WO2021221199A1 - Method of accelerating differentiation of stem cells from apical papilla by using optical stimulation - Google Patents

Method of accelerating differentiation of stem cells from apical papilla by using optical stimulation Download PDF

Info

Publication number
WO2021221199A1
WO2021221199A1 PCT/KR2020/005637 KR2020005637W WO2021221199A1 WO 2021221199 A1 WO2021221199 A1 WO 2021221199A1 KR 2020005637 W KR2020005637 W KR 2020005637W WO 2021221199 A1 WO2021221199 A1 WO 2021221199A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
apical
infrared
irradiated
group
Prior art date
Application number
PCT/KR2020/005637
Other languages
French (fr)
Korean (ko)
Inventor
김홍배
정필훈
정종훈
강문호
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to PCT/KR2020/005637 priority Critical patent/WO2021221199A1/en
Publication of WO2021221199A1 publication Critical patent/WO2021221199A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0003Not used, see subgroups
    • A61C8/0004Consolidating natural teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • a composition, kit, for tooth transplantation or root generation comprising apical papilla stem cells irradiated with near-infrared rays, and a method, and a method for differentiation of apical papillary stem cells comprising the step of irradiating near-infrared rays to the apical papillary stem cells is provided.
  • Photobiomodulation (PBM) therapy is a non-invasive light therapy that uses low-level laser light or light emitting diodes (LEDs) to affect cellular functions such as cell growth, proliferation and differentiation.
  • LEDs light emitting diodes
  • the red visible light region in the wavelength range of 600 to 700 nm and the near infrared region (NIR) in the wavelength range of 780 to 1100 nm are being used for clinical purposes.
  • PBM therapy is also being tried in the field of tissue engineering using stem cells. PBM therapy contributes to creating an optimal environment for newly transplanted stem cells to survive well.
  • PBM therapy increases blood supply and promotes cell proliferation, synthesis and activation of growth factors.
  • stem cells from apical papilla are a unique group of mesenchymal stem cells, which are located in the root apex of a developing permanent tooth.
  • Apical papillary stem cells have osteogenic (osteogenic) differentiation, odontogenic (odontogenic) differentiation, chondrogenic (chondrogenic) differentiation, and adipogenic (adipogenic) differentiation ability. Because apical papillary stem cells have a high proliferation rate and mineralization potential, they can be usefully used for bone and dentin regeneration.
  • apical papillary stem cells are cells derived from the immature apex, they are similar to embryos compared to other dental stem cells. Since apical papillary stem cells are a source of odontoblasts responsible for the formation of root dentin, they are expected to be advantageously used in the regeneration of tooth-related tissues, but many studies have not been conducted on this. .
  • SCAP stem cells from apical papilla
  • PBM photobiological control
  • composition for dental implantation comprising apical papillary stem cells irradiated with near-infrared rays.
  • composition for generating a tooth root comprising the near-infrared irradiated apical papillary stem cells.
  • kits for dental implantation including a light source for apical papillary stem cells, and near-infrared irradiation.
  • kits for generating a tooth root including a light source for apical papillary stem cells, and near-infrared irradiation.
  • Another example provides a method for manufacturing a dental implant, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
  • Another example provides a differentiation method of apical papillary stem cells, comprising the step of irradiating near-infrared rays to the isolated apical papillary stem cells.
  • the differentiation of the apical papillary stem cells may be differentiation into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes.
  • Another example provides a method for producing a tooth root, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
  • apical papillary stem cells are stem cells derived from the apical end of immature permanent teeth, they have more similar properties to embryonic stem cells compared to other odontogenic adult stem cells.
  • apical papillary stem cells differentiate into odontoblasts that generate root in immature permanent teeth. Therefore, in tooth regeneration, apical papillary stem cells are more advantageous than pulp origin stem cells in order to regenerate the tooth root.
  • the differentiation of the apical papillary stem cells into teeth including the root through multi-lineage differentiation may be performed in vitro and/or in vivo after transplantation.
  • an example of the present invention provides a composition for dental implantation, comprising apical papillary stem cells irradiated with near infrared rays.
  • a composition for dental implantation comprising apical papillary stem cells irradiated with near infrared rays.
  • Another example provides the use of near-infrared irradiated apical papillary stem cells for use in the preparation of a dental implant or a composition for dental implantation.
  • compositions for generating a tooth root comprising the near-infrared irradiated apical papillary stem cells.
  • Another example provides the use for the production of a composition for generating a root or generating a root of the near-infrared irradiated apical papillary stem cells.
  • Another example provides a method for manufacturing a dental implant, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
  • Another example provides a differentiation method of apical papillary stem cells, comprising the step of irradiating near-infrared rays to the isolated apical papillary stem cells.
  • the differentiation of the apical papillary stem cells may be differentiation into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes.
  • another example provides a method for generating osteocytes, a method for generating dentin blasts, a method for generating adipocytes, and/or a method for generating chondrocytes, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
  • Another example provides a method for producing a tooth root, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
  • the apical papillary stem cells may be isolated from the root apex of immature permanent teeth.
  • the near-infrared light may be a pulsed wave having a wavelength of 800 nm to 900 nm.
  • the near-infrared radiation may have the following characteristics:
  • the near-infrared irradiated apical papillary stem cells, ALP, Col1A, RUNX2, OCN, TGF- ⁇ , DSPP, and in the group consisting of DMP1, compared to the apical papillary stem cells not irradiated with near-infrared rays The level of one or more selected coding genes may be increased.
  • the near-infrared irradiated apical papillary stem cells are one selected from the group consisting of Col1A, DMP-1, CEMP-1, CAP, and OCN, compared to the apical papillary stem cells that are not irradiated with near-infrared rays. It may be an increased protein level.
  • the near-infrared irradiated apical papillary stem cells may be differentiated into one or more selected from the group consisting of osteocytes (eg, alveolar osteocytes), odontoblasts, adipocytes, and chondrocytes.
  • osteocytes eg, alveolar osteocytes
  • odontoblasts e.g., odontoblasts
  • adipocytes e.g, chondrocytes.
  • kits for dental implantation comprising a light source for apical papillary stem cells, and near-infrared irradiation.
  • a dental implantation method comprising the step of implanting the apical papillary stem cells, and irradiating near-infrared rays to the apical papillary stem cells.
  • the transplanting step and the step of irradiating near-infrared rays may be performed in any order, for example, the step of irradiating near-infrared rays to the transplanted stem cells after performing the transplantation first may be performed.
  • kits for generating a tooth root including a light source for apical papillary stem cells, and near-infrared irradiation.
  • Another example provides a method for generating a tooth root, comprising the step of implanting apical papillary stem cells, and irradiating near-infrared rays to the transplanted apical papillary stem cells.
  • the apical papillary stem cells may be isolated from the root apex of immature permanent teeth.
  • the near-infrared light may be a pulsed wave having a wavelength of 800 nm to 900 nm.
  • the near-infrared radiation may have the following characteristics:
  • the apical papillary stem cells are ALP, Col1A, RUNX2, OCN, TGF- ⁇ , DSPP, and DMP1, compared to the apical papillary stem cells that are not irradiated with near-infrared rays by near-infrared irradiation. It may be that the level of one or more coding genes selected from is increased.
  • the apical papillary stem cells are one or more selected from the group consisting of Col1A, DMP-1, CEMP-1, CAP, and OCN, compared to the apical papillary stem cells that are not irradiated with near-infrared rays by near-infrared irradiation. It could be an increase in protein levels.
  • the apical papillary stem cells may be differentiated into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes by near-infrared irradiation.
  • the tooth region described herein may refer to the tooth cross-section structure shown at https://st4.depositphotos.com/10957306/20985/v/1600/depositphotos_209857956-stock-illustration-labeled-tooth-cross-section-anatomy.jpg. can
  • stem cells from apical papilla are stem cells isolated from the root apex of immature permanent teeth (eg, molars, etc.), and include root and/or dentin. It is a multi-lineage differentiation stem cell capable of differentiating into various cells necessary for regeneration, for example, osteocytes, otoblasts, adipocytes, chondrocytes, and the like.
  • Immature permanent teeth are permanent teeth that erupt early in life (approximately until adolescence in humans) or are separable from adult wisdom teeth, and are also called early permanent teeth or first molars.
  • the apical papillary stem cells exhibit a higher proliferation rate and mineralization potential for regenerating bone and dentin, compared to dental pulp stem cells (DPSC).
  • DPSC dental pulp stem cells
  • the apical papillary stem cells are immature permanent teeth of a mammal selected from the group consisting of companion animals such as humans, dogs and cats, livestock such as cattle, horses, pigs, sheep, and goats, rodents such as mice and rats, etc. (For example, it may be separated from the apical end of the molar).
  • the apical papillary stem cells may have a high expression rate of one or more selected from the group consisting of a mesenchymal stem cell positive marker, for example, STRO-1, CD13, CD90, CD146, CD18, CD34, CD45, and the like.
  • a mesenchymal stem cell positive marker for example, STRO-1, CD13, CD90, CD146, CD18, CD34, CD45, and the like.
  • the proportion of cells expressing a mesenchymal stem cell positive marker is about 75% or more, about 77% or more, at least about 80%, at least about 82%, at least about 83%, at least about 85%, at least about 87%, or at least about 90%, and/or expressing a mesenchymal stem cell negative marker (eg, CD34, etc.)
  • the proportion of cells may be about 5% or less, about 3% or less, about 2.5% or less, or about 2% or less.
  • NIR Near-infrared light
  • the near-infrared rays usable herein have a wavelength of 700 nm to 1200 nm, for example, 750 nm to 900 nm, 750 nm to 850 nm, 750 nm to 830 nm, 800 nm to 900 nm, 800 nm to 850 nm, or 800 nm to 830 nm. As long as it has an accelerating effect, it is not limited thereto.
  • the near-infrared light may be a pulsed wave having a wavelength of 800 nm to 900 nm, but is not limited thereto.
  • the near-infrared rays are
  • duty cycle refers to a period representing the ratio of pulse width to pulse period, also referred to as pulse width. That is, as the width of the pulse wave, in a square wave, the ratio of the high part and the low part of one period level is expressed as a percentage.
  • the total energy density of the near infrared is 50 to 2000 mJ/cm 2 , 50 to 1500 mJ/cm 2 , 50 to 1000 mJ/cm 2 , 50 to 750 mJ/cm 2 , 250 to 2000 mJ/cm 2 , 250 to 1500 mJ/cm 2 , 250 to 1000 mJ/cm 2 , 250 to 750 mJ/cm 2 , 500 to 2000 mJ/cm 2 , 500 to 1500 mJ/cm 2 , 500 to 1000 mJ/cm 2 , 500 to 750 mJ/ cm 2 , 750 to 2000 mJ/cm 2 , 750 to 1500 mJ/cm 2 , 750 to 1000 mJ/cm 2 , or about 750 mJ/cm 2 It may be, but is not limited thereto.
  • the near-infrared rays may be obtained from all commonly available light sources.
  • the light source for near-infrared irradiation can be used without limitation as long as it emits near-infrared rays, for example, at least one selected from the group consisting of lasers, light-emitting diodes (LEDs), etc.
  • the present invention is not limited thereto.
  • the near-infrared irradiation may be applied in vitro, and prior to culturing of the apical papillary stem cells , during culturing, and/or after culturing.
  • the near-infrared irradiation time may be appropriately adjusted in consideration of the energy density described above (that is, so that the energy density can be achieved), for example, about 1 to 20 minutes, 1 to 18 minutes, 1 to 15 per one time basis.
  • the culture may be performed in a commonly used differentiation medium, for example, at least one medium selected from the group consisting of a commonly used bone formation induction medium, a chondrogenesis induction medium, an adipocyte production induction medium, and the like.
  • apical papillary stem cells eg, the above-described composition for tooth transplantation and/or root generation
  • near-infrared in vitro
  • near-infrared irradiation may be performed (in vivo) at the transplant site after transplantation of apical papillary stem cells.
  • the near-infrared irradiation time before the transplantation is the same as described above, and the near-infrared irradiation after transplantation may be performed once a day or twice a day at intervals of 12 hours, and the irradiation time per one time is about 1 to 20 minutes, 1 to 18 minutes. , 1 to 15 minutes, 1 to 12 minutes, 3 to 20 minutes, 3 to 18 minutes, 3 to 15 minutes, 3 to 12 minutes, 5 to 20 minutes, 5 to 18 minutes, 5 to 15 minutes, 5 to 12 minutes , 8 to 20 minutes, 8 to 18 minutes, 8 to 15 minutes, or about 8 to 12 minutes.
  • dental implantation may mean implanting (injecting, inserting, or administering) the apical papillary stem cells or a composition comprising the same as described above in a region requiring restoration and/or regeneration of teeth.
  • the implantation site may be selected from all sites requiring restoration and/or regeneration of teeth, for example, it may be one or more sites selected from the group consisting of pulp or pulp chamber, periodontal (gingival), etc., but is not limited thereto. it is not In the present specification, restoration and/or regeneration of a tooth is interpreted to include generation, restoration, and/or regeneration of a tooth root.
  • the dental implantation may be performed by implanting a mixture of the apical papillary stem cells or a composition comprising the same with an appropriate scaffold.
  • the scaffold may be appropriately selected from all scaffolds available for dental implantation, and for example, the material may be HA/TCP (Hydroxyapatite/Tricalcium phosphate), PRF (platelet rich fibrin), PLGA (poly(D) , L-lactide-co-glycolide), may be selected from the group consisting of PLG (poly(L-lactic acid)), but is not limited thereto.
  • HA/TCP Hydroapatite/Tricalcium phosphate
  • PRF platelet rich fibrin
  • PLGA poly(D) , L-lactide-co-glycolide
  • PLG poly(L-lactic acid)
  • a dental implant refers to a material or a structure implanted in a tooth, and a near-infrared irradiated apical papillary stem cell or a composition comprising the same as described above, or the apical papillary stem cell or a composition comprising the same and an appropriate scan It may be a mixture mixed with folds.
  • the tooth implantation target may be selected from mammals including companion animals such as humans, dogs and cats, livestock such as cattle, horses, pigs, sheep and goats, and rodents such as mice and rats.
  • differentiation of apical papillary stem cells may mean that the apical papillary stem cells are differentiated into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes.
  • differentiation of apical papillary stem cells includes differentiation into root tissue.
  • the osteocytes are basic cells of bone tissue, and are also called osteoblasts, osteoblasts, bone cells, and the like. Differentiation into osteocytes is carried out by a series of processes called 'osteogenic differentiation'. In one example, the differentiation of the apical papillary stem cells into osteocytes may be performed in vitro and/or in vivo.
  • the odontoblast is a columnar connective tissue cell that forms the dentin of the tooth and forms the outer surface of the pulp around it. Differentiation into odontoblasts is carried out by a series of processes called 'dentinogenic differentiation'. In one example, the differentiation of the apical papillary stem cells into odontoblasts may be performed in vitro and/or in vivo.
  • the apical papillary stem cells by near-infrared irradiation, compared to the apical papillary stem cells not irradiated with near-infrared rays, ALP (alkaline phosphatase), Col1A (type 1 collagen A), RUNX2 (Runt-related transcription factor 2) ), OCN (osteocalcin), TGF- ⁇ 1 (Transforming growth factor-beta1), DSPP (dentin sialophosphoprotein), DMP1 (dental matrix protein 1), CEMP-1 (cementoblastoma-derived protein 1), and CAP (cementum attachment protein)
  • ALP alkaline phosphatase
  • Col1A type 1 collagen A
  • RUNX2 Raster-related transcription factor 2
  • OCN osteocalcin
  • TGF- ⁇ 1 Transforming growth factor-beta1
  • DSPP disforming growth factor-beta1
  • DMP1 dental matrix protein 1
  • CEMP-1 cemento
  • the apical papillary stem cells are selected from the group consisting of ALP, Col1A, RUNX2, OCN, TGF- ⁇ 1, DSPP, and DMP1 by near-infrared irradiation, compared to the apical papillary stem cells not irradiated with near-infrared rays. It may be an increase in the level of one or more coding genes.
  • the apical papillary stem cells are one or more protein levels selected from the group consisting of Col1A, DMP1, CEMP-1, CAP, and OCN, compared to the apical papillary stem cells that are not irradiated with near infrared rays by near-infrared irradiation. This may be an increase.
  • the technology for promoting growth, proliferation, and/or differentiation of apical papillary stem cells by photostimulation using near-infrared light provided herein has an excellent tooth (particularly, root) regeneration effect, so it is useful in the field of restoration or regeneration of teeth. can be advantageously applied.
  • SCAP apical papillary stem cells
  • A shows the appearance of immature third molars obtained from a patient
  • B is a fibroblast in which SCAP is similar to a mesenchymal stem cell population It shows that spindle shapes are displayed.
  • NIR near-infrared
  • B is an optical sensor of delayed emission (power range: 500pW-0.5mW, S130VC) , Thorlabs, USA)
  • C is a schematic diagram of delayed luminescence analysis. Near-infrared irradiation of the cells was carried out for 1 minute, and spontaneous photon re-emission from the cells was measured with an optical sensor for 23 seconds.
  • FIG. 3 is a schematic diagram showing the process of irradiating cells with NIR for in vitro experiments (near infrared rays of 830 nm, energy density of 750 mJ/cm 2 applied daily).
