WO2021221179A1 - Establishment of mouse model using human pancreatic cancer organoid - Google Patents

Establishment of mouse model using human pancreatic cancer organoid Download PDF

Info

Publication number
WO2021221179A1
WO2021221179A1 PCT/JP2021/017608 JP2021017608W WO2021221179A1 WO 2021221179 A1 WO2021221179 A1 WO 2021221179A1 JP 2021017608 W JP2021017608 W JP 2021017608W WO 2021221179 A1 WO2021221179 A1 WO 2021221179A1
Authority
WO
WIPO (PCT)
Prior art keywords
pancreatic cancer
mouse model
human pancreatic
cells
human
Prior art date
Application number
PCT/JP2021/017608
Other languages
French (fr)
Japanese (ja)
Inventor
恵介 谷内
英樹 谷口
Original Assignee
国立大学法人高知大学
公立大学法人 横浜市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人高知大学, 公立大学法人 横浜市立大学 filed Critical 国立大学法人高知大学
Priority to JP2022518164A priority Critical patent/JPWO2021221179A1/ja
Publication of WO2021221179A1 publication Critical patent/WO2021221179A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present invention relates to, for example, a human pancreatic cancer mouse model and the use of the mouse model.
  • pancreatic cancer which is a representative cancer with a poor prognosis, is difficult to detect at an early stage, and development of a useful diagnostic marker is desired.
  • pancreatic cancer there is no mouse model capable of forming a tumor having a tissue structure similar to that of human pancreatic cancer tissue at high throughput. For this reason, there was no useful pancreatic cancer mouse model that could be used to experiment with drug efficacy.
  • xenografts prepared by transplanting pancreatic cancer tissue obtained from patients into immunodeficient animals are patients with stromal cells / cancer-related fibroblasts and tumor macrophages in the tumor. Since it contains derived cells, it retains the characteristics of patient-derived tumors and is strongly expected to be used for tumor pathological analysis, tumor marker analysis, drug development, and the like.
  • PDX tumor growth in the mouse body accelerates as the passage progresses, and the gene expression profile changes as compared with the patient-derived sample.
  • PDX establishment usually takes 3-6 months, and at present it is difficult to be directly involved in the personalized care of the patient who donated the tumor.
  • Patent Document 1 describes human pancreatic cancer organoids by co-culturing human pancreatic cancer cell lines (PANC-1, CFPAC-1, SW1990), human vascular endothelial cells (HUVEC) and human mesenchymal cells (hMSC). It is disclosed that a pancreatic cancer xenograft having abundant stroma and ductal structure was formed from this pancreatic cancer organoid.
  • Patent Document 1 states that in mice carrying the human pancreatic cancer organoid, papillary structure, infiltration of pancreatic cancer cells with cancer stroma, lymphovascular invasion, lymph node metastasis, epithelial-mesenchymal transition (EMT), etc. It is not disclosed that tumors that form a tissue structure similar to clinical pancreatic cancer have been formed. Further, Patent Document 1 does not disclose that pancreatic cancer diagnostic markers behave similarly to clinical pancreatic cancer in sera collected from mice carrying human pancreatic cancer organoids. Further, Patent Document 1 does not disclose that a mouse carrying a human pancreatic cancer organoid is a useful model for determining the therapeutic effect of a pancreatic cancer therapeutic agent.
  • the present invention includes the following. (1) A mouse model of human pancreatic cancer carrying a pancreatic cancer organoid containing the human pancreatic cancer cell line S2-013. (2) A method for screening a pancreatic cancer therapeutic agent using the human pancreatic cancer mouse model described in (1).
  • FIG. 1 It is a photograph of a human pancreatic cancer organoid prepared in a petri dish in an example.
  • This human pancreatic cancer organoid was subcutaneously transplanted into nude mice. The day of transplantation was designated as Day 1.
  • Ten human pancreatic cancer organoids were generated (Orga-1 to Orga-10).
  • the method for producing human pancreatic cancer organoids shown in Examples one researcher can produce 10 to 20 uniform human pancreatic cancer organoids, and the method is for producing high-throughput human pancreatic cancer organoids. The method.
  • pancreatic cancer tumor tissue surgically removed from the pancreatic cancer patient in the example, stained with hematoxylin and eosin.
  • pancreatic cancer tumor tissue surgically removed from the pancreatic cancer patient in the example, stained with hematoxylin and eosin. Shows lymph node metastasis.
  • the graph in (A) shows the tumor volume over time when the tumor size was measured using a caliper.
  • Table (B) shows the pathological findings of the tumor tissue removed 8 weeks after transplantation. It is a figure which shows the measurement result of the pancreatic cancer diagnostic marker CA19-9 in the time-dependent tumor volume of (A) human pancreatic cancer mouse model, and the serum collected from (B and C) human pancreatic cancer mouse model in an Example. It is a photograph which shows the observation of the antitumor effect by administration of TS-1 to the mouse which carried the conventional Xenograft in Example.
  • the human pancreatic cancer mouse model according to the present invention is a human pancreatic cancer mouse model carrying a pancreatic cancer organoid including the human pancreatic cancer cell line S2-013.
  • the mouse model according to the present invention constructs a tissue similar to human pancreatic cancer tissue such as papillary structure, invasion of pancreatic cancer cells with cancer stroma, vascular invasion, lymph node metastasis, and epithelial-mesenchymal transition (EMT).
  • pancreatic cancer organoid in the present invention can be produced according to the method described in Patent Document 1.
  • the "pancreatic cancer organoid” is a cell aggregate composed of pancreatic cancer cells and other cells. It is possible to reproduce cell-cell interactions between multiple cells.
  • the pancreatic cancer organoid in the present invention reproduces the pancreatic cancer microenvironment, and is, for example, rich in stroma.
  • cancer tissue has a part called the stroma in addition to the cancer cells.
  • the stroma in addition to mesenchymal cells such as fibroblasts, cells that make up blood vessels, lymph vessels, nerves, etc. (blood cells, vascular cells, immune cells, etc.), cells that control inflammation (inflammatory cells), etc.
  • mesenchymal cells such as fibroblasts, cells that make up blood vessels, lymph vessels, nerves, etc. (blood cells, vascular cells, immune cells, etc.), cells that control inflammation (inflammatory cells), etc.
  • the pancreatic cancer organoid in the present invention may reproduce the cancer microenvironment including the cancer stroma.
  • S2-013 cells are derived from pancreatic duct adenocarcinoma, and components having a ductal structure are also found in the adenocarcinoma tissue.
  • the pancreatic cancer organoid in the present invention may reproduce the cancer microenvironment as well as the ductal structure.
  • the pancreatic cancer organoid in the present invention can be prepared by co-culturing the human pancreatic cancer cell line S2-013 with mesenchymal cells and vascular endothelial cells.
  • the culture may be a three-dimensional (3D) culture.
  • a 3D culture technique suitable for the reconstruction of pancreatic cancer organoids in the present invention is described in Nature, 25; 499 (7459): 481-4, 2013, Nat Protocol.
  • the "human pancreatic cancer cell line S2-013" used in the present invention is the Tohoku University Institute of Aging Medicine Medical Cell Resource Center / Cell Bank (4-1 Seiryomachi, Aoba-ku, Sendai City, Miyagi Prefecture, Japan 980-8575, Japan Tohoku University) It is retained as ID: TKG0709; cell name: S2-013 at the Medical Cell Resources Center of the Institute of Aging Medicine, and can be obtained from here.
  • the "vascular endothelial cell” refers to a cell constituting the vascular endothelium or a cell capable of differentiating into such a cell.
  • a cell is a vascular endothelial cell can be confirmed by examining whether or not a marker protein such as TIE2, VEGFR-1, VEGFR-2, VEGFR-3, or CD41 is expressed (any of the above marker proteins). If one or more of them are expressed, it can be determined that they are vascular endothelial cells).
  • the vascular endothelial cells used in the present invention may be differentiated or undifferentiated. Whether or not the vascular endothelial cells are differentiated cells can be confirmed by CD31 and CD144.
  • endothelial cells are included in the vascular endothelial cells in the present invention.
  • Preferred vascular endothelial cells are vascular endothelial cells derived from the umbilical vein.
  • Vascular endothelial cells can be collected from blood vessels or can be prepared from pluripotent stem cells such as induced pluripotent stem cells (iPS cells) and embryonic stem cells (ES cells) according to a known method.
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • the "mesenchymal cell” is a connective tissue cell that exists mainly in the connective tissue derived from the mesodermal cell and forms a support structure of a cell that functions in a tissue, but is destined to differentiate into a mesenchymal cell.
  • the mesenchymal cells used in the present invention may be differentiated or undifferentiated. Whether or not a cell is an undifferentiated mesenchymal cell is confirmed by examining whether or not a marker protein such as Stro-1, CD29, CD44, CD73, CD90, CD105, CD133, CD271, or Nestin is expressed. (If any one or more of the marker proteins are expressed, it can be determined that the cells are undifferentiated mesenchymal cells). In addition, mesenchymal cells that do not express any of the markers in the preceding paragraph can be judged to be differentiated mesenchymal cells.
  • a marker protein such as Stro-1, CD29, CD44, CD73, CD90, CD105, CD133, CD271, or Nestin is expressed.
  • mesenchymal stem cells mesenchymal progenitor cells, mesenchymal cells (R. Peters, et al. PLos One.30; 5 (12): e15689. (2010)) and the like are of the present invention.
  • mesenchymal cells include bone marrow-derived mesenchymal cells (particularly mesenchymal stem cells).
  • the mesenchymal cells are collected from tissues such as bone marrow, adipose tissue, placenta tissue, umbilical cord tissue, and dental pulp, or are pluripotent such as induced pluripotent stem cells (iPS cells) and embryonic stem cells (ES cells).
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • mesenchymal cells are mainly derived from humans, animals used for animals other than humans (for example, experimental animals, pet animals, service animals, race horses, fighting dogs, etc., specifically, mice and rats , Rabbits, pigs, dogs, monkeys, cows, horses, sheep, chickens, sharks, rays, ginseng, salmon, shrimp, crabs, etc.) may be used.
  • the culture ratio of the three types of cells in the co-culture is not particularly limited as long as the pancreatic cancer organoid can be formed, but a suitable cell number ratio is human pancreatic cancer cell line S2-013: vascular endothelial cell: mesenchymal cell.
  • About 200,000 human pancreatic cancer cell lines S2-013, about 140,000 vascular endothelial cells, and about 400,000 mesenchymal cells are co-cultured to produce pancreatic cancer organoids with a size of about 50,000 to 50,000 micrometers.
  • the medium used for culturing may be any medium as long as it forms a pancreatic cancer organoid, but is a mixture of a medium for vascular endothelial cell culture, a medium for cancer cell culture, and the above two media. Etc. are preferred.
  • vascular endothelial cell culture Any medium for vascular endothelial cell culture may be used, but hEGF (recombinant human epidermal growth factor), VEGF (vascular endothelial growth factor), hydrocortisone, bFGF, ascorbic acid, IGF1, FBS. , Antibiotics (eg, gentamicin, amphotericin B, etc.), Heparin, L-Glutamine, Phenolred, BBE.
  • EGM-2 Bullet Kit manufactured by Lonza
  • EGM Bullet Kit manufactured by Lonza
  • VascuLife EnGS Comp Kit manufactured by LCT
  • Human Endothelial-SFM Thermo Fisher Human microvascular endothelial cell growth medium
  • TOYOBO Human microvascular endothelial cell growth medium
  • the support has an appropriate hardness (for example, Young's modulus of 200 kPa or less (for example, when the shape coated with Matrigel is a flat gel), but the appropriate hardness of the support may vary depending on the coating and shape).
  • a gel-like base material having a gel It is preferably a gel-like base material having a gel, and examples of such a base material include hydrogels (for example, acrylamide gel, gelatin, matrigel, etc.), but are not limited thereto.
  • the hardness of the support does not necessarily have to be uniform according to the shape, size, and amount of the target aggregate, and it is possible to set a spatial / temporal gradient for the hardness or to pattern it. It is possible.
  • the hardness of the support is preferably 100 kPa or less, more preferably 1 to 50 kPa.
  • the gel-like support may be flat, or the cross section of the gel-like support on the culture side may be U or V-shaped.
  • the U or V-shaped cross section of the gel-like support on the culture side allows cells to gather on the culture surface of the support, and a cell aggregate is formed with a smaller number of cells and / or tissues. It is advantageous because it is done.
  • the support may be chemically or physically modified. Examples of the modifying substance include matrigel, laminin, entactin, collagen, fibronectin, vitronectin and the like.
  • An example in which the hardness of the gel-like culture support is set to a spatial gradient is a gel-like culture support in which the hardness of the central portion is harder than the hardness of the peripheral portion.
  • the appropriate hardness of the central part is 200 kPa or less, and the hardness of the peripheral part should be softer than that of the central part, but the appropriate hardness of the central part and the peripheral part of the support varies depending on the coating and shape. sell.
  • Another example in which the hardness of the gel-like culture support is set to a spatial gradient is a gel-like culture support in which the hardness of the peripheral portion is harder than the hardness of the central portion.
  • An example of a patterned gel-like culture support is a gel-like culture support having one or more patterns in which the hardness of the central portion is harder than the hardness of the peripheral portion.
  • the appropriate hardness of the central part is 200 kPa or less, and the hardness of the peripheral part should be softer than that of the central part, but the appropriate hardness of the central part and the peripheral part of the support varies depending on the coating and shape. sell.
  • Another example of the patterned gel-like culture support is a gel-like culture support having one or more patterns in which the hardness of the peripheral portion is harder than the hardness of the central portion.
  • the appropriate hardness of the peripheral portion is 200 kPa or less, and the hardness of the central portion may be softer than that of the peripheral portion, but the appropriate hardness of the central portion and the peripheral portion of the support varies depending on the coating and shape. sell.
  • the temperature at the time of culturing is not particularly limited, but is preferably 30 to 40 ° C, more preferably 37 ° C.
  • the culture period is not particularly limited, but is preferably 1 to 60 days, and more preferably 1 to 7 days.
  • 1-2. Preparation of mouse model A human pancreatic cancer mouse model (Xenograft model) that reproduces the ductal structure and pancreatic cancer microenvironment by transplanting a reconstructed pancreatic cancer organoid that reproduces the above-mentioned pancreatic cancer microenvironment into a mouse is prepared. be able to.
  • Examples of the mouse used in the present invention include BALB / cSlc-nu / nu mice.
  • pancreatic cancer therapeutic agents anticancer agents
  • pancreatic cancer diagnostic markers screening of pancreatic cancer therapeutic agents
  • a test substance which is a therapeutic agent candidate compound is administered to a mouse model according to the present invention by an appropriate administration route such as oral administration, and the size, invasion, and distant metastasis of pancreatic cancer are determined in the mouse model.
  • the effect of the test substance can be determined by observing the number, death of the mouse, and the like.
  • the pancreatic cancer therapeutic agent to be evaluated is administered to the mouse model according to the present invention by an appropriate administration route such as oral administration, and the size, invasion, and distant metastasis of pancreatic cancer in the mouse model.
  • the efficacy of the pancreatic cancer therapeutic agent can be evaluated by observing the number of patients, the death of the mouse, and the like.
  • the pancreatic cancer diagnostic marker behaves similarly to clinical pancreatic cancer.
  • the mouse model according to the present invention can be used for evaluation of the usefulness of a pancreatic cancer diagnostic marker or screening of a pancreatic cancer diagnostic marker in a biological sample such as serum collected from the mouse model.
  • a biological sample such as serum collected from the mouse model according to the present invention is used for an immunological measurement method using an antibody against the pancreatic cancer diagnostic marker to be evaluated.
  • the pancreatic cancer diagnostic marker is measured at the protein level.
  • the measured pancreatic cancer diagnostic marker level concentration in a biological sample such as serum
  • pancreatic cancer diagnostic marker can be evaluated by determining whether or not a significant change (increase or decrease) according to the pancreatic cancer diagnostic marker to be evaluated is observed as compared with the target sample).
  • biological samples such as serum collected from the mouse model according to the present invention are subjected to an immunological measurement method using an antibody against a pancreatic cancer diagnostic marker candidate, and the screening is performed at the protein level. Measure pancreatic cancer diagnostic marker candidates.
  • pancreatic cancer diagnostic marker candidate can be identified as a pancreatic cancer diagnostic marker by significantly fluctuating (increasing or decreasing) as compared with the scientific sample).
  • the immunological measurement method is not particularly limited, and examples thereof include ELISA, flow cytometry, and Western blotting.
  • MSCs were cultured in MSCGM medium.
  • SIGMA trypsin
  • sigco trypsin
  • each cell After suspending in the culture medium suitable for each cell, trypan blue and the cell suspension were mixed in an equivalent amount in 1.5 mL assist tube, and 10 ⁇ L of the mixture was used for cell counting with a hemocytometer. After confirming the viable cell rate and the number of cells, each cell was dispensed in the required amount using one 15 mL falcon tube for each organoid. After dispensing, it was stored on ice. The number of cells required for one organoid was S2-013: 20 ⁇ 10 4 cells, MSC: 40 ⁇ 10 4 cells, and HUVEC: 14 ⁇ 10 4 cells. On the other hand, an equivalent amount of Matrigel was added to DMEM which had been cooled in advance.
  • a pipette tip wet with well-chilled PBS was used to prevent the matrigel from solidifying.
  • the DMEM / Matrigel mixture was mixed well and placed on ice.
  • the 48-well plate was then wetted with 200 ⁇ L / well of well-chilled PBS, the PBS was removed from the well, and then the DMEM / Matrigel mixed solution was applied at 160 ⁇ L / well.
  • the bubbles were crushed with the tip of a chip or the like, and after confirming that the liquid level was flat, they were incubated at 37 ° C. for 1 hour in a CO 2 incubator.
  • the mixed solution of the three types of cells prepared by the above-mentioned dispensing was mixed well, centrifuged at 600 g for 5 minutes at room temperature, and the supernatant was removed as much as possible using Pasteur with a 10 ⁇ L tip. Then, one falcon tube containing the cell mixture was applied to each well of the 48 wells that had been incubated. At this time, care was taken not to allow bubbles to enter or crack. A 48-well plate to which the cell mixture was applied was incubated in a CO 2 incubator at 37 ° C. for 30 minutes. During the incubation waiting time, DMEM / EGM mixed solution was prepared by mixing DMEM and EGM in equivalent amounts.
  • pancreatic cancer organoid was prepared for each well of the 48-well plate.
  • 1-3 Preparation of human pancreatic cancer mouse model In Section 1-2, the pancreatic cancer organoid prepared the day before was observed under a microscope to confirm whether it was contracted or not cracked and whether it had a usable shape.
  • a Matrigel / DMEM mixed solution was prepared and dispensed into 1.5 mL tube at 50 ⁇ L / tube. The same number as the number of pancreatic cancer organoids was prepared and placed on ice.
  • a 6-week-old nude mouse (BALB / cSlc-nu / nu) was purchased from Nippon SLC Co., Ltd. and handled according to the animal management and use guidelines in the Kochi University Research Institute. The skin on the flank of the anesthetized nude mouse was incised about 5-8 mm, and the skin was bluntly peeled off with hemostatic forceps to make a pocket large enough to contain a human pancreatic carcinoma organoid.
  • the 1000 ⁇ L chip was wetted with cold PBS and the medium and gel were removed from the 48 well plate in which the pancreatic cancer organoids were cultured.
  • the 200 ⁇ L chip which had been pre-cut and sterilized, was then wetted with cold PBS, the pancreatic cancer organoids were aspirated, and placed in the tube containing the DMEM / Matrigel mixture solution prepared first.
  • the entire mixed solution containing the pancreatic cancer organoid was applied to the subcutaneous pocket on the flank of the prepared nude mouse and sutured. In this way, a human pancreatic cancer mouse model was prepared. 1-4.
  • TS-1 a human pancreatic cancer organoid derived from the human pancreatic cancer cell line S2-013 was implanted subcutaneously in the flank of a nude mouse.
  • the human pancreatic cancer mouse model was divided into two groups, and from the week following the transplantation, TS-1 (10 mg / kg), which is a standard chemotherapeutic agent for pancreatic cancer, was orally administered to 6 animals at a frequency of 5 days / week. After administration of the drug for 4 weeks, the drug was withdrawn for 2 weeks, and the drug was administered again for 2 weeks. In addition, as a control group, 6 animals were observed without administration of the drug.
  • the tumor diameter of the pancreatic cancer tissue was measured and photographed every week from 2 weeks after the transplantation.
  • a photograph of each mouse 8 weeks after transplantation is shown in FIG. 14, and a change over time in tumor diameter of each group of mice is shown in FIG.
  • “*” indicates that there is a significant difference in p ⁇ 0.05 with respect to the control group in the t-test.
  • the table shows the histopathological findings of the resected human pancreatic cancer. 1-5.
  • Measurement of Pancreatic Cancer Diagnostic Markers in Serum Collected from Human Pancreatic Cancer Mouse Model As described in Section 1-3, human pancreatic cancer organoids derived from human pancreatic cancer cell line S2-013 were implanted subcutaneously in the flanks of nude mice.
  • the human pancreatic cancer mouse model was divided into two groups, and in the five human pancreatic cancer mouse models in the first group, pancreatic cancer organoids having an average tumor diameter of 5 mm were collected, and whole blood was collected 4 weeks after transplantation. In the 5 human pancreatic cancer mouse models in the second group, pancreatic cancer organoids having an average tumor diameter of 20 mm were collected from whole blood 8 weeks after transplantation. Whole blood was collected from 5 nude mice that had not been transplanted with human pancreatic cancer organoids as a control group. Serum was separated from all blood and stored frozen. All serum CA19-9 concentrations were then measured using a commercially available ELISA kit (EIA-5069, DRG). 2. Result 2-1.
  • pancreatic cancer organoid was prepared using the human pancreatic cancer cell line S2-013 and transplanted subcutaneously into the mouse. As shown in FIGS. 1, 2 and 3, pancreatic cancer organoids were subcutaneously transplanted into mice, followed up for 6 weeks, and tumor tissue was removed. Tumor tissue grew over time. A histopathological examination was performed by preparing a histological specimen of the excised tumor tissue. The most characteristic feature of human pancreatic cancer tissue is abundant cancer stroma. Pancreatic cancer cells move around actively in the cancer stroma and invade surrounding tissues. As shown in FIG.
  • the "conventional Xenograft-carrying mouse” was an ectopic transplantation model in which a suspension of S2-013 cells was injected subcutaneously into the flank of a nude mouse to form a tumor.
  • Conventional Xenograft-carrying mice 6-week-old nude mice (BALB / cSlc-nu / nu) were used. Tumors were formed subcutaneously by subcutaneously injecting 2.0 ⁇ 10 6 S2-013 cells suspended in PBS into the flank of the anesthetized nude mouse. As shown in FIG.
  • EMT epithelial-mesenchymal transition
  • Papillary structures with stromal stalks were also seen in some areas (photo (B)).
  • FIG. 9 in the tumor tissue excised from the conventional Xenograft-carrying mouse, the differentiation of the pancreatic cancer tissue was uniform throughout, and no variation in differentiation was observed for each site. There were no EMT images or papillary structures with stromal stalks.
  • the tumor cells were CK19 (+) and vimentin (-), which were similar to those of pancreatic cancer organoid tumors. However, Vimentin expression was generally stronger than pancreatic organoid tumors. The most distinctive feature was that there was no variation in differentiation and it was almost uniform, and it was separated from the clinical pancreatic cancer tissue, which was rich in variation in differentiation and cancer stroma.
  • pancreatic cancer cells with abundant cancer stroma formed a ductal structure and infiltrated into the adipose tissue in the pancreas.
  • the tumor tissue removed from the human pancreatic cancer mouse model was similar to clinical pancreatic cancer, and the human pancreatic cancer mouse model was a model mouse that did not dissociate from clinical pancreatic cancer.
  • FIG. 11 a papillary structure was observed in the pancreatic cancer tissue surgically removed from the pancreatic cancer patient.
  • papillary structures were also observed in the tumor tissue excised from the human pancreatic cancer mouse model.
  • FIG. 10 papillary structures were also observed in the tumor tissue excised from the human pancreatic cancer mouse model.
  • pancreatic cancer tissue surgically removed from a pancreatic cancer patient.
  • lymph node metastasis was also observed in the tumor tissue excised from the human pancreatic cancer mouse model.
  • EMT was occasionally found in pancreatic cancer tissue surgically removed from a pancreatic cancer patient.
  • EMT was also observed in the tumor tissue excised from the human pancreatic cancer mouse model.
  • clinical findings of pancreatic cancer are (1) infiltration of pancreatic cancer cells with abundant cancer stroma, and (2) adenocarcinoma property.
  • FIGS. 14 and 15 As shown in FIGS. 14 and 15, the volume of pancreatic cancer tumor formed subcutaneously in the human pancreatic cancer mouse model group to which TS-1 was administered for 8 weeks was significantly suppressed from 7 weeks after transplantation as compared with the control group. rice field.
  • pancreatic cancer mouse model can solve the divergence from the clinical pancreatic cancer tissue, which has been a problem in the conventional Xenograft model, and can provide accurate information when evaluating the efficacy of a new pancreatic cancer drug.
  • pancreatic Cancer Diagnostic Marker The serum concentration of pancreatic cancer tumor marker CA19-9 was measured in serum collected from the human pancreatic cancer mouse model prepared as described above. Blood was collected from a human pancreatic cancer mouse model at 4, 8 and 10 weeks after transplantation, and the serum concentration of a pancreatic cancer diagnostic marker was measured. As shown in FIG. 16, the CA19-9 concentration in serum collected from a mouse model of human pancreatic cancer increased with time.
  • pancreatic Cancer Diagnostic Marker in Serum Collected from Conventional Xenograft-Supported Mice
  • the serum concentration of pancreatic cancer tumor marker CA19-9 was measured in serum collected from conventional Xenograft-bearing mice. Blood was collected from the conventional Xenograft-carrying mice 4 and 8 weeks after transplantation, and the serum concentration of the pancreatic cancer diagnostic marker was measured. As shown in FIG. 19, the CA19-9 concentration in the serum collected from the conventional Xenograft-carrying mice did not show an increase with time. Bleeding was observed from the tumor, but the concentration of CA19-9 leaked from the tumor tissue into the blood decreased over time, even though the tumor had grown over time. 3. 3.
  • the human pancreatic cancer tissue of the human pancreatic cancer mouse model carrying the pancreatic cancer organoid was very similar in tissue structure to the clinical pancreatic cancer tissue, and the cancer stroma derived from human pancreatic cancer was abundantly present.
  • TS-1 which is a first-line drug for postoperative treatment of pancreatic cancer
  • TS-1 suppressed the growth of pancreatic cancer tumor, but to the surrounding tissues. It was clarified that the effect of suppressing infiltration was low.
  • pancreatic cancer mouse model carrying pancreatic cancer organoids can solve the divergence from clinical pancreatic cancer tissue, which has been a problem in the conventional model, and provides accurate information when evaluating the efficacy of new pancreatic cancer drugs. can.
  • a mouse model of pancreatic cancer showing the characteristics of human pancreatic cancer is provided.
  • the mouse model according to the present invention it is possible to screen a therapeutic agent effective for human pancreatic cancer and evaluate the efficacy of the therapeutic agent.
  • the serum sample of the mouse model according to the present invention it is possible to screen a pancreatic cancer diagnostic marker and evaluate the usefulness of the marker.
  • the mouse model according to the present invention has the following advantages: (1) High throughput is supported by using a commercially available human pancreatic cancer cell line; (2) A mouse model can be supplied 6 weeks after the start of 3 types of cell culture; (3) Since a available human pancreatic cancer cell line is used, no pancreatic cancer tissue derived from a surgically resected patient is required; (4) As described in detail above, techniques for producing human pancreatic cancer organoids and creating mice have been established; (5) The human pancreatic cancer tissue in the mouse model according to the present invention is very similar in tissue structure to the clinical pancreatic cancer tissue, has abundant cancer stroma, and shows a high serum CA19-9 value; (6) Although there are no clinical data or gene expression profiles of patients, tissue sections of human pancreatic cancer organoid tumors can be sold; (7) If a gene expression profile is required, tissue sections of human pancreatic cancer organoid tumors can be prepared; (8) This model is useful for evaluating the efficacy of new therapeutic agents for pancreatic cancer in non-

