WO2021221030A1 - Quality determination system, quality determination method, server, and program - Google Patents

Quality determination system, quality determination method, server, and program Download PDF

Info

Publication number
WO2021221030A1
WO2021221030A1 PCT/JP2021/016695 JP2021016695W WO2021221030A1 WO 2021221030 A1 WO2021221030 A1 WO 2021221030A1 JP 2021016695 W JP2021016695 W JP 2021016695W WO 2021221030 A1 WO2021221030 A1 WO 2021221030A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine learning
teaching data
unit
quality
learning models
Prior art date
Application number
PCT/JP2021/016695
Other languages
French (fr)
Japanese (ja)
Inventor
裕弓 田中
貴史 津田
Original Assignee
株式会社リョーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リョーワ filed Critical 株式会社リョーワ
Priority to JP2021549555A priority Critical patent/JP7049028B2/en
Publication of WO2021221030A1 publication Critical patent/WO2021221030A1/en
Priority to JP2021199103A priority patent/JP2022043134A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a pass / fail judgment system, a pass / fail judgment method, a server, and a program.
  • Patent Document 1 describes a service providing system that provides a service using machine learning by artificial intelligence.
  • This service providing system is a service providing system that provides services using machine learning by artificial intelligence, and is a general model modeled by machine learning by inputting learning data based on information sent from users.
  • a service providing means for providing a personalized service to the user by using a model is provided, and the information sent from the user is used for both the machine learning and the personalization.
  • Patent Document 2 describes a visualization display method of a sound source position that visualizes the position of an arbitrary sound source in real time by associating it with a real space.
  • This visualization display method detects one or more sounds, locates the position of each sound source, converts information about the sound source including at least the position of the sound source into visible information, and superimposes it on the actual image around the sound source in real time. It is characterized by displaying.
  • An object of the present invention is to provide a quality determination system, a quality determination method, a server and a program capable of determining the quality of an inspected object with higher accuracy.
  • the invention according to claim 1 is a teaching data group generation unit that classifies an image including a defect of a plurality of objects to be inspected according to the brightness that characterizes the defect and generates a plurality of classified teaching data groups.
  • a storage unit that stores a plurality of the machine learning models constructed by the machine learning model construction service provided as a cloud computing service and constructing a machine learning model based on the plurality of teaching data groups, and the object to be inspected.
  • a camera unit that captures the image of the above, a determination unit that determines the quality of the object to be inspected imaged by the camera unit based on the plurality of machine learning models stored in the storage unit, and the determination unit.
  • This is a pass / fail judgment system including an optimum model selection unit that evaluates the result of the determination according to the above and selects the optimum machine learning model from the plurality of machine learning models.
  • the invention according to claim 2 is a teaching data group generation unit that classifies an image including a defect of a plurality of objects to be inspected according to a parameter that characterizes the defect and generates a plurality of classified teaching data groups.
  • a storage unit that stores a plurality of the machine learning models constructed based on the plurality of teaching data groups, a camera unit that captures an image of the object to be inspected, and the plurality of storage units stored in the storage unit.
  • a determination unit for determining the quality of the object to be inspected, which is imaged by the camera unit, and a determination result by the determination unit are evaluated, and the optimum machine learning model is selected from the plurality of machine learning models. It is a pass / fail judgment system equipped with an optimum model selection unit for selecting a machine learning model.
  • the invention according to claim 3 is the process P1 in which the teaching data group generating unit obtains a feature value representing the brightness that characterizes the defect in the image in the quality determination system according to claim 1, respectively.
  • the process P2 of classifying the plurality of images according to the feature values and generating the plurality of classified teaching data groups is performed.
  • the invention according to claim 4 is a plurality of criteria for the teaching data group generating unit to determine the brightness that characterizes the defect in the image in the quality determination system according to claim 1. From the values, a process P1 for obtaining a plurality of reference values representing the brightness characterizing the defect as feature values, and the same number of images as the number of the feature values are prepared, and the images are used as the plurality of images. Process P2, which classifies the data according to different feature values and generates the plurality of classified teaching data groups, is performed.
  • the invention according to claim 5 is a pass / fail determination method using the pass / fail determination system according to claim 1, wherein the teaching data group generation unit generates a plurality of teaching data groups, and the storage unit.
  • the step of storing the plurality of machine learning models, the step of the determination unit determining the quality of the object to be inspected based on the plurality of machine learning models, and the step of the optimum model selection unit are described.
  • This is a pass / fail judgment method including.
  • the invention according to claim 6 determines the quality of the inspected object, respectively, based on a plurality of teaching data groups in which an image containing a defect in the plurality of inspected objects is classified according to the brightness that characterizes the defect.
  • a server connected via a network to a cloud computing service that builds a plurality of machine learning models for determination and a determination device that determines the quality of the object to be inspected based on the plurality of machine learning models.
  • the teaching data group generation unit that generates the plurality of teaching data groups and the result of the quality determined by the determination device are evaluated, and the optimum machine learning model is selected from the plurality of machine learning models. It is a server equipped with an optimum model selection unit.
  • the invention according to claim 7 determines the quality of the inspected object, respectively, based on a plurality of teaching data groups in which an image containing a defect in the plurality of inspected objects is classified according to the brightness that characterizes the defect.
  • a computer connected via a network to a cloud computing service for constructing a plurality of machine learning models for determination and a determination device for determining the quality of the object to be inspected based on the plurality of machine learning models.
  • the teaching data group generating means for generating the plurality of teaching data groups, the optimum model that evaluates the result of the quality determined by the determination device, and selects the optimum machine learning model from the plurality of machine learning models. It is a program that functions as a means of selection.
  • the invention according to claim 8 is a server having a teaching data group generation unit and a teaching data group generating unit that generates a plurality of teaching data groups in which an image containing a defect of a plurality of objects to be inspected is classified according to the brightness that characterizes the defect.
  • a cloud computing service that builds a plurality of machine learning models that determine the quality of the object to be inspected based on the plurality of teaching data groups, and an imaging unit that captures an image of the object to be inspected.
  • the connected computer is imaged by the imaging unit based on a storage means for storing the plurality of machine learning models constructed by the cloud computing service and the plurality of machine learning models stored in the storage unit.
  • This is a program that functions as a determination means for determining the quality of the object to be inspected.
  • the invention according to claim 9 has a detector for measuring a physical quantity that changes due to a sign that a defect of a monitored object occurs, and is a visualization device that generates a plurality of visualization images that visualize the physical quantity.
  • a teaching data group generation unit that classifies the visualized image including a plurality of previously acquired defects according to the parameters that characterize the defects and generates a plurality of classified teaching data groups, and the plurality of teaching data.
  • a storage unit that stores a plurality of the machine learning models constructed based on the group, an optimum model selection unit that selects the optimum model to be the optimum machine learning model from the plurality of machine learning models, and the visualization.
  • a quality determination system including a plurality of visualization images generated by the apparatus and a determination unit for determining the quality of the operating state of the monitored object based on the optimum model selected by the optimum model selection unit. Is.
  • the invention according to claim 10 has a sound source visualization device that has a microphone for identifying a sound source generated from a monitored object and generates a plurality of sound source visualization images that visualize the sound source, and a plurality of previously acquired defects.
  • the sound source visualization image including the above is classified according to the parameters that characterize the defect, and is constructed based on the teaching data group generation unit that generates a plurality of classified teaching data groups and the plurality of teaching data groups.
  • a storage unit that stores a plurality of the machine learning models, an optimum model selection unit that selects the optimum model to be the optimum machine learning model from the plurality of machine learning models, and the sound source visualization device generated by the sound source visualization device. It is a quality determination system including a plurality of sound source visualization images and a determination unit for determining the quality of the operating state of the monitored object based on the optimum model selected by the optimum model selection unit.
  • the invention according to claim 11 has a vibration sensor for detecting vibration generated from a monitored object, a vibration visualization device that generates a plurality of vibration visualization images that visualize the vibration, and a plurality of previously acquired vibration visualization devices.
  • the vibration visualization image including the defect is classified according to the parameters that characterize the defect, and is constructed based on the teaching data group generation unit that generates a plurality of classified teaching data groups and the plurality of teaching data groups.
  • a storage unit that stores the plurality of the machine learning models, an optimum model selection unit that selects the optimum model to be the optimum machine learning model from the plurality of machine learning models, and a vibration visualization device are generated.
  • It is a quality determination system including a determination unit for determining the quality of the operating state of the monitored object based on the plurality of vibration visualization images and the optimum model selected by the optimum model selection unit.
