WO2021223243A1 - 音频数据传输的方法、装置、芯片和电子设备 - Google Patents

音频数据传输的方法、装置、芯片和电子设备 Download PDF

Info

Publication number
WO2021223243A1
WO2021223243A1 PCT/CN2020/089269 CN2020089269W WO2021223243A1 WO 2021223243 A1 WO2021223243 A1 WO 2021223243A1 CN 2020089269 W CN2020089269 W CN 2020089269W WO 2021223243 A1 WO2021223243 A1 WO 2021223243A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio data
link
time slot
isoc
transmission time
Prior art date
Application number
PCT/CN2020/089269
Other languages
English (en)
French (fr)
Inventor
郭仕林
刘文毅
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/089269 priority Critical patent/WO2021223243A1/zh
Priority to CN202080093146.9A priority patent/CN114982369A/zh
Publication of WO2021223243A1 publication Critical patent/WO2021223243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of wireless communication technology, and more specifically, to a method, device, chip, and electronic equipment for audio data transmission.
  • TWS True Wireless Stream
  • the embodiments of the present application provide a method, device, chip, and electronic equipment for audio data transmission, which can reduce the transmission delay of audio data.
  • a method for audio data transmission includes: a first end receives target audio data sent by a third end through a Bluetooth link, where the target audio data is used to obtain the first audio data; The first audio data is used for playing on the second end side; the first end transmits the first audio data to the second end through a low-power synchronous LE ISOC link.
  • the method further includes: the first end obtains second audio data according to the target audio data; the first end obtains second audio data according to the original start point of the second audio data,
  • the transmission time slot of the LE ISOC link, the transmission time slot of the Bluetooth link and the refresh timeout FT determine the start point of the second audio data, where the original start point of the second audio data It is the starting point determined according to the Bluetooth audio transmission model agreement A2DP protocol;
  • the first end transmitting the first audio data to the second end via a low-power synchronous LE ISOC link includes: the first end is at the original start point of the second audio data, The first audio data is transmitted to the second end through the LE ISOC link.
  • the first end according to the original start point of the second audio data, the transmission time slot of the LE ISOC link, the transmission time slot of the Bluetooth link, and the refresh timeout FT , Determining the start point of the second audio data includes:
  • the starting point of the second audio data satisfies the formula:
  • T is the start point of the second audio data
  • K is the original start point of the second audio data
  • S is the transmission time slot of the LE ISOC link and the transmission of the LE ACL link
  • I is the sum of the transmission time slot of the Bluetooth link, the transmission time slot of the LE ISOC link, and the transmission time slot of the LE ACL link.
  • I 10ms.
  • S 2.5ms.
  • the method further includes: the first end sends request information to the second end through the LE ACL link, and the request information is used to request the establishment of the LE ISOC link road.
  • the method before establishing the LE ISOC link, the method further includes: establishing the Bluetooth link between the first end and the third end.
  • the method before the first end transmits the first audio data to the second end, the method further includes: the first end adopts a low-complexity LC3 encoding format, The first audio data is encoded.
  • the method further includes: the first end is switched to the second end, wherein, in the process of the first end being switched to the second end, the first end The transmission of the first audio data is not stopped with the second end.
  • a code rate of the first audio data transmitted by the first end is 96 kbps.
  • the third terminal does not support a low-power audio standard.
  • a method for audio data transmission includes: a second end receives first audio data sent by a first end through a low-power synchronous LE ISOC link, wherein the first audio The data is used for playing on the second end side, the first audio data is audio data obtained by the first end according to the target audio data sent by the third end, and the first end and the third end They are connected via a Bluetooth link.
  • the first audio data is partial audio data obtained by decoding the target audio data by the first end.
  • the method further includes: the second end according to the time point when the first audio data is received or the time point when the first end sends the first audio data, the The transmission time slot of the LE ISOC link, the transmission time slot of the Bluetooth link, and the refresh timeout FT determine the start point of the first audio data.
  • the second end is based on the time point when the first audio data is received or the time point when the first end sends the first audio data, and the transmission of the LE ISOC link
  • the time slot, the transmission time slot of the Bluetooth link, and the refresh timeout FT to determine the start point of the first audio data includes: the second end according to the time point or the time when the first audio data is received
  • the starting point of the first audio data satisfies the formula:
  • T is the starting point of the first audio data
  • K is the time point when the second end receives the first audio data or the time point when the first end sends the first audio data
  • S is the sum of the transmission time slot of the LE ISOC link and the transmission time slot of the LE ACL link
  • I is the transmission time slot of the Bluetooth link, the transmission time slot of the LE ISOC link, and all The sum of the transmission time slots of the LE ACL link.
  • I 10ms.
  • S 2.5ms.
  • the method further includes: the second end receives request information sent by the first end through the LEACL link, and the request information is used to request the establishment of the LE ISOC chain road.
  • the first audio data is audio data encoded in a low-complexity LC3 encoding format.
  • the method further includes: switching the second end to the first end, wherein, in the process of switching the second end to the first end, the first end and The transmission of the first audio data is not stopped between the second ends.
  • the third terminal does not support a low-power audio standard.
  • the third terminal does not support a low-power audio standard.
  • an audio data transmission device is provided, where the device is a first end and is used to execute the method in the first aspect or its implementation manners.
  • the first end includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a device for audio data transmission where the device is a second end, and is configured to execute the method in the second aspect or its implementation manners.
  • the second end includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a chip for performing the audio data transmission method of the first aspect, including a memory and a processor;
  • the memory is coupled to the processor
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory to make the chip execute the audio data transmission method of the first aspect.
  • a chip for performing the audio data transmission method of the second aspect, including a memory and a processor;
  • the memory is coupled to the processor
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory to make the chip execute the audio data transmission method of the second aspect.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program.
  • the processor when the computer program is executed by the processor, the processor is caused to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program.
  • the processor when the computer program is executed by the processor, the processor is caused to execute the second aspect or the method in any possible implementation manner of the second aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a computer program product including computer program instructions, which cause a computer to execute the foregoing second aspect or any possible implementation of the second aspect.
  • an electronic device including: the main device in the third aspect or any possible implementation of the third aspect; the fourth aspect or any possible implementation of the fourth aspect Secondary equipment in the mode;
  • the main device is connected to the main device through a Bluetooth link, there is at least one wireless communication link between the main device and the secondary device, and the at least one wireless communication link includes low power consumption LE ISOC link.
  • the third end (such as the source device) and the first end (such as the main device) transmit audio data through a Bluetooth link, and the first end transmits audio data to the second end (such as the secondary device) through the LE ISOC link Audio data.
  • the delivery time of the audio data sent from the first end to the second end is accurate and predictable. Therefore, the second end does not need to cache the audio data to achieve synchronization, which can reduce The delay of audio data transmission.
  • Figure 1 is a schematic diagram of the topology of a current Bluetooth audio solution.
  • Figure 2 is a schematic diagram of another current topology based on Bluetooth audio solutions.
  • Figure 3 is a schematic diagram of another current topology based on a Bluetooth audio solution.
  • Fig. 4 is a schematic flowchart of audio data transmission in an embodiment of the present application.
  • Figure 5 is a schematic topology diagram of an embodiment of the present application.
  • Fig. 6 is a time slot allocation diagram of a BT link and an LE link in an embodiment of the present application.
  • Fig. 7 is a flowchart of target audio data transmission in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of role switching between a primary device and a secondary device in an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of an audio data transmission device implemented in the present application.
  • Fig. 10 is a schematic block diagram of an audio data transmission device implemented in the present application.
  • Fig. 11 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a chip of an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a chip of an embodiment of the present application.
  • the topology shown in Figure 1 consists of a master headset and a secondary headset that can be switched between master and slave.
  • the master headset and the source device are directly connected through a Bluetooth (BT) link.
  • the source device can be a mobile phone.
  • the main earphone and the auxiliary earphone are connected through a Low Energy (LE) link, and the main earphone can guide the auxiliary earphone to monitor the link between the main earphone and the source device through the connection with the auxiliary earphone, so as to realize one-band multiple communication Topology, so that the main earphone and the auxiliary earphone can receive the audio data sent by the source device at the same time, so as to realize the one-shot and multiple-receive mechanism.
  • the main earphone and the auxiliary earphone de-interleave the audio data, so that the effect of wireless stereo can be presented.
  • Figure 2 is a schematic diagram of another topology based on a Bluetooth audio solution. It can be seen that the main earphone is directly connected to the source device, and the main earphone and the auxiliary earphone are also connected. After the main earphone receives the audio data sent by the source device, the main earphone does not do any processing on the received audio data, and can directly forward it to the secondary earphone through the BT link or Low Band Bluetooth Retransmission Technology (LBRT) link.
  • LBRT Low Band Bluetooth Retransmission Technology
  • the main earphone forwards the audio data to the auxiliary earphone. Therefore, the delay of this solution is relatively large, and wireless bandwidth will be seriously wasted. In addition, in this solution, it is difficult to synchronize the starting point of the audio data played by the main earphone and the auxiliary earphone, which will affect the user's sense of hearing.
  • Figure 3 is a schematic diagram of the topology of another Bluetooth audio solution.
  • the source device establishes a connection with the main earphone and the auxiliary earphone at the same time through the BT link.
  • the source device can transmit audio data to the main earphone and the auxiliary earphone respectively.
  • the main earphone and the auxiliary earphone can synchronize the received audio data. Play.
  • the Bluetooth audio solution has relatively large restrictions on the source device.
  • the source device must use the customized chip of the solution and cannot be compatible with other Bluetooth standard protocols.
  • FIG. 4 is a schematic flowchart of a method for audio data transmission according to an embodiment of the present application.
  • the method 100 in FIG. The first end, the second end, and the third end may be chips or devices, and the first end, the second end, and the third end may be, for example, the primary device, the secondary device, and the source mentioned above, respectively. equipment.
  • the embodiments of the present application will be described by taking the first end, the second end, and the third end as the upper primary device, the secondary device, and the source device, respectively.
  • the source device may be a portable or mobile computing device such as a terminal device, a mobile phone, a tablet computer, a notebook computer, a desktop computer, a game device, an in-vehicle electronic device, or a wearable smart device.
  • the master device can be a Bluetooth headset, hearing aid, Bluetooth speaker, etc. that have established a wireless communication link for audio data transmission with the source device.
  • the secondary device can be a Bluetooth headset, hearing aid, Bluetooth speaker, etc. that are not directly connected to the source device.
  • the main device may be the main earphone in the TWS headset
  • the auxiliary device may be the auxiliary earphone in the TWS headset.
  • FIG. 5 is a possible topology diagram to which the method 100 is applicable. It can be seen that the source device and the main device are connected through a BT link, and the main device and the secondary device are connected through a Low Energy (LE) synchronization (Isochronous, ISOC) link.
  • LE Low Energy
  • ISOC ISOC
  • the source device may support the LE Audio (Audio) standard, or may not support the LE Audio standard, that is, the embodiments of the present application may be compatible with electronic devices that do not support the LE Audio standard. In this way, the embodiments of the present application can improve the compatibility of the source device.
  • LE Audio Audio
  • the embodiments of the present application can improve the compatibility of the source device.
  • the LE ISOC link can allow retransmission within a certain period of time, that is, if the primary device fails to transmit audio data to the secondary device through the LE ISOC link, the primary device can retransmit the audio data. If the main device and the secondary device are TWS headsets, since the distance between the two headsets is usually relatively close, the audio data transmission can have a high transmission success rate, such as more than 90%, and the number of retransmissions can be 1.
  • FT Flush Timeout
  • FT can be determined when the topology shown in Figure 5 is created.
  • the value of FT can be a positive integer.
  • FT can be 1, 2, or 3, etc.
  • the unit of FT is Interval.
  • FT 1.
  • the embodiment of the present application refers to the link between the primary device and the secondary device as the first link.
  • the first link may include an LE ISOC link; or, the first link may include an LE ISOC link and an LE Asynchronous Connectionless (ACL) link.
  • ACL Asynchronous Connectionless
  • the LE ACL link can be mainly used to transmit control signaling, and the next control signaling can be sent only after receiving the response from the opposite end.
  • the LE ISOC link can be mainly used as a transmission channel for audio data between the main device and the secondary device, and can be used to ensure data transmission timing, data transmission synchronization, and playback synchronization.
  • the total transmission time slot of the BT link and the first link (that is, the sum of the transmission time slot of the BT link and the transmission time slot of the first link) may be 10 ms.
  • the embodiment of the present application uses 625 ⁇ s as the transmission unit, that is, one time slot is 625 ⁇ s.
  • the BT link and the first link can occupy a total of 16 time slots.
  • the total transmission time slot of the BT link and the first link may also be referred to as a communication interval (Interval) or an ISOC Interval or a scheduling period.
  • a time slot can be understood as, for example, the interval between the time when the source device sends audio data to the main device and the time when the main device sends a response to the audio data to the source device.
  • the M identified in Figure 6 represents a data packet sent by the source device to the master device.
  • the data packet may include audio data.
  • the number after M represents the sequence number of the data packet, and different sequence numbers represent different data packets.
  • the identified Y represents the master device's response to the data packet sent by the source device, usually an empty packet, which is only used as a response to the data packet sent by the source device. Therefore, the sequence number of the master device's response to the data packet is not emphasized in Figure 6.
  • the first link in Figure 6 includes the LE ISOC link and the LE ACL link.
  • the sub ISOC1 is the time slot for the primary device to transmit audio data to the secondary device through the LE ISOC link for the first time
  • sub ISOC2 is the primary device The time slot for retransmitting the audio data through the LE ISOC link. It can be seen that the total transmission time slot of the first link and the BT link is 10ms, occupying 16 time slots,
  • the main device transmits audio data through the LE ISOC link to the secondary device with a bit rate of 124 kbps
  • the audio data played by the primary device and the secondary device have the best sound quality.
  • the code rate of the audio data transmitted by the primary device to the secondary device is 124 kbps
  • the first link occupies more transmission time slots, for example, it can reach 3.75 ms. In this case, the transmission time slot occupied by the BT link will be reduced, so that the bandwidth of the Bluetooth link may not be able to guarantee the transmission of audio data between the source device and the master device, thereby affecting the transmission quality of the audio data.
