WO2021223342A1 - Appareil de fusion de glace en ligne pour réseau de distribution d'énergie - Google Patents

Appareil de fusion de glace en ligne pour réseau de distribution d'énergie Download PDF

Info

Publication number
WO2021223342A1
WO2021223342A1 PCT/CN2020/108199 CN2020108199W WO2021223342A1 WO 2021223342 A1 WO2021223342 A1 WO 2021223342A1 CN 2020108199 W CN2020108199 W CN 2020108199W WO 2021223342 A1 WO2021223342 A1 WO 2021223342A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
grounding transformer
grounding
transformer
distribution network
Prior art date
Application number
PCT/CN2020/108199
Other languages
English (en)
Chinese (zh)
Inventor
杨芳
唐小亮
周亚兵
Original Assignee
广东电网有限责任公司清远供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司清远供电局 filed Critical 广东电网有限责任公司清远供电局
Publication of WO2021223342A1 publication Critical patent/WO2021223342A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/16Devices for removing snow or ice from lines or cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars

Definitions

  • This application relates to the technical field of ice melting in a power distribution network, for example, to an online ice melting device for a power distribution network.
  • Line icing is a serious natural disaster, which can cause accidents such as line overload, wire galloping, and insulator string flashover, which seriously endangers the safe operation of the power system.
  • the main ice melting methods of the power distribution network include mechanical deicing and electric ice melting.
  • the electrothermal ice melting methods in the related technologies are all power failure melting, that is, when the line is iced, the line needs to be disconnected to temporarily stop the line from being energized, and then an external power supply device is connected to the line, and then the line is energized to achieve thermal ice melting.
  • the present application provides an online ice melting device for a power distribution network, which can handle the problem that the electric ice melting method requires a power transmission line to melt the ice.
  • An embodiment provides an online ice melting device for a power distribution network; including a grounding transformer, an adjustable reactor, and a lightning protection cable;
  • the grounding transformer is connected in series with the adjustable reactor, and the incoming line of the grounding transformer is connected to one end of the target line; the grounding transformer is used to provide a neutral point, and the adjustable reactor is connected to the neutral point;
  • the outlet end of the adjustable reactor is connected to the lightning protection wire, and the lightning protection wire is used to connect the other end of the target line;
  • the adjustable reactor, the grounding transformer, the target line, and the lightning conductor form a closed loop, and a zero-sequence current is generated and superimposed on the original current of the target line to melt ice.
  • the grounding transformer is connected to the target line in a Z-connection manner, the grounding transformer is a three-phase grounding transformer, and the three incoming terminals of the three-phase grounding transformer can be connected to the Three-phase connection of grid lines.
  • the target line is any single-phase circuit.
  • the adjustable reactor includes a dual-winding air gap transformer and an inverter
  • the dual-winding air gap transformer includes a primary winding, a secondary winding and a detection device; the detection device is used to detect a circuit signal in the primary winding and generate a control signal;
  • the inverter receives the control signal, and continuously adjusts the reactance value of the secondary winding according to the control signal.
  • a switch is included; one end of the switch is connected to the target circuit, and the other end is connected to the grounding transformer.
  • it further includes a neutral point non-effective grounding system;
  • the neutral point non-effective grounding system is connected in parallel with the switching switch and the grounding transformer;
  • the switching switch is used to switch the target line and the neutral Non-effective grounding system or the connection of the grounding transformer;
  • the input end of the switch switch is connected to the target line, the first output end of the switch switch is connected to the neutral point ineffective grounding system, and the second output end of the switch switch is connected to the ground
  • the transformer is connected, and the ground terminal of the switch switch is grounded.
  • the online ice melting device of the distribution network of the present application connects the grounding transformer and the adjustable reactor in series.
  • the line voltage remains unchanged under the action of the grounding transformer, and only the three-phase ground voltage changes , Can supply power to users without interruption, and allow to continue to run for a period of time with single-phase ground fault.
  • the adjustable reactor adjusts its own reactance value continuously to realize the continuous adjustment of the ice melting current. Therefore, the online ice melting device of the distribution network can realize the function of non-power failure of the line during the ice melting period, and effectively reduce the loss of line power outage caused by ice coating and line power outage caused by ice melting.
  • Figure 1 is a schematic diagram of an online ice melting device for a distribution network provided by an embodiment of the application
  • Fig. 2 is a schematic diagram of the structure of the double-winding air-gap transformer of the adjustable reactor in Fig. 1;
  • Figure 3 shows the T-type equivalent circuit of a dual-winding air gap transformer
  • FIG. 4 is a schematic diagram of a grounding transformer structure of an online ice melting device for a distribution network provided by an embodiment of the application.
  • transformer 1 Transformer 1, adjustable reactor 2, lightning protection wire 3, switch switch 4, neutral point non-effective grounding system 5.
  • an embodiment of the application provides an online ice melting device for a distribution network, including a target line in a distribution network line, a grounding transformer 1, a variable reactor 2, a lightning protection line 3, and a switching knife Gate 4;
