WO2021222440A1 - Conduit de fracturation flexible ayant une doublure amovible - Google Patents

Conduit de fracturation flexible ayant une doublure amovible Download PDF

Info

Publication number
WO2021222440A1
WO2021222440A1 PCT/US2021/029696 US2021029696W WO2021222440A1 WO 2021222440 A1 WO2021222440 A1 WO 2021222440A1 US 2021029696 W US2021029696 W US 2021029696W WO 2021222440 A1 WO2021222440 A1 WO 2021222440A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing
flexible polymeric
polymeric liner
ferrule
liner
Prior art date
Application number
PCT/US2021/029696
Other languages
English (en)
Inventor
Kirk P. Guidry
Aleem A. Khokhar
Original Assignee
Cameron International Corporation
Schlumberger Canada Limited
Cameron Technologies Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/862,390 external-priority patent/US11066913B2/en
Application filed by Cameron International Corporation, Schlumberger Canada Limited, Cameron Technologies Limited filed Critical Cameron International Corporation
Priority to CA3181194A priority Critical patent/CA3181194A1/fr
Publication of WO2021222440A1 publication Critical patent/WO2021222440A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations

Definitions

  • drilling and production systems are often employed to access and extract the resource.
  • These systems may be located onshore or offshore depending on the location of a desired resource.
  • wellhead assemblies may include a wide variety of components, such as various casings, valves, fluid conduits, and the like, that control drilling or extraction operations.
  • such wellhead assemblies may use a fracturing tree and other components to facilitate a fracturing process and enhance production from a well.
  • resources such as oil and natural gas are generally extracted from fissures or other cavities formed in various subterranean rock formations or strata.
  • a well may be subjected to a fracturing process that creates one or more man-made fractures in a rock formation. This facilitates, for example, coupling of pre-existing fissures and cavities, allowing oil, gas, or the like to flow into the wellbore.
  • Such fracturing processes typically include injecting a fracturing fluid — which is often a mixture including sand and water — into the well to increase the well’s pressure and form the man-made fractures.
  • a fracturing manifold may provide fracturing fluid to one or more fracturing trees via fracturing lines (e.g., pipes). But the fracturing manifolds and associated fracturing trees are typically large and heavy and may be mounted to other equipment at a fixed location, making adjustments between the fracturing manifold and a fracturing tree difficult.
  • Some embodiments of the present disclosure generally relate to fracturing fluid delivery systems having flexible fracturing lines that bend to facilitate coupling of the lines between system components.
  • the fracturing lines may include a flexible pipe body with a flexible liner that reduces erosive effects from fracturing fluid on the flexible pipe body.
  • the flexible liner may be a removable polymeric liner in some instances.
  • a method for installing a liner includes moving a flexible polymeric liner through a bore of a fracturing line to position the liner along an inner wall of a flexible pipe body of the fracturing line and then attaching the liner to an opposing surface of the fracturing line.
  • FIG. 1 generally depicts a fracturing system in accordance with an embodiment of the present disclosure
  • FIG. 2 is a diagram of the fracturing system of FIG. 1 with a fracturing manifold coupled to multiple fracturing trees in accordance with one embodiment
  • FIG. 3 is a perspective view of certain components of a fracturing system, including a portion of the fracturing manifold mounted on a skid and joined to fracturing trees with flexible fluid conduits, in accordance with an embodiment of the present disclosure;
  • FIG. 4 depicts a flexible fluid conduit having a combination of rigid pipe segments and flexible pipe segments in accordance with one embodiment
  • FIG. 5 is a partial cross-section of the fluid conduit of FIG. 4 and shows a flexible pipe segment having an outer pipe body and a corrugated liner in accordance with one embodiment
  • FIG. 6 is a detail view of a retaining ring for holding the corrugated liner of FIG. 5 within the outer pipe body in accordance with one embodiment
  • FIG. 7 is a partial exploded view of components of a flexible pipe segment and generally depicts removal of the retaining ring and corrugated liner of FIG. 6 from the outer pipe body;