  • the code rate of the audio data transmitted by the primary device to the secondary device in the embodiment of the present application is less than 124 kbps.
  • the transmission bit rate of the audio data transmitted between the primary device and the secondary device is 96kbps
  • the quality of the audio data transmitted between the primary device and the secondary device is the highest, that is, the audio data transmitted between the primary device and the secondary device has the highest quality.
  • the sound quality of audio data is the best. Therefore, in this embodiment of the application, the transmission bit rate of the audio data transmitted between the primary device and the secondary device is set to 96 kbps. In this way, the user's sound quality experience can be improved.
  • PDU Protocol Data Unit
  • 2 is the Byte occupied by the header of the PDU
  • 4 is the Byte occupied by the Message Integrity Check (MIC).
  • the preamble occupies 2 Bytes
  • the access address occupies 4 Bytes
  • the BT link occupies 12 time slots, and the first link occupies 4 time slots, that is, the transmission time slot of the first link is 2.5ms, which can ensure that it passes through the BT link and the first The quality of the audio data transmitted by the link.
  • FIG. 6 is only an example, and should not constitute a limitation to the embodiment of the present application.
  • the master device needs to take into account two different links, that is, the BT link with the source device and the first link with the secondary device.
  • the overlap of transmission time slots between the two links should be avoided as much as possible.
  • the transmission time slots of the BT link are the first 12 time slots among the 16 time slots
  • the transmission time slots of the first link are the last 4 time slots.
  • the transmission time slot allocation of the road and the transmission time slot allocation of the first link avoid the overlap of transmission time slots between two different links.
  • the master device when the master device communicates with the slave device, it does not communicate with the source device.
  • the primary device when the primary device is communicating with the secondary device, the primary device can turn off the transceiver that communicates with the source device.
  • the source device cannot receive a response from the main device after sending audio data to the main device. At this time, the source device can automatically retransmit the audio data.
  • the source device in the transmission time slot of the first link between the primary device and the secondary device, the source device sends an M7 data packet to the primary device, because in the transmission time slot of the first link, the primary device is in and The secondary device communicates but does not communicate with the source device. Therefore, the primary device does not respond to the M7 packet to the source device. If the source device does not receive the response from the master device, the source device continues to send M7 data packets to the master device.
  • the primary device does not communicate with the secondary device when communicating with the source device.
  • the following takes a scenario where the embodiment of the present application is applied to a TWS headset as an example, and first introduces the construction process of the topology shown in FIG. 5 in detail.
  • Step 1 Multiple sink devices are in low power consumption mode before joining the topology, waiting to be awakened. After the sink device is awakened, for example, after the headset charging box is turned on, multiple sink devices can be configured through physical connections other than Bluetooth connections to bind the addresses of the peer devices to each other. For example, multiple sink devices include a first device and a second device, and the first device and the second device may bind the addresses of the opposite devices to each other.
  • Step 2 The first device is taken out of the earphone charging box, and LE broadcast is performed.
  • the embodiment of the present application does not specifically limit the time for the first device to perform the LE broadcast.
  • an embodiment of the present application may specify that the time for the first device to perform LE broadcast is 1 ms.
  • the time for the first device to perform the LE broadcast may be determined by the product form of the first device.
  • Step 3 After the first device performs the LE broadcast, if a source device supporting the LE audio (Audio) standard establishes a connection with the first device within a certain period of time, the first device executes the existing LE Audio solution.
  • a source device supporting the LE audio (Audio) standard establishes a connection with the first device within a certain period of time.
  • the first device can use the address bound in step 1 to send a broadcast.
  • the first device may continuously broadcast for 1.28s.
  • the first device may send a high-duty ratio directional broadcast.
  • the sink device that has bound the device address with the first device can establish a connection with the first device, and the first device sends a high-duty ratio broadcast, which can save time for establishing connections with other sink devices.
  • Step 4 After the first device broadcasts, start LE scan (Scan) to scan other sink devices. If the first device scans that the sink device bound to the device address is broadcasting, for example, the sink device is the second device, the first device can establish a LE ACL link with the second device, where the first device is the master device , The second device is a secondary device.
  • start LE scan Scan
  • the first device If the first device is scanned by other sink devices bound to the device address during the broadcast, for example, scanned by the second device, the first device establishes a LE ACL link with the second device, and the first device is Secondary equipment, the second equipment is the main equipment.
  • the second device may be a device that ends broadcasting before the first device.
  • the second device may be a sink device taken out of the headset charging box first, that is, the second device may be a device that broadcasts before the first device broadcasts.
  • the second device may also be a device that broadcasts after the first device or simultaneously broadcasts with the first device. In this case, the duration of the second device's broadcast may be shorter than the duration of the first device's broadcast.
  • the first device If after the first device finishes broadcasting and scans other sink devices, the first device does not scan the sink device to which the device address has been bound, then the first device is the master device.
  • Step 5 The master device starts the BT pairing and connection process, and waits for the BT connection to be established with the source device that supports BT.
  • the first device can scan other sink devices that have been bound to the device address while starting the BT pairing and connection process, or it can re-broadcast.
  • Step 6 After the source device and the main device have established a BT link, and the main device and the secondary device have established a LE ACL link, the primary device can send request information to the secondary device through the LE ACL link, and the request information is used to request Establish LE ISOC link. After the primary device and the secondary device negotiate, the LE ISOC link is established between the primary device and the secondary device.
  • steps 1 to 6 are only an exemplary construction process of the topology shown in FIG. 5, and do not constitute any limitation to the embodiment of the present application.
  • the method 100 may include at least part of the following content.
  • the source device sends the target audio data to the master device through the BT link.
  • the master device can receive the target audio data sent by the source device through the BT link.
  • the target audio data can be used to obtain the first audio data, and the first audio data is used to play on the second end side.
  • the source device can use Sub-band Coding (SBC) format, Advanced Audio Coding (AAC) format, LDAC coding format, Low Complexity (LC) Encoding formats such as 3 encode the target audio data.
  • SBC Sub-band Coding
  • AAC Advanced Audio Coding
  • LDAC Low Complexity
  • LC Low Complexity
  • the source device can use SBC, AAC, and LDAC encoding formats to encode the target audio data.
  • the embodiment of this application does not have special requirements for the source device. If the source device supports the LE Audio standard, the LE Audio solution or the solution of the embodiment of this application can be implemented; if the source device does not support the LE Audio standard, it can be implemented The solution of the embodiment of this application.
  • the host device After the host device receives the target audio data, it can decode the target audio data first. Specifically, the master device can decode the target audio data into pulse code modulation (Digital to Analog Converter, DAC) that can be directly output to the Digital to Analog Converter (DAC) through other hardware units such as Digital Signal Processor (DSP). Pulse Code Modulation, PCM) data.
  • DAC Digital to Analog Converter
  • DSP Digital Signal Processor
  • PCM Pulse Code Modulation
  • the host device decodes the target audio data, in addition to obtaining the first audio data, the second audio data can also be obtained, and the second audio data is used for playing on the host device side.
  • both the first audio data and the second audio data are PCM data.
  • the primary device transmits the first audio data to the secondary device through the LE ISOC link.
  • the main device decodes the target audio data, it is temporarily uncertain which audio data is played on the main device side and which audio data is played on the main device side.
  • the main device can transmit all the audio data obtained by decoding to the secondary device through the LE ISOC link, that is, the primary device can transmit both the first audio data and the second audio data to the secondary device through the LE ISOC link.
  • the PCM data decoded by the master device is stereo.
  • the master device can de-interleave the PCM data, that is, separate the left and right channels. After that, the master device can send the second audio data to the DAC buffer for playback, and send the first audio data to the DSP or other hardware units for encoding, and put the encoded first audio data into the LE ISOC link for transmission In the cache.
  • the primary device Since the primary device does not need to send all the decoded audio data to the secondary device, it only needs to send the audio data corresponding to the secondary device to the secondary device, thereby avoiding the waste of wireless bandwidth.
  • the audio data corresponding to the secondary device can be understood as: if the secondary device is a right earphone, the audio data corresponding to the secondary device, that is, the first audio data is the audio data output by the right channel.
  • the host device may use the LC3 encoding format to encode the first audio data.
  • the LC3 coding format is a coding format specially developed with the LE ISOC link, it has the advantages of low latency, high sound quality, and packet loss compensation. In this way, the delay of audio data transmission can be reduced, and the user's audio quality experience can be improved. Furthermore, due to the high compression rate of the LC3 encoding format, for example, if the size of the first audio data is 256 bytes, the master device can compress the first audio data to 128 bytes, which can further save wireless bandwidth and further Ground can reduce power consumption.
  • the main device may also use encoding formats such as SBC, AAC, or LDAC to encode the first audio data.
  • encoding formats such as SBC, AAC, or LDAC
  • the frame length of the LC3 encoding format is 10ms, when the total transmission time slot of the first link and the BT link is 10ms, the LC3 encoding format can be better matched.
  • the primary device can discard the first audio data, or the primary device can be based on the application Configure to play two channels simultaneously on the same speaker.
  • the secondary device After receiving the encoded first audio data, the secondary device can decode the encoded first audio data through the DSP, and then send the decoded first audio data to the DAC buffer for playback.
  • the primary device may retransmit the first audio data.
  • the method 100 is exemplarily described below in conjunction with FIG. 7.
  • the main device is the left earphone
  • the secondary device is the right earphone.
  • the source device sends the target audio data to the host device through the BT link, where the source device encodes the target audio data in the AAC encoding format.
  • the host device decodes the target audio data to obtain PCM data.
  • the master device de-interleaves the PCM data to obtain the second audio data corresponding to the left channel (CH_L) and the first audio data corresponding to the right channel (CH_R).
  • the master device buffers the second audio data DAC for playback, and uses the LC3 encoding format to encode the first audio data, and then sends the encoded first audio data to the slave device through the LE ISOC link.
  • the secondary device decodes the encoded first audio data, and sends the decoded PCM data (that is, the first audio data) into the DAC buffer for playback.
  • the primary device After the audio data is transmitted, the primary device starts to play the second audio data, and the secondary device starts to play the first audio data.
  • the main device and the secondary device transmit stereo audio data, if the audio data synchronization accuracy is not high, the sound of the left and right channels may not be synchronized, which will seriously affect the user's hearing experience.
  • the primary device and the secondary device can time-align the first audio data and the second audio data, and start playing the first audio device and the second audio data at the same time. That is, the start point of the first audio data and the start point of the second audio data are the same.
  • the primary device and the secondary device may time-align the first audio data and the second audio data according to a synchronization time reference specified in the LE ISOC protocol.
  • the primary device and the secondary device may use the time of any one of the primary device and the secondary device as a reference to time-align the first audio data and the second audio data.
  • the primary device and the secondary device may negotiate a synchronization time reference to time-align the first audio data and the second audio data.
  • clock synchronization in addition to clock synchronization between the primary device and the secondary device, clock synchronization also needs to be performed between the primary device and the source device.
  • the master device can use the source device as a reference to perform clock calibration every time audio data is sent and received, so as to avoid the problem of clock unsynchronization between different devices.
  • the embodiment of the present application may use the characteristics of synchronous transmission of the LE ISOC link to perform audio start-up and audio synchronization operations, and perform real-time audio synchronization in each time unit to achieve precise audio synchronization effects.
  • the time unit may be a time slot.
  • the main device can use the original start point of the second audio data, the transmission time slot of the first link, and the BT link.
  • the transmission time slot and FT are used to determine the start point of the second audio data.
  • the original starting point of the second audio data is the starting point determined according to the Bluetooth Audio Distribution Profile (A2DP) protocol.
  • the original starting point of the second audio data may be related to the number of frames of target audio data sent by the source device.
  • the original starting point of the second audio data may be that the source device sends N frames of target to the main device.
  • the point in time after the audio data can be determined with reference to the prior art, which will not be described in detail in the embodiment of the present application.
  • the transmission time slot of the first link is the transmission time slot of the LE ISOC link.
  • the transmission time slot of the first link may be the sum of the transmission time slot of the LE ISOC link and the transmission time slot of the LE ACL link .
  • the starting point of the second audio data may satisfy the following formula:
  • T is the start point of the second audio data
  • K is the original start point of the second audio data
  • S is the transmission time slot of the first link
  • I is the transmission time slot of the Bluetooth link and the first link .
  • S may be equal to 2.5 ms.
  • I may be equal to 10 ms.
  • the master device and the slave device can play the first 2.5ms after the source device sends the target audio data to the master device.
  • the transmission delay of the BT link is more than 100ms, and an increase of only 2.5ms has little effect on the overall delay.
  • the primary device can send the first audio data to the secondary device at the original starting point of the second audio data.
  • the secondary device can send the first audio data to the secondary device according to the time point when the first audio data is received and the value of the first link.
  • the transmission time slot, the transmission time slot of the BT link, and the FT determine the starting point of the first audio data.
  • the starting point T of the first audio data may satisfy the following formula:
  • K may also be the time point when the primary device sends the first audio data to the secondary device.
  • the primary device can tell the secondary device the time point when it sends the first audio data through the LE ACL link.
  • the time point when the primary device sends the first audio data and the time point when the secondary device receives the first audio data may be the same, that is, in this embodiment, K may also be the time point when the secondary device receives the first audio data. Time to the first audio data.
  • the above technical solution can realize synchronous playback of the first audio data and the second audio data.
  • the audio synchronization in the embodiments of the present application only relates to the synchronization between the primary device and the secondary device, and does not involve the audio synchronization between the primary device and the source device.