  • the adjustable reactor 2 When melting ice, connect the tail end of the target line to the lightning protection line 3, the adjustable reactor 2, the grounding transformer 1, the target line (the line where the target line needs to melt the ice) and the lightning protection line 3 form a closed loop to make the target line single-phase Short circuit.
  • Close the switching switch 4 connect the grounding transformer 1 to the target line, and start the grounding transformer 1 to compensate the zero-sequence loop.
  • the line current of the single-phase line connected to the lightning protection line increases to the melting current, while the other two The phase current remains basically unchanged.
  • the grounding transformer 1 is used to provide a neutral point to avoid large changes in the current that affects other two-phase lines other than the target line;
  • the adjustable reactor 2 is used to continuously adjust the ice melting circuit (C-phase line, adjustable The reactance value of the closed loop formed by the reactor 2, the grounding transformer 1, and the lightning protection wire 3) can then adjust the size of the ice melting circuit current.
  • the adjustable reactor 2 can also be used for arc suppression.
  • the return current of melting ice should be greater than or equal to the critical melting current value to avoid the continuous operation time of the power distribution network with single-phase ground fault exceeding the allowable value.
  • the relevant operating regulations of the power system stipulate that the longest continuous operation with a single-phase ground fault is 2h.
  • the thermal ice melting scheme in the related technology is generally formulated according to the melting time of 1 hour, and the AC critical ice melting current is determined according to the conductor cross section, climatic conditions and ice thickness, that is, when the line current is greater than the critical melting current, the ice melting time is less than 1 hour. Therefore, single-phase ground fault current ice melting can meet the requirements of on-line ice melting for distribution lines.
  • the grounding transformer 1 and the target circuit adopt a Z-type (zigzag type) connection method.
  • the third harmonic electromotive force in each phase cancels each other out, and the phase electromotive force is close to a sine wave.
  • the Z-type grounding transformer The direction of the zero-sequence current is opposite, so its zero-sequence impedance is very small and has almost no effect on the melting current.
  • the adjustable reactor 2 includes a dual-winding air gap transformer and an inverter
  • the dual-winding air gap transformer includes a primary winding, a secondary winding and a detection device; the detection device is used to detect a circuit signal in the primary winding and generate a control signal; wherein the circuit signal includes a current signal, a voltage signal, a reactance signal, etc. .
  • the inverter receives the control signal, and continuously adjusts the reactance value of the secondary winding according to the control signal.
  • the inverter controls the current value of the secondary winding to change to change the reactance value after receiving the current signal; or the inverter controls the voltage value of the secondary winding to change to change the reactance value after receiving the voltage signal.
  • the inverter may be a voltage source inverter or a current source inverter.
  • the detection device can perform equal-scale amplification or reduction of the circuit signal as required, and has the function of phase shifting the circuit signal.
  • the phase shift can be realized by a constant amplitude phase shifter.
  • the online ice melting device of the power distribution network includes a switch switch 4; the switch switch 4 is arranged between the target line and the grounding transformer 1, and is used to control whether the grounding transformer 1 is connected to the target line.
  • the power system itself is used as the power source, and the adjustable reactor 2 realizes continuous and stepless adjustment of the impedance value, so as to realize the continuous adjustment of the ice melting current.
  • the grounding transformer 1 and the adjustable reactor 2 are combined to form a zero-sequence reactor integrated device.
  • the adjustable reactor 2 and the grounding transformer 1 can be applied to high-voltage lines, can allow a larger melting current to pass, and have a wider application range.
  • the grounding transformer 2 is connected to the neutral point of the power connection transformer 1.
  • the adjustable reactor is used to adjust the ice melting current value. Without stopping the line, by adjusting the inductance value of the adjustable reactor connected to the neutral point of the ice-coated line, perform a manual single-phase grounding short-circuit at the end of the line or use the lightning protection wire as the neutral line to increase the flow through the line.
  • the current is greater than or equal to the critical ice-melting current value of the line, so as to achieve the purpose of ice-melting and protecting the line.
  • point D of the lightning protection line needs to be connected to the end of the target line.
  • Preliminary simulation verification is carried out based on the online ice melting scheme of adjustable reactor 2 and grounding transformer 1: According to the critical ice melting current of common conductors and the commonly used parameter table, the simulation analysis of the overhead line of 10kV distribution network is carried out.
  • the wire used is LGJ-95 type wire, the wire length is 5km, the equivalent ground capacitance of each phase is 0.025mF, and its impedance value is 1.35+j2.48. After the line is divided into five parts, the impedance value of each part is 0.27+j0.495, the equivalent ground capacitance of each part is 0.005mF.
  • the neutral point ineffective grounding system 5 is connected to the distribution network line through the switching switch 4; when the switching switch 4 is connected to the neutral point ineffective grounding system 5, the grounding transformer 1 is disconnected from the target line connect.
  • the switch switch 4 is connected to the power transformer 1
  • the neutral point non-effective grounding system 5 is disconnected from the distribution network line.
  • the neutral point non-effective grounding system 5 continues to maintain the line stability and continues to adjust the impedance value of the line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