Abstract

The purpose of the present invention is to provide a mouse model for pancreatic cancer similar to human pancreatic cancer. Specifically, the present invention pertains to a human pancreatic cancer mouse model which carries a pancreatic cancer organoid containing a human pancreatic cancer cell line S2-130.

Description

ヒト膵癌オルガノイドを用いたマウスモデルの樹立Establishment of mouse model using human pancreatic cancer organoid
 本発明は、例えばヒト膵癌マウスモデル及び当該マウスモデルの使用に関する。 The present invention relates to, for example, a human pancreatic cancer mouse model and the use of the mouse model.
 膵癌をはじめとする難治性癌に対し、新規治療法の開発が急務となっている。従来において、新規治療法の開発においては、癌マウスモデルを利用した治療薬の探索が行われている。また、予後不良の癌の代表である膵癌は早期発見が困難であり、有用な診断マーカーの開発が望まれている。
 しかしながら、膵癌については、ハイスループットでヒト膵癌組織に類似した組織構築をなす腫瘍を形成することができるマウスモデルは存在していない。このため、薬剤の有効性の実験に用いることができる有用な膵癌マウスモデルが存在していなかった。
 また、患者から得られた膵癌組織を免疫不全動物に移植して作製した異種移植片(Patient−Derived Xenograft、PDX)は腫瘍内に間質細胞・がん関連線維芽細胞や腫瘍マクロファージなどの患者由来の細胞が含まれていることから、患者由来腫瘍の特徴を保持しており、腫瘍の病態解析、腫瘍マーカー解析、薬剤開発等への活用が強く期待されている。しかし、PDXでは継代が進むにつれてマウス体内における腫瘍増殖が加速し、患者由来サンプルと比較して遺伝子発現プロファイルが変化する。さらに、PDX樹立には通常3−6ヶ月の時間を要し、現時点では腫瘍を提供した患者の個別医療に直接関与するのが困難である。このため、PDXはハイスループット性に欠けていて、医薬品開発等における汎用性が十分でない。
 一方、特許文献1には、ヒト膵癌細胞株(PANC−1、CFPAC−1、SW1990)、ヒト血管内皮細胞(HUVEC)及びヒト間葉系細胞(hMSC)を共培養することで、ヒト膵癌オルガノイドを再構成し、この膵癌オルガノイドより、豊富な間質や腺管構造を有した膵癌ゼノグラフトが形成されたことが開示されている。しかしながら、特許文献1には、当該ヒト膵癌オルガノイドを担持したマウスにおいて、乳頭状構造、癌間質を伴った膵癌細胞の浸潤、脈管侵襲、リンパ節転移、上皮間葉転換(EMT)等の臨床的な膵癌と類似する組織構築をなす腫瘍が形成されたことは開示されていない。また、特許文献1には、ヒト膵癌オルガノイドを担持したマウスから採取した血清において、膵癌診断マーカーが臨床的な膵癌と同様の挙動を示すことは開示されていない。さらに、特許文献1には、ヒト膵癌オルガノイドを担持したマウスが膵癌治療薬の治療効果を判定するために有用なモデルであることは開示されていない。
There is an urgent need to develop new treatments for intractable cancers such as pancreatic cancer. Conventionally, in the development of a new therapeutic method, a search for a therapeutic drug using a cancer mouse model has been carried out. In addition, pancreatic cancer, which is a representative cancer with a poor prognosis, is difficult to detect at an early stage, and development of a useful diagnostic marker is desired.
However, for pancreatic cancer, there is no mouse model capable of forming a tumor having a tissue structure similar to that of human pancreatic cancer tissue at high throughput. For this reason, there was no useful pancreatic cancer mouse model that could be used to experiment with drug efficacy.
In addition, xenografts (PDX) prepared by transplanting pancreatic cancer tissue obtained from patients into immunodeficient animals are patients with stromal cells / cancer-related fibroblasts and tumor macrophages in the tumor. Since it contains derived cells, it retains the characteristics of patient-derived tumors and is strongly expected to be used for tumor pathological analysis, tumor marker analysis, drug development, and the like. However, in PDX, tumor growth in the mouse body accelerates as the passage progresses, and the gene expression profile changes as compared with the patient-derived sample. In addition, PDX establishment usually takes 3-6 months, and at present it is difficult to be directly involved in the personalized care of the patient who donated the tumor. Therefore, PDX lacks high throughput and is not sufficiently versatile in drug development and the like.
On the other hand, Patent Document 1 describes human pancreatic cancer organoids by co-culturing human pancreatic cancer cell lines (PANC-1, CFPAC-1, SW1990), human vascular endothelial cells (HUVEC) and human mesenchymal cells (hMSC). It is disclosed that a pancreatic cancer xenograft having abundant stroma and ductal structure was formed from this pancreatic cancer organoid. However, Patent Document 1 states that in mice carrying the human pancreatic cancer organoid, papillary structure, infiltration of pancreatic cancer cells with cancer stroma, lymphovascular invasion, lymph node metastasis, epithelial-mesenchymal transition (EMT), etc. It is not disclosed that tumors that form a tissue structure similar to clinical pancreatic cancer have been formed. Further, Patent Document 1 does not disclose that pancreatic cancer diagnostic markers behave similarly to clinical pancreatic cancer in sera collected from mice carrying human pancreatic cancer organoids. Further, Patent Document 1 does not disclose that a mouse carrying a human pancreatic cancer organoid is a useful model for determining the therapeutic effect of a pancreatic cancer therapeutic agent.
特開2018−110575号公報Japanese Unexamined Patent Publication No. 2018-110575
 本発明は、上述の実情に鑑み、ヒト膵癌に類似した膵癌のマウスモデルを提供することを目的とする。
 上記課題を解決するため鋭意研究を行った結果、ヒト膵癌細胞株S2−013を用いて作製した膵癌オルガノイドをマウスに移植することで、当該マウスにおいてヒト膵癌組織に類似した組織構築をなす腫瘍が形成されることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下を包含する。
 (1)ヒト膵癌細胞株S2−013を含む膵癌オルガノイドを担持するヒト膵癌マウスモデル。
 (2)(1)記載のヒト膵癌マウスモデルを用いて膵癌治療剤をスクリーニングする方法。
 (3)(1)記載のヒト膵癌マウスモデルを用いて膵癌治療剤の薬効を評価する方法。
 (4)(1)記載のヒト膵癌マウスモデルから採取した血清サンプルを用いて、膵癌診断マーカーの有用性を評価する方法。
 (5)(1)記載のヒト膵癌マウスモデルから採取した血清サンプルを用いて、膵癌診断マーカーをスクリーニングする方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020−078771号の開示内容を包含する。
In view of the above circumstances, it is an object of the present invention to provide a mouse model of pancreatic cancer similar to human pancreatic cancer.
As a result of diligent research to solve the above problems, by transplanting a pancreatic cancer organoid prepared using the human pancreatic cancer cell line S2-013 into a mouse, a tumor having a tissue structure similar to that of human pancreatic cancer tissue can be obtained in the mouse. It was found that it was formed, and the present invention was completed.
That is, the present invention includes the following.
(1) A mouse model of human pancreatic cancer carrying a pancreatic cancer organoid containing the human pancreatic cancer cell line S2-013.
(2) A method for screening a pancreatic cancer therapeutic agent using the human pancreatic cancer mouse model described in (1).
(3) A method for evaluating the efficacy of a pancreatic cancer therapeutic agent using the human pancreatic cancer mouse model described in (1).
(4) A method for evaluating the usefulness of a pancreatic cancer diagnostic marker using a serum sample collected from the human pancreatic cancer mouse model described in (1).
(5) A method for screening a pancreatic cancer diagnostic marker using a serum sample collected from the human pancreatic cancer mouse model described in (1).
This specification includes the disclosure content of Japanese Patent Application No. 2020-078771, which is the basis of the priority of the present application.
実施例におけるシャーレ内で作製したヒト膵癌オルガノイドの写真である。このヒト膵癌オルガノイドをヌードマウスの皮下へ移植した。移植を行った日をDay1とした。10個のヒト膵癌オルガノイドを作製した(Orga−1からOrga−10)。実施例に示すヒト膵癌オルガノイドの作製方法によれば、一人の研究者が10個から20個/回の均一なヒト膵癌オルガノイドを作製可能であり、当該方法は、ハイスループットのヒト膵癌オルガノイドの作製方法である。It is a photograph of a human pancreatic cancer organoid prepared in a petri dish in an example. This human pancreatic cancer organoid was subcutaneously transplanted into nude mice. The day of transplantation was designated as Day 1. Ten human pancreatic cancer organoids were generated (Orga-1 to Orga-10). According to the method for producing human pancreatic cancer organoids shown in Examples, one researcher can produce 10 to 20 uniform human pancreatic cancer organoids, and the method is for producing high-throughput human pancreatic cancer organoids. The method. 実施例におけるDay1にヒト膵癌オルガノイド(Orga−5(org5))をヌードマウス(mouseNo.3)の脇腹の皮下へ移植して形成されたヒト膵癌の経時的写真と移植後6週目に解剖した際の当該マウスモデルの腫瘍組織の写真である。A time-lapse photograph of human pancreatic cancer formed by transplanting a human pancreatic cancer organoid (Orga-5 (org5)) subcutaneously to the flank of a nude mouse (tumor No. 3) on Day 1 in Examples and dissection 6 weeks after transplantation. It is a photograph of the tumor tissue of the mouse model at the time. 実施例におけるDay1にヒト膵癌オルガノイド(Orga−8(org8))をヌードマウス(mouseNo.4)の皮下へ移植して形成されたヒト膵癌の経時的写真と移植後6週目に解剖した際の当該マウスモデルの腫瘍組織の写真である。A time-lapse photograph of human pancreatic cancer formed by subcutaneously transplanting a human pancreatic cancer organoid (Orga-8 (org8)) to Day 1 of an example of a nude mouse (tumor No. 4) and dissecting it 6 weeks after transplantation. It is a photograph of the tumor tissue of the mouse model. (A)実施例における膵癌オルガノイド(Orga−8)を担持したヒト膵癌マウスモデル(mouseNo.4)から摘出した腫瘍組織と(B)従来のXenograftを担持したマウスから摘出した腫瘍組織のヘマトキシリン・エオジン染色した写真である。Hematoxylin and eosin of (A) tumor tissue removed from a human pancreatic cancer mouse model (mouse No. 4) carrying a pancreatic cancer organoid (Orga-8) in Examples and (B) tumor tissue removed from a mouse carrying a conventional Xenograft. It is a dyed photograph. (A)実施例における膵癌オルガノイド(Orga−8)を担持したヒト膵癌マウスモデル(mouseNo.4)から摘出した腫瘍組織と(B)従来のXenograftを担持したマウスから摘出した腫瘍組織のヘマトキシリン・エオジン染色した写真である。Hematoxylin and eosin of (A) tumor tissue removed from a human pancreatic cancer mouse model (mouse No. 4) carrying a pancreatic cancer organoid (Orga-8) in Examples and (B) tumor tissue removed from a mouse carrying a conventional Xenograft. It is a dyed photograph. (A)実施例における膵癌オルガノイド(Orga−5)を担持したヒト膵癌マウスモデル(mouseNo.3)から摘出した腫瘍組織と(B)従来のXenograftを担持したマウスから摘出した腫瘍組織のヘマトキシリン・エオジン染色した写真である。Hematoxylin and eosin of (A) tumor tissue removed from a human pancreatic cancer mouse model (mouse No. 3) carrying a pancreatic cancer organoid (Orga-5) in Examples and (B) tumor tissue removed from a mouse carrying a conventional Xenograft. It is a dyed photograph. 実施例における膵癌オルガノイド(Orga−9(org9))を担持したヒト膵癌マウスモデル(mouseNo.5)から摘出した腫瘍組織のヘマトキシリン・エオジン染色した写真である。It is a hematoxylin-eosin-stained photograph of a tumor tissue excised from a human pancreatic cancer mouse model (mouse No. 5) carrying a pancreatic cancer organoid (Orga-9 (org9)) in an example. 実施例における膵癌オルガノイド(Orga−9)を担持したヒト膵癌マウスモデル(mouseNo.5)から摘出した腫瘍組織の(A及びB)ヘマトキシリン・エオジン染色、(C)抗CK19抗体による免疫組織染色、及び(D)抗ビメンチン抗体による免疫組織染色をした写真である。(A and B) hematoxylin / eosin staining, (C) immunohistochemical staining with anti-CK19 antibody, and (C) immunohistochemical staining of tumor tissue excised from a human pancreatic cancer mouse model (mouse No. 5) carrying a pancreatic cancer organoid (Orga-9) in Examples. (D) It is a photograph of immunohistochemical staining with an anti-vimentin antibody. 実施例における従来のXenograftを担持したマウスから摘出した腫瘍組織における(A)ヘマトキシリン・エオジン染色、(B)抗CK19抗体による免疫組織染色、及び(C)抗ビメンチン抗体による免疫組織染色をした写真である。臨床的膵癌組織との乖離を示す写真である。Photographs of (A) hematoxylin and eosin staining, (B) immunohistochemical staining with anti-CK19 antibody, and (C) immunohistochemical staining with anti-vimentin antibody in tumor tissue removed from conventional Xenograft-carrying mice in Examples. be. It is a photograph showing the dissociation from the clinical pancreatic cancer tissue. 実施例における膵癌患者から手術摘出した膵癌腫瘍組織のヘマトキシリン・エオジン染色した写真である。間質反応を伴った脂肪組織への浸潤像を示す。It is a photograph of the pancreatic cancer tumor tissue surgically removed from the pancreatic cancer patient in the example, stained with hematoxylin and eosin. It shows an image of infiltration into adipose tissue accompanied by a stromal reaction. 実施例における膵癌患者から手術摘出した膵癌腫瘍組織のヘマトキシリン・エオジン染色した写真である。右上:間質茎を伴った乳頭状構造、左下:間質茎の無い微小乳頭状構造。It is a photograph of the pancreatic cancer tumor tissue surgically removed from the pancreatic cancer patient in the example, stained with hematoxylin and eosin. Upper right: papillary structure with stromal stalk, lower left: micropapillary structure without stromal stalk. 実施例における膵癌患者から手術摘出した膵癌腫瘍組織のヘマトキシリン・エオジン染色した写真である。リンパ節転移を示す。It is a photograph of the pancreatic cancer tumor tissue surgically removed from the pancreatic cancer patient in the example, stained with hematoxylin and eosin. Shows lymph node metastasis. 実施例における膵癌患者から手術摘出した膵癌腫瘍組織の(A)ヘマトキシリン・エオジン染色、(B)抗CK19サイトケラチン抗体による免疫組織染色、及び(C)抗ビメンチン抗体による免疫組織染色をした写真である。腫瘍の中に低分化で紡錘形を呈する細胞の領域がみられた。ここではサイトケラチン((B)の写真)の染色性が落ち、vimentin((C)の写真)が陽性化していた。EMTの所見である。It is a photograph of (A) hematoxylin / eosin staining, (B) immunohistochemical staining with anti-CK19 cytokeratin antibody, and (C) immunohistochemical staining with anti-vimentin antibody of pancreatic cancer tumor tissue surgically removed from a pancreatic cancer patient in Examples. .. A region of poorly differentiated, spindle-shaped cells was found in the tumor. Here, the stainability of cytokeratin (photograph of (B)) decreased, and vimentin (photograph of (C)) became positive. EMT findings. 実施例におけるヒト膵癌マウスモデルへのTS−1の投与による抗腫瘍効果の観察を示す写真である。It is a photograph which shows the observation of the antitumor effect by administration of TS-1 to the human pancreatic cancer mouse model in an Example. 実施例におけるヒト膵癌マウスモデルへのTS−1の投与による抗腫瘍効果を示す(A)グラフ及び(B)表である。(A)のグラフは、腫瘍サイズをノギスを用いて測定した経時的腫瘍体積を示す。(B)の表は、移植後8週目に摘出した腫瘍組織の病理所見を示す。It is the graph (A) and the table (B) which show the antitumor effect by administration of TS-1 to the human pancreatic cancer mouse model in an Example. The graph in (A) shows the tumor volume over time when the tumor size was measured using a caliper. Table (B) shows the pathological findings of the tumor tissue removed 8 weeks after transplantation. 実施例における(A)ヒト膵癌マウスモデルの経時的腫瘍体積及び(B及びC)ヒト膵癌マウスモデルから採取した血清における膵癌診断マーカーCA19−9の測定結果を示す図である。It is a figure which shows the measurement result of the pancreatic cancer diagnostic marker CA19-9 in the time-dependent tumor volume of (A) human pancreatic cancer mouse model, and the serum collected from (B and C) human pancreatic cancer mouse model in an Example. 実施例における従来のXenograftを担持したマウスへのTS−1の投与による抗腫瘍効果の観察を示す写真である。It is a photograph which shows the observation of the antitumor effect by administration of TS-1 to the mouse which carried the conventional Xenograft in Example. 実施例における従来のXenograftを担持したマウスへのTS−1の投与による抗腫瘍効果を示すグラフである。It is a graph which shows the antitumor effect by administration of TS-1 to the mouse which carried the conventional Xenograft in an Example. 実施例における(A)従来のXenograftを担持したマウスの経時的腫瘍体積及び(B)従来のXenograftを担持したマウスから採取した血清における膵癌診断マーカーCA19−9の測定結果を示す図である。It is a figure which shows the measurement result of the pancreatic cancer diagnostic marker CA19-9 in the time-dependent tumor volume of the mouse which carried (A) the conventional Xenograft in the Example, and (B) the serum collected from the mouse which carried the conventional Xenograft.