  • the transmission delay between the primary device and the secondary device is small, the transmission delay between the primary device and the secondary device can be ignored, that is, in the embodiment of the application, it can be considered that the primary device sends the second device to the secondary device.
  • the time point of an audio data is the same as the time point when the secondary device receives the first audio data. If the transmission delay between the primary device and the secondary device is relatively large, the secondary device can choose any one between the time point when the primary device sends the first audio data to the secondary device and the time point when the secondary device receives the first audio data The time point is regarded as K.
  • At least one of the following situations may occur, but is not limited to: the user puts the primary device away, such as putting the main earphone into the charging box; the consumption of the primary device and the secondary device
  • the power is inconsistent.
  • the power consumption of the main device is fast.
  • the power of the main device is too low, even if the power of the secondary device is sufficient, neither the primary device nor the secondary device can continue to be used by the user.
  • the method 100 may further include: switching roles between the primary device and the secondary device, that is, the original primary device is switched to the new secondary device, and the original secondary device is switched to the new primary device.
  • the audio data transmission through the LE ISOC link between the primary device and the secondary device will not stop.
  • the primary device can continue to send the first audio data to the secondary device through the LE ISOC link
  • the secondary device can continue to receive the first audio data sent by the primary device through the LE ISOC link.
  • the "audio data" in the "audio data transmission between the primary device and the secondary device through the LE ISOC link will not stop" here can be other audio data in addition to the first audio data. Data, this embodiment of the application does not specifically limit this.
  • the primary device can transfer the BT link with the source device to the secondary device. Specifically, after the primary device obtains the link parameters of the BT link with the source device, it may send first information to the secondary device, where the first information includes the link parameters.
  • the primary device may send the first information to the secondary device through the LE ACL link.
  • link parameters may include, but are not limited to, time information, channel information, frequency hopping information, encryption information, access codes, and so on.
  • the secondary device After receiving the link parameters, the secondary device can try to communicate and transmit with the source device according to the link parameters. If the secondary device has started to communicate with the source device, it indicates that the secondary device has been switched to the new primary device.
  • the secondary device may send second information to the original primary device, and the second information is used to indicate that the secondary device has been switched to the new primary device.
  • the secondary device may send the second information to the original master device through the LE ACL link. After the original master device receives the second information, it can disconnect the BT link with the source device and switch to the new secondary device.
  • the secondary device needs to switch to the new primary device according to the link parameters between the primary device and the source device. If the main device communicates the link parameters to the secondary device, and the main device communicates with the source device, the link parameters will change. In this case, it is impossible for the secondary device to successfully communicate with the source device based on the received link parameters.
  • the primary device can stop the communication and transmission with the source device. In this way, it can be guaranteed that the secondary device can communicate and transmit with the source device according to the received link parameters.
  • the primary device may send switching request information to the secondary device through the LE ACL link, and the switching request information is used to request role switching with the secondary device.
  • the primary device receives the handover request confirmation message sent by the secondary device through the LE ACL link, and the handover request confirmation information is used to instruct the secondary device to agree to the primary device's handover request, then the primary device and the secondary device can start role switching .
  • the primary device receives the handover request confirmation message sent by the secondary device through the LE ACL link, but the handover request confirmation information is used to indicate that the secondary device does not agree with the primary device's handover request, or the primary device does not receive it within the preset time If the switch request confirmation message sent by the secondary device, the role switching between the primary device and the secondary device is not performed.
  • the preset time may be stipulated in the agreement, or may be agreed upon by the main device and the auxiliary device.
  • the primary device can start the communication transmission with the source device again, and then can perform the role switching with the secondary device again.
  • Failure to switch roles between the primary device and the secondary device may include the following situations:
  • the primary device After the primary device has informed the secondary device link parameters, and the secondary device has not switched to the new primary device, the primary device communicates with the source device.
  • the BT link between the main device and the source device may be wiped off. Therefore, if the role of the main device and the secondary device is not successfully switched, The master device needs to start communication with the source device again.
  • Figure 8 shows the specific steps of role switching between the master device and the slave device.
  • Step 1 The primary device sends switching request information to the secondary device, and the switching request information is used to request role switching with the secondary device.
  • Step 2 The secondary device sends a handover request confirmation message to the primary device.
  • the primary device executes the following steps; if the switching request information is used to instruct the secondary device to reject the switching request of the primary device, the role switching process ends.
  • Step 3 The primary device obtains link parameters and determines the anchor point for role switching. After that, the primary device sends second information to the secondary device through the LE ACL link. The second information is used to instruct the secondary device to communicate with the source according to the link parameters. The communication and transmission between the devices start, that is, the secondary device is notified to switch roles.
  • Step 4 The secondary device tries to communicate with the source device according to the link parameters.
  • the second information is sent to the primary device to notify the original secondary device that it has been switched to the new primary device. For example, if the original secondary device sends an Acknowledge (ACK) to the original primary device, the original primary device executes step 5.
  • ACK Acknowledge
  • the secondary device If the secondary device does not successfully communicate with the source device, for example, the secondary device sends a negative acknowledgement (NCK) to the primary device, the primary device executes step 6.
  • NNK negative acknowledgement
  • the original master device does not communicate with the source device.
  • Step 5 The original master device is switched to the new slave device according to the determined anchor point.
  • the anchor point can be understood as the point in time when two devices agree to perform a certain action.
  • the anchor point in the embodiment of the present application may be the agreed time point between the original master device and the original slave device when the original master device is switched to the new slave device.
  • Step 6 The primary device communicates with the source device through the BT link, and re-switches roles with the secondary device.
  • the third end (such as the source device) and the first end (such as the master device) transmit audio data through the Bluetooth link, and the first end uses the LE ISOC link to the second end (such as the secondary device)
  • the audio data is transmitted, so that the delivery time of the audio data sent from the first end to the second end is accurate and predictable. Therefore, the second end does not need to cache the audio data to achieve synchronization, which can reduce The delay of small audio data transmission.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of this application. .
  • the audio data transmission method of the embodiment of the present application is described in detail above, and the audio data transmission apparatus of the embodiment of the present application will be described below. It should be understood that the audio data transmission apparatus in the embodiment of the present application can execute the audio data transmission method in the embodiment of the present application, and has the function of executing the corresponding method.
  • FIG. 9 shows a schematic block diagram of an audio data transmission apparatus 200 according to an embodiment of the present application.
  • the audio data transmission apparatus 200 may include:
  • the communication unit 210 is configured to receive the target audio data sent by the third end through the Bluetooth link, the target audio data is used to obtain the first audio data, and the first audio data is used to play on the second end side.
  • the communication unit 210 is also configured to transmit the first audio data to the second end through the LE ISOC link.
  • the device 200 further includes: a processing unit 220, configured to obtain the second audio data according to the target audio data; and according to the original start point of the second audio data, The transmission time slot of the first link, the transmission time slot of the Bluetooth link and the FT determine the start point of the second audio data, where the original start point of the second audio data is the start point determined according to the A2DP protocol;
  • the communication unit 210 is specifically configured to transmit the first audio data to the second end through the LE ISOC link at the original start point of the second audio data.
  • the processing unit 220 is specifically configured to: according to the original start point of the second audio data, the transmission time slot of the LE ISOC link, the transmission time slot of the LE ACL link, and the Bluetooth link The transmission time slot and FT of, determine the start point of the second audio data;
  • the starting point of the second audio data satisfies the formula:
  • T is the start point of the second audio data
  • K is the original start point of the second audio data
  • S is the sum of the transmission time slot of the LE ISOC link and the transmission time slot of the LE ACL link
  • I is the Bluetooth The sum of the transmission time slot of the link, the transmission time slot of the LE ISOC link, and the transmission time slot of the LE ACL link.
  • I 10ms.
  • the communication unit 210 is further configured to send request information to the second end through the LE ACL link, and the request information is used to request the establishment of the LE ISOC link.
  • the apparatus 200 further includes an establishment unit 230, and the establishment unit 230 is configured to: before establishing the LE ISOC link, establish the Bluetooth connection with the third end. link.
  • the apparatus 200 further includes: an encoding unit 240, configured to use the LC3 encoding format before the communication unit 210 transmits the first audio data to the second end, One audio data is encoded.
  • the apparatus 200 further includes: a switching unit 250, configured to switch to the second end, wherein, during the switching of the switching unit 250 to the second end, The transmission of the first audio data is not stopped between the communication unit 210 and the second end.
  • a switching unit 250 configured to switch to the second end, wherein, during the switching of the switching unit 250 to the second end, The transmission of the first audio data is not stopped between the communication unit 210 and the second end.
  • the code rate of the first audio data transmitted by the communication unit 210 is 96 kbps.
  • the third end does not support the low-power audio standard.
  • the audio data transmission apparatus 200 may correspond to the main device in the method 100, and can implement the corresponding operations of the main device in the method 100. For the sake of brevity, details are not described herein again.
  • connection between the functional modules shown in FIG. 9 may be a direct connection or an indirect connection.
  • FIG. 10 shows a schematic block diagram of an audio data transmission apparatus 300 according to an embodiment of the present application.
  • the audio data transmission apparatus 300 may include:
  • the communication unit 310 is configured to receive the first audio data sent by the first end through the low-power LE ISOC link, where the first audio data is the audio data obtained by the first end according to the target audio data sent by the third end, The first end and the third end are connected via a Bluetooth link.
  • the playing unit 320 is used for playing the first audio data.
  • the first audio data is part of the audio data obtained by the first end decoding the target audio data.
  • the device 300 further includes: a processing unit 330, configured to send the first audio data according to the time point when the communication unit 310 receives the first audio data or the first end The time point of, the transmission time slot of the LE ISOC link, the transmission time slot of the Bluetooth link, and the FT determine the start point of the first audio data.
  • a processing unit 330 configured to send the first audio data according to the time point when the communication unit 310 receives the first audio data or the first end The time point of, the transmission time slot of the LE ISOC link, the transmission time slot of the Bluetooth link, and the FT determine the start point of the first audio data.
  • the processing unit 330 is specifically configured to: according to the time point when the communication unit 310 receives the first audio data or the time point when the first end sends the first audio data, LE ISOC link transmission The time slot, the transmission time slot of the LE ACL link, the transmission time slot of the Bluetooth link, and the FT, determine the start point of the first audio data;
  • the starting point of the first audio data satisfies the formula:
  • T is the start point of the first audio data
  • K is the time point when the communication unit 310 receives the first audio data or the time point when the first end sends the first audio data
  • S is the transmission time slot of the LE ISOC link
  • I is the sum of the transmission time slot of the Bluetooth link, the transmission time slot of the LE ISOC link, and the transmission time slot of the LE ACL link.
  • I 10ms.
  • the communication unit 310 is further configured to receive request information sent by the first end through the LE ACL link, and the request information is used to request the establishment of the LE ISOC link.
  • the first audio data is audio data encoded in an LC3 encoding format.
  • the device 300 further includes: a switching unit 340, configured to switch to the first end, wherein, during the switching of the switching unit 340 to the first end, the first end The transmission of the first audio data is not stopped between one end and the communication unit 310.
  • a switching unit 340 configured to switch to the first end, wherein, during the switching of the switching unit 340 to the first end, the first end The transmission of the first audio data is not stopped between one end and the communication unit 310.
  • the code rate of the first audio data received by the communication unit 310 is 96 kbps.
  • the third end does not support the low-power audio standard.
  • the audio data transmission apparatus 300 may correspond to the secondary device in the method 100, and can implement the corresponding operations of the secondary device in the method 100. For the sake of brevity, details are not described herein again.
  • connection between the various functional modules shown in FIG. 10 may be a direct connection or an indirect connection.
  • the electronic device 400 may include a first end 410 and a second end 420.
  • the first end 410 can correspond to the main device in the method 100, and can implement the corresponding operations of the main device in the method 100
  • the second end 420 can correspond to the secondary device in the method 100, and can implement the operations in the method 100.
  • the corresponding operations of the secondary equipment will not be repeated here.
  • the embodiment of the present application also provides a chip 500, and the chip 500 includes a memory 510 and a processor 520;
  • the memory 510 is coupled with the processor 520;
  • the memory 510 is used to store program instructions
  • the processor 520 is configured to call program instructions stored in the memory, so that the chip executes the corresponding operations of the main device in the method 100 for audio data transmission proposed in any of the foregoing embodiments.
  • the embodiment of the present application also provides a chip 600, and the chip 600 includes a memory 610 and a processor 620;
  • the memory 610 is coupled with the processor 620;
  • the memory 610 is used to store program instructions
  • the processor 620 is configured to call program instructions stored in the memory, so that the chip executes the corresponding operations of the secondary device in the audio data transmission method 100 proposed in any of the above embodiments.
  • the units can be implemented by electronic hardware, computer software, or a combination of the two, in order to clearly illustrate the interchangeability of hardware and software.
  • the composition and steps of each example have been described generally in terms of function. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种音频数据传输的方法、装置、芯片和电子设备,可以减小音频数据的传输时延。所述方法包括:第一端通过蓝牙链路,接收第三端发送的目标音频数据,所述目标音频数据用于得到第一音频数据,所述第一音频数据用于在第二端侧进行播放;所述第一端通过低功耗同步LEISOC链路,向所述第二端传输所述第一音频数据。