  • FIG. 8 is a partial cross-section of a flexible pipe segment similar to that of FIG. 5, but having a mesh liner instead of a corrugated liner, in accordance with one embodiment
  • FIG. 9 is a detail view of a retaining ring and a portion of the mesh liner of FIG. 8 within the outer pipe body in accordance with one embodiment
  • FIG. 10 depicts a flexible fluid conduit having a continuous, flexible pipe body, rather than a combination of rigid and flexible pipe segments, in accordance with one embodiment
  • FIG. 11 is a cross-section of an end of a fracturing line having a flexible pipe body attached to a rigid connector in accordance with one embodiment
  • FIG. 12 is a perspective view of certain components of a fracturing system, including a portion of a fracturing manifold mounted on a skid and joined to fracturing trees with flexible fracturing lines with rigid ends, in accordance with one embodiment;
  • FIG. 13 generally depicts a fracturing line with a flexible pipe body, rigid ends, and a removable liner extending between the rigid ends in accordance with one embodiment;
  • FIG. 14 is a cross-section showing the removable liner attached in a rigid end of the fracturing line with a ferrule in accordance with one embodiment
  • FIG. 15 is a detail view showing the ferrule of FIG. 14 compressing the flexible liner into a groove against retention nibs in accordance with one embodiment
  • FIG. 16 is a detail view showing the flexible liner and groove of FIG. 15 after removal of the ferrule in accordance with one embodiment
  • FIG. 17 generally depicts removal of the flexible liner from the fracturing line in accordance with one embodiment
  • FIG. 18 generally depicts installation of a flexible liner in the fracturing line with a ferrule in accordance with one embodiment
  • FIG. 19 shows the flexible liner installed in the fracturing line with the ferrule in accordance with one embodiment
  • FIGS. 20 and 21 generally depict a sacrificial sleeve in a rigid end of the fracturing line, in which the sacrificial sleeve embodies a ferrule for attaching the flexible liner to the rigid end, in accordance with one embodiment.
  • FIGS. 1 and 2 an example of a fracturing system 10 is provided in FIGS. 1 and 2 in accordance with one embodiment.
  • the fracturing system 10 facilitates extraction of natural resources, such as oil or natural gas, from a well 12 via a wellbore 14 and a wellhead 16. Particularly, by injecting a fracturing fluid into the well 12, the fracturing system 10 increases the number or size of fractures in a rock formation or strata to enhance recovery of natural resources present in the formation.
  • the well 12 is a surface well accessed by equipment of wellhead 16 installed at surface level (i.e., on ground 18).
  • the fracturing system 10 includes various components to control flow of a fracturing fluid into the well 12.
  • the depicted fracturing system 10 includes a fracturing tree 20 and a fracturing manifold 22.
  • the fracturing tree 20 includes at least one valve that controls flow of the fracturing fluid into the wellhead 16 and, subsequently, into the well 12.
  • the fracturing manifold 22 includes at least one valve that controls flow of the fracturing fluid to the fracturing tree 20 by a conduit or fluid connection 26, such as one or more pipes.
  • the fracturing manifold 22 is mounted on at least one skid 24 (e.g., a platform mounted on rails) to facilitate movement of the fracturing manifold 22 with respect to the ground 18. As depicted in FIG. 2, the fracturing manifold 22 is connected to provide fracturing fluid to multiple fracturing trees 20 and wellheads 16. But it is noted that the fracturing manifold 22 may instead be coupled to a single fracturing tree 20 in full accordance with the present techniques. In one embodiment in which the fracturing manifold 22 is coupled to multiple fracturing trees 20, various valves of the fracturing manifold 22 may be mounted on separate skids 24 to enable variation in the spacing between the valves.
  • skid 24 e.g., a platform mounted on rails
  • Fracturing fluid from a supply 28 is provided to the fracturing manifold 22.
  • a connector 30 receives fracturing fluid from the supply 28 through a conduit or fluid connection 32, such as pipes or hoses, and then transmits the fluid to the fracturing manifold 22 by way of a subterranean conduit or fluid connection 34.
  • the fracturing fluid could be routed from the supply 28 to the fracturing manifold 22 entirely above ground without use of a subterranean conduit 34 in other instances.