 以下、本発明を詳細に説明する。
 本発明に係るヒト膵癌マウスモデル(以下、「本発明に係るマウスモデル」と称する)は、ヒト膵癌細胞株S2−013を含む膵癌オルガノイドを担持するヒト膵癌マウスモデルである。
 本発明に係るマウスモデルは、乳頭状構造、癌間質を伴った膵癌細胞の浸潤、脈管侵襲、リンパ節転移、上皮間葉転換(EMT)等のヒト膵癌組織に類似した組織構築をなす腫瘍を有し、膵癌治療剤等の薬剤の薬効評価の実験および膵癌診断マーカーの有用性評価の実験に用いることができる有用なマウスモデルである。
 本発明では、ヒト膵癌細胞株S2−013を用い、そのオルガノイドの作製条件について詳細な検討を行うことにより、膵癌細胞増殖スピード(=腫瘍体積の増加)の個体間での均一化に成功したことで、以下の特徴を有するヒト膵癌マウスモデルの利用を可能とした:
 (1)ほぼ100%の成功率で大きさのそろった腫瘍を形成することができる。ハイスループット化に対応している。腫瘍体積のバラツキが極めて小さいため、正確な薬効評価が可能である(腫瘍体積がそろわないことが問題であったオルガノイド移植モデルの中で初めて腫瘍体積が安定したモデルを樹立できた);
 (2)腫瘍から出血しないため、腫瘍径の測定を正確に実施できる;
 (3)血清CA19−9を薬効評価のマーカーとして用いることにより、薬効評価を充実させることができる。
1.本発明に係るマウスモデルの作製
1−1.膵癌オルガノイドの作製
 本発明における膵癌オルガノイドは、特許文献1に記載の方法に準じて作製することができる。
 ここで、「膵癌オルガノイド」とは、膵癌細胞とその他の細胞から構成される細胞凝集体である。複数の細胞間での細胞間相互作用を再現することが可能である。本発明における膵癌オルガノイドは、膵癌微小環境を再現するものであり、例えば、間質が豊富である。
 多くの場合、癌組織は、癌細胞の他に間質と呼ばれる部分がある。間質には、線維芽細胞等の間葉系細胞の他、血管、リンパ管、神経等を構成する細胞(血液細胞、血管細胞、免疫細胞等)、炎症をつかさどる細胞(炎症細胞)等の多種類の細胞、これらの細胞の間に存在するコラーゲン等から成る結合組織が存在して、特徴的な構造を形成している。これを「癌微小環境」と呼ぶ。
 本発明における膵癌オルガノイドは、癌間質を含む癌微小環境を再現するとよい。S2−013細胞は膵管腺癌由来であり、腺癌組織では腺管構造を有する成分も認められる。本発明における膵癌オルガノイドは、癌微小環境の他、さらに、腺管構造を再現するとよい。
 本発明における膵癌オルガノイドは、ヒト膵癌細胞株S2−013を間葉系細胞及び血管内皮細胞と共培養することにより作製することができる。培養は、三次元(3D)培養であるとよい。本発明における膵癌オルガノイドの再構成に適した3D培養技術は、Nature,25;499(7459):481−4,2013、Nat Protoc.9(2):396−409,2014、Cell Stem Cell,7;16(5):556−65,2015等で報告されている。
 本発明において使用する「ヒト膵癌細胞株S2−013」は、東北大学加齢医学研究所 医用細胞資源センター・細胞バンク(〒980−8575日本国宮城県仙台市青葉区星陵町4−1 東北大学加齢医学研究所 医用細胞資源センター)においてID:TKG0709;細胞名:S2−013として保有されており、ここより入手することができる。
 本発明において「血管内皮細胞」とは、血管内皮を構成する細胞、又はそのような細胞に分化することのできる細胞をいう。ある細胞が血管内皮細胞であるかどうかは、マーカータンパク質、例えば、TIE2、VEGFR−1、VEGFR−2、VEGFR−3、CD41が発現しているかどうかを調べることにより確認できる(前記マーカータンパク質のいずれか一つあるいは複数が発現していれば血管内皮細胞であると判断できる)。本発明において用いる血管内皮細胞は、分化したものであっても、未分化なものであってもよい。血管内皮細胞が、分化した細胞であるかどうかは、CD31、CD144により、確認することができる。当業者間で使用されている用語のうち、endothelial cells、umbilical vein endothelial cells、endothelial progenitor cells、endothelial precursor cells、vasculogenic progenitors、hemangioblast(HJ.joo,et al.Blood.25;118(8):2094−104.(2011))等は本発明における血管内皮細胞に含まれる。好ましい血管内皮細胞は、臍帯静脈由来の血管内皮細胞である。血管内皮細胞は、血管から採取したり、あるいは、人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)等の多能性幹細胞から公知の方法に従って作製することができる。血管内皮細胞は、主としてヒト由来のものを用いるが、ヒト以外の動物(例えば、実験動物、愛玩動物、使役動物、競走馬、闘犬などに利用される動物、具体的には、マウス、ラット、ウサギ、ブタ、イヌ、サル、ウシ、ウマ、ヒツジ、ニワトリ、サメ、エイ、ギンザメ、サケ、エビ、カニ等)由来の血管内皮細胞を用いてもよい。
 本発明において「間葉系細胞」とは、主として中胚葉に由来する結合織に存在し、組織で機能する細胞の支持構造を形成する結合織細胞であるが、間葉系細胞への分化運命が決定しているが、まだ間葉系細胞へ分化していない細胞も含む概念である。本発明において用いる間葉系細胞は、分化したものであっても、未分化なものであってもよい。ある細胞が未分化間葉系細胞であるかどうかは、マーカータンパク質、例えば、Stro−1、CD29、CD44、CD73、CD90、CD105、CD133、CD271、Nestinが発現しているかどうかを調べることにより確認できる(前記マーカータンパク質のいずれか一つあるいは複数が発現していれば未分化間葉系細胞であると判断できる)。また、前項のマーカーのいずれも発現していない間葉系細胞は分化間葉系細胞と判断できる。当業者間で使用されている用語のうち、mesenchymal stem cells、mesenchymal progenitor cells、mesenchymal cells(R.Peters,et al.PLoS One.30;5(12):e15689.(2010))等は本発明における間葉系細胞に含まれる。好ましい間葉系細胞は、骨髄由来の間葉系細胞(特に、間葉系幹細胞)である。間葉系細胞は、骨髄、脂肪組織、胎盤組織、臍帯組織、歯髄等の組織から採取したり、あるいは、人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)等の多能性幹細胞から公知の方法に従って作製することができる。間葉系細胞は、主としてヒト由来のものを用いるが、ヒト以外の動物(例えば、実験動物、愛玩動物、使役動物、競走馬、闘犬等に利用される動物、具体的には、マウス、ラット、ウサギ、ブタ、イヌ、サル、ウシ、ウマ、ヒツジ、ニワトリ、サメ、エイ、ギンザメ、サケ、エビ、カニ等)由来の未分化間葉系細胞を用いてもよい。
 共培養における三種類の細胞の培養比は膵癌オルガノイドが形成できる範囲内であれば特に限定されないが、好適な細胞の数比は、ヒト膵癌細胞株S2−013:血管内皮細胞:間葉系細胞=10:1~100:1~100であり、より好適には、ヒト膵癌細胞株S2−013:血管内皮細胞:間葉系細胞=10:1~100:5~100である。ヒト膵癌細胞株S2−013を20万個程度、血管内皮細胞を14万個程度、間葉系細胞を40万個程度で共培養して、大きさが50~50000マイクロメートル程度の膵癌オルガノイドを形成させることができる。
 培養の際に使用する培地は、膵癌オルガノイドが形成されるものであればどのようなものでもよいが、血管内皮細胞培養用の培地、癌細胞培養用の培地、前記2つの培地を混合したもの等を使用することが好ましい。血管内皮細胞培養用の培地はどのようなものを使用してもよいが、hEGF(組換えヒト上皮細胞成長因子)、VEGF(血管内皮細胞成長因子)、ヒドロコルチゾン、bFGF、アスコルビン酸、IGF1、FBS、Antibiotics(例えば、ゲンタマイシン、アンフォテリシンB等)、Heparin、L−Glutamine、Phenolred、BBEの少なくとも1種を含むものを使用するのが好ましい。血管内皮細胞培養用の培地としては、EGM−2 BulletKit(Lonza社製)、EGM BulletKit(Lonza社製)、VascuLife EnGS Comp Kit(LCT社製)、Human Endothelial−SFM Medium(Thermo Fisher Scientific社製)、ヒト微小血管内皮細胞増殖培地(TOYOBO社製)等を用いることができる。癌細胞培養用の培地はどのようなものを使用してもよく、例えば、DMEM培地が挙げられる。特に、膵癌オルガノイドの作製には、EGM:DMEM=1:1の培地が適している。
 細胞の培養にあたっては、足場材料を用いる必要はないが、三種類の細胞の混合物を間葉系細胞が収縮可能なゲル状支持体上で培養するとよい。
 間葉系細胞の収縮は、(顕微鏡、ないし肉眼で)形態学的に立体組織形成を認めることや、薬さじ等による回収に伴い組織の形状が保たれる強度を有することを示す等(Takebe et al.Nature 499(7459),481−484,2013))のようにして確認することができる。
 支持体は、適正な硬さ(例えば、ヤング率200kPa以下(マトリゲルをコートした形状が平坦なゲルの場合等)であるが、支持体の適正な硬さはコーティングと形状によって変化しうる)を有するゲル状基材であるとよく、そのような基材としては、ハイドロゲル(例えば、アクリルアミドゲル、ゼラチン、マトリゲル等)等を例示することができるが、それらに限定されることはない。なお、目的とする集合体の形・サイズ・量に応じて、支持体の硬さは均一である必然性はなく、硬さに空間的・時間的な勾配を設定することやパターン化することが可能である。支持体の硬さが均一である場合には、支持体の硬さは、好ましくは、100kPa以下、より好ましくは1~50kPaである。ゲル状支持体は、平面であってもよいし、あるいは、ゲル状支持体の培養する側の断面がU又はV字の形状であるとよい。ゲル状支持体の培養する側の断面がU又はV字の形状であることにより、支持体の培養面に細胞が集まるようになり、より少ない数の細胞及び/又は組織で細胞集合体が形成されるので有利である。また、支持体に、化学的・物理的な修飾を施してもよい。修飾物質としては、マトリゲル、ラミニン、エンタクチン、コラーゲン、フィブロネクチン、ビトロネクチン等を例示することができる。
 ゲル状培養支持体の硬さに空間的な勾配を設定した一例は、中心部の硬さが周辺部の硬さより固いゲル状培養支持体である。中心部の硬さは、200kPa以下が適正であり、周辺部の硬さは、中心部より柔らかければよいが、支持体の中心部と周辺部の適正な硬さはコーティングと形状によって変化しうる。ゲル状培養支持体の硬さに空間的な勾配を設定した別の一例は、周辺部の硬さが中心部の硬さより固いゲル状培養支持体である。
 パターン化したゲル状培養支持体の一例は、中心部の硬さが周辺部の硬さより固いというパターンを1個以上有するゲル状培養支持体である。中心部の硬さは、200kPa以下が適正であり、周辺部の硬さは、中心部より柔らかければよいが、支持体の中心部と周辺部の適正な硬さはコーティングと形状によって変化しうる。パターン化したゲル状培養支持体の別の一例は、周辺部の硬さが中心部の硬さより固いというパターンを1個以上有するゲル状培養支持体である。周辺部の硬さは、200kPa以下が適正であり、中心部の硬さは、周辺部より柔らかければよいが、支持体の中心部と周辺部の適正な硬さはコーティングと形状によって変化しうる。
 培養時の温度は特に限定されないが、30~40℃とするのが好ましく、37℃とするのが更に好ましい。
 培養期間は特に限定されないが、1~60日とするのが好ましく、1~7日とするのが更に好ましい。
1−2.マウスモデルの作製
 上述の膵癌微小環境を再現する、再構成された膵癌オルガノイドをマウスに移植することにより、腺管構造および膵癌微小環境を再現する、ヒト膵癌マウスモデル(ゼノグラフトモデル)を作製することができる。
 本発明において使用するマウスとしては、例えばBALB/cSlc−nu/nuマウス等が挙げられる。
 上述のように作製し、実体顕微鏡観察により円形の膵癌オルガノイドが形成されたことを確認し、当該円形の膵癌オルガノイドをマウス皮下に移植する。移植は、従来のゼノグラフト移植方法に準じて行うことができる。例えば移植の2~10週間後、マウスにおいて腫瘍組織が十分に形成され、ヒト膵癌マウスモデルとして使用することができる。
2.ヒト膵癌マウスモデルの用途
 以上に説明した本発明に係るマウスモデルは、ヒト膵癌に類似する膵癌を有することから、ヒト膵癌の病態モデルマウスとして利用することができる。例えば、ヒト膵癌の発症メカニズム又は病態の解明、膵癌治療剤(抗癌剤)のスクリーニングや膵癌治療剤の薬効の評価、および膵癌診断マーカーのスクリーニングや有用性の評価に用いることができる。
 例えば、膵癌治療剤のスクリーニングは、本発明に係るマウスモデルに治療剤候補化合物である被験物質を経口等の適当な投与経路により投与し、当該マウスモデルにおいて膵癌の大きさ、浸潤、遠隔転移の数、マウスの死等を観察することにより被験物質の効果を判定することができる。同様に、膵癌治療剤の薬効の評価は、本発明に係るマウスモデルに評価対象の膵癌治療剤を経口等の適当な投与経路により投与し、当該マウスモデルにおいて膵癌の大きさ、浸潤、遠隔転移の数、マウスの死等を観察することにより当該膵癌治療剤の薬効を評価することができる。
 また、本発明に係るマウスモデルから採取した血清において、膵癌診断マーカーが臨床的な膵癌と同様の挙動を示す。従って、本発明に係るマウスモデルは、当該マウスモデルから採取した血清等の生物学的サンプルにおける膵癌診断マーカーの有用性の評価又は膵癌診断マーカーのスクリーニングに用いることができる。
 例えば、膵癌診断マーカーの有用性の評価は、本発明に係るマウスモデルから採取した血清等の生物学的サンプルを、評価対象の膵癌診断マーカーに対する抗体を用いた免疫学的測定方法等に供し、タンパク質レベルで当該膵癌診断マーカーを測定する。測定した膵癌診断マーカーレベル(血清等の生物学的サンプル中の濃度)が、陰性対照(例えば、膵癌オルガノイドを担持しないこと以外、本発明に係るマウスモデルと同一のマウス由来の血清等の生物学的サンプル)と比較して、評価対象の膵癌診断マーカーに準じた有意な変動(増加又は低下)が見られるか否かを判定することにより、膵癌診断マーカーの有用性を評価することができる。
 同様に、膵癌診断マーカーのスクリーニングは、本発明に係るマウスモデルから採取した血清等の生物学的サンプルを、膵癌診断マーカー候補に対する抗体を用いた免疫学的測定方法等に供し、タンパク質レベルで当該膵癌診断マーカー候補を測定する。測定した膵癌診断マーカー候補レベル(血清等の生物学的サンプル中の濃度)が、陰性対照(例えば、膵癌オルガノイドを担持しないこと以外、本発明に係るマウスモデルと同一のマウス由来の血清等の生物学的サンプル)と比較して、有意に変動(増加又は低下)していることによって、当該膵癌診断マーカー候補を、膵癌診断マーカーとして同定することができる。
 ここで、免疫学的測定方法としては、特に限定されるものではないが、例えばELISA、フローサイトメトリー、ウェスタンブロッティング等が挙げられる。
Hereinafter, the present invention will be described in detail.
The human pancreatic cancer mouse model according to the present invention (hereinafter referred to as “mouse model according to the present invention”) is a human pancreatic cancer mouse model carrying a pancreatic cancer organoid including the human pancreatic cancer cell line S2-013.
The mouse model according to the present invention constructs a tissue similar to human pancreatic cancer tissue such as papillary structure, invasion of pancreatic cancer cells with cancer stroma, vascular invasion, lymph node metastasis, and epithelial-mesenchymal transition (EMT). It is a useful mouse model that has a tumor and can be used in an experiment for evaluating the efficacy of a drug such as a pancreatic cancer therapeutic agent and an experiment for evaluating the usefulness of a pancreatic cancer diagnostic marker.
In the present invention, the human pancreatic cancer cell line S2-013 was used, and the conditions for producing the organoid thereof were examined in detail, thereby succeeding in homogenizing the pancreatic cancer cell proliferation speed (= increase in tumor volume) among individuals. Made it possible to use a mouse model of human pancreatic cancer with the following characteristics:
(1) Tumors of uniform size can be formed with a success rate of almost 100%. It supports high throughput. Since the variation in tumor volume is extremely small, accurate drug efficacy evaluation is possible (a model with stable tumor volume was established for the first time among organoid transplantation models, which had the problem of inconsistent tumor volume);
(2) Since the tumor does not bleed, the tumor diameter can be measured accurately;
(3) By using serum CA19-9 as a marker for drug efficacy evaluation, the drug efficacy evaluation can be enhanced.
1. 1. Preparation of mouse model according to the present invention 1-1. Production of Pancreatic Cancer Organoid The pancreatic cancer organoid in the present invention can be produced according to the method described in Patent Document 1.
Here, the "pancreatic cancer organoid" is a cell aggregate composed of pancreatic cancer cells and other cells. It is possible to reproduce cell-cell interactions between multiple cells. The pancreatic cancer organoid in the present invention reproduces the pancreatic cancer microenvironment, and is, for example, rich in stroma.
In many cases, cancer tissue has a part called the stroma in addition to the cancer cells. In the stroma, in addition to mesenchymal cells such as fibroblasts, cells that make up blood vessels, lymph vessels, nerves, etc. (blood cells, vascular cells, immune cells, etc.), cells that control inflammation (inflammatory cells), etc. There are many types of cells, connective tissue composed of collagen and the like existing between these cells, and they form a characteristic structure. This is called the "cancer microenvironment".
The pancreatic cancer organoid in the present invention may reproduce the cancer microenvironment including the cancer stroma. S2-013 cells are derived from pancreatic duct adenocarcinoma, and components having a ductal structure are also found in the adenocarcinoma tissue. The pancreatic cancer organoid in the present invention may reproduce the cancer microenvironment as well as the ductal structure.
The pancreatic cancer organoid in the present invention can be prepared by co-culturing the human pancreatic cancer cell line S2-013 with mesenchymal cells and vascular endothelial cells. The culture may be a three-dimensional (3D) culture. A 3D culture technique suitable for the reconstruction of pancreatic cancer organoids in the present invention is described in Nature, 25; 499 (7459): 481-4, 2013, Nat Protocol. 9 (2): 396-409, 2014, Cell Stem Cell, 7; 16 (5): 556-65, 2015 and the like.
The "human pancreatic cancer cell line S2-013" used in the present invention is the Tohoku University Institute of Aging Medicine Medical Cell Resource Center / Cell Bank (4-1 Seiryomachi, Aoba-ku, Sendai City, Miyagi Prefecture, Japan 980-8575, Japan Tohoku University) It is retained as ID: TKG0709; cell name: S2-013 at the Medical Cell Resources Center of the Institute of Aging Medicine, and can be obtained from here.
In the present invention, the "vascular endothelial cell" refers to a cell constituting the vascular endothelium or a cell capable of differentiating into such a cell. Whether or not a cell is a vascular endothelial cell can be confirmed by examining whether or not a marker protein such as TIE2, VEGFR-1, VEGFR-2, VEGFR-3, or CD41 is expressed (any of the above marker proteins). If one or more of them are expressed, it can be determined that they are vascular endothelial cells). The vascular endothelial cells used in the present invention may be differentiated or undifferentiated. Whether or not the vascular endothelial cells are differentiated cells can be confirmed by CD31 and CD144. Among the terms used among those skilled in the art, endothelial cells, umbilical vein endothelial cells, endothelial progenitor cells, endothelial progenitor cells, endothelial progenitor cells, endothelium precursor cells, vasculogenic project. −104. (2011)) and the like are included in the vascular endothelial cells in the present invention. Preferred vascular endothelial cells are vascular endothelial cells derived from the umbilical vein. Vascular endothelial cells can be collected from blood vessels or can be prepared from pluripotent stem cells such as induced pluripotent stem cells (iPS cells) and embryonic stem cells (ES cells) according to a known method. Although human-derived vascular endothelial cells are mainly used, animals used for animals other than humans (for example, laboratory animals, pet animals, service animals, race horses, fighting dogs, etc., specifically, mice, rats, etc. Vascular endothelial cells derived from rabbits, pigs, dogs, monkeys, cows, horses, sheep, chickens, sharks, rays, ginseng, salmon, shrimp, crabs, etc.) may be used.