Description

音频数据传输的方法、装置、芯片和电子设备 技术领域
本申请实施例涉及无线通信技术领域,并且更具体地,涉及一种音频数据传输的方法、装置、芯片和电子设备。
背景技术
随着移动终端技术、芯片技术的飞速发展,耳机市场得到了迅猛的发展,尤其是无线耳机市场。在诸多无线耳机产品中,真无线立体声(True Wireless Stream,TWS)耳机可以实现左右声道的立体声播放,在便于佩戴的同时为用户提供了优质的播放音质,因此得到了广大消费者的青睐。
目前,用户对TWS耳机的时延要求较高,因此,如何减小音频数据在耳机端的传输时延,是一项亟待解决的问题。
发明内容
本申请实施例提供一种音频数据传输的方法、装置、芯片和电子设备,可以减小音频数据的传输时延。
第一方面,提供了一种音频数据传输的方法,所述方法包括:第一端通过蓝牙链路,接收第三端发送的目标音频数据,所述目标音频数据用于得到第一音频数据,所述第一音频数据用于在第二端侧进行播放;所述第一端通过低功耗同步LE ISOC链路,向所述第二端传输所述第一音频数据。
在一些可能的实现方式中,所述方法还包括:所述第一端根据所述目标音频数据,得到第二音频数据;所述第一端根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时FT,确定所述第二音频数据的起播点,其中,所述第二音频数据的原始起播点为根据蓝牙音频传输模型协定A2DP协议确定的起播点;
所述第一端通过低功耗同步LE ISOC链路,向所述第二端传输所述第一音频数据,包括:所述第一端在所述第二音频数据的原始起播点处,通过所述LE ISOC链路,向所述第二端传输所述第一音频数据。
在一些可能的实现方式中,所述第一端根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时 FT,确定所述第二音频数据的起播点,包括:
所述第一端根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、LE异步无连接ACL链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时FT,确定所述第二音频数据的起播点;
所述第二音频数据的起播点满足公式:
T=K+S+(FT-1)*I
其中,T为所述第二音频数据的起播点,K为所述第二音频数据的原始起播点,S为所述LE ISOC链路的传输时隙和所述LE ACL链路的传输时隙之和,I为所述蓝牙链路的传输时隙、所述LE ISOC链路的传输时隙以及所述LE ACL链路的传输时隙之和。
在一些可能的实现方式中,I=10ms。
在一些可能的实现方式中,S=2.5ms。
在一些可能的实现方式中,所述方法还包括:所述第一端通过所述LE ACL链路,向所述第二端发送请求信息,所述请求信息用于请求建立所述LE ISOC链路。
在一些可能的实现方式中,在建立所述LE ISOC链路之前,所述方法还包括:所述第一端建立与所述第三端之间的所述蓝牙链路。
在一些可能的实现方式中,在所述第一端向所述第二端传输所述第一音频数据之前,所述方法还包括:所述第一端采用低复杂度LC3编码格式,对所述第一音频数据进行编码。
在一些可能的实现方式中,所述方法还包括:所述第一端切换为所述第二端,其中,在所述第一端切换为所述第二端的过程中,所述第一端和所述第二端之间不停止所述第一音频数据的传输。
在一些可能的实现方式中,所述第一端传输所述第一音频数据的码率为96kbps。
在一些可能的实现方式中,所述第三端不支持低功耗音频标准。
第二方面,提供了一种音频数据传输的方法,所述方法包括:第二端通过低功耗同步LE ISOC链路,接收第一端发送的第一音频数据,其中,所述第一音频数据用于在所述第二端侧进行播放,所述第一音频数据为所述第一端根据第三端发送的目标音频数据得到的音频数据,所述第一端与所述第三端之间通过蓝牙链路进行连接。
在一些可能的实现方式中,所述第一音频数据为所述第一端对所述目标音频数据进行解码得到的部分音频数据。
在一些可能的实现方式中,所述方法还包括:所述第二端根据接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点。
在一些可能的实现方式中,所述第二端根据接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点,包括:所述第二端根据接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点、所述LE ISOC链路的传输时隙、LE异步无连接ACL链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点;
所述第一音频数据的起播点满足公式:
T=K+S+(FT-1)*I
其中,T为所述第一音频数据的起播点,K为所述第二端接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点,S为所述LE ISOC链路的传输时隙和所述LE ACL链路的传输时隙之和,I为所述蓝牙链路的传输时隙、所述LE ISOC链路的传输时隙以及所述LE ACL链路的传输时隙之和。
在一些可能的实现方式中,I=10ms。
在一些可能的实现方式中,S=2.5ms。
在一些可能的实现方式中,所述方法还包括:所述第二端通过所述LEACL链路,接收所述第一端发送的请求信息,所述请求信息用于请求建立所述LE ISOC链路。
在一些可能的实现方式中,所述第一音频数据是采用低复杂度LC3编码格式编码的音频数据。
在一些可能的实现方式中,所述方法还包括:所述第二端切换为第一端,其中,在所述第二端切换为所述第一端的过程中,所述第一端和所述第二端之间不停止所述第一音频数据的传输。
在一些可能的实现方式中,所述第三端不支持低功耗音频标准。
在一些可能的实现方式中,所述第三端不支持低功耗音频标准。
第三方面,提供了一种音频数据传输的装置,所述装置为第一端,用于执行上述第一方面或其各实现方式中的方法。
具体地,该第一端包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种音频数据传输的装置,所述装置为第二端,用于执行上述第二方面或其各实现方式中的方法。
具体地,该第二端包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种芯片,用于执行上述第一方面的音频数据传输的方法,包括存储器和处理器;
存储器与处理器耦合;
存储器,用于存储程序指令;
处理器,用于调用存储器存储的程序指令,使得芯片执行上述第一方面的音频数据传输的方法。
第六方面,提供了一种芯片,用于执行上述第二方面的音频数据传输的方法,包括存储器和处理器;
存储器与处理器耦合;
存储器,用于存储程序指令;
处理器,用于调用存储器存储的程序指令,使得芯片执行上述第二方面的音频数据传输的方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序。其中,当所述计算机程序被处理器执行时,使得所述处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序。其中,当所述计算机程序被处理器执行时,使得所述处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机程序产品,包括计算机程序指令,该计算 机程序指令使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种电子设备,所述电子设备包括:上述第三方面或第三方面的任意可能的实现方式中的主设备;上述第四方面或第四方面的任意可能的实现方式中的副设备;
其中,所述主设备通过蓝牙链路与所述主设备连接,所述主设备和所述副设备之间存在至少一个无线通信链路,所述至少一个无线通信链路包括低功耗LE ISOC链路。
上述技术方案,第三端(如源设备)和第一端(如主设备)之间通过蓝牙链路传输音频数据,且第一端通过LE ISOC链路向第二端(如副设备)传输音频数据,这样,第一端向第二端发送的音频数据的送达时间是准确且可预期的,因此第二端不需要对音频数据做大量的缓存就可以做到同步,从而可以减小音频数据传输的时延。
附图说明
图1是目前的一种基于蓝牙音频方案的拓扑示意性图。
图2是目前另一种基于蓝牙音频方案的拓扑示意性图。
图3是目前再一种基于蓝牙音频方案的拓扑示意性图。
图4是本申请实施例的音频数据传输的示意性流程图。
图5是本申请实施例的拓扑示意性图。
图6是本申请实施例的BT链路和LE链路的时隙分配图。
图7是本申请实施例的目标音频数据传输的流程图。
图8是本申请实施例的主设备和副设备进行角色切换的示意性图。
图9是本申请实施的音频数据传输的装置的示意性框图。
图10是本申请实施的音频数据传输的装置的示意性框图。
图11是本申请实施例的电子设备的示意性框图。
图12是本申请实施例的芯片的示意性框图。
图13是本申请实施例的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
目前,市面上的部分耳机已经实现了蓝牙音频数据的无线立体声传输,在兼顾音频数据质量的同时没有了线缆的束缚,典型的拓扑如图1所示。
如图1所示的拓扑由可以自由主从切换的主耳机和副耳机组成,其中,主耳机与源设备通过蓝牙(Bluetooth,BT)链路(link)直接连接,例如,源设备可以为手机,主耳机和副耳机通过低功耗(Low Energy,LE)链路连接,且主耳机可以通过与副耳机的连接引导副耳机对主耳机与源设备链路的监听,以实现一带多的通信拓扑,这样主耳机和副耳机可以同时接收到源设备发送的音频数据,从而实现一发多收的机制。之后,主耳机和副耳机将音频数据进行解交织,从而可以呈现出无线立体声的效果。
图2是另一种基于蓝牙音频方案的拓扑示意性图。可以看到,主耳机与源设备直接连接,同时主耳机与副耳机同样建立了连接。当主耳机接收到源设备发送的音频数据后,主耳机不对接收的音频数据做任何处理,可以直接通过BT link或低频转发技术(Low Band Bluetooth Retransmission Technology,LBRT)链路转发给副耳机。
由于源设备将音频数据发送给主耳机后,主耳机再将音频数据转发给副耳机,因此,该方案的延时较大,且会严重浪费无线带宽。此外,该方案中,主耳机和副耳机播放音频数据的起播点很难同步,会影响用户的听感。
图3为另一蓝牙音频方案的拓扑示意性图。在该方案中,源设备通过BT链路同时与主耳机和副耳机建立连接,源设备可以将音频数据分别传输给主耳机和副耳机,同时主耳机和副耳机可以对接收到的音频数据同步播放。
该蓝牙音频方案对源设备的限制较大,源设备必须使用该方案的定制化芯片,且无法与其他蓝牙标准协议兼容。
图4是本申请实施例的音频数据传输的方法的示意性流程图,图4的方法100可以由第三端、音频数据的播放端中的第一端以及音频数据的播放端中的第二端执行,该第一端、第二端、第三端可以为芯片或者是设备,该第一端、第二端和第三端例如分别可以为上述内容提到的主设备、副设备和源设备。下面以第一端、第二端和第三端分别为上主设备、副设备和源设备为例描述本申请实施例。
作为示例而非限定,源设备可以为终端设备、手机、平板电脑、笔记本电脑、台式机电脑、游戏设备、车载电子设备或穿戴式智能设备等便携式或移动计算设备。主设备可以为与源设备建立有用于音频数据传输的无线通信 链路的蓝牙耳机、助听器、蓝牙音箱等。副设备可以为不与源设备直接连接的蓝牙耳机、助听器、蓝牙音箱等。示例性地,主设备可以为TWS耳机中的主耳机,副设备可以为TWS耳机中的副耳机。
图5是方法100所适用的一种可能的拓扑图。可以看到,源设备和主设备之间通过BT链路连接,主设备和副设备之间通过低功耗(Low Energy,LE)同步(Isochronous,ISOC)链路进行连接。
其中,源设备可以支持LE音频(Audio)标准,也可以不支持LE Audio标准,即本申请实施例可以兼容不支持LE Audio标准的电子设备。如此,本申请实施例可以提高源设备的兼容性。
在一定时间内LE ISOC链路可以允许重传,也就是说,若主设备通过LE ISOC链路没有成功向副设备传输音频数据,则主设备可以重传该音频数据。若主设备和副设备为TWS耳机,由于两只耳机间距离通常比较近,音频数据传输可以有很高的传输成功率,比如90%以上,则重传次数可以为1。
上文提到的一定时间可以指刷新超时(Flush Timeout,FT),在创建图5所示的拓扑时可以确定FT,FT的取值为正整数,如FT可以为1、2或3等,FT的单位是Interval。优选地,FT=1。
为了描述方便,本申请实施例将主设备和副设备之间的链路称为第一链路。可选地,第一链路可以包括LE ISOC链路;或者,第一链路可以包括LE ISOC链路和LE异步无连接(Asynchronous Connectionless,ACL)链路。
其中,LE ACL链路主要可以用于传输控制信令,且接收到对端的应答之后才可以发送下一条控制信令。LE ISOC链路主要可以作为主设备和副设备之间音频数据的传输通道,且可以用于保证数据传输时序、数据传输同步和播放同步。
在本申请实施例中,BT链路和第一链路的总传输时隙(即BT链路的传输时隙和第一链路的传输时隙之和)可以为10ms。本申请实施例使用625μs作为传输单位,即一个时隙为625μs。也就是说,BT链路和第一链路共可以占用16个时隙。当然,本申请实施例也可以将BT链路和第一链路的总传输时隙称为通讯间隔(Interval)或者ISOC Interval或者调度周期。
参考图6,时隙例如可以理解为:源设备向主设备发送音频数据的时刻与主设备针对该音频数据向源设备发送应答的时刻之间的间隔。图6中标识的M表示源设备向主设备发送的数据包,该数据包可以包括音频数据,M 后面的数字表示这个数据包的序号,不同的序号表示不同的数据包。标识的Y表示主设备对源设备发送的数据包的应答,通常是空包,仅仅作为对源设备发送的数据包的应答,因此,图6中没有强调主设备对数据包应答的序号。
图6中的第一链路包括LE ISOC链路和LE ACL链路,子(sub)ISOC1为主设备第一次通过LE ISOC链路向副设备传输音频数据的时隙,sub ISOC2为主设备通过LE ISOC链路重传该音频数据的时隙。可以看到,第一链路和BT链路的总传输时隙为10ms,占用了16个时隙,