La présente invention concerne un appareil de fusion de glace en ligne pour un réseau de distribution d'énergie. L'appareil de fusion de glace en ligne comprend un transformateur de mise à la terre, un réacteur réglable et une ligne de protection contre la foudre, le transformateur de mise à la terre étant connecté au réacteur réglable en série, et une extrémité de ligne entrante du transformateur de mise à la terre étant connectée à une extrémité d'une ligne cible ; une extrémité de ligne sortante du réacteur réglable est connectée à la ligne de protection contre la foudre, et la ligne de protection contre la foudre est utilisée pour être connectée à l'autre extrémité de la ligne cible ; le réacteur réglable, le transformateur de mise à la terre, la ligne cible et la ligne de protection contre la foudre forment une boucle, et génèrent un courant homopolaire, qui est superposé sur un courant d'origine de la ligne cible pour la fusion de glace ; et le transformateur de mise à la terre est utilisé pour fournir un point neutre.
PCT/CN2020/108199 2020-05-08 2020-08-10 Appareil de fusion de glace en ligne pour réseau de distribution d'énergie WO2021223342A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010381363.XA CN111525485A (zh) 2020-05-08 2020-05-08 一种配电网在线融冰装置
CN202010381363.X 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021223342A1 true WO2021223342A1 (fr) 2021-11-11

Family

ID=71908023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108199 WO2021223342A1 (fr) 2020-05-08 2020-08-10 Appareil de fusion de glace en ligne pour réseau de distribution d'énergie

Country Status (2)

Country Link
CN (1) CN111525485A (fr)
WO (1) WO2021223342A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296246A (zh) * 2022-08-26 2022-11-04 中国南方电网有限责任公司超高压输电公司检修试验中心 高压直流不停电地线融冰电路、设备及操作方法
CN115360665A (zh) * 2022-08-09 2022-11-18 国网四川省电力公司内江供电公司 一种配电网输电线路负荷段融冰装置及方法
CN115498582A (zh) * 2022-10-21 2022-12-20 国网湖南省电力有限公司 针对特高压输电线路的不停电地线直流融冰系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794175A (zh) * 2021-10-25 2021-12-14 广东电网有限责任公司 一种基于中性点的在线融冰装置及方法
CN115085130B (zh) * 2022-06-30 2024-01-19 福州大学 一种配电线路不停电融冰方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433520B1 (en) * 2001-05-29 2002-08-13 Siemens Power Transmission & Distribution Inc Dc power regulator incorporating high power ac to dc converter with controllable dc voltage and method of use
CN101557090A (zh) * 2009-05-21 2009-10-14 鸡西电业局 一种在输电线路末端注入无功电流的融冰装置
CN109119933A (zh) * 2018-09-11 2019-01-01 广东电网有限责任公司 一种配电网在线融冰方法及装置
RU195977U1 (ru) * 2019-11-06 2020-02-12 Публичное акционерное общество энергетики и электрификации «Сахалинэнерго» Трансформатор для плавки гололёда на воздушных линиях

