WO2021223224A1 - Techniques for resolving out-of-order feedback transmissions - Google Patents

Techniques for resolving out-of-order feedback transmissions Download PDF

Info

Publication number
WO2021223224A1
WO2021223224A1 PCT/CN2020/089224 CN2020089224W WO2021223224A1 WO 2021223224 A1 WO2021223224 A1 WO 2021223224A1 CN 2020089224 W CN2020089224 W CN 2020089224W WO 2021223224 A1 WO2021223224 A1 WO 2021223224A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
determining
resources
sps
downlink transmission
Prior art date
Application number
PCT/CN2020/089224
Other languages
French (fr)
Inventor
Mostafa KHOSHNEVISAN
Olufunmilola Omolade Awoniyi-Oteri
Yisheng Xue
Xiaoxia Zhang
Jing Sun
Tao Luo
Jelena Damnjanovic
Sony Akkarakaran
Iyab Issam SAKHNINI
Yan Zhou
Arumugam Chendamarai Kannan
Chih-Hao Liu
Changlong Xu
Junyi Li
Ozcan Ozturk
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/089224 priority Critical patent/WO2021223224A1/en
Publication of WO2021223224A1 publication Critical patent/WO2021223224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to transmitting feedback for received communications. Certain embodiments and features enable communication techniques enabling grouped feedback, improved user experience, efficient/low-power operations, and quality communications.
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, and orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
  • CDMA code-division multiple access
  • TDMA time-division multiple access
  • FDMA frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • URLLC ultra-reliable-low latency communications
  • communications can be semi-persistently scheduled. This may be based on a periodicity.
  • a single semi-persistently scheduling (SPS) grant can be used.
  • SPS semi-persistently scheduling
  • UE user equipment
  • Block feedback enables UEs to transmit feedback for multiple communications received in multiple SPS resources in a single uplink channel resource.
  • aspects and embodiments enable and provide improved scheduling-related features that can address and/or resolve out-of-order control signaling (e.g., ACKs and/or NACKs) that may occur in dynamic communication operations.
  • a method of wireless communication includes determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window, receiving a dynamically scheduled downlink transmission during the feedback window, and determining, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission.
  • SPS semi-persistent scheduling
  • a method for wireless communication includes determining a first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window, transmitting a dynamically scheduled downlink transmission during the feedback window, and determining, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication transmitted in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission.
  • an apparatus for wireless communication includes a transceiver, a memory configured to store instructions, and one or more processors communicatively coupled with the transceiver and the memory. The one or more processors are configured to execute the instructions to perform the operations of methods described herein.
  • an apparatus for wireless communication is provided that includes means for performing the operations of methods described herein.
  • a computer-readable medium is provided including code executable by one or more processors to perform the operations of methods described herein.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 illustrates an example of a wireless communication system, in accordance with various aspects of the present disclosure
  • FIG. 2 is a block diagram illustrating an example of a UE, in accordance with various aspects of the present disclosure
  • FIG. 3 is a block diagram illustrating an example of a base station, in accordance with various aspects of the present disclosure
  • FIG. 4 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to multiplex feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure
  • FIG. 5 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure
  • FIG. 6 illustrates specific examples of timelines of downlink transmissions and corresponding uplink feedback transmissions
  • FIG. 7 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to feedback over which to multiplex feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure
  • FIG. 8 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to feedback over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure
  • FIG. 9 illustrates specific examples of timelines of downlink transmissions and corresponding uplink feedback transmissions.
  • FIG. 10 is a block diagram illustrating an example of a MIMO communication system including a base station and a UE, in accordance with various aspects of the present disclosure.
  • transmissions can be received in semi-persistent scheduling (SPS) resources and a block feedback can be defined for transmitting feedback for multiple transmissions received in SPS resources within a feedback window in a single feedback communication (e.g., over a single channel or resource) . Transmissions can also be received in dynamically scheduled resources during the feedback window of the SPS resources.
  • SPS semi-persistent scheduling
  • Transmissions can also be received in dynamically scheduled resources during the feedback window of the SPS resources.
  • Aspects described herein relate to multiplexing feedback for one or more of the multiple transmissions received in SPS resources and feedback for transmissions received in dynamically scheduled resources.
  • the multiplexed feedback can be transmitted in an uplink resources indicated for feedback for the transmission received in the dynamically scheduled resources.
  • the multiplexed feedback can be transmitted in the block feedback for the transmissions received in SPS resources within the feedback window.
  • timeline between downlink transmissions e.g., physical downlink shared channel (PDSCH) transmissions
  • feedback e.g., to hybrid automatic repeat/request (HARQ) -acknowledgement (ACK)
  • PDSCH physical downlink shared channel
  • HARQ hybrid automatic repeat/request
  • ACK hybrid automatic repeat/request
  • a user equipment UE is not expected to receive a first PDSCH in slot i, with the corresponding HARQ-ACK assigned to be transmitted in slot j, and a second PDSCH starting later than the first PDSCH with its corresponding HARQ-ACK assigned to be transmitted in a slot before slot j. This may be allowed, however, for two PDSCHs in different DL CCs.
  • DCI downlink control information
  • CRC cyclic redundancy check
  • CS-RNTI scheduling radio network temporary identifier
  • NDI new data indicator
  • RRC radio resource control
  • SPS activation DCI transmitted from the gNB to the UE to activate SPS communications
  • time/frequency resources for each SPS PDSCH such as time/frequency resources for each SPS PDSCH, modulation and coding scheme (MCS) , K1 (also referred to as PDSCH-to-HARQ_feedback timing indicator) , etc.
  • MCS modulation and coding scheme
  • K1 also referred to as PDSCH-to-HARQ_feedback timing indicator
  • all SPS PDSCHs belong to one SPS configuration.
  • multiple SPS configurations can be provided in one CC.
  • an enhancements for HARQ-ACK transmission for SPS is block ACK or block feedback where instead of transmitting feedback for each SPS PDSCH in different slots /PUCCH resources, feedback is sent for multiple SPS PDSCHs in a single physical uplink (UL) control channel (PUCCH) resource.
  • UL physical uplink
  • PUCCH physical uplink
  • the feedback window size for which feedback is reported in the single PUCCH resource can be defined spanning n > 1 consecutive SPS occasions, where n can be equal or smaller than number of HARQ processes configured for the SPS configuration.
  • a dynamic PDSCH is scheduled with corresponding PUCCH resource for HARQ-Ack transmission before the block feedback is transmitted, this may lead to Out-of-Order scenario for the feedback, which is not allowed.
  • a dynamic PDSCH (scheduled with DCI with cell RNTI (C-RNTI) or CS-RNTI) scheduled in the middle of the feedback window for the SPS PDSCHs, and with feedback scheduled to occur before the block feedback of the SPS PDSCHs, can lead to an Out-of-order between first SPS PDSCH and dynamic PDSCH.
  • no other feedback e.g., HARQ-ACK corresponding to a dynamic PDSCH
  • can be scheduled during the time span covered by the block feedback for SPS which can decrease flexibility of network to schedule PDSCH and corresponding feedback.
  • the multiplexed feedback can be transmitted in a PUCCH resource indicated for feedback for the dynamic PDSCH.
  • the multiplexed feedback can be transmitted with the block feedback (e.g., the block feedback can include not only feedback for SPS PDSCHs but also for a dynamic PDSCH) .
  • multiplexing feedback can be performed for PDSCHs on the same DL CC. In any case, network flexibility can be improved by allowing transmitting of feedback for PDSCHs of multiple scheduling types.
  • the benefits of block feedback for SPS PDSCHs of reducing UL resource usage and interference and reducing UE power consumption can be retained
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the components can communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM , etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM TM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band.
  • LTE/LTE-A system for purposes of example, and LTE terminology is used in much of the description below, although the techniques are applicable beyond LTE/LTE-A applications (e.g., to fifth generation (5G) new radio (NR) networks or other next generation communication systems) .
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190.
  • the base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells can include base stations.
  • the small cells can include femtocells, picocells, and microcells.
  • the base stations 102 may also include gNBs 180, as described further herein.
  • some nodes of the wireless communication system may have a modem 240 and communicating component 242 for multiplexing feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein.
  • some nodes may have a modem 340 and scheduling component 342 for receiving multiplexed feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein.
  • a UE 104 is shown as having the modem 240 and communicating component 242 and a base station 102/gNB 180 is shown as having the modem 340 and scheduling component 342, this is one illustrative example, and substantially any node or type of node may include a modem 240 and communicating component 242 and/or a modem 340 and scheduling component 342 for providing corresponding functionalities described herein.
  • the base stations 102 configured for 4G LTE (which can collectively be referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., using an S1 interface) .
  • the base stations 102 configured for 5G NR (which can collectively be referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links 184.
  • NG-RAN Next Generation RAN
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over backhaul links 134 (e.g., using an X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macro cells may be referred to as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum.
  • the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150.
  • the small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include an eNB, gNodeB (gNB) , or other type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters.
  • Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • a base station 102 referred to herein can include a gNB 180.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 can be a control node that processes the signaling between the UEs 104 and the 5GC 190.
  • the AMF 192 can provide QoS flow and session management.
  • User Internet protocol (IP) packets (e.g., from one or more UEs 104) can be transferred through the UPF 195.
  • the UPF 195 can provide UE IP address allocation for one or more UEs, as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • IoT devices e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc.
  • IoT UEs may include machine type communication (MTC) /enhanced MTC (eMTC, also referred to as category (CAT) -M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs.
  • MTC machine type communication
  • eMTC also referred to as category (CAT) -M, Cat M1
  • NB-IoT also referred to as CAT NB1 UEs
  • eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies.
  • eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , mMTC (massive MTC) , etc.
  • NB-IoT may include eNB-IoT (enhanced NB-IoT) , FeNB-IoT (further enhanced NB-IoT) , etc.
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • communicating component 242 can determine to multiplex, in a single uplink resource, feedback for downlink transmissions received based on different types of scheduling.
  • the uplink resource can correspond to an uplink feedback resource indicated for a dynamically scheduled downlink transmission.
  • the uplink resource can correspond to an uplink feedback resource for block feedback for multiple SPS transmissions.
  • Scheduling component 342 can similarly determine to receive, in the single uplink resource, the multiplexed feedback for the downlink transmissions that are based on the different types of scheduling.
  • FIGS. 2-10 aspects are depicted with reference to one or more components and one or more methods that may perform the actions or operations described herein, where aspects in dashed line may be optional.
  • FIGS. 4, 5, 7, and 8 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation.
  • the following actions, functions, and/or described components may be performed by a specially programmed processor, a processor executing specially programmed software or computer-readable media, or by any other combination of a hardware component and/or a software component capable of performing the described actions or functions.
  • one example of an implementation of UE 104 may include a variety of components, some of which have already been described above and are described further herein, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with modem 240 and/or communicating component 242 for multiplexing feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein.
  • the one or more processors 212 can include a modem 240 and/or can be part of the modem 240 that uses one or more modem processors.
  • the various functions related to communicating component 242 may be included in modem 240 and/or processors 212 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 202. In other aspects, some of the features of the one or more processors 212 and/or modem 240 associated with communicating component 242 may be performed by transceiver 202.
  • memory 216 may be configured to store data used herein and/or local versions of applications 275 or communicating component 242 and/or one or more of its subcomponents being executed by at least one processor 212.
  • Memory 216 can include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • RAM random access memory
  • ROM read only memory
  • tapes such as magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining communicating component 242 and/or one or more of its subcomponents, and/or data associated therewith, when UE 104 is operating at least one processor 212 to execute communicating component 242 and/or one or more of its subcomponents.
  • Transceiver 202 may include at least one receiver 206 and at least one transmitter 208.
  • Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • Receiver 206 may be, for example, a radio frequency (RF) receiver.
  • RF radio frequency
  • receiver 206 may receive signals transmitted by at least one base station 102. Additionally, receiver 206 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, signal-to-noise ratio (SNR) , reference signal received power (RSRP) , received signal strength indicator (RSSI) , etc.
  • SNR signal-to-noise ratio
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
  • UE 104 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104.
  • RF front end 288 may be connected to one or more antennas 265 and can include one or more low- noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
  • LNAs low- noise amplifiers
  • PAs power amplifiers
  • LNA 290 can amplify a received signal at a desired output level.
  • each LNA 290 may have a specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular LNA 290 and its specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level.
  • each PA 298 may have specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular PA 298 and its specified gain value based on a desired gain value for a particular application.
  • one or more filters 296 can be used by RF front end 288 to filter a received signal to obtain an input RF signal.
  • a respective filter 296 can be used to filter an output from a respective PA 298 to produce an output signal for transmission.
  • each filter 296 can be connected to a specific LNA 290 and/or PA 298.
  • RF front end 288 can use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
  • transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288.
  • transceiver may be tuned to operate at specified frequencies such that UE 104 can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102.
  • modem 240 can configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 104 and the communication protocol used by modem 240.
  • modem 240 can be a multiband-multimode modem, which can process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202.
  • modem 240 can be multiband and be configured to support multiple frequency bands for a specific communications protocol.
  • modem 240 can be multimode and be configured to support multiple operating networks and communications protocols.
  • modem 240 can control one or more components of UE 104 (e.g., RF front end 288, transceiver 202) to enable transmission and/or reception of signals from the network based on a specified modem configuration.
  • the modem configuration can be based on the mode of the modem and the frequency band in use.
  • the modem configuration can be based on UE configuration information associated with UE 104 as provided by the network during cell selection and/or cell reselection.
  • communicating component 242 can optionally include a resource determining component 252 for determining an uplink resource over which to multiplex feedback for multiple downlink transmissions, and/or a feedback multiplexing component 254 for multiplexing feedback for the multiple downlink transmissions over the uplink resource, in accordance with aspects described herein.