  • the fracturing fluid supply 28 is provided by one or more trucks that deliver the fracturing fluid, connect to the connector 30, and pump the fluid into the fracturing manifold 22 via the connector 30 and connections 32 and 34.
  • the fracturing fluid supply 28 is in the form of a reservoir from which fluid may be pumped into the fracturing manifold 22. But any other suitable sources of fracturing fluid and manners for transmitting such fluid to the fracturing manifold may instead be used.
  • fluid conduits with flexible portions are coupled between the fracturing manifold 22 and fracturing trees 20 to facilitate assembly of a fracturing fluid delivery system.
  • fracturing fluid delivery system One such example is generally depicted in FIG. 3 as having a skid-mounted assembly 40 of the fracturing manifold 22 coupled to a pair of fracturing trees 20 by fluid conduits 48, which may also be referred to as fracturing lines 48.
  • the assembly 40 includes a pipe 42 spanning connection blocks 44.
  • the pipe 42 and the connection blocks 44 are part of a trunk line of the manifold 22 for routing fracturing fluid to be delivered to multiple fracturing trees, and it will be appreciated that other pipes or conduits can be coupled to the connection blocks 44 to join other portions of the trunk line (e.g., to other skid-mounted assemblies 40, which can be coupled to additional fracturing trees 20).
  • Valves 46 enable individual control of the flow of fracturing fluid from the trunk line to each fracturing tree 20 through the fluid conduits 48.
  • the valves 46 are depicted here as mounted on the skid 24 as part of the assembly 40 of the fracturing manifold 22. In other instances, valves 46 could be positioned elsewhere (e.g., at the other end of the fluid conduits 48) or omitted (in which case valves of the fracturing trees could be used to control flow of fracturing fluid from the manifold into the wells).
  • the fluid conduit 48 includes a combination of rigid pipe segments 52 and flexible pipe segments 54.
  • These pipe segments 52 and 54 can be formed of any suitable materials.
  • the rigid pipe segments 52 are steel pipes and the flexible pipe segments 54 are polymeric pipes, such as pipes including polyetheretherketone (PEEK) or another polymer in the polyaryletherketone (PAEK) family
  • PEEK polyetheretherketone
  • PAEK polyaryletherketone
  • the inclusion of polymeric or composite materials in the flexible pipe segments 54 may reduce the weight of the conduit 48, as compared to a conduit formed entirely of steel. Further, the flexibility provided by such materials allows the conduit 48 to be bent at one or more of the flexible pipe segments 54 to allow an operator to more easily install the conduit 48 between the fracturing manifold 22 and a fracturing tree 20.
  • a flexible pipe segment 54 can be connected between two rigid pipe segments 52, such as shown in FIG. 4. In this arrangement, the flexible pipe segment 54 serves as a flexible joint, allowing the two rigid pipe segments 52 joined to the flexible pipe segment 54 to be positioned in different directions by bending the conduit 48 at the flexible joint.
  • This allows the distance between the ends of the conduit 48 to be varied during installation and facilitates connection of a conduit 48 of a given length between the fracturing manifold 22 and a fracturing tree 20. More particularly, this bending capability allows the profile of the conduit 48 to be changed to accommodate differences in spacing, elevation, and angular alignment between the manifold 22 and fracturing trees 20 in different installations.
  • the components of the fluid conduit 48 can be connected together and to the manifold 22 and the tree 20 in any suitable order.
  • the bend radius of a flexible pipe segment 54 may be too high to provide a desired amount of bend in the conduit 48 along the length of the pipe segment 54.
  • multiple flexible pipe segments 54 can be connected to one another in series to allow additional bending of the conduit 48 along a given portion.
  • FIG. 4 One example of this is shown in FIG. 4, with a series 58 of flexible pipe segments 54 connected together between two rigid pipe segments 52.
  • Fracturing fluid typically contains sand or other abrasive particulates that can erode conduits through which the fracturing fluid flows. The rate of such erosion depends on many factors, but is generally greater at locations in which the direction of flow is changed, such as at elbows or bends in a conduit. As depicted in FIG.
  • the conduit 48 includes flexible pipe segments 54. While such flexible pipe segments 54 allow bending of the conduit 48 to facilitate its installation, this bending can make the flexible pipe segments 54 more susceptible to erosive wear in fracturing applications.