In the present invention, the "mesenchymal cell" is a connective tissue cell that exists mainly in the connective tissue derived from the mesodermal cell and forms a support structure of a cell that functions in a tissue, but is destined to differentiate into a mesenchymal cell. However, it is a concept that includes cells that have not yet differentiated into mesenchymal cells. The mesenchymal cells used in the present invention may be differentiated or undifferentiated. Whether or not a cell is an undifferentiated mesenchymal cell is confirmed by examining whether or not a marker protein such as Stro-1, CD29, CD44, CD73, CD90, CD105, CD133, CD271, or Nestin is expressed. (If any one or more of the marker proteins are expressed, it can be determined that the cells are undifferentiated mesenchymal cells). In addition, mesenchymal cells that do not express any of the markers in the preceding paragraph can be judged to be differentiated mesenchymal cells. Among the terms used among those skilled in the art, mesenchymal stem cells, mesenchymal progenitor cells, mesenchymal cells (R. Peters, et al. PLos One.30; 5 (12): e15689. (2010)) and the like are of the present invention. Included in mesenchymal cells in. Preferred mesenchymal cells are bone marrow-derived mesenchymal cells (particularly mesenchymal stem cells). The mesenchymal cells are collected from tissues such as bone marrow, adipose tissue, placenta tissue, umbilical cord tissue, and dental pulp, or are pluripotent such as induced pluripotent stem cells (iPS cells) and embryonic stem cells (ES cells). It can be prepared from stem cells according to a known method. Although mesenchymal cells are mainly derived from humans, animals used for animals other than humans (for example, experimental animals, pet animals, service animals, race horses, fighting dogs, etc., specifically, mice and rats , Rabbits, pigs, dogs, monkeys, cows, horses, sheep, chickens, sharks, rays, ginseng, salmon, shrimp, crabs, etc.) may be used.
The culture ratio of the three types of cells in the co-culture is not particularly limited as long as the pancreatic cancer organoid can be formed, but a suitable cell number ratio is human pancreatic cancer cell line S2-013: vascular endothelial cell: mesenchymal cell. = 10: 1 to 100: 1 to 100, and more preferably, human pancreatic cancer cell line S2-013: vascular endothelial cell: mesenchymal cell = 10: 1 to 100: 5 to 100. About 200,000 human pancreatic cancer cell lines S2-013, about 140,000 vascular endothelial cells, and about 400,000 mesenchymal cells are co-cultured to produce pancreatic cancer organoids with a size of about 50,000 to 50,000 micrometers. Can be formed.
The medium used for culturing may be any medium as long as it forms a pancreatic cancer organoid, but is a mixture of a medium for vascular endothelial cell culture, a medium for cancer cell culture, and the above two media. Etc. are preferred. Any medium for vascular endothelial cell culture may be used, but hEGF (recombinant human epidermal growth factor), VEGF (vascular endothelial growth factor), hydrocortisone, bFGF, ascorbic acid, IGF1, FBS. , Antibiotics (eg, gentamicin, amphotericin B, etc.), Heparin, L-Glutamine, Phenolred, BBE. As a medium for culturing vascular endothelial cells, EGM-2 Bullet Kit (manufactured by Lonza), EGM Bullet Kit (manufactured by Lonza), VascuLife EnGS Comp Kit (manufactured by LCT), Human Endothelial-SFM Thermo Fisher (Ther) , Human microvascular endothelial cell growth medium (manufactured by TOYOBO) and the like can be used. Any medium may be used for culturing cancer cells, and examples thereof include DMEM medium. In particular, a medium of EGM: DMEM = 1: 1 is suitable for producing pancreatic cancer organoids.
It is not necessary to use a scaffolding material for culturing cells, but it is preferable to cultivate a mixture of three types of cells on a gel-like support in which mesenchymal cells can contract.
The contraction of mesenchymal cells indicates that morphologically three-dimensional tissue formation is observed (microscopically or with the naked eye), and that the tissue shape is maintained by recovery with a spatula or the like (Takebe). It can be confirmed as in et al. Nature 499 (7459), 481-484, 2013)).
The support has an appropriate hardness (for example, Young's modulus of 200 kPa or less (for example, when the shape coated with Matrigel is a flat gel), but the appropriate hardness of the support may vary depending on the coating and shape). It is preferably a gel-like base material having a gel, and examples of such a base material include hydrogels (for example, acrylamide gel, gelatin, matrigel, etc.), but are not limited thereto. It should be noted that the hardness of the support does not necessarily have to be uniform according to the shape, size, and amount of the target aggregate, and it is possible to set a spatial / temporal gradient for the hardness or to pattern it. It is possible. When the hardness of the support is uniform, the hardness of the support is preferably 100 kPa or less, more preferably 1 to 50 kPa. The gel-like support may be flat, or the cross section of the gel-like support on the culture side may be U or V-shaped. The U or V-shaped cross section of the gel-like support on the culture side allows cells to gather on the culture surface of the support, and a cell aggregate is formed with a smaller number of cells and / or tissues. It is advantageous because it is done. Further, the support may be chemically or physically modified. Examples of the modifying substance include matrigel, laminin, entactin, collagen, fibronectin, vitronectin and the like.
An example in which the hardness of the gel-like culture support is set to a spatial gradient is a gel-like culture support in which the hardness of the central portion is harder than the hardness of the peripheral portion. The appropriate hardness of the central part is 200 kPa or less, and the hardness of the peripheral part should be softer than that of the central part, but the appropriate hardness of the central part and the peripheral part of the support varies depending on the coating and shape. sell. Another example in which the hardness of the gel-like culture support is set to a spatial gradient is a gel-like culture support in which the hardness of the peripheral portion is harder than the hardness of the central portion.
An example of a patterned gel-like culture support is a gel-like culture support having one or more patterns in which the hardness of the central portion is harder than the hardness of the peripheral portion. The appropriate hardness of the central part is 200 kPa or less, and the hardness of the peripheral part should be softer than that of the central part, but the appropriate hardness of the central part and the peripheral part of the support varies depending on the coating and shape. sell. Another example of the patterned gel-like culture support is a gel-like culture support having one or more patterns in which the hardness of the peripheral portion is harder than the hardness of the central portion. The appropriate hardness of the peripheral portion is 200 kPa or less, and the hardness of the central portion may be softer than that of the peripheral portion, but the appropriate hardness of the central portion and the peripheral portion of the support varies depending on the coating and shape. sell.
The temperature at the time of culturing is not particularly limited, but is preferably 30 to 40 ° C, more preferably 37 ° C.
The culture period is not particularly limited, but is preferably 1 to 60 days, and more preferably 1 to 7 days.
1-2. Preparation of mouse model A human pancreatic cancer mouse model (Xenograft model) that reproduces the ductal structure and pancreatic cancer microenvironment by transplanting a reconstructed pancreatic cancer organoid that reproduces the above-mentioned pancreatic cancer microenvironment into a mouse is prepared. be able to.
Examples of the mouse used in the present invention include BALB / cSlc-nu / nu mice.
It is prepared as described above, and it is confirmed by stereomicroscopic observation that a circular pancreatic cancer organoid has been formed, and the circular pancreatic cancer organoid is subcutaneously transplanted into a mouse. Transplantation can be performed according to the conventional Xenograft transplantation method. For example, 2 to 10 weeks after transplantation, tumor tissue is sufficiently formed in mice and can be used as a human pancreatic cancer mouse model.
2. Use of Human Pancreatic Cancer Mouse Model Since the mouse model according to the present invention described above has pancreatic cancer similar to human pancreatic cancer, it can be used as a pathological model mouse for human pancreatic cancer. For example, it can be used for elucidation of the onset mechanism or pathophysiology of human pancreatic cancer, screening of pancreatic cancer therapeutic agents (anticancer agents), evaluation of drug efficacy of pancreatic cancer therapeutic agents, screening of pancreatic cancer diagnostic markers, and evaluation of usefulness.
For example, in the screening of a pancreatic cancer therapeutic agent, a test substance which is a therapeutic agent candidate compound is administered to a mouse model according to the present invention by an appropriate administration route such as oral administration, and the size, invasion, and distant metastasis of pancreatic cancer are determined in the mouse model. The effect of the test substance can be determined by observing the number, death of the mouse, and the like. Similarly, in the evaluation of the efficacy of a pancreatic cancer therapeutic agent, the pancreatic cancer therapeutic agent to be evaluated is administered to the mouse model according to the present invention by an appropriate administration route such as oral administration, and the size, invasion, and distant metastasis of pancreatic cancer in the mouse model. The efficacy of the pancreatic cancer therapeutic agent can be evaluated by observing the number of patients, the death of the mouse, and the like.
Moreover, in the serum collected from the mouse model according to the present invention, the pancreatic cancer diagnostic marker behaves similarly to clinical pancreatic cancer. Therefore, the mouse model according to the present invention can be used for evaluation of the usefulness of a pancreatic cancer diagnostic marker or screening of a pancreatic cancer diagnostic marker in a biological sample such as serum collected from the mouse model.
For example, in order to evaluate the usefulness of a pancreatic cancer diagnostic marker, a biological sample such as serum collected from the mouse model according to the present invention is used for an immunological measurement method using an antibody against the pancreatic cancer diagnostic marker to be evaluated. The pancreatic cancer diagnostic marker is measured at the protein level. The measured pancreatic cancer diagnostic marker level (concentration in a biological sample such as serum) is the same as the mouse model according to the present invention, except that it does not carry a pancreatic cancer organoid. The usefulness of the pancreatic cancer diagnostic marker can be evaluated by determining whether or not a significant change (increase or decrease) according to the pancreatic cancer diagnostic marker to be evaluated is observed as compared with the target sample).
Similarly, in the screening of pancreatic cancer diagnostic markers, biological samples such as serum collected from the mouse model according to the present invention are subjected to an immunological measurement method using an antibody against a pancreatic cancer diagnostic marker candidate, and the screening is performed at the protein level. Measure pancreatic cancer diagnostic marker candidates. An organism such as serum derived from a mouse that has the same measured pancreatic cancer diagnostic marker candidate level (concentration in a biological sample such as serum) as a negative control (for example, does not carry a pancreatic cancer organoid) and is the same as the mouse model according to the present invention. The pancreatic cancer diagnostic marker candidate can be identified as a pancreatic cancer diagnostic marker by significantly fluctuating (increasing or decreasing) as compared with the scientific sample).
Here, the immunological measurement method is not particularly limited, and examples thereof include ELISA, flow cytometry, and Western blotting.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
〔ヒト膵癌マウスモデルの作製とその評価〕
1.材料及び方法
1−1.細胞
 使用した細胞は、ヒト膵癌細胞株S2−013(以下、「S2−013」と称する場合がある)、ヒト臍帯静脈内皮細胞HUVEC(LONZA)(以下、「HUVEC」と称する場合がある)及びヒト間葉系幹細胞MSC(LONZA)(以下、「MSC」と称する場合がある)であった。
 S2−013はDMEM培地にて培養した。HUVECはEGM−2・HUVEC用培地にて培養した。MSCはMSCGM培地にて培養した。
1−2.膵癌オルガノイドの作製
 培養中のS2−013、MSC及びHUVECを、トリプシンを用いて1種類づつ順番に回収した。S2−013は0.5%トリプシン(SIGMA)を用いて剥離し、またMSCとHUVECは0.05%トリプシン(gibco)を用いて剥離した。各細胞の状態に合わせてトリプシン処理の時間を調節した。次いで、FCS入りのDMEMにてトリプシンを中和し、遠心後に培養液を出来る限り抜いた。それぞれの細胞にあった培養液で懸濁した後、トリパンブルーと細胞懸濁液を1.5mLアシストtube内で当量混ぜ、そのうち10μLを用いて血球計算版にてセルカウントを行った。
 生細胞率と細胞数を確認した後、オルガノイド1個につき15mLのファルコンチューブ1本を用いて、各細胞を必要量分注した。分注後は氷上に保管した。オルガノイド1個あたりに必要な細胞数は、S2−013:20×10個、MSC:40×10個、HUVEC:14×10個であった。
 一方、あらかじめ冷やしておいたDMEMにマトリゲルを当量加えた。マトリゲルが固まらないように、よく冷えたPBSで濡らしたピペットチップを用いた。DMEM/マトリゲル混合溶液をよく混ぜ、氷上に置いた。
 次いで、48well plateを良く冷えたPBS 200μL/wellで濡らし、wellからPBSを取り除いた後、DMEM/マトリゲル混合溶液を160μL/wellアプライした。その際、気泡はチップの先端などでつぶし、液面が平らなことを確認した後、COインキュベータで37℃1時間Incubateした。
 上述の分注により準備した3種類の細胞の混合液をよく混ぜ、室温で600g5分遠心し、パスツールに10μLチップをつけたものを用いて上清を出来る限り取り除いた。次いで、インキュベートが終わった48wellの各wellに細胞混合液を含有するファルコンチューブ1本ずつアプライした。この際泡が入ったり、割れたりしないように注意した。
 細胞混合液をアプライした48well plateを、COインキュベータで37℃30分インキュベートした。インキュベーションの待ち時間の間に、DMEMとEGMを当量で混ぜたDMEM/EGM混合溶液を作った。Incubate終了後、DMEM/EGM混合溶液を300μL/wellアプライして、マトリゲルとの間に気泡が入っていないか確認してから、再びplateをCOインキュベータへ入れ37℃24時間Incubateした。
 このようにして、48well plateの各wellに膵癌オルガノイドを1個ずつ作製した。
1−3.ヒト膵癌マウスモデルの作製
 第1−2節において前日に用意しておいた膵癌オルガノイドを顕微鏡で観察し、収縮しているか、割れていないかなど使用できる形状かを確認した。マトリゲル/DMEM混合溶液を作製し、1.5mLtubeに50μL/tubeで分注した。膵癌オルガノイドの数と同量の本数用意し、氷上に置いた。