  • the processor (s) 212 may correspond to one or more of the processors described in connection with the UE in FIG. 10.
  • the memory 216 may correspond to the memory described in connection with the UE in FIG. 10.
  • base station 102 may include a variety of components, some of which have already been described above, but including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with modem 340 and scheduling component 342 for receiving multiplexed feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein.
  • the transceiver 302, receiver 306, transmitter 308, one or more processors 312, memory 316, applications 375, buses 344, RF front end 388, LNAs 390, switches 392, filters 396, PAs 398, and one or more antennas 365 may be the same as or similar to the corresponding components of UE 104, as described above, but configured or otherwise programmed for base station operations as opposed to UE operations.
  • scheduling component 342 can optionally include a resource determining component 352 for determining an uplink resource over which to multiplex feedback for multiple downlink transmissions, and/or a feedback processing component 354 for processing multiplexed feedback for the multiple downlink transmissions over the uplink resource, in accordance with aspects described herein.
  • the processor (s) 312 may correspond to one or more of the processors described in connection with the base station in FIG. 10.
  • the memory 316 may correspond to the memory described in connection with the base station in FIG. 10.
  • FIG. 4 illustrates a flow chart of an example of a method 400 for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to multiplex feedback for multiple downlink transmissions, in accordance with aspects described herein.
  • FIG. 5 illustrates a flow chart of an example of a method 500 for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with aspects described herein.
  • a UE 104 can perform the functions described in method 400 using one or more of the components described in FIGS. 1 and 2.
  • a base station 102 can perform the functions described in method 500 using one or more of the components described in FIGS. 1 and 3.
  • FIG. 6 illustrates specific examples of timelines 600, 630 of downlink transmissions and corresponding uplink feedback transmissions, in accordance with aspects described herein.
  • a first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to different time periods within a feedback window can be determined.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to different time periods within a feedback window.
  • communicating component 242 can be scheduled with SPS resources over which to receive SPS communications from the base station 102.
  • the base station 102 can indicate one or more parameters related to the SPS communications via RRC signaling and/or can indicate one or more other parameters related to the SPS communications via DCI, as described above.
  • the SPS communications can relate to SPS PDSCHs transmitted by the base station 102 in periodic resources according to the SPS configuration (s) received in RRC or DCI signaling.
  • the base station 102 can transmit downlink communications to the UE 104 in SPS resources that are scheduled according to a periodicity.
  • FIG. 6, illustrates a timeline 600 of SPS resources 602, 604, 606, 608.
  • resource determining component 252 can determine the first time period, or corresponding resource 610, for transmitting block feedback for SPS resources 602, 604, 606, 608 based on determining a feedback window that includes the SPS resources 602, 604, 606, 608 (e.g., based on determining a window size of four) .
  • resource determining component 252 can determine the window size based on RRC or DCI signaling from the base station 102 and can determine the uplink resource 610 for transmitting the block feedback based on DCI signaling to activate the SPS resources.
  • the DCI can indicate an explicit resource or an offset from the last SPS resource, etc. to use for transmitting the block feedback.
  • a dynamically scheduled downlink transmission can be received during the feedback window.
  • communicating component 242 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, etc., can receive the dynamically scheduled downlink transmission during the feedback window.
  • the base station 102 can transmit a DCI to the UE indicating a dynamically scheduled downlink transmission.
  • the DCI can indicate a dynamic PDSCH resource over which to receive the dynamically scheduled downlink transmission.
  • the DCI can also indicate an uplink resource over which to transmit feedback for the dynamically scheduled downlink transmission.
  • the base station can transmit the dynamically scheduled downlink transmission in the indicated resources, and communicating component 242 can accordingly receive the dynamically scheduled downlink transmission.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission.
  • resource determining component 252 can determine to multiplex the feedback over a single uplink resource (e.g., the resource indicated for the dynamically scheduled downlink transmission or the resource indicated for the block feedback for SPS communications) .
  • an uplink resource for transmitting the second feedback can be determined based on the dynamically scheduled downlink transmission.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine, based on the dynamically scheduled downlink transmission, the uplink resource for transmitting the second feedback.
  • resource determining component 252 can determine the uplink resource as indicated in the DCI for the dynamically scheduled downlink transmission (e.g., indicated as an explicit resource, an offset from the dynamically scheduled downlink transmission in time and/or frequency, etc. ) .
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine to multiplex the first feedback with the second feedback for transmitting over the uplink resource.
  • DCI 612 can be received to schedule a dynamic PDSCH 614 during the feedback window for SPS resources 602, 604, 606, 608.
  • DCI 612 can also indicate uplink resource 616 for transmitting feedback for the dynamic PDSCH 614.
  • resource determining component 252 can determine to multiplex feedback for at least the dynamic PDSCH 614 and PDSCH received over SPS resource 602 in transmitting over uplink resource 616. Selection of the SPS resource 602, and/or other SPS resources, for multiplexing feedback for transmitting over the uplink resource 616 are described further herein.
  • the UE 104 when the UE 104 is configured with block feedback for feedback transmission of multiple SPS PDSCHs in the same SPS configuration, in response to detecting a DCI that schedules a PDSCH and the corresponding feedback, the UE 104 can multiplex feedback for one or more SPS PDSCHs in the PUCCH that carries feedback for the scheduled PDSCH, while feedback for other SPS PDSCHs can be transmitted in the PUCCH that carries the block feedback for the multiple SPS PDSCHs. In one example, this can be conditioned on PUCCH carrying feedback for the dynamic PDSCHs occurring before the PUCCH that carries the block feedback for the multiple SPS PDSCHs.
  • this can be also conditioned on dynamic PDSCH and the SPS PDSCHs to be on the same DL CC (otherwise out-of-order may not be an issue) .
  • Multiplexing feedback in this regard can effectively shrink the time span covered by feedback for SPS when dynamic PDSCH is scheduled.
  • the at least one SPS communication can be determined based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is received or ends at least a threshold time before the uplink resource.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the at least one SPS communication, for which to multiplex first feedback with the second feedback for the dynamically scheduled downlink transmission, based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is received or ends at least a threshold time before the uplink resource.
  • resource determining component 252 can determine to multiplex feedback for all SPS communications within the feedback window and in time periods before the dynamically scheduled downlink transmission is received, along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource.
  • resource determining component 252 can determine to multiplex feedback for all SPS communications within the feedback window and in time periods ending at least a threshold time before the uplink resource identifier for transmitting feedback for the dynamically scheduled downlink transmission, along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource.
  • Examples are shown in FIG. 6.
  • communications received over SPS resource 602, which occurs before the dynamic PDSCH 614 is multiplexed with feedback for the dynamic PDSCH 614 for transmitting in PUCCH 616.
  • communications received over SPS resources 602 and 604, which occurs or end at least N1 symbols before the PUCCH 616 are multiplexed with feedback for the dynamic PDSCH 614 for transmitting in PUCCH 616.
  • feedback for which SPS PDSCHs are included in the PUCCH that carries feedback for the dynamic PDSCH can include any SPS PDSCH whose feedback was originally configured to be transmitted as part of block feedback and is either received before the dynamic PDSCH, or ends before N1 symbols (which can be determined as a UE PDSCH processing time) before the first symbol of the PUCCH that carries feedback for the dynamic PDSCH.
  • the multiplexed first feedback and second feedback can be transmitted.
  • feedback multiplexing component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit the multiplexed first feedback and second feedback.
  • communicating component 242 can transmit the multiplexed feedback over the uplink resource indicated for feedback for the dynamically scheduled downlink transmission, as described.
  • the base station 102 can receive and process the multiplexed feedback, as described further herein.
  • a negative acknowledgement feedback or the first feedback can be transmitted for the at least one SPS communication in the block feedback.
  • feedback multiplexing component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, for the at least one SPS communication, the negative ACK feedback or the first feedback in the block feedback.
  • feedback multiplexing component 254 may also transmit the feedback for the at least one SPS communication (or NACK feedback for the at least one SPS communication) in the block feedback as well. This can help to avoid issue where UE 104 misses the DCI which may cause PUCCH payload mismatch.
  • the block feedback payload can be kept according to original n SPS PDSCHs (e.g., 4 in the examples of FIG. 6) .
  • the UE 104 can report NACK in the block feedback or actual ACK/NACK for those SPS PDSCHs in the block feedback (e.g., the same value as reported in the uplink resource indicated for feedback for the dynamically scheduled downlink transmission) .
  • the base station 102 can similarly determine the resource over which to receive and/or process the multiplexed feedback.
  • a first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window can be determined.
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window.
  • scheduling component 342 can schedule a UE 104 with SPS resources over which to receive SPS communications from the base station 102.
  • the base station 102 can indicate one or more parameters related to the SPS communications via RRC signaling and/or can indicate one or more other parameters related to the SPS communications via DCI, as described above.
  • the SPS communications can relate to SPS PDSCHs transmitted by the base station 102 in periodic resources according to the SPS configuration (s) transmitted in RRC or DCI signaling.
  • a dynamically scheduled downlink transmission can be transmitted during the feedback window.
  • scheduling component 342 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can transmit the dynamically scheduled downlink transmission during the feedback window.
  • the base station 102 can transmit a DCI to the UE indicating a dynamically scheduled downlink transmission.
  • the DCI can indicate a dynamic PDSCH resource over which the dynamically scheduled downlink transmission is transmitted.
  • the DCI can also indicate an uplink resource over which feedback for the dynamically scheduled downlink transmission can be transmitted by the UE 104 and/or is to be received by the base station 102.
  • the base station 102 can transmit the dynamically scheduled downlink transmission in the indicated resources, and communicating component 242 can accordingly receive the dynamically scheduled downlink transmission.
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on transmitting the dynamically scheduled downlink transmission during the feedback window, the first feedback for at least one SPS communication received in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission.
  • resource determining component 352 can determine to receive the feedback over a single uplink resource (e.g., the resource indicated for the dynamically scheduled downlink transmission or the resource indicated for the block feedback for SPS communications) .
  • an uplink resource for receiving the second feedback can be determined based on the dynamically scheduled downlink transmission.
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine, based on the dynamically scheduled downlink transmission, the uplink resource for receiving the second feedback.
  • resource determining component 352 can determine the uplink resource as indicated in the DCI for the dynamically scheduled downlink transmission (e.g., indicated as an explicit resource, an offset from the dynamically scheduled downlink transmission in time and/or frequency, etc. ) .
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine to receive the first feedback multiplexed with the second feedback over the uplink resource.
  • the base station 102 when the base station 102 configures block feedback for feedback of multiple SPS PDSCHs in the same SPS configuration, based on transmitting a DCI that schedules a PDSCH and the corresponding feedback, the base station 102 can determine to receive feedback for one or more SPS PDSCHs multiplexed in the PUCCH that carries feedback for the scheduled PDSCH, while feedback for other SPS PDSCHs can be received in the PUCCH that carries the block feedback for the multiple SPS PDSCHs. In one example, this can be conditioned on PUCCH carrying feedback for the dynamic PDSCHs occurring before the PUCCH that carries the block feedback for the multiple SPS PDSCHs. In one example, this can be also conditioned on dynamic PDSCH and the SPS PDSCHs to be on the same DL CC (otherwise out-of-order may not be an issue) , as described.
  • the at least one SPS communication can be determined based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is transmitted or ends at least a threshold time before the uplink resource.
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the at least one SPS communication, for which to multiplex first feedback with the second feedback for the dynamically scheduled downlink transmission, based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is transmitted or ends at least a threshold time before the uplink resource.
  • resource determining component 352 can determine to receive feedback for all SPS communications within the feedback window and in time periods before the dynamically scheduled downlink transmission is received as multiplexed along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource.
  • resource determining component 252 can determine to receive feedback for all SPS communications within the feedback window and in time periods ending at least a threshold time before the uplink resource identifier for transmitting feedback for the dynamically scheduled downlink transmission as multiplexed along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource.
  • the multiplexed first feedback and second feedback can be received.
  • feedback processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive the multiplexed first feedback and second feedback.
  • feedback processing component 354 can receive and process the multiplexed feedback over the uplink resource indicated for feedback for the dynamically scheduled downlink transmission, as described.
  • the first feedback can be processed from the first resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication.
  • feedback processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can process the first feedback from the first resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication, as described above.
  • FIG. 7 illustrates a flow chart of an example of a method 700 for determining an uplink resource corresponding to feedback over which to multiplex feedback for multiple downlink transmissions, in accordance with aspects described herein.
  • FIG. 8 illustrates a flow chart of an example of a method 800 for determining an uplink resource corresponding to feedback over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with aspects described herein.
  • a UE 104 can perform the functions described in method 700 using one or more of the components described in FIGS. 1 and 2.
  • a base station 102 can perform the functions described in method 800 using one or more of the components described in FIGS. 1 and 3. Methods 700 and 800 are described below in conjunction with one another to ease explanation of the associated functions and concepts.
  • Methods 700 and 800 are not required to be performed in conjunction with one another, and indeed one device can be configured to perform method 700 without having a corresponding device that performs method 800 and vice versa, in at least one example.
  • FIG. 9 illustrates specific examples of timelines 600, 630 of downlink transmissions and corresponding uplink feedback transmissions, in accordance with aspects described herein.
  • a first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to different time periods within a feedback window can be determined.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to different time periods within a feedback window, as similarly described in Block 402 of method 400 in FIG. 4.
  • a dynamically scheduled downlink transmission can be received during the feedback window.
