WO2021223148A1 - Optical isolator core in between fiber and collimator lens - Google Patents

Optical isolator core in between fiber and collimator lens Download PDF

Info

Publication number
WO2021223148A1
WO2021223148A1 PCT/CN2020/088952 CN2020088952W WO2021223148A1 WO 2021223148 A1 WO2021223148 A1 WO 2021223148A1 CN 2020088952 W CN2020088952 W CN 2020088952W WO 2021223148 A1 WO2021223148 A1 WO 2021223148A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
isolator core
core
optical isolator
yvo
Prior art date
Application number
PCT/CN2020/088952
Other languages
French (fr)
Inventor
Jian Chen
Chang Xiao
Xia Hong
Fangdong ZHAO
Original Assignee
Lumentum Operations Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumentum Operations Llc filed Critical Lumentum Operations Llc
Priority to PCT/CN2020/088952 priority Critical patent/WO2021223148A1/en
Priority to CN202080100540.0A priority patent/CN115516785A/en
Priority to PCT/CN2020/119360 priority patent/WO2021223361A1/en
Priority to US17/164,191 priority patent/US20210351555A1/en
Publication of WO2021223148A1 publication Critical patent/WO2021223148A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Definitions

  • Some implementations described herein provide an optical isolator core and/or optical devices including an optical isolator core.
  • some implementations provide a displacement walk-off isolator core positioned in between a fiber and a collimator lens to enable a same side input/output fiber, 980 nanometer (nm) /1550 nm wavelength-division multiplexing (WDM) function, self-compensated polarization mode dispersion (PMD) , self-compensated polarization dependent loss (PDL) , and/or the like.
  • WDM wavelength-division multiplexing
  • PMD self-compensated polarization mode dispersion
  • PDL self-compensated polarization dependent loss
  • optical isolator designs include an optical isolator core that deflects a collimated light beam with a small angle, which may be used in a collimated light beam application.
  • Some implementations described herein provide an optical isolator core design that may not deflect the beam and may create a lateral displacement walk-off (e.g., using an yttrium orthovanadate (YVO 4 ) birefringent crystal) so that light from an output side of an optical fiber may not be coupled into an input side of the optical fiber, which may achieve optical isolation.
  • YVO 4 yttrium orthovanadate
  • the optical isolator design may conserve space by utilizing space between the optical fiber and a collimating lens. In some implementations, the optical isolator design may enable 1550 nm input and output on a same side of an optical fiber with the optical isolator. In some implementations, the optical isolator design may enable an integrated 980 nm/1550 nm WDM function.
  • the optical isolator design may provide flexibility to place the optical isolator core on an input leg, an output leg, or both the input and the output legs.
  • a forward pump erbium doped fiber amplifier EDFA
  • a reverse pump EDFA may include 980 nm pump light coupling through a WDM filter into the output leg, where the optical isolator core is in the output leg.
  • the optical isolator design may achieve an input optical fiber and an output optical fiber on a same side, which may enable integration with a 980 nm pump laser chip and/or a monitor photodiode.
  • Some implementations may include cascaded two stage optical isolator cores to achieve high isolation and self-compensated low PDL and/or low PMD.
  • one or more of the optical isolator cores may include three birefringent crystal plates (e.g., YVO 4 ) and a Faraday rotator (e.g., garnet) . Rotating two of the three birefringent crystal plates may create freedom to tune the optical isolator to improve performance and/or compensate a material manufacturing tolerance.
  • a first YVO 4 plate (e.g., YVO 4 -1) and a garnet plate may be fixed, and a second YVO 4 plate (e.g., YVO 4 -2) and a third YVO 4 plate (e.g., YVO 4 -3) may be tuned.
  • the second YVO 4 plate (e.g., YVO 4 -2) and the garnet plate may be fixed, and the first YVO 4 plate (e.g., YVO 4 -1) and the third YVO 4 plate (e.g., YVO 4 -3) may be tuned.
  • an optical isolator design may include cascading similar and/or identical optical isolator cores with orientations and directions such that a material tolerance and an assembly tolerance (e.g., for each optical isolator core) cancel with each other to achieve low PMD, PDL, and/or insertion loss (IL) .
  • a material tolerance and an assembly tolerance e.g., for each optical isolator core
  • Fig. 1 is a diagram of an example implementation 100 including a real package design (e.g., a highly integrated packaging and processing (HIPP) design) for an integrated module with a pump laser, a 980 nm/1550 nm WDM filter, and an isolator core (e.g., an optical isolator core) .
  • a real package design e.g., a highly integrated packaging and processing (HIPP) design
  • HIPP highly integrated packaging and processing
  • the integrated module may include a 1550 nm isolator core in between an optical fiber (e.g., a dual fiber pigtail) and a first collimated A-lens, a 980 nm/1550 nm WDM filter (e.g., 980 nm transmission and 1550 nm reflection) , a second collimated A-lens, and a pump laser chip.
  • Fig. 2 is an optical pass schematic of the example implementation 100 of Fig. 1.
  • Fig. 3 is a diagram of an example implementation 300 of a single stage isolator core showing a signal stage core single pass.
  • the single stage isolator core may include three pieces (e.g., plates) of birefringent YVO 4 crystal (e.g., YVO 4 -1, YVO 4 -2, YVO 4 -3) and a garnet piece (e.g., plate) , which are bonded together (e.g., by epoxy) .
  • Fig. 3 also shows a single pass of O-light and E-light (e.g., through the single stage isolator core) .
  • a single stage isolator core (e.g., the single stage isolator core shown in Fig. 3) may have a design with characteristics as shown in Table 1, where ⁇ , ⁇ , and ⁇ are azimuth angles of the optical axes of each crystal.