基于LE Audio标准,当主设备通过LE ISOC链路向副设备传输音频数据的码率为124kbps时,主设备侧和副设备侧播放的音频数据的音质最好。然而,在主设备向副设备传输音频数据的码率为124kbps时,第一链路占用的传输时隙较多,例如可以达到3.75ms。在这种情况下,BT链路占用的传输时隙会减小,使得蓝牙链路的带宽可能不能保证源设备和主设备之间的音频数据的传输,从而会影响该音频数据的传输质量。因此,本申请实施例的主设备向副设备传输音频数据的码率为124kbps以下。在该情况下,当主设备和副设备之间传输的音频数据的传输码率为96kbps时,主设备和副设备之间传输的音频数据的质量最高,即在主设备侧和副设备侧播放的音频数据的音质最好。因此,本申请实施例将主设备和副设备之间传输的音频数据的传输码率设置为96kbps。如此,可以提高用户的音质体验。
主设备和副设备之间传输的音频数据的传输码率为96kbps,表明主设备和副设备之间一秒可以传输12(96k/8=12k)个字节(Byte)的音频数据,即10ms可以传输120个Byte的音频数据,则该音频数据所在的协议数据单元(Protocol Data Unit,PDU)占用120+2+4=126个Byte。其中,2为该PDU的头部(header)占用的Byte,4为消息完整性校验(Messages Integrity Check,MIC)占用的Byte。进一步地,前导码(Preamble)占用2个Byte,接入地址(Access-Address)占用4个Byte,循环冗余校验(Cyclic Redundancy Check,CRC)占用3个Byte,则共占用126+2+4+3=135个Byte。
副设备针对该PDU的应答(图6中未示出)占用2个字节,进一步地,Preamble占用2个Byte,Access-Address占用4个Byte,CRC占用3个Byte,则共占用2+2+4+3=11个Byte。
主设备发送给副设备的PDU和副设备针对该PDU的应答共占用146个Byte,即146*8=1168个比特。由于为2M物理层(PHY),则主设备发送 给副设备的PDU和副设备针对该PDU的应答的传输时间共为1168/2=584μs。进一步地,由于一次收发需间隔150μs,因此,LE ISOC链路的单次传输时间可以为584+150*2=884μs。
根据前文所述,LE ISOC链路有一次的重传机会,则LE ISOC链路的最大传输时间可以为884μs*2=1768μs。应理解,主设备通过LE ISOC链路向副设备发送音频数据时,大多数情况下都是一次性发送成功,重传的机会用到的不多,所以LE ISOC链路的最优传输时间可以为884μs。
LE ACL链路的最大传输时间可以为636μs,则第一链路的最大传输时间可以为1768μs+636μs=2404μs。基于此,第一链路可以占用4个时隙,即第一链路的传输时隙可以设置为2.5ms。
再次参考图6,BT链路占用了12个时隙,第一链路占用了4个时隙,即第一链路的传输时隙为2.5ms,这样可以保证通过BT链路以及通过第一链路传输的音频数据的质量。
应理解,图6仅是示例,不应构成对本申请实施例的限定。
在音频数据传输的过程中,主设备需要兼顾两条不同的链路,即与源设备之间的BT链路以及与副设备之间的第一链路。为了避免该两条不同的链路的相互影响,应尽量避免两条链路之间的传输时隙重叠。再次参考图6,可以看到,BT链路的传输时隙为16个时隙中的前12个时隙,第一链路的传输时隙为后4个时隙,图6中对BT链路的传输时隙分配以及对第一链路的传输时隙分配,避免了两条不同的链路之间的传输时隙重叠。
也就是说,主设备在与副设备通信时,不与源设备进行通信。比如,主设备在与副设备通信时,主设备可以关闭与源设备之间进行通信的收发器。在该情况下,源设备向主设备发送音频数据后接收不到来自主设备的应答,此时,源设备可以自动进行该音频数据的重传。
再次参考图6,在主设备和副设备之间的第一链路的传输时隙中,源设备向主设备发送M7数据包,由于在第一链路的传输时隙中,主设备在和副设备进行通信,不与源设备进行通信,因此,主设备不向源设备进行针对M7数据包的应答。源设备未接收到主设备的应答,则源设备继续向主设备发送M7数据包。
或者,主设备在与源设备通信时,不与副设备进行通信。
下面以本申请实施例应用于TWS耳机的场景为例,先详细介绍图5所 示的拓扑的构建过程。
步骤1:多个sink设备在加入拓扑前处于低功耗模式,等待被唤醒。在sink设备被唤醒,例如打开耳机充电盒后,多个sink设备间可以通过除了蓝牙连接之外的其他物理连接进行配置,以相互绑定对端设备地址。例如,多个sink设备包括第一设备和第二设备,第一设备和第二设备可以相互绑定对端设备地址。
步骤2:第一设备被从耳机充电盒取出,进行LE广播。
其中,本申请实施例对第一设备进行LE广播的时间不作具体限定。比如,本申请实施例可以规定第一设备进行LE广播的时间为1ms。再比如,第一设备进行LE广播的时间可以由第一设备的产品形态决定。
步骤3:在第一设备进行LE广播后,若一定时间内有支持LE音频(Audio)标准的源设备建立与第一设备之间的连接,则第一设备执行现有的LE Audio方案。
若一定时间内没有支持LE Audio标准的源设备尝试建立与第一设备之间的连接,则第一设备可以使用步骤1中绑定的地址,发送广播。
可选地,第一设备可以持续广播1.28s。
可选地,第一设备可以发送高占空比定向广播。如此,只有与第一设备绑定过设备地址的sink设备才有可能与第一设备建立连接,且第一设备发送高占空比广播,可以节省与其他sink设备建立连接的时间。
步骤4:第一设备广播完之后,启动LE扫描(Scan)以扫描其他sink设备。若第一设备扫描到了绑定过设备地址的sink设备正在广播,例如,该sink设备为第二设备,则第一设备可以与第二设备建立LE ACL链路,其中,第一设备为主设备,第二设备为副设备。
若第一设备在广播的过程中,被绑定过设备地址的其他sink设备扫描到,例如,被第二设备扫描到,则第一设备与第二设备建立LE ACL链路,第一设备为副设备,第二设备为主设备。
其中,第二设备可以为在第一设备之前结束广播的设备,例如,第二设备可以是先从耳机充电盒取出的sink设备,即第二设备可以是在第一设备广播之前广播的设备。或者,第二设备也可以是在第一设备广播之后或者与第一设备同时广播的设备,在这种情况下,第二设备广播的持续时间可以比第一设备广播的持续时间短。
若在第一设备广播完且扫描完其他sink设备之后,第一设备没有扫描到绑定过设备地址的sink设备,则第一设备为主设备。
步骤5:主设备启动BT的配对连接过程,等待与支持BT的源设备建立BT连接。
若第一设备没有扫描到绑定过设备地址的sink设备,则第一设备可以在启动BT的配对连接过程的同时,再次扫描绑定过设备地址的其他sink设备,或者,可以重新进行广播。
步骤6:在源设备与主设备建立了BT链路、主设备与副设备建立了LE ACL链路之后,主设备可以通过LE ACL链路,向副设备发送请求信息,该请求信息用于请求建立LE ISOC链路。在主设备和副设备协商之后,主设备和副设备之间建立起LE ISOC链路。
应理解,上述步骤1-步骤6仅是图5所示的拓扑的示例性构建过程,并不对本申请实施例构成任何限制。
在拓扑构建完成之后,下面介绍方法100的实现过程。如图4所示,该方法100可以包括以下内容中的至少部分内容。
在110中,源设备通过BT链路,向主设备发送目标音频数据。
相应地,主设备可以通过BT链路接收到源设备发送的目标音频数据。
其中,目标音频数据可以用于得到第一音频数据,第一音频数据用于在第二端侧进行播放。
当源设备支持LE Audio标准时,源设备可以采用子带编码(Sub-band Coding,SBC)格式、高级音频编码(Advanced Audio Coding,AAC)格式、LDAC编码格式、低复杂度(Low Complexity,LC)3等编码格式对目标音频数据进行编码。
当源设备不支持LE Audio标准时,源设备可以采用SBC、AAC、LDAC编码格式对目标音频数据进行编码。
如此,本申请实施例对源设备没有特别的要求,如果源设备支持LE Audio标准的话,则可以执行LE Audio方案或本申请实施例的方案;如果源设备不支持LE Audio标准的话,则可以执行本申请实施例的方案。
主设备接收到目标音频数据后,可以先对目标音频数据进行解码。具体而言,主设备可以通过数字信号处理(Digital Signal Processor,DSP)等其他硬件单元,将目标音频数据解码为可直接输出给数模转换器(Digital to  Analog Converter,DAC)的脉冲编码调制(Pulse Code Modulation,PCM)数据。
主设备对目标音频数据解码,除了可以得到第一音频数据之外,还可以得到第二音频数据,第二音频数据用于在主设备侧进行播放。
应理解,第一音频数据和第二音频数据都为PCM数据。
在120中,主设备通过LE ISOC链路,向副设备传输第一音频数据。
作为一种示例,主设备对目标音频数据解码后,暂时不确定哪些音频数据是在主设备侧播放,哪些音频数据在主设备侧进行播放。此时,主设备可以通过LE ISOC链路将解码得到的所有音频数据都传输给副设备,即主设备可以将第一音频数据和第二音频数据都通过LE ISOC链路都传输给副设备。
作为另一种示例,通常情况下,主设备解码后的PCM数据为立体声,此时,主设备可以对PCM数据进行解交织,即分离左右声道。之后,主设备可以将第二音频数据送入DAC缓存准备播放,而将第一音频数据送入DSP或者其他硬件单元进行编码,并且将编码后的第一音频数据放入LE ISOC链路的发送缓存中。
由于主设备不需要将解码后的所有音频数据都发送给副设备,只需要将副设备对应的音频数据发送给副设备,从而可以避免对无线带宽的浪费。
副设备对应的音频数据可以理解为:若副设备为右耳机,则副设备对应的音频数据,即第一音频数据为右声道输出的音频数据。
可选地,主设备可以采用LC3编码格式对第一音频数据进行编码。
由于LC3编码格式是专门配合LE ISOC链路开发的编码格式,具有低延时、高音质、丢包弥补等优点,如此,可以减小音频数据传输的时延,且可以提高用户的音质体验。进一步地,由于LC3编码格式的压缩率较高,这样的话比如第一音频数据的大小为256字节,则主设备可以将第一音频数据压缩到128字节,从而可以进一步节省无线带宽,进一步地可以减小功耗。
当然,主设备也可以采用SBC、AAC或LDAC等编码格式对第一音频数据进行编码。
由于LC3编码格式的帧长为10ms,第一链路和BT链路的总传输时隙为10ms时,可以更好地配合LC3编码格式。
若当前只有主设备在工作,副设备没有工作,比如,副设备的电量耗尽或者用户将副设备又放回了充电盒中,则主设备可以丢弃第一音频数据,或 者主设备可以根据应用配置在同一个扬声器上同时播放两个声道。
副设备接收到编码后的第一音频数据后,可以将编码后的第一音频数据通过DSP进行解码,然后将解码后的第一音频数据送入DAC缓存准备播放。
若主设备通过LE ISOC链路没有成功向副设备传输第一音频数据,则主设备可以重传第一音频数据。
下面结合图7示例性地描述方法100。
如图7所示,主设备为左耳机,副设备为右耳机。源设备通过BT链路向主设备发送目标音频数据,其中,源设备通过AAC编码格式对目标音频数据进行编码。主设备接收到目标音频数据后,对目标音频数据进行解码,得到PCM数据。然后,主设备对PCM数据进行解交织,得到左声道(CH_L)对应的第二音频数据和右声道(CH_R)对应的第一音频数据。主设备将第二音频数据DAC缓存准备播放,并采用LC3编码格式对第一音频数据进行编码,然后通过LE ISOC链路将编码后的第一音频数据发送给副设备。副设备通过LE ISOC链路接收到编码后的第一音频数据之后,对编码后的第一音频数据进行解码,并将解码后的PCM数据(即第一音频数据)送入DAC缓存准备播放。
在将音频数据传输完之后,主设备开始播放第二音频数据,且副设备开始播放第一音频数据。
由于主设备和副设备之间传输的是立体声音频数据,如果音频数据同步精度不高可能会导致左右声道出现声音不同步的问题,从而严重影响用户的听觉体验。
副设备解码得到第一音频数据后,主设备和副设备可以对第一音频数据和第二音频数据进行时间对齐,并且在相同的时间开始播放第一音频设备和第二音频数据。也就是说,第一音频数据的起播点和第二音频数据的起播点相同。
可选地,主设备和副设备可以根据LE ISOC协议规定的同步时间基准,对第一音频数据和第二音频数据进行时间对齐。
可选地,主设备和副设备可以以主设备和副设备之中的任意一个设备的时间为基准,对第一音频数据和第二音频数据进行时间对齐。
可选地,主设备和副设备可以协商好同步时间基准,以对第一音频数据和第二音频数据进行时间对齐。
需要说明的是,在本申请实施例中,除了主设备和副设备之间需要进行时钟同步,主设备和源设备之间也需要进行时钟同步。可选地,主设备可以以源设备为基准,在每一次音频数据收发时都进行时钟校准,从而可以避免不同设备间时钟不同步的问题。
可选地,本申请实施例可以利用LE ISOC链路同步传输的特性进行音频起播、音频同步操作,并且在每个时间单元进行实时音频同步,以完成精准的音频同步效果。示例性地,时间单元可以为时隙。
由于主设备和副设备之间需要进行音频数据的中转,音频数据中转过程需要额外的时间,主设备可以根据第二音频数据的原始起播点、第一链路的传输时隙、BT链路的传输时隙和FT,确定第二音频数据的起播点。
其中,第二音频数据的原始起播点为根据蓝牙音频传输模型协定(Advanced Audio Distribution Profile,A2DP)协议确定的起播点。可选地,第二音频数据的原始起播点可以和源设备发送的目标音频数据的帧数有关,例如,第二音频数据的原始起播点可以为源设备向主设备发送了N帧目标音频数据后的时间点。第二音频数据的原始起播点的确定可以参考现有技术,本申请实施例不再详述。
需要说明的是,假设第一链路只包括LE ISOC链路,则第一链路的传输时隙为LE ISOC链路的传输时隙。
参考图6,若第一链路包括LE ISOC链路和LE ACL链路,则第一链路的传输时隙可以为LE ISOC链路的传输时隙和LE ACL链路的传输时隙之和。
可选地,第二音频数据的起播点可以满足如下公式:
T=K+S+(FT-1)*I
其中,T为第二音频数据的起播点,K为第二音频数据的原始起播点,S为第一链路的传输时隙,I为蓝牙链路和第一链路的传输时隙。