  • communicating component 242 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, etc., can receive the dynamically scheduled downlink transmission during the feedback window, as similarly described in Block 404 of method 400 in FIG. 4.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission, as similarly described in Block 406 of method 400 in FIG. 4.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine to multiplex the first feedback with the second feedback in the feedback resource associated with at least a portion of the multiple SPS resources. In one example, this can be the block feedback, or in another example, as described further herein, this can be an early NACK indication resource. An example, is illustrated in timeline 900 of FIG.
  • DCI 912 can be received to schedule a dynamic PDSCH 914 during the feedback window for SPS resources 902, 904, 906, 908.
  • DCI 912 can also indicate an uplink resource for transmitting feedback for the dynamic PDSCH 914, which may point to uplink resource 916 or the block feedback uplink resource 910.
  • resource determining component 252 can determine to multiplex feedback for at least the dynamic PDSCH 914 in the block feedback uplink resource 910 for the PDSCHs received over SPS resources 902, 904, 906, 908.
  • resource determining component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine that DCI that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback or in other resources.
  • resource determining component 252 can determine that the DCI indicates the block feedback as an indicator to use a scheduled block feedback, as a pointer to the block feedback resources, and/or the like.
  • resource determining component 252 can determine that the DCI indicates the other resources (e.g., PUCCH 916) .
  • communicating component 242 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, etc. can cancel the other resources.
  • communicating component 242 can cancel the other resources by refraining from transmitting over the other resources, transmitting an indication to the base station 102 to cancel the resources, using the resources for a different uplink transmission, and/or the like.
  • resource determining component 252 can determine to multiplex the feedback for transmitting over the block feedback resources.
  • the DCI that schedules the dynamic PDSCH points to the block feedback PUCCH. If not, the DCI can point to an earlier PUCCH, and the PUCCH pointed to by the DCI can be cancelled and instead, feedback corresponding to the dynamic PDSCH can be transmitted in the block feedback PUCCH.
  • the cancelation part may not be needed if the base station 102 originally points to the block feedback PUCCH for feedback corresponding to the dynamic PDSCH.
  • the cancelation can be conditioned on dynamic PDSCH and the SPS PDSCHs to be on the same DL CC.
  • a similar approach can be followed when there are reserved PUCCH resources for NACK for one or more SPS PDSCHs before the block feedback.
  • This PUCCH resource reserved for NACKs is used in a variant of the block feedback where some PUCCH resources are reserved more often than the block feedback and used in carrying NACKs only for one or more SPS PDSCHs. This can be due to informing the gNB of a NACK sooner (compared to waiting for block feedback) in case SPS PDSCH decoding fails.
  • An example is illustrated in timeline 930 of FIG. 9.
  • the DCI 912 for a dynamic PDSCH 914 can point to the closest reserved PUCCH resource for SPS which in most cases may be the PUCCH resource reserved for the NACKs 918.
  • determining to multiplex the first feedback with the second feedback for transmitting in the block feedback at Block 708 can include determining to multiplex the feedback in the PUCCH reserved for NACK 918.
  • the base station 102 can similarly determine the resource over which to receive and/or process the multiplexed feedback.
  • a first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window can be determined.
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window, as similarly described in Block 502 of method 500 in FIG. 5.
  • a dynamically scheduled downlink transmission can be transmitted during the feedback window.
  • scheduling component 342 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can transmit the dynamically scheduled downlink transmission during the feedback window, as similarly described in Block 504 of method 500 in FIG. 5.
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication received in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission, as similarly described in Block 506 of method 500 in FIG. 5.
  • resource determining component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine to receive the first feedback multiplexed with the second feedback in the feedback resource associated with at least a portion of the multiple SPS resources. As described, this can be the block feedback (e.g., block feedback uplink resource 910 or early NACK resource 918) .
  • scheduling component 342 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can indicating, in DCI that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback or in other resources.
  • scheduling component 342 can indicate, in the DCI, the block feedback as an indicator to use a scheduled block feedback, as a pointer to the block feedback resources, and/or the like.
  • scheduling component 342 can indicate, in the DCI, the other resources (e.g., PUCCH 916) .
  • scheduling component 342 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc. can cancel the other resources.
  • scheduling component 342 can cancel the other resources by transmitting an indication to the UE 104 to cancel the resources, scheduling another UE to use the resources, and/or the like.
  • resource determining component 252 can determine to receive the feedback as multiplexed over the block feedback resources.
  • a similar approach can be followed when there are reserved PUCCH resources for NACK for one or more SPS PDSCHs before the block feedback.
  • This PUCCH resource reserved for NACKs is used in a variant of the block feedback where some PUCCH resources are reserved more often than the block feedback and used in carrying NACKs only for one or more SPS PDSCHs.
  • scheduling component 342 can indicate this PUCCH reserved for NACK to be used for feedback for the scheduled PDSCH 914, as described.
  • FIG. 10 is a block diagram of a MIMO communication system 1000 including a base station 102 and a UE 104.
  • the MIMO communication system 1000 may illustrate aspects of the wireless communication access network 100 described with reference to FIG. 1.
  • the base station 102 may be an example of aspects of the base station 102 described with reference to FIG. 1.
  • the base station 102 may be equipped with antennas 1034 and 1035, and the UE 104 may be equipped with antennas 1052 and 1053.
  • the base station 102 may be able to send data over multiple communication links at the same time.
  • Each communication link may be called a “layer” and the “rank” of the communication link may indicate the number of layers used for communication. For example, in a 2x2 MIMO communication system where base station 102 transmits two “layers, ” the rank of the communication link between the base station 102 and the UE 104 is two.
  • a transmit (Tx) processor 1020 may receive data from a data source.
  • the transmit processor 1020 may process the data.
  • the transmit processor 1020 may also generate control symbols or reference symbols.
  • a transmit MIMO processor 1030 may perform spatial processing (e.g., precoding) on data symbols, control symbols, or reference symbols, if applicable, and may provide output symbol streams to the transmit modulator/demodulators 1032 and 1033.
  • Each modulator/demodulator 1032 through 1033 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator/demodulator 1032 through 1033 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a DL signal.
  • DL signals from modulator/demodulators 1032 and 1033 may be transmitted via the antennas 1034 and 1035, respectively.
  • the UE 104 may be an example of aspects of the UEs 104 described with reference to FIGS. 1-2.
  • the UE antennas 1052 and 1053 may receive the DL signals from the base station 102 and may provide the received signals to the modulator/demodulators 1054 and 1055, respectively.
  • Each modulator/demodulator 1054 through 1055 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each modulator/demodulator 1054 through 1055 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 1056 may obtain received symbols from the modulator/demodulators 1054 and 1055, perform MIMO detection on the received symbols, if applicable, and provide detected symbols.
  • a receive (Rx) processor 1058 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, providing decoded data for the UE 104 to a data output, and provide decoded control information to a processor 1080, or memory 1082.
  • the processor 1080 may in some cases execute stored instructions to instantiate a communicating component 242 (see e.g., FIGS. 1 and 2) .
  • a transmit processor 1064 may receive and process data from a data source.
  • the transmit processor 1064 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 1064 may be precoded by a transmit MIMO processor 1066 if applicable, further processed by the modulator/demodulators 1054 and 1055 (e.g., for SC-FDMA, etc. ) , and be transmitted to the base station 102 in accordance with the communication parameters received from the base station 102.
  • the UL signals from the UE 104 may be received by the antennas 1034 and 1035, processed by the modulator/demodulators 1032 and 1033, detected by a MIMO detector 1036 if applicable, and further processed by a receive processor 1038.
  • the receive processor 1038 may provide decoded data to a data output and to the processor 1040 or memory 1042.
  • the processor 1040 may in some cases execute stored instructions to instantiate a scheduling component 342 (see e.g., FIGS. 1 and 3) .
  • the components of the UE 104 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in hardware.
  • Each of the noted modules may be a means for performing one or more functions related to operation of the MIMO communication system 1000.
  • the components of the base station 102 may, individually or collectively, be implemented with one or more application specific integrated circuits (ASICs) adapted to perform some or all of the applicable functions in hardware.
  • ASICs application specific integrated circuits
  • Each of the noted components may be a means for performing one or more functions related to operation of the MIMO communication system 1000.
  • method, apparatuses, and computer-readable medium of wireless communication can include actions of, processors configured to, means for, and/or code for determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) time periods within a feedback window, receiving a dynamic communication in a dynamically scheduled time period during the feedback window, and determining, based on receiving the dynamic communication during the feedback window, to combine first feedback for at least one SPS communication received in at least one of the multiple SPS time periods with second feedback for the dynamic communication.
  • SPS semi-persistent scheduling
  • method, apparatuses, and computer-readable medium of wireless communication can include actions of, processors configured to, means for, and/or code for receiving a dynamically scheduled downlink transmission during the feedback window.
  • the method, apparatuses, and computer-readable medium can also include actions of, processors configured to, means for, and/or code for determining, based on receiving a dynamically scheduled downlink transmission during the feedback window. Additional determinations may include multiplexing (or combining) first feedback for at least one SPS communication received in at least one of multiple SPS resources with second feedback for a dynamically scheduled downlink transmission.
  • a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, and/or code for determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources.
  • SPS semi-persistent scheduling
  • the SPS recourse can correspond to different time periods within a feedback window.
  • Any of the above examples can include determining, based on the dynamically scheduled downlink transmission, an uplink resource for transmitting the second feedback, wherein determining to multiplex the first feedback with the second feedback includes multiplexing the first feedback with the second feedback for transmitting over the uplink resource.
  • determining to multiplex the first feedback with the second feedback includes determining that a second time period corresponding to the uplink resource occurs before the first time period for transmitting the block feedback.
  • determining to multiplex the first feedback with the second feedback is based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  • Any of the above examples can include determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources occurs before the dynamically scheduled downlink transmission is received.
  • Any of the above examples can include determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources ends at least a threshold time before the uplink resource for transmitting the second feedback.
  • Any of the above examples can include transmitting, for the at least one SPS communication, a negative acknowledgement feedback in the block feedback.
  • Any of the above examples can include transmitting, for the at least one SPS communication, the first feedback in the block feedback.
  • determining to multiplex the first feedback with the second feedback includes multiplexing the first feedback with the second feedback for transmitting in the block feedback.
  • any of the above examples can include wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback.
  • any of the above examples can include wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in other resources, and further comprising cancelling the other resources.
  • Any of the above examples can include wherein cancelling the other resources based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  • any of the above examples can include wherein the block feedback corresponds to a negative acknowledgement block feedback for transmitting negative acknowledgement feedback for a first portion of the communications received in the multiple SPS resources.
  • Any of the above examples can include transmitting at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  • any of the above examples can include wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  • PDSCH physical downlink shared channel
  • a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for determining a first time period for receiving block feedback for communications transmitted in multiple semi-persistent scheduling (SPS) time periods within a feedback window, transmitting a dynamic communication in a dynamically scheduled time period during the feedback window, and determining, based on transmitting the dynamic communication during the feedback window, to receive first feedback for at least one SPS communication transmitted in at least one of the multiple SPS time periods combined with second feedback for the dynamic communication.
  • SPS semi-persistent scheduling
  • a further example can include another method, apparatuses, and computer-readable medium for wireless communications.
  • a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for receiving a dynamically scheduled downlink time period during a feedback window.
  • the method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for determining to combine first feedback for at least one SPS communication received in at least one of the multiple SPS time periods with second feedback for the dynamic communications. The determination may be based on receiving dynamic conditions during the feedback window.
  • a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) time periods within a feedback window.
  • SPS semi-persistent scheduling
  • Any of the above examples can include determining, based on the dynamically scheduled downlink transmission, an uplink resource for receiving the second feedback, wherein determining to receive the first feedback multiplexed with the second feedback over the uplink resource.
  • determining to receive the first feedback multiplexed with the second feedback includes determining that a second time period corresponding to the uplink resource occurs before the first time period for receiving the block feedback.
  • determining to receive the first feedback multiplexed with the second feedback is based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  • Any of the above examples can include determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources occurs before the dynamically scheduled downlink transmission is transmitted.
  • Any of the above examples can include determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources ends at least a threshold time before the uplink resource for receiving the second feedback.
  • Any of the above examples can include processing the first feedback from the resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication.
  • determining to receive the first feedback multiplexed with the second feedback includes receiving the first feedback multiplexed with the second feedback in the block feedback.
  • Any of the above examples can include indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback.
  • Any of the above examples can include indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in other resources, and further comprising cancelling the other resources.
  • Any of the above examples can include wherein cancelling the other resources based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  • any of the above examples can include wherein the block feedback corresponds to a negative acknowledgement block feedback for receiving negative acknowledgement feedback for a first portion of the communications transmitted in the multiple SPS resources.
  • Any of the above examples can include receiving at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  • any of the above examples can include wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  • PDSCH physical downlink shared channel
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
  • a specially programmed device such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • a specially programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a specially programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Aspects described herein relate to determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window, receiving a dynamically scheduled downlink transmission during the feedback window, and determining, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission. Aspects also relate to receiving the multiplexed feedback. Other features are also claimed and described.