  • Figure 4 schematically shows the in vivo experimental process
  • A shows that SCAP is mixed with a hydroxyapatite/ ⁇ -tricalcium phosphate (HA/TCP) scaffold
  • B is a mixture of cells and scaffolds It shows the subcutaneous injection into the dorsal surface of immunocompromised nude mouse
  • C shows the LED device for generating near-infrared (NIR) for in vivo experiment
  • D is a schematic diagram of near-infrared irradiation for nude mice.
  • FIG. 5 shows the same sized digital images (2.25mm width ⁇ 1.2mm height) of the histological sections of each group after hematoxylin and eosin staining, (B) is trainable weka segmentation of Image J software Selected cellular and connective tissue regions are shown.
  • FIG. 6 (A) shows the same sized digital images (2.25mm width ⁇ 1.2mm height) of the histological sections of each group after immunohistochemical staining of osteocalcin, (B) is trainable weka segmentation of Image J software. Selected osteocalcin stained regions are shown.
  • 9a and 9b show the results of delayed emission analysis when 830 nm near-infrared (NIR) is irradiated for 1 minute;
  • 9a is a graph showing the measured delayed emission intensity (I(t); top) and excitation level (n(t); bottom) at various frequencies,
  • 9b is a graph showing the measured delayed emission intensity (I(t); top) and excitation level (n(t); bottom) at various in-wavelength duty cycles.
  • 10 is a graph showing the degree of osteogenic differentiation of SCAP irradiated with near-infrared rays of various frequencies, showing alkaline phosphatase activity.
  • FIG. 11 is a photograph showing the results of Alizarin Red S staining of SCAP irradiated with near-infrared rays of various frequencies (upper) and a graph quantifying the degree of Alizarin Red S staining shown in the photograph (lower).
  • Calcium nodules were generated up to 2.5 times at 3 Hz, 30 Hz, and 300 Hz at 10 days compared to the control group. On day 21, many groups, including the control group, showed high calcium deposition. This means that the PBM method accelerates the osteogenic differentiation of SCAP at the early stage of differentiation.
  • RT-PCR quantitatively real-time polymerase chain reaction
  • FIG. 13a is an electrophoresis picture showing the results of measuring the levels of five proteins (Col1A, DMP-1, CEMP-1, CAP, and OCN) in SCAP irradiated with near-infrared rays by Western blot
  • FIG. 13b is a diagram of FIG. 13a. It is a graph that quantifies the results and shows them as relative values to the control group.
  • 14a and 14b show the results of hematoxylin and eosin staining of SCAP implants, 14a is a staining photograph (magnification. ⁇ 80), and 14b is a graph quantifying the stained area.
  • 15 is a photograph of SCAP implants stained with hematoxylin and eosin (magnification ⁇ 200).
  • 16a and 16b show the results of immunostaining of osteocalcin (OCN), and 16a is a staining photograph (magnification ⁇ 80). 16b is a graph quantifying the stained area.
  • Fig. 1A An immature third molar was obtained from the patient (Fig. 1A).
  • the patient was selected from among patients (humans) who did not suffer from tooth decay or cavities to the extent of being dislodged. Informed consent was obtained from all patients. All of the tests in this specification were approved by the Clinical Trial Review Committee of Seoul National University Dental Hospital (Seoul, Korea; IRB No. 05004).
  • SCAP was isolated and cultured according to conventional methods. Specifically, the apical papillary tissue was carefully separated from the root apex of the obtained immature third molar. The isolated tissue was digested in 3 mg/mL collagenase type 1 (Worthington Biochem, Freehold, NJ, USA) and 4 mg/mL dispase (Boehringer, Mannheim, Germany) solution at 37° C. for 1 hour. The obtained solution was passed through a 40 mm strainer (BD Biosciences, Bedford, MA, USA) to obtain a single cell suspension. The obtained cells were treated with 10% FBS (Gibco BRL, Grand Island, NY, USA), 100 mM ascorbic acid 2-phosphate (Sigma-Aldrich, St.
  • the cells (passage 3, 1.0 ⁇ 10 6 cells) prepared in Reference Example 1.1 were suspended in 100 ⁇ l of 0.5% bovine serum albumin buffer (ICN Biomedicals, Aurora, OH, USA). After addition of antibodies specific for CD34, CD13, CD90 and CD146 (BD Biosciences, Bedford, MA, USA), the cells were incubated at 4° C. for 1 hour. Then, it was incubated with the fluorescently labeled secondary antibody at room temperature for 1 hour. The percentages of CD34 negative, CD13 positive, CD90 positive, and CD146 positive cells were calculated by FACS Calibur ow flow cytometry (Becton & Dickinson Immunocytometry Systems, San Jose, CA, USA), respectively. The obtained data were analyzed with CellQuest Pro software (Becton & Dickinson Immunocytometry Systems, San Jose, CA, USA).
  • a device composed of a diffuser and an LED array was used (see FIG. 2A).
  • the wavelength of the LED (PV810-3C6W-EDISAA, KAOS, Korea) was set to 830 nm. LEDs can operate in continuous wave mode and pulsed wave mode.
  • the pulse wave mode was performed in four different frequency modes including 3Hz, 30Hz, 300Hz and 3000Hz.
  • the frequency was tested while changing to an 8-bit microcontroller device (UM_MC95FG308_V3.20_EN, Hynix, Korea).
  • the in-wavelength duty cycle was tested while changing from 10% to 60%.
  • the total energy density was fixed at 750 mJ/cm 2 .
  • near-infrared irradiation was performed once a day, for 10 minutes each time, for a total of 6 weeks.
  • DL delayed luminescence
  • NIR near infrared
  • SCAP was washed twice with PBS.
  • An optical sensor with a resolution of 37 ms per data (power range: 500 pW to 0.5 mW, S130VC, Thorlabs, USA) was installed in a CO 2 incubator.
  • the SCAP was placed in a darkroom space for 30 min to eliminate natural light.
  • NIR irradiation was performed and delayed luminescence was measured from the cells.
  • the sensing area of the photosensor was similar to the diameter of a 24-well plate.
  • Intra-wavelength irradiance refers to the rate at which light is emitted within one cycle of a pulse at the optimal frequency found. 100% in-wavelength means continuous wave and 10% in-wavelength means that light is emitted only within 10% of the cycle and not during the remaining 90% period.
  • Equation 1 I(t) is the re-emitted intensity from the cells obtained from the experimental data, I 0 is the initial value of the emission intensity, t is the time, and t 0 is the initial value, respectively. do.
  • the decay probability P(t) can be calculated by the following equations (2) and (3):
  • Control DL data of non-irradiated cells show no intensity levels (10-19 to 10-16 W/cm 2 ) outside the optical sensor range.
  • SCAP was incubated in culture wells to at least 80% confluence. Thereafter, the culture medium was replaced with a differentiation medium (see Reference Example 1.3).
  • NIR near infrared; 830 nm
  • ALP alkaline phosphatase
  • An energy density of 750 mJ/cm 2 was applied to the cells daily.
  • SensoLyte® pNPP para-nitrophenyl phosphate alkaline phosphatase assay kit.
  • Lysis buffer 50 mM Tris HCl and 0.1 % Triton X 100, pH 9.5, Sigma-Aldrich
  • Cells were incubated at 4° C. for 10 minutes.
  • Cells were transferred to 96-well plates in an amount of 50 ⁇ l per well.
  • 50 ⁇ l of pNPP substrate was added to each well and the plate was gently shaken for 30 seconds to mix with the cells.
  • the cells were reacted by incubating at 37° C. for 60 minutes.
  • Absorbance was measured with a microplate reader (Synergy HT, Biotek, VT, USA). Absorbance was expressed as a relative value with respect to the control group (NIR untreated group). The absorbance shows the degree of osteogenic differentiation (fold).
  • Alizarin Red S staining was performed to evaluate calcium precipitation in the initial mineralization of SCAP.
  • NIR (830 nm) irradiation was performed at 4 frequencies of 3 Hz, 30 Hz, 300 Hz and 3000 Hz, respectively, for 21 days.
  • the in-wavelength irradiation rate of the pulsed wave was fixed at 30%.
  • Cells were seeded at 1.0 ⁇ 10 4 cells per well in 96-well plates.
  • On days 10 and 21 after NIR irradiation cells were washed twice with PBS and fixed in 4% paraformaldehyde for 10 minutes. Cells were washed with deionized water and stained with Alizarin Red S (Sigma-Aldrich, St Louis, Mo, USA) for 30 min at room temperature.
  • the dye was removed with deionized water and the stained cells were observed by stereo type microscopy.
  • the dye was extracted using 200 mL of 10% glacial acetic acid for 60 minutes at room temperature. The amount was measured using an ELISA plate reader (Tecan, NC, USA at 490 nm) at 490 nm.
  • RT-PCR real-time polymerase chain reaction
  • a real-time polymerase chain reaction was performed using the synthesized cDNA using the CFX96TM Real-Time System (BioRad, CA, USA).
  • the relative expression levels of genes were evaluated using the comparative cycle threshold method.
  • the gene expression of ALP, Col1A, RUNX2, OCN, TGF- ⁇ 1, DSPP, DMP1, and GAPDH was evaluated.
  • the relative expression level of mRNA was normalized to the expression level of GAPDH and expressed as a fold change with respect to the control group.
  • the primer sequences used are shown in Table 1 (Primer Sequences for Real-Time Polymerase Chain Reaction).
  • the primers listed in Table 1 are SEQ ID NOs: 1 to 16 in order; ALP, alkaline phosphatase; Col1A, type 1 collagen A; RUNX2, Runt-related transcription factor 2; OCN, osteocalcin; TGF- ⁇ 1, transforming growth factor- ⁇ 1; DSPP, dentin sialophosphoprotein; DMP1, dentin matrix protein 1)
  • SCAP (1.0 ⁇ 10 6 cells/dish) was seeded in a 60 mm culture dish and cultured for 21 days in a differentiation medium (see Reference Example 1.3).
  • NIR irradiation was performed daily for 21 days. Illumination was set at a frequency of 300 Hz and an irradiance rate of 30% within the wavelength.
  • Total lysate proteins were isolated and measured with DC Protein Assay Kit (Bio-Rad Laboratories, CA, USA). 30 mg of protein was dissolved in SDS-PAGE loading buffer and transferred to a polyvinylidene difluoride membrane (GE Healthcare, IL, USA).
  • the membrane was coated with primary antibodies against collagen type 1 (Col1A), cementum attachment protein (CAP), cementoblastoma-derived protein 1 (CEMP-1), osteocalcin (OCN), and dentin matrix protein-1 (DMP-1) ( Santa Cruz Biotechnology, TX, USA). After washing the primary antibody, the membrane was incubated with a horseradish peroxidase-conjugated secondary antibody (Cell Signaling Technology, MT, USA) for 1 hour. The obtained blot was visualized with an enhanced chemiluminescence kit (GE Healthcare, IL, USA).
  • CAP cementum attachment protein
  • CEMP-1 cementoblastoma-derived protein 1
  • OCN osteocalcin
  • DMP-1 dentin matrix protein-1
  • SCAP was mixed with the xenogenic scaffold in a total amount of 20.0 ⁇ 10 6 cells.
  • As a scaffold 50 mg of hydroxyapatite/ ⁇ -tricalcium phosphate ceramic particles (HA/TCP, Dentium, Seoul, South Korea) was used. 1 ml of cell culture medium (see Reference Example 1.1) was added to the cell-scaffold mixture. The mixture was incubated overnight in a CO 2 incubator (MC-20A, Science & Technology Inc., Korea) to allow the cells to adhere to the scaffold.
  • HA/TCP hydroxyapatite/ ⁇ -tricalcium phosphate ceramic particles
  • a drop of fibrin (TISSEEL ® Baxter, IL, USA) was mixed with the implant prior to implantation to facilitate handling and maintain bolus shape.
  • a mixture of cells and scaffolds was subcutaneously implanted into the inner dorsal surface of 10 8-week-old immunocompromised nude mice (NIH-bg-nu/nu-xid; Harlan Sprague-Dawley, OrientBio Inc., Seongnam, Korea).
  • a negative control group (Group 1) was defined as a group transplanted with only HA/TCP without SCAP.
  • Two positive controls were defined as follows: one (Group 2) transplanted with the SCAP cell-scaffold mixture without NIR irradiation, and the other positive control (Group 3) after transplantation of the scaffold only without SCAP.
  • the experimental group (group 4) was a group irradiated with NIR for 5 weeks after transplanting the non-NIR-irradiated SCAP cell-scaffold mixture.
  • the irradiated near-infrared rays have a wavelength of 830 nm, a frequency of 300 Hz, and an irradiation rate within the wavelength fixed to 30%.
  • Table 2 The groups for the animal experiments are summarized in Table 2 below:
  • HA/TCP hydroxyapatite/ ⁇ -tricalcium phosphate
  • SCAP stem cells from apical papilla
  • NIR near-infrared light
  • Implants were harvested 6 weeks after transplantation.
  • PBM near infrared irradiation
  • NIR irradiation was performed daily for 5 weeks.
  • the implants were fixed in 3.7% paraformaldehyde at 4°C for 24 hours. Demineralization was performed with a 12% EDTA solution (pH 7.3) at 4°C for 1 month.
  • the obtained specimen was embedded in paraffin and sectioned to a thickness of 40 ⁇ m. Histological sections were stained with hematoxylin and eosin (H&E staining).
  • osteocalcin-stained digital images of the same size (2.25mm width ⁇ 1.2mm height) were obtained and analyzed ( FIG. 6A ).
  • Tissue morphology analysis was performed using trainable weka segmentation in Image J software. Osteocalcin staining sites were selected by trainable weka segmentation (Fig. 6B). Selected pixels relative to total pixels are expressed as a percentage.
  • Example 1 Optimal PBM (Photobiomodulation) status and PBM effect on stem cells from apical papilla (SCAP) ( in vitro )
  • SCAP As described in Reference Example 1.1, SCAP was isolated and cultured from the root apex of the immature third molar (see FIG. 1A), and the appearance was observed under a microscope and shown in FIG. 1B. As confirmed in FIG. 1B, SCAP exhibited fibroblast spindle shapes similar to the mesenchymal stem cell population.
  • FIG. 7 it was confirmed that about 91.81% of SCAP expressed CD13, about 99.35% of CD90, about 83.69% of CD146, and about 1.93% of CD34, respectively.
  • CD34 is a negative marker for mesenchymal stem cells. The percentage (%) of cells positive for the markers was measured by quantifying the relative fluorescence intensity of cells bound to the antibody for each marker.
  • the results show that the isolated/cultured SCAP has a high proportion of cells expressing a mesenchymal stem cell positive marker (about 83% or more), and a low proportion of cells expressing a mesenchymal stem cell negative marker (about 2% or less). ), demonstrating that SCAP cells have the characteristics of stem cells (mesenchymal stem cells).
  • SCAP SCAP was cultured in bone formation induction medium, adipocyte formation induction medium, and chondrogenesis induction medium, respectively, and after differentiation induction for 3 weeks, the stained cells were analyzed using an inverted light microscope (Olympus U-SPT, Olympus, Japan). The observed results are shown in FIG. 8 . As shown in FIG. 8 , it was confirmed that small circular Alizarin Red-positive calcium nodules were generated in the SCAP culture (topmost photograph) cultured in the bone formation induction medium. In addition, it was confirmed that SCAP formed Oil Red O-positive lipid clusters after induction of adipogenesis and Alcian Blue-positive nodules after induction of cartilage formation (FIG. 8).
  • each of the delayed emission measurements during near-infrared irradiation at various frequencies (CW (continuous wave), 3 Hz, 30 Hz, 300 Hz and 3000 Hz), and the results are shown in FIG. 9A (delayed emission intensity I(t) (top) and Here level n(t) (bottom)).
  • delayed emission (delayed emission intensity and excitation level) was highest at a frequency of 300 Hz, and lowest at a frequency of 3 Hz or continuous wave (the upper and lower graphs of FIG. ⁇ 30 Hz > 3 Hz ⁇ represents the result of CW).
  • SCAP absorbs a lot of near-infrared rays at frequencies of 30 Hz or higher (eg, 30 Hz to 3000 Hz), eg, 300 Hz.
  • ALP alkaline phosphatase
  • the degree of osteogenic differentiation of SCAP irradiated with near-infrared rays (830 nm) of various frequencies for 7 days was measured on the 3rd, 5th, and 7th days of NIR irradiation, respectively, and ALP Activity was assayed.
  • the measured osteogenic differentiation degree was calculated as a relative value with respect to the control group (cont; non-near-infrared treatment group), and is shown in FIG. 10 . As shown in FIG.
  • FIG. 11 is a photograph showing the state of SCAP Alizarin Red S staining according to the near-infrared frequency (the lower two lines are a 40-fold magnification of the upper two lines), and the lower portion is the obtained Alizarin Red S staining degree It is a graph expressed as a relative value with respect to the control group (near-infrared untreated group) by quantifying . As shown in FIG. 11 , it can be seen that the degree of calcium precipitation on the 10th day in the near-infrared treatment group with frequencies of 3 Hz, 30 Hz, 300 Hz and 3000 Hz was significantly increased compared to the control group. These results can be said to show that near-infrared irradiation promotes the differentiation of apical papillary stem cells at an early stage.
  • RT for 7 genes (ALP, Col1A, RUNX2, OCN, TGF- ⁇ , DSPP, DMP1) related to bone and tooth formation, and GAPDH after 10 days of near-infrared (830 nm) irradiation on SCAP -PCR was performed, and the results are shown in FIG. 12 .
  • the ALP gene showed the highest expression rate when irradiated with near-infrared rays with a frequency of 3 Hz.
  • OCN and RUNX2 genes related to bone formation and DMP1, DSPP and TGFb1 genes related to dentin formation all showed the highest expression rates when irradiated with near-infrared rays at a frequency of 300 Hz.
  • the expression of Col1A was increased compared to the control group in all of the near-infrared irradiation with frequencies of 3 Hz, 30 Hz and 300 Hz.
  • SCAP was irradiated with near-infrared (830 nm) at 300 Hz frequency and 30% wavelength for 21 days, followed by Western blot analysis, Col1A, DMP-1, CEMP-1, CAP, and OCN protein levels were measured, and the results are shown in FIGS. 13A (electrophoresis picture) and FIG. 13B (quantification graph).
  • FIGS. 13A and 13B the expression levels of Col1A, DMP-1, CEMP-1, CAP, and OCN proteins in the near-infrared irradiation group (PBM) all significantly increased compared to the control group.
  • SCAP was implanted in mice. Visually, the implant was hardened, and no inflammatory reaction was observed in the skin of the implantation site in all test groups.
  • FIGS. 14a and 14B newly formed hard tissues were not clearly observed in the group in which the SCAP was not transplanted [Group 1 (HA/TCP transplant only) and Group 3 (HA/TCP transplant + near-infrared irradiation)].
  • FIGS. 16a stained photograph, x80
  • 16b quantification graph
  • FIG. 16A the new hard tissue was stained with osteocalcin at the interface between the scaffold and the cell part.
  • Such osteocalcin staining was hardly observed in the group in which SCAP transplantation was not performed (groups 1 and 3), whereas distinct staining was observed in the group in which SCAP transplantation was performed (groups 2 and 4), and in group 4 irradiated with near-infrared rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Pathology (AREA)
  • Transplantation (AREA)
  • Sustainable Development (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a technique for accelerating differentiation of stem cells from apical papilla (SCAP) by using an optical stimulation. More specifically, the present invention provides a composition, kit, and method for tooth transplantation or dental root formation, comprising SCAP irradiated with near-infrared radiation, and a method for differentiating SCAP, comprising a step of irradiating SCAP with near-infrared radiation.