 6週齢のヌードマウス(BALB/cSlc−nu/nu)を日本エスエルシー株式会社から購入し、高知大学研究機関内動物管理使用ガイドラインに従って扱った。麻酔した当該ヌードマウスの脇腹の皮膚を5−8mm程度切開し、止血鉗子にて皮下を鈍的剥離して、ヒト膵癌オルガノイドが入る程度の大きさのポケットを作った。
 1000μLチップを冷えたPBSで濡らし、膵癌オルガノイドを培養した48wellプレートから培地とゲルを取り除いた。次いで、あらかじめ先を切って滅菌処理をした200μLチップを冷えたPBSで濡らし、膵癌オルガノイドを吸い取り、最初に用意したDMEM/マトリゲル混合溶液入りのチューブに入れた。膵癌オルガノイドの入った混合溶液を全量、作製したヌードマウスの脇腹の皮下のポケットにアプライし縫合した。
 このようにして、ヒト膵癌マウスモデルを作製した。
1−4.ヒト膵癌マウスモデルへのTS−1の投与
 第1−3節で説明するように、ヒト膵癌細胞株S2−013由来のヒト膵癌オルガノイドをヌードマウス脇腹の皮下に移植した。ヒト膵癌マウスモデルを2群に分け、移植の翌週から、6匹に対して膵癌の標準化学療法薬であるTS−1(10mg/kg)を5日/週の頻度で経口投与した。4週間の薬剤投与後、2週間休薬し、再び2週間投与した。また、コントロール群として6匹には薬剤を投与せず観察のみした。
 移植の2週間後から毎週、膵癌組織の腫瘍径の計測と写真撮影を行った。移植から8週間後における各マウスの写真を図14に、各群マウスの腫瘍径の経時的変化を図15に示す。図15中、「*」はt−テストにおいてコントロール群に対してp<0.05で有意差があることを示す。表には摘出したヒト膵癌の病理組織学的所見を示す。
1−5.ヒト膵癌マウスモデルから採取した血清における膵癌診断マーカーの測定
 第1−3節で説明するように、ヒト膵癌細胞株S2−013由来のヒト膵癌オルガノイドをヌードマウス脇腹の皮下に移植した。ヒト膵癌マウスモデルを2群に分け、1群目の5匹のヒト膵癌マウスモデルでは腫瘍径が平均5mmの膵癌オルガノイドを移植後4週後に全血採血を行った。2群目の5匹のヒト膵癌マウスモデルでは腫瘍径が平均20mmの膵癌オルガノイドを移植後8週後に全血採血を行った。コントロール群としてヒト膵癌オルガノイドを移植していないヌードマウス5匹から全血採血を行った。
 全ての血液から血清を分離して冷凍保存した。次いで、全ての血清中CA19−9濃度を市販のELISAキット(EIA−5069,DRG)を用いて測定した。
2.結果
2−1.ヒト膵癌マウスモデルから摘出した腫瘍組織の病理組織学的検討
 上記のように、ヒト膵癌細胞株S2−013を用いて膵癌オルガノイドを作製し、マウス皮下に移植した。図1、2、3に示すように、膵癌オルガノイドをマウス皮下に移植してから6週間経過観察を行い、腫瘍組織を摘出した。腫瘍組織は経時的に増大していった。
 摘出した腫瘍組織の組織標本を作製して病理組織学的検討を行った。ヒト膵癌組織の最大の特徴は豊富な癌間質である。癌間質の中で膵癌細胞は活発に動き回り、周囲組織に浸潤していく。図4に示すように、上記のように作製した膵癌オルガノイドを担持したヒト膵癌マウスモデルから摘出した腫瘍組織では、ヒト膵癌オルガノイド由来の癌間質が豊富に存在し、腺腔構造・微小乳頭状構造を呈する部分が混在していた。癌間質を伴った膵癌細胞の浸潤像が見られた。一方、従来のXenograftを担持したマウスから摘出した腫瘍組織では、充実性の部分がほとんどであり、腺腔構造と癌間質に乏しく、腺癌の組織とは言えなかった。
 なお、本実施例において、「従来のXenograftを担持したマウス」とは、S2−013細胞の浮遊液をヌードマウスの脇腹の皮下に注射して腫瘍を形成させる異所移植モデルであった。
 従来のXenograftを担持したマウス:6週齢のヌードマウス(BALB/cSlc−nu/nu)を用いた。PBSに浮遊させた2.0×10個のS2−013細胞を麻酔した当該ヌードマウスの脇腹に皮下注射することにより、マウス皮下に腫瘍を形成させた。
 図5に示すように、上記のように作製した膵癌オルガノイドを担持したヒト膵癌マウスモデルから摘出した腫瘍組織では、腺腔((A)の左の写真)及び微小乳頭状構造((A)の右の写真)からも、腺癌であることは明らかであった。一方、従来のXenograftを担持したマウスから摘出した腫瘍組織では、腺管構造や乳頭状構造がほとんどなく、腺癌への分化に乏しかった((B)の写真)。
 図6に示すように、上記のように作製した膵癌オルガノイドを担持したヒト膵癌マウスモデルから摘出した腫瘍組織では、豊富な癌間質を伴った筋層と皮下への細胞浸潤を認めた((A)の写真)。一方、従来のXenograftを担持したマウスから摘出した腫瘍組織では、筋層への細胞浸潤を認めるが、癌間質は乏しかった((B)の写真)。
 図7に示すように、上記のように作製した膵癌オルガノイドを担持したヒト膵癌マウスモデルから摘出した腫瘍組織では、腫瘍近傍の脈管侵襲(図左)及び皮下リンパ節への転移(図右)を認めた。一方、従来のXenograftを担持したマウスから摘出した腫瘍組織では、脈管侵襲とリンパ節転移が見られなかった。
 図8に示すように、上記のように作製した膵癌オルガノイドを担持したヒト膵癌マウスモデルから摘出した腫瘍組織では、上皮間葉転換(EMT)が見られた((A)の写真:点線の枠内)。膵癌でよく発現しているCK19の染色性も同部では低く((C)の写真)、逆にvimentinが発現していた((D)の写真)。腫瘍細胞はCK19(+),vimentin(−)である。EMTは浸潤と転移に関与する。間質茎を伴った乳頭状構造も一部にみられた((B)の写真)。
 図9に示すように、従来のXenograftを担持したマウスから摘出した腫瘍組織においては、膵癌組織の分化は全体に均一で、部位ごとの分化のバリエーションが見られなかった。EMT像や間質茎を伴った乳頭状構造もなかった。腫瘍細胞はCK19(+),vimentin(−)であり、膵癌オルガノイド腫瘍と同様の所見だった。しかし、Vimentin発現は全体的に膵癌オルガノイド腫瘍より強かった。分化のバリエーションがなく、ほぼ均一であることが最大の特徴であり、分化のバリエーションと癌間質が豊富である臨床的膵癌組織と乖離していた。
 図10に示すように、膵癌患者から手術摘出された膵癌組織において豊富な癌間質を伴う膵癌細胞が腺管構造形成して膵臓内脂肪組織への浸潤がみられた。図4に示したように、ヒト膵癌マウスモデルから摘出した腫瘍組織は臨床的な膵癌と類似しており、ヒト膵癌マウスモデルは臨床的な膵癌と乖離していないモデルマウスであった。
 図11に示すように、膵癌患者から手術摘出された膵癌組織において乳頭状構造を認めた。図5に示したように、ヒト膵癌マウスモデルから摘出した腫瘍組織においても乳頭状構造は見られた。
 図12に示すように、膵癌患者から手術摘出された膵癌組織において腹腔内のリンパ節転移が散見された。図7に示したように、ヒト膵癌マウスモデルから摘出した腫瘍組織においてもリンパ節転移は見られた。
 図13に示すように、膵癌患者から手術摘出された膵癌組織においてEMTが散見された。図8に示したように、ヒト膵癌マウスモデルから摘出した腫瘍組織においてもEMTは見られた。一方、従来のXenograftを担持したマウスから摘出した腫瘍組織においては臨床的な膵癌の所見である(1)豊富な癌間質を伴う膵癌細胞の浸潤、(2)腺癌の性質である腺管構造・乳頭状構造、(3)脈管侵襲、リンパ節転移、及び(4)EMTのいずれの所見も見られなかった。
2−2.ヒト膵癌マウスモデルへのTS−1の投与による抗腫瘍効果の観察
 上記のように作製したヒト膵癌マウスモデルへ、術後膵癌の第一選択薬であるTS−1を投与して抗腫瘍効果を観察した。ヒト膵癌モデルマウスへの投与後、腫瘍径の経時的計測と病理組織学的検討を行った。ヒト膵癌マウスモデルへのTS−1の投与方法は、マウスの体重当たり10mg/kgのTS−1を週5日4週間投与し2週間休薬を1コースとして実験期間の間投与を繰り返した。
 結果を図14及び15に示す。
 図14、15に示すように、TS−1を8週間投与したヒト膵癌マウスモデル群の皮下に形成された膵癌腫瘍の体積は、コントロール群に比較して移植後7週目から有意に抑制された。
 また、ヒト膵癌オルガノイドの皮下への移植後8週目に各マウスを解剖して、マウス脇腹に形成された腫瘍組織をホルマリン固定し、ヘマトキシリン−エオシン染色を行った。病理組織学的検討の結果を図15の(B)表に示す。図15の(B)表に示すように、TS−1は脈管侵襲・筋層浸潤の抑制効果においてコントロール群と差を認めなかった。TS−1を経口投与したヒト膵癌マウスモデル群では、コントロール群と比較して壊死による嚢胞化が顕著であった。これらの結果は、TS−1が細胞増殖抑制することにより腫瘍増大を抑制する実臨床で得られている薬効と一致した所見であった。ヒト膵癌マウスモデルは、従来のXenograftモデルで問題になっていた臨床の膵癌組織との乖離を解決することができ、膵癌新薬の薬効評価を行う際、正確な情報を提供できることが示された。
2−3.ヒト膵癌マウスモデルから採取した血清における膵癌診断マーカーの測定
 膵癌腫瘍マーカーCA19−9の血清濃度を、上記のように作製したヒト膵癌マウスモデルから採取した血清において測定した。
 ヒト膵癌マウスモデルから、移植後4週目、8週目及び10週目に採血し、膵癌診断マーカーの血清濃度の測定を行った。
 図16に示すように、ヒト膵癌マウスモデルから採取した血清中のCA19−9濃度は経時的に上昇した。腫瘍組織から血液中に漏れ出たCA19−9を検出することができ、腫瘍が大きくなるにつれて濃度も上昇した。
 このように、新規の膵癌診断マーカー同定を目指す研究において、ヒト膵癌マウスモデルの血清濃度を経時的に測定することにより、有望な診断マーカーであることの評価に役立つ情報を提供することができる。
2−4.従来のXenograftを担持したマウスへのTS−1の投与による抗腫瘍効果の観察
 従来のXenograftを担持したマウスへ、TS−1を8週間投与して抗腫瘍効果を観察した。Xenograftを担持したマウスへの投与後、腫瘍径の経時的計測を行った。
 図17に示すように、TS−1を投与したXenograftを担持したマウス群の皮下に形成された膵癌腫瘍の体積は、コントロール群に比較して抑制されなかった。また、皮下の腫瘍組織から出血して掘れ込んでおり腫瘍増大を観察するモデルとして不適格であると思われた。一方、図14に示したようにヒト膵癌マウスモデル群の皮下に形成された膵癌腫瘍には出血は見られなかった。
 図18に示すように、従来のXenograftを担持したマウスではTS−1の腫瘍増殖を抑制する効果を検出できなかった。
2−5.従来のXenograftを担持したマウスから採取した血清における膵癌診断マーカーの測定
 膵癌腫瘍マーカーCA19−9の血清濃度を、従来のXenograftを担持したマウスから採取した血清において測定した。
 従来のXenograftを担持したマウスから、移植後4週目及び8週目に採血し、膵癌診断マーカーの血清濃度の測定を行った。
 図19に示すように、従来のXenograftを担持したマウスから採取した血清中のCA19−9濃度は経時的な上昇を示さなかった。腫瘍から出血がみられたが、腫瘍は経時的に大きくなっているにも関わらず、腫瘍組織から血液中に漏れ出たCA19−9は経時的に濃度が低下した。
3.まとめ
 膵癌オルガノイドを担持したヒト膵癌マウスモデルのヒト膵癌組織は、臨床的な膵癌組織と組織構築が極めて類似しており、ヒト膵癌由来の癌間質が豊富に存在していた。
 また、膵癌オルガノイドを担持したヒト膵癌マウスモデルに膵癌術後治療の第一選択薬であるTS−1の投与を行ったところ、TS−1は膵癌腫瘍の増大を抑制するが、周囲組織への浸潤抑制の効果は低いことを明らかにすることができた。TS−1が膵癌の特徴である「癌間質を伴う強力な浸潤」を十分に抑制することができず薬効に限界がある根拠を示すことができた。
 さらに、膵癌オルガノイドを担持したヒト膵癌マウスモデルは、従来のモデルで問題になっていた臨床の膵癌組織との乖離を解決することができ、膵癌新薬の薬効評価を行う際、正確な情報を提供できる。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples.
[Preparation of mouse model of human pancreatic cancer and its evaluation]
1. 1. Materials and methods 1-1. Cells The cells used are human pancreatic cancer cell line S2-013 (hereinafter, may be referred to as "S2-013"), human umbilical vein endothelial cell HUVEC (LONZA) (hereinafter, may be referred to as "HUVEC") and It was a human mesenchymal stem cell MSC (LONZA) (hereinafter, may be referred to as "MSC").
S2-013 was cultured in DMEM medium. HUVEC was cultured in EGM-2 / HUVEC medium. MSCs were cultured in MSCGM medium.
1-2. Preparation of Pancreatic Cancer Organoids S2-013, MSC and HUVEC in culture were collected one by one using trypsin. S2-013 was stripped with 0.5% trypsin (SIGMA) and MSC and HUVEC were stripped with 0.05% trypsin (sigco). The time of trypsin treatment was adjusted according to the state of each cell. Then, trypsin was neutralized in DMEM containing FCS, and the culture solution was withdrawn as much as possible after centrifugation. After suspending in the culture medium suitable for each cell, trypan blue and the cell suspension were mixed in an equivalent amount in 1.5 mL assist tube, and 10 μL of the mixture was used for cell counting with a hemocytometer.
After confirming the viable cell rate and the number of cells, each cell was dispensed in the required amount using one 15 mL falcon tube for each organoid. After dispensing, it was stored on ice. The number of cells required for one organoid was S2-013: 20 × 10 4 cells, MSC: 40 × 10 4 cells, and HUVEC: 14 × 10 4 cells.
On the other hand, an equivalent amount of Matrigel was added to DMEM which had been cooled in advance. A pipette tip wet with well-chilled PBS was used to prevent the matrigel from solidifying. The DMEM / Matrigel mixture was mixed well and placed on ice.
The 48-well plate was then wetted with 200 μL / well of well-chilled PBS, the PBS was removed from the well, and then the DMEM / Matrigel mixed solution was applied at 160 μL / well. At that time, the bubbles were crushed with the tip of a chip or the like, and after confirming that the liquid level was flat, they were incubated at 37 ° C. for 1 hour in a CO 2 incubator.
The mixed solution of the three types of cells prepared by the above-mentioned dispensing was mixed well, centrifuged at 600 g for 5 minutes at room temperature, and the supernatant was removed as much as possible using Pasteur with a 10 μL tip. Then, one falcon tube containing the cell mixture was applied to each well of the 48 wells that had been incubated. At this time, care was taken not to allow bubbles to enter or crack.
A 48-well plate to which the cell mixture was applied was incubated in a CO 2 incubator at 37 ° C. for 30 minutes. During the incubation waiting time, DMEM / EGM mixed solution was prepared by mixing DMEM and EGM in equivalent amounts. After completion of the incubation, 300 μL / well of the DMEM / EGM mixed solution was applied to confirm that there were no bubbles between the DMEM / EGM mixture and the matrigel, and then the plate was put into the CO 2 incubator again and incubated at 37 ° C. for 24 hours.
In this way, one pancreatic cancer organoid was prepared for each well of the 48-well plate.
1-3. Preparation of human pancreatic cancer mouse model In Section 1-2, the pancreatic cancer organoid prepared the day before was observed under a microscope to confirm whether it was contracted or not cracked and whether it had a usable shape. A Matrigel / DMEM mixed solution was prepared and dispensed into 1.5 mL tube at 50 μL / tube. The same number as the number of pancreatic cancer organoids was prepared and placed on ice.
A 6-week-old nude mouse (BALB / cSlc-nu / nu) was purchased from Nippon SLC Co., Ltd. and handled according to the animal management and use guidelines in the Kochi University Research Institute. The skin on the flank of the anesthetized nude mouse was incised about 5-8 mm, and the skin was bluntly peeled off with hemostatic forceps to make a pocket large enough to contain a human pancreatic carcinoma organoid.
The 1000 μL chip was wetted with cold PBS and the medium and gel were removed from the 48 well plate in which the pancreatic cancer organoids were cultured. The 200 μL chip, which had been pre-cut and sterilized, was then wetted with cold PBS, the pancreatic cancer organoids were aspirated, and placed in the tube containing the DMEM / Matrigel mixture solution prepared first. The entire mixed solution containing the pancreatic cancer organoid was applied to the subcutaneous pocket on the flank of the prepared nude mouse and sutured.
In this way, a human pancreatic cancer mouse model was prepared.
1-4. Administration of TS-1 to a Human Pancreatic Cancer Mouse Model As described in Section 1-3, a human pancreatic cancer organoid derived from the human pancreatic cancer cell line S2-013 was implanted subcutaneously in the flank of a nude mouse. The human pancreatic cancer mouse model was divided into two groups, and from the week following the transplantation, TS-1 (10 mg / kg), which is a standard chemotherapeutic agent for pancreatic cancer, was orally administered to 6 animals at a frequency of 5 days / week. After administration of the drug for 4 weeks, the drug was withdrawn for 2 weeks, and the drug was administered again for 2 weeks. In addition, as a control group, 6 animals were observed without administration of the drug.
The tumor diameter of the pancreatic cancer tissue was measured and photographed every week from 2 weeks after the transplantation. A photograph of each mouse 8 weeks after transplantation is shown in FIG. 14, and a change over time in tumor diameter of each group of mice is shown in FIG. In FIG. 15, “*” indicates that there is a significant difference in p <0.05 with respect to the control group in the t-test. The table shows the histopathological findings of the resected human pancreatic cancer.
1-5. Measurement of Pancreatic Cancer Diagnostic Markers in Serum Collected from Human Pancreatic Cancer Mouse Model As described in Section 1-3, human pancreatic cancer organoids derived from human pancreatic cancer cell line S2-013 were implanted subcutaneously in the flanks of nude mice. The human pancreatic cancer mouse model was divided into two groups, and in the five human pancreatic cancer mouse models in the first group, pancreatic cancer organoids having an average tumor diameter of 5 mm were collected, and whole blood was collected 4 weeks after transplantation. In the 5 human pancreatic cancer mouse models in the second group, pancreatic cancer organoids having an average tumor diameter of 20 mm were collected from whole blood 8 weeks after transplantation. Whole blood was collected from 5 nude mice that had not been transplanted with human pancreatic cancer organoids as a control group.
Serum was separated from all blood and stored frozen. All serum CA19-9 concentrations were then measured using a commercially available ELISA kit (EIA-5069, DRG).
2. Result 2-1. Histopathological examination of tumor tissue excised from a human pancreatic cancer mouse model As described above, a pancreatic cancer organoid was prepared using the human pancreatic cancer cell line S2-013 and transplanted subcutaneously into the mouse. As shown in FIGS. 1, 2 and 3, pancreatic cancer organoids were subcutaneously transplanted into mice, followed up for 6 weeks, and tumor tissue was removed. Tumor tissue grew over time.
A histopathological examination was performed by preparing a histological specimen of the excised tumor tissue. The most characteristic feature of human pancreatic cancer tissue is abundant cancer stroma. Pancreatic cancer cells move around actively in the cancer stroma and invade surrounding tissues. As shown in FIG. 4, in the tumor tissue excised from the human pancreatic cancer mouse model carrying the pancreatic cancer organoid prepared as described above, cancer stroma derived from the human pancreatic cancer organoid is abundantly present, and the glandular structure and micropapillary shape are present. The parts exhibiting the structure were mixed. An infiltration image of pancreatic cancer cells with cancer stroma was observed. On the other hand, in the tumor tissue excised from the conventional Xenograft-carrying mouse, most of the tumor tissue was solid, and the glandular cavity structure and cancer stroma were poor, so that it could not be said to be an adenocarcinoma tissue.