  • one or more of the flexible pipe segments 54 includes an interior liner (which may also be referred to as a wear sleeve) to reduce erosive effects from flow of fracturing fluid or other abrasive fluids through the conduit 48.
  • a partial cross-section of the conduit 48 is depicted in FIG. 5 as having two rigid pipe segments 52 joined by a flexible pipe segment 54 having a liner.
  • the flexible pipe segment 54 includes an outer pipe body 62 with connectors 64 at its ends.
  • the outer pipe body 62 is a flexible body, and in at least some embodiments is provided as a polymeric body or a composite body (which may also include a polymer).
  • the connectors 64 which are rigid steel connectors in certain embodiments, can be attached to the outer pipe body 62 in any suitable manner and facilitate connection of the outer pipe body 62 to the rigid pipe segments 52. Further, although particular connectors 64 are shown in FIG.
  • any other connectors suitable for joining the outer pipe body 62 to the pipe segments 52 may instead be used.
  • the coupling of the outer pipe body 62 to the pipe segments 52 should be fluid-tight to avoid leakage from the conduit 48 during use. This may be accomplished with discrete seals (e.g., seals 66 in FIG. 5) or in any other desired fashion.
  • the flexible pipe segment 54 also includes a liner 70 positioned within the outer pipe body 62.
  • Various forms of an interior liner can be used to reduce erosion of the outer pipe body 62, but in FIG. 5 the liner 70 is depicted as a corrugated liner.
  • the corrugated liner is made of steel or some other metal.
  • the liner 70 can have annular corrugations or be spiral-wound (with a helical corrugation pattern). In either case, the corrugations generally increase the flexibility of the liner 70 and reduce its bending radius as compared to a smooth liner made with the same material.
  • the liner 70 and the outer pipe body 62 can bend to facilitate coupling of the conduit 48 between the fracturing manifold 22 and a fracturing tree 20, as described above.
  • the liner 70 reduces impingement of abrasive particulates on the inner surface of the outer pipe body 62 and, consequently, reduces erosive wear of the outer pipe body 62.
  • the liner 70 may itself erode in the presence of abrasive flow.
  • the liner 70 is a removable liner.
  • the liner 70 is retained within the outer pipe body 62 by retaining rings 72.
  • These retaining rings 72 can be attached to the flexible pipe segment 54 in any desired manner, but are shown here as having threads 76 to allow the retaining rings 72 to be threaded to a mating, interior surface of the connectors 64.
  • the retaining rings 72 include tapered noses that receive ends of the liner 70 and hold the liner 70 within the outer pipe body 62. In some cases, the retaining rings 72 seal against the corrugated liner 70. Additionally, the routing of high- pressure fluid through the conduit 48 can create a differential between the interior and exterior pressures of the liner 70 and a radially outward force that causes the liner 70 to flatten against the inner surface of the outer pipe body 62.
  • the conduit 48 can be disconnected from the fracturing manifold 22 and a fracturing tree 20.
  • a flexible pipe segment 54 having the liner 70 can be disconnected from an adjoining rigid or flexible pipe segment, and the retaining ring 72 can be removed from the flexible pipe segment 54 (e.g., from the connector 64) to allow the liner 70 to be pulled from the outer pipe body 62, as generally shown in FIG. 7.
  • a replacement liner 70 can then be installed in the outer pipe body 62 in place of the removed liner, allowing the non-liner portions of the flexible pipe segment 54 to be re-used in additional fracturing operations.
  • the flexible pipe segment 54 can again be connected as part of a conduit 48 coupled between a fracturing tree 20 and a fracturing manifold 22 (which may be the same fracturing manifold as previously used or a different fracturing manifold) for routing fracturing fluid between the tree and the manifold.
  • the liner 70 can be replaced at any desired interval, such as after each use or after some other set number of uses, or can be replaced on an as-needed basis.
  • a flexible pipe segment 54 of the fluid conduit 48 includes a wire -mesh liner 80 (e.g., a steel wire-mesh liner) instead of the corrugated liner 70.