  • the invention according to claim 12 is a pass / fail determination method using the pass / fail determination system according to claim 9, wherein the visualization device generates the visualization image, and the teaching data group generation unit is described.
  • the step of creating a plurality of teaching data groups, the step of storing the plurality of machine learning models by the storage unit, and the step of storing the plurality of machine learning models, and the optimum model selection unit select the optimum machine learning model from the plurality of machine learning models.
  • This is a quality determination method including a step of selecting and a step in which the determination unit determines the quality of the operating state of the monitored object using the machine learning model selected by the optimum model selection unit.
  • the invention according to claim 13 is a plurality of teaching data groups in which a plurality of visualized images that visualize a physical quantity changed due to a sign that a defect to be monitored occurs are classified according to parameters that characterize the defect.
  • the invention according to claim 14 is a plurality of teaching data groups in which a plurality of visualized images that visualize a physical quantity changed due to a sign that a defect to be monitored occurs are classified according to parameters that characterize the defect.
  • a cloud computing service that builds a plurality of machine learning models for determining the quality of the operating state of the monitored object, and the quality of the monitored object, respectively, based on the plurality of machine learning models.
  • the determination device and the computer connected to the determination device via a network are evaluated by the teaching data group generating means for generating the plurality of teaching data groups, the result of the quality determined by the determination device, and the plurality of machines. It is a program that functions as an optimal model selection means for selecting the optimal machine learning model from the learning models.
  • the invention according to claim 15 is a plurality of teaching data groups in which a plurality of visualized images that visualize a physical quantity changed due to a sign that a defect to be monitored occurs are classified according to parameters that characterize the defect. Based on, each is connected to a cloud computing service that builds a plurality of machine learning models for determining the quality of the operating state of the monitored object, and an imaging unit that captures an image of the object to be inspected.
  • the computer is imaged by the imaging unit based on a storage means for storing the plurality of machine learning models constructed by the cloud computing service and the plurality of machine learning models stored in the storage unit. It is a program that functions as a judgment means for judging the quality of an inspected object.
  • the present invention it is possible to provide a quality determination system, a quality determination method, a server and a program capable of determining the quality of an inspected object with higher accuracy.
  • FIG. 6 is a horizontal gray value profile graph of image C schematically showing a part of scanning positions. It is explanatory drawing of the preprocessing by the same quality judgment system. It is explanatory drawing of the terminal and the image pickup part provided in the same quality determination system. It is a flow chart which shows the operation of the same quality judgment system. It is a block diagram of the quality determination system which concerns on 2nd Embodiment of this invention. It is explanatory drawing of the terminal and the image pickup part provided in the same quality determination system. It is a block diagram of the predictive maintenance system which concerns on 3rd Embodiment of this invention. It is explanatory drawing of the server provided in the predictive maintenance system. It is explanatory drawing of the terminal and the sound source visualization device provided in the predictive maintenance system. It is a flow chart which shows the operation of the predictive maintenance system. It is a block diagram of the predictive maintenance system which concerns on 4th Embodiment of this invention.
  • the quality determination system 10a (see FIG. 1) according to the first embodiment of the present invention can determine the quality of the appearance of the object to be inspected 14, which is a product manufactured by the user, by machine learning. The quality of this appearance is judged by the presence or absence of defects such as scratches and adhesion of foreign matter.
  • the object to be inspected 14 is, for example, a part of a transportation machine such as an automobile or an aircraft, and food. However, the object to be inspected 14 is not limited to these parts and foods.
  • the pass / fail judgment service by the pass / fail judgment system 10a is provided to the user by the service provider.
  • the quality determination system 10a includes a teaching data creation device 20, a server 30, and an inspection system 40a.
  • the teaching data creation device 20, the server 30, and the inspection system 40a are connected to each other via the Internet N.
  • the teaching data creating device 20 is, for example, a personal computer.
  • the teaching data creating device 20 is managed by a service provider or a user who uses the inspection system 40a, and has a teaching data creating unit 202 as shown in FIG.
  • the teaching data creating unit (an example of teaching data creating means) 202 acquires an image of the object to be inspected 14 from, for example, a camera 460 provided in the inspection system 40a, and is inspected as teaching data for constructing a machine learning model. An image of an object 14 can be created.
  • the teaching data creating device 20 functions as a teaching data creating means by a program executed by the teaching data creating device 20.
  • the teaching data creating device 20 may be a mobile terminal such as a smartphone.
  • the server 30 is managed by the service provider, and has a teaching data group generation unit 302, an optimum model selection unit 306, and a management unit 308, as shown in FIG.
  • the teaching data group generation unit (an example of the teaching data group generation means) 302 is an image IMG1, IMG2, IMG3, of an inspected object 14 containing a plurality of different defects created by the teaching data creation device 20.
  • preprocessing a set of preprocessed teaching data groups TDg, that is, teaching data groups TD1, TD2, TD3, TD4, ... Is created.
  • each image IMG1, IMG2, IMG3, ... Of the object 14 to be inspected including the defect D centered on the position (Xd, Yd) is imaged by a camera having 1.3 million pixels, for example, FIG.
  • the size is 1024 px (Y-axis direction) in the vertical direction and 1280 px (X-axis direction) in the horizontal direction.
  • This image is represented by a horizontal gray value profile graph as shown in FIG.
  • the horizontal gray value profile graph is a graph in which pixels of an image are scanned in order and the brightness corresponding to the scanning position is shown, and the horizontal axis shows the scanning position and the vertical axis shows the brightness.
  • the scanning direction of the pixels is, for example, the direction from the upper left to the right of the image (positive direction of the X-axis) as shown by the arrow in FIG. 5, and this is repeated in the downward direction (positive direction of the Y-axis). All pixels are scanned.
  • the horizontal gray value profile graph shown in FIG. 6 shows that the brightness of the defect D is brighter than that of the non-defect portion. However, the brightness of the defect D is not always brighter than that of the non-defect portion, and may be darker than that of the non-defect portion. As described above, the brightness of the defect D specified in advance has a characteristic different from the brightness of the non-defect portion, and the defect D is distinguished from the non-defect portion and characterized by the brightness (an example of the parameter).
  • the horizontal gray value profile graph shown in FIG. 6 shows only a part of the scanning position (near the defect D), and the omitted range is shown by a broken line. The same applies to FIGS. 7A to 7C described later.
  • the pre-processing performed by the teaching data group generating unit 302 includes the following processing P1 and processing P2.
  • the teaching data group generation unit 302 uses the images IMG1, IMG2, IMG3, ... For TD), the brightness of the pixels that characterize the defect D whose position has been specified in advance is set to a reference value that serves as a reference for determining a plurality of thresholds (brightness ranges) having different predetermined sizes.
  • a plurality of thresholds (brightness ranges) having different predetermined sizes.
  • this is a process of obtaining a plurality of threshold values included in the range of brightness of the pixels that characterize the defect D as feature values representing the brightness that characterizes the defect D.
  • the teaching data group generating unit 302 transmits each image IMG1, IMG2, IMG3, ... (Teaching data group TD) according to the plurality of feature values obtained in the processing P1. It is a process of classifying into TD2, TD3, TD4, .... However, at that time, the teaching data group generation unit 302 does not classify one image into any one teaching data group TD1, TD2, TD3, TD4, ..., But copies the original image. Prepare the same number of images as the number of feature values, and classify them into teaching data groups TD1, TD2, TD3, TD4, ... Corresponding to each threshold value. Therefore, by this preprocessing, as shown in FIG. 4, the teaching data groups TD1, TD2, TD3, TD4, ... Are generated from the teaching data group TD.
  • the image A corresponding to the image IMG1 includes the defect D1 whose position is specified in advance as shown in FIG. 7A, and the range of brightness that characterizes the defect D1 is 155 to 205.
  • the image B corresponding to the image IMG2 includes the defect D2 whose position is specified in advance as shown in FIG. 7B, and the brightness range that characterizes the defect D2 is 165 to 215.
  • the image C corresponding to the image IMG3 includes the defect D3 whose position is specified in advance as shown in FIG. 7C, and the range of brightness that characterizes the defect D3 is 155 to 230.
  • a plurality of threshold values (examples of reference values) 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240 are set, and image A (FIG. 7A). (See), three thresholds 160, 180, and 200 included in the brightness range 155 to 205 that characterize the defect D1 are obtained as feature values.
  • the above processes P1 and P2 are also performed on the remaining images B, C ... That is, for image B (see FIG. 7B), two thresholds 180 and 200 included in the brightness range 165 to 215 that characterize the defect D2 are obtained as feature values, and image B corresponds to the feature value 180. It is classified into the teaching data group TD2 and the teaching data group TD3 corresponding to the feature value 200 (see FIG. 8). For image C (see FIG. 7C), four thresholds 160, 180, 200, 220 included in the brightness range 155 to 230 that characterize the defect D3 are obtained as feature values, and image C is set to feature value 160.
