块。
图16为一实施例提供的一种基站选择装置的结构示意图,如图16所示,本实施例提供的基站选择装置包括:接收模块161,设置为接收UE发送的RRC建立请求消息,RRC建立请求消息中包括UE标识,UE标识取自5G-S-TMSI中的一段;处理模块162,设置为根据UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID;选择模块163,设置为根据UE对应的PLMN ID选择UE对应的基站。
本实施例提供的基站选择装置设置于gNB-DU中,用于实现图4所示实施例的基站选择方法,本实施例提供的基站选择装置实现原理类似,此处不再赘述。
图17为一实施例提供的一种基站的结构示意图,如图17所示,该基站包括处理器171、存储器172、发送器173和接收器174;基站中处理器171的数量可以是一个或多个,图17中以一个处理器171为例;基站中的处理器171和存储器172、发送器173和接收器174;可以通过总线或其他方式连接,图17中以通过总线连接为例。
存储器172作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图4-图5实施例中的基站选择方法对应的程序指令/模块(例如,基站选择装置中的接收模块161、处理模块162)。处理器171通过运行存储在存储器172中的软件程序、指令以及模块,从而完成基站至 少一种功能应用以及数据处理,即实现上述的基站选择方法。
存储器172可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据基站的使用所创建的数据等。此外,存储器172可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
发送器173为能够通过任一种有线或无线网络发送数据的模块或器件组合。接收器174为通过任一种有线或无线网络接收数据的模块或器件组合。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种基站选择方法方法,该方法包括:接收用户设备UE发送的RRC建立请求消息,RRC建立请求消息中包括UE标识,UE标识取自5G-S-TMSI中的一段;根据UE标识与PLMN ID的映射关系,确定UE对应的PLMN ID;根据UE对应的PLMN ID选择UE对应的基站。
以上仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing, DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (10)

  1. 一种基站选择方法,包括:
    接收用户设备UE发送的无线资源控制RRC建立请求消息,所述RRC建立请求消息中包括UE标识,所述UE标识取自所述UE的5G截短的临时移动用户标识5G-S-TMSI中的一段;
    根据所述UE标识与公用陆地移动网络标识PLMN ID的映射关系,确定所述UE对应的PLMN ID;
    根据所述UE对应的PLMN ID选择所述UE对应的基站。
  2. 根据权利要求1所述的方法,其中,所述根据所述UE标识与PLMN ID的映射关系,确定所述UE对应的PLMN ID,包括:
    根据所述UE标识中的截短UE标识与PLMN ID的映射关系,确定所述UE对应的PLMN ID,其中,所述截短UE标识为所述UE标识中的一段。
  3. 根据权利要求2所述的方法,其中,所述根据所述UE标识中的截短UE标识与PLMN ID的映射关系,确定所述UE对应的PLMN ID,包括:
    确定所述UE标识,根据所述UE标识确定所述截短UE标识;
    根据所述截短UE标识与PLMN ID的映射关系,确定所述UE对应的PLMN ID。
  4. 根据权利要求2所述的方法,其中,所述根据所述UE标识中的截短UE标识与PLMN ID的映射关系,确定所述UE对应的PLMN ID,包括:
    在不同PLMN ID对应的截短UE标识不同的情况下,根据所述UE标识中的截短UE标识与PLMN ID的映射关系,确定所述UE对应的PLMN ID。
  5. 根据权利要求2~4任一项所述的方法,其中,所述UE标识为所述5G-S-TMSI的低位39比特,所述截短UE标识为所述UE标识的最高7比特。
  6. 根据权利要求1~4任一项所述的方法,还包括:
    接收所述UE发送的RRC建立完成消息,所述RRC建立完成消息中包括所述UE已选择的PLMN ID;
    统计所述UE标识与PLMN ID的映射关系。
  7. 根据权利要求1~4任一项所述的方法,所述根据所述UE标识与PLMN ID的映射关系,确定所述UE对应的PLMN ID之后,还包括:
    向所述UE对应的PLMN ID对应的下一代节点B集中单元gNB CU发送初始上行RRC消息。
  8. 一种基站选择装置,包括:
    接收模块,设置为接收用户设备UE发送的无线资源控制RRC建立请求消息,所述RRC建立请求消息中包括UE标识,所述UE标识取自5G截断的临时移动用户标识5G-S-TMSI中的一段;
    处理模块,设置为根据所述UE标识与公用陆地移动网络标识PLMN ID的映射关系,确定所述UE对应的PLMN ID;
    选择模块,设置为根据所述UE对应的PLMN ID选择所述UE对应的基站。
  9. 一种基站,包括处理器和存储器,其中,所述处理器设置为运行储存在所述存储器里的程序指令以执行根据权利要求1~7中任意一项所述的基站选择方法。
  10. 一种计算机可读存储介质,存储有计算机程序,该程序被处理器执行时实现如权利要求1~7中任一所述的基站选择方法。
PCT/CN2021/085002 2020-05-07 2021-04-01 基站选择方法、装置、基站和存储介质 WO2021223553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010379187.6 2020-05-07
CN202010379187.6A CN113630841A (zh) 2020-05-07 2020-05-07 基站选择方法、装置、基站和存储介质