  • the mesh liner 80 can be held in place within the outer pipe body 62 with retaining rings 72 (or in some other suitable manner) and reduces erosive wear of the outer pipe body 62 from fracturing fluid (or some other abrasive fluid) flowing through the conduit 48.
  • the mesh liner 80 can be installed and replaced in a manner similar to that of the corrugated liner 70.
  • the fluid conduit 48 can include a combination of rigid pipe segments and flexible pipe segments coupled together to route fracturing fluid between the fracturing manifold 22 and a fracturing tree 20.
  • the conduit 48 is instead provided as a continuous flexible pipe that can be used to route fluid between the fracturing manifold 22 and a fracturing tree 20.
  • a suitable liner 84 such as a corrugated liner, a mesh liner, or a smooth liner as described above.
  • the liner 84 is a removable liner that is retained within the outer pipe body 82 and can be replaced as desired.
  • the outer pipe body 82 is depicted in FIG. 10 as having threaded ends, such as to facilitate coupling to connection flanges or directly to the manifold 22 and a tree 20, but the outer pipe body 82 can be connected between the manifold 22 and the tree 20 in any other suitable manner.
  • the conduit 48 may also include rigid pipe connectors 90 joined to the ends of the flexible pipe body 82, such as depicted in FIG. 11 byway of example.
  • the rigid pipe connectors 90 which may also be referred to as rigid end connectors, can be attached to the flexible pipe body 82 in any suitable manner. In the embodiment generally depicted in FIG. 11, for instance, an end of the flexible pipe body 82 is received within the neck 94 of a pipe connector 90.
  • the flange 92 can be used to fasten the connector 90 to other equipment, such as the fracturing tree 20 or the fracturing manifold 22. In at least some embodiments, the flange 92 is an American Petroleum Institute (API) flange.
  • API American Petroleum Institute
  • the flange 92 may be omitted and the rigid pipe connectors 90 may connect to equipment in other suitable manners.
  • the connector 90 which is formed of steel or another metal in some embodiments, can also include an annular seal groove 96 for receiving a gasket or other seal to facilitate a fluid-tight connection when the conduit 48 is fastened to other equipment.
  • a forged ring 98 is used to help retain the end of the flexible pipe body 82 within the connector 90.
  • a metal ring 98 having a diameter less than that of the bore of connector 90 can be positioned within the connector 90 near the end of the flexible pipe body 82 and then forged (e.g., by swaging) into the shape and position shown in FIG.
  • a second connector 90 can be attached to the opposite end of the flexible pipe body 82 in a similar manner. In other embodiments, however, the flexible pipe body 82 can be attached to connectors 90 with epoxy or in some other manner without forging.
  • FIG. 12 depicts a skid-mounted assembly 40 of the fracturing manifold 22 coupled to a pair of fracturing trees 20 by fluid conduits 48 having flexible pipe bodies 82 and rigid pipe connectors 90.
  • the rigid pipe connectors 90 may be attached to the ends of the flexible pipe bodies 82 in the manner shown in FIG. 11 or in any other suitable manner.
  • the depicted apparatus also includes a pipe 42, connection blocks 44, and valves 46, such as described above.
  • each fluid conduit 48 of FIG. 12 may include a liner 84 that extends along an inner wall of the flexible pipe body 82 from one rigid end of the conduit 48 to the other rigid end (i.e., from the rigid pipe connector 90 at one end of the fluid conduit 48 to the other rigid pipe connector 90 at an opposite end of the fluid conduit 48).
  • the liner 84 may take any of various forms (e.g., those described above), in some embodiments the liner 84 is a flexible polymeric liner, such as a natural or synthetic rubber liner, that isolates the inner wall of the flexible pipe body 82 from fracturing fluid routed through the conduit 48.
  • the liner 84 is a flexible polymeric liner that is affixed to one or both rigid pipe connectors 90 or to some other portion of the conduit 48 without being adhered to, formed integrally with, or otherwise affixed to the inner wall of the flexible pipe body 82.
  • the liner 84 is shown in FIG.
  • the liner 84 could extend through less of the conduit 48 and cover less of the inner wall of the flexible pipe body 82 in other instances.
  • the liner 84 may be secured within the conduit 48 in any suitable manner.
  • the liner 84 may be fastened or adhered (e.g., with epoxy) to the rigid pipe connectors 90, for instance.
  • a flexible polymeric liner 84 is attached to a rigid pipe connector 90 with a ferrule 106.