  • Fig. 4 is a diagram of an example implementation 400 of an optical isolator design with a single stage core and a 1550 nm signal path.
  • an isolator core and a compensator may be positioned between a pigtail optical fiber having an input leg and an output leg, which may achieve optical isolation of more than 18 decibels (dB) .
  • the compensator may compensate the optical path between the input leg and the output leg (e.g., because the input leg and the output leg are on a same side of the optical isolator design) .
  • an optical isolator design may include a fiber core of the input leg and a fiber core of the output leg having a fiber-core-to-fiber-core distance of 460 microns ( ⁇ m) , an A-lens with a 2.7 millimeter (mm) focal length, and a 980 nm/1550 nm WDM filter.
  • the input leg and the output leg may be a thermal expanding core (TEC) which expands fiber mode diameter from 6 ⁇ m to 9 ⁇ m, such as a CORNING HI 1060 FLEX fiber.
  • TEC thermal expanding core
  • an optical isolator device having the optical isolator design may have a diameter of less than 3.0 mm.
  • Fig. 5 is a diagram of an example implementation 500 of an optical isolator design with a dual stage isolator core and a 1550 nm signal path.
  • the optical isolator design of example implementation 500 may be similar to the optical isolator design of example implementation 400 shown in Fig. 4; however, instead of the compensator of example implementation 400 shown in Fig. 4, the optical isolator design of example implementation 500 may include a second isolator core and one or more half wave plates (HWPs) . In some implementations, such an optical isolator design may achieve optical isolation of more than 30 dB.
  • HWPs half wave plates
  • Fig. 6 is a diagram of an example implementation 600 of a dual stage isolator core including a schematic diagram of O-light and E-light traveling on a 1550 nm signal path.
  • the dual stage isolator core includes two stages, one for the input leg and another for the output leg, where each stage includes YVO 4 , garnet, and an HWP.
  • the lower stage of the dual stage isolator core includes two YVO 4 plates, YVO 4 -11 and YVO 4 -12, as well as HWP 1 and a garnet plate (garnet 1) positioned between the two YVO 4 plates.
  • the upper stage of the dual stage isolator core includes two YVO 4 plates, YVO 4 -21 and YVO 4 -22, as well as HWP 2 and another garnet plate (garnet 2) positioned between the two YVO 4 plates.
  • Fig. 7 is a diagram of an example implementation 700 of a dual stage isolator core including a schematic diagram of O-light and E-light traveling on a 1550 nm isolation path.
  • the dual stage isolator core of example implementation 700 may be similar to the dual stage isolator core of example implementation 600 shown and described with respect to Fig. 6.
  • backlight from the output leg to the input leg is separated into O-light and E-light by the dual stage isolator core, and the O-light and/or the E-light may not be coupled into the input leg, thereby achieving high isolation.
  • Fig. 8 is a diagram of an example implementation 800 of an optical isolator design with a dual stage isolator core in one leg and a 1550 nm signal path.
  • the optical isolator design includes two isolator cores (e.g., a dual self-compensated isolator core) on the input leg, a collimating A-lens, a WDM filter, and a compensator on the output leg.
  • the compensator may be used to compensate for an optical path difference between the input leg and the output leg.
  • Fig. 9 is diagram of an example implementation 900 of a dual stage isolator core (e.g., the dual self-compensated isolator core of Fig. 8) including a schematic diagram of O-light and E-light traveling on a 1550 nm signal path.
  • the dual stage isolator core includes two stages, where each stage includes YVO 4 , garnet, and an HWP.
  • a first stage of the dual stage isolator core includes two YVO 4 plates, YVO 4 -11 and YVO 4 -12, as well as HWP 1 and a garnet plate (garnet 1) positioned between the two YVO 4 plates.
  • the second stage of the dual stage isolator core includes two YVO 4 plates, YVO 4 -21 and YVO 4 -22, as well as HWP 2 and another garnet plate (garnet 2) positioned between the two YVO 4 plates.
  • Fig. 10 is a diagram of an example implementation 1000 of a dual stage isolator core including a schematic diagram of O-light and E-light traveling on a 1550 nm isolation path.
  • the dual stage isolator core of example implementation 1000 may be similar to the dual stage isolator core of example implementation 900 shown and described with respect to Fig. 9.
  • backlight from the output leg to the input leg is separated into O-light and E-light by the dual stage isolator core, and the O-light and/or the E-light may not be coupled into the input leg, thereby achieving high isolation.
  • an optical device may include an optical isolator core design where the optical isolator core laterally displaces a portion of a light beam.
  • the optical isolator core may include at least two birefringent crystals to create a lateral displacement walk-off, and the birefringent crystals may be tuned to achieve low PMD, PDL, and/or IL.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical device may include an optical fiber having an input leg and an output leg, a collimating lens, and an optical isolator core positioned between the optical fiber and the collimating lens. The optical isolator core may include birefringent crystals, a Faraday rotator, a halfwave plate, and/or the like. The optical isolator core may laterally displace a portion of a light beam. In some implementations, the optical isolator core may be a single stage isolator core, a dual stage isolator core, and/or the like. The optical device may include a wavelength-division multiplexing filter, another collimating lens, and a pump chip.