Description

광자극을 이용한 치근단유두 줄기세포의 분화 촉진 방법 Method for promoting differentiation of apical papillary stem cells using photostimulation
광자극을 이용한 치근단유두 줄기세포(stem cells from apical papilla; SCAP)의 분화 촉진 기술과 관련된 것으로, 보다 구체적으로, 근적외선 조사된 치근단유두 줄기세포를 포함하는, 치아 이식 또는 치근 생성용 조성물, 키트, 및 방법과, 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는 치근단유두 줄기세포의 분화 방법이 제공된다. It relates to a technology for promoting differentiation of stem cells from apical papilla (SCAP) using photostimulation, and more specifically, a composition, kit, for tooth transplantation or root generation, comprising apical papilla stem cells irradiated with near-infrared rays, and a method, and a method for differentiation of apical papillary stem cells comprising the step of irradiating near-infrared rays to the apical papillary stem cells is provided.
광생물조절 요법(Photobiomodulation (PBM) therapy)은 비침습적 광 치료법으로, 저준위(low-level) 레이저 광 또는 발광 다이오드(LED)를 사용하여, 세포 성장, 증식 및 분화와 같은 세포 기능에 영향을 준다. PBM 요법에 있어서, 600~700nm 파장 범위의 적색 가시광선 영역 및 780 내지 1100nm 파장 범위의 근적외선 영역(NIR)이 임상 목적으로 사용되고 있다. PBM 요법은 줄기세포를 이용하는 조직공학 분야에서도 시도되고 있다. PBM 요법은 새로 이식된 줄기세포가 잘 생존할 수 있도록 하는 최적의 환경을 조성하는데 기여한다. PBM 요법은 혈액 공급을 증가시키고, 세포 증식, 성장 인자의 합성 및 활성화를 촉진한다.Photobiomodulation (PBM) therapy is a non-invasive light therapy that uses low-level laser light or light emitting diodes (LEDs) to affect cellular functions such as cell growth, proliferation and differentiation. . In PBM therapy, the red visible light region in the wavelength range of 600 to 700 nm and the near infrared region (NIR) in the wavelength range of 780 to 1100 nm are being used for clinical purposes. PBM therapy is also being tried in the field of tissue engineering using stem cells. PBM therapy contributes to creating an optimal environment for newly transplanted stem cells to survive well. PBM therapy increases blood supply and promotes cell proliferation, synthesis and activation of growth factors.
한편, 치근단유두 줄기세포(Stem cells from apical papilla; SCAP)는 치아 중간엽줄기세포(mesenchymal stem cells)의 독특한 그룹으로서, 발생중인 (developing) 영구치의 치근단(root apex)에 위치한다. 치근단유두 줄기세포는 골형성(osteogenic) 분화, 치아생성(odontogenic) 분화, 연골생성(chondrogenic) 분화, 및 지방세포 생성(adipogenic) 분화 능력을 갖는다. 치근단유두 줄기세포 는 높은 증식률과 무기질화 잠재성을 갖기 때문에 뼈와 상아질 재생에 유용하게 사용될 수 있다.On the other hand, stem cells from apical papilla (SCAP) are a unique group of mesenchymal stem cells, which are located in the root apex of a developing permanent tooth. Apical papillary stem cells have osteogenic (osteogenic) differentiation, odontogenic (odontogenic) differentiation, chondrogenic (chondrogenic) differentiation, and adipogenic (adipogenic) differentiation ability. Because apical papillary stem cells have a high proliferation rate and mineralization potential, they can be usefully used for bone and dentin regeneration.
치근단유두 줄기세포는 미성숙 치근단에서 유래한 세포이기 때문에, 다른 치아 줄기 세포들과 비교하여 배아와 유사하다. 치근단유두 줄기세포는 치근 상아질(root dentin) 형성을 담당하는 상아질포세포(odontoblasts)의 source이기 때문에, 치아 관련 조직의 재생에 있어서 유리하게 사용될 것으로 예상되지만, 지금까지 이에 대한 많은 연구가 진행되지 않았다.Since the apical papillary stem cells are cells derived from the immature apex, they are similar to embryos compared to other dental stem cells. Since apical papillary stem cells are a source of odontoblasts responsible for the formation of root dentin, they are expected to be advantageously used in the regeneration of tooth-related tissues, but many studies have not been conducted on this. .
이에, 본 명세서에서는 광생물조절(PBM)을 이용한 치근단유두 줄기세포(stem cells from apical papilla; SCAP)의 치아 조직으로의 분화 기술 및 이를 위한 최적의 PBM 조건을 제공하는 것을 목적으로 한다.Accordingly, in the present specification, it is an object of the present specification to provide a technique for differentiation of stem cells from apical papilla (SCAP) into tooth tissue using photobiological control (PBM) and optimal PBM conditions for the same.
일 예는 근적외선 조사된 치근단유두 줄기세포를 포함하는, 치아 이식용 조성물을 제공한다.One example provides a composition for dental implantation, comprising apical papillary stem cells irradiated with near-infrared rays.
다른 예는 근적외선 조사된 치근단유두 줄기세포를 포함하는, 치근 생성용 조성물을 제공한다.Another example provides a composition for generating a tooth root, comprising the near-infrared irradiated apical papillary stem cells.
다른 예는 치근단유두 줄기세포, 및 근적외선 조사를 위한 광원을 포함하는, 치아 이식용 키트를 제공한다.Another example provides a kit for dental implantation, including a light source for apical papillary stem cells, and near-infrared irradiation.
다른 예는 치근단유두 줄기세포, 및 근적외선 조사를 위한 광원을 포함하는, 치근 생성용 키트를 제공한다.Another example provides a kit for generating a tooth root, including a light source for apical papillary stem cells, and near-infrared irradiation.
다른 예는 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치아 이식물의 제조 방법을 제공한다.Another example provides a method for manufacturing a dental implant, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
다른 예는 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치근단유두 줄기세포의 분화 방법을 제공한다. 상기 치근단유두 줄기세포의 분화는 골세포, 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화일 수 있다.Another example provides a differentiation method of apical papillary stem cells, comprising the step of irradiating near-infrared rays to the isolated apical papillary stem cells. The differentiation of the apical papillary stem cells may be differentiation into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes.
다른 예는 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치근 제조 방법을 제공한다. Another example provides a method for producing a tooth root, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
본 명세서에서는 근적외선을 이용한 광자극에 의하여 치근단유두 줄기세포의 성장, 증식, 및/또는 분화가 촉진되어, 치아(특히, 치근)의 재생에 유리한 효과가 있음을 제안한다. 상기 광자극에 의한 효과는 근적외선의 파장, 진동수, 조사 조건 등에 따라서 달라질 수 있다. 본 명세서에서 채택된 치근단유두 줄기세포는 미성숙 영구치의 치근단에서 유래하는 줄기세포이기 때문에, 다른 치성 성체 줄기세포들과 비교하여 배아줄기세포에 보다 유사한 성질을 갖는다. 예를 들어, 치수기원 줄기세포가 치관부위 상아질모세포로 분화하는데 비해, 치근단유두 줄기세포는 미성숙 영구치에서 치근을 생성하는 상아질모세포로 분화한다. 따라서, 치아 재생에 있어서, 치근을 재생하기 위해서는 치수기원 줄기세포보다 치근단유두 줄기세포가 더 유리하다. 본 명세서에서 치근단유두 줄기세포의 다계통 분화를 통한 치근을 포함한 치아로의 분화는 생체외 (in vitro) 및/또는 이식 후 생체내 (in vivo)에서 진행되는 것일 수 있다.In the present specification, it is proposed that the growth, proliferation, and/or differentiation of apical papillary stem cells is promoted by photostimulation using near-infrared rays, thereby having an advantageous effect on the regeneration of teeth (particularly, root). The effect of the photostimulation may vary depending on the wavelength, frequency, and irradiation conditions of the near-infrared rays. Since the apical papillary stem cells adopted herein are stem cells derived from the apical end of immature permanent teeth, they have more similar properties to embryonic stem cells compared to other odontogenic adult stem cells. For example, whereas pulp-derived stem cells differentiate into crown odontoblasts, apical papillary stem cells differentiate into odontoblasts that generate root in immature permanent teeth. Therefore, in tooth regeneration, apical papillary stem cells are more advantageous than pulp origin stem cells in order to regenerate the tooth root. In the present specification, the differentiation of the apical papillary stem cells into teeth including the root through multi-lineage differentiation may be performed in vitro and/or in vivo after transplantation.
이에, 본 발명의 일 예는 근적외선 조사된 치근단유두 줄기세포를 포함하는, 치아 이식용 조성물을 제공한다. 다른 예는 근적외선 조사된 치근단유두 줄기세포의 치아 이식 또는 치아 이식용 조성물의 제조에 사용하기 위한 용도를 제공한다.Accordingly, an example of the present invention provides a composition for dental implantation, comprising apical papillary stem cells irradiated with near infrared rays. Another example provides the use of near-infrared irradiated apical papillary stem cells for use in the preparation of a dental implant or a composition for dental implantation.
다른 예는 근적외선 조사된 치근단유두 줄기세포를 포함하는, 치근 생성용 조성물을 제공한다. 다른 예는 근적외선 조사된 치근단유두 줄기세포의 치근 생성 또는 치근 생성용 조성물의 제조에 사용하기 위한 용도를 제공한다.Another example provides a composition for generating a tooth root, comprising the near-infrared irradiated apical papillary stem cells. Another example provides the use for the production of a composition for generating a root or generating a root of the near-infrared irradiated apical papillary stem cells.
다른 예는 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치아 이식물의 제조 방법을 제공한다.Another example provides a method for manufacturing a dental implant, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
다른 예는 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치근단유두 줄기세포의 분화 방법을 제공한다. 상기 치근단유두 줄기세포의 분화는 골세포, 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화일 수 있다. 따라서, 다른 예는 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 골세포 생성 방법, 상아질 모세포 생성 방법, 지방세포 생성 방법, 및/또는 연골세포 생성방법을 제공한다.Another example provides a differentiation method of apical papillary stem cells, comprising the step of irradiating near-infrared rays to the isolated apical papillary stem cells. The differentiation of the apical papillary stem cells may be differentiation into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes. Accordingly, another example provides a method for generating osteocytes, a method for generating dentin blasts, a method for generating adipocytes, and/or a method for generating chondrocytes, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
다른 예는 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치근 제조 방법을 제공한다.Another example provides a method for producing a tooth root, comprising irradiating near-infrared rays to the isolated apical papillary stem cells.
상기 조성물 및 방법에 있어서, 상기 치근단유두 줄기세포는 미성숙 영구치의 치근단(root apex)으로부터 분리된 것일 수 있다.In the composition and method, the apical papillary stem cells may be isolated from the root apex of immature permanent teeth.
상기 조성물 및 방법에 있어서, 상기 근적외선은 800nm 내지 900nm의 파장을 갖는 펄스파(pulsed wave)일 수 있다.In the composition and method, the near-infrared light may be a pulsed wave having a wavelength of 800 nm to 900 nm.
상기 조성물 및 방법에 있어서, 상기 근적외선은 다음의 특징을 갖는 것일 수 있다:In the composition and method, the near-infrared radiation may have the following characteristics:
(1) 30 Hz 내지 3000 Hz의 진동수;(1) a frequency of 30 Hz to 3000 Hz;
(2) 25 내지 35%의 파장내 조사율 (duty cycle); 또는(2) an in-wavelength duty cycle of 25 to 35%; or
(3) 상기 (1) 및 (2)의 조합.(3) A combination of (1) and (2) above.
상기 조성물 및 방법에 있어서, 상기 근적외선 조사된 치근단유두 줄기세포는, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, ALP, Col1A, RUNX2, OCN, TGF-β, DSPP, 및 DMP1로 이루어진 군에서 선택된 하나 이상의 암호화 유전자 수준이 증가된 것일 수 있다.In the composition and method, the near-infrared irradiated apical papillary stem cells, ALP, Col1A, RUNX2, OCN, TGF-β, DSPP, and in the group consisting of DMP1, compared to the apical papillary stem cells not irradiated with near-infrared rays The level of one or more selected coding genes may be increased.
상기 조성물 및 방법에 있어서, 상기 근적외선 조사된 치근단유두 줄기세포는, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, Col1A, DMP-1, CEMP-1, CAP, 및 OCN로 이루어진 군에서 선택된 하나 이상의 단백질 수준이 증가된 것일 수 있다.In the composition and method, the near-infrared irradiated apical papillary stem cells are one selected from the group consisting of Col1A, DMP-1, CEMP-1, CAP, and OCN, compared to the apical papillary stem cells that are not irradiated with near-infrared rays. It may be an increased protein level.
상기 조성물 및 방법에 있어서, 상기 근적외선 조사된 치근단유두 줄기세포는 골세포 (예컨대, 치조골 세포), 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화되는 것일 수 있다.In the composition and method, the near-infrared irradiated apical papillary stem cells may be differentiated into one or more selected from the group consisting of osteocytes (eg, alveolar osteocytes), odontoblasts, adipocytes, and chondrocytes.
본 발명의 다른 예는 치근단유두 줄기세포, 및 근적외선 조사를 위한 광원을 포함하는, 치아 이식용 키트를 제공한다. Another example of the present invention provides a kit for dental implantation, comprising a light source for apical papillary stem cells, and near-infrared irradiation.
다른 예는 치근단유두 줄기세포를 이식하는 단계, 및 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치아 이식 방법을 제공한다. 상기 이식하는 단계 및 근적외선을 조사하는 단계는 순서에 무관하게 수행될 수 있으며, 예컨대, 이식하는 단계를 먼저 수행한 후 이식된 줄기세포에 근적외선을 조사하는 단계를 수행할 수 있다. Another example provides a dental implantation method, comprising the step of implanting the apical papillary stem cells, and irradiating near-infrared rays to the apical papillary stem cells. The transplanting step and the step of irradiating near-infrared rays may be performed in any order, for example, the step of irradiating near-infrared rays to the transplanted stem cells after performing the transplantation first may be performed.
다른 예는 치근단유두 줄기세포, 및 근적외선 조사를 위한 광원을 포함하는, 치근 생성용 키트를 제공한다.Another example provides a kit for generating a tooth root, including a light source for apical papillary stem cells, and near-infrared irradiation.
다른 예는 치근단유두 줄기세포를 이식하는 단계, 및 이식된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치근 생성 방법을 제공한다.Another example provides a method for generating a tooth root, comprising the step of implanting apical papillary stem cells, and irradiating near-infrared rays to the transplanted apical papillary stem cells.
상기 키트 및 방법에 있어서, 상기 치근단유두 줄기세포는 미성숙 영구치의 치근단(root apex)으로부터 분리된 것일 수 있다.In the kit and method, the apical papillary stem cells may be isolated from the root apex of immature permanent teeth.
상기 키트 및 방법에 있어서, 상기 근적외선은 800nm 내지 900nm의 파장을 갖는 펄스파(pulsed wave)일 수 있다.In the kit and method, the near-infrared light may be a pulsed wave having a wavelength of 800 nm to 900 nm.
상기 키트 및 방법에 있어서, 상기 근적외선은 다음의 특징을 갖는 것일 수 있다:In the kit and method, the near-infrared radiation may have the following characteristics:
(1) 30 Hz 내지 3000 Hz의 진동수;(1) a frequency of 30 Hz to 3000 Hz;
(2) 25 내지 35%의 파장내 조사율 (duty cycle); 또는(2) an in-wavelength duty cycle of 25 to 35%; or
(3) 상기 (1) 및 (2)의 조합.(3) A combination of (1) and (2) above.
상기 키트 및 방법에 있어서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, ALP, Col1A, RUNX2, OCN, TGF-β, DSPP, 및 DMP1로 이루어진 군에서 선택된 하나 이상의 암호화 유전자 수준이 증가하는 것일 수 있다.In the kit and method, the apical papillary stem cells are ALP, Col1A, RUNX2, OCN, TGF-β, DSPP, and DMP1, compared to the apical papillary stem cells that are not irradiated with near-infrared rays by near-infrared irradiation. It may be that the level of one or more coding genes selected from is increased.
상기 키트에 있어서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, Col1A, DMP-1, CEMP-1, CAP, 및 OCN로 이루어진 군에서 선택된 하나 이상의 단백질 수준이 증가하는 것일 수 있다.In the kit, the apical papillary stem cells are one or more selected from the group consisting of Col1A, DMP-1, CEMP-1, CAP, and OCN, compared to the apical papillary stem cells that are not irradiated with near-infrared rays by near-infrared irradiation. It could be an increase in protein levels.
상기 키트에 있어서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여 골세포, 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화되는 것일 수 있다. In the kit, the apical papillary stem cells may be differentiated into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes by near-infrared irradiation.
이하, 본 발명을 보다 상세히 설명한다:Hereinafter, the present invention will be described in more detail:
본 명세서에 기재된 치아 부위는 https://st4.depositphotos.com/10957306/20985/v/1600/depositphotos_209857956-stock-illustration-labeled-tooth-cross-section-anatomy.jpg에 나타난 치아 단면 구조를 참조할 수 있다.The tooth region described herein may refer to the tooth cross-section structure shown at https://st4.depositphotos.com/10957306/20985/v/1600/depositphotos_209857956-stock-illustration-labeled-tooth-cross-section-anatomy.jpg. can
본 명세서에 사용된 바로서, "치근단유두 줄기세포(stem cells from apical papilla; SCAP)"는 미성숙 영구치(예컨대, 어금니 등)의 치근단 (root apex)으로부터 분리된 줄기세포로서, 치근 및/또는 상아질 재생에 필요한 다양한 세포, 예컨대, 골세포, 상아질모세포, 지방세포, 연골세포 등의 다양한 세포로 분화 가능한 다계통 분화성(Multi-lineage differentiation) 줄기세포이다. 미성숙 영구치(immature permanent teeth)는 생애 초기 (인간의 경우 대략 청소년시기까지)에 맹출하는 영구치 또는 성인의 사랑니에서 분리 가능한 것으로, 초기 영구치 또는 제1대구치라고도 한다. 치근단유두 줄기세포는, 치아 펄프 줄기 세포(DPSC)와 비교하여, 높은 뼈와 상아질을 재생하기 위한 증식률과 무기질화 포텐셜을 나타낸다. 일 예에서, 상기 치근단유두 줄기세포는 인간, 개, 고양이 등의 반려동물, 소, 말, 돼지, 양, 염소 등의 가축, 마우스, 래트 등의 설치류 등으로 이루어진 군에서 선택된 포유 동물의 미성숙 영구치 (예컨대, 어금니)의 치근단으로부터 분리된 것일 수 있다. 상기 치근단유두 줄기세포는 중간엽줄기세포 양성 마커, 예컨대, STRO-1, CD13, CD90, CD146, CD18, CD34, CD45 등으로 이루어진 군에서 선택된 하나 이상의 발현률이 높게 나타나는 것일 수 있다. 예를 들어, 상기 치근단유두 줄기세포는 중간엽줄기세포 양성 마커(예컨대, CD13, CD90, CD146 등으로 이루어진 군에서 선택된 하나 이상)를 발현하는 세포의 비율이 약 75% 이상, 약 77% 이상, 약 80% 이상, 약 82% 이상, 약 83% 이상, 약 85% 이상, 약 87% 이상, 또는 약 90% 이상이거나, 및/또는 중간엽줄기세포 음성 마커 (예컨대, CD34 등)를 발현하는 세포의 비율이 약 5% 이하, 약 3% 이하, 약 2.5% 이하, 또는 약 2% 이하인 것일 수 있다.As used herein, "stem cells from apical papilla (SCAP)" are stem cells isolated from the root apex of immature permanent teeth (eg, molars, etc.), and include root and/or dentin. It is a multi-lineage differentiation stem cell capable of differentiating into various cells necessary for regeneration, for example, osteocytes, otoblasts, adipocytes, chondrocytes, and the like. Immature permanent teeth are permanent teeth that erupt early in life (approximately until adolescence in humans) or are separable from adult wisdom teeth, and are also called early permanent teeth or first molars. The apical papillary stem cells exhibit a higher proliferation rate and mineralization potential for regenerating bone and dentin, compared to dental pulp stem cells (DPSC). In one example, the apical papillary stem cells are immature permanent teeth of a mammal selected from the group consisting of companion animals such as humans, dogs and cats, livestock such as cattle, horses, pigs, sheep, and goats, rodents such as mice and rats, etc. (For example, it may be separated from the apical end of the molar). The apical papillary stem cells may have a high expression rate of one or more selected from the group consisting of a mesenchymal stem cell positive marker, for example, STRO-1, CD13, CD90, CD146, CD18, CD34, CD45, and the like. For example, in the apical papillary stem cells, the proportion of cells expressing a mesenchymal stem cell positive marker (eg, at least one selected from the group consisting of CD13, CD90, CD146, etc.) is about 75% or more, about 77% or more, at least about 80%, at least about 82%, at least about 83%, at least about 85%, at least about 87%, or at least about 90%, and/or expressing a mesenchymal stem cell negative marker (eg, CD34, etc.) The proportion of cells may be about 5% or less, about 3% or less, about 2.5% or less, or about 2% or less.
"근적외선(near-infrared light; NIR)"은 가시광선보다 파장이 길면서 가시광선 영역에 가까운 파장을 갖는 전자기파를 의미한다. 가시광선이나 자외선에 비해 강한 열작용을 가지며, 가시광선과는 다른 반사율을 나타내는 광학적 특성 덕분에 다방면에서 유용하게 사용되고 있다. 예컨대, 의료 분야에서는 일반적으로 소독, 멸균, 관절 및 근육의 치료 등에서 활용되고 있다. 본 명세서에서 사용 가능한 근적외선은 파장이 700nm 내지 1200nm, 예컨대, 750nm 내지 900nm, 750nm 내지 850nm, 750nm 내지 830nm, 800nm 내지 900nm, 800nm 내지 850nm, 또는 800nm 내지 830nm인 것일 수 있으나, 치근단유두 줄기세포의 분화 촉진 효과를 가지는 한, 이에 제한되지 않는다."Near-infrared light (NIR)" means an electromagnetic wave having a wavelength close to the visible light region while having a longer wavelength than visible light. It has a stronger thermal action than visible light or ultraviolet light, and is useful in various fields thanks to its optical properties showing a reflectance different from that of visible light. For example, in the medical field, it is generally used for disinfection, sterilization, and treatment of joints and muscles. The near-infrared rays usable herein have a wavelength of 700 nm to 1200 nm, for example, 750 nm to 900 nm, 750 nm to 850 nm, 750 nm to 830 nm, 800 nm to 900 nm, 800 nm to 850 nm, or 800 nm to 830 nm. As long as it has an accelerating effect, it is not limited thereto.
본 명세서에서, 근적외선으로서 펄스파(pulsed wave)를 사용함으로써, 연속파(continuous wave)를 사용하는 경우와 비교하여 우수한 치근단유두 줄기세포의 분화 촉진 효과를 얻을 수 있다. 본 명세서에서 사용된 바로서, "펄스파"는 지속되는 시간이 피코초(=10-12초) 정도로 극히 짧고, 일정한 주기로 반복되는 파형을 의미한다. 펄스의 형상에 따라 구형(정사각형)파, 직사각형파, 피크파(peak wave) 등으로 구분한다. 펄스파는 매우 짧은 시간 동안에 큰 강도를 갖기 때문에 연속파가 나타낼 수 있는 열에 의한 세포의 손상, 변형 등의 단점을 보완할 수 있다. 한편, "연속파"는 상기의 펄스파와는 달리 진폭 또는 세기가 변화하지 않는 파형을 의미하며, 파형이 시간에 따라 변화하지 않고 연속적인 특성을 나타낸다.In the present specification, by using a pulsed wave as the near-infrared rays, it is possible to obtain an excellent effect of promoting differentiation of apical papillary stem cells compared to the case of using a continuous wave. As used herein, "pulse wave" refers to a waveform that has an extremely short duration of about picoseconds (=10-12 seconds) and is repeated at regular intervals. According to the shape of the pulse, it is divided into a square (square) wave, a rectangular wave, a peak wave, and the like. Because pulsed waves have a large intensity for a very short time, it is possible to compensate for the disadvantages of heat-induced cell damage and deformation that continuous waves can exhibit. Meanwhile, the “continuous wave” refers to a waveform in which amplitude or intensity does not change, unlike the pulse wave, and the waveform does not change with time and exhibits continuous characteristics.
일 실시예에서, 상기 근적외선은 800nm 내지 900nm의 파장을 갖는 펄스파(pulsed wave)일 수 있으나, 이에 제한되지 않는다.In an embodiment, the near-infrared light may be a pulsed wave having a wavelength of 800 nm to 900 nm, but is not limited thereto.
치근단유두 줄기세포의 흡수율을 고려하여, 상기 근적외선은,Considering the absorption rate of apical papillary stem cells, the near-infrared rays are
진동수(frequency)가 30 Hz 내지 3000 Hz, 30 Hz 내지 1000 Hz, 30 Hz 내지 500 Hz, 30 Hz 내지 330 Hz, 30 Hz 내지 300 Hz, 100 Hz 내지 3000 Hz, 100 Hz 내지 1000 Hz, 100 Hz 내지 500 Hz, 100 Hz 내지 330 Hz, 100 Hz 내지 300 Hz, 200 Hz 내지 3000 Hz, 200 Hz 내지 1000 Hz, 200 Hz 내지 500 Hz, 200 Hz 내지 330 Hz, 200 Hz 내지 300 Hz, 또는 270 Hz 내지 330 Hz, 및/또는 a frequency of 30 Hz to 3000 Hz, 30 Hz to 1000 Hz, 30 Hz to 500 Hz, 30 Hz to 330 Hz, 30 Hz to 300 Hz, 100 Hz to 3000 Hz, 100 Hz to 1000 Hz, 100 Hz to 500 Hz, 100 Hz to 330 Hz, 100 Hz to 300 Hz, 200 Hz to 3000 Hz, 200 Hz to 1000 Hz, 200 Hz to 500 Hz, 200 Hz to 330 Hz, 200 Hz to 300 Hz, or 270 Hz to 330 Hz, and/or