  • the ferrule 106 is depicted in FIG. 14 as a forged metal ring that has been radially expanded to compress and retain the flexible polymeric liner 84 against the rigid pipe connector 90.
  • FIG. 14 shows just one end of the flexible polymeric liner 84 secured to the rigid pipe connector 90 on one end of the conduit 48 with a ferrule 106, it will be appreciated that the other end of the flexible polymeric liner 84 may also or instead be secured to a rigid pipe connector 90 of the other end of the conduit 48 in a similar fashion.
  • ferrules 106 may be used to secure flexible non-polymeric liners within conduits 48.
  • the rigid pipe connector 90 may include retention features to facilitate retention of the flexible polymeric liner 84 within the conduit 48.
  • the rigid pipe connector 90 can include a groove 104 (e.g., a circumferential groove surrounding the liner 84) for receiving a portion of the flexible polymeric liner 84 and facilitating retention of the liner 84 within the conduit 48.
  • the ferrule 106 holds a portion of the flexible polymeric liner 84 within the groove 104.
  • the groove 104 also includes retention nibs 108 that press into the liner 84 and facilitate retention. In some other instances, retention nibs 108 may be used without a groove 104.
  • the rigid pipe connector 90 may include nibs 108 spaced circumferentially about the liner 84 to facilitate retention.
  • the nibs 108 may have any suitable shape (e.g., with cylindrical, conical, or frustoconical ends) to facilitate retention of the liner 84.
  • teeth or other retention mechanisms may also or instead be used to engage and hold the liner 84 to the rigid pipe connector 90.
  • one end of the ferrule 106 may contact the rigid pipe connector 90 to enclose an end 110 of the liner 84.
  • an end of the ferrule 106 is deformed (e.g., crimped outwardly) into contact with the rigid pipe connector 90 to form a seal 112 (e.g., a metal-to-metal seal) and prevent flow of fracturing fluid to an exterior surface of the liner 84 between the ferrule 106 and the bore wall of the rigid pipe connector 90.
  • the liner 84 extends into the rigid pipe connector 90 beyond the ferrule 106 (e.g., the liner 84 may extend along the entire bore wall of the rigid pipe connector 90). The liner 84 may also or instead be adhered to the bore wall of the rigid pipe connector 90.
  • Flow of fracturing fluid through the conduit 48 of FIGS. 13—15 may cause wear of the flexible polymeric liner 84.
  • the conduit 48 may be disconnected from fracturing equipment and inspected for signs of wear.
  • the flexible polymeric liner 84 may be removed from the conduit 48 and replaced.
  • the flexible polymeric liner 84 may be removed from the conduit 48 in any suitable manner.
  • the ferrule 106 may be removed first to release the liner 84 from compression against the inner bore wall of the rigid pipe connector 90, as shown in FIG. 16.
  • the ferrule 106 may be cut out of the conduit 48, may be removed with a pry bar, hook, or other tool, or may be removed in any other suitable fashion.
  • the liner 84 may then be removed from the bore of the disconnected conduit 48, such as by pulling the liner 84 out through the end of the rigid pipe connector 90, as generally shown in FIG. 17.
  • a replacement flexible polymeric liner 84 may then be inserted into and moved through the bore of the conduit 48 to be positioned in place of the previous liner 84 (i.e., extending along an inner wall of the flexible pipe body 82).
  • the liner 84 may have an outer diameter slightly smaller than the inner diameters of the flexible pipe body 82 and of the rigid pipe connectors 90 to facilitate movement of the liner 84 into position within the bore.
  • Ends of the replacement flexible polymeric liner 84 may be fastened to the rigid pipe connectors 90 with replacement ferrules 106 or in any other suitable fashion.
  • a ferrule 106 may be positioned in an end of the liner 84 within the conduit 48. The ferrule 106 may then be radially expanded to compress the liner 84 against the rigid pipe connector 90 to retain the liner 84 within the conduit 48.
  • the ferrule 106 may take any suitable form but is shown in FIG. 18 as a metal ring.
  • the ferrule 106 is radially expanded through one or more cold forging techniques.
  • the ferrule 106 may be radially expanded with a hydraulic forging tool having radially movable dogs, for example.
  • the ferrule 106 may be radially expanded by driving a tapered mandrel through the bore of the ferrule 106 to stretch and radially expand the ferrule 106.