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203883464U (zh) * 2013-11-19 2014-10-15 上海翱辰电气科技有限公司 可控型小电阻消弧装置
CN205160008U (zh) * 2015-12-08 2016-04-13 陕西科尔电气成套设备有限公司 一种电气化铁路接触网融冰装置
CN110518535A (zh) * 2019-09-06 2019-11-29 国网湖南省电力有限公司 新型带电融冰装置及其融冰方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433520B1 (en) * 2001-05-29 2002-08-13 Siemens Power Transmission & Distribution Inc Dc power regulator incorporating high power ac to dc converter with controllable dc voltage and method of use
CN101557090A (zh) * 2009-05-21 2009-10-14 鸡西电业局 一种在输电线路末端注入无功电流的融冰装置
CN109119933A (zh) * 2018-09-11 2019-01-01 广东电网有限责任公司 一种配电网在线融冰方法及装置
RU195977U1 (ru) * 2019-11-06 2020-02-12 Публичное акционерное общество энергетики и электрификации «Сахалинэнерго» Трансформатор для плавки гололёда на воздушных линиях

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIAO, CHENG: "A Microcomputer-Based Controller of Auto-Tracing Compensation Arc-Suppressing Devices in Electric Distribution Net", MASTER THESIS, no. 3, 1 May 2006 (2006-05-01), CN, pages 1 - 44, XP009531607, ISSN: 1674-0246 *
LUO, YUNSONG; SONG, MENG; HU, JING; XIA, YAJUN: "New-Style Adjustable Reactor Based on Inverter Control", GUANGDONG ELECTRIC POWER, vol. 30, no. 5, 31 May 2017 (2017-05-31), CN, pages 87 - 91.107, XP009531608, ISSN: 1007-290X, DOI: 10.3969/j.issn.1007-290X.2017.05.016 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360665A (zh) * 2022-08-09 2022-11-18 国网四川省电力公司内江供电公司 一种配电网输电线路负荷段融冰装置及方法
CN115360665B (zh) * 2022-08-09 2024-02-23 国网四川省电力公司内江供电公司 一种配电网输电线路负荷段融冰装置及方法
CN115296246A (zh) * 2022-08-26 2022-11-04 中国南方电网有限责任公司超高压输电公司检修试验中心 高压直流不停电地线融冰电路、设备及操作方法
CN115296246B (zh) * 2022-08-26 2024-05-28 中国南方电网有限责任公司超高压输电公司检修试验中心 高压直流不停电地线融冰电路、设备及操作方法
CN115498582A (zh) * 2022-10-21 2022-12-20 国网湖南省电力有限公司 针对特高压输电线路的不停电地线直流融冰系统及方法
CN115498582B (zh) * 2022-10-21 2024-06-11 国网湖南省电力有限公司 针对特高压输电线路的不停电地线直流融冰系统及方法

Also Published As

Publication number Publication date
CN111525485A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2021223342A1 (fr) Appareil de fusion de glace en ligne pour réseau de distribution d'énergie
US10892616B2 (en) Safe processing method for active voltage reduction of ground fault phase of non-effective ground system
CN103401226B (zh) 智能变电站站域差动保护方法
CN107276097A (zh) 非有效接地系统接地故障相降压消弧的安全运行方法
WO2021227267A1 (fr) Appareil de fusion de glace sur ligne
Paul et al. Transient overvoltage protection of shore-to-ship power supply system
WO2021227268A1 (fr) Appareil de fusion de glace en ligne
CN108879646A (zh) 一种基于相控消弧线圈解决单相接地故障的方法
Atmuri et al. Neutral reactors on shunt compensated EHV lines
CN107834528B (zh) 半波长输电线路功率波动过电压的优化控制方法和装置
CN110323731A (zh) 电压互感器一次侧中性点可控阻抗消谐装置
Fakheri et al. Single phase switching tests on the AEP 765 KV system-extinction time for large secondary arc currents
CN103269063A (zh) 一种抑制输电线路故障甩负荷过电压的系统及方法
WO2018087603A2 (fr) Procédé d'alimentation électrique continue
Massey Power distribution system design for operation under nonsinusoidal load conditions
Hu et al. Analysis on the necessity of high-voltage shunt reactors in power grid
Kizilcay et al. Analysis of switching transients of an EHV transmission line consisting of mixed power cable and overhead line sections
Varetsky et al. Study of transient overvoltages on CSI adjustable speed drives under arcing SLGF in the industrial cable grid
CN206759031U (zh) 一种改进的电厂低压供电系统接地保护报警装置
CN111880110A (zh) 中性点非有效接地系统单相接地故障消失判断方法及系统
Das TRV (transient recovery voltage) in high voltage current interruption
CN103490384B (zh) 多发电机船舶中压电力系统保护方法及装置
CN103825262A (zh) 一种双回线用的故障电流限制器
CN113889957A (zh) 一种基于分布式潮流控制的非接触耦合式融冰拓扑及融冰方法
Schaffer et al. Ensuring switchgear integrity in High-Power installations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934258

Country of ref document: EP

Kind code of ref document: A1