可选地,如图6所示,S可以等于2.5ms。
可选地,如图6所示,I可以等于10ms。
上述技术方案,若S=2.5ms,FT=1,则源设备将目标音频数据发送给主设备后,主设备和副设备可以在源设备将目标音频数据发送给主设备后的2.5ms播放第一音频设备和第二音频数据。通常情况下,BT链路的传输时延在100ms以上,仅仅增加2.5ms对整体时延影响不大。
主设备可以在第二音频数据的原始起播点处向副设备发送第一音频数 据,副设备接收到第一音频数据后,可以根据接收到第一音频数据的时间点、第一链路的传输时隙、BT链路的传输时隙以及FT,确定第一音频数据的起播点。
可选地,第一音频数据的起播点T可以满足如下公式:
T=K+S+(FT-1)*I
或者,K也可以为主设备向副设备发送第一音频数据的时间点。示例性地,主设备可以通过LE ACL链路告诉副设备自己发送第一音频数据的时间点。再示例性地,在本申请实施例中,主设备发送第一音频数据的时间点和副设备接收到第一音频数据的时间点可以相同,即本实施例中,K也可以为副设备接收到第一音频数据的时间点。
上述技术方案可以实现第一音频数据和第二音频数据的同步播放。
需要说明的是,本申请实施例的音频同步仅涉及主设备和副设备之间的同步,并不涉及主设备和源设备之间的音频同步。
还需要说明的是,若主设备和副设备之间的传输时延较小,则可以忽略主设备和副设备之间的传输时延,即本申请实施例可以认为主设备向副设备发送第一音频数据的时间点与副设备接收到第一音频数据的时间点相同。若主设备和副设备之间的传输时延较大,则副设备可以在主设备向副设备发送第一音频数据的时间点和副设备接收到第一音频数据的时间点之间任意选择一个时间点作为K。
对于包括主设备和副设备的电子设备来说,可能会发生但不限于以下至少一种状况:用户将主设备收了起来,比如将主耳机放进了充电盒;主设备和副设备的耗电量不一致,比如,主设备的耗电速度较快,当主设备的电量过低时,即使副设备的电量充足,主设备和副设备均无法继续被用户使用。
因此,方法100还可以包括:主设备和副设备之间进行角色切换,即原主设备切换为新的副设备,原副设备切换为新的主设备。
在本申请实施例中,在主设备和副设备进行角色切换的过程中,主设备和副设备之间通过LE ISOC链路的音频数据传输并不会停止。例如,在主设备和副设备进行角色切换时,主设备可以继续通过LE ISOC链路向副设备发送第一音频数据,副设备可以继续通过LE ISOC链路接收主设备发送的第一音频数据。应理解,此处的“主设备和副设备之间通过LE ISOC链路的音频数据传输并不会停止”中的“音频数据”除了可以为第一音频数据之外,还可 以为其他的音频数据,本申请实施例对此不作具体限定。
如此,在主设备和副设备进行角色切换时,可以保证主设备和副设备之间的音频数据的连续传输。
在主设备和副设备进行角色切换的过程中,主设备可以将与源设备之间的BT链路转移到副设备中。具体而言,主设备在获取到与源设备之间的BT链路的链路参数后,可以向副设备发送第一信息,该第一信息包括链路参数。
可选地,主设备可以通过LE ACL链路向副设备发送第一信息。
可选地,链路参数可以包括但不限于时间信息、信道信息、跳频信息、加密信息、接入码等。
副设备接收到链路参数后,可以根据链路参数,尝试与源设备进行通信传输。若副设备已经开始和源设备进行通信传输,则表明副设备已经切换为新的主设备。
接下来,副设备可以向原主设备发送第二信息,该第二信息用于指示副设备已经切换为新的主设备。可选地,副设备可以通过LE ACL链路向原主设备发送第二信息。原主设备接收到第二信息后,可以断开和源设备之间的BT链路,切换为新的副设备。
可以看到,副设备需要根据主设备和源设备之间的链路参数切换为新的主设备。若主设备将链路参数告诉给副设备之后,主设备再与源设备进行通信,则链路参数将会发生改变。这样的话,副设备根据接收到的链路参数是不可能与源设备通信成功的。
因此,在主设备获取到链路参数和副设备与源设备之间开始进行通信传输之前,主设备可以停止与源设备之间的通信传输。如此,可以保证副设备根据接收到链路参数可以与源设备之间进行通信传输。
可选地,在主设备和副设备进行角色切换之前,主设备可以通过LE ACL链路,向副设备发送切换请求信息,该切换请求信息用于请求与副设备之间进行角色切换。
若主设备通过LE ACL链路接收到了副设备发送的切换请求确认信息,且该切换请求确认信息用于指示副设备同意主设备的切换请求,则主设备和副设备之间可以开始进行角色切换。
若主设备通过LE ACL链路接收到了副设备发送的切换请求确认信息,但该切换请求确认信息用于指示副设备不同意主设备的切换请求,或者,主 设备在预设时间内未接收到副设备发送的切换请求确认信息,则主设备和副设备之间不进行角色切换。
其中,预设时间可以是协议规定的,也可以是主设备和副设备约定好的。
在主设备未与副设备角色切换成功的情况下,主设备可以再次启动与源设备之间的通信传输,然后可以重新进行与副设备之间的角色切换。
主设备未与副设备角色切换成功可能包括以下几种情况:
(1)副设备未同意主设备的切换请求;
(2)副设备同意了主设备的切换请求,但副设备没有成功切换为新的主设备;
(3)副设备成功切换为新的主设备,但主设备没有接收到副设备发送的第二信息;
(4)副设备成功切换为新的主设备,且主设备接收到了副设备发送的第二信息,但主设备没有成功切换为新的副设备;
(5)主设备在告诉了副设备链路参数后,且副设备还没有切换为新的主设备,主设备与源设备进行了通信。
应理解,若主设备和源设备之间长时间没有进行通信传输,则主设备和源设备之间的BT链路有可能会被刷掉,因此,若主设备未与副设备角色切换成功,主设备需要再次启动与源设备之间的通信传输。
图8为主设备和副设备之间进行角色切换的具体步骤。
步骤1:主设备向副设备发送切换请求信息,该切换请求信息用于请求与所述副设备之间进行角色切换。
步骤2:副设备向主设备发送切换请求确认信息。
若该切换请求确认信息用于指示副设备同意主设备的切换请求,则主设备执行后面的步骤;若该切换请求信息用于指示副设备拒绝主设备的切换请求,则角色切换流程结束。
步骤3:主设备获取链路参数,并确定角色切换的锚点,之后,主设备通过LE ACL链路向副设备发送第二信息,该第二信息用于指示副设备根据链路参数与源设备之间开始进行通信传输,即通知副设备进行角色转换。
步骤4:副设备根据链路参数,尝试与源设备进行通信传输。
若副设备与源设备通信传输成功,即副设备切换为了新的主设备,则向主设备发送第二信息,以通知原副设备已经切换为了新的主设备。比如,原 副设备向原主设备发送肯定应答(Acknowledge,ACK),则原主设备执行步骤5。
若副设备没有与源设备通信成功,比如,副设备向主设备发送否定应答(Negative Acknowledgement,NCK),则主设备执行步骤6。
在步骤3和步骤4中,原主设备不与源设备进行通信传输。
步骤5:原主设备根据确定的锚点切换为新的副设备。其中,锚点可以理解为两个设备之间约定执行某个动作的时间点。例如,本申请实施例中的锚点可以为原主设备和原副设备之间约定的原主设备切换为新的副设备的时间点。
至此,主设备和副设备之间的角色切换过过程结束。
步骤6:主设备通过BT链路与源设备进行通信传输,重新进行与副设备之间的角色切换。
本申请实施例,第三端(如源设备)和第一端(如主设备)之间通过蓝牙链路传输音频数据,且第一端通过LE ISOC链路向第二端(如副设备)传输音频数据,这样,第一端向第二端发送的音频数据的送达时间是准确且可预期的,因此第二端不需要对音频数据做大量的缓存就可以做到同步,从而可以减小音频数据传输的时延。
在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
并且,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
上文详细描述了本申请实施例的音频数据传输的方法,下面将描述本申请实施例的音频数据传输的装置。应理解,本申请实施例中的音频数据传输的装置可以执行本申请实施例中的音频数据传输的方法,具有执行相应方法的功能。
图9示出了本申请实施例的音频数据传输的装置200的示意性框图。如图9所示,该音频数据传输的装置200可以包括:
通信单元210,用于通过蓝牙链路,接收第三端发送的目标音频数据,目标音频数据用于得到第一音频数据,第一音频数据用于在第二端侧进行播 放。
通信单元210还用于,通过LE ISOC链路,向第二端传输第一音频数据。
可选地,在本申请实施例中,如图9所示,装置200还包括:处理单元220,用于根据目标音频数据,得到第二音频数据;根据第二音频数据的原始起播点、第一链路的传输时隙、蓝牙链路的传输时隙和FT,确定第二音频数据的起播点,其中,第二音频数据的原始起播点为根据A2DP协议确定的起播点;
通信单元210具体用于:在第二音频数据的原始起播点处,通过LE ISOC链路,向第二端传输第一音频数据。
可选地,在本申请实施例中,处理单元220具体用于:根据第二音频数据的原始起播点、LE ISOC链路的传输时隙、LE ACL链路的传输时隙、蓝牙链路的传输时隙和FT,确定第二音频数据的起播点;
第二音频数据的起播点满足公式:
T=K+S+(FT-1)*I
其中,T为第二音频数据的起播点,K为第二音频数据的原始起播点,S为LE ISOC链路的传输时隙和LE ACL链路的传输时隙之和,I为蓝牙链路的传输时隙、LE ISOC链路的传输时隙之和以及LE ACL链路的传输时隙。
可选地,在本申请实施例中,I=10ms。
可选地,在本申请实施例中,S=2.5ms。
可选地,在本申请实施例中,通信单元210还用于:通过LE ACL链路,向第二端发送请求信息,请求信息用于请求建立LE ISOC链路。
可选地,在本申请实施例中,如图9所示,装置200还包括建立单元230,建立单元230用于:在建立LE ISOC链路之前,建立与第三端之间的所述蓝牙链路。
可选地,在本申请实施例中,如图9所示,装置200还包括:编码单元240,用于在通信单元210向第二端传输第一音频数据之前,采用LC3编码格式,对第一音频数据进行编码。
可选地,在本申请实施例中,如图9所示,装置200还包括:切换单元250,用于切换为所述第二端,其中,在切换单元250切换为第二端的过程中,通信单元210和第二端之间不停止第一音频数据的传输。
可选地,在本申请实施例中,通信单元210传输第一音频数据的码率为 96kbps。
可选地,在本申请实施例中,第三端不支持低功耗音频标准。
应理解,该音频数据传输的装置200可对应于方法100中的主设备,可以实现该方法100中的主设备的相应操作,为了简洁,在此不再赘述。
还应理解,图9所示的各个功能模块之间的连接可以是直接连接,也可以是间接连接。
图10示出了本申请实施例的音频数据传输的装置300的示意性框图。如图10所示,该音频数据传输的装置300可以包括:
通信单元310,用于通过低功耗LE ISOC链路,接收第一端发送的第一音频数据,其中,第一音频数据为第一端根据第三端发送的目标音频数据得到的音频数据,第一端与第三端之间通过蓝牙链路进行连接。
播放单元320,用于播放第一音频数据。
可选地,在本申请实施例中,第一音频数据为第一端对目标音频数据进行解码得到的部分音频数据。
可选地,在本申请实施例中,如图10所示,装置300还包括:处理单元330,用于根据通信单元310接收到第一音频数据的时间点或第一端发送第一音频数据的时间点、LE ISOC链路的传输时隙、蓝牙链路的传输时隙以及FT,确定第一音频数据的起播点。
可选地,在本申请实施例中,处理单元330具体用于:根据通信单元310接收到第一音频数据的时间点或第一端发送第一音频数据的时间点、LE ISOC链路的传输时隙、LE ACL链路的传输时隙、蓝牙链路的传输时隙以及FT,确定第一音频数据的起播点;
第一音频数据的起播点满足公式:
T=K+S+(FT-1)*I
其中,T为第一音频数据的起播点,K为通信单元310接收到第一音频数据的时间点或第一端发送第一音频数据的时间点,S为LE ISOC链路的传输时隙和LE ACL链路的传输时隙之和,I为蓝牙链路的传输时隙、LE ISOC链路的传输时隙以及LE ACL链路的传输时隙之和。
可选地,在本申请实施例中,I=10ms。
可选地,在本申请实施例中,S=2.5ms。
可选地,在本申请实施例中,通信单元310还用于:通过LE ACL链路, 接收第一端发送的请求信息,请求信息用于请求建立LE ISOC链路。
可选地,在本申请实施例中,第一音频数据是采用LC3编码格式编码的音频数据。
可选地,在本申请实施例中,如图10所示,装置300还包括:切换单元340,用于切换为第一端,其中,在切换单元340切换为第一端的过程中,第一端和通信单元310之间不停止第一音频数据的传输。
可选地,在本申请实施例中,通信单元310接收第一音频数据的码率为96kbps。
可选地,在本申请实施例中,第三端不支持低功耗音频标准。
应理解,该音频数据传输的装置300可对应于方法100中的副设备,可以实现该方法100中的副设备的相应操作,为了简洁,在此不再赘述。
还应理解,图10所示的各个功能模块之间的连接可以是直接连接,也可以是间接连接。
本申请实施例还提供了一种电子设备。如图11所示,该电子设备400可以包括第一端410和第二端420。该第一端410可对应于方法100中的主设备,可以实现该方法100中的主设备的相应操作,该第二端420可对应于方法100中的副设备,可以实现该方法100中的副设备的相应操作,为了简洁,在此不再赘述。
本申请实施例还提供了一种芯片500,芯片500包括存储器510和处理器520;
存储器510与处理器520耦合;
存储器510,用于存储程序指令;
处理器520,用于调用存储器存储的程序指令,使得芯片执行上述任一实施例提出的音频数据传输的方法100中的主设备的相应操作。
本申请实施例还提供了一种芯片600,芯片600包括存储器610和处理器620;
存储器610与处理器620耦合;
存储器610,用于存储程序指令;
处理器620,用于调用存储器存储的程序指令,使得芯片执行上述任一实施例提出的音频数据传输的方法100中的副设备的相应操作。
本申请实施例提供的芯片其具体的实现过程及有益效果参见上述,在此 不再赘述。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (47)