  • a tapered mandrel may have a cylindrical portion with a diameter equal to the desired inner diameter of the forged ferrule 106 (e.g., as shown in FIG.
  • the tapered mandrel may be driven into the bore of the ferrule 106 such that the increasing size of the mandrel, relative to the ferrule 106, drives the ferrule radially outward (e.g., into groove 104).
  • the mandrel can include a second, larger tapered portion on an opposite side of the above-noted cylindrical portion (i.e., the second tapered portion further from the narrower end than the above -noted cylindrical portion and wider than that cylindrical portion) to crimp the end of the ferrule 106 and form the seal 112. While installation of a replacement liner 84 within the conduit 48 is described above, it will be appreciated that the original liner 84 could be installed in the conduit 48 in the same manner.
  • the ferrule 106 and the liner 84 may be removed through the end of the conduit 48 without separating the rigid pipe connector 90 from the flexible pipe body 82.
  • the conduit 48 may be cut to facilitate removal of the liner 84 from the bore of the conduit 48.
  • the conduit 48 may be cut across the rigid pipe connector 90 and the liner 84, such as along line 114 in FIG. 19. By separating a portion of the rigid pipe connector 90 having at least some of the ferrule 106 and radially compressed portion of the liner 84, the liner 84 may be more easily removed from the conduit 48, such as by pulling the liner 84 out of the flexible pipe body 82 through the severed end of the rigid pipe connector 90.
  • the severed portion of the rigid pipe connector 90 (or a suitable replacement portion) could be reattached (e.g., through welding) to the conduit 48 for further use.
  • the conduit 48 may be cut across the flexible pipe body 82 and the liner 84, such as along line 116 at an end of the flexible pipe body 82 in FIG. 19, to allow the liner 84 to be removed through the severed end of the flexible pipe body 82.
  • a rigid pipe connector 90 may be attached to the severed end of the flexible pipe body 82 in any suitable manner, a new liner 84 could be installed, and the conduit 48 may be used again to convey fracturing fluid. While a single end of the conduit 48 is depicted in FIG. 19, it will be appreciated that similar techniques may be used at the other end of the conduit 48 to facilitate removal of a liner 84 that is attached to a rigid pipe connector 90 at each end of the conduit 48.
  • a sacrificial sleeve may be installed in a rigid pipe connector 90.
  • a sacrificial sleeve 120 is installed in a rigid pipe connector 90 and extends along an interior bore wall of the rigid pipe connector 90 to reduce erosive wear of the interior bore wall during flow operations (e.g., during fracturing through the conduit 48).
  • the sacrificial sleeve 120 is a metal sleeve that includes the ferrule 106. That is, the end of the sleeve 120 may be used as a ferrule to facilitate retention of the liner 84 within the rigid pipe connector 90, as described above.
  • the sleeve 120 may have a narrower end embodying the ferrule 106 that is received within an end of the liner 84.
  • the other end of the sleeve 120 may include an enlarged diameter portion (i.e., a head 122) that is received in a socket 124 of the rigid pipe connector 90.
  • the ferrule 106 portion of the sleeve 120 may be expanded radially outward to the position shown in FIG. 21 to compress a portion of the liner 84 between the ferrule 106 and the inner wall of the rigid pipe connector 90.
  • the ferrule 106 may be radially expanded in any suitable manner, such as with a hydraulic forging tool or a tapered mandrel driven through the sleeve 120 to deform the ferrule 106 from the position shown in FIG. 20 to the position shown in FIG. 21. While one rigid pipe connector 90 and sleeve 120 are shown in FIGS. 20 and 21, a conduit 48 may include a rigid pipe connector 90 and a sleeve 120 at each end of the conduit 48.
  • the conduits 48 and the fracturing fluid delivery systems described above can be constructed for various operating pressures and with different bore sizes depending on the intended application.
  • the fluid conduits 48 are constructed for rated maximum operating pressures of 10—15 ksi (approximately 69—103 MPa).
  • the conduits 48 of some embodiments have bores between four and eight inches (approx. 10 and 20 cm) in diameter, such as a five-and-one- eighth-inch (approx. 13 cm) diameter or a seven-inch (approx. 18 cm) diameter.
  • the conduits 48 could also be used in other instances to convey fluids between other components, such as to or between portions of the fracturing manifold 22.