파장내 조사율 (duty cycle)이 10% 내지 40%, 10% 내지 35%, 20% 내지 40%, 20% 내지 35%, 25% 내지 40%, 25% 내지 35%, 또는 27% 내지 33%인 특성을 갖는 것일 수 있다.an in-wavelength duty cycle of 10% to 40%, 10% to 35%, 20% to 40%, 20% to 35%, 25% to 40%, 25% to 35%, or 27% to 33% %.
본 명세서에 사용된 바로서, 용어 "파장내 조사율(duty cycle)"은 펄스 주기에 대한 펄스 폭의 비율을 나타내는 주기를 의미하며, 펄스 위스(pulse width)로도 불린다. 즉, 펄스파의 폭으로서, 구형파에서는 1주기 레벨의 높은 부분과 낮은 부분의 비율을 퍼센트로 표시한다. As used herein, the term “duty cycle” refers to a period representing the ratio of pulse width to pulse period, also referred to as pulse width. That is, as the width of the pulse wave, in a square wave, the ratio of the high part and the low part of one period level is expressed as a percentage.
상기 근적외선의 총 에너지밀도는 50 내지 2000 mJ/cm2, 50 내지 1500 mJ/cm2, 50 내지 1000 mJ/cm2, 50 내지 750 mJ/cm2, 250 내지 2000 mJ/cm2, 250 내지 1500 mJ/cm2, 250 내지 1000 mJ/cm2, 250 내지 750 mJ/cm2, 500 내지 2000 mJ/cm2, 500 내지 1500 mJ/cm2, 500 내지 1000 mJ/cm2, 500 내지 750 mJ/cm2, 750 내지 2000 mJ/cm2, 750 내지 1500 mJ/cm2, 750 내지 1000 mJ/cm2, 또는 약 750 mJ/cm2로 할 수 있으나, 이에 제한되는 것은 아니다.The total energy density of the near infrared is 50 to 2000 mJ/cm 2 , 50 to 1500 mJ/cm 2 , 50 to 1000 mJ/cm 2 , 50 to 750 mJ/cm 2 , 250 to 2000 mJ/cm 2 , 250 to 1500 mJ/cm 2 , 250 to 1000 mJ/cm 2 , 250 to 750 mJ/cm 2 , 500 to 2000 mJ/cm 2 , 500 to 1500 mJ/cm 2 , 500 to 1000 mJ/cm 2 , 500 to 750 mJ/ cm 2 , 750 to 2000 mJ/cm 2 , 750 to 1500 mJ/cm 2 , 750 to 1000 mJ/cm 2 , or about 750 mJ/cm 2 It may be, but is not limited thereto.
상기 근적외선은 통상적으로 사용 가능한 모든 광원으로부터 얻어지는 것일 수 있다. 본 명세서에서, 근적외선 조사를 위한 광원은 근적외선을 방출하는 것이면 제한 없이 사용 가능하고, 예를 들어, 레이저 (laser), 발광다이오드 (light-emitting diodes; LED) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. The near-infrared rays may be obtained from all commonly available light sources. In the present specification, the light source for near-infrared irradiation can be used without limitation as long as it emits near-infrared rays, for example, at least one selected from the group consisting of lasers, light-emitting diodes (LEDs), etc. However, the present invention is not limited thereto.
상기 치아 이식용 조성물, 치근 생성용 조성물, 치아 이식물 제조 방법, 및/또는 치근 제조 방법에 있어서, 상기 근적외선 조사는 생체외(in vitro)에서 적용되는 것일 수 있으며, 치근단유두 줄기세포의 배양 전, 배양 중, 및/또는 배양 후에 수행될 수 있다. 상기 근적외선 조사 시간은 상기한 에너지밀도를 고려하여 (즉, 상기 에너지밀도가 달성될 수 있도록) 적절히 조절할 수 있으며, 예컨대, 1회 기준으로, 약 1 내지 20 분, 1 내지 18분, 1 내지 15분, 1 내지 12분, 3 내지 20분, 3 내지 18분, 3 내지 15분, 3 내지 12분, 5 내지 20분, 5 내지 18분, 5 내지 15분, 5 내지 12분, 8 내지 20분, 8 내지 18분, 8 내지 15분, 또는 8 내지 12분 동안 수행될 수 있다. 상기 배양은 통상적으로 사용되는 분화 배지, 예컨대, 통상적으로 사용 가능한 골 형성 유도 배지, 연골 형성 유도 배지, 지방세포 생성 유도 배지 등으로 이루어진 군에서 선택된 하나 이상의 배지에서 수행될 수 있다. In the composition for tooth implantation, the composition for generating a tooth root, the method for producing a tooth implant, and/or the method for producing a tooth root, the near-infrared irradiation may be applied in vitro, and prior to culturing of the apical papillary stem cells , during culturing, and/or after culturing. The near-infrared irradiation time may be appropriately adjusted in consideration of the energy density described above (that is, so that the energy density can be achieved), for example, about 1 to 20 minutes, 1 to 18 minutes, 1 to 15 per one time basis. minutes, 1-12 minutes, 3-20 minutes, 3-18 minutes, 3-15 minutes, 3-12 minutes, 5-20 minutes, 5-18 minutes, 5-15 minutes, 5-12 minutes, 8-20 minutes minutes, 8 to 18 minutes, 8 to 15 minutes, or 8 to 12 minutes. The culture may be performed in a commonly used differentiation medium, for example, at least one medium selected from the group consisting of a commonly used bone formation induction medium, a chondrogenesis induction medium, an adipocyte production induction medium, and the like.
상기 치아 이식용 키트, 치아 이식 방법, 치근 생성용 키트, 및/또는 치근 생성 방법에 있어서, 이식 전에 근적외선 조사된 (in vitro) 치근단유두 줄기세포 (예컨대, 앞서 설명한 치아 이식용 조성물 및/또는 치근 생성용 조성물)를 이식하거나, 및/또는 치근단유두 줄기세포 이식 후 이식 부위에 근적외선 조사를 수행(in vivo)할 수 있다. 상기 이식 전의 근적외선 조사 시간은 앞서 설명한 바와 같고, 이식 후의 근적외선 조사는 1일 1회 혹은 12시간 간격으로 1일 2회 수행될 수 있으며, 1회당 조사 시간은 약 1 내지 20분, 1 내지 18분, 1 내지 15분, 1 내지 12분, 3 내지 20분, 3 내지 18분, 3 내지 15분, 3 내지 12분, 5 내지 20분, 5 내지 18분, 5 내지 15분, 5 내지 12분, 8 내지 20분, 8 내지 18분, 8 내지 15분, 또는 8 내지 12분 정도로 할 수 있다.In the tooth transplantation kit, tooth transplantation method, tooth root generation kit, and/or root generation method, apical papillary stem cells (eg, the above-described composition for tooth transplantation and/or root generation) irradiated with near-infrared (in vitro) before transplantation composition for production), and/or near-infrared irradiation may be performed (in vivo) at the transplant site after transplantation of apical papillary stem cells. The near-infrared irradiation time before the transplantation is the same as described above, and the near-infrared irradiation after transplantation may be performed once a day or twice a day at intervals of 12 hours, and the irradiation time per one time is about 1 to 20 minutes, 1 to 18 minutes. , 1 to 15 minutes, 1 to 12 minutes, 3 to 20 minutes, 3 to 18 minutes, 3 to 15 minutes, 3 to 12 minutes, 5 to 20 minutes, 5 to 18 minutes, 5 to 15 minutes, 5 to 12 minutes , 8 to 20 minutes, 8 to 18 minutes, 8 to 15 minutes, or about 8 to 12 minutes.
본 명세서에서 치아 이식은 치아의 복원 및/또는 재생이 필요한 부위에 앞서 설명한 바와 같은 치근단유두 줄기세포 또는 이를 포함하는 조성물을 이식 (주입, 삽입, 또는 투여)하는 것을 의미할 수 있다. 이식 부위는 치아의 복원 및/또는 재생이 필요한 모든 부위 중에서 선택될 수 있으며, 예컨대, 치수(pulp 또는 pulp chamber), 치주(gingival) 등으로 이루어진 군에서 선택된 하나 이상의 부위일 수 있으나, 이에 제한되는 것은 아니다. 본 명세서에서 치아의 복원 및/또는 재생은 치근의 생성, 복원, 및/또는 재생을 포함하는 의미로 해석된다. 상기 치아 이식은 상기 치근단유두 줄기세포 또는 이를 포함하는 조성물을 적절한 스캐폴드와 혼합한 혼합물을 이식하는 것으로 수행될 수 있다. 상기 스캐폴드는 치아 이식에 사용 가능한 모든 스캐폴드(xenogenic scaffold) 중에서 적절히 선택될 수 있으며, 예컨대, 그 재질이 HA/TCP (Hydroxyapatite/Tricalcium phosphate), PRF (platelet rich fibrin), PLGA (poly(D,L-lactide-co-glycolide), PLG (poly(L-lactic acid)) 등으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다. In the present specification, dental implantation may mean implanting (injecting, inserting, or administering) the apical papillary stem cells or a composition comprising the same as described above in a region requiring restoration and/or regeneration of teeth. The implantation site may be selected from all sites requiring restoration and/or regeneration of teeth, for example, it may be one or more sites selected from the group consisting of pulp or pulp chamber, periodontal (gingival), etc., but is not limited thereto. it is not In the present specification, restoration and/or regeneration of a tooth is interpreted to include generation, restoration, and/or regeneration of a tooth root. The dental implantation may be performed by implanting a mixture of the apical papillary stem cells or a composition comprising the same with an appropriate scaffold. The scaffold may be appropriately selected from all scaffolds available for dental implantation, and for example, the material may be HA/TCP (Hydroxyapatite/Tricalcium phosphate), PRF (platelet rich fibrin), PLGA (poly(D) , L-lactide-co-glycolide), may be selected from the group consisting of PLG (poly(L-lactic acid)), but is not limited thereto.
본 명세서에서 치아 이식물은 치아에 이식되는 재료 또는 구조체를 의미하는 것으로, 앞서 설명한 바와 같은 근적외선 조사된 치근단유두 줄기세포 또는 이를 포함하는 조성물, 또는 상기 치근단유두 줄기세포 또는 이를 포함하는 조성물과 적절한 스캐폴드와 혼합한 혼합물일 수 있다.In the present specification, a dental implant refers to a material or a structure implanted in a tooth, and a near-infrared irradiated apical papillary stem cell or a composition comprising the same as described above, or the apical papillary stem cell or a composition comprising the same and an appropriate scan It may be a mixture mixed with folds.
본 명세서에서 치아 이식 대상은 인간, 개, 고양이 등의 반려동물, 소, 말, 돼지, 양, 염소 등의 가축, 마우스, 래트 등의 설치류 등을 포함하는 포유 동물 중에서 선택될 수 있다.In the present specification, the tooth implantation target may be selected from mammals including companion animals such as humans, dogs and cats, livestock such as cattle, horses, pigs, sheep and goats, and rodents such as mice and rats.
본 명세서에서, "치근단유두 줄기세포의 분화"는 치근단유두 줄기세포가 골세포, 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화되는 것을 의미하는 것일 수 있다. 또한, 치근단유두 줄기세포의 분화는 치근 조직으로의 분화를 포함한다.As used herein, "differentiation of apical papillary stem cells" may mean that the apical papillary stem cells are differentiated into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes. In addition, differentiation of apical papillary stem cells includes differentiation into root tissue.
상기 골세포(osteocyte)는 골조직의 기본 세포로서, 골아세포, 조골세포, 뼈세포 등으로도 불린다. 골세포로의 분화는 '골 분화(osteogenic differentiation)'라고 불리는 일련의 과정에 의해 수행된다. 일 예에서, 상기 치근단유두 줄기세포의 골세포로의 분화는 생체 외 (in vitro) 및/또는 생체 내 (in vivo)에서 진행되는 것일 수 있다.The osteocytes (osteocytes) are basic cells of bone tissue, and are also called osteoblasts, osteoblasts, bone cells, and the like. Differentiation into osteocytes is carried out by a series of processes called 'osteogenic differentiation'. In one example, the differentiation of the apical papillary stem cells into osteocytes may be performed in vitro and/or in vivo.
상기 상아질모세포(odontoblast)는 치아의 상아질을 형성하고 주위에 치수의 외면을 형성하는 원주상 결합조직세포이다. 상아질모세포로의 분화는 '상아질 분화(dentinogenic differentiation)'라고 불리는 일련의 과정에 의해 수행된다. 일 예에서, 상기 치근단유두 줄기세포의 상아질모세포로의 분화는 생체 외 (in vitro) 및/또는 생체 내 (in vivo)에서 진행되는 것일 수 있다. The odontoblast is a columnar connective tissue cell that forms the dentin of the tooth and forms the outer surface of the pulp around it. Differentiation into odontoblasts is carried out by a series of processes called 'dentinogenic differentiation'. In one example, the differentiation of the apical papillary stem cells into odontoblasts may be performed in vitro and/or in vivo.
일 예에서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, ALP(alkaline phosphatase), Col1A(type 1 collagen A), RUNX2(Runt-related transcription factor 2), OCN(osteocalcin), TGF-β1(Transforming growth factor-beta1), DSPP(dentin sialophosphoprotein), DMP1(dental matrix protein 1), CEMP-1(cementoblastoma-derived protein 1), 및 CAP(cementum attachment protein)로 이루어진 군에서 선택된 하나 이상의 단백질 및/또는 이의 암호화 유전자의 수준이 증가하는 것일 수 있다. 일 구체예에서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP, 및 DMP1으로 이루어진 군에서 선택된 하나 이상의 암호화 유전자 수준이 증가하는 것일 수 있다. 다른 구체예에서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, Col1A, DMP1, CEMP-1, CAP, 및 OCN으로 이루어진 군에서 선택된 하나 이상의 단백질 수준이 증가하는 것일 수 있다.In one example, the apical papillary stem cells by near-infrared irradiation, compared to the apical papillary stem cells not irradiated with near-infrared rays, ALP (alkaline phosphatase), Col1A (type 1 collagen A), RUNX2 (Runt-related transcription factor 2) ), OCN (osteocalcin), TGF-β1 (Transforming growth factor-beta1), DSPP (dentin sialophosphoprotein), DMP1 (dental matrix protein 1), CEMP-1 (cementoblastoma-derived protein 1), and CAP (cementum attachment protein) The level of one or more proteins selected from the group consisting of and/or coding genes thereof may be increased. In one embodiment, the apical papillary stem cells are selected from the group consisting of ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP, and DMP1 by near-infrared irradiation, compared to the apical papillary stem cells not irradiated with near-infrared rays. It may be an increase in the level of one or more coding genes. In another embodiment, the apical papillary stem cells are one or more protein levels selected from the group consisting of Col1A, DMP1, CEMP-1, CAP, and OCN, compared to the apical papillary stem cells that are not irradiated with near infrared rays by near-infrared irradiation. This may be an increase.
본 명세서에서 제공되는 근적외선을 이용한 광자극에 의한 치근단유두 줄기세포의 성장, 증식, 및/또는 분화가 촉진 기술은 우수한 치아(특히, 치근)의 재생 효과를 가지므로, 치아의 복원 또는 재생 분야에 유리하게 적용될 수 있다. The technology for promoting growth, proliferation, and/or differentiation of apical papillary stem cells by photostimulation using near-infrared light provided herein has an excellent tooth (particularly, root) regeneration effect, so it is useful in the field of restoration or regeneration of teeth. can be advantageously applied.
도 1은 치근단유두 줄기세포 (SCAP)의 분리 및 배양 결과를 보여주는 것으로, (A)는 환자로부터 얻은 미성숙 3번째 어금니의 모습을 보여주고, (B)는 SCAP이 중간엽줄기세포 집단과 유사한 fibroblast spindle shapes를 나타냄을 보여준다.1 shows the results of isolation and culture of apical papillary stem cells (SCAP), (A) shows the appearance of immature third molars obtained from a patient, (B) is a fibroblast in which SCAP is similar to a mesenchymal stem cell population It shows that spindle shapes are displayed.
도 2는 지연 발광 분석에 사용된 장치 및 과정을 보여주는 것으로, (A)는 근적외선(NIR) 생성 LED 장치를 보여주고, (B)는 지연 발광의 광학 센서 (전력 범위: 500pW-0.5mW, S130VC, Thorlabs, 미국)를 보여주며, 및 (C)는 지연 발광 분석의 개략도이다. 세포에 대한 근적외선 조사는 1분 동안 실시하였고, 세포로부터의 자발적인 광자 재방출을 23초 동안 광학 센서로 측정하였다.2 shows the apparatus and process used for delayed emission analysis, (A) shows a near-infrared (NIR) generating LED device, (B) is an optical sensor of delayed emission (power range: 500pW-0.5mW, S130VC) , Thorlabs, USA), and (C) is a schematic diagram of delayed luminescence analysis. Near-infrared irradiation of the cells was carried out for 1 minute, and spontaneous photon re-emission from the cells was measured with an optical sensor for 23 seconds.
도 3은 in vitro 실험을 위하여 세포에 NIR를 조사하는 과정을 보여주는 개략도이다 (830nm의 근적외선을 조사, 750mJ/cm2의 에너지 밀도를 매일 적용).3 is a schematic diagram showing the process of irradiating cells with NIR for in vitro experiments (near infrared rays of 830 nm, energy density of 750 mJ/cm 2 applied daily).
도 4는 in vivo 실험 과정을 모식적으로 보여주는 것으로, (A)는 SCAP를 hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffold와 혼합한 것을 보여주고, (B)는 세포와 스케폴드의 혼합물을 immunocompromised nude mouse의 등 표면에 피하 주입하는 것을 보여주고, (C)는 in vivo 실험을 위한 근적외선(NIR) 생성용 LED 장치를 보여주고, (D)는 누드 마우스에 대한 근적외선 조사 개략도이다. Figure 4 schematically shows the in vivo experimental process, (A) shows that SCAP is mixed with a hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffold, (B) is a mixture of cells and scaffolds It shows the subcutaneous injection into the dorsal surface of immunocompromised nude mouse, (C) shows the LED device for generating near-infrared (NIR) for in vivo experiment, and (D) is a schematic diagram of near-infrared irradiation for nude mice.
도 5의 (A)는 헤마톡실린 및 에오신 염색 후 각 그룹의 조직학적 섹션의 Same sized digital images (2.25mm width × 1.2mm height)를 보여주고, (B)는 Image J software의 trainable weka segmentation으로 선택된 세포 및 결합 조직 영역을 보여준다.5 (A) shows the same sized digital images (2.25mm width × 1.2mm height) of the histological sections of each group after hematoxylin and eosin staining, (B) is trainable weka segmentation of Image J software Selected cellular and connective tissue regions are shown.
도 6의 (A)는 오스테오칼신의 면역 조직 화학 염색 후 각 그룹의 조직학적 섹션의 Same sized digital images (2.25mm width × 1.2mm height)를 보여주고, (B)는 Image J software의 trainable weka segmentation으로 선택된 오스테오칼신 염색 영역을 보여준다.6 (A) shows the same sized digital images (2.25mm width × 1.2mm height) of the histological sections of each group after immunohistochemical staining of osteocalcin, (B) is trainable weka segmentation of Image J software. Selected osteocalcin stained regions are shown.
도 7은 SCAP의 유세포 분석 결과를 보여준다.7 shows the flow cytometry results of SCAP.
도 8은 SCAP의 다계통 분화를 보여주는 현미경 사진이다. 8 is a micrograph showing multilineage differentiation of SCAP.
도 9a 및 9b는 830nm 근적외선(NIR)을 1분 동안 조사한 경우의 지연 발광 분석 결과를 보여주는 것으로,9a and 9b show the results of delayed emission analysis when 830 nm near-infrared (NIR) is irradiated for 1 minute;
9a는 다양한 진동수에서 측정된 지연 발광 강도 (I(t); 상단) 및 여기 레벨 (n(t); 하단)을 보여주는 그래프이고,9a is a graph showing the measured delayed emission intensity (I(t); top) and excitation level (n(t); bottom) at various frequencies,
9b는 다양한 파장내 조사율 (duty cycles)에서 측정된 지연 발광 강도 (I(t); 상단) 및 여기 레벨 (n(t); 하단)을 보여주는 그래프이다.9b is a graph showing the measured delayed emission intensity (I(t); top) and excitation level (n(t); bottom) at various in-wavelength duty cycles.
도 10은 다양한 진동수의 근적외선 조사된 SCAP의 골형성 분화 정도를 보여주는 그래프로서, 알칼리 포스파타제 활성을 나타낸다.10 is a graph showing the degree of osteogenic differentiation of SCAP irradiated with near-infrared rays of various frequencies, showing alkaline phosphatase activity.
도 11은 다양한 진동수의 근적외선 조사된 SCAP의 Alizarin Red S 염색 결과를 보여주는 사진 (상단) 및 상기 사진에 나타난 Alizarin Red S 염색 정도를 정량화한 그래프(하단)이다.11 is a photograph showing the results of Alizarin Red S staining of SCAP irradiated with near-infrared rays of various frequencies (upper) and a graph quantifying the degree of Alizarin Red S staining shown in the photograph (lower).
대조군에 비해 10일째에 칼슘 결절은 3Hz, 30Hz, 300Hz에서 최대 2.5배 생성되었다. 21일째에 대조군을 포함한 많은 군들이 많은 칼슘 침착을 나타냈다. 이는 PBM 방법이 분화 초기에 SCAP의 골 형성 분화를 가속화하는 것을 의미한다.Calcium nodules were generated up to 2.5 times at 3 Hz, 30 Hz, and 300 Hz at 10 days compared to the control group. On day 21, many groups, including the control group, showed high calcium deposition. This means that the PBM method accelerates the osteogenic differentiation of SCAP at the early stage of differentiation.
도 12는 근적외선 조사된 SCAP에서의 7개 유전자(ALP, Col1A, RUNX2, OCN, TGF-βDSPP, DMP1, 및 GAPDH)에 대한 실시간 중합 효소 연쇄 반응 (RT-PCR) 결과를 정량하여 보여주는 그래프이다.12 is a graph showing quantitatively real-time polymerase chain reaction (RT-PCR) results for 7 genes (ALP, Col1A, RUNX2, OCN, TGF-βDSPP, DMP1, and GAPDH) in SCAP irradiated with near-infrared rays.
도 13a는 근적외선 조사된 SCAP에서의 5개 단백질 (Col1A, DMP-1, CEMP-1, CAP, 및 OCN) 수준을 웨스턴 블롯으로 측정한 결과를 보여주는 전기영동사진이고, 도 13b는 상기 도 13a의 결과를 정량화하여 대조군에 대한 상대값으로 나타낸 그래프이다.13a is an electrophoresis picture showing the results of measuring the levels of five proteins (Col1A, DMP-1, CEMP-1, CAP, and OCN) in SCAP irradiated with near-infrared rays by Western blot, and FIG. 13b is a diagram of FIG. 13a. It is a graph that quantifies the results and shows them as relative values to the control group.
도 14a 및 14b는 SCAP 이식물을 헤마톡실린 및 에오신 염색한 결과를 보여주는 것으로, 14a는 염색 사진 (배율. × 80)이고, 14b는 염색 부위를 정량화한 그래프이다.14a and 14b show the results of hematoxylin and eosin staining of SCAP implants, 14a is a staining photograph (magnification. × 80), and 14b is a graph quantifying the stained area.
도 15는 SCAP 이식물을 헤마톡실린 및 에오신 염색한 사진이다 (배율. × 200).15 is a photograph of SCAP implants stained with hematoxylin and eosin (magnification × 200).
도 16a 및 16b는 오스테오칼신(OCN)의 면역 염색 결과를 보여주는 것으로, 16a는 염색 사진 (배율. × 80)이고. 16b는 염색 부위를 정량화한 그래프이다.16a and 16b show the results of immunostaining of osteocalcin (OCN), and 16a is a staining photograph (magnification × 80). 16b is a graph quantifying the stained area.
이하 본 발명을 실시예 및 시험예를 통하여 더욱 상세히 설명한다. 그러나, 이들 실시예 및 시험예는 본 발명을 예시하기 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 아니된다. Hereinafter, the present invention will be described in more detail through Examples and Test Examples. However, these Examples and Test Examples are intended to illustrate the present invention, and should not be construed as limiting the present invention.
참고예 1. in vitro 시험Reference Example 1. In vitro test
1.1. 치근단유두(apical papilla)로부터 줄기 세포의 분리 및 배양1.1. Isolation and culture of stem cells from apical papilla
환자로부터 미성숙 세 번째 어금니를 얻었다 (도 1의 A). 상기 환자는 탈치될 정도의 충치 또는 풍치를 앓지 않는 환자(사람)들 중에서 선택하였다. 모든 환자로부터 사전 동의를 얻었다. 본 명세서의 모든 시험은 서울대학교 치과 병원 임상 시험 심사위원회(대한민국 서울; IRB 번호 05004)의 승인을 받아 진행되었다.An immature third molar was obtained from the patient (Fig. 1A). The patient was selected from among patients (humans) who did not suffer from tooth decay or cavities to the extent of being dislodged. Informed consent was obtained from all patients. All of the tests in this specification were approved by the Clinical Trial Review Committee of Seoul National University Dental Hospital (Seoul, Korea; IRB No. 05004).
SCAP는 기존 방법에 따라 분리 및 배양하였다. 구체적으로, 상기 얻어진 미성숙 세번째 어금니의 치근단(root apex)으로부터 치근단유두 조직을 조심스럽게 분리하였다. 상기 분리된 조직을 3mg/mL 콜라게나제 타입 1 (Worthington Biochem, Freehold, NJ, USA) 및 4mg/mL의 디스파제 (Boehringer, Mannheim, Germany) 용액에서 37℃에서 1시간 동안 소화시켰다. 상기 얻어진 용액을 40mm 스트레이너(BD Biosciences, Bedford, MA, USA)를 통해 통과시켜 단세포 현탁액을 얻었다. 얻어진 세포를 10% FBS (Gibco BRL, Grand Island, NY, USA), 100mM 아스코르브산 2-포스페이트(Sigma-Aldrich, St. Louis, MS, USA), 2mM 글루타민, 100U/mL 페니실린 및 100mg/mL 스트렙토마이신 (Biouids, Rockville, MD, USA)을 보충한 Eagle's medium (Gibco BRL, Grand Island, NY, USA)의 알파 변조(alpha modication) 배지에서 37℃의 및 5% CO2 조건의 인큐베이터에서 배양하였다. 배양된 세포는 3번째 또는 4번째 계대에 사용하였다.SCAP was isolated and cultured according to conventional methods. Specifically, the apical papillary tissue was carefully separated from the root apex of the obtained immature third molar. The isolated tissue was digested in 3 mg/mL collagenase type 1 (Worthington Biochem, Freehold, NJ, USA) and 4 mg/mL dispase (Boehringer, Mannheim, Germany) solution at 37° C. for 1 hour. The obtained solution was passed through a 40 mm strainer (BD Biosciences, Bedford, MA, USA) to obtain a single cell suspension. The obtained cells were treated with 10% FBS (Gibco BRL, Grand Island, NY, USA), 100 mM ascorbic acid 2-phosphate (Sigma-Aldrich, St. Louis, MS, USA), 2 mM glutamine, 100 U/mL penicillin and 100 mg/mL strepto. Eagle's medium (Gibco BRL, Grand Island, NY, USA) supplemented with mycin (Biouids, Rockville, MD, USA) was cultured in an alpha modulation medium at 37° C. and 5% CO 2 conditions in an incubator. Cultured cells were used for the 3rd or 4th passage.
 