  • the corresponding teaching data group TD1 It is classified into the corresponding teaching data group TD1, the teaching data group TD2 corresponding to the feature value 180, the teaching data group TD3 corresponding to the feature value 200, and the teaching data group TD4 corresponding to the feature value 220 (see FIG. 8). Further, with respect to the remaining images (images other than images A, B, and C) included in the teaching data group TD, the corresponding teaching data groups TD1, TD2, TD3, TD4, ... A set of teaching data groups TDg (see FIG. 4) is generated.
  • These teaching data groups TD1, TD2, TD3, TD4, ... Classified according to the brightness that characterizes the defect are machine learning models M1, M2, M3, M4 that determine the quality of the object 14 to be inspected, respectively. It is a teaching data group for constructing ...
  • the images IMG1, IMG2, IMG3, ... are classified into each teaching data group TD1, TD2, TD3, TD4, ... Based on the brightness. It is not limited, and may be classified based on parameters other than brightness. Parameters other than brightness include, for example, the hue, saturation, and lightness that make up the HSV color space, and the gradation-expressed R (Red) and G (Green) in the RGB color model. And B (Blue). That is, the parameters may be arbitrary as long as the defective portion can be characterized so as to be distinguished from the non-defective portion. Further, as the pretreatment, a filter treatment for making the defective portion stand out more than the non-defective portion may be included.
  • the machine learning model construction service 80 shown in FIGS. 1 and 4 is provided as a cloud computing service, and a trained machine learning model can be constructed based on the uploaded teaching data.
  • This machine learning model construction service 80 is, for example, a Cloud AutoML Vision provided by Google Cloud Platform (GCP).
  • GCP Google Cloud Platform
  • the optimum model selection unit (an example of the optimum model selection means) 306 evaluates the quality judgment result of the object 14 to be inspected by a plurality of learned machine learning models constructed by the machine learning model construction service 80. , You can choose the best machine learning model.
  • the management unit 308 can manage the state of the inspection system 40a used by the user. Specifically, the management unit 308 can record operation information regarding the operating state of the imaging unit 460 (see FIG. 1) included in the inspection system 40a. This operation information will be described later.
  • the server 30 functions as a teaching data group generation means, an optimum model selection means, and a management means by a program executed inside the server 30.
  • the inspection system 40a includes a terminal 440, a PLC (Programmable Logic Controller) 450, and an imaging unit (an example of a determination device) 460 that images the object 14 to be inspected and determines the quality thereof. ..
  • the terminal 440, the PLC 450, and the imaging unit 460 are connected to each other by wire communication or wireless communication.
  • the terminal 440 is managed by the user.
  • the terminal 440 is, for example, a mobile terminal such as a personal computer or a smartphone, and may be a higher-level controller of the PLC 450.
  • the terminal 440 has a machine learning model receiving unit 440a, a control unit 440b, and an operating state output unit 440c.
  • the machine learning model receiving unit (an example of receiving means) 440a can download each machine learning model constructed by the machine learning model construction service 80. Note that each machine learning model is downloaded by secure communication.
  • the control unit (an example of control means) 440b can control the PLC450 and the imaging unit 460.
  • the operating state output unit (an example of the operating state output means) 440c can output operation information related to the operating state of the imaging unit 460.
  • This operation information is, for example, information on the time from when the imaging unit 460 starts capturing an image to when it ends.
  • the operation information may be information on the number of images captured by the imaging unit 460.
  • the terminal 440 functions as a receiving means, a control means, and an operating state output means by a program executed inside the terminal 440. Further, one terminal 440 is not limited to having all the machine learning model receiving unit 440a, the control unit 440b, and the operating state output unit 440c, and each unit is divided into a plurality of terminals connected to each other. May exist. Further, the terminal 440 may have a teaching data creating unit 202 instead of the teaching data creating device 20 shown in FIG.
  • the PLC 450 is a controller managed by a user and controls an inspection device 470 that inspects the inspected object 14 as shown in FIG.
  • the image pickup unit 460 (see FIG. 9) is managed by the user and can capture an image of the object 14 to be inspected. In addition, the imaging unit 460 can determine the quality of the imaged object 14 to be inspected, based on a plurality of machine learning models.
  • the image pickup unit 460 is, for example, a camera equipped with a GPU (Graphics Processing Unit). However, the image pickup unit 460 may be a mobile terminal with a camera such as a smartphone.
  • the imaging unit 460 has a camera unit 460a, a storage unit 460b, and a determination unit 460c.
  • the camera unit 460a can capture an image of the object to be inspected 14 and acquire image data.
  • the storage unit 460b can store a plurality of machine learning models downloaded by the machine learning model receiving unit 440a.
  • the determination unit 460c determines the presence or absence of defects in the inspected object 14, that is, the quality of the inspected object 14, based on the image data of the inspected object 14 captured by the camera unit 460a and the machine learning model stored in the storage unit 460b. Can be determined.
  • the determination unit 460c can perform arithmetic processing by the machine learning model at high speed, and is composed of, for example, a GPU.
  • the pass / fail determination system 10a operates according to the following steps S1 to S9.
  • steps S1 to S9 steps S1 to S7 are operations as preparatory steps necessary for performing an actual pass / fail judgment
  • subsequent steps S8 and S9 are actual operations in the inspection process before shipment of parts and the like. This is a pass / fail judgment operation. If possible, the steps S1 to S7 may be performed in a different order, or may be performed in parallel.
  • the teaching data creating unit 202 (see FIG. 2) of the teaching data creating device 20 (see FIG. 1) becomes the teaching data group TD shown in FIG. 4 based on the image data of the object 14 to be inspected captured by the imaging unit 460.
  • the teaching data group TD is a plurality of image data of the inspected object 14 including the specified defect and a plurality of image data groups of the inspected object 14 not including the specified defect. Examples of the types of defects include scratches, voids, stains, and foreign matter contamination. However, the defects to be inspected differ depending on the object 14 to be inspected.
  • the created images of the plurality of objects to be inspected 14 are stored in a storage means (not shown) and transmitted to the server 30 shown in FIG.
  • the teaching data group TD may be manually created based on the image data of the object to be inspected 14 prepared in advance, instead of being created by the teaching data creating unit 202.
  • Step S2 the teaching data group generating unit 302 of the server 30 preprocesses a plurality of images (teaching data group TD) of the object 14 to be inspected generated by the teaching data creating device 20, and according to the feature value.
  • a plurality of classified teaching data groups TD1, TD2, TD3, TD4, ... Are generated.
  • a plurality of threshold values TH1 to TH10 for brightness are used. Each threshold value may be obtained by obtaining the maximum value of the brightness of the defect D and dividing the maximum value.
  • the server 30 uploads the preprocessed teaching data groups TD1, TD2, TD3, TD4, ...
  • Step S3 Machine learning models M1, M2, M3, M4 ... Are constructed by the machine learning model construction service 80 based on the uploaded teaching data group, respectively.
  • the accuracy of each machine learning model M1, M2, M3, M4 ... Is verified by the optimum model selection unit 306 (see FIG. 3) of the server 30 for each of the constructed machine learning models. If the accuracy is worse than the predetermined standard, the process returns to the previous step S2, and the teaching data group generating unit 302 performs preprocessing by further applying filter processing or the like.
  • Step S4 By the operation of the user, the machine learning model receiving unit 440a (see FIG. 9) of the terminal 440 downloads each trained machine learning model constructed by the machine learning model construction service 80. Each of the downloaded machine learning models that has been learned is transmitted to the imaging unit 460 via the terminal 440.
  • Step S5 The storage unit 460b of the imaging unit 460 stores each machine learning model downloaded by the machine learning model receiving unit 440a.
  • Step S6 The control unit 440b of the terminal 440 controls the PLC 450 and the imaging unit 460, and the quality of the inspected object 14 manufactured by the inspection device 470 (see FIG. 1) is judged on a trial basis. Specifically, as a preparatory step for determining the quality of the object 14 to be inspected, the camera unit 460a (see FIG. 9) of the imaging unit 460 captures an image of the object 14 to be inspected, and the determination unit 460c captures the image.
  • Step S7 Each test determination result in the previous step S6 is transmitted from the imaging unit 60 to the server 30 via the terminal 440.
  • the optimum model selection unit 306 of the server 30 shown in FIG. 3 evaluates the quality of each machine learning model based on each test determination result, and the optimum machine learning model (hereinafter referred to as “optimal model”). Select.