Description

TECHNIQUES FOR RESOLVING OUT-OF-ORDER FEEDBACK TRANSMISSIONS TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to transmitting feedback for received communications. Certain embodiments and features enable communication techniques enabling grouped feedback, improved user experience, efficient/low-power operations, and quality communications.
INTRODUCTION
Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, and orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. For example, a fifth generation (5G) wireless communications technology (which can be referred to as 5G new radio (5G NR) ) is envisaged to expand and support diverse usage scenarios and applications with respect to current mobile network generations. In an aspect, 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In some wireless communication technologies, such as fifth generation (5G) new radio (NR) , communications can be semi-persistently scheduled. This may be based on a periodicity. For example, in some scenarios, a single semi-persistently scheduling (SPS) grant can be used. For SPS, a user equipment (UE) can receive downlink communications in multiple resources based on periodicity. To conserve scheduling resources, block feedback can be used. Block feedback enables UEs to transmit feedback for multiple communications received in multiple SPS resources in a single uplink channel resource. As discussed herein, aspects and embodiments enable and provide improved scheduling-related features that can address and/or resolve out-of-order control signaling (e.g., ACKs and/or NACKs) that may occur in dynamic communication operations.
According to an aspect, a method of wireless communication is provided. The method includes determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window, receiving a dynamically scheduled downlink transmission during the feedback window, and determining, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission.
In another example, a method for wireless communication is provided. The method includes determining a first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window, transmitting a dynamically scheduled downlink transmission during the feedback window, and determining, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication transmitted in at least one of the  multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission.
In a further example, an apparatus for wireless communication is provided that includes a transceiver, a memory configured to store instructions, and one or more processors communicatively coupled with the transceiver and the memory. The one or more processors are configured to execute the instructions to perform the operations of methods described herein. In another aspect, an apparatus for wireless communication is provided that includes means for performing the operations of methods described herein. In yet another aspect, a computer-readable medium is provided including code executable by one or more processors to perform the operations of methods described herein.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:
FIG. 1 illustrates an example of a wireless communication system, in accordance with various aspects of the present disclosure;
FIG. 2 is a block diagram illustrating an example of a UE, in accordance with various aspects of the present disclosure;
FIG. 3 is a block diagram illustrating an example of a base station, in accordance with various aspects of the present disclosure;
FIG. 4 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to multiplex feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure;
FIG. 5 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure;
FIG. 6 illustrates specific examples of timelines of downlink transmissions and corresponding uplink feedback transmissions;
FIG. 7 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to feedback over which to multiplex feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure;
FIG. 8 is a flow chart illustrating an example of a method for determining an uplink resource corresponding to feedback over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with various aspects of the present disclosure;
FIG. 9 illustrates specific examples of timelines of downlink transmissions and corresponding uplink feedback transmissions; and
FIG. 10 is a block diagram illustrating an example of a MIMO communication system including a base station and a UE, in accordance with various aspects of the present disclosure.
Additionally, an Appendix is attached that is part of the present disclosure and includes additional description and figures relating to the present disclosure.
DETAILED DESCRIPTION
Various aspects are now described with reference to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect (s) may be practiced without these specific details.
The described features generally relate to multiplexing feedback for transmissions received in differently scheduled resources. In an example, transmissions can be received in semi-persistent scheduling (SPS) resources and a block feedback can be defined for transmitting feedback for multiple transmissions received in SPS resources within a feedback window in a single feedback communication (e.g., over a single channel or resource) . Transmissions can also be received in dynamically scheduled resources during the feedback window of the SPS resources. Aspects described herein relate to  multiplexing feedback for one or more of the multiple transmissions received in SPS resources and feedback for transmissions received in dynamically scheduled resources. In one example, the multiplexed feedback can be transmitted in an uplink resources indicated for feedback for the transmission received in the dynamically scheduled resources. In another example, the multiplexed feedback can be transmitted in the block feedback for the transmissions received in SPS resources within the feedback window.
In some wireless communication technologies, such as fifth generation (5G) new radio (NR) , timeline between downlink transmissions (e.g., physical downlink shared channel (PDSCH) transmissions) to feedback (e.g., to hybrid automatic repeat/request (HARQ) -acknowledgement (ACK) ) can be in-order for any two PDSCHs in a given downlink (DL) component carrier (CC) . For example, in a given scheduled cell, a user equipment (UE) is not expected to receive a first PDSCH in slot i, with the corresponding HARQ-ACK assigned to be transmitted in slot j, and a second PDSCH starting later than the first PDSCH with its corresponding HARQ-ACK assigned to be transmitted in a slot before slot j. This may be allowed, however, for two PDSCHs in different DL CCs.
In addition, in 5G NR, SPS PDSCHs can be activated with a downlink control information (DCI) with cyclic redundancy check (CRC) scrambled by configured scheduling radio network temporary identifier (CS-RNTI) (with new data indicator (NDI) = 0) . Some parameters of a SPS configuration can be configured in radio resource control (RRC) communications, such as SPS periodicity, number of associated HARQ processes, etc. Other parameters can be configured in the activation DCI transmitted from the gNB to the UE to activate SPS communications, such as time/frequency resources for each SPS PDSCH, modulation and coding scheme (MCS) , K1 (also referred to as PDSCH-to-HARQ_feedback timing indicator) , etc. Once an SPS configuration is activated, SPS PDSCHs can be received based on periodicity until another DCI releases the SPS configuration. K1 to be used for all SPS PDSCH receptions and corresponding HARQ-Ack feedback can be given in the DCI activating the SPS. Retransmission of a SPS PDSCH can be granted by a DCI with CRC scrambled with CS-RNTI (with NDI = 1) . In these examples, all SPS PDSCHs belong to one SPS configuration. In some examples in 5G NR, multiple SPS configurations can be provided in one CC.
In addition, in 5G NR, an enhancements for HARQ-ACK transmission for SPS is block ACK or block feedback where instead of transmitting feedback for each SPS PDSCH in different slots /PUCCH resources, feedback is sent for multiple SPS PDSCHs  in a single physical uplink (UL) control channel (PUCCH) resource. This can be beneficial from UL resource usage, UL interference, and/or UE power consumption point of view. The feedback window size for which feedback is reported in the single PUCCH resource can be defined spanning n > 1 consecutive SPS occasions, where n can be equal or smaller than number of HARQ processes configured for the SPS configuration. One possible issue with using block feedback for SPS is that if a dynamic PDSCH is scheduled with corresponding PUCCH resource for HARQ-Ack transmission before the block feedback is transmitted, this may lead to Out-of-Order scenario for the feedback, which is not allowed. For example a dynamic PDSCH (scheduled with DCI with cell RNTI (C-RNTI) or CS-RNTI) scheduled in the middle of the feedback window for the SPS PDSCHs, and with feedback scheduled to occur before the block feedback of the SPS PDSCHs, can lead to an Out-of-order between first SPS PDSCH and dynamic PDSCH. This means that no other feedback (e.g., HARQ-ACK corresponding to a dynamic PDSCH) can be scheduled during the time span covered by the block feedback for SPS, which can decrease flexibility of network to schedule PDSCH and corresponding feedback.
Aspects described herein relate to multiplexing feedback for at least some of the SPS PDSCHs with feedback for a dynamic PDSCH to allow for receiving both feedback and avoiding the out-of-order condition. In one example, the multiplexed feedback can be transmitted in a PUCCH resource indicated for feedback for the dynamic PDSCH. In another example, the multiplexed feedback can be transmitted with the block feedback (e.g., the block feedback can include not only feedback for SPS PDSCHs but also for a dynamic PDSCH) . In one example, multiplexing feedback can be performed for PDSCHs on the same DL CC. In any case, network flexibility can be improved by allowing transmitting of feedback for PDSCHs of multiple scheduling types. In addition, the benefits of block feedback for SPS PDSCHs of reducing UL resource usage and interference and reducing UE power consumption can be retained
The described features will be presented in more detail below with reference to FIGS. 1-10.
As used in this application, the terms “component, ” “module, ” “system” and the like are intended to include a computer-related entity, such as but not limited to hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a  processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computing device and the computing device can be a component. One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components can communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
Techniques described herein may be used for various wireless communication systems such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and other systems. The terms “system” and “network” may often be used interchangeably. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band. The description below, however, describes an LTE/LTE-A system for purposes of example, and LTE terminology is used in much of the description  below, although the techniques are applicable beyond LTE/LTE-A applications (e.g., to fifth generation (5G) new radio (NR) networks or other next generation communication systems) .
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in other examples.
Various aspects or features will be presented in terms of systems that can include a number of devices, components, modules, and the like. It is to be understood and appreciated that the various systems can include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. A combination of these approaches can also be used.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190. The base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells can include base stations. The small cells can include femtocells, picocells, and microcells. In an example, the base stations 102 may also include gNBs 180, as described further herein. In one example, some nodes of the wireless communication system may have a modem 240 and communicating component 242 for multiplexing feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein. In addition, some nodes may have a modem 340 and scheduling component 342 for receiving multiplexed feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein. Though a UE 104 is shown as having the modem 240 and communicating component 242 and a base station 102/gNB 180 is shown as having the modem 340 and scheduling component 342, this is one illustrative example, and  substantially any node or type of node may include a modem 240 and communicating component 242 and/or a modem 340 and scheduling component 342 for providing corresponding functionalities described herein.
The base stations 102 configured for 4G LTE (which can collectively be referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., using an S1 interface) . The base stations 102 configured for 5G NR (which can collectively be referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over backhaul links 134 (e.g., using an X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be referred to as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one  or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (e.g., for x component carriers) used for transmission in the DL and/or the UL direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
In another example, certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102'may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or other type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may  be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. A base station 102 referred to herein can include a gNB 180.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data  Management (UDM) 196. The AMF 192 can be a control node that processes the signaling between the UEs 104 and the 5GC 190. Generally, the AMF 192 can provide QoS flow and session management. User Internet protocol (IP) packets (e.g., from one or more UEs 104) can be transferred through the UPF 195. The UPF 195 can provide UE IP address allocation for one or more UEs, as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . IoT UEs may include machine type communication (MTC) /enhanced MTC (eMTC, also referred to as category (CAT) -M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs. In the present disclosure, eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies. For example, eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , mMTC (massive MTC) , etc., and NB-IoT may include eNB-IoT (enhanced NB-IoT) , FeNB-IoT (further enhanced NB-IoT) , etc. The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
In an example, communicating component 242 can determine to multiplex, in a single uplink resource, feedback for downlink transmissions received based on different types of scheduling. In an example, the uplink resource can correspond to an uplink feedback resource indicated for a dynamically scheduled downlink transmission. In another example, the uplink resource can correspond to an uplink feedback resource for block feedback for multiple SPS transmissions. Scheduling component 342 can similarly determine to receive, in the single uplink resource, the multiplexed feedback for the downlink transmissions that are based on the different types of scheduling.
Turning now to FIGS. 2-10, aspects are depicted with reference to one or more components and one or more methods that may perform the actions or operations described herein, where aspects in dashed line may be optional. Although the operations described below in FIGS. 4, 5, 7, and 8 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation. Moreover, it should be understood that the following actions, functions, and/or described components may be performed by a specially programmed processor, a processor executing specially programmed software or computer-readable media, or by any other combination of a hardware component and/or a software component capable of performing the described actions or functions.
Referring to FIG. 2, one example of an implementation of UE 104 may include a variety of components, some of which have already been described above and are described further herein, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with modem 240 and/or communicating component 242 for multiplexing feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein.
In an aspect, the one or more processors 212 can include a modem 240 and/or can be part of the modem 240 that uses one or more modem processors. Thus, the various functions related to communicating component 242 may be included in modem 240 and/or processors 212 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor,  or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 202. In other aspects, some of the features of the one or more processors 212 and/or modem 240 associated with communicating component 242 may be performed by transceiver 202.
Also, memory 216 may be configured to store data used herein and/or local versions of applications 275 or communicating component 242 and/or one or more of its subcomponents being executed by at least one processor 212. Memory 216 can include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining communicating component 242 and/or one or more of its subcomponents, and/or data associated therewith, when UE 104 is operating at least one processor 212 to execute communicating component 242 and/or one or more of its subcomponents.
Transceiver 202 may include at least one receiver 206 and at least one transmitter 208. Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . Receiver 206 may be, for example, a radio frequency (RF) receiver. In an aspect, receiver 206 may receive signals transmitted by at least one base station 102. Additionally, receiver 206 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, signal-to-noise ratio (SNR) , reference signal received power (RSRP) , received signal strength indicator (RSSI) , etc. Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, UE 104 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104. RF front end 288 may be connected to one or more antennas 265 and can include one or more low- noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
In an aspect, LNA 290 can amplify a received signal at a desired output level. In an aspect, each LNA 290 may have a specified minimum and maximum gain values. In an aspect, RF front end 288 may use one or more switches 292 to select a particular LNA 290 and its specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 298 may have specified minimum and maximum gain values. In an aspect, RF front end 288 may use one or more switches 292 to select a particular PA 298 and its specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 296 can be used by RF front end 288 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 296 can be used to filter an output from a respective PA 298 to produce an output signal for transmission. In an aspect, each filter 296 can be connected to a specific LNA 290 and/or PA 298. In an aspect, RF front end 288 can use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
As such, transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288. In an aspect, transceiver may be tuned to operate at specified frequencies such that UE 104 can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102. In an aspect, for example, modem 240 can configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 104 and the communication protocol used by modem 240.
In an aspect, modem 240 can be a multiband-multimode modem, which can process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202. In an aspect, modem 240 can be multiband and be configured to support multiple frequency bands for a specific communications protocol. In an aspect, modem 240 can be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, modem 240 can control one or more components of UE 104 (e.g., RF front end 288, transceiver 202)  to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration can be based on the mode of the modem and the frequency band in use. In another aspect, the modem configuration can be based on UE configuration information associated with UE 104 as provided by the network during cell selection and/or cell reselection.
In an aspect, communicating component 242 can optionally include a resource determining component 252 for determining an uplink resource over which to multiplex feedback for multiple downlink transmissions, and/or a feedback multiplexing component 254 for multiplexing feedback for the multiple downlink transmissions over the uplink resource, in accordance with aspects described herein.
In an aspect, the processor (s) 212 may correspond to one or more of the processors described in connection with the UE in FIG. 10. Similarly, the memory 216 may correspond to the memory described in connection with the UE in FIG. 10.
Referring to FIG. 3, one example of an implementation of base station 102 (e.g., a base station 102 and/or gNB 180, as described above) may include a variety of components, some of which have already been described above, but including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with modem 340 and scheduling component 342 for receiving multiplexed feedback for transmissions that are based on different scheduling types, in accordance with aspects described herein.
The transceiver 302, receiver 306, transmitter 308, one or more processors 312, memory 316, applications 375, buses 344, RF front end 388, LNAs 390, switches 392, filters 396, PAs 398, and one or more antennas 365 may be the same as or similar to the corresponding components of UE 104, as described above, but configured or otherwise programmed for base station operations as opposed to UE operations.