Abstract

La présente invention concerne un système de distribution de fluide de fracturation ayant un conduit de fracturation ayant une doublure souple. Dans un mode de réalisation, un procédé consiste à déplacer une doublure polymère souple à travers un alésage d'un conduit de fracturation jusqu'à une position où la doublure polymère souple s'étend le long d'une paroi interne d'un corps de tuyau souple du conduit de fracturation. Le procédé consiste également à fixer la doublure polymère souple dans l'alésage du conduit de fracturation, par exemple par fixation de la doublure polymère souple à une surface opposée du conduit de fracturation. La présente invention porte également sur des systèmes, sur des dispositifs et sur des procédés supplémentaires.
PCT/US2021/029696 2020-04-29 2021-04-28 Conduit de fracturation flexible ayant une doublure amovible WO2021222440A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3181194A CA3181194A1 (fr) 2020-04-29 2021-04-28 Conduit de fracturation flexible ayant une doublure amovible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/862,390 US11066913B2 (en) 2016-05-01 2020-04-29 Flexible fracturing line with removable liner
US16/862,390 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021222440A1 true WO2021222440A1 (fr) 2021-11-04

Family

ID=78373954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/029696 WO2021222440A1 (fr) 2020-04-29 2021-04-28 Conduit de fracturation flexible ayant une doublure amovible

Country Status (2)

Country Link
CA (1) CA3181194A1 (fr)
WO (1) WO2021222440A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385018A (en) * 1977-11-21 1983-05-24 Automation Industries, Inc. Method and apparatus for making insulated, reinforced flexible hose
US5927344A (en) * 1996-01-03 1999-07-27 Nobileau; Philippe Subsea flexible pipe
EP1101997A1 (fr) * 1999-11-18 2001-05-23 Senior Flexonics Automotive Limited Tuyau flexible à revêtement interne tressé à mailles fines
US20140007970A1 (en) * 2011-03-25 2014-01-09 Neville Dodds Flexible pipe body and method of producing same
US20200088021A1 (en) * 2016-05-01 2020-03-19 Cameron International Corporation Fracturing system with flexible conduit
US20210010358A1 (en) * 2016-05-01 2021-01-14 Cameron International Corporation Flexible fracturing line with removable liner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385018A (en) * 1977-11-21 1983-05-24 Automation Industries, Inc. Method and apparatus for making insulated, reinforced flexible hose
US5927344A (en) * 1996-01-03 1999-07-27 Nobileau; Philippe Subsea flexible pipe
EP1101997A1 (fr) * 1999-11-18 2001-05-23 Senior Flexonics Automotive Limited Tuyau flexible à revêtement interne tressé à mailles fines
US20140007970A1 (en) * 2011-03-25 2014-01-09 Neville Dodds Flexible pipe body and method of producing same
US20200088021A1 (en) * 2016-05-01 2020-03-19 Cameron International Corporation Fracturing system with flexible conduit
US20210010358A1 (en) * 2016-05-01 2021-01-14 Cameron International Corporation Flexible fracturing line with removable liner

Also Published As

Publication number Publication date
CA3181194A1 (fr) 2021-11-04

Similar Documents

Publication Publication Date Title
US11066913B2 (en) Flexible fracturing line with removable liner
US10480300B2 (en) Fracturing system with flexible conduit
US10487637B2 (en) Adjustable fracturing system
US11598174B2 (en) Fracturing fluid delivery system
AU770359B2 (en) Liner hanger
EP2758622B1 (fr) Système de collecteur et de tête de fracturation réglable
CA3046708C (fr) Raccord-union de conduite d'ecoulement haute-pression
US20080066926A1 (en) Protective sleeve for threaded connections for expandable liner hanger
US10774965B1 (en) Flowline component with rotatable flange on retainer segments
US10900598B2 (en) Labyrinth seal swage coupling for high temperature/pressure reinforced rubber hose and methods of attachment
US11885207B2 (en) Fracturing fluid delivery systems with sacrificial liners or sleeves
EP2951480B1 (fr) Système de fracturation réglable
US10995561B1 (en) Flowline component with threaded rotatable flange
WO2021222440A1 (fr) Conduit de fracturation flexible ayant une doublure amovible
WO2022256415A1 (fr) Système de raccord rapide de conduits
US20190048679A1 (en) Subsea coupler system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3181194

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 522441088

Country of ref document: SA