Description

OPTICAL ISOLATOR CORE IN BETWEEN FIBER AND COLLIMATOR LENS
Some implementations described herein provide an optical isolator core and/or optical devices including an optical isolator core. For example, some implementations provide a displacement walk-off isolator core positioned in between a fiber and a collimator lens to enable a same side input/output fiber, 980 nanometer (nm) /1550 nm wavelength-division multiplexing (WDM) function, self-compensated polarization mode dispersion (PMD) , self-compensated polarization dependent loss (PDL) , and/or the like.
Conventional optical isolator designs include an optical isolator core that deflects a collimated light beam with a small angle, which may be used in a collimated light beam application. Some implementations described herein provide an optical isolator core design that may not deflect the beam and may create a lateral displacement walk-off (e.g., using an yttrium orthovanadate (YVO 4) birefringent crystal) so that light from an output side of an optical fiber may not be coupled into an input side of the optical fiber, which may achieve optical isolation.
In some implementations, the optical isolator design may conserve space by utilizing space between the optical fiber and a collimating lens. In some implementations, the optical isolator design may enable 1550 nm input and output on a same side of an optical fiber with the optical isolator. In some implementations, the optical isolator design may enable an integrated 980 nm/1550 nm WDM function.
In some implementations, the optical isolator design may provide flexibility to place the optical isolator core on an input leg, an output leg, or both the input and the output legs. For example, a forward pump erbium doped fiber amplifier (EDFA) may include 980 nm pump light coupling through a WDM filter into the output leg, where the optical isolator core is in the input leg (e.g., because the optical isolator core may block 980 nm light) . As another example, a reverse pump EDFA may include 980 nm pump light coupling through a  WDM filter into the output leg, where the optical isolator core is in the output leg. In some implementations, the optical isolator design may achieve an input optical fiber and an output optical fiber on a same side, which may enable integration with a 980 nm pump laser chip and/or a monitor photodiode.
Some implementations may include cascaded two stage optical isolator cores to achieve high isolation and self-compensated low PDL and/or low PMD. In some implementations, one or more of the optical isolator cores may include three birefringent crystal plates (e.g., YVO 4) and a Faraday rotator (e.g., garnet) . Rotating two of the three birefringent crystal plates may create freedom to tune the optical isolator to improve performance and/or compensate a material manufacturing tolerance. For example, a first YVO 4 plate (e.g., YVO 4-1) and a garnet plate may be fixed, and a second YVO 4 plate (e.g., YVO 4-2) and a third YVO 4 plate (e.g., YVO 4-3) may be tuned. As another example, the second YVO 4 plate (e.g., YVO 4-2) and the garnet plate may be fixed, and the first YVO 4 plate (e.g., YVO 4-1) and the third YVO 4 plate (e.g., YVO 4-3) may be tuned. In some implementations, an optical isolator design may include cascading similar and/or identical optical isolator cores with orientations and directions such that a material tolerance and an assembly tolerance (e.g., for each optical isolator core) cancel with each other to achieve low PMD, PDL, and/or insertion loss (IL) .
Fig. 1 is a diagram of an example implementation 100 including a real package design (e.g., a highly integrated packaging and processing (HIPP) design) for an integrated module with a pump laser, a 980 nm/1550 nm WDM filter, and an isolator core (e.g., an optical isolator core) . As shown in Fig. 1, the integrated module may include a 1550 nm isolator core in between an optical fiber (e.g., a dual fiber pigtail) and a first collimated A-lens, a 980 nm/1550 nm WDM filter (e.g., 980 nm transmission and 1550 nm reflection) , a  second collimated A-lens, and a pump laser chip. Fig. 2 is an optical pass schematic of the example implementation 100 of Fig. 1.
Fig. 3 is a diagram of an example implementation 300 of a single stage isolator core showing a signal stage core single pass. As shown in Fig. 3, the single stage isolator core may include three pieces (e.g., plates) of birefringent YVO 4 crystal (e.g., YVO 4-1, YVO 4-2, YVO 4-3) and a garnet piece (e.g., plate) , which are bonded together (e.g., by epoxy) . Fig. 3 also shows a single pass of O-light and E-light (e.g., through the single stage isolator core) .
In some implementations, a single stage isolator core (e.g., the single stage isolator core shown in Fig. 3) may have a design with characteristics as shown in Table 1, where α, β, and γ are azimuth angles of the optical axes of each crystal.
Table 1
Figure PCTCN2020088952-appb-000001
Fig. 4 is a diagram of an example implementation 400 of an optical isolator design with a single stage core and a 1550 nm signal path. As shown in Fig. 4, an isolator core and a compensator may be positioned between a pigtail optical fiber having an input leg and an output leg, which may achieve optical isolation of more than 18 decibels (dB) . In some implementations, the compensator may compensate the optical path between the input leg and the output leg (e.g., because the input leg and the output leg are on a same side of the optical isolator design) .