In an aspect, scheduling component 342 can optionally include a resource determining component 352 for determining an uplink resource over which to multiplex feedback for multiple downlink transmissions, and/or a feedback processing component 354 for processing multiplexed feedback for the multiple downlink transmissions over the uplink resource, in accordance with aspects described herein.
In an aspect, the processor (s) 312 may correspond to one or more of the processors described in connection with the base station in FIG. 10. Similarly, the memory 316 may correspond to the memory described in connection with the base station in FIG. 10.
FIG. 4 illustrates a flow chart of an example of a method 400 for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to multiplex feedback for multiple downlink transmissions, in accordance with aspects described herein. FIG. 5 illustrates a flow chart of an example of a method 500 for determining an uplink resource corresponding to a dynamically scheduled downlink transmission over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with aspects described herein. In an example, a UE 104 can perform the functions described in method 400 using one or more of the components described in FIGS. 1 and 2. In an example, a base station 102 can perform the functions described in method 500 using one or more of the components described in FIGS. 1 and 3.  Methods  400 and 500 are described below in conjunction with one another to ease explanation of the associated functions and concepts.  Methods  400 and 500 are not required to be performed in conjunction with one another, and indeed one device can be configured to perform method 400 without having a corresponding device that performs method 500 and vice versa, in at least one example. FIG. 6 illustrates specific examples of  timelines  600, 630 of downlink transmissions and corresponding uplink feedback transmissions, in accordance with aspects described herein.
In method 400, at Block 402, a first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to different time periods within a feedback window can be determined. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to different time periods within a feedback window. For example, communicating component 242 can be scheduled with SPS resources over which to receive SPS communications from the base station 102. The base station 102 can indicate one or more parameters related to the SPS communications via RRC signaling and/or can indicate one or more other parameters related to the SPS communications via DCI, as described above. For example, the SPS communications can relate to SPS PDSCHs transmitted by the base  station 102 in periodic resources according to the SPS configuration (s) received in RRC or DCI signaling.
In any case, the base station 102 can transmit downlink communications to the UE 104 in SPS resources that are scheduled according to a periodicity. An example is illustrated in FIG. 6, which illustrates a timeline 600 of  SPS resources  602, 604, 606, 608. In an example, resource determining component 252 can determine the first time period, or corresponding resource 610, for transmitting block feedback for  SPS resources  602, 604, 606, 608 based on determining a feedback window that includes the  SPS resources  602, 604, 606, 608 (e.g., based on determining a window size of four) . In an example, resource determining component 252 can determine the window size based on RRC or DCI signaling from the base station 102 and can determine the uplink resource 610 for transmitting the block feedback based on DCI signaling to activate the SPS resources. For example, the DCI can indicate an explicit resource or an offset from the last SPS resource, etc. to use for transmitting the block feedback.
In method 400, at Block 404, a dynamically scheduled downlink transmission can be received during the feedback window. In an aspect, communicating component 242, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, etc., can receive the dynamically scheduled downlink transmission during the feedback window. For example, during the feedback window where the SPSs to be grouped for block feedback are transmitted, the base station 102 can transmit a DCI to the UE indicating a dynamically scheduled downlink transmission. For example, the DCI can indicate a dynamic PDSCH resource over which to receive the dynamically scheduled downlink transmission. In an example, the DCI can also indicate an uplink resource over which to transmit feedback for the dynamically scheduled downlink transmission. The base station can transmit the dynamically scheduled downlink transmission in the indicated resources, and communicating component 242 can accordingly receive the dynamically scheduled downlink transmission.
In method 400, at Block 406, it can be determined, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242,  etc., can determine, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission. For example, resource determining component 252 can determine to multiplex the feedback over a single uplink resource (e.g., the resource indicated for the dynamically scheduled downlink transmission or the resource indicated for the block feedback for SPS communications) .
In one example, in method 400, optionally at Block 408, an uplink resource for transmitting the second feedback can be determined based on the dynamically scheduled downlink transmission. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine, based on the dynamically scheduled downlink transmission, the uplink resource for transmitting the second feedback. For example, resource determining component 252 can determine the uplink resource as indicated in the DCI for the dynamically scheduled downlink transmission (e.g., indicated as an explicit resource, an offset from the dynamically scheduled downlink transmission in time and/or frequency, etc. ) .
In one example, in determining to multiplex feedback at Block 406, optionally at Block 410, it can be determined to multiplex the first feedback with the second feedback for transmitting over the uplink resource. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine to multiplex the first feedback with the second feedback for transmitting over the uplink resource. An example, is illustrated in timeline 600 of FIG. 6, where DCI 612 can be received to schedule a dynamic PDSCH 614 during the feedback window for  SPS resources  602, 604, 606, 608. DCI 612 can also indicate uplink resource 616 for transmitting feedback for the dynamic PDSCH 614. In this example, resource determining component 252 can determine to multiplex feedback for at least the dynamic PDSCH 614 and PDSCH received over SPS resource 602 in transmitting over uplink resource 616. Selection of the SPS resource 602, and/or other SPS resources, for multiplexing feedback for transmitting over the uplink resource 616 are described further herein.
In this example, when the UE 104 is configured with block feedback for feedback transmission of multiple SPS PDSCHs in the same SPS configuration, in response to  detecting a DCI that schedules a PDSCH and the corresponding feedback, the UE 104 can multiplex feedback for one or more SPS PDSCHs in the PUCCH that carries feedback for the scheduled PDSCH, while feedback for other SPS PDSCHs can be transmitted in the PUCCH that carries the block feedback for the multiple SPS PDSCHs. In one example, this can be conditioned on PUCCH carrying feedback for the dynamic PDSCHs occurring before the PUCCH that carries the block feedback for the multiple SPS PDSCHs. In one example, this can be also conditioned on dynamic PDSCH and the SPS PDSCHs to be on the same DL CC (otherwise out-of-order may not be an issue) . Multiplexing feedback in this regard can effectively shrink the time span covered by feedback for SPS when dynamic PDSCH is scheduled.
In one example, in determining to multiplex feedback at Block 406, optionally at Block 412, the at least one SPS communication can be determined based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is received or ends at least a threshold time before the uplink resource. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the at least one SPS communication, for which to multiplex first feedback with the second feedback for the dynamically scheduled downlink transmission, based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is received or ends at least a threshold time before the uplink resource. For example, resource determining component 252 can determine to multiplex feedback for all SPS communications within the feedback window and in time periods before the dynamically scheduled downlink transmission is received, along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource. In another example, resource determining component 252 can determine to multiplex feedback for all SPS communications within the feedback window and in time periods ending at least a threshold time before the uplink resource identifier for transmitting feedback for the dynamically scheduled downlink transmission, along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource.
Examples are shown in FIG. 6. For example, in timeline 600, communications received over SPS resource 602, which occurs before the dynamic PDSCH 614, is  multiplexed with feedback for the dynamic PDSCH 614 for transmitting in PUCCH 616. In timeline 630, communications received over  SPS resources  602 and 604, which occurs or end at least N1 symbols before the PUCCH 616, are multiplexed with feedback for the dynamic PDSCH 614 for transmitting in PUCCH 616. In this example, feedback for which SPS PDSCHs are included in the PUCCH that carries feedback for the dynamic PDSCH can include any SPS PDSCH whose feedback was originally configured to be transmitted as part of block feedback and is either received before the dynamic PDSCH, or ends before N1 symbols (which can be determined as a UE PDSCH processing time) before the first symbol of the PUCCH that carries feedback for the dynamic PDSCH.
In method 400, optionally at Block 414, the multiplexed first feedback and second feedback can be transmitted. In an aspect, feedback multiplexing component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit the multiplexed first feedback and second feedback. For example, communicating component 242 can transmit the multiplexed feedback over the uplink resource indicated for feedback for the dynamically scheduled downlink transmission, as described. The base station 102 can receive and process the multiplexed feedback, as described further herein.
In one example, in method 400, optionally at Block 416, a negative acknowledgement feedback or the first feedback can be transmitted for the at least one SPS communication in the block feedback. In an aspect, feedback multiplexing component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, for the at least one SPS communication, the negative ACK feedback or the first feedback in the block feedback. In this example, though feedback multiplexing component 254 transmits feedback for the at least one SPS communication in the uplink resource indicated for feedback of the dynamically scheduled downlink transmission, feedback multiplexing component 254 may also transmit the feedback for the at least one SPS communication (or NACK feedback for the at least one SPS communication) in the block feedback as well. This can help to avoid issue where UE 104 misses the DCI which may cause PUCCH payload mismatch. Thus, in an example, the block feedback payload can be kept according to original n SPS PDSCHs (e.g., 4 in the examples of FIG. 6) . For those SPS PDSCHs whose feedback is already reported in the uplink resource for the dynamically scheduled downlink transmission, as described, the UE 104 can report NACK in the block feedback  or actual ACK/NACK for those SPS PDSCHs in the block feedback (e.g., the same value as reported in the uplink resource indicated for feedback for the dynamically scheduled downlink transmission) .
The base station 102 can similarly determine the resource over which to receive and/or process the multiplexed feedback. Thus, in method 500, at Block 502, a first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window can be determined. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window. For example, scheduling component 342 can schedule a UE 104 with SPS resources over which to receive SPS communications from the base station 102. The base station 102 can indicate one or more parameters related to the SPS communications via RRC signaling and/or can indicate one or more other parameters related to the SPS communications via DCI, as described above. For example, the SPS communications can relate to SPS PDSCHs transmitted by the base station 102 in periodic resources according to the SPS configuration (s) transmitted in RRC or DCI signaling.
In method 500, at Block 504, a dynamically scheduled downlink transmission can be transmitted during the feedback window. In an aspect, scheduling component 342, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can transmit the dynamically scheduled downlink transmission during the feedback window. For example, during the feedback window where the SPSs to be grouped for block feedback are transmitted, the base station 102 can transmit a DCI to the UE indicating a dynamically scheduled downlink transmission. For example, the DCI can indicate a dynamic PDSCH resource over which the dynamically scheduled downlink transmission is transmitted. In an example, the DCI can also indicate an uplink resource over which feedback for the dynamically scheduled downlink transmission can be transmitted by the UE 104 and/or is to be received by the base station 102. The base station 102 can transmit the dynamically scheduled downlink transmission in the indicated resources, and communicating component 242 can accordingly receive the dynamically scheduled downlink transmission.
In method 500, at Block 506, it can be determined, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication received in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on transmitting the dynamically scheduled downlink transmission during the feedback window, the first feedback for at least one SPS communication received in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission. For example, resource determining component 352 can determine to receive the feedback over a single uplink resource (e.g., the resource indicated for the dynamically scheduled downlink transmission or the resource indicated for the block feedback for SPS communications) .
In one example, in method 500, optionally at Block 508, an uplink resource for receiving the second feedback can be determined based on the dynamically scheduled downlink transmission. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine, based on the dynamically scheduled downlink transmission, the uplink resource for receiving the second feedback. For example, resource determining component 352 can determine the uplink resource as indicated in the DCI for the dynamically scheduled downlink transmission (e.g., indicated as an explicit resource, an offset from the dynamically scheduled downlink transmission in time and/or frequency, etc. ) .
In one example, in determining to receive multiplexed feedback at Block 506, optionally at Block 510, it can be determined to receive the first feedback multiplexed with the second feedback over the uplink resource. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine to receive the first feedback multiplexed with the second feedback over the uplink resource. In this example, when the base station 102 configures block feedback for feedback of multiple SPS PDSCHs in the same SPS configuration, based on transmitting a DCI that schedules a PDSCH and the corresponding feedback, the base station 102 can determine to receive feedback for one or more SPS PDSCHs multiplexed in the PUCCH that carries feedback for the scheduled  PDSCH, while feedback for other SPS PDSCHs can be received in the PUCCH that carries the block feedback for the multiple SPS PDSCHs. In one example, this can be conditioned on PUCCH carrying feedback for the dynamic PDSCHs occurring before the PUCCH that carries the block feedback for the multiple SPS PDSCHs. In one example, this can be also conditioned on dynamic PDSCH and the SPS PDSCHs to be on the same DL CC (otherwise out-of-order may not be an issue) , as described.
In one example, in determining to receive multiplexed feedback at Block 506, optionally at Block 512, the at least one SPS communication can be determined based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is transmitted or ends at least a threshold time before the uplink resource. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the at least one SPS communication, for which to multiplex first feedback with the second feedback for the dynamically scheduled downlink transmission, based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources either occurs before the dynamically scheduled downlink transmission is transmitted or ends at least a threshold time before the uplink resource. For example, resource determining component 352 can determine to receive feedback for all SPS communications within the feedback window and in time periods before the dynamically scheduled downlink transmission is received as multiplexed along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource. In another example, resource determining component 252 can determine to receive feedback for all SPS communications within the feedback window and in time periods ending at least a threshold time before the uplink resource identifier for transmitting feedback for the dynamically scheduled downlink transmission as multiplexed along with the second feedback for the dynamically scheduled downlink transmission, for transmitting in the uplink resource.
In method 500, optionally at Block 514, the multiplexed first feedback and second feedback can be received. In an aspect, feedback processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive the multiplexed first feedback and second feedback. For example, feedback processing component 354 can receive and process the multiplexed feedback  over the uplink resource indicated for feedback for the dynamically scheduled downlink transmission, as described.
In one example, in method 500, optionally at Block 516, the first feedback can be processed from the first resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication. In an aspect, feedback processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can process the first feedback from the first resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication, as described above.
FIG. 7 illustrates a flow chart of an example of a method 700 for determining an uplink resource corresponding to feedback over which to multiplex feedback for multiple downlink transmissions, in accordance with aspects described herein. FIG. 8 illustrates a flow chart of an example of a method 800 for determining an uplink resource corresponding to feedback over which to receive multiplexed feedback for multiple downlink transmissions, in accordance with aspects described herein. In an example, a UE 104 can perform the functions described in method 700 using one or more of the components described in FIGS. 1 and 2. In an example, a base station 102 can perform the functions described in method 800 using one or more of the components described in FIGS. 1 and 3.  Methods  700 and 800 are described below in conjunction with one another to ease explanation of the associated functions and concepts.  Methods  700 and 800 are not required to be performed in conjunction with one another, and indeed one device can be configured to perform method 700 without having a corresponding device that performs method 800 and vice versa, in at least one example. FIG. 9 illustrates specific examples of  timelines  600, 630 of downlink transmissions and corresponding uplink feedback transmissions, in accordance with aspects described herein.
In method 700, at Block 702, a first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to different time periods within a feedback window can be determined. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the first time period for transmitting block feedback for communications received in multiple SPS resources corresponding to  different time periods within a feedback window, as similarly described in Block 402 of method 400 in FIG. 4.
In method 700, at Block 704, a dynamically scheduled downlink transmission can be received during the feedback window. In an aspect, communicating component 242, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, etc., can receive the dynamically scheduled downlink transmission during the feedback window, as similarly described in Block 404 of method 400 in FIG. 4.
In method 700, at Block 706, it can be determined, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission, as similarly described in Block 406 of method 400 in FIG. 4.
In one example, in determining to multiplex feedback at Block 706, optionally at Block 708, it can be determined to multiplex the first feedback with the second feedback in a feedback resource associated with at least a portion of the multiple SPS resources. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine to multiplex the first feedback with the second feedback in the feedback resource associated with at least a portion of the multiple SPS resources. In one example, this can be the block feedback, or in another example, as described further herein, this can be an early NACK indication resource. An example, is illustrated in timeline 900 of FIG. 9, where DCI 912 can be received to schedule a dynamic PDSCH 914 during the feedback window for  SPS resources  902, 904, 906, 908. DCI 912 can also indicate an uplink resource for transmitting feedback for the dynamic PDSCH 914, which may point to uplink resource 916 or the block feedback uplink resource 910. In this example, resource determining component 252 can determine to multiplex feedback for at least the dynamic  PDSCH 914 in the block feedback uplink resource 910 for the PDSCHs received over  SPS resources  902, 904, 906, 908.