1.2. 중간엽 줄기 세포 마커의 유세포 분석1.2. Flow Cytometry of Mesenchymal Stem Cell Markers
상기 참고예 1.1에서 배양된 치근단유두 유래 세포의 줄기 세포 특성을 확인하기 위하여, 중간엽 줄기세포(mesenchymal stem cell) 표면 마커의 발현을 유세포 분석법으로 평가하였다. In order to confirm the stem cell characteristics of the apical papilla-derived cells cultured in Reference Example 1.1, the expression of mesenchymal stem cell surface markers was evaluated by flow cytometry.
약술하면, 상기 참고예 1.1에서 준비된 세포(계대 3, 1.0×106 세포)를 0.5% 소혈청 알부민 버퍼(ICN Biomedicals, Aurora, OH, USA) 100㎕에 현탁시켰다. CD34, CD13, CD90 및 CD146에 대하여 특이적인 항체(BD Biosciences, Bedford, MA, USA)를 첨가한 후, 세포를 4℃에서 1시간 동안 배양하였다. 그 후, 형광표지된 이차항체와 1시간 동안 상온에서 인큐베이션 하였다. CD34 음성, CD13 양성, CD90 양성, 및 CD146 양성 세포의 비율(percentage)를 각각 FACS Calibur ow cytometry (Becton & Dickinson Immunocytometry Systems, San Jose, CA, USA)로 계산하였다. 얻어진 데이터는 CellQuest Pro software (Becton & Dickinson Immunocytometry Systems, San Jose, CA, USA) 로 분석하였다.Briefly, the cells (passage 3, 1.0×10 6 cells) prepared in Reference Example 1.1 were suspended in 100 μl of 0.5% bovine serum albumin buffer (ICN Biomedicals, Aurora, OH, USA). After addition of antibodies specific for CD34, CD13, CD90 and CD146 (BD Biosciences, Bedford, MA, USA), the cells were incubated at 4° C. for 1 hour. Then, it was incubated with the fluorescently labeled secondary antibody at room temperature for 1 hour. The percentages of CD34 negative, CD13 positive, CD90 positive, and CD146 positive cells were calculated by FACS Calibur ow flow cytometry (Becton & Dickinson Immunocytometry Systems, San Jose, CA, USA), respectively. The obtained data were analyzed with CellQuest Pro software (Becton & Dickinson Immunocytometry Systems, San Jose, CA, USA).
1.3. 다계통 분화 (Multi-lineage differentiation) 1.3. Multi-lineage differentiation
SCAP의 다계통 분화능을 확인하기 위하여, 골 형성, 연골 형성 및 지방 생성 분화 유도를 각각 수행하였다. 1.0×104의 SCAP(P3)를 24-웰 디쉬에 시딩하고, 골 형성 유도 배지, 연골 형성 유도 배지 (StemPro, GibcoBRL, Grand Island, NY, USA) 및 지방세포 생성 유도 배지(Lonza, Switzerland, Basel, Switzerland)에서 각각 배양하였다. 21일 동안 유도한 후, 세포를 특이적 염료로 염색하였다. 칼슘 침전(deposit) 염색용으로 2%(w/v) Alizarin Red S stain을, 글리코사미노글리칸 침전 염색용으로 1% Alcian Blue dye를, 지질 액포 염색용으로 0.3% Oil Red O dye를 각각 사용하였다(Sigma-Aldrich, St.Louis, MS, USA). 염색된 세포를 역광 현미경(inverted light microscope; Olympus U-SPT, Olympus, Japan)으로 관찰하였다.In order to confirm the multi-lineage differentiation capacity of SCAP, osteogenic, chondrogenic, and adipogenic differentiation induction were performed, respectively. 1.0×10 4 of SCAP (P3) was seeded in 24-well dishes, bone formation induction medium, chondrogenesis induction medium (StemPro, GibcoBRL, Grand Island, NY, USA) and adipogenesis induction medium (Lonza, Switzerland, Basel, Switzerland) respectively. After induction for 21 days, cells were stained with a specific dye. 2% (w/v) Alizarin Red S stain for calcium deposit staining, 1% Alcian Blue dye for glycosaminoglycan precipitation staining, and 0.3% Oil Red O dye for lipid vacuole staining, respectively. (Sigma-Aldrich, St. Louis, MS, USA). The stained cells were observed with an inverted light microscope (Olympus U-SPT, Olympus, Japan).
 
1.4. 근적외선 조사1.4. Near infrared irradiation
근적외선을 조사하는 장치로서 디퓨저 및 LED 어레이로 구성된 것을 사용하였다 (도 2A 참조). LED (PV810-3C6W-EDISAA, KAOS, Korea)의 파장은 830nm로 하였다. LED는 연속파 모드 및 펄스파 모드에서 작동할 수 있다. 펄스파 모드는 3Hz, 30Hz, 300Hz 및 3000Hz을 포함해 4가지 서로 다른 진동수 모드로 수행하였다. 진동수는 8비트 마이크로 컨트롤러 장치 (UM_MC95FG308_V3.20_EN, Hynix, Korea)로 변경하면서 시험하였다. 파장내 조사율(duty cycle)은 10%에서 60%로 변경하면서 시험하였다. 총 에너지 밀도는 750 mJ/cm2로 고정하였다. 본 실시예에서 근적외선 조사는 매일 1회, 1회당 10분씩, 총 6주동안 수행하였다. As a device for irradiating near-infrared rays, a device composed of a diffuser and an LED array was used (see FIG. 2A). The wavelength of the LED (PV810-3C6W-EDISAA, KAOS, Korea) was set to 830 nm. LEDs can operate in continuous wave mode and pulsed wave mode. The pulse wave mode was performed in four different frequency modes including 3Hz, 30Hz, 300Hz and 3000Hz. The frequency was tested while changing to an 8-bit microcontroller device (UM_MC95FG308_V3.20_EN, Hynix, Korea). The in-wavelength duty cycle was tested while changing from 10% to 60%. The total energy density was fixed at 750 mJ/cm 2 . In this example, near-infrared irradiation was performed once a day, for 10 minutes each time, for a total of 6 weeks.
 
1.5. 지연 발광 분광법(Delayed luminescence spectroscopy)1.5. Delayed luminescence spectroscopy
세포에 빛이 조사되면 세포는 광자 에너지를 흡수한 후 자발적으로 광자를 다시 방출한다. 지연 발광(DL)이라고도 불리는 광 조사된 세포로부터 재방출된 광자 에너지를 측정함으로써, 상기 세포가 광자 에너지를 최대한 많이 흡수할 수 있는 최적의 광 조건을 결정할 수 있다.When a cell is irradiated with light, the cell absorbs the photon energy and then spontaneously emits the photon again. By measuring the photon energy re-emitted from an irradiated cell, also called delayed luminescence (DL), it is possible to determine the optimal light conditions for the cell to absorb as much photon energy as possible.
본 실시예에서는 810nm의 근적외선(NIR)을 사용했다. 근적외선 조사는 1분 동안 이루어졌으며, 세포로부터 자발적인 광자 재방출을 23초 동안 측정하였다 (도 2). DL 측정을 위하여, SCAP를 PBS로 2 회 세척하였다. 데이터당 37ms의 해상도를 가진 광학 센서(전력 범위: 500pW~0.5mW, S130VC, Thorlabs, USA)를 CO2 인큐베이터에 설치하였다. 자연광을 제거하기 위해 SCAP를 30분 동안 암실 공간에 두었다. NIR 조사를 수행하고, 세포로부터 지연 발광이 측정되었다. 광센서의 감지 영역은 24-웰 플레이트의 직경과 유사하였다. NIR이 연속파 및 3Hz, 30Hz, 300Hz 및 3000Hz의 4개의 진동수에서 각각 조사된 경우, 지연 발광이 측정되었다. 최적의 진동수를 찾은 후, 최적의 파장내 조사율이 발견된 최적 진동수에서 10%부터 60%까지 시험되었다. 파장내 조사율은 찾아낸 최적 진동수에서 펄스의 한 사이클 내에서 빛이 방출되는 비율을 말한다. 100% 파장내 조사율은 연속파를 의미하고 10% 파장내 조사율은 광이 10%의 사이클 내에서만 방출되고 나머지 90% 기간에서는 방출되지 않음을 의미한다.In this example, near infrared (NIR) of 810 nm was used. Near-infrared irradiation was performed for 1 minute, and spontaneous photon re-emission from the cells was measured for 23 seconds ( FIG. 2 ). For DL measurement, SCAP was washed twice with PBS. An optical sensor with a resolution of 37 ms per data (power range: 500 pW to 0.5 mW, S130VC, Thorlabs, USA) was installed in a CO 2 incubator. The SCAP was placed in a darkroom space for 30 min to eliminate natural light. NIR irradiation was performed and delayed luminescence was measured from the cells. The sensing area of the photosensor was similar to the diameter of a 24-well plate. When NIR was irradiated with a continuous wave and four frequencies of 3 Hz, 30 Hz, 300 Hz and 3000 Hz, respectively, delayed emission was measured. After finding the optimal frequency, the optimal in-wavelength irradiance was tested from 10% to 60% at the found optimal frequency. Intra-wavelength irradiance refers to the rate at which light is emitted within one cycle of a pulse at the optimal frequency found. 100% in-wavelength means continuous wave and 10% in-wavelength means that light is emitted only within 10% of the cycle and not during the remaining 90% period.
DL 강도는 다음의 수식 (1)에 의하여 측정하였다:DL intensity was measured by the following equation (1):
Figure PCTKR2020005637-appb-I000001
수식 (1)
Figure PCTKR2020005637-appb-I000001
Formula (1)
상기 수식 1에서, I(t)는 실험 데이터로부터 얻을 수 있는 세포로부터의 재방출 강도(re-emitted intensity), I0는 방출 강도의 초기값, t는 시간, t0은 초기값을 각각 의미한다.In Equation 1, I(t) is the re-emitted intensity from the cells obtained from the experimental data, I 0 is the initial value of the emission intensity, t is the time, and t 0 is the initial value, respectively. do.
지연 발광의 강도 I(t)는 붕괴확률 P(t)와 상관성이 있고, I(t)=-dn(t)/dt의 수식에 따라, 시간 t에서 여기 레벨 n(t)의 정도가 감소한다. 붕괴확률 P(t)는 다음의 수식 (2) 및 (3)으로 계산할 수 있다:The intensity I(t) of the delayed emission is correlated with the decay probability P(t), and according to the formula I(t)=-dn(t)/dt, the degree of the excitation level n(t) decreases at time t do. The decay probability P(t) can be calculated by the following equations (2) and (3):
Figure PCTKR2020005637-appb-I000002
Figure PCTKR2020005637-appb-I000002
모든 데이터를 무세포 조건으로부터 공제하였다. 광조사되지 않은 세포의 대조군 DL 데이터는 강도 레벨 (10-19 ~ 10-16 W /cm2)이 광학 센서 범위를 벗어나 보이지 않는다.All data were subtracted from cell-free conditions. Control DL data of non-irradiated cells show no intensity levels (10-19 to 10-16 W/cm 2 ) outside the optical sensor range.
 