In some implementations, an optical isolator design may include a fiber core of the input leg and a fiber core of the output leg having a fiber-core-to-fiber-core distance of  460 microns (μm) , an A-lens with a 2.7 millimeter (mm) focal length, and a 980 nm/1550 nm WDM filter. For example, the input leg and the output leg may be a thermal expanding core (TEC) which expands fiber mode diameter from 6 μm to 9 μm, such as a CORNING HI 1060 FLEX fiber. In this way, an optical isolator device having the optical isolator design may have a diameter of less than 3.0 mm.
Fig. 5 is a diagram of an example implementation 500 of an optical isolator design with a dual stage isolator core and a 1550 nm signal path. The optical isolator design of example implementation 500 may be similar to the optical isolator design of example implementation 400 shown in Fig. 4; however, instead of the compensator of example implementation 400 shown in Fig. 4, the optical isolator design of example implementation 500 may include a second isolator core and one or more half wave plates (HWPs) . In some implementations, such an optical isolator design may achieve optical isolation of more than 30 dB.
Fig. 6 is a diagram of an example implementation 600 of a dual stage isolator core including a schematic diagram of O-light and E-light traveling on a 1550 nm signal path. As shown in Fig. 6, the dual stage isolator core includes two stages, one for the input leg and another for the output leg, where each stage includes YVO 4, garnet, and an HWP. For example, the lower stage of the dual stage isolator core includes two YVO 4 plates, YVO 4-11 and YVO 4-12, as well as HWP 1 and a garnet plate (garnet 1) positioned between the two YVO 4 plates. The upper stage of the dual stage isolator core includes two YVO 4 plates, YVO 4-21 and YVO 4-22, as well as HWP 2 and another garnet plate (garnet 2) positioned between the two YVO 4 plates.
Fig. 7 is a diagram of an example implementation 700 of a dual stage isolator core including a schematic diagram of O-light and E-light traveling on a 1550 nm isolation path. In some implementations, the dual stage isolator core of example implementation 700 may be  similar to the dual stage isolator core of example implementation 600 shown and described with respect to Fig. 6. As shown in Fig. 7, backlight from the output leg to the input leg is separated into O-light and E-light by the dual stage isolator core, and the O-light and/or the E-light may not be coupled into the input leg, thereby achieving high isolation.
Fig. 8 is a diagram of an example implementation 800 of an optical isolator design with a dual stage isolator core in one leg and a 1550 nm signal path. As shown in Fig. 7, the optical isolator design includes two isolator cores (e.g., a dual self-compensated isolator core) on the input leg, a collimating A-lens, a WDM filter, and a compensator on the output leg. In some implementations, the compensator may be used to compensate for an optical path difference between the input leg and the output leg.
Fig. 9 is diagram of an example implementation 900 of a dual stage isolator core (e.g., the dual self-compensated isolator core of Fig. 8) including a schematic diagram of O-light and E-light traveling on a 1550 nm signal path. As shown in Fig. 9, the dual stage isolator core includes two stages, where each stage includes YVO 4, garnet, and an HWP. For example, a first stage of the dual stage isolator core includes two YVO 4 plates, YVO 4-11 and YVO 4-12, as well as HWP 1 and a garnet plate (garnet 1) positioned between the two YVO 4 plates. The second stage of the dual stage isolator core includes two YVO 4 plates, YVO 4-21 and YVO 4-22, as well as HWP 2 and another garnet plate (garnet 2) positioned between the two YVO 4 plates.
Fig. 10 is a diagram of an example implementation 1000 of a dual stage isolator core including a schematic diagram of O-light and E-light traveling on a 1550 nm isolation path. In some implementations, the dual stage isolator core of example implementation 1000 may be similar to the dual stage isolator core of example implementation 900 shown and described with respect to Fig. 9. As shown in Fig. 10, backlight from the output leg to the  input leg is separated into O-light and E-light by the dual stage isolator core, and the O-light and/or the E-light may not be coupled into the input leg, thereby achieving high isolation.
In this way, an optical device may include an optical isolator core design where the optical isolator core laterally displaces a portion of a light beam. For example, the optical isolator core may include at least two birefringent crystals to create a lateral displacement walk-off, and the birefringent crystals may be tuned to achieve low PMD, PDL, and/or IL.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the implementations.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible implementations includes each dependent claim in combination with every other claim in the claim set.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the term “set” is intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, etc. ) , and may be used interchangeably with “one or more. ” Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or  the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (8)