In an example, in determining to multiplex feedback at Block 706, optionally at Block 710, it can be determined that DCI that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback or in other resources. In an aspect, resource determining component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine that DCI that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback or in other resources. For example, resource determining component 252 can determine that the DCI indicates the block feedback as an indicator to use a scheduled block feedback, as a pointer to the block feedback resources, and/or the like. In another example, resource determining component 252 can determine that the DCI indicates the other resources (e.g., PUCCH 916) .
In this case, for example, in method 700, optionally at Block 712, the other resources can be cancelled) . In an aspect, communicating component 242, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, etc. can cancel the other resources. For example, communicating component 242 can cancel the other resources by refraining from transmitting over the other resources, transmitting an indication to the base station 102 to cancel the resources, using the resources for a different uplink transmission, and/or the like. In addition, in this example, resource determining component 252 can determine to multiplex the feedback for transmitting over the block feedback resources.
In this example, the DCI that schedules the dynamic PDSCH points to the block feedback PUCCH. If not, the DCI can point to an earlier PUCCH, and the PUCCH pointed to by the DCI can be cancelled and instead, feedback corresponding to the dynamic PDSCH can be transmitted in the block feedback PUCCH. The cancelation part may not be needed if the base station 102 originally points to the block feedback PUCCH for feedback corresponding to the dynamic PDSCH. The cancelation can be conditioned on dynamic PDSCH and the SPS PDSCHs to be on the same DL CC.
In another example, a similar approach can be followed when there are reserved PUCCH resources for NACK for one or more SPS PDSCHs before the block feedback. This PUCCH resource reserved for NACKs is used in a variant of the block feedback  where some PUCCH resources are reserved more often than the block feedback and used in carrying NACKs only for one or more SPS PDSCHs. This can be due to informing the gNB of a NACK sooner (compared to waiting for block feedback) in case SPS PDSCH decoding fails. An example is illustrated in timeline 930 of FIG. 9. The DCI 912 for a dynamic PDSCH 914 can point to the closest reserved PUCCH resource for SPS which in most cases may be the PUCCH resource reserved for the NACKs 918. If the DCI 912 points to an earlier PUCCH, that PUCCH can be cancelled, as described, and instead, feedback for the dynamic PDSCH 914 can be carried in the closest reserved PUCCH resource for SPS, whether uplink resource for NACK 918 or uplink resource 910. When UE multiplexes feedback in a PUCCH reserved for NACK 918 corresponding to one or  more SPS PDSCHs  902, 904, the PUCCH may no longer be for NACK only. In this example, actual feedback, whether ACK or NACK, can be indicated for each of the first and  second SPS PDSCHs  902, 904 as well as the dynamic PDSCH 914. In this example, determining to multiplex the first feedback with the second feedback for transmitting in the block feedback at Block 708 can include determining to multiplex the feedback in the PUCCH reserved for NACK 918.
The base station 102 can similarly determine the resource over which to receive and/or process the multiplexed feedback. In method 800, at Block 802, a first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window can be determined. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the first time period for receiving block feedback for communications transmitted in multiple SPS resources corresponding to different time periods within a feedback window, as similarly described in Block 502 of method 500 in FIG. 5.
In method 800, at Block 804, a dynamically scheduled downlink transmission can be transmitted during the feedback window. In an aspect, scheduling component 342, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can transmit the dynamically scheduled downlink transmission during the feedback window, as similarly described in Block 504 of method 500 in FIG. 5.
In method 800, at Block 806, it can be determined, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication received in at least one of the multiple  SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication received in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission, as similarly described in Block 506 of method 500 in FIG. 5.
In one example, in determining to receive multiplexed feedback at Block 806, optionally at Block 808, it can be determined to receive the first feedback multiplexed with the second feedback in a feedback resource associated with at least a portion of the multiple SPS resources. In an aspect, resource determining component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine to receive the first feedback multiplexed with the second feedback in the feedback resource associated with at least a portion of the multiple SPS resources. As described, this can be the block feedback (e.g., block feedback uplink resource 910 or early NACK resource 918) .
In an example, in determining to multiplex feedback at Block 806, optionally at Block 810, it can be indicated, in DCI that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback or in other resources. In an aspect, scheduling component 342, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc., can indicating, in DCI that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback or in other resources. For example, scheduling component 342 can indicate, in the DCI, the block feedback as an indicator to use a scheduled block feedback, as a pointer to the block feedback resources, and/or the like. In another example, scheduling component 342 can indicate, in the DCI, the other resources (e.g., PUCCH 916) .
In this case, for example, in method 800, optionally at Block 812, the other resources can be cancelled) . In an aspect, scheduling component 342, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, etc. can cancel the other resources. For example, scheduling component 342 can cancel the other resources by transmitting an indication to the UE 104 to cancel the resources, scheduling another UE to use the resources, and/or the like. In addition, in this example, resource determining component  252 can determine to receive the feedback as multiplexed over the block feedback resources.
In another example, as described, a similar approach can be followed when there are reserved PUCCH resources for NACK for one or more SPS PDSCHs before the block feedback. This PUCCH resource reserved for NACKs is used in a variant of the block feedback where some PUCCH resources are reserved more often than the block feedback and used in carrying NACKs only for one or more SPS PDSCHs. In an example, scheduling component 342 can indicate this PUCCH reserved for NACK to be used for feedback for the scheduled PDSCH 914, as described.
FIG. 10 is a block diagram of a MIMO communication system 1000 including a base station 102 and a UE 104. The MIMO communication system 1000 may illustrate aspects of the wireless communication access network 100 described with reference to FIG. 1. The base station 102 may be an example of aspects of the base station 102 described with reference to FIG. 1. The base station 102 may be equipped with  antennas  1034 and 1035, and the UE 104 may be equipped with  antennas  1052 and 1053. In the MIMO communication system 1000, the base station 102 may be able to send data over multiple communication links at the same time. Each communication link may be called a “layer” and the “rank” of the communication link may indicate the number of layers used for communication. For example, in a 2x2 MIMO communication system where base station 102 transmits two “layers, ” the rank of the communication link between the base station 102 and the UE 104 is two.
At the base station 102, a transmit (Tx) processor 1020 may receive data from a data source. The transmit processor 1020 may process the data. The transmit processor 1020 may also generate control symbols or reference symbols. A transmit MIMO processor 1030 may perform spatial processing (e.g., precoding) on data symbols, control symbols, or reference symbols, if applicable, and may provide output symbol streams to the transmit modulator/ demodulators  1032 and 1033. Each modulator/demodulator 1032 through 1033 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator/demodulator 1032 through 1033 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a DL signal. In one example, DL signals from modulator/ demodulators  1032 and 1033 may be transmitted via the  antennas  1034 and 1035, respectively.
The UE 104 may be an example of aspects of the UEs 104 described with reference to FIGS. 1-2. At the UE 104, the  UE antennas  1052 and 1053 may receive the DL signals from the base station 102 and may provide the received signals to the modulator/ demodulators  1054 and 1055, respectively. Each modulator/demodulator 1054 through 1055 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each modulator/demodulator 1054 through 1055 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 1056 may obtain received symbols from the modulator/ demodulators  1054 and 1055, perform MIMO detection on the received symbols, if applicable, and provide detected symbols. A receive (Rx) processor 1058 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, providing decoded data for the UE 104 to a data output, and provide decoded control information to a processor 1080, or memory 1082.
The processor 1080 may in some cases execute stored instructions to instantiate a communicating component 242 (see e.g., FIGS. 1 and 2) .
On the uplink (UL) , at the UE 104, a transmit processor 1064 may receive and process data from a data source. The transmit processor 1064 may also generate reference symbols for a reference signal. The symbols from the transmit processor 1064 may be precoded by a transmit MIMO processor 1066 if applicable, further processed by the modulator/demodulators 1054 and 1055 (e.g., for SC-FDMA, etc. ) , and be transmitted to the base station 102 in accordance with the communication parameters received from the base station 102. At the base station 102, the UL signals from the UE 104 may be received by the  antennas  1034 and 1035, processed by the modulator/ demodulators  1032 and 1033, detected by a MIMO detector 1036 if applicable, and further processed by a receive processor 1038. The receive processor 1038 may provide decoded data to a data output and to the processor 1040 or memory 1042.
The processor 1040 may in some cases execute stored instructions to instantiate a scheduling component 342 (see e.g., FIGS. 1 and 3) .
The components of the UE 104 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in hardware. Each of the noted modules may be a means for performing one or more functions related to operation of the MIMO communication system 1000. Similarly, the components of the base station 102 may, individually or collectively, be implemented  with one or more application specific integrated circuits (ASICs) adapted to perform some or all of the applicable functions in hardware. Each of the noted components may be a means for performing one or more functions related to operation of the MIMO communication system 1000.
Disclosure of Further Examples
In addition to above disclosure, additional examples are also contemplated. For example, according to one example, method, apparatuses, and computer-readable medium of wireless communication is provided. The method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, and/or code for determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) time periods within a feedback window, receiving a dynamic communication in a dynamically scheduled time period during the feedback window, and determining, based on receiving the dynamic communication during the feedback window, to combine first feedback for at least one SPS communication received in at least one of the multiple SPS time periods with second feedback for the dynamic communication.
For example, according to one example, method, apparatuses, and computer-readable medium of wireless communication is provided. The method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, and/or code for receiving a dynamically scheduled downlink transmission during the feedback window. The method, apparatuses, and computer-readable medium can also include actions of, processors configured to, means for, and/or code for determining, based on receiving a dynamically scheduled downlink transmission during the feedback window. Additional determinations may include multiplexing (or combining) first feedback for at least one SPS communication received in at least one of multiple SPS resources with second feedback for a dynamically scheduled downlink transmission. Still yet a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, and/or code for determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources. The SPS recourse can correspond to different time periods within a feedback window.
Any of the above examples can include determining, based on the dynamically scheduled downlink transmission, an uplink resource for transmitting the second  feedback, wherein determining to multiplex the first feedback with the second feedback includes multiplexing the first feedback with the second feedback for transmitting over the uplink resource.
Any of the above examples can include wherein determining to multiplex the first feedback with the second feedback includes determining that a second time period corresponding to the uplink resource occurs before the first time period for transmitting the block feedback.
Any of the above examples can include wherein determining to multiplex the first feedback with the second feedback is based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
Any of the above examples can include determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources occurs before the dynamically scheduled downlink transmission is received.
Any of the above examples can include determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources ends at least a threshold time before the uplink resource for transmitting the second feedback.
Any of the above examples can include transmitting, for the at least one SPS communication, a negative acknowledgement feedback in the block feedback.
Any of the above examples can include transmitting, for the at least one SPS communication, the first feedback in the block feedback.
Any of the above examples can include wherein determining to multiplex the first feedback with the second feedback includes multiplexing the first feedback with the second feedback for transmitting in the block feedback.
Any of the above examples can include wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback.
Any of the above examples can include wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in other resources, and further comprising cancelling the other resources.
Any of the above examples can include wherein cancelling the other resources based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
Any of the above examples can include wherein the block feedback corresponds to a negative acknowledgement block feedback for transmitting negative acknowledgement feedback for a first portion of the communications received in the multiple SPS resources.
Any of the above examples can include transmitting at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
Any of the above examples can include wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
Another example can include another method, apparatuses, and computer-readable medium for wireless communications. According to this example, a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for determining a first time period for receiving block feedback for communications transmitted in multiple semi-persistent scheduling (SPS) time periods within a feedback window, transmitting a dynamic communication in a dynamically scheduled time period during the feedback window, and determining, based on transmitting the dynamic communication during the feedback window, to receive first feedback for at least one SPS communication transmitted in at least one of the multiple SPS time periods combined with second feedback for the dynamic communication.
A further example can include another method, apparatuses, and computer-readable medium for wireless communications. According to this example, a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for receiving a dynamically scheduled downlink time period during a feedback window. The method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for determining to combine first feedback for at least one SPS communication received in at  least one of the multiple SPS time periods with second feedback for the dynamic communications. The determination may be based on receiving dynamic conditions during the feedback window. Also, a method, apparatuses, and computer-readable medium can include actions of, processors configured to, means for, or code for determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) time periods within a feedback window.
Any of the above examples can include determining, based on the dynamically scheduled downlink transmission, an uplink resource for receiving the second feedback, wherein determining to receive the first feedback multiplexed with the second feedback over the uplink resource.
Any of the above examples can include wherein determining to receive the first feedback multiplexed with the second feedback includes determining that a second time period corresponding to the uplink resource occurs before the first time period for receiving the block feedback.
Any of the above examples can include wherein determining to receive the first feedback multiplexed with the second feedback is based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
Any of the above examples can include determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources occurs before the dynamically scheduled downlink transmission is transmitted.
Any of the above examples can include determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources ends at least a threshold time before the uplink resource for receiving the second feedback.
Any of the above examples can include processing the first feedback from the resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication.
Any of the above examples can include wherein determining to receive the first feedback multiplexed with the second feedback includes receiving the first feedback multiplexed with the second feedback in the block feedback.
Any of the above examples can include indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback.
Any of the above examples can include indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in other resources, and further comprising cancelling the other resources.
Any of the above examples can include wherein cancelling the other resources based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
Any of the above examples can include wherein the block feedback corresponds to a negative acknowledgement block feedback for receiving negative acknowledgement feedback for a first portion of the communications transmitted in the multiple SPS resources.
Any of the above examples can include receiving at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
Any of the above examples can include wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
The above detailed description set forth above in connection with the appended drawings describes examples and does not represent the only examples that may be implemented or that are within the scope of the claims. The term “example, ” when used in this description, means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and apparatuses are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a specially programmed device, such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein. A specially programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A specially programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available medium that  can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The previous description of the disclosure is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the common principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Furthermore, although elements of the described aspects and/or embodiments may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, all or a portion of any aspect and/or embodiment may be utilized with all or a portion of any other aspect and/or embodiment, unless stated otherwise. Thus, the disclosure is not to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Figure PCTCN2020089224-appb-000001
Figure PCTCN2020089224-appb-000002
Figure PCTCN2020089224-appb-000003
Figure PCTCN2020089224-appb-000004
Figure PCTCN2020089224-appb-000005
Figure PCTCN2020089224-appb-000006
Figure PCTCN2020089224-appb-000007
Figure PCTCN2020089224-appb-000008