1.6. 알칼리 포스파타제 활성 측정 1.6. Alkaline phosphatase activity measurement
SCAP를 배양웰에서 적어도 80% confluence까지 배양하였다. 그 후, 배양 배지를 분화 배지(참고예 1.3 참조)로 교체하였다. 알칼리 포스파타제(alkaline phosphatase; ALP) assay 전에 7일 동안 NIR(근적외선; 830nm)을 매일 조사하였다. 세포에 매일 750mJ/cm2의 에너지 밀도를 인가하였다. 연속파(CW) 및 각각 3Hz, 30Hz, 및 300Hz 진동수의 NIR을 SCAP에 각각 조사하였다 (도 3 참조). SCAP에서의 ALP 염색을 위하여, 세포를 SensoLyte® pNPP (para-nitrophenyl phosphate) alkaline phosphatase assay kit로 염색하였다. 세포에 용해 버퍼(50mM 트리스 HCL 및 0.1 % Triton X 100, pH 9.5, Sigma-Aldrich)를 첨가하였다. 세포를 4℃에서 10분 동안 배양하였다. 세포는 웰당 50μl의 양으로 96-웰 플레이트에 옮겼다. pNPP 기질 50μl를 각 웰에 첨가하고 플레이트를 30초 동안 부드럽게 흔들어 세포와 혼합하였다. 세포를 37℃에서 60분 동안 인큐베이팅하여 반응시켰다. 흡광도는 마이크로 플레이트 리더(Synergy HT, Biotek, VT, USA)로 측정하였다. 흡광도는 대조군(NIR 무처리군)에 대한 상대값으로 나타내었다. 상기 흡광도는 통하여 골형성 분화 정도(osteogenic differentiation(fold))를 보여준다.SCAP was incubated in culture wells to at least 80% confluence. Thereafter, the culture medium was replaced with a differentiation medium (see Reference Example 1.3). NIR (near infrared; 830 nm) was irradiated daily for 7 days before alkaline phosphatase (ALP) assay. An energy density of 750 mJ/cm 2 was applied to the cells daily. Continuous wave (CW) and NIR of 3 Hz, 30 Hz, and 300 Hz, respectively, were irradiated to the SCAP (see FIG. 3 ). For ALP staining in SCAP, cells were stained with SensoLyte® pNPP (para-nitrophenyl phosphate) alkaline phosphatase assay kit. Lysis buffer (50 mM Tris HCl and 0.1 % Triton X 100, pH 9.5, Sigma-Aldrich) was added to the cells. Cells were incubated at 4° C. for 10 minutes. Cells were transferred to 96-well plates in an amount of 50 μl per well. 50 μl of pNPP substrate was added to each well and the plate was gently shaken for 30 seconds to mix with the cells. The cells were reacted by incubating at 37° C. for 60 minutes. Absorbance was measured with a microplate reader (Synergy HT, Biotek, VT, USA). Absorbance was expressed as a relative value with respect to the control group (NIR untreated group). The absorbance shows the degree of osteogenic differentiation (fold).
1.7. Alizarin Red S 염색 시험1.7. Alizarin Red S staining test
Alizarin Red S 염색을 수행하여 SCAP의 초기 미네랄화에서 칼슘 침전을 평가하였다. NIR(830nm) 조사는 3Hz, 30Hz, 300Hz 및 3000Hz 4 가지 진동수에서 각각 21일 동안 수행하였다. 펄스파의 파장내 조사율은 30%에서 고정되었다. 세포를 96-웰 플레이트에서 웰당 1.0×104 cells로 시딩하였다. NIR 조사 후 10일과 21일에 세포를 PBS로 2 회 세척하고 4% 파라포름알데히드에 10분 동안 고정시켰다. 세포를 탈이온수로 세척하고 상온에서 30분 동안 Alizarin Red S (Sigma-Aldrich, St Louis, Mo, USA)로 염색하였다. 그 후, 탈이온수로 염료를 제거하고 stereo type microscopy로 염색 세포를 관찰하였다. 칼슘 침전물을 정량화하기 위하여, 실온에서 60분 동안 10%의 빙초산 200mL를 사용하여 염료를 추출했다. 그 양은 490nm에서 ELISA 플레이트 리더(Tecan, NC, 490 nm에서 USA)를 사용하여 측정하였다.Alizarin Red S staining was performed to evaluate calcium precipitation in the initial mineralization of SCAP. NIR (830 nm) irradiation was performed at 4 frequencies of 3 Hz, 30 Hz, 300 Hz and 3000 Hz, respectively, for 21 days. The in-wavelength irradiation rate of the pulsed wave was fixed at 30%. Cells were seeded at 1.0×10 4 cells per well in 96-well plates. On days 10 and 21 after NIR irradiation, cells were washed twice with PBS and fixed in 4% paraformaldehyde for 10 minutes. Cells were washed with deionized water and stained with Alizarin Red S (Sigma-Aldrich, St Louis, Mo, USA) for 30 min at room temperature. After that, the dye was removed with deionized water and the stained cells were observed by stereo type microscopy. To quantify the calcium precipitate, the dye was extracted using 200 mL of 10% glacial acetic acid for 60 minutes at room temperature. The amount was measured using an ELISA plate reader (Tecan, NC, USA at 490 nm) at 490 nm.
 
1.8. 실시간 중합 효소 연쇄 반응 (real-time polymerase chain reaction; RT-PCR)1.8. real-time polymerase chain reaction (RT-PCR)
실시간 중합 효소 연쇄 반응(RT-PCR) 분석을 위해, SCAP을 24-웰 플레이트에서 웰당 5.0×104 cells로 시딩하였다. NIR은 3Hz, 30Hz, 300Hz 및 3000Hz의 4가지 진동수에서 조사하였다. 분화 배지(참고예 1.3 참조)에서 SCAP에 대한 NIR 조사 10일 후, expanded SCAP를 수확 및 용해하였다. RNeasy Mini Kit (미국 MD, Qiagen)를 사용하여 SCAP으로부터 전체 RNA를 추출하였다. 상기 전체 RNA는 역전사효소 및 랜덤 프라이머 (cDNA synthesis kit, Toyobo, Japan)를 사용하여 제조 프로토콜에 따라 cDNA로 전환시켰다. 합성된 cDNA를 사용하여 CFX96TM Real-Time System (BioRad, CA, USA)를 사용한 실시간 중합 효소 연쇄 반응을 수행하였다. 대조군과 PBM 군의 비교를 위하여, comparative cycle threshold method를 사용하여 유전자의 상대적 발현 정도를 평가하였다. ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP, DMP1, 및 GAPDH의 유전자 발현을 평가하였다. mRNA의 상대적인 발현양을 GAPDH 발현량으로 정규화하고, 대조군에 대한 배수 변화로 나타내었다. 사용된 프라이머 서열을 표 1(Primer Sequences for Real-Time Polymerase Chain Reaction)에 나타내었다.For real-time polymerase chain reaction (RT-PCR) analysis, SCAP was seeded at 5.0×10 4 cells per well in 24-well plates. NIR was irradiated at 4 frequencies: 3Hz, 30Hz, 300Hz and 3000Hz. After 10 days of NIR irradiation for SCAP in a differentiation medium (see Reference Example 1.3), expanded SCAP was harvested and dissolved. Total RNA was extracted from SCAP using RNeasy Mini Kit (Qiagen, MD, USA). The total RNA was converted into cDNA according to the preparation protocol using reverse transcriptase and random primers (cDNA synthesis kit, Toyobo, Japan). A real-time polymerase chain reaction was performed using the synthesized cDNA using the CFX96TM Real-Time System (BioRad, CA, USA). For comparison between the control group and the PBM group, the relative expression levels of genes were evaluated using the comparative cycle threshold method. The gene expression of ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP, DMP1, and GAPDH was evaluated. The relative expression level of mRNA was normalized to the expression level of GAPDH and expressed as a fold change with respect to the control group. The primer sequences used are shown in Table 1 (Primer Sequences for Real-Time Polymerase Chain Reaction).
Figure PCTKR2020005637-appb-T000001
Figure PCTKR2020005637-appb-T000001
(상기 표 1에 기재된 프라이머는 순서대로 서열번호 1 내지 16임; ALP, alkaline phosphatase; Col1A, type 1 collagen A; RUNX2, Runt-related transcription factor 2; OCN, osteocalcin; TGF-β1, transforming growth factor-β1; DSPP, dentin sialophosphoprotein; DMP1, dentin matrix protein 1)(The primers listed in Table 1 are SEQ ID NOs: 1 to 16 in order; ALP, alkaline phosphatase; Col1A, type 1 collagen A; RUNX2, Runt-related transcription factor 2; OCN, osteocalcin; TGF-β1, transforming growth factor- β1; DSPP, dentin sialophosphoprotein; DMP1, dentin matrix protein 1)
1.9. 웨스턴 블롯 분석1.9. Western blot analysis
60mm 배양 접시에 SCAP (1.0×106 cells/dish)를 시딩하고 분화배지(참고예 1.3 참조)에서 21일 동안 배양하였다. PBM 그룹의 경우, NIR 조사를 21일 동안 매일 수행하였다. 조명은 300Hz 진동수와 파장내 조사율 30%로 설정하였다. 전체 용해물 단백질을 분리하고 DC Protein Assay Kit (Bio-Rad Laboratories, CA, USA)로 측정하였다. 단백질 30mg을 SDS-PAGE 로딩 버퍼로 용해하고 폴리비닐리덴 디플루오라이드 멤브레인 (GE Healthcare, IL, USA)에 전달하였다. 상기 멤브레인을 collagen type 1 (Col1A), cementum attachment protein (CAP), cementoblastoma-derived protein 1 (CEMP-1), osteocalcin (OCN), 및 dentin matrix protein-1 (DMP-1)에 대한 일차 항체들 (Santa Cruz Biotechnology, TX, USA)과 함께 배양하였다. 그 후, 일차 항체를 세척한 후, 멤브레인을 horseradish peroxidase-conjugated 이차 항체 (Cell Signaling Technology, MT, USA)와 함께 1시간 동안 배양하였다. 얻어진 블롯은 enhanced chemiluminescence kit (GE Healthcare, IL, USA)로 가시화하였다. SCAP (1.0×10 6 cells/dish) was seeded in a 60 mm culture dish and cultured for 21 days in a differentiation medium (see Reference Example 1.3). For the PBM group, NIR irradiation was performed daily for 21 days. Illumination was set at a frequency of 300 Hz and an irradiance rate of 30% within the wavelength. Total lysate proteins were isolated and measured with DC Protein Assay Kit (Bio-Rad Laboratories, CA, USA). 30 mg of protein was dissolved in SDS-PAGE loading buffer and transferred to a polyvinylidene difluoride membrane (GE Healthcare, IL, USA). The membrane was coated with primary antibodies against collagen type 1 (Col1A), cementum attachment protein (CAP), cementoblastoma-derived protein 1 (CEMP-1), osteocalcin (OCN), and dentin matrix protein-1 (DMP-1) ( Santa Cruz Biotechnology, TX, USA). After washing the primary antibody, the membrane was incubated with a horseradish peroxidase-conjugated secondary antibody (Cell Signaling Technology, MT, USA) for 1 hour. The obtained blot was visualized with an enhanced chemiluminescence kit (GE Healthcare, IL, USA).
참고예 2. SCAP에 대한 PBM의 영향 (in vivo)Reference Example 2. Effect of PBM on SCAP (in vivo)
2.1. SCAP의 생체내 이식2.1. In vivo transplantation of SCAP
동물 시험은 Seoul National University Institutional Animal Care and Use Committee (SNU-190426-13)의 승인을 받아서 진행하였다. SCAP를 총 20.0×106 cells의 양으로 xenogenic scaffold와 혼합하였다. 스캐폴드로 50mg의 하이드록시 아파타이트/β-트리칼슘포스페이트 세라믹 입자(HA/TCP, Dentium, Seoul, South Korea)를 사용하였다. 세포 배양 배지 (참고예 1.1 참조) 1ml를 세포-스캐폴드 혼합물에 첨가하였다. 상기 혼합물을 세포가 스캐폴드에 붙도록 밤새 CO2 인큐베이터(MC-20A, Science & Technology Inc., Korea)에서 배양하였다. Animal testing was performed with approval from Seoul National University Institutional Animal Care and Use Committee (SNU-190426-13). SCAP was mixed with the xenogenic scaffold in a total amount of 20.0×10 6 cells. As a scaffold, 50 mg of hydroxyapatite/β-tricalcium phosphate ceramic particles (HA/TCP, Dentium, Seoul, South Korea) was used. 1 ml of cell culture medium (see Reference Example 1.1) was added to the cell-scaffold mixture. The mixture was incubated overnight in a CO 2 incubator (MC-20A, Science & Technology Inc., Korea) to allow the cells to adhere to the scaffold.
취급을 쉽게 하고 볼루스(bolus) 모양의 유지가 가능하도록, 이식 전에 피브린 (TISSEEL ®Baxter, IL, USA) 한 방울을 이식물과 혼합하였다. 세포와 스캐폴드의 혼합물을 10 마리의 8주령 immunocompromised nude mice(NIH-bg-nu/nu-xid; Harlan Sprague-Dawley, OrientBio Inc., Seongnam, Korea) 의 등 표면 안쪽에 피하 이식하였다. 음성 대조군(그룹 1)은 SCAP 없이 HA/TCP만 이식한 군으로 정의하였다. 2개의 양성 대조군은 다음과 같이 정의하였다: 하나는 (그룹 2)은 NIR 조사하지 않은 SCAP 세포-스캐폴드 혼합물을 이식한 군, 및 다른 양성 대조군(그룹 3)은 SCAP 없이 스캐폴드만 이식한 후 5주 동안 NIR 조사한 군. 실험군(그룹 4)은 NIR 조사하지 않은 SCAP 세포-스캐폴드 혼합물을 이식한 후 5주 동안 NIR 조사한 군이다. 상기 조사된 근적외선은 파장이 830nm이고, 300Hz 진동수를 가지며 파장내 조사율이 30%로 고정된 것이다. 상기 동물 실험을 위한 그룹을 아래의 표 2에 정리하였다:A drop of fibrin (TISSEEL ® Baxter, IL, USA) was mixed with the implant prior to implantation to facilitate handling and maintain bolus shape. A mixture of cells and scaffolds was subcutaneously implanted into the inner dorsal surface of 10 8-week-old immunocompromised nude mice (NIH-bg-nu/nu-xid; Harlan Sprague-Dawley, OrientBio Inc., Seongnam, Korea). A negative control group (Group 1) was defined as a group transplanted with only HA/TCP without SCAP. Two positive controls were defined as follows: one (Group 2) transplanted with the SCAP cell-scaffold mixture without NIR irradiation, and the other positive control (Group 3) after transplantation of the scaffold only without SCAP. The group under NIR irradiation for 5 weeks. The experimental group (group 4) was a group irradiated with NIR for 5 weeks after transplanting the non-NIR-irradiated SCAP cell-scaffold mixture. The irradiated near-infrared rays have a wavelength of 830 nm, a frequency of 300 Hz, and an irradiation rate within the wavelength fixed to 30%. The groups for the animal experiments are summarized in Table 2 below:
Figure PCTKR2020005637-appb-T000002
Figure PCTKR2020005637-appb-T000002
(표 2에서,(In Table 2,
HA/TCP, hydroxyapatite / β-tricalcium phosphate; SCAP, stem cell from apical papilla; NIR, near-infrared light)HA/TCP, hydroxyapatite/β-tricalcium phosphate; SCAP, stem cells from apical papilla; NIR, near-infrared light)
마우스의 등 표면에 2개의 포켓을 만들고, 한 포켓에는 세포가 없는 HA/TCP를 이식하고, 다른 포켓에는 SCAP와 HA/TCP를 이식하였다. 5마리의 누드 마우스에 대해 830nm의 NIR을 누드 마우스의 등 피부에 매일 5분 동안 조사하였다. 총 750mJ/cm2의 에너지 밀도를 매일 각 마우스에 적용하였다 (도 4).Two pockets were made on the dorsal surface of the mouse, and cell-free HA/TCP was implanted in one pocket, and SCAP and HA/TCP were implanted in the other pocket. For 5 nude mice, NIR of 830 nm was irradiated on the back skin of nude mice for 5 minutes every day. A total energy density of 750 mJ/cm 2 was applied to each mouse daily ( FIG. 4 ).
 