  1. An optical device, comprising:
    an optical fiber having an input leg and an output leg;
    a collimating lens; and
    an optical isolator core positioned between the optical fiber and the collimating lens.
  2. The optical device of claim 1, wherein the optical isolator core comprises at least two birefringent crystals and a Faraday rotator.
  3. The optical device of claim 2, wherein the birefringent crystals comprise yttrium orthovanadate.
  4. The optical device of claim 2, wherein the Faraday rotator comprises garnet.
  5. The optical device of claim 1, wherein the optical isolator core comprises a half wave plate.
  6. The optical device of claim 1, wherein the optical isolator core laterally displaces a portion of a light beam.
  7. The optical device of claim 1, wherein the optical isolator core is a single stage isolator core.
  8. The optical device of claim 1, wherein the optical isolator core is a dual stage isolator core.
PCT/CN2020/088952 2020-05-07 2020-05-07 Optical isolator core in between fiber and collimator lens WO2021223148A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/088952 WO2021223148A1 (en) 2020-05-07 2020-05-07 Optical isolator core in between fiber and collimator lens
CN202080100540.0A CN115516785A (en) 2020-05-07 2020-09-30 Optical isolator core
PCT/CN2020/119360 WO2021223361A1 (en) 2020-05-07 2020-09-30 Optical isolator core
US17/164,191 US20210351555A1 (en) 2020-05-07 2021-02-01 Optical isolator core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088952 WO2021223148A1 (en) 2020-05-07 2020-05-07 Optical isolator core in between fiber and collimator lens

Publications (1)

Publication Number Publication Date
WO2021223148A1 true WO2021223148A1 (en) 2021-11-11

Family

ID=78467765

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/088952 WO2021223148A1 (en) 2020-05-07 2020-05-07 Optical isolator core in between fiber and collimator lens
PCT/CN2020/119360 WO2021223361A1 (en) 2020-05-07 2020-09-30 Optical isolator core