  • the information of the selected optimum model is transmitted from the server 30 to the terminal 440.
  • step S7 is an operation as a preparatory step necessary for actually performing the pass / fail judgment.
  • step S8 and subsequent steps are the actual pass / fail judgment operations in the inspection process before shipping the parts and the like.
  • Step S8 The control unit 440b (see FIG. 9) of the terminal 440 controls the PLC 450 and the imaging unit 460, and the imaging unit 60 is conveyed on the conveyor of the inspection device 470 (see FIG. 1) based on the selected optimum model.
  • the quality of the incoming object 14 to be inspected is determined.
  • the camera unit 460a (see FIG. 9) of the imaging unit 460 captures an image of the object 14 to be inspected, and the determination unit 460c is based on the captured image and the optimum model stored in the storage unit 460b. , It is inspected whether or not the inspected object 14 has a defect, and if there is no defect, it is determined as a non-defective product, and if there is a defect, it is determined as a defective product.
  • Step S9 The operating state output unit 440c (see FIG. 9) of the terminal 440 transmits the operating information regarding the operating state of the imaging unit 460 to the server 30.
  • the transmitted operation information is stored in a storage unit (not shown) of the server 30, and the operation state of the pass / fail determination system 10a is centrally managed by the server 30.
  • the quality determination system 10a determines the quality of the object to be inspected 14 by using the optimum machine learning model selected from the plurality of constructed machine learning models. A highly accurate judgment result can be obtained.
  • the quality determination system 10a can determine the quality of the condition other than the appearance of the object 14 to be inspected, depending on the type of the camera unit 460a. For example, when the camera unit 460a is an infrared camera, it is possible to determine whether the internal state of the object 14 to be inspected is good or bad.
  • the quality determination system 10b includes a teaching data creation device 20, a server 30, and an inspection system 40b.
  • the inspection system 40b includes a terminal 442, a PLC (Programmable Logic Controller) 450, and an imaging unit 462 that images the object 14 to be inspected.
  • the terminal 442 (an example of a determination device) is, for example, a personal computer, a smartphone, an MR device for realizing MR (Mixed Reality), or an AR device for realizing AR (Augmented Reality).
  • the terminal 442 includes a machine learning model receiving unit (an example of receiving means) 440a, a control unit (an example of a controlling means) 440b, an operating state output unit (an example of an operating state output means) 440c, and a storage unit. It has (an example of storage means) 460b and a determination unit (an example of a determination means) 460c, and can determine the quality of an object to be inspected based on a plurality of machine learning models.
  • the terminal 442 functions as a receiving means, a control means, an operating state output means, a storage means, and a determination means by a program executed inside the terminal 442.
  • the imaging unit 462 has a camera unit 460a.
  • the terminal 442 has the storage unit 460b and the determination unit 460c that the imaging unit 460 according to the first embodiment has. Even if the terminal 442 has a part of the machine learning model receiving unit 440a, the control unit 440b, the operating state output unit 440c, the storage unit 460b, and the determination unit 460c, and the PLC 450 has the other parts. good. That is, the inspection system 40b may have a machine learning model receiving unit 440a, a control unit 440b, an operating state output unit 440c, a storage unit 460b, and a determination unit 460c as a whole. Furthermore, the inspection system 40b may not have the machine learning model receiving unit 440a, the storage unit 460b, and the determination unit 460c, but the server 30 shown in FIG.
  • a storage unit provided in the imaging unit 460 is provided.
  • the 460b and the determination unit 460c are provided in the terminal 442. Therefore, the operation of the pass / fail determination system 10b is substantially the same as the operation of the pass / fail determination system 10a (steps S1 to S9), and the description thereof will be omitted.
  • the predictive maintenance system (an example of the quality determination system) 10c according to the third embodiment of the present invention will be described.
  • the components having the same functions as the quality determination system 10b according to the second embodiment may be designated by the same reference numerals and detailed description thereof may be omitted.
  • the predictive maintenance system 10c can determine the quality of the operating state of the monitored object by measuring the sound emitted by the monitored object, and can be applied to predictive maintenance for predicting a defect of the monitored object.
  • the monitoring target is, for example, a mechanical device, specifically a press machine.
  • the monitoring target is not limited to the press machine as long as it is a device or device that can predict a defect by sound.
  • the predictive maintenance system includes a sound source visualization device (an example of the visualization device) 500, a teaching data creation device 20, a server 33, and a terminal 443.
  • the sound source visualization device 500 includes a camera (not shown) that captures the monitored target 600 and a plurality of microphones 502 for identifying the sound source generated from the monitored target 600, and distributes the sound intensity in the actual image around the sound source. Can output a sound source visualization image that visualizes the sound source by superimposing the above in real time. This sound intensity distribution is expressed as heat map-like visualized information by different colors according to the magnitude of sound pressure.
  • the sound source visualization device 500 may be called an acoustic camera.
  • the teaching data creating device 20 has a teaching data creating unit 202, and can capture a sound source visualization image and create an image as teaching data.
  • the server 33 is managed by the service provider, and has a teaching data group generation unit 302, a determination unit 334, an optimum model selection unit 306, and a management unit 308, as shown in FIG.
  • the teaching data group generation unit (an example of the teaching data group generation means) 302 preprocesses the teaching data group TD created by the teaching data creating device 20, and sets the preprocessed teaching data groups.
  • TDg that is, teaching data groups TD1, TD2, TD3, TD4, ... Are created.
  • the determination unit (an example of the determination means) 334 virtually determines the quality of the operating state of the monitored target 600 based on the plurality of learned machine learning models constructed by the teaching data group TD and the machine learning model construction service 80. Can be judged.
  • the optimum model selection unit (an example of the optimum model selection means) 306 can evaluate the determination result by the determination unit 334 and select the optimum machine learning model.
  • the management unit 308 can manage the state of the terminal 443 or the sound source visualization device 500. Specifically, the management unit 308 can record operation information regarding the operation state of the terminal 443 or the sound source visualization device 500.
  • the server 33 functions as a teaching data group generation means, a determination means, an optimum model selection means, and a management means by a program executed inside the server 33.
  • the terminal 443 is connected to the sound source visualization device 500 as shown in FIG.
  • the terminal 443 has a machine learning model receiving unit 440a, a control unit 443b, an operating state output unit 443c, a storage unit 443d, and a determination unit 443e, and can determine the quality of the monitored target 600 based on the optimum model.
  • the machine learning model receiving unit (an example of receiving means) 440a can receive the optimum model selected by the optimum model selection unit 306 from the server 33.
  • the optimum model is received by secure communication.
  • the control unit (an example of control means) 443b can control the PLC 450 and the sound source visualization device 500.
  • the operating state output unit (an example of the operating state output means) 443c can output operation information related to the operating state of the terminal 443 or the sound source visualization device 500.
  • This operation information is, for example, information on the time from when the sound source visualization device 500 starts capturing an image to when it ends.
  • the operation information may be information on the number of images output from the sound source visualization device 500.
  • the storage unit (an example of storage means) 443d can store the optimum model received by the machine learning model reception unit 400a.
  • the determination unit (an example of the determination means) 443e can determine the quality of the operating state of the monitored target 600 based on the plurality of sound source visualization images output by the sound source visualization device 500 and the optimum model stored in the storage unit 443d.
  • the terminal 443 functions as a receiving means, a control means, an operating state output means, a storage means, and a determination means by a program executed inside the terminal 443.
  • the predictive maintenance system 10c operates according to the following steps S3-1 to S3-9.
  • steps S3-1 to S3-9 steps S3-1 to S3-7 are operations as a preparatory stage, and subsequent steps S3-8 and S3-9 are actual operating states of the monitored target 600. This is a pass / fail judgment operation. If possible, each step S3-1 to S3-7 may be carried out in a different order, or may be carried out in parallel.
  • Step S3-1 The teaching data creation unit 202 (see FIG. 2) of the teaching data creating device 20 (see FIG. 13) takes in the sound source visualization image generated by the sound source visualization device 500 and uses it as teaching data to create the teaching data group TD shown in FIG. do.
  • the plurality of sound source visualization images (teaching data group TD) are stored in a storage means (not shown) and transmitted to the server 33 shown in FIG.
  • the teaching data group TD may be manually created based on the sound source visualization image of the monitored target 600 prepared in advance, instead of being created by the teaching data creation unit 202.
  • Step S3-2 the teaching data group generation unit 302 of the server 33 preprocesses the sound source visualization image (teaching data group TD) generated by the teaching data creation device 20, and classifies the plurality of sound source visualization images (teaching data group TD) according to the feature values.