2.2. 조직학적 평가 및 histomorphometry2.2. Histological evaluation and histomorphometry
이식 후 6주째에 이식물을 회수하였다. PBM(근적외선 조사) 그룹(그룹 3 및 4)의 경우, NIR 조사를 5주 동안 매일 수행하였다. 상기 이식물을 4℃에서 24시간 동안 3.7% 파라포름알데히드에 고정시켰다. 4℃에서 1개월 동안 12 % EDTA 용액(pH 7.3)으로 탈석회화를 수행하였다. 얻어진 시편을 파라핀에 매립하고 40㎛의 두께로 절편화하였다. 조직학적 단편(section)을 헤마톡실린 및 에오신으로 염색하였다 (H&E 염색).Implants were harvested 6 weeks after transplantation. For the PBM (near infrared irradiation) group (groups 3 and 4), NIR irradiation was performed daily for 5 weeks. The implants were fixed in 3.7% paraformaldehyde at 4°C for 24 hours. Demineralization was performed with a 12% EDTA solution (pH 7.3) at 4°C for 1 month. The obtained specimen was embedded in paraffin and sectioned to a thickness of 40 μm. Histological sections were stained with hematoxylin and eosin (H&E staining).
각 군의 조직학적 부위의 동일한 크기의 디지털 이미지 (2.25mm width × 1.2mm height)를 확보하여 분석하였다 (도 5). 이미지는 Leica microscopy system (Leica SCN400F slide scanner, Leica Microsystem Ltd, Wetzlar, Germany)를 사용하여 얻었다. Image J software에서 trainable weka segmentation를 이용하여 조직형태분석 (Histomorphometry)을 수행하였다 (Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K.W., Schindelin, J., Cardona, A., and Sebastian Seung, H. (2017); Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424-2426, & Malhan, D., Muelke, M., Rosch, S., Schaefer, A.B., Merboth, F., Weisweiler, D., Heiss, C., Arganda-Carreras, I., and El Khassawna, T. (2018). An Optimized Approach to Perform Bone Histomorphometry. Front Endocrinol (Lausanne) 9, 666 참조). 세포 및 결합조직을 trainable weka segmentation로 선택하였다 (도 5B). 총 픽셀에 대한 선택된 픽셀을 백분률로 나타내었다.A digital image (2.25mm width × 1.2mm height) of the same size of the histological site of each group was obtained and analyzed (FIG. 5). Images were obtained using a Leica microscopy system (Leica SCN400F slide scanner, Leica Microsystem Ltd, Wetzlar, Germany). Histomorphometry was performed using trainable weka segmentation in Image J software (Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, KW, Schindelin, J., Cardona, A. , and Sebastian Seung, H. (2017);Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424-2426, & Malhan, D., Muelke, M., Rosch, S., Schaefer, AB , Merboth, F., Weisweiler, D., Heiss, C., Arganda-Carreras, I., and El Khassawna, T. (2018). An Optimized Approach to Perform Bone Histomorphometry. Front Endocrinol (Lausanne) 9, 666 ). Cells and connective tissues were selected for trainable weka segmentation (FIG. 5B). Selected pixels to total pixels are expressed as a percentage.
2.3. Immunohistochemistry of osteocalcin2.3. Immunohistochemistry of osteocalcin
조직 단편을 있는 슬라이드를 Discovery XT automated immunohistochemistry stainer (Ventana Medical Systems, Inc., Tucson, AZ, USA)로 염색하였다. Ventana ChromoMap Kit (Ventana Medical Systems, AZ, USA)를 사용하여 검출하였다. 단편에 EZ Prep solution (Roche, Basel, Switzerland)을 처리하여 파라핀을 제거하였다. 슬라이드를 Osteocalcin (OCN)에 대한 토끼 폴리클로날항체 (1:100; Santa Cruz Biotechnology, TX, USA)와 함께 37℃에서 32분 동안 배양하고, 2차 항체와 37℃에서 20분 동안 배양하였다. 슬라이드를 DAB+H2O2 기질과 함께 37℃에서 8분 동안 배양하였다. 염색된 단편을 헤마톡실린으로 대조 염색하였다.Slides with tissue fragments were stained with Discovery XT automated immunohistochemistry stainer (Ventana Medical Systems, Inc., Tucson, AZ, USA). Detection was performed using the Ventana ChromoMap Kit (Ventana Medical Systems, AZ, USA). The fragments were treated with EZ Prep solution (Roche, Basel, Switzerland) to remove paraffin. Slides were incubated with a rabbit polyclonal antibody against osteocalcin (OCN) (1:100; Santa Cruz Biotechnology, TX, USA) at 37° C. for 32 minutes, and incubated with a secondary antibody at 37° C. for 20 minutes. Slides were incubated with DAB+H 2 O 2 substrate at 37° C. for 8 minutes. The stained fragments were counterstained with hematoxylin.
각 그룹에서 오스테오칼신 염색된 동일한 크기의 디지털 이미지 (2.25mm width × 1.2mm height) 를 확보하여 분석하였다 (도 6A). Image J 소프트웨어에서 trainable weka segmentation을 이용하여 조직 형태 분석을 수행하였다. 오스테오칼신 염색 부위는 trainable weka segmentation으로 선택되었다 (도 6B). 총 픽셀에 대한 선택된 픽셀을 백분율로 표시하였다.In each group, osteocalcin-stained digital images of the same size (2.25mm width × 1.2mm height) were obtained and analyzed ( FIG. 6A ). Tissue morphology analysis was performed using trainable weka segmentation in Image J software. Osteocalcin staining sites were selected by trainable weka segmentation (Fig. 6B). Selected pixels relative to total pixels are expressed as a percentage.
 
2.4 통계 분석2.4 Statistical Analysis
vitro 실험의 경우, 모든 실험을 3회 이상 반복하였고 데이터를 평균 및 표준편차(SD)로 표시하였다. 통계적 유의성은 unpaired Student's t-tests (two-tail, equal SD) 로 평가하였다. For in vitro experiments, all experiments were repeated at least 3 times and the data were expressed as mean and standard deviation (SD). Statistical significance was assessed by unpaired Student's t-tests (two-tail, equal SD).
in vivo histomorphometry 실험을 위하여, Mann-Whitney U test를 사용하였다. 모든 통계 분석은 Windows용 SPSS로 수행되었다 (version 22.0, SPSS Inc, Chicago, USA). 유의미성은 vitro 실험에서는 p <0.05로 정의되고, in vivo 실험에서는 p<0.1로 정의되었다. P값은 그래프에 표시하였다.For in vivo histomorphometry experiments, the Mann-Whitney U test was used. All statistical analyzes were performed with SPSS for Windows (version 22.0, SPSS Inc, Chicago, USA). Significance was defined as p <0.05 in in vitro experiments and p < 0.1 in in vivo experiments. P values are indicated on the graph.
실시예 1: 치근단유두 줄기세포(stem cells from apical papilla; SCAP)에 대한 최적의 PBM (Photobiomodulation) 상태 및 PBM 효과 (Example 1: Optimal PBM (Photobiomodulation) status and PBM effect on stem cells from apical papilla (SCAP) ( in vitroin vitro ))
1.1. SCAP의 특성1.1. Characteristics of SCAP
참고예 1.1에 기재된 바와 같이, SCAP는 미성숙 세 번째 어금니 (도 1의 A 참조)의 치근단(root apex)으로부터 SCAP를 분리 및 배양하고, 그 모습을 현미경으로 관찰하여 도 1의 B에 나타내었다. 도 1의 B에서 확인되는 바와 같이, SCAP은 중간엽줄기세포 집단과 유사한 fibroblast spindle shapes를 나타내었다.As described in Reference Example 1.1, SCAP was isolated and cultured from the root apex of the immature third molar (see FIG. 1A), and the appearance was observed under a microscope and shown in FIG. 1B. As confirmed in FIG. 1B, SCAP exhibited fibroblast spindle shapes similar to the mesenchymal stem cell population.
또한, 참고예 1.2의 방법에 따라 유세포 분석을 수행하고, 얻어진 결과를 도 7에 나타내었다. 도 7에 나타난 바와 같이, SCAP의 약 91.81%가 CD13을, 약 99.35%가 CD90을, 약 83.69%가 CD146를, 약 1.93%가 CD34를 각각 발현하는 것을 확인하였다. 상기 마커들 중 CD34는 중간엽줄기세포의 음성 마커이다. 상기 마커들의 양성 세포의 비율(%)은 각 마커에 대한 항체와 결합한 세포의 상대적 형광 강도를 정량화하여 측정하였다. 상기 결과는 상기 분리/배양된 SCAP가 중간엽줄기세포 양성 마커를 발현하는 세포의 비율이 높고 (약 83% 이상), 중간엽줄기세포 음성 마커를 발현하는 세포의 비율이 낮음 (약 2% 이하)을 보여주는 것으로, SCAP 세포가 줄기 세포(중간엽줄기세포)의 특성을 가짐을 입증한다.In addition, flow cytometry was performed according to the method of Reference Example 1.2, and the results obtained are shown in FIG. 7 . As shown in FIG. 7 , it was confirmed that about 91.81% of SCAP expressed CD13, about 99.35% of CD90, about 83.69% of CD146, and about 1.93% of CD34, respectively. Among these markers, CD34 is a negative marker for mesenchymal stem cells. The percentage (%) of cells positive for the markers was measured by quantifying the relative fluorescence intensity of cells bound to the antibody for each marker. The results show that the isolated/cultured SCAP has a high proportion of cells expressing a mesenchymal stem cell positive marker (about 83% or more), and a low proportion of cells expressing a mesenchymal stem cell negative marker (about 2% or less). ), demonstrating that SCAP cells have the characteristics of stem cells (mesenchymal stem cells).
 
1.2. SCAP의 다계통 분화(Multi-lineage differentiation)1.2. Multi-lineage differentiation of SCAP
참고예 1.3을 참조하여 SCAP의 다계통 분화 능력을 평가하였다. SCAP을 골 형성 유도 배지, 지방세포 생성 유도 배지, 및 연골 형성 유도 배지에서 각각 배양하고, 3주 분화 유도 후, 염색된 세포를 역광 현미경(inverted light microscope; Olympus U-SPT, Olympus, Japan)으로 관찰한 결과를 도 8에 나타내었다. 도 8에 나타난 바와 같이, 골 형성 유도 배지에서 배양한 SCAP 배양물(가장 위쪽 사진)에서 작은 원형의 Alizarin Red-양성 칼슘 결절(Alizarin Red-positive calcium nodules)이 생성된 것을 확인하였다. 또한, SCAP은 지방 생성 유도 후에는 Oil Red O-positive lipid clusters를 형성하고, 연골 형성 유도 후에는 Alcian Blue-positive nodules를 형성하는 것을 확인하였다 (도 8).With reference to Reference Example 1.3, the ability of SCAP to differentiate into multiple lines was evaluated. SCAP was cultured in bone formation induction medium, adipocyte formation induction medium, and chondrogenesis induction medium, respectively, and after differentiation induction for 3 weeks, the stained cells were analyzed using an inverted light microscope (Olympus U-SPT, Olympus, Japan). The observed results are shown in FIG. 8 . As shown in FIG. 8 , it was confirmed that small circular Alizarin Red-positive calcium nodules were generated in the SCAP culture (topmost photograph) cultured in the bone formation induction medium. In addition, it was confirmed that SCAP formed Oil Red O-positive lipid clusters after induction of adipogenesis and Alcian Blue-positive nodules after induction of cartilage formation (FIG. 8).
 
1.3. 지연 발광 분석 (Delayed luminescence assay)1.3. Delayed luminescence assay
참고예 1.4 및 1.5를 참조하여, SCAP에 830nm의 근적외선(NIR)을 1분 동안 조사한 후, 상기 근적외선 조사된 세포로부터 23초동안 지연 발광(DL)을 측정하였다.Referring to Reference Examples 1.4 and 1.5, after irradiating the SCAP with near-infrared (NIR) of 830 nm for 1 minute, delayed emission (DL) was measured for 23 seconds from the near-infrared irradiated cells.
우선, 다양한 진동수(CW(연속파), 3Hz, 30Hz, 300Hz 및 3000Hz)의 근적외선 조사시의 지연발광을 각각 측정하여, 그 결과를 도 9a에 나타내었다(지연 발광 강도 I(t) (상단) 및 여기 레벨 n(t) (하단)). 도 9a에서 보여지는 바와 같이, 지연발광 (지연발광 강도 및 여기 레벨)은 진동수 300Hz에서 가장 높게 나타나고, 진동수 3Hz 또는 연속파에서 가장 낮게 나타났다 (도 9a의 상단 및 하단 그래프는 위부터 순서대로 300Hz > 3000Hz ≥ 30Hz > 3Hz ≒ CW의 결과를 나타냄). 이러한 결과는 30Hz 이상의 진동수 (예컨대, 30Hz 내지 3000Hz), 예컨대, 300Hz에서 근적외선이 SCAP에 많이 흡수됨을 보여준다.First, each of the delayed emission measurements during near-infrared irradiation at various frequencies (CW (continuous wave), 3 Hz, 30 Hz, 300 Hz and 3000 Hz), and the results are shown in FIG. 9A (delayed emission intensity I(t) (top) and Here level n(t) (bottom)). As shown in FIG. 9A , delayed emission (delayed emission intensity and excitation level) was highest at a frequency of 300 Hz, and lowest at a frequency of 3 Hz or continuous wave (the upper and lower graphs of FIG. ≥ 30 Hz > 3 Hz ≒ represents the result of CW). These results show that SCAP absorbs a lot of near-infrared rays at frequencies of 30 Hz or higher (eg, 30 Hz to 3000 Hz), eg, 300 Hz.
그 다음으로, 300Hz의 NIR (830nm) 조사 시의 다양한 파장내 조사율 (duty cycles; 10%, 20%, 30%, 40%, 50%, 및 60%)에서 각각 지연발광을 측정하여, 그 결과를 도 9b에 나타내었다(지연 발광 강도 I(t) (상단) 및 여기 레벨 n(t) (하단)). 도 9b에서 보여지는 바와 같이, 지연발광 (지연발광 강도 및 여기 레벨)은 30% 파장내 조사율에서 가장 높게 나타나고, 50% 파장내 조사율에서 가장 낮게 나타나서 (도 9b의 상단 및 하단 그래프는 위부터 순서대로 30% > 60% ≥ 20% > 10% ≒ 40% ≒ 50%의 결과를 나타냄), SCAP이 파장내 조사율이 약 30%인 경우에 근적외선 흡수율이 높다는 것으로 보여준다. Next, by measuring the delayed luminescence at various in-wavelength irradiation rates (duty cycles; 10%, 20%, 30%, 40%, 50%, and 60%) at 300 Hz NIR (830 nm) irradiation, respectively, The results are shown in FIG. 9B (delayed emission intensity I(t) (top) and excitation level n(t) (bottom)). As shown in FIG. 9B, delayed emission (delayed emission intensity and excitation level) appeared highest at 30% in-wavelength irradiation and lowest at 50% in-wavelength irradiation (top and bottom graphs in FIG. 9b are above 30% > 60% ≥ 20% > 10% ≒ 40% ≒ 50%), and SCAP shows that near-infrared absorption is high when the in-wavelength irradiance is about 30%.
이러한 결과는 근적외선이 300Hz의 진동수 및 30%의 파장내 조사율로 조사된 경우에, SCAP가 근적외선(예, 830nm)을 보다 효과적으로 흡수함을 보여준다.These results show that SCAP more effectively absorbs near-infrared rays (eg, 830 nm) when the near-infrared rays are irradiated with a frequency of 300 Hz and an in-wavelength irradiance of 30%.
1.4. 알칼리 포스파타제 (Alkaline phosphatase) 활성1.4. Alkaline phosphatase activity
PBM 요법 (근적외선 조사)이 SCAP의 알칼리 포스파타제 (Alkaline phosphatase; ALP) 활성에 미치는 영향을 확인하였다. ALP는 골형성 분화의 지표로서, 본 실시예에서는 골형성 분화 정도를 측정하여 ALP 활성을 시험하였다.The effect of PBM therapy (near infrared irradiation) on alkaline phosphatase (ALP) activity of SCAP was confirmed. ALP is an indicator of osteogenic differentiation, and in this example, ALP activity was tested by measuring the degree of osteogenic differentiation.
보다 구체적으로, 참고예 1.6을 참조하여, 다양한 진동수의 근적외선(830nm)을 7일 동안 조사한 SCAP의 골형성 분화(osteogenic differentiation) 정도를 근적외선 조사 3일째, 5일째, 및 7일째에 각각 측정하여 ALP 활성을 분석하였다. 상기 측정된 골형성 분화 정도를 대조군 (cont; 근적외선 무처리군)에 대한 상대값으로 계산하여 도 10에 나타내었다. 도 10에 나타난 바와 같이, 3Hz, 30Hz, 및 300Hz 진동수의 근적외선이 7일간 조사된 군은 모두 대조군과 비교하여 골형성 분화 정도가 적어도 1.3배 이상 증가한 것으로 나타나서 (p < 0.05), ALP 활성 증가가 확인되었다. 이 중에서도 특히 300Hz의 근적외선을 7일간 조사한 군에서 가장 높은 ALP 활성이 관찰되었다. 이러한 결과는 300Hz 부근의 진동수를 갖는 근적외선이 SCAP를 자극하여 골형성 분화(osteogenic differentiation)를 유도하는 최적의 진동수임을 보여준다.More specifically, with reference to Reference Example 1.6, the degree of osteogenic differentiation of SCAP irradiated with near-infrared rays (830 nm) of various frequencies for 7 days was measured on the 3rd, 5th, and 7th days of NIR irradiation, respectively, and ALP Activity was assayed. The measured osteogenic differentiation degree was calculated as a relative value with respect to the control group (cont; non-near-infrared treatment group), and is shown in FIG. 10 . As shown in FIG. 10 , all groups irradiated with near-infrared rays of 3 Hz, 30 Hz, and 300 Hz for 7 days showed an increase in the degree of osteogenic differentiation at least 1.3 times compared to the control group (p < 0.05), indicating that the increase in ALP activity was Confirmed. Among them, the highest ALP activity was observed in the group irradiated with near-infrared rays of 300 Hz for 7 days. These results show that near-infrared rays having a frequency of around 300 Hz are the optimal frequency to stimulate SCAP to induce osteogenic differentiation.
1.5. 칼슘 침전 (calcium deposition) 평가1.5. Calcium deposition evaluation
근적외선 조사된 SCAP에서의 기질 무기질화 (matrix mineralization) 동안의 칼슘 침전을 평가하기 위하여, 참고예 1.7을 참조하여 Alizarin Red S 염색을 수행하였다. SCAP에 3Hz, 30Hz, 300Hz 및 3000Hz의 4가지 진동수를 갖는 근적외선(830nm)을 21 일 동안 조사한 후 (파장내 조사율은 30%로 고정시킴), Alizarin Red S로 염색한 결과를 도 11에 나타내었다. 도 11의 상단은 근적외선 진동수에 따른 SCAP Alizarin Red S 염색한 모습을 보여주는 사진이고 (아래 두 줄의 사진은 위의 두 줄의 사진을 40배 확대한 것임), 하단은 상기 얻어진 Alizarin Red S 염색 정도를 정량화하여 대조군(근적외선 무처리군)에 대한 상대값으로 나타낸 그래프이다. 도 11에 나타난 바와 같이, 3Hz, 30Hz, 300Hz 및 3000 Hz 진동수 근적외선 처리군에서의 10일째 칼슘 침전 정도가 대조군과 비교하여 크게 증가된 것을 확인할 수 있다. 이러한 결과는, 근적외선 조사가 초기 단계에서 치근단유두 줄기세포의 분화를 촉진함을 보여주는 것이라고 할 수 있다. In order to evaluate calcium precipitation during matrix mineralization in SCAP irradiated with near-infrared rays, Alizarin Red S staining was performed with reference to Reference Example 1.7. After irradiating the SCAP with near-infrared rays (830 nm) having 4 frequencies of 3 Hz, 30 Hz, 300 Hz and 3000 Hz for 21 days (intra-wavelength irradiation rate is fixed at 30%), the result of staining with Alizarin Red S is shown in FIG. It was. The upper part of FIG. 11 is a photograph showing the state of SCAP Alizarin Red S staining according to the near-infrared frequency (the lower two lines are a 40-fold magnification of the upper two lines), and the lower portion is the obtained Alizarin Red S staining degree It is a graph expressed as a relative value with respect to the control group (near-infrared untreated group) by quantifying . As shown in FIG. 11 , it can be seen that the degree of calcium precipitation on the 10th day in the near-infrared treatment group with frequencies of 3 Hz, 30 Hz, 300 Hz and 3000 Hz was significantly increased compared to the control group. These results can be said to show that near-infrared irradiation promotes the differentiation of apical papillary stem cells at an early stage.
 