  1. 一种音频数据传输的方法,其特征在于,所述方法包括:
    第一端通过蓝牙链路,接收第三端发送的目标音频数据,所述目标音频数据用于得到第一音频数据,所述第一音频数据用于在第二端侧进行播放;
    所述第一端通过低功耗同步LE ISOC链路,向所述第二端传输所述第一音频数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一端根据所述目标音频数据,得到第二音频数据;
    所述第一端根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时FT,确定所述第二音频数据的起播点,其中,所述第二音频数据的原始起播点为根据蓝牙音频传输模型协定A2DP协议确定的起播点;
    所述第一端通过低功耗同步LE ISOC链路,向所述第二端传输所述第一音频数据,包括:
    所述第一端在所述第二音频数据的原始起播点处,通过所述LE ISOC链路,向所述第二端传输所述第一音频数据。
  3. 根据权利要求2所述的方法,其特征在于,所述第一端根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时FT,确定所述第二音频数据的起播点,包括:
    所述第一端根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、LE异步无连接ACL链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时FT,确定所述第二音频数据的起播点;
    所述第二音频数据的起播点满足公式:
    T=K+S+(FT-1)*I
    其中,T为所述第二音频数据的起播点,K为所述第二音频数据的原始起播点,S为所述LE ISOC链路的传输时隙和所述LE ACL链路的传输时隙之和,I为所述蓝牙链路的传输时隙、所述LE ISOC链路的传输时隙以及所述LE ACL链路的传输时隙之和。
  4. 根据权利要求3所述的方法,其特征在于,I=10ms。
  5. 根据权利要求3或4所述的方法,其特征在于,S=2.5ms。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一端通过所述LE ACL链路,向所述第二端发送请求信息,所述请求信息用于请求建立所述LE ISOC链路。
  7. 根据权利要求6所述的方法,其特征在于,在建立所述LE ISOC链路之前,所述方法还包括:
    所述第一端建立与所述第三端之间的所述蓝牙链路。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在所述第一端向所述第二端传输所述第一音频数据之前,所述方法还包括:
    所述第一端采用低复杂度LC3编码格式,对所述第一音频数据进行编码。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一端切换为所述第二端,其中,在所述第一端切换为所述第二端的过程中,所述第一端和所述第二端之间不停止所述第一音频数据的传输。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一端传输所述第一音频数据的码率为96kbps。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第三端不支持低功耗音频标准。
  12. 一种音频数据传输的方法,其特征在于,所述方法包括:
    第二端通过低功耗同步LE ISOC链路,接收第一端发送的第一音频数据,其中,所述第一音频数据用于在所述第二端侧进行播放,所述第一音频数据为所述第一端根据第三端发送的目标音频数据得到的音频数据,所述第一端与所述第三端之间通过蓝牙链路进行连接。
  13. 根据权利要求12所述的方法,其特征在于,所述第一音频数据为所述第一端对所述目标音频数据进行解码得到的部分音频数据。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第二端根据接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点。
  15. 根据权利要求14所述的方法,其特征在于,所述第二端根据接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间 点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点,包括:
    所述第二端根据接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点、所述LE ISOC链路的传输时隙、LE异步无连接ACL链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点;
    所述第一音频数据的起播点满足公式:
    T=K+S+(FT-1)*I
    其中,T为所述第一音频数据的起播点,K为所述第二端接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点,S为所述LE ISOC链路的传输时隙和所述LE ACL链路的传输时隙之和,I为所述蓝牙链路的传输时隙、所述LE ISOC链路的传输时隙以及所述LE ACL链路的传输时隙之和。
  16. 根据权利要求15所述的方法,其特征在于,I=10ms。
  17. 根据权利要求15或16所述的方法,其特征在于,S=2.5ms。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二端通过所述LEACL链路,接收所述第一端发送的请求信息,所述请求信息用于请求建立所述LE ISOC链路。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述第一音频数据是采用低复杂度LC3编码格式编码的音频数据。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二端切换为第一端,其中,在所述第二端切换为所述第一端的过程中,所述第一端和所述第二端之间不停止所述第一音频数据的传输。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述第二端接收所述第一音频数据的码率为96kbps。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,所述第三端不支持低功耗音频标准。
  23. 一种音频数据传输的装置,其特征在于,所述装置为第一端,包括:
    通信单元,用于通过蓝牙链路,接收第三端发送的目标音频数据,所述 目标音频数据用于得到第一音频数据,所述第一音频数据用于在第二端侧进行播放;
    所述通信单元还用于,通过低功耗同步LE ISOC链路,向所述第二端传输所述第一音频数据。
  24. 根据权利要求23所述的装置,其特征在于,所述装置还包括处理单元,所述处理单元用于:
    根据所述目标音频数据,得到第二音频数据;
    根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时FT,确定所述第二音频数据的起播点,其中,所述第二音频数据的原始起播点为根据蓝牙音频传输模型协定A2DP协议确定的起播点;
    所述通信单元具体用于:
    在所述第二音频数据的原始起播点处,通过所述LE ISOC链路,向所述第二端传输所述第一音频数据。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第二音频数据的原始起播点、所述LE ISOC链路的传输时隙、LE异步无连接ACL链路的传输时隙、所述蓝牙链路的传输时隙和刷新超时FT,确定所述第二音频数据的起播点;
    所述第二音频数据的起播点满足公式:
    T=K+S+(FT-1)*I
    其中,T为所述第二音频数据的起播点,K为所述第二音频数据的原始起播点,S为所述LE ISOC链路的传输时隙和所述LE ACL链路的传输时隙之和,I为所述蓝牙链路的传输时隙、所述LE ISOC链路的传输时隙以及所述LE ACL链路的传输时隙之和。
  26. 根据权利要求25所述的装置,其特征在于,I=10ms。
  27. 根据权利要求25或26所述的装置,其特征在于,S=2.5ms。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述通信单元还用于:
    通过所述LE ACL链路,向所述第二端发送请求信息,所述请求信息用于请求建立所述LE ISOC链路。
  29. 根据权利要求28所述的装置,其特征在于,所述装置还包括建立单元,所述建立单元用于:
    在建立所述LE ISOC链路之前,建立与所述第三端之间的所述蓝牙链路。
  30. 根据权利要求23至29中任一项所述的装置,所述装置还包括:
    编码单元,用于在所述通信单元向所述第二端传输所述第一音频数据之前,采用低复杂度LC3编码格式,对所述第一音频数据进行编码。
  31. 根据权利要求23至30中任一项所述的装置,其特征在于,所述装置还包括:
    切换单元,用于切换为所述第二端,其中,在所述切换单元切换为所述第二端的过程中,所述通信单元和所述第二端之间不停止所述第一音频数据的传输。
  32. 根据权利要求23至31中任一项所述的装置,其特征在于,所述通信单元传输所述第一音频数据的码率为96kbps。
  33. 根据权利要求23至32中任一项所述的装置,其特征在于,所述第三端不支持低功耗音频标准。
  34. 一种音频数据传输的装置,其特征在于,所述装置为第二端,包括:
    通信单元,用于通过低功耗同步LE ISOC链路,接收第一端发送的第一音频数据,其中,所述第一音频数据为所述第一端根据第三端发送的目标音频数据得到的音频数据,所述第一端与所述第三端之间通过蓝牙链路进行连接;
    播放单元,用于播放所述第一音频数据。
  35. 根据权利要求34所述的装置,其特征在于,所述第一音频数据为所述第一端对所述目标音频数据进行解码得到的部分音频数据。
  36. 根据权利要求34或35所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述通信单元接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点、所述LE ISOC链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点。
  37. 根据权利要求36所述的装置,其特征在于,所述处理单元具体用于:
    根据所述通信单元接收到所述第一音频数据的时间点或所述第一端发 送所述第一音频数据的时间点、所述LE ISOC链路的传输时隙、LE异步无连接ACL链路的传输时隙、所述蓝牙链路的传输时隙以及刷新超时FT,确定所述第一音频数据的起播点;
    所述第一音频数据的起播点满足公式:
    T=K+S+(FT-1)*I
    其中,T为所述第一音频数据的起播点,K为所述通信单元接收到所述第一音频数据的时间点或所述第一端发送所述第一音频数据的时间点,S为所述LE ISOC链路的传输时隙和所述LE ACL链路的传输时隙之和,I为所述蓝牙链路的传输时隙、所述LE ISOC链路的传输时隙以及所述LE ACL链路的传输时隙之和。
  38. 根据权利要求37所述的装置,其特征在于,I=10ms。
  39. 根据权利要求37或38所述的装置,其特征在于,S=2.5ms。
  40. 根据权利要求37至39中任一项所述的装置,其特征在于,所述通信单元还用于:
    通过所述LE ACL链路,接收所述第一端发送的请求信息,所述请求信息用于请求建立所述LE ISOC链路。
  41. 根据权利要求34至40中任一项所述的装置,其特征在于,所述第一音频数据是采用低复杂度LC3编码格式编码的音频数据。
  42. 根据权利要求34至41中任一项所述的装置,其特征在于,所述装置还包括:
    切换单元,用于切换为第一端,其中,在所述切换单元切换为所述第一端的过程中,所述第一端和所述通信单元之间不停止所述第一音频数据的传输。
  43. 根据权利要求34至42中任一项所述的装置,其特征在于,所述通信单元接收所述第一音频数据的码率为96kbps。
  44. 根据权利要求34至43中任一项所述的装置,其特征在于,所述第三端不支持低功耗音频标准。
  45. 一种芯片,用于实现一种音频数据传输的方法,其特征在于,包括存储器和处理器;
    所述存储器与所述处理器耦合;
    所述存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器存储的程序指令,使得所述芯片执行上述权利要求1至11中任一项所述的音频数据传输的方法。
  46. 一种芯片,用于实现一种音频数据传输的方法,其特征在于,包括存储器和处理器;
    所述存储器与所述处理器耦合;
    所述存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器存储的程序指令,使得所述芯片执行上述权利要求12至22中任一项所述的音频数据传输的方法。
  47. 一种电子设备,其特征在于,包括:
    如权利要求23至33中任一项所述的第一端;
    如权利要求34至44中任一项所述的第二端;
    其中,所述第一端通过蓝牙链路与第三端连接,所述第一端和所述第二端之间存在低功耗同步LE ISOC链路。
PCT/CN2020/089269 2020-05-08 2020-05-08 音频数据传输的方法、装置、芯片和电子设备 WO2021223243A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/089269 WO2021223243A1 (zh) 2020-05-08 2020-05-08 音频数据传输的方法、装置、芯片和电子设备
CN202080093146.9A CN114982369A (zh) 2020-05-08 2020-05-08 音频数据传输的方法、装置、芯片和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089269 WO2021223243A1 (zh) 2020-05-08 2020-05-08 音频数据传输的方法、装置、芯片和电子设备