  • Teaching data groups TD1, TD2, TD3, TD4, ... Are generated.
  • a plurality of threshold values TH1 to TH10 for brightness are used. Each threshold value may be obtained by obtaining the maximum value of the brightness of the defect D and dividing the maximum value.
  • the server 33 uploads the preprocessed teaching data groups TD1, TD2, TD3, TD4, ...
  • Step S3-3 Machine learning models M1, M2, M3, M4 ... Are constructed by the machine learning model construction service 80 based on the uploaded teaching data group, respectively.
  • the accuracy of each of the constructed machine learning models is verified by the optimum model selection unit 306 (see FIG. 14) of the server 33. If the accuracy is poor, the process returns to the previous step S3-2, and the teaching data group generating unit 302 preprocesses the sound source visualization image (teaching data group TD) by a different method by applying different filter processing or the like. ..
  • Step S3-4 By the operation of the user, the server 33 (see FIG. 14) downloads each trained machine learning model constructed by the machine learning model construction service 80. Each downloaded machine learning model is stored in a storage unit (not shown).
  • Step S3-5 The determination unit 334 of the server 33 inputs the teaching data group TD into each machine learning model stored in the storage unit (not shown), and virtually determines the quality of the operating state of the monitored target 600.
  • Step S3-6 The optimum model selection unit 306 evaluates the judgment result of the quality of the operating state of the monitored target 600 by the determination unit 334 in the previous step S3-6, and selects the optimum model from the plurality of machine learning models.
  • Step S3-7 The optimum model selected by the optimum model selection unit 306 is transmitted from the server 33 to the terminal 442.
  • the transmitted optimum model is received by the machine learning model receiving unit 440a (see FIG. 15) and stored in the storage unit 443d.
  • Step S3-8 is a step of monitoring the monitored target 600.
  • the control unit 443b of the terminal 443 controls the PLC 450 and operates the monitored target 600.
  • the sound source visualization device 500 measures the sound generated from the monitored object 600 and outputs the sound source visualization image at a predetermined cycle.
  • the terminal 442 determines the quality of the operating state of the monitored target 600 based on the output sound source visualization image and the optimum model stored in the storage unit 443e.
  • Step S3-9) The operation state output unit 443c of the terminal 440 transmits the operation information regarding the operation state of the sound source visualization device 500 to the server 33.
  • the transmitted operation information is stored in a storage unit (not shown) of the server 33, and the operation state of the predictive maintenance system 10c is centrally managed by the server 33.
  • the quality of the operating state of the monitored target 600 is determined by using the optimum machine learning model selected from the plurality of constructed machine learning models. Since the judgment is made, predictive maintenance can be performed with higher accuracy.
  • the sound source visualization system instead of the sound source visualization system, it has a detector for measuring a physical quantity that changes due to a sign that a defect of the monitored target 600 occurs, and can generate a plurality of visualized images that visualize the physical quantity. Visualization device may be used.
  • the predictive maintenance system can determine the quality of the operating state of the monitored object by measuring the vibration generated by the monitored object, and can be applied to predictive maintenance for predicting a defect of the monitored object.
  • the monitoring target is, for example, a mechanical device, specifically, a press machine or a transfer device.
  • the monitoring target may be any device or device that can predict a malfunction due to vibration.
  • the predictive maintenance system 10d includes a vibration visualization device (an example of a visualization device) 700, a teaching data creation device 20, a server 33, and a terminal 443 (an example of a determination device).
  • the vibration visualization device 700 has a plurality of vibration sensors 702 for detecting the vibration generated from the monitored object 600, and can output a plurality of vibration visualization images that visualize the vibration detected by each vibration sensor 702.
  • This vibration visualization image is, for example, an image represented as information visualized by different colors depending on at least one of the magnitude and frequency of vibration.
  • the vibration visualization device 700 and the vibration visualization image correspond to the sound source visualization device 500 and the sound source visualization image in the third embodiment, respectively.
  • the determination unit 443e included in the terminal 443 is monitored. If a problem occurs in 600, it can be determined that it is abnormal.
  • the quality of the monitored target 600 is determined by using the optimum machine learning model selected from the plurality of constructed machine learning models. , Predictive maintenance is possible with higher accuracy.
  • the vibration visualization system instead of the vibration visualization system, it has a detector for measuring a physical quantity that changes due to a sign that a defect of the monitored target 600 occurs, and can generate a plurality of visualized images that visualize the physical quantity. Visualization device may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The present invention provides a quality determination system capable of determining the quality of inspection targets with higher accuracy, a quality determination method, a server, and a program. A quality determination system 10a comprises: a teaching dataset generation unit 302 that classifies images containing a plurality of inspection target defects in accordance with defect-characterizing brightnesses, and generates a plurality of classified teaching datasets; a storage unit 460b that stores a plurality of machine learning models, which have been respectively constructed on the basis of the plurality of teaching datasets by a machine learning model construction service 80 for constructing machine learning models; a camera unit 460a that captures images of inspection targets; a determination unit 460c that determines the quality of each inspection target 14 imaged by the camera unit 460a on the basis of the plurality of machine learning models stored in the storage unit 460b; and an optimal model selection unit 306 that evaluates the determination results from the determination unit 460c, and selects an optimal machine learning model from among the plurality of machine learning models.

Description

良否判定システム、良否判定方法、サーバ及びプログラムPass / fail judgment system, pass / fail judgment method, server and program
 本発明は、良否判定システム、良否判定方法、サーバ及びプログラムに関する。 The present invention relates to a pass / fail judgment system, a pass / fail judgment method, a server, and a program.
 特許文献1には、人工知能による機械学習を利用したサービスを提供するサービス提供システムが記載されている。このサービス提供システムは、人工知能による機械学習を利用したサービスを提供するサービス提供システムであって、ユーザから送られてくる情報を基にした学習データを入力して機械学習によりモデル化した一般的なモデルを生成するための機械学習手段と、ユーザから送られてくる情報に基づいて前記一般的なモデルを当該ユーザに適したモデルにパーソナライズ化するためのパーソナライズ化手段と、前記パーソナライズ化されたモデルを用いて当該ユーザにパーソナライズ化されたサービスを提供するサービス提供手段と、を備え、前記ユーザから送られてくる情報を前記機械学習と前記パーソナライズ化との両方に利用する。 Patent Document 1 describes a service providing system that provides a service using machine learning by artificial intelligence. This service providing system is a service providing system that provides services using machine learning by artificial intelligence, and is a general model modeled by machine learning by inputting learning data based on information sent from users. A machine learning means for generating a model, a personalization means for personalizing the general model to a model suitable for the user based on the information sent from the user, and the personalized means. A service providing means for providing a personalized service to the user by using a model is provided, and the information sent from the user is used for both the machine learning and the personalization.
 特許文献2には、任意の音の発生源の位置を、実空間と対応付けることによってリアルタイムに可視化する音源位置の可視化表示方法が記載されている。この可視化表示方法は、ひとつ以上の音を検知してそのそれぞれの音源の位置を突き止め、少なくとも音源の位置を含む音源に関する情報を可視情報に変換し、音源周辺の実画像とリアルタイムに重ね合わせて表示することを特徴としている。 Patent Document 2 describes a visualization display method of a sound source position that visualizes the position of an arbitrary sound source in real time by associating it with a real space. This visualization display method detects one or more sounds, locates the position of each sound source, converts information about the sound source including at least the position of the sound source into visible information, and superimposes it on the actual image around the sound source in real time. It is characterized by displaying.
特開2016-48417号公報Japanese Unexamined Patent Publication No. 2016-48417 特開2004-77277号公報Japanese Unexamined Patent Publication No. 2004-77277
 本発明は、より高い精度で被検査物の良否を判定できる良否判定システム、良否判定方法、サーバ及びプログラムを提供することを目的とする。 An object of the present invention is to provide a quality determination system, a quality determination method, a server and a program capable of determining the quality of an inspected object with higher accuracy.
 請求項1に記載の発明は、複数の被検査物の欠陥を含む画像を、該欠陥を特徴づける明るさに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、クラウドコンピューティングサービスとして提供され機械学習モデルを構築する機械学習モデル構築サービスが前記複数の教示データ群に基づいてそれぞれ構築した複数の前記機械学習モデルを記憶する記憶部と、前記被検査物の画像を撮像するカメラ部と、前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記カメラ部によって撮像された前記被検査物の良否を判定する判定部と、前記判定部による判定の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えた良否判定システムである。 The invention according to claim 1 is a teaching data group generation unit that classifies an image including a defect of a plurality of objects to be inspected according to the brightness that characterizes the defect and generates a plurality of classified teaching data groups. A storage unit that stores a plurality of the machine learning models constructed by the machine learning model construction service provided as a cloud computing service and constructing a machine learning model based on the plurality of teaching data groups, and the object to be inspected. A camera unit that captures the image of the above, a determination unit that determines the quality of the object to be inspected imaged by the camera unit based on the plurality of machine learning models stored in the storage unit, and the determination unit. This is a pass / fail judgment system including an optimum model selection unit that evaluates the result of the determination according to the above and selects the optimum machine learning model from the plurality of machine learning models.