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119360 WO2021223361A1 (en) 2020-05-07 2020-09-30 Optical isolator core

Country Status (1)

Country Link
WO (2) WO2021223148A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230236348A1 (en) * 2022-01-21 2023-07-27 Cisco Technology, Inc. Focal polarization beam displacer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430323B1 (en) * 1999-10-20 2002-08-06 Micro-Optics, Inc. Polarization maintaining optical isolators
CN1365011A (en) * 2000-07-14 2002-08-21 Jds尤尼费斯公司 Beam splitter and beam combiner with isolated polarized beam
CN201072472Y (en) * 2007-09-07 2008-06-11 福州高意光学有限公司 Free space polarization correlated photoisolator
CN202794598U (en) * 2012-09-29 2013-03-13 福州高意通讯有限公司 Optical isolator and optical circulator
CN103576346A (en) * 2012-07-26 2014-02-12 陈国强 Birefringence crystal displacement compensating mechanism and optical device
CN108020924A (en) * 2016-10-28 2018-05-11 朗美通经营有限责任公司 Use the multi-laser packaging body of shared optics
CN210109495U (en) * 2019-05-22 2020-02-21 福州铄云光电有限公司 Double-refraction crystal beam deviation optical isolator and laser system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939465A3 (en) * 1998-02-26 2001-03-28 Nec Corporation Light-source with WDM function, and optical amplifier and two-way optical transmission applied therewith
US6513991B1 (en) * 2000-01-28 2003-02-04 Agere Systems, Inc. Semiconductor optical device package
CN2499864Y (en) * 2001-09-11 2002-07-10 福州康顺光通讯有限公司 Double hole light isolator
US10855044B2 (en) * 2015-09-07 2020-12-01 Molex, Llc Optical amplifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430323B1 (en) * 1999-10-20 2002-08-06 Micro-Optics, Inc. Polarization maintaining optical isolators
CN1365011A (en) * 2000-07-14 2002-08-21 Jds尤尼费斯公司 Beam splitter and beam combiner with isolated polarized beam
CN201072472Y (en) * 2007-09-07 2008-06-11 福州高意光学有限公司 Free space polarization correlated photoisolator
CN103576346A (en) * 2012-07-26 2014-02-12 陈国强 Birefringence crystal displacement compensating mechanism and optical device
CN202794598U (en) * 2012-09-29 2013-03-13 福州高意通讯有限公司 Optical isolator and optical circulator
CN108020924A (en) * 2016-10-28 2018-05-11 朗美通经营有限责任公司 Use the multi-laser packaging body of shared optics
CN210109495U (en) * 2019-05-22 2020-02-21 福州铄云光电有限公司 Double-refraction crystal beam deviation optical isolator and laser system

Also Published As

Publication number Publication date
WO2021223361A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US5848203A (en) Polarization-independent optical isolator
EP1612588B1 (en) Optical isolator with tilted optical isolator element
US6628461B2 (en) Method and apparatus for a polarization beam splitter/combiner with an integrated optical isolator
WO2021223148A1 (en) Optical isolator core in between fiber and collimator lens
US20210351555A1 (en) Optical isolator core
US7173762B2 (en) Optical isolator with reduced insertion loss and minimized polarization mode dispersion
EP3667839B1 (en) Optical module and erbium-doped fiber amplifier
JPH06181352A (en) Light amplifier optical module
US6317253B1 (en) 1.06 μm band optical amplifier apparatus utilizing induced emission in optical fiber by excited rare-earth element
US7043101B1 (en) Integrated optical pump module
US20020176644A1 (en) Polarization combiner/splitter
JP2009086039A (en) Optical circuit module
JP2846382B2 (en) Optical isolator
CN111025668B (en) Optical device integrating polarization coherent beam splitting
JPH0743640A (en) Polarization independence type optical isolator
US20030002128A1 (en) Optical isolator
JP3716981B2 (en) Optical isolator
US20030030905A1 (en) Polarized wave coupling optical isolator
JPH08184727A (en) Optical connector
JP2004281478A (en) Semiconductor optical amplifier module
JPH0777669A (en) Polarization independent optical isolator
JPH0933860A (en) Optical connector
JP6226428B2 (en) A method of manufacturing a polarization maintaining fiber with an optical isolator.
JPWO2003009436A1 (en) Optical coupling method for backward excitation and optical coupler for backward excitation using the method
Chen et al. A new type of integrated hybrid component IPBCD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934527

Country of ref document: EP

Kind code of ref document: A1