1.6. 마커 유전자 및 단백질 측정1.6. Marker gene and protein measurement
참고예 1.8을 참조하여, SCAP에 근적외선(830nm) 조사 10 일 후, 골 및 치아 형성과 관련된 7개 유전자(ALP, Col1A, RUNX2, OCN, TGF-β, DSPP, DMP1), 및 GAPDH에 대한 RT-PCR을 실시하여, 그 결과를 도 12에 나타내었다. ALP 유전자의 경우 3Hz 진동수의 근적외선 조사 시에 가장 높은 발현률을 보였다. 골형성과 관련된 OCN 및 RUNX2 유전자 및 상아질 형성과 관련된 DMP1, DSPP 및 TGFb1 유전자의 경우, 모두 300Hz 진동수의 근적외선 조사 시에 가장 높은 발현률을 보였다. Col1A의 발현은 3Hz, 30Hz 및 300Hz 진동수의 근적외선 조사 시 모두에서 대조군 대비 증가하였다.Referring to Reference Example 1.8, RT for 7 genes (ALP, Col1A, RUNX2, OCN, TGF-β, DSPP, DMP1) related to bone and tooth formation, and GAPDH after 10 days of near-infrared (830 nm) irradiation on SCAP -PCR was performed, and the results are shown in FIG. 12 . The ALP gene showed the highest expression rate when irradiated with near-infrared rays with a frequency of 3 Hz. OCN and RUNX2 genes related to bone formation and DMP1, DSPP and TGFb1 genes related to dentin formation all showed the highest expression rates when irradiated with near-infrared rays at a frequency of 300 Hz. The expression of Col1A was increased compared to the control group in all of the near-infrared irradiation with frequencies of 3 Hz, 30 Hz and 300 Hz.
또한, 참고예 1.9를 참조하여, SCAP에 21일동안 300Hz 진동수 및 30% 파장내 조사율의 근적외선(830nm) 조사 후, 웨스턴 블롯 분석을 수행하여, Col1A, DMP-1, CEMP-1, CAP, 및 OCN 단백질 수준을 측정하여, 그 결과를 도 13a (전기영동 사진) 및 도 13b (정량화 그래프)에 나타내었다. 도 13a 및 13b에 나타난 바와 같이, 근적외선 조사군 (PBM)에서의 Col1A, DMP-1, CEMP-1, CAP, 및 OCN 단백질 발현 수준이 모두 대조군 대비 현저히 증가하였다.In addition, referring to Reference Example 1.9, SCAP was irradiated with near-infrared (830 nm) at 300 Hz frequency and 30% wavelength for 21 days, followed by Western blot analysis, Col1A, DMP-1, CEMP-1, CAP, and OCN protein levels were measured, and the results are shown in FIGS. 13A (electrophoresis picture) and FIG. 13B (quantification graph). As shown in FIGS. 13A and 13B , the expression levels of Col1A, DMP-1, CEMP-1, CAP, and OCN proteins in the near-infrared irradiation group (PBM) all significantly increased compared to the control group.
실시예 2. SCAP에 대한 PBM (Photobiomodulation) 효과 (Example 2. PBM (Photobiomodulation) effect on SCAP ( in vivoin vivo ))
2.1. Histological evaluation and histomorphometry2.1. Histological evaluation and histomorphometry
참고예 2.1을 참조하여, 마우스에 SCAP를 이식하였다. 육안으로 보아 이식물이 경화되었고, 모든 시험군에서 이식 부위의 피부에 염증반응이 관찰되지 않았다. Referring to Reference Example 2.1, SCAP was implanted in mice. Visually, the implant was hardened, and no inflammatory reaction was observed in the skin of the implantation site in all test groups.
침고예 2.2를 참조하여, 이식 이식 후 6 주째에 이식물을 회수하고, 헤마톡실린 및 에오신으로 염색하여 조직학적 평가를 수행하여, 그 결과를 도 14a (염색 사진, x80), 도 14b (정량화한 그래프), 및 도 15 (염색 사진, x200)에 나타내었다. 도 14a 및 14b에 나타난 바와 같이, SCAP가 이식되지 않은 그룹 [그룹 1(HA/TCP만 이식) 및 그룹 3 (HA/TCP 이식 + 근적외선 조사)]에서는 새로 형성된 경조직(hard tissues)이 뚜렷하게 관찰되지 않았다. 또한, 근적외선이 조사된 모든 PBM 그룹(그룹 3 (HA/TCP 이식 + 근적외선 조사) 및 그룹 4 (SCAP를 포함하는 HA/TCP 이식 + 근적외선 조사))에서, 세포 및 결합 조직 부분이 그룹 1보다 상당히 증가하였다. 특히, SCAP 없이 근적외선이 조사된 그룹 3의 경우 세포와 결합 조직 부분이 그룹 1과 비교하여 크게 증가했다. 또한, 도 15에 나타난 바와 같이, SCAP가 이식된 그룹 [그룹 2(SCAP를 포함하는 HA/TCP 이식) 및 그룹 4 (SCAP를 포함하는 HA/TCP 이식 + 근적외선 조사)]에서만 스캐폴드와 세포 부분 사이의 계면에서 신생 경조직이 관찰되었다.With reference to Immersion Example 2.2, the transplant was recovered at 6 weeks after transplantation, and histological evaluation was performed by staining with hematoxylin and eosin, and the results are shown in FIGS. 14a (stained photograph, x80), FIG. 14b (quantification) one graph), and FIG. 15 (stained photograph, x200). As shown in FIGS. 14A and 14B , newly formed hard tissues were not clearly observed in the group in which the SCAP was not transplanted [Group 1 (HA/TCP transplant only) and Group 3 (HA/TCP transplant + near-infrared irradiation)]. didn't Also, in all PBM groups irradiated with near-infrared rays (group 3 (HA/TCP implantation + near-infrared irradiation) and group 4 (HA/TCP implantation with SCAP + near-infrared irradiation)), cell and connective tissue portions were significantly higher than in group 1. increased. In particular, in the case of group 3 irradiated with near-infrared rays without SCAP, the cell and connective tissue portion increased significantly compared to group 1. In addition, as shown in FIG. 15 , only the scaffolds and cell parts in the group transplanted with SCAP [group 2 (HA/TCP transplantation containing SCAP) and group 4 (HA/TCP transplantation including SCAP + near-infrared irradiation)] New hard tissue was observed at the interface between them.
 
2.2. 오스테오칼신(osteocalcin; OCN)을 이용한 면역 조직 화학적 평가2.2. Immunohistochemical evaluation using osteocalcin (OCN)
참고예 2.3을 참조하여, 그룹 1 내지 4에 대하여 오스테오칼신(OCN)을 이용한 면역염색을 수행하여, 그 결과를 도 16a (염색 사진, x80) 및 도 16b (정량화 그래프)에 나타내었다. 도 16a에서 확인되는 바와 같이, 신생 경조직은 스캐폴드와 세포 부분 사이의 계면에서 오스테오칼신으로 염색되었다. 이러한 오스테오칼신 염색은 SCAP 이식이 수행되지 않은 그룹(그룹 1 및 3)에서는 거의 관찰되지 않은 반면, SCAP 이식이 수행된 그룹(그룹 2 및 4)에서는 뚜렷한 염색이 관찰되었으며, 근적외선이 조사된 그룹 4의 경우 근적외선이 조사되지 않은 그룹 2와 비교하여 오스테오칼신 염색의 정도가 증가되는 것으로 나타났다.With reference to Reference Example 2.3, immunostaining was performed using osteocalcin (OCN) for groups 1 to 4, and the results are shown in FIGS. 16a (stained photograph, x80) and 16b (quantification graph). As shown in FIG. 16A , the new hard tissue was stained with osteocalcin at the interface between the scaffold and the cell part. Such osteocalcin staining was hardly observed in the group in which SCAP transplantation was not performed (groups 1 and 3), whereas distinct staining was observed in the group in which SCAP transplantation was performed (groups 2 and 4), and in group 4 irradiated with near-infrared rays. In this case, it was found that the degree of osteocalcin staining was increased compared to Group 2, which was not irradiated with near-infrared rays.

Claims (21)

  1. 근적외선 조사된 치근단유두 줄기세포(stem cells from apical papilla; SCAP)를 포함하는, 치아 이식 또는 치근 생성용 조성물.A composition for tooth transplantation or root generation, comprising near-infrared irradiated apical papilla stem cells (stem cells from apical papilla; SCAP).
  2. 제1항에 있어서, 상기 치근단유두 줄기세포는 미성숙 영구치의 치근단(root apex)으로부터 분리된 것인, 치아 이식 또는 치근 생성용 조성물. According to claim 1, wherein the apical papillary stem cells will be isolated from the apex (root apex) of immature permanent teeth, a tooth transplantation or a composition for generating a root.
  3. 제1항에 있어서, 상기 근적외선은 800nm 내지 900nm의 파장을 갖는 펄스파(pulsed wave)인, 치아 이식 또는 치근 생성용 조성물.According to claim 1, wherein the near-infrared is a pulsed wave (pulsed wave) having a wavelength of 800nm to 900nm, tooth implantation or tooth root generation composition.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 근적외선은 다음의 특징을 갖는 것인, 치아 이식 또는 치근 생성용 조성물:According to any one of claims 1 to 3, wherein the near-infrared radiation will have the following characteristics, the composition for dental implantation or root generation:
    (1) 30 Hz 내지 3000 Hz의 진동수;(1) a frequency of 30 Hz to 3000 Hz;
    (2) 25 내지 35%의 파장내 조사율 (duty cycle); 또는(2) an in-wavelength duty cycle of 25 to 35%; or
    (3) 상기 (1) 및 (2)의 조합.(3) A combination of (1) and (2) above.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 근적외선 조사된 치근단유두 줄기세포는, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP, 및 DMP1로 이루어진 군에서 선택된 하나 이상의 암호화 유전자 수준이 증가된 것인, 치아 이식 또는 치근 생성용 조성물. The method according to any one of claims 1 to 3, wherein the near-infrared irradiated apical papillary stem cells, ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP compared to the apical papillary stem cells not irradiated with near-infrared rays. , And one or more coding genes selected from the group consisting of DMP1 will increase the level, a tooth transplantation or a composition for generating a root.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 근적외선 조사된 치근단유두 줄기세포는, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, Col1A, DMP-1, CEMP-1, CAP, 및 OCN로 이루어진 군에서 선택된 하나 이상의 단백질 수준이 증가된 것인, 치아 이식 또는 치근 생성용 조성물. The method according to any one of claims 1 to 3, wherein the near-infrared irradiated apical papillary stem cells, Col1A, DMP-1, CEMP-1, CAP, and One or more protein levels selected from the group consisting of OCN is increased, a composition for dental implantation or root generation.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 근적외선 조사된 치근단유두 줄기세포는 골세포, 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화되는, 치아 이식 또는 치근 생성용 조성물. The method according to any one of claims 1 to 3, wherein the near-infrared irradiated apical papillary stem cells are differentiated into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes. composition for production.
  8. 치근단유두 줄기세포, 및 apical papillary stem cells, and
    근적외선 조사를 위한 광원Light source for near-infrared irradiation
    을 포함하는, 치아 이식 또는 치근 생성용 키트.A kit for dental implantation or root generation, comprising a.
  9. 제8항에 있어서, 상기 치근단유두 줄기세포는 미성숙 영구치의 치근단으로부터 분리된 것인, 치아 이식 또는 치근 생성용 키트. According to claim 8, wherein the apical papillary stem cells will be isolated from the apical end of immature permanent teeth, tooth transplantation or tooth root generation kit.
  10. 제8항 또는 제9항에 있어서, 상기 근적외선은 800nm 내지 900nm의 파장을 갖는 펄스파(pulsed wave)인, 치아 이식 또는 치근 생성용 키트.The kit of claim 8 or 9, wherein the near-infrared radiation is a pulsed wave having a wavelength of 800 nm to 900 nm.
  11. 제8항 또는 제9항에 있어서, 상기 근적외선은 다음의 특징을 갖는 것인, 치아 이식 또는 치근 생성용 키트:The kit for dental implantation or root generation according to claim 8 or 9, wherein the near-infrared radiation has the following characteristics:
    (1) 30 Hz 내지 3000 Hz의 진동수;(1) a frequency of 30 Hz to 3000 Hz;
    (2) 25 내지 35%의 파장내 조사율 (duty cycle); 또는(2) an in-wavelength duty cycle of 25 to 35%; or
    (3) 상기 (1) 및 (2)의 조합.(3) A combination of (1) and (2) above.
  12. 제8항 또는 제9항에 있어서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP, 및 DMP1로 이루어진 군에서 선택된 하나 이상의 암호화 유전자 수준이 증가하는 것인, 치아 이식 또는 치근 생성용 키트. The method according to claim 8 or 9, wherein the apical papillary stem cells are ALP, Col1A, RUNX2, OCN, TGF-β1, DSPP, and DMP1 by near-infrared irradiation, compared to the apical papillary stem cells not irradiated with near-infrared rays. The level of one or more encoding genes selected from the group consisting of increases, a tooth implantation or tooth root generation kit.
  13. 제8항 또는 제9항에 있어서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여, 근적외선이 조사되지 않은 치근단유두 줄기세포와 비교하여, Col1A, DMP-1, CEMP-1, CAP, 및 OCN로 이루어진 군에서 선택된 하나 이상의 단백질 수준이 증가하는 것인, 치아 이식 또는 치근 생성용 키트. The method according to claim 8 or 9, wherein the apical papillary stem cells are made of Col1A, DMP-1, CEMP-1, CAP, and OCN by near-infrared irradiation, compared to the apical papillary stem cells not irradiated with near-infrared rays. One or more protein levels selected from the group increase, a kit for dental implantation or root generation.
  14. 제8항 또는 제9항에 있어서, 상기 치근단유두 줄기세포는 근적외선 조사에 의하여 골세포, 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화되는 것인, 치아 이식 또는 치근 생성용 키트. The method of claim 8 or 9, wherein the apical papillary stem cells are differentiated into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes by near-infrared irradiation, dental implantation or root generation for kit.
  15. 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치아 이식물의 제조 방법.A method of manufacturing a dental implant comprising the step of irradiating near-infrared rays to the isolated apical papillary stem cells.
  16. 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치근단유두 줄기세포의 분화 방법.A method of differentiation of apical papillary stem cells, comprising the step of irradiating near-infrared rays to the separated apical papillary stem cells.
  17. 제16항에 있어서, 상기 치근단유두 줄기세포의 분화는 골세포, 상아질모세포, 지방세포, 및 연골세포로 이루어진 군에서 선택된 하나 이상으로 분화인, 치근단유두 줄기세포의 분화 방법.The method of claim 16, wherein the differentiation of the apical papillary stem cells is differentiation into one or more selected from the group consisting of osteocytes, odontoblasts, adipocytes, and chondrocytes.
  18. 분리된 치근단유두 줄기세포에 근적외선을 조사하는 단계를 포함하는, 치근 제조 방법.A method for producing a tooth root, comprising the step of irradiating near-infrared rays to the separated apical papillary stem cells.
  19. 제15항 내지 제18항 중 어느 한 항에 있어서, 상기 치근단유두 줄기세포는 미성숙 영구치의 치근단(root apex)으로부터 분리된 것인, 방법. The method according to any one of claims 15 to 18, wherein the apical papillary stem cells are isolated from the root apex of immature permanent teeth.
  20. 제15항 내지 제18항 중 어느 한 항에 있어서, 상기 근적외선은 800nm 내지 900nm의 파장을 갖는 펄스파(pulsed wave)인, 방법.19. The method according to any one of claims 15 to 18, wherein the near infrared is a pulsed wave having a wavelength of 800 nm to 900 nm.
  21. 제15항 내지 제18항 중 어느 한 항에 있어서, 상기 근적외선은 다음의 특징을 갖는 것인, 방법:19. The method according to any one of claims 15 to 18, wherein the near infrared has the following characteristics:
    (1) 30 Hz 내지 3000 Hz의 진동수;(1) a frequency of 30 Hz to 3000 Hz;
    (2) 25 내지 35%의 파장내 조사율 (duty cycle); 또는(2) an in-wavelength duty cycle of 25 to 35%; or
    (3) 상기 (1) 및 (2)의 조합.(3) A combination of (1) and (2) above.
PCT/KR2020/005637 2020-04-28 2020-04-28 Method of accelerating differentiation of stem cells from apical papilla by using optical stimulation WO2021221199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/005637 WO2021221199A1 (en) 2020-04-28 2020-04-28 Method of accelerating differentiation of stem cells from apical papilla by using optical stimulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/005637 WO2021221199A1 (en) 2020-04-28 2020-04-28 Method of accelerating differentiation of stem cells from apical papilla by using optical stimulation

Publications (1)

Publication Number Publication Date
WO2021221199A1 true WO2021221199A1 (en) 2021-11-04

Family

ID=78332031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005637 WO2021221199A1 (en) 2020-04-28 2020-04-28 Method of accelerating differentiation of stem cells from apical papilla by using optical stimulation

Country Status (1)

Country Link
WO (1) WO2021221199A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212548B1 (en) * 2007-10-01 2012-12-14 재단법인서울대학교산학협력재단 Novel dental stem cells from tooth follicles and the method for culturing them
KR101859683B1 (en) * 2016-03-17 2018-07-02 서강대학교산학협력단 Biomoletron for Controlling Differentiation of Stem Cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212548B1 (en) * 2007-10-01 2012-12-14 재단법인서울대학교산학협력재단 Novel dental stem cells from tooth follicles and the method for culturing them
KR101859683B1 (en) * 2016-03-17 2018-07-02 서강대학교산학협력단 Biomoletron for Controlling Differentiation of Stem Cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IVANA MARIA ZACCARA, LETÍCIA BOLDRIN MESTIERI, MARIA STELLA MOREIRA, FABIANA SOARES GRECCA, MANOELA DOMINGUES MARTINS, PATRÍCIA MA: "Photobiomodulation therapy improves multilineage differentiation of dental pulp stem cells in three-dimensional culture model", JOURNAL OF BIOMEDICAL OPTICS, vol. 23, no. 9, 10 September 2018 (2018-09-10), pages 1 - 9, XP055862387, DOI: 10.1117/1.JBO.23.9.095001 *
KIM HONG BAE, BAIK KU YOUN, CHOUNG PILL-HOON, CHUNG JONG HOON: "Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells", SCIENTIFIC REPORTS, vol. 7, no. 1, 15927, 1 December 2017 (2017-12-01), pages 1 - 12, XP055862383, DOI: 10.1038/s41598-017-15754-2 *
KIM HONG BAE, BAIK KU YOUN, SEONWOO HOON, JANG KYOUNG-JE, LEE MYUNG CHUL, CHOUNG PILL-HOON, CHUNG JONG HOON: "Effects of pulsing of light on the dentinogenesis of dental pulp stem cells in vitro", SCIENTIFIC REPORTS, vol. 8, no. 1, 2057, 1 December 2018 (2018-12-01), pages 1 - 11, XP055862381, DOI: 10.1038/s41598-018-19395-x *

Similar Documents

Publication Publication Date Title
Zhou et al. Dental follicle cells: roles in development and beyond
Kawaguchi et al. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells
Wang et al. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration
Devlin et al. Early bone healing events in the human extraction socket
Huggins et al. Dentin matrix transformation: rapid induction of alkaline phosphatase and cartilage
Nakashima et al. Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11)
Zhang et al. Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration
Ajay Sharma et al. Advances in regeneration of dental pulp–a literature review
Dahake et al. Response of stem cells from human exfoliated deciduous teeth (SHED) to three bioinductive materials–An in vitro experimental study
Taniguchi et al. Bisphosphonate‐induced reactive oxygen species inhibit proliferation and migration of oral fibroblasts: A pathogenesis of bisphosphonate‐related osteonecrosis of the jaw
Torreggiani et al. Preosteocytes/osteocytes have the potential to dedifferentiate becoming a source of osteoblasts
CN1636054A (en) Mesenchymal cells and osteoblasts from human embryonic stem cell
Wang et al. Effects of the enamel matrix derivative on the proliferation and odontogenic differentiation of human dental pulp cells
Iwasaki et al. Application of cell-sheet engineering for new formation of cementum around dental implants
Saczko et al. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation.
Tuisku et al. Evidence for a neural influence on tooth germ generation in a polyphyodont species
Tabatabaei et al. Effects of equiaxial strain on the differentiation of dental pulp stem cells without using biochemical reagents
Kim et al. The dynamic healing profile of human periodontal ligament stem cells: histological and immunohistochemical analysis using an ectopic transplantation model
WO2017200197A1 (en) Composition for promoting growth of stem cells comprising phytosphingosine-1-phosphate or derivatives thereof, and composition for culturing media of stem cells comprising same
Yang et al. Tooth Germ‐Like Construct Transplantation for Whole‐Tooth Regeneration: An In Vivo Study in the Miniature Pig
WO2021221199A1 (en) Method of accelerating differentiation of stem cells from apical papilla by using optical stimulation
CN109847098A (en) A kind of compound bio timbering material for repairing bone defect
JP2008511363A (en) Augmenting the jawbone using dental primordia
WO2010036009A2 (en) Porous support for guided tissue regeneration and method of preparing same
Dong et al. Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: An in vitro and in vivo study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933054

Country of ref document: EP

Kind code of ref document: A1