 請求項2に記載の発明は、複数の被検査物の欠陥を含む画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、前記被検査物の画像を撮像するカメラ部と、前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記カメラ部によって撮像された前記被検査物の良否を判定する判定部と、前記判定部による判定の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えた良否判定システムである。 The invention according to claim 2 is a teaching data group generation unit that classifies an image including a defect of a plurality of objects to be inspected according to a parameter that characterizes the defect and generates a plurality of classified teaching data groups. , A storage unit that stores a plurality of the machine learning models constructed based on the plurality of teaching data groups, a camera unit that captures an image of the object to be inspected, and the plurality of storage units stored in the storage unit. Based on the machine learning model, a determination unit for determining the quality of the object to be inspected, which is imaged by the camera unit, and a determination result by the determination unit are evaluated, and the optimum machine learning model is selected from the plurality of machine learning models. It is a pass / fail judgment system equipped with an optimum model selection unit for selecting a machine learning model.
 請求項3に記載の発明は、請求項1記載の良否判定システムにおいて、教示データ群生成部が、前記画像について、それぞれ、前記欠陥を特徴づける明るさを表す特徴値を求める処理P1と、前記特徴値に応じて前記複数の画像をそれぞれ分類し、分類された前記複数の教示データ群を生成する処理P2と、を実施する。 The invention according to claim 3 is the process P1 in which the teaching data group generating unit obtains a feature value representing the brightness that characterizes the defect in the image in the quality determination system according to claim 1, respectively. The process P2 of classifying the plurality of images according to the feature values and generating the plurality of classified teaching data groups is performed.
 請求項4に記載の発明は、請求項1記載の良否判定システムにおいて、教示データ群生成部が、前記画像について、それぞれ、前記欠陥を特徴づける明るさを判断するための基準となる複数の基準値の中から、該欠陥を特徴づける明るさを表す複数の基準値を、それぞれ特徴値として求める処理P1と、前記特徴値の数と同じ枚数の前記画像を用意し、該画像を前記複数の異なる特徴値に応じてそれぞれ分類し、分類された前記複数の教示データ群を生成する処理P2と、を実施する。 The invention according to claim 4 is a plurality of criteria for the teaching data group generating unit to determine the brightness that characterizes the defect in the image in the quality determination system according to claim 1. From the values, a process P1 for obtaining a plurality of reference values representing the brightness characterizing the defect as feature values, and the same number of images as the number of the feature values are prepared, and the images are used as the plurality of images. Process P2, which classifies the data according to different feature values and generates the plurality of classified teaching data groups, is performed.
 請求項5に記載の発明は、請求項1記載の良否判定システムを使用した良否判定方法であって、前記教示データ群生成部が、前記複数の教示データ群を生成するステップと、前記記憶部が、前記複数の機械学習モデルを記憶するステップと、前記判定部が、前記複数の機械学習モデルに基づいて、それぞれ前記被検査物の良否を判定するステップと、前記最適モデル選択部が、前記複数の機械学習モデルの中から最適な機械学習モデルを選択するステップと、前記判定部が、前記最適モデル選択部が選択した前記機械学習モデルを用いて前記被検査物の良否を判定するステップと、を含む良否判定方法である。 The invention according to claim 5 is a pass / fail determination method using the pass / fail determination system according to claim 1, wherein the teaching data group generation unit generates a plurality of teaching data groups, and the storage unit. However, the step of storing the plurality of machine learning models, the step of the determination unit determining the quality of the object to be inspected based on the plurality of machine learning models, and the step of the optimum model selection unit are described. A step of selecting the optimum machine learning model from a plurality of machine learning models, and a step of the determination unit determining the quality of the object to be inspected using the machine learning model selected by the optimum model selection unit. This is a pass / fail judgment method including.
 請求項6に記載の発明は、複数の被検査物の欠陥を含む画像が該欠陥を特徴づける明るさに応じて分類された複数の教示データ群に基づいて、それぞれ前記被検査物の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被検査物の良否を判定する判定装置と、にネットワークを介して接続されたサーバであって、前記複数の教示データ群を生成する教示データ群生成部と、前記判定装置が判定した前記良否の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えたサーバである。 The invention according to claim 6 determines the quality of the inspected object, respectively, based on a plurality of teaching data groups in which an image containing a defect in the plurality of inspected objects is classified according to the brightness that characterizes the defect. A server connected via a network to a cloud computing service that builds a plurality of machine learning models for determination and a determination device that determines the quality of the object to be inspected based on the plurality of machine learning models. The teaching data group generation unit that generates the plurality of teaching data groups and the result of the quality determined by the determination device are evaluated, and the optimum machine learning model is selected from the plurality of machine learning models. It is a server equipped with an optimum model selection unit.
 請求項7に記載の発明は、複数の被検査物の欠陥を含む画像が該欠陥を特徴づける明るさに応じて分類された複数の教示データ群に基づいて、それぞれ前記被検査物の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被検査物の良否を判定する判定装置と、にネットワークを介して接続されたコンピュータを、前記複数の教示データ群を生成する教示データ群生成手段、前記判定装置が判定した前記良否の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択手段、として機能させるプログラムである。 The invention according to claim 7 determines the quality of the inspected object, respectively, based on a plurality of teaching data groups in which an image containing a defect in the plurality of inspected objects is classified according to the brightness that characterizes the defect. A computer connected via a network to a cloud computing service for constructing a plurality of machine learning models for determination and a determination device for determining the quality of the object to be inspected based on the plurality of machine learning models. , The teaching data group generating means for generating the plurality of teaching data groups, the optimum model that evaluates the result of the quality determined by the determination device, and selects the optimum machine learning model from the plurality of machine learning models. It is a program that functions as a means of selection.
 請求項8に記載の発明は、複数の被検査物の欠陥を含む画像が該欠陥を特徴づける明るさに応じて分類された複数の教示データ群を生成する教示データ群生成部及びを有するサーバと、前記複数の教示データ群に基づいて、それぞれ前記被検査物の良否を判定する複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記被検査物の画像を撮像する撮像部と、に接続されたコンピュータを、前記クラウドコンピューティングサービスが構築した前記複数の機械学習モデルを記憶する記憶手段、前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記撮像部によって撮像された前記被検査物の良否を判定する判定手段、として機能させるプログラムである。 The invention according to claim 8 is a server having a teaching data group generation unit and a teaching data group generating unit that generates a plurality of teaching data groups in which an image containing a defect of a plurality of objects to be inspected is classified according to the brightness that characterizes the defect. A cloud computing service that builds a plurality of machine learning models that determine the quality of the object to be inspected based on the plurality of teaching data groups, and an imaging unit that captures an image of the object to be inspected. The connected computer is imaged by the imaging unit based on a storage means for storing the plurality of machine learning models constructed by the cloud computing service and the plurality of machine learning models stored in the storage unit. This is a program that functions as a determination means for determining the quality of the object to be inspected.
 請求項9に記載の発明は、被監視対象の不具合が発生する予兆に起因して変化する物理量を測定するための検出器を有し、該物理量を可視化した複数の可視化画像を生成する可視化装置と、複数の予め取得した欠陥を含む前記可視化画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、前記複数の機械学習モデルの中から最適な機械学習モデルとなる最適モデルを選択する最適モデル選択部と、前記可視化装置によって生成された前記複数の可視化画像及び前記最適モデル選択部によって選択された前記最適モデルに基づいて、それぞれ前記被監視対象の稼働状態の良否を判定する判定部と、を備えた良否判定システムである。 The invention according to claim 9 has a detector for measuring a physical quantity that changes due to a sign that a defect of a monitored object occurs, and is a visualization device that generates a plurality of visualization images that visualize the physical quantity. A teaching data group generation unit that classifies the visualized image including a plurality of previously acquired defects according to the parameters that characterize the defects and generates a plurality of classified teaching data groups, and the plurality of teaching data. A storage unit that stores a plurality of the machine learning models constructed based on the group, an optimum model selection unit that selects the optimum model to be the optimum machine learning model from the plurality of machine learning models, and the visualization. A quality determination system including a plurality of visualization images generated by the apparatus and a determination unit for determining the quality of the operating state of the monitored object based on the optimum model selected by the optimum model selection unit. Is.