In this example, the "conventional Xenograft-carrying mouse" was an ectopic transplantation model in which a suspension of S2-013 cells was injected subcutaneously into the flank of a nude mouse to form a tumor.
Conventional Xenograft-carrying mice: 6-week-old nude mice (BALB / cSlc-nu / nu) were used. Tumors were formed subcutaneously by subcutaneously injecting 2.0 × 10 6 S2-013 cells suspended in PBS into the flank of the anesthetized nude mouse.
As shown in FIG. 5, in the tumor tissue excised from the human pancreatic cancer mouse model carrying the pancreatic cancer organoid prepared as described above, the glandular cavity (left photograph of (A)) and the micropapillary structure ((A)) From the photo on the right), it was clear that it was adenocarcinoma. On the other hand, the tumor tissue excised from the conventional Xenograft-carrying mouse had almost no ductal structure or papillary structure, and was poorly differentiated into adenocarcinoma (photo of (B)).
As shown in FIG. 6, in the tumor tissue excised from the human pancreatic cancer mouse model carrying the pancreatic cancer organoid prepared as described above, muscular layer and subcutaneous cell infiltration with abundant cancer stroma were observed (((() A) Photo). On the other hand, in the tumor tissue excised from the conventional Xenograft-carrying mouse, cell infiltration into the muscular layer was observed, but the cancer stroma was poor (photo of (B)).
As shown in FIG. 7, in the tumor tissue excised from the human pancreatic cancer mouse model carrying the pancreatic cancer organoid prepared as described above, vascular invasion in the vicinity of the tumor (left in the figure) and metastasis to the subcutaneous lymph node (right in the figure). Was admitted. On the other hand, no vascular invasion or lymph node metastasis was observed in the tumor tissue removed from the conventional Xenograft-carrying mouse.
As shown in FIG. 8, epithelial-mesenchymal transition (EMT) was observed in the tumor tissue removed from the human pancreatic cancer mouse model carrying the pancreatic cancer organoid prepared as described above (Photo (A): dotted frame. Inside). The stainability of CK19, which is often expressed in pancreatic cancer, was also low in the same region (photo (C)), and conversely vimentin was expressed (photo (D)). Tumor cells are CK19 (+) and vimentin (-). EMT is involved in infiltration and metastasis. Papillary structures with stromal stalks were also seen in some areas (photo (B)).
As shown in FIG. 9, in the tumor tissue excised from the conventional Xenograft-carrying mouse, the differentiation of the pancreatic cancer tissue was uniform throughout, and no variation in differentiation was observed for each site. There were no EMT images or papillary structures with stromal stalks. The tumor cells were CK19 (+) and vimentin (-), which were similar to those of pancreatic cancer organoid tumors. However, Vimentin expression was generally stronger than pancreatic organoid tumors. The most distinctive feature was that there was no variation in differentiation and it was almost uniform, and it was separated from the clinical pancreatic cancer tissue, which was rich in variation in differentiation and cancer stroma.
As shown in FIG. 10, in pancreatic cancer tissue surgically removed from a pancreatic cancer patient, pancreatic cancer cells with abundant cancer stroma formed a ductal structure and infiltrated into the adipose tissue in the pancreas. As shown in FIG. 4, the tumor tissue removed from the human pancreatic cancer mouse model was similar to clinical pancreatic cancer, and the human pancreatic cancer mouse model was a model mouse that did not dissociate from clinical pancreatic cancer.
As shown in FIG. 11, a papillary structure was observed in the pancreatic cancer tissue surgically removed from the pancreatic cancer patient. As shown in FIG. 5, papillary structures were also observed in the tumor tissue excised from the human pancreatic cancer mouse model.
As shown in FIG. 12, intraperitoneal lymph node metastasis was occasionally found in pancreatic cancer tissue surgically removed from a pancreatic cancer patient. As shown in FIG. 7, lymph node metastasis was also observed in the tumor tissue excised from the human pancreatic cancer mouse model.
As shown in FIG. 13, EMT was occasionally found in pancreatic cancer tissue surgically removed from a pancreatic cancer patient. As shown in FIG. 8, EMT was also observed in the tumor tissue excised from the human pancreatic cancer mouse model. On the other hand, in the tumor tissue excised from the conventional Xenograft-carrying mouse, clinical findings of pancreatic cancer are (1) infiltration of pancreatic cancer cells with abundant cancer stroma, and (2) adenocarcinoma property. No findings of structure / papillary structure, (3) lymphovascular invasion, lymph node metastasis, or (4) EMT were observed.
2-2. Observation of antitumor effect by administration of TS-1 to human pancreatic cancer mouse model TS-1 which is the first-line drug for postoperative pancreatic cancer is administered to the human pancreatic cancer mouse model prepared as described above to obtain antitumor effect. Observed. After administration to human pancreatic cancer model mice, the tumor diameter was measured over time and histopathological examination was performed. As for the method of administering TS-1 to a human pancreatic cancer mouse model, 10 mg / kg of TS-1 per mouse body weight was administered 5 days a week for 4 weeks, with a 2-week rest period as one course, and administration was repeated during the experimental period.
The results are shown in FIGS. 14 and 15.
As shown in FIGS. 14 and 15, the volume of pancreatic cancer tumor formed subcutaneously in the human pancreatic cancer mouse model group to which TS-1 was administered for 8 weeks was significantly suppressed from 7 weeks after transplantation as compared with the control group. rice field.
Eight weeks after the subcutaneous transplantation of human pancreatic carcinoma organoids, each mouse was dissected, the tumor tissue formed on the flank of the mouse was formalin-fixed, and hematoxylin-eosin staining was performed. The results of histopathological examination are shown in Table (B) of FIG. As shown in Table (B) of FIG. 15, TS-1 did not show any difference from the control group in the effect of suppressing vascular invasion and muscular layer infiltration. In the human pancreatic cancer mouse model group to which TS-1 was orally administered, cyst formation due to necrosis was remarkable as compared with the control group. These results were consistent with the drug efficacy obtained in clinical practice in which TS-1 suppresses tumor growth by suppressing cell proliferation. It was shown that the human pancreatic cancer mouse model can solve the divergence from the clinical pancreatic cancer tissue, which has been a problem in the conventional Xenograft model, and can provide accurate information when evaluating the efficacy of a new pancreatic cancer drug.
2-3. Measurement of Pancreatic Cancer Diagnostic Marker in Serum Collected from Human Pancreatic Cancer Mouse Model The serum concentration of pancreatic cancer tumor marker CA19-9 was measured in serum collected from the human pancreatic cancer mouse model prepared as described above.
Blood was collected from a human pancreatic cancer mouse model at 4, 8 and 10 weeks after transplantation, and the serum concentration of a pancreatic cancer diagnostic marker was measured.
As shown in FIG. 16, the CA19-9 concentration in serum collected from a mouse model of human pancreatic cancer increased with time. CA19-9 leaked from the tumor tissue into the blood could be detected, and the concentration increased as the tumor grew.
As described above, in the research aiming at the identification of a novel pancreatic cancer diagnostic marker, by measuring the serum concentration of the human pancreatic cancer mouse model over time, it is possible to provide information useful for evaluation of being a promising diagnostic marker.
2-4. Observation of antitumor effect by administration of TS-1 to mice carrying conventional Xenograft TS-1 was administered to mice carrying conventional Xenograft for 8 weeks and the antitumor effect was observed. After administration to mice carrying Xenograft, the tumor diameter was measured over time.
As shown in FIG. 17, the volume of the pancreatic cancer tumor formed under the skin of the mouse group carrying Xenograft to which TS-1 was administered was not suppressed as compared with the control group. In addition, bleeding and digging from the subcutaneous tumor tissue seemed to be unsuitable as a model for observing tumor growth. On the other hand, as shown in FIG. 14, no bleeding was observed in the pancreatic cancer tumor formed under the skin of the human pancreatic cancer mouse model group.
As shown in FIG. 18, the effect of suppressing the tumor growth of TS-1 could not be detected in the conventional Xenograft-carrying mice.
2-5. Measurement of Pancreatic Cancer Diagnostic Marker in Serum Collected from Conventional Xenograft-Supported Mice The serum concentration of pancreatic cancer tumor marker CA19-9 was measured in serum collected from conventional Xenograft-bearing mice.
Blood was collected from the conventional Xenograft-carrying mice 4 and 8 weeks after transplantation, and the serum concentration of the pancreatic cancer diagnostic marker was measured.
As shown in FIG. 19, the CA19-9 concentration in the serum collected from the conventional Xenograft-carrying mice did not show an increase with time. Bleeding was observed from the tumor, but the concentration of CA19-9 leaked from the tumor tissue into the blood decreased over time, even though the tumor had grown over time.
3. 3. Summary The human pancreatic cancer tissue of the human pancreatic cancer mouse model carrying the pancreatic cancer organoid was very similar in tissue structure to the clinical pancreatic cancer tissue, and the cancer stroma derived from human pancreatic cancer was abundantly present.
In addition, when TS-1, which is a first-line drug for postoperative treatment of pancreatic cancer, was administered to a human pancreatic cancer mouse model carrying a pancreatic cancer organoid, TS-1 suppressed the growth of pancreatic cancer tumor, but to the surrounding tissues. It was clarified that the effect of suppressing infiltration was low. It was possible to show the rationale that TS-1 could not sufficiently suppress the "strong infiltration with cancer stroma" which is a characteristic of pancreatic cancer, and the drug efficacy was limited.
Furthermore, the human pancreatic cancer mouse model carrying pancreatic cancer organoids can solve the divergence from clinical pancreatic cancer tissue, which has been a problem in the conventional model, and provides accurate information when evaluating the efficacy of new pancreatic cancer drugs. can.
 本発明によれば、ヒト膵癌の特徴を示す膵癌マウスモデルが提供される。また、本発明に係るマウスモデルを用いて、ヒト膵癌に有効な治療剤をスクリーニングすること、及び当該治療剤の薬効を評価することができる。さらに、本発明に係るマウスモデルの血清サンプルを用いて、膵癌診断マーカーをスクリーニングすること、及び当該マーカーの有用性を評価することができる。
 また、本発明に係るマウスモデルは、以下の利点を有する:
 (1)市販のヒト膵癌細胞株を用いることにより、ハイスループット化に対応している;
 (2)3種類の細胞培養を開始した日から6週目にマウスモデルを供給可能である;
 (3)購入可能なヒト膵癌細胞株を用いるので、手術摘出した患者由来の膵癌組織を必要としない;
 (4)上記に詳細に説明するように、ヒト膵癌オルガノイドの作製及びマウス創出の技術は確立済みである;
 (5)本発明に係るマウスモデルにおけるヒト膵癌組織は、臨床的な膵癌組織と組織構築が極めて類似しており、癌間質が豊富に存在し、血清CA19−9が高値を示す;
 (6)患者の臨床データ、遺伝子発現プロファイルはないが、ヒト膵癌オルガノイド腫瘍の組織切片を販売できる;
 (7)遺伝子発現プロファイルが必要な場合、ヒト膵癌オルガノイド腫瘍の組織切片を準備することが可能である;
 (8)非臨床薬理試験における膵癌新規治療薬の薬効評価に有用なモデルである。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
According to the present invention, a mouse model of pancreatic cancer showing the characteristics of human pancreatic cancer is provided. In addition, using the mouse model according to the present invention, it is possible to screen a therapeutic agent effective for human pancreatic cancer and evaluate the efficacy of the therapeutic agent. Furthermore, using the serum sample of the mouse model according to the present invention, it is possible to screen a pancreatic cancer diagnostic marker and evaluate the usefulness of the marker.
In addition, the mouse model according to the present invention has the following advantages:
(1) High throughput is supported by using a commercially available human pancreatic cancer cell line;
(2) A mouse model can be supplied 6 weeks after the start of 3 types of cell culture;
(3) Since a available human pancreatic cancer cell line is used, no pancreatic cancer tissue derived from a surgically resected patient is required;
(4) As described in detail above, techniques for producing human pancreatic cancer organoids and creating mice have been established;
(5) The human pancreatic cancer tissue in the mouse model according to the present invention is very similar in tissue structure to the clinical pancreatic cancer tissue, has abundant cancer stroma, and shows a high serum CA19-9 value;
(6) Although there are no clinical data or gene expression profiles of patients, tissue sections of human pancreatic cancer organoid tumors can be sold;
(7) If a gene expression profile is required, tissue sections of human pancreatic cancer organoid tumors can be prepared;
(8) This model is useful for evaluating the efficacy of new therapeutic agents for pancreatic cancer in non-clinical pharmacology studies.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (5)