Publications (1)

Publication Number Publication Date
WO2021223553A1 true WO2021223553A1 (zh) 2021-11-11

Family

ID=78376984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085002 WO2021223553A1 (zh) 2020-05-07 2021-04-01 基站选择方法、装置、基站和存储介质

Country Status (2)

Country Link
CN (1) CN113630841A (zh)
WO (1) WO2021223553A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032702A1 (en) * 2018-08-09 2020-02-13 Samsung Electronics Co., Ltd. Method and apparatus for configuring network connection in mobile communication system
CN110913456A (zh) * 2018-09-17 2020-03-24 华为技术有限公司 一种核心网类型的指示方法和通信装置
CN110944355A (zh) * 2018-09-21 2020-03-31 维沃移动通信有限公司 信息上报方法、接收方法、终端及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032702A1 (en) * 2018-08-09 2020-02-13 Samsung Electronics Co., Ltd. Method and apparatus for configuring network connection in mobile communication system
CN110913456A (zh) * 2018-09-17 2020-03-24 华为技术有限公司 一种核心网类型的指示方法和通信装置
CN110944355A (zh) * 2018-09-21 2020-03-31 维沃移动通信有限公司 信息上报方法、接收方法、终端及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Further Discussions on RAN Sharing", 3GPP DRAFT; R3-190581 FURTHER DISCUSSIONS ON RAN SHARING, vol. RAN WG3, 15 February 2019 (2019-02-15), Athens, Greece, pages 1 - 7, XP051604519 *
NOKIA; NOKIA SHANGHAI BELL; KDDI: "Deployment Options for Network Sharing", 3GPP DRAFT; R3-186754 NETWORK SHARING, vol. RAN WG3, 2 November 2018 (2018-11-02), Spokane, USA, pages 1 - 3, XP051482871 *

Also Published As

Publication number Publication date
CN113630841A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN113676896B (zh) 通信方法及相关设备
US10104700B2 (en) Message processing method, MME selection method, and apparatuses
EP4362550A2 (en) Mobility management method, apparatus, and system
EP4362434A2 (en) Pdu type setting method, ue policy setting method, and related entity
EP3910913A1 (en) Data transmission method, device, and system
US11172399B2 (en) Default quality of service (QoS) control method and device
US8982787B2 (en) Method and apparatus for connecting to network from mobile terminal
JP2009296589A (ja) Pdcchのdssを定める方法及び装置
EP4319307A2 (en) Communication method and communications apparatus
CN109391909B (zh) 一种组播方法及装置
US20200275258A1 (en) Communications method and apparatus
US11968729B2 (en) Method and apparatus for allocating PDU session ID for terminal device
US7227848B2 (en) Method and apparatus for supporting multiple packet data service connections
JP2022536665A (ja) ロジカルtsnブリッジの方法および装置
US20210014860A1 (en) Data Transmission Method, Communications Device, and Network Device
WO2021047403A1 (zh) 一种多个nrf场景下的授权方法及装置
CN110719611A (zh) 一种报文发送方法和装置
WO2020173295A1 (zh) 随机接入方法和装置
EP3457772A1 (en) Method for updating system information, terminal device, and network-side device
CN109714376B (zh) 一种固网报文的发送方法、装置及系统
TW201944839A (zh) 為早期資料傳輸建立協定資料單元之技術
WO2021223553A1 (zh) 基站选择方法、装置、基站和存储介质
TWI698144B (zh) 資源配置方法、終端及網路側設備
WO2020071980A1 (en) Method for identifying terminal capabilities in a wireless communication system
EP4132016A1 (en) Method and apparatus for using proximity discovery identification, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21799639

Country of ref document: EP

Kind code of ref document: A1