Publications (1)

Publication Number Publication Date
WO2021223243A1 true WO2021223243A1 (zh) 2021-11-11

Family

ID=78467692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089269 WO2021223243A1 (zh) 2020-05-08 2020-05-08 音频数据传输的方法、装置、芯片和电子设备

Country Status (2)

Country Link
CN (1) CN114982369A (zh)
WO (1) WO2021223243A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175159A (zh) * 2022-09-06 2022-10-11 荣耀终端有限公司 一种蓝牙耳机播放方法及设备
WO2023246045A1 (zh) * 2022-06-21 2023-12-28 Oppo广东移动通信有限公司 设备连接方法、装置、音频播放设备、装置及存储介质
WO2024016754A1 (zh) * 2022-07-20 2024-01-25 哲库科技(上海)有限公司 多媒体包传输方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124674A (zh) * 2017-06-20 2017-09-01 歌尔科技有限公司 一种蓝牙耳机的音频输出方法、装置和蓝牙耳机
CN107333339A (zh) * 2017-05-16 2017-11-07 恒玄科技(上海)有限公司 一种双无线耳机之间的音频数据传输方法及双无线耳机
CN108696339A (zh) * 2018-04-13 2018-10-23 恒玄科技(上海)有限公司 带信道编码的无线蓝牙对耳语音通信系统及通信方法
US10412481B1 (en) * 2019-01-30 2019-09-10 Bestechnic (Shanghai) Co., Ltd. Operation mode switch of wireless headphones
CN110234045A (zh) * 2019-06-11 2019-09-13 同响科技股份有限公司 以无线连接双耳的蓝牙耳机
CN110290412A (zh) * 2019-08-26 2019-09-27 恒玄科技(北京)有限公司 一种音频同步播放方法、装置及扬声器设备、无线耳机
CN111294783A (zh) * 2020-05-08 2020-06-16 深圳市汇顶科技股份有限公司 音频数据传输的方法、装置、芯片和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333339A (zh) * 2017-05-16 2017-11-07 恒玄科技(上海)有限公司 一种双无线耳机之间的音频数据传输方法及双无线耳机
CN107124674A (zh) * 2017-06-20 2017-09-01 歌尔科技有限公司 一种蓝牙耳机的音频输出方法、装置和蓝牙耳机
CN108696339A (zh) * 2018-04-13 2018-10-23 恒玄科技(上海)有限公司 带信道编码的无线蓝牙对耳语音通信系统及通信方法
US10412481B1 (en) * 2019-01-30 2019-09-10 Bestechnic (Shanghai) Co., Ltd. Operation mode switch of wireless headphones
CN110234045A (zh) * 2019-06-11 2019-09-13 同响科技股份有限公司 以无线连接双耳的蓝牙耳机
CN110290412A (zh) * 2019-08-26 2019-09-27 恒玄科技(北京)有限公司 一种音频同步播放方法、装置及扬声器设备、无线耳机
CN111294783A (zh) * 2020-05-08 2020-06-16 深圳市汇顶科技股份有限公司 音频数据传输的方法、装置、芯片和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: ""Specification of the Bluetooth System Volume 1 Architecture, Mixing, and Conventions", BLUETOOTH CORE SPECIFICATION V5.2", BLUETOOTH SIG, 31 December 2019 (2019-12-31), XP055863525, Retrieved from the Internet <URL:https://www.tlmat.unican.es/siteadmin/submaterials/3417.pdf> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246045A1 (zh) * 2022-06-21 2023-12-28 Oppo广东移动通信有限公司 设备连接方法、装置、音频播放设备、装置及存储介质
WO2024016754A1 (zh) * 2022-07-20 2024-01-25 哲库科技(上海)有限公司 多媒体包传输方法、装置、设备及介质
CN115175159A (zh) * 2022-09-06 2022-10-11 荣耀终端有限公司 一种蓝牙耳机播放方法及设备
CN115175159B (zh) * 2022-09-06 2023-01-13 荣耀终端有限公司 一种蓝牙耳机播放方法及设备

Also Published As

Publication number Publication date
CN114982369A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN111294783B (zh) 音频数据传输的方法、装置、芯片和电子设备
WO2021223243A1 (zh) 音频数据传输的方法、装置、芯片和电子设备
TWI742369B (zh) 利用通訊共存的低時延音訊資料串流的方法、裝置、和電腦可讀取媒體
US20190104424A1 (en) Ultra-low latency audio over bluetooth
TWI287371B (en) Method and system for dynamically changing audio stream bit rate based on condition of a bluetooth connection
US8611818B2 (en) Mechanism for improved interoperability when content protection is used with an audio stream
CN111918261A (zh) 蓝牙音频设备同步播放方法、系统及蓝牙音频主、从设备
US11489614B2 (en) High-speed audio data transmission method and apparatus
CN111869142B (zh) 数据传输方法、装置、设备、系统及介质
EP2416508A2 (en) Synchronization for data transfer between physical layers
TW200805901A (en) Method and system for optimized architecture for bluetooth streaming audio applications
EP3923608B1 (en) Data transmission method between tws bluetooth devices and tws bluetooth device therefor
CN110213691A (zh) 一种tws音频传输的同步机制
CN110166988B (zh) 一种无线通信系统及其方法
TW202345560A (zh) 用於btoip tws耳塞的無線麥克風同步
WO2022021441A1 (zh) 一种应用于无线双耳耳机的通信方法和装置
US11917543B2 (en) Bluetooth-based data transmission method and data receiving method, communicating apparatus and computer storage medium
CN113115281A (zh) 蓝牙音讯装置、蓝牙音讯系统及其运作方法
US20220417637A1 (en) Method and system for wireless transmission of audio data
WO2023000565A1 (zh) 双发模式下丢包数据纠错方法、装置、设备及系统
TWI798890B (zh) 用於產生立體聲語音效果的藍牙語音通信系統及相關的電腦程式產品
WO2022134734A1 (zh) 无线通讯方法及系统
US20230353920A1 (en) Wireless headset and audio device
WO2024087219A1 (zh) 音频数据的传输方法、装置、芯片、设备及存储介质
CN114979900A (zh) 一种无线耳机以及音频共享方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934422

Country of ref document: EP

Kind code of ref document: A1