Claims (116)

  1. A method for wireless communications, comprising:
    determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    receiving a dynamically scheduled downlink transmission during the feedback window; and
    determining, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission.
  2. The method of claim 1, further comprising determining, based on the dynamically scheduled downlink transmission, an uplink resource for transmitting the second feedback, wherein determining to multiplex the first feedback with the second feedback includes multiplexing the first feedback with the second feedback for transmitting over the uplink resource.
  3. The method of claim 2, wherein determining to multiplex the first feedback with the second feedback includes determining that a second time period corresponding to the uplink resource occurs before the first time period for transmitting the block feedback.
  4. The method of claim 2, wherein determining to multiplex the first feedback with the second feedback is based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  5. The method of claim 2, further comprising determining the at least one SPS communication for combining the first feedback with the second feedback based at  least in part on determining that a time period corresponding to the at least one of the multiple SPS resources occurs before the dynamically scheduled downlink transmission is received.
  6. The method of claim 2, further comprising determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources ends at least a threshold time before the uplink resource for transmitting the second feedback.
  7. The method of claim 2, further comprising transmitting, for the at least one SPS communication, a negative acknowledgement feedback in the block feedback.
  8. The method of claim 2, further comprising transmitting, for the at least one SPS communication, the first feedback in the block feedback.
  9. The method of claim 1, wherein determining to multiplex the first feedback with the second feedback includes multiplexing the first feedback with the second feedback for transmitting in the block feedback.
  10. The method of claim 9, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback.
  11. The method of claim 9, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in other resources, and further comprising cancelling the other resources.
  12. The method of claim 11, wherein cancelling the other resources based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  13. The method of claim 9, wherein the block feedback corresponds to a negative acknowledgement block feedback for transmitting negative acknowledgement feedback for a first portion of the communications received in the multiple SPS resources.
  14. The method of claim 13, further comprising transmitting at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  15. The method of claim 1, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  16. A method for wireless communications, comprising:
    determining a first time period for receiving block feedback for communications transmitted in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    transmitting a dynamically scheduled downlink transmission during the feedback window; and
    determining, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication transmitted in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission.
  17. The method of claim 16, further comprising determining, based on the dynamically scheduled downlink transmission, an uplink resource for receiving the second feedback, wherein determining to receive the first feedback multiplexed with the second feedback over the uplink resource.
  18. The method of claim 17, wherein determining to receive the first feedback multiplexed with the second feedback includes determining that a second time period corresponding to the uplink resource occurs before the first time period for receiving the block feedback.
  19. The method of claim 17, wherein determining to receive the first feedback multiplexed with the second feedback is based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  20. The method of claim 17, further comprising determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources occurs before the dynamically scheduled downlink transmission is transmitted.
  21. The method of claim 17, further comprising determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources ends at least a threshold time before the uplink resource for receiving the second feedback.
  22. The method of claim 17, further comprising processing the first feedback from the resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication.
  23. The method of claim 16, wherein determining to receive the first feedback multiplexed with the second feedback includes receiving the first feedback multiplexed with the second feedback in the block feedback.
  24. The method of claim 23, further comprising indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback.
  25. The method of claim 23, further comprising indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in other resources, and further comprising cancelling the other resources.
  26. The method of claim 25, wherein cancelling the other resources based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  27. The method of claim 23, wherein the block feedback corresponds to a negative acknowledgement block feedback for receiving negative acknowledgement feedback for a first portion of the communications transmitted in the multiple SPS resources.
  28. The method of claim 27, further comprising receiving at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  29. The method of claim 16, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  30. An apparatus for wireless communication, comprising:
    a transceiver;
    a memory configured to store instructions; and
    one or more processors communicatively coupled with the memory and the transceiver, wherein the one or more processors are configured to:
    determine a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    receive a dynamically scheduled downlink transmission during the feedback window; and
    determine, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission.
  31. The apparatus of claim 30, wherein the one or more processors are further configured to determine, based on the dynamically scheduled downlink transmission, an uplink resource for transmitting the second feedback, wherein the one or more processors are configured to determine to multiplex the first feedback with the second feedback at least in part by multiplexing the first feedback with the second feedback for transmitting over the uplink resource.
  32. The apparatus of claim 31, wherein the one or more processors are configured to determine to multiplex the first feedback with the second feedback at least in part by determining that a second time period corresponding to the uplink resource occurs before the first time period for transmitting the block feedback.
  33. The apparatus of claim 31, wherein the one or more processors are configured to determine to multiplex the first feedback with the second feedback based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  34. The apparatus of claim 31, wherein the one or more processors are further configured to determine the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources occurs before the dynamically scheduled downlink transmission is received.
  35. The apparatus of claim 31, wherein the one or more processors are further configured to determine the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources ends at least a threshold time before the uplink resource for transmitting the second feedback.
  36. The apparatus of claim 31, wherein the one or more processors are further configured to transmit, for the at least one SPS communication, a negative acknowledgement feedback in the block feedback.
  37. The apparatus of claim 31, wherein the one or more processors are further configured to transmit, for the at least one SPS communication, the first feedback in the block feedback.
  38. The apparatus of claim 30, wherein the one or more processors are configured to determine to multiplex the first feedback with the second feedback for transmitting in the block feedback.
  39. The apparatus of claim 38, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback.
  40. The apparatus of claim 38, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in other resources, and wherein the one or more processors are further configured to cancel the other resources.
  41. The apparatus of claim 40, wherein the one or more processors are configured to cancel the other resources based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  42. The apparatus of claim 38, wherein the block feedback corresponds to a negative acknowledgement block feedback for transmitting negative acknowledgement feedback for a first portion of the communications received in the multiple SPS resources.
  43. The apparatus of claim 42, wherein the one or more processors are further configured to transmit at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  44. The apparatus of claim 30, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  45. An apparatus for wireless communication, comprising:
    a transceiver;
    a memory configured to store instructions; and
    one or more processors communicatively coupled with the memory and the transceiver, wherein the one or more processors are configured to:
    determine a first time period for receiving block feedback for communications transmitted in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    transmit a dynamically scheduled downlink transmission during the feedback window; and
    determine, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication transmitted in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission.
  46. The apparatus of claim 45, wherein the one or more processors are further configured to determine, based on the dynamically scheduled downlink transmission, an uplink resource for receiving the second feedback, wherein the one or more processors are configured to determine to receive the first feedback multiplexed with the second feedback over the uplink resource.
  47. The apparatus of claim 46, wherein the one or more processors are configured to determine to receive the first feedback multiplexed with the second feedback at least in part by determining that a second time period corresponding to the uplink resource occurs before the first time period for receiving the block feedback.
  48. The apparatus of claim 46, wherein the one or more processors are configured to determine to receive the first feedback multiplexed with the second feedback based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  49. The apparatus of claim 46, wherein the one or more processors are further configured to determine the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources occurs before the dynamically scheduled downlink transmission is transmitted.
  50. The apparatus of claim 46, wherein the one or more processors are configured to determine the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources ends at least a threshold time before the uplink resource for receiving the second feedback.
  51. The apparatus of claim 46, wherein the one or more processors are configured to process the first feedback from the resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication.
  52. The apparatus of claim 45, wherein the one or more processors are configured to determine to receive the first feedback multiplexed with the second feedback at least in part by receiving the first feedback multiplexed with the second feedback in the block feedback.
  53. The apparatus of claim 52, wherein the one or more processors are further configured to indicate, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback.
  54. The apparatus of claim 52, wherein the one or more processors are further configured to indicate, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in other resources, and wherein the one or more processors are further configured to cancel the other resources.
  55. The apparatus of claim 54, wherein the one or more processors are configured to cancel the other resources based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  56. The apparatus of claim 52, wherein the block feedback corresponds to a negative acknowledgement block feedback for receiving negative acknowledgement feedback for a first portion of the communications transmitted in the multiple SPS resources.
  57. The apparatus of claim 56, wherein the one or more processors are further configured to receive at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  58. The apparatus of claim 45, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  59. An apparatus for wireless communications, comprising:
    means for determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    means for receiving a dynamically scheduled downlink transmission during the feedback window; and
    means for determining, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission.
  60. The apparatus of claim 59, further comprising means for determining, based on the dynamically scheduled downlink transmission, an uplink resource for transmitting the second feedback, wherein the means for determining to multiplex the first feedback with the second feedback multiplexes the first feedback with the second feedback for transmitting over the uplink resource.
  61. The apparatus of claim 60, wherein the means for determining to multiplex the first feedback with the second feedback determines that a second time period corresponding to the uplink resource occurs before the first time period for transmitting the block feedback.
  62. The apparatus of claim 60, wherein the means for determining to multiplex the first feedback with the second feedback determines based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  63. The apparatus of claim 60, further comprising means for determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources occurs before the dynamically scheduled downlink transmission is received.
  64. The apparatus of claim 60, further comprising means for determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources ends at least a threshold time before the uplink resource for transmitting the second feedback.
  65. The apparatus of claim 60, further comprising means for transmitting, for the at least one SPS communication, a negative acknowledgement feedback in the block feedback.
  66. The apparatus of claim 60, further comprising means for transmitting, for the at least one SPS communication, the first feedback in the block feedback.
  67. The apparatus of claim 59, wherein the means for determining to multiplex the first feedback with the second feedback multiplexes the first feedback with the second feedback for transmitting in the block feedback.
  68. The apparatus of claim 67, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback.
  69. The apparatus of claim 67, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in other resources, and further comprising means for cancelling the other resources.
  70. The apparatus of claim 69, wherein the means for cancelling cancels the other resources based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  71. The apparatus of claim 67, wherein the block feedback corresponds to a negative acknowledgement block feedback for transmitting negative acknowledgement feedback for a first portion of the communications received in the multiple SPS resources.
  72. The apparatus of claim 71, further comprising means for transmitting at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  73. The apparatus of claim 59, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  74. An apparatus for wireless communications, comprising:
    means for determining a first time period for receiving block feedback for communications transmitted in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    means for transmitting a dynamically scheduled downlink transmission during the feedback window; and
    means for determining, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS communication transmitted in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission.
  75. The apparatus of claim 74, further comprising means for determining, based on the dynamically scheduled downlink transmission, an uplink resource for receiving the second feedback, wherein the means for determining to receive the first feedback multiplexed with the second feedback determines to receive the first feedback multiplexed with the second feedback over the uplink resource.
  76. The apparatus of claim 75, wherein the means for determining to receive the first feedback multiplexed with the second feedback determines that a second time period corresponding to the uplink resource occurs before the first time period for receiving the block feedback.
  77. The apparatus of claim 75, wherein the means for determining to receive the first feedback multiplexed with the second feedback determines based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  78. The apparatus of claim 75, further comprising means for determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources occurs before the dynamically scheduled downlink transmission is transmitted.
  79. The apparatus of claim 75, further comprising means for determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources ends at least a threshold time before the uplink resource for receiving the second feedback.
  80. The apparatus of claim 75, further comprising means for processing the first feedback from the resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication.
  81. The apparatus of claim 74, wherein the means for determining to receive the first feedback multiplexed with the second feedback receives the first feedback multiplexed with the second feedback in the block feedback.
  82. The apparatus of claim 81, further comprising means for indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback.
  83. The apparatus of claim 81, further comprising means for indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in other resources, and further comprising means for cancelling the other resources.
  84. The apparatus of claim 83, wherein the means for cancelling cancels the other resources based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  85. The apparatus of claim 81, wherein the block feedback corresponds to a negative acknowledgement block feedback for receiving negative acknowledgement feedback for a first portion of the communications transmitted in the multiple SPS resources.
  86. The apparatus of claim 85, further comprising means for receiving at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  87. The apparatus of claim 74, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  88. A computer-readable medium, comprising code executable by one or more processors for wireless communications, the code comprising code for:
    determining a first time period for transmitting block feedback for communications received in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    receiving a dynamically scheduled downlink transmission during the feedback window; and
    determining, based on receiving the dynamically scheduled downlink transmission during the feedback window, to multiplex first feedback for at least one SPS communication received in at least one of the multiple SPS resources with second feedback for the dynamically scheduled downlink transmission.
  89. The computer-readable medium of claim 88, further comprising code for determining, based on the dynamically scheduled downlink transmission, an uplink resource for transmitting the second feedback, wherein the code for determining to multiplex the first feedback with the second feedback multiplexes the first feedback with the second feedback for transmitting over the uplink resource.
  90. The computer-readable medium of claim 89, wherein the code for determining to multiplex the first feedback with the second feedback determines that a second time period corresponding to the uplink resource occurs before the first time period for transmitting the block feedback.
  91. The computer-readable medium of claim 89, wherein the code for determining to multiplex the first feedback with the second feedback determines based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  92. The computer-readable medium of claim 89, further comprising code for determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources occurs before the dynamically scheduled downlink transmission is received.
  93. The computer-readable medium of claim 89, further comprising code for determining the at least one SPS communication for combining the first feedback with the second feedback based at least in part on determining that a time period corresponding to the at least one of the multiple SPS resources ends at least a threshold time before the uplink resource for transmitting the second feedback.
  94. The computer-readable medium of claim 89, further comprising code for transmitting, for the at least one SPS communication, a negative acknowledgement feedback in the block feedback.
  95. The computer-readable medium of claim 89, further comprising code for transmitting, for the at least one SPS communication, the first feedback in the block feedback.
  96. The computer-readable medium of claim 88, wherein the code for determining to multiplex the first feedback with the second feedback multiplexes the first feedback with the second feedback for transmitting in the block feedback.
  97. The computer-readable medium of claim 96, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in the block feedback.
  98. The computer-readable medium of claim 96, wherein downlink control information that schedules the dynamically scheduled downlink transmission indicates to transmit the second feedback in other resources, and further comprising code for cancelling the other resources.
  99. The computer-readable medium of claim 98, wherein the code for cancelling cancels the other resources based at least in part on determining that the communications received in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  100. The computer-readable medium of claim 96, wherein the block feedback corresponds to a negative acknowledgement block feedback for transmitting negative acknowledgement feedback for a first portion of the communications received in the multiple SPS resources.
  101. The computer-readable medium of claim 100, further comprising code for transmitting at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  102. The computer-readable medium of claim 88, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
  103. A computer-readable medium, comprising code executable by one or more processors for wireless communications, the code comprising code for:
    determining a first time period for receiving block feedback for communications transmitted in multiple semi-persistent scheduling (SPS) resources corresponding to different time periods within a feedback window;
    transmitting a dynamically scheduled downlink transmission during the feedback window; and
    determining, based on transmitting the dynamically scheduled downlink transmission during the feedback window, to receive first feedback for at least one SPS  communication transmitted in at least one of the multiple SPS resources multiplexed with second feedback for the dynamically scheduled downlink transmission.
  104. The computer-readable medium of claim 103, further comprising code for determining, based on the dynamically scheduled downlink transmission, an uplink resource for receiving the second feedback, wherein the code for determining to receive the first feedback multiplexed with the second feedback determines to receive the first feedback multiplexed with the second feedback over the uplink resource.
  105. The computer-readable medium of claim 104, wherein the code for determining to receive the first feedback multiplexed with the second feedback determines that a second time period corresponding to the uplink resource occurs before the first time period for receiving the block feedback.
  106. The computer-readable medium of claim 104, wherein the code for determining to receive the first feedback multiplexed with the second feedback determines based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  107. The computer-readable medium of claim 104, further comprising code for determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources occurs before the dynamically scheduled downlink transmission is transmitted.
  108. The computer-readable medium of claim 104, further comprising code for determining the at least one SPS communication for receiving the first feedback combined with the second feedback based at least in part on determining that the at least one of the different time periods corresponding to the SPS resources ends at least a threshold time before the uplink resource for receiving the second feedback.
  109. The computer-readable medium of claim 104, further comprising code for processing the first feedback from the resources based at least in part on determining that a negative acknowledgement feedback is received in the block feedback for the at least one SPS communication.
  110. The computer-readable medium of claim 103, wherein the code for determining to receive the first feedback multiplexed with the second feedback receives the first feedback multiplexed with the second feedback in the block feedback.
  111. The computer-readable medium of claim 110, further comprising code for indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in the block feedback.
  112. The computer-readable medium of claim 110, further comprising code for indicating, in downlink control information that schedules the dynamically scheduled downlink transmission, to transmit the second feedback in other resources, and further comprising code for cancelling the other resources.
  113. The computer-readable medium of claim 112, wherein the code for cancelling cancels the other resources based at least in part on determining that the communications transmitted in multiple SPS resources and the dynamically scheduled downlink transmission correspond to the same component carrier.
  114. The computer-readable medium of claim 110, wherein the block feedback corresponds to a negative acknowledgement block feedback for receiving negative acknowledgement feedback for a first portion of the communications transmitted in the multiple SPS resources.
  115. The computer-readable medium of claim 114, further comprising code for receiving at least one of the first feedback or the second feedback as acknowledgement feedback in the block feedback.
  116. The computer-readable medium of claim 103, wherein the multiple SPS resources correspond to multiple SPS physical downlink shared channel (PDSCH) resources activated for a SPS configuration.
PCT/CN2020/089224 2020-05-08 2020-05-08 Techniques for resolving out-of-order feedback transmissions WO2021223224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089224 WO2021223224A1 (en) 2020-05-08 2020-05-08 Techniques for resolving out-of-order feedback transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089224 WO2021223224A1 (en) 2020-05-08 2020-05-08 Techniques for resolving out-of-order feedback transmissions