  1.  ヒト膵癌細胞株S2−013を含む膵癌オルガノイドを担持するヒト膵癌マウスモデル。 A human pancreatic cancer mouse model carrying a pancreatic cancer organoid containing the human pancreatic cancer cell line S2-013.
  2.  請求項1記載のヒト膵癌マウスモデルを用いて膵癌治療剤をスクリーニングする方法。 A method for screening a pancreatic cancer therapeutic agent using the human pancreatic cancer mouse model according to claim 1.
  3.  請求項1記載のヒト膵癌マウスモデルを用いて膵癌治療剤の薬効を評価する方法。 A method for evaluating the efficacy of a pancreatic cancer therapeutic agent using the human pancreatic cancer mouse model according to claim 1.
  4.  請求項1記載のヒト膵癌マウスモデルから採取した血清サンプルを用いて、膵癌診断マーカーの有用性を評価する方法。 A method for evaluating the usefulness of a pancreatic cancer diagnostic marker using a serum sample collected from the human pancreatic cancer mouse model according to claim 1.
  5.  請求項1記載のヒト膵癌マウスモデルから採取した血清サンプルを用いて、膵癌診断マーカーをスクリーニングする方法。 A method for screening a pancreatic cancer diagnostic marker using a serum sample collected from the human pancreatic cancer mouse model according to claim 1.
PCT/JP2021/017608 2020-04-28 2021-04-27 Establishment of mouse model using human pancreatic cancer organoid WO2021221179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022518164A JPWO2021221179A1 (en) 2020-04-28 2021-04-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-078771 2020-04-28
JP2020078771 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021221179A1 true WO2021221179A1 (en) 2021-11-04