 請求項10に記載の発明は、被監視対象から発生する音源を特定するためのマイクロフォンを有し、該音源を可視化した複数の音源可視化画像を生成する音源可視化装置と、複数の予め取得した欠陥を含む前記音源可視化画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、前記複数の機械学習モデルの中から最適な機械学習モデルとなる最適モデルを選択する最適モデル選択部と、前記音源可視化装置によって生成された前記複数の音源可視化画像及び前記最適モデル選択部によって選択された前記最適モデルに基づいて、それぞれ前記被監視対象の稼働状態の良否を判定する判定部と、を備えた良否判定システムである。 The invention according to claim 10 has a sound source visualization device that has a microphone for identifying a sound source generated from a monitored object and generates a plurality of sound source visualization images that visualize the sound source, and a plurality of previously acquired defects. The sound source visualization image including the above is classified according to the parameters that characterize the defect, and is constructed based on the teaching data group generation unit that generates a plurality of classified teaching data groups and the plurality of teaching data groups. A storage unit that stores a plurality of the machine learning models, an optimum model selection unit that selects the optimum model to be the optimum machine learning model from the plurality of machine learning models, and the sound source visualization device generated by the sound source visualization device. It is a quality determination system including a plurality of sound source visualization images and a determination unit for determining the quality of the operating state of the monitored object based on the optimum model selected by the optimum model selection unit.
 請求項11に記載の発明は、被監視対象から発生する振動を検出するための振動センサを有し、該振動を可視化した複数の振動可視化画像を生成する振動可視化装置と、複数の予め取得した欠陥を含む前記振動可視化画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、前記複数の機械学習モデルの中から最適な機械学習モデルとなる最適モデルを選択する最適モデル選択部と、前記振動可視化装置によって生成された前記複数の振動可視化画像及び前記最適モデル選択部によって選択された前記最適モデルに基づいて、それぞれ前記被監視対象の稼働状態の良否を判定する判定部と、を備えた良否判定システムである。 The invention according to claim 11 has a vibration sensor for detecting vibration generated from a monitored object, a vibration visualization device that generates a plurality of vibration visualization images that visualize the vibration, and a plurality of previously acquired vibration visualization devices. The vibration visualization image including the defect is classified according to the parameters that characterize the defect, and is constructed based on the teaching data group generation unit that generates a plurality of classified teaching data groups and the plurality of teaching data groups. A storage unit that stores the plurality of the machine learning models, an optimum model selection unit that selects the optimum model to be the optimum machine learning model from the plurality of machine learning models, and a vibration visualization device are generated. It is a quality determination system including a determination unit for determining the quality of the operating state of the monitored object based on the plurality of vibration visualization images and the optimum model selected by the optimum model selection unit.
 請求項12に記載の発明は、請求項9記載の良否判定システムを使用した良否判定方法であって、前記可視化装置が、前記可視化画像を生成するステップと、前記教示データ群生成部が、前記複数の教示データ群を作成するステップと、前記記憶部が、前記複数の機械学習モデルを記憶するステップと、前記最適モデル選択部が、前記複数の機械学習モデルの中から最適な機械学習モデルを選択するステップと、前記判定部が、前記最適モデル選択部が選択した前記機械学習モデルを用いて前記被監視対象の稼働状態の良否を判定するステップと、を含む良否判定方法である。 The invention according to claim 12 is a pass / fail determination method using the pass / fail determination system according to claim 9, wherein the visualization device generates the visualization image, and the teaching data group generation unit is described. The step of creating a plurality of teaching data groups, the step of storing the plurality of machine learning models by the storage unit, and the step of storing the plurality of machine learning models, and the optimum model selection unit select the optimum machine learning model from the plurality of machine learning models. This is a quality determination method including a step of selecting and a step in which the determination unit determines the quality of the operating state of the monitored object using the machine learning model selected by the optimum model selection unit.
 請求項13に記載の発明は、被監視対象の不具合が発生する予兆に起因して変化した物理量を可視化した複数の可視化画像が該不具合を特徴づけるパラメータに応じて分類された複数の教示データ群に基づいて、それぞれ前記被監視対象の稼働状態の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被監視対象の良否を判定する判定装置と、にネットワークを介して接続されたサーバであって、前記複数の教示データ群を生成する教示データ群生成部と、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えたサーバである。 The invention according to claim 13 is a plurality of teaching data groups in which a plurality of visualized images that visualize a physical quantity changed due to a sign that a defect to be monitored occurs are classified according to parameters that characterize the defect. Based on the cloud computing service that builds a plurality of machine learning models for determining the quality of the operating state of the monitored object, and the quality of the monitored object, respectively, based on the plurality of machine learning models. A server connected to the determination device via a network, the teaching data group generation unit that generates the plurality of teaching data groups, and the optimum machine learning model from the plurality of machine learning models. It is a server provided with an optimum model selection unit for selection.
 請求項14に記載の発明は、被監視対象の不具合が発生する予兆に起因して変化した物理量を可視化した複数の可視化画像が該不具合を特徴づけるパラメータに応じて分類された複数の教示データ群に基づいて、それぞれ前記被監視対象の稼働状態の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被監視対象の良否を判定する判定装置と、にネットワークを介して接続されたコンピュータを、前記複数の教示データ群を生成する教示データ群生成手段、前記判定装置が判定した前記良否の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択手段、として機能させるプログラムである。 The invention according to claim 14 is a plurality of teaching data groups in which a plurality of visualized images that visualize a physical quantity changed due to a sign that a defect to be monitored occurs are classified according to parameters that characterize the defect. Based on the above, a cloud computing service that builds a plurality of machine learning models for determining the quality of the operating state of the monitored object, and the quality of the monitored object, respectively, based on the plurality of machine learning models. The determination device and the computer connected to the determination device via a network are evaluated by the teaching data group generating means for generating the plurality of teaching data groups, the result of the quality determined by the determination device, and the plurality of machines. It is a program that functions as an optimal model selection means for selecting the optimal machine learning model from the learning models.
 請求項15に記載の発明は、被監視対象の不具合が発生する予兆に起因して変化した物理量を可視化した複数の可視化画像が該不具合を特徴づけるパラメータに応じて分類された複数の教示データ群に基づいて、それぞれ前記被監視対象の稼働状態の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記被検査物の画像を撮像する撮像部と、に接続されたコンピュータを、前記クラウドコンピューティングサービスが構築した前記複数の機械学習モデルを記憶する記憶手段、前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記撮像部によって撮像された前記被検査物の良否を判定する判定手段、として機能させるプログラムである。 The invention according to claim 15 is a plurality of teaching data groups in which a plurality of visualized images that visualize a physical quantity changed due to a sign that a defect to be monitored occurs are classified according to parameters that characterize the defect. Based on, each is connected to a cloud computing service that builds a plurality of machine learning models for determining the quality of the operating state of the monitored object, and an imaging unit that captures an image of the object to be inspected. The computer is imaged by the imaging unit based on a storage means for storing the plurality of machine learning models constructed by the cloud computing service and the plurality of machine learning models stored in the storage unit. It is a program that functions as a judgment means for judging the quality of an inspected object.
 本発明によれば、より高い精度で被検査物の良否を判定できる良否判定システム、良否判定方法、サーバ及びプログラムを提供できる。 According to the present invention, it is possible to provide a quality determination system, a quality determination method, a server and a program capable of determining the quality of an inspected object with higher accuracy.