Publications (1)

Publication Number Publication Date
WO2021223224A1 true WO2021223224A1 (en) 2021-11-11

Family

ID=78468583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089224 WO2021223224A1 (en) 2020-05-08 2020-05-08 Techniques for resolving out-of-order feedback transmissions

Country Status (1)

Country Link
WO (1) WO2021223224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205994A1 (en) * 2022-04-25 2023-11-02 Apple Inc. Harq feedback control with reliability enhancement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149173A (en) * 2018-02-13 2019-08-20 电信科学技术研究院有限公司 A kind of semi-continuous scheduling transmission method, network side equipment and user terminal
WO2019160483A1 (en) * 2018-02-15 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Sps release handling for code block group-based dynamic harq-ack codebook
US20190356455A1 (en) * 2018-05-20 2019-11-21 Qualcomm Incorporated Providing acknowledgement/negative acknowledgement (ack/nack) feedback for downlink semi-persistent scheduling (sps) with sub-slot periodicity
CN110856265A (en) * 2019-11-08 2020-02-28 中国信息通信研究院 Multiplexing method and equipment of uplink control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149173A (en) * 2018-02-13 2019-08-20 电信科学技术研究院有限公司 A kind of semi-continuous scheduling transmission method, network side equipment and user terminal
WO2019160483A1 (en) * 2018-02-15 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Sps release handling for code block group-based dynamic harq-ack codebook
US20190356455A1 (en) * 2018-05-20 2019-11-21 Qualcomm Incorporated Providing acknowledgement/negative acknowledgement (ack/nack) feedback for downlink semi-persistent scheduling (sps) with sub-slot periodicity
CN110856265A (en) * 2019-11-08 2020-02-28 中国信息通信研究院 Multiplexing method and equipment of uplink control information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Remaining issues on multiple SPS configurations", 3GPP DRAFT; R1-2001842, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875309 *
ZTE: "Enhancements for DL SPS configurations", 3GPP DRAFT; R1-1906416 ENHANCEMENTS FOR DL SPS CONFIGURATIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727866 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205994A1 (en) * 2022-04-25 2023-11-02 Apple Inc. Harq feedback control with reliability enhancement

Similar Documents

Publication Publication Date Title
US11777560B2 (en) Techniques for multiple feedback transmissions per slot in wireless communications
US11791943B2 (en) Techniques for retransmissions in wireless communication systems
US11445561B2 (en) Techniques for retransmitting random access messages in wireless communications
WO2021016980A1 (en) Techniques for activating transmission configuration indication states in wireless communications
US20220408417A1 (en) Techniques for determining resources for transmitting wireless communications
US20200236694A1 (en) Techniques for configuring scheduling request for sidelink in wireless communications
US20220095363A1 (en) Techniques for bundling feedback messages in wireless communications
US11737057B2 (en) Techniques for updating preempted or cancelled resources in wireless communications
WO2021223224A1 (en) Techniques for resolving out-of-order feedback transmissions
US20210227574A1 (en) Techniques for handling collision in scheduled wireless communications
WO2021035392A1 (en) Techniques for uplink control information (uci) based uplink preemption indication transmissions
US20220338242A1 (en) Techniques for determining feedback timing capability in sidelink wireless communications
US20230143953A1 (en) Techniques for retransmission with component carrier switching configuration
US11930498B2 (en) Techniques for scheduling sidelink communications in multiple time periods
US11632776B2 (en) Techniques for handling overlapping transmissions after timing adjustment
US11626943B2 (en) Techniques for on-demand soft ACK/NACK in a wireless communication system
US11943028B2 (en) Techniques for communicating channel state information (CSI) feedback over a sidelink channel
US20230106376A1 (en) Techniques for using beams in multiple transport block scheduling
US20220052735A1 (en) Techniques for bundling channel state information (csi) feedback in wireless communications
US20220322391A1 (en) Techniques for pucch repetition based on pdsch repetition
WO2020199229A1 (en) Techniques for implementing ack/nack in wireless communications
WO2023055946A1 (en) Techniques for using beams in multiple transport block scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934678

Country of ref document: EP

Kind code of ref document: A1