Family

ID=78332038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017608 WO2021221179A1 (en) 2020-04-28 2021-04-27 Establishment of mouse model using human pancreatic cancer organoid

Country Status (2)

Country Link
JP (1) JPWO2021221179A1 (en)
WO (1) WO2021221179A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034559A1 (en) * 2022-08-08 2024-02-15 株式会社ヘリオス Method for producing cell aggregates

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088022A1 (en) * 2008-01-07 2009-07-16 Kagoshima University Novel cancer marker, and diagnosis using the same
JP2012526148A (en) * 2009-05-07 2012-10-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Triptolide products
WO2013172105A1 (en) * 2012-05-18 2013-11-21 日東紡績株式会社 Marker for detecting pancreatic cancer
WO2016002844A1 (en) * 2014-07-04 2016-01-07 国立大学法人高知大学 Agent for inhibiting invasion and metastasis of pancreatic cancer cells
JP2019516384A (en) * 2016-05-25 2019-06-20 ソーク インスティチュート フォー バイオロジカル スタディーズ Compositions and methods for organoid production and disease modeling
WO2019203255A1 (en) * 2018-04-19 2019-10-24 公立大学法人横浜市立大学 Drug evaluation method using reconstructed cancer tissue
WO2019203254A1 (en) * 2018-04-19 2019-10-24 公立大学法人横浜市立大学 Cancer evaluation method using epithelial-mesenchymal-transition-related molecule

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088022A1 (en) * 2008-01-07 2009-07-16 Kagoshima University Novel cancer marker, and diagnosis using the same
JP2012526148A (en) * 2009-05-07 2012-10-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Triptolide products
WO2013172105A1 (en) * 2012-05-18 2013-11-21 日東紡績株式会社 Marker for detecting pancreatic cancer
WO2016002844A1 (en) * 2014-07-04 2016-01-07 国立大学法人高知大学 Agent for inhibiting invasion and metastasis of pancreatic cancer cells
JP2019516384A (en) * 2016-05-25 2019-06-20 ソーク インスティチュート フォー バイオロジカル スタディーズ Compositions and methods for organoid production and disease modeling
WO2019203255A1 (en) * 2018-04-19 2019-10-24 公立大学法人横浜市立大学 Drug evaluation method using reconstructed cancer tissue
WO2019203254A1 (en) * 2018-04-19 2019-10-24 公立大学法人横浜市立大学 Cancer evaluation method using epithelial-mesenchymal-transition-related molecule

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUGH, ROHIT ET AL.: "A Preclinical Evaluation of Minnelide as a Therapeutic Agent Against Pancreatic Cancer", SCI TRANSL MED., vol. 4, no. 156, 17 October 2012 (2012-10-17), XP055870007 *
IWAMURA T., S TANIGUCHI, N KITAMURA, H YAMANARI, A KOJIMA, K HIDAKA, T SETOGUCHI, T KATSUKI: "Correlation between CA 19-9 production in vitro and histological grades of differentiation in vivo in clones isolated from a human pancreatic cancer cell line (SUIT-2", JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, vol. 7, no. 5, 1 September 1992 (1992-09-01), pages 512 - 519, XP055870006 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034559A1 (en) * 2022-08-08 2024-02-15 株式会社ヘリオス Method for producing cell aggregates

Also Published As

Publication number Publication date
JPWO2021221179A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7373872B2 (en) Primary mammary epithelial cell culture medium, culture method, and use thereof
EP1444329B1 (en) Stem cells that transform to beating cardiomyocytes
JP6775157B2 (en) Three-dimensional structure, its manufacturing method, and a three-dimensional structure forming agent
JP6960140B2 (en) Tumor tissue reproduction method
Wang et al. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell
JP2023521878A (en) Culture medium, culture method, and use thereof for epithelial cells of esophageal squamous cell carcinoma
WO2018169007A1 (en) Three-dimensional culture of primary cancer cells using tumor tissue
EP3395943B1 (en) Method for manufacturing tissue/organ by using blood cells
US20190185818A1 (en) Novel chicken egg-based metastasis model for cancer
CN111065731A (en) Vascular organoids, methods of making and using the same
US20210054343A1 (en) Endocardium-derived adult stem cells and method for producing same
WO2019039457A1 (en) Primary culture method
WO2021221179A1 (en) Establishment of mouse model using human pancreatic cancer organoid
EP3708653A1 (en) Artificial fat tissue and method for producing same, method for producing artificial skin and agent for fat cell culture
Kim et al. A fibrin-supported myocardial organ culture for isolation of cardiac stem cells via the recapitulation of cardiac homeostasis
CN107460170B (en) Establishment and application of human pituitary adenoma cell line
JP7265291B2 (en) 3D liver tissue model
EP3684915A1 (en) Fabrication of a biomimetic platform system and methods of use
KR20190127041A (en) liver organoid and method of preparing the same
JP4831662B2 (en) Method for inducing differentiation into vascular endothelial progenitor cells using Notch ligand
JP7228269B2 (en) Cell mass fusion method
WO2024034576A1 (en) Method for culturing cancer organoid and method for screening test substance
Lu et al. Bone Marrow–Derived Vascular Progenitors and Proangiogenic Monocytes in Tumors
DAS et al. Cancer stem cells
CN114891735A (en) Mammary epithelial organoid model construction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797722

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022518164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797722

Country of ref document: EP

Kind code of ref document: A1