本発明の第1の実施の形態に係る良否判定システムの構成図である。It is a block diagram of the quality determination system which concerns on 1st Embodiment of this invention. 同良否判定システムが備える教示データ作成装置の説明図である。It is explanatory drawing of the teaching data creation apparatus provided in the same quality determination system. 同良否判定システムが備えるサーバの説明図である。It is explanatory drawing of the server provided in the same quality judgment system. 同良否判定システムにより生成される教示データ群及びこれら教示データ群によりそれぞれ構築される複数の機械学習モデルの説明図である。It is explanatory drawing of the teaching data group generated by the same quality judgment system, and a plurality of machine learning models constructed by each of these teaching data groups. 被検査物の欠陥を含む画像の説明図である。It is explanatory drawing of the image including the defect of the object to be inspected. 走査位置の一部について模式的に示した水平グレイ値プロファイルグラフの説明図である。It is explanatory drawing of the horizontal gray value profile graph which showed typically about a part of the scanning position. 走査位置の一部について模式的に示した画像Aの水平グレイ値プロファイルグラフである。6 is a horizontal gray value profile graph of image A schematically showing a part of scanning positions. 走査位置の一部について模式的に示した画像Bの水平グレイ値プロファイルグラフである。6 is a horizontal gray value profile graph of image B schematically showing a part of scanning positions. 走査位置の一部について模式的に示した画像Cの水平グレイ値プロファイルグラフである。6 is a horizontal gray value profile graph of image C schematically showing a part of scanning positions. 同良否判定システムによる前処理の説明図である。It is explanatory drawing of the preprocessing by the same quality judgment system. 同良否判定システムが備える端末及び撮像部の説明図である。It is explanatory drawing of the terminal and the image pickup part provided in the same quality determination system. 同良否判定システムの動作を示すフロー図である。It is a flow chart which shows the operation of the same quality judgment system. 本発明の第2の実施の形態に係る良否判定システムの構成図である。It is a block diagram of the quality determination system which concerns on 2nd Embodiment of this invention. 同良否判定システムが備える端末及び撮像部の説明図である。It is explanatory drawing of the terminal and the image pickup part provided in the same quality determination system. 本発明の第3の実施の形態に係る予知保全システムの構成図である。It is a block diagram of the predictive maintenance system which concerns on 3rd Embodiment of this invention. 同予知保全システムが備えるサーバの説明図である。It is explanatory drawing of the server provided in the predictive maintenance system. 同予知保全システムが備える端末及び音源可視化装置の説明図である。It is explanatory drawing of the terminal and the sound source visualization device provided in the predictive maintenance system. 同予知保全システムの動作を示すフロー図である。It is a flow chart which shows the operation of the predictive maintenance system. 本発明の第4実施の形態に係る予知保全システムの構成図である。It is a block diagram of the predictive maintenance system which concerns on 4th Embodiment of this invention.
 続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。なお、図において、説明に関連しない部分は図示を省略する場合がある。 Subsequently, with reference to the attached drawings, an embodiment embodying the present invention will be described to help the understanding of the present invention. In the figure, parts not related to the description may be omitted.
〔第1の実施の形態〕
 本発明の第1の実施の形態に係る良否判定システム10a(図1参照)は、機械学習により、ユーザが製造した製品である被検査物14の外観の良否を判定することができる。この外観の良否は、傷や異物の付着等の欠陥の有無により判定される。
 被検査物14は、例えば、自動車や航空機等の輸送機械の部品及び食品である。ただし、被検査物14は、これら部品や食品に限定されるものではない。
 この良否判定システム10aによる良否判定サービスは、サービス提供事業者によって、ユーザに対して提供される。
[First Embodiment]
The quality determination system 10a (see FIG. 1) according to the first embodiment of the present invention can determine the quality of the appearance of the object to be inspected 14, which is a product manufactured by the user, by machine learning. The quality of this appearance is judged by the presence or absence of defects such as scratches and adhesion of foreign matter.
The object to be inspected 14 is, for example, a part of a transportation machine such as an automobile or an aircraft, and food. However, the object to be inspected 14 is not limited to these parts and foods.
The pass / fail judgment service by the pass / fail judgment system 10a is provided to the user by the service provider.
 良否判定システム10aは、図1に示すように、教示データ作成装置20、サーバ30及び検査システム40aを備えている。
 教示データ作成装置20、サーバ30及び検査システム40aはインターネットNを介して互いに接続されている。
As shown in FIG. 1, the quality determination system 10a includes a teaching data creation device 20, a server 30, and an inspection system 40a.
The teaching data creation device 20, the server 30, and the inspection system 40a are connected to each other via the Internet N.
 教示データ作成装置20は、例えばパーソナルコンピュータである。教示データ作成装置20は、サービス提供事業者又は検査システム40aを使用するユーザによって管理され、図2に示すように、教示データ作成部202を有している。
 教示データ作成部(教示データ作成手段の一例)202は、例えば検査システム40aに設けられたカメラ460から被検査物14の画像を取得し、機械学習モデルを構築するための教示データとして、被検査物14の画像を作成できる。
 なお、教示データ作成装置20は、教示データ作成装置20にて実行されるプログラムによって、教示データ作成手段として機能する。
 教示データ作成装置20は、スマートフォン等の携帯端末であってもよい。
The teaching data creating device 20 is, for example, a personal computer. The teaching data creating device 20 is managed by a service provider or a user who uses the inspection system 40a, and has a teaching data creating unit 202 as shown in FIG.
The teaching data creating unit (an example of teaching data creating means) 202 acquires an image of the object to be inspected 14 from, for example, a camera 460 provided in the inspection system 40a, and is inspected as teaching data for constructing a machine learning model. An image of an object 14 can be created.
The teaching data creating device 20 functions as a teaching data creating means by a program executed by the teaching data creating device 20.
The teaching data creating device 20 may be a mobile terminal such as a smartphone.
 サーバ30は、サービス提供事業者によって管理され、図3に示すように、教示データ群生成部302、最適モデル選択部306及び管理部308を有している。
 教示データ群生成部(教示データ群生成手段の一例)302は、図4に示すように、教示データ作成装置20が作成した複数の異なる欠陥を含む被検査物14の画像IMG1、IMG2、IMG3、・・・(教示データ群TD)を前処理することで、前処理された教示データ群の集合TDg、すなわち、教示データ群TD1、TD2、TD3、TD4、・・・を作成する。
The server 30 is managed by the service provider, and has a teaching data group generation unit 302, an optimum model selection unit 306, and a management unit 308, as shown in FIG.
As shown in FIG. 4, the teaching data group generation unit (an example of the teaching data group generation means) 302 is an image IMG1, IMG2, IMG3, of an inspected object 14 containing a plurality of different defects created by the teaching data creation device 20. By preprocessing (teaching data group TD), a set of preprocessed teaching data groups TDg, that is, teaching data groups TD1, TD2, TD3, TD4, ... Is created.
 ここで、位置(Xd,Yd)を中心とする欠陥Dを含む被検査物14の各画像IMG1、IMG2、IMG3、・・・が、例えば130万画素のカメラによって撮像されると、図5に示すように、その大きさは、縦が1024px(Y軸方向)、横が1280px(X軸方向)となる。この画像は、水平グレイ値プロファイルグラフによって、図6に示すように表される。
 ここで、水平グレイ値プロファイルグラフは、画像の画素を順に走査し、その走査位置に対応する明るさを表したグラフであり、横軸が走査位置、縦軸が明るさを示している。画素の走査方向は、例えば図5の矢印にて示すように、画像の左上から右へと向かう方向(X軸の正方向)であり、これを下方向(Y軸の正方向)へと繰り返して全画素が走査される。
Here, when each image IMG1, IMG2, IMG3, ... Of the object 14 to be inspected including the defect D centered on the position (Xd, Yd) is imaged by a camera having 1.3 million pixels, for example, FIG. As shown, the size is 1024 px (Y-axis direction) in the vertical direction and 1280 px (X-axis direction) in the horizontal direction. This image is represented by a horizontal gray value profile graph as shown in FIG.
Here, the horizontal gray value profile graph is a graph in which pixels of an image are scanned in order and the brightness corresponding to the scanning position is shown, and the horizontal axis shows the scanning position and the vertical axis shows the brightness. The scanning direction of the pixels is, for example, the direction from the upper left to the right of the image (positive direction of the X-axis) as shown by the arrow in FIG. 5, and this is repeated in the downward direction (positive direction of the Y-axis). All pixels are scanned.
 図6に示す水平グレイ値プロファイルグラフは、欠陥Dの明るさが、非欠陥部分よりも明るくなっていることを示している。ただし、欠陥のDの明るさは、常に非欠陥部分よりも明るくなっているものではなく、非欠陥部分よりも暗くなっている場合もある。
 このように、予め特定された欠陥Dの明るさは、非欠陥部分の明るさと異なる特徴を有し、明るさ(パラメータの一例)によって、欠陥Dが非欠陥部分と区別され、特徴づけられる。
 なお、同図6に示した水平グレイ値プロファイルグラフは、走査位置の一部(欠陥Dの近傍)についてのみ示されており、省略した範囲が破線にて示されている。後述する図7A~図7Cについても同様である。
The horizontal gray value profile graph shown in FIG. 6 shows that the brightness of the defect D is brighter than that of the non-defect portion. However, the brightness of the defect D is not always brighter than that of the non-defect portion, and may be darker than that of the non-defect portion.
As described above, the brightness of the defect D specified in advance has a characteristic different from the brightness of the non-defect portion, and the defect D is distinguished from the non-defect portion and characterized by the brightness (an example of the parameter).
The horizontal gray value profile graph shown in FIG. 6 shows only a part of the scanning position (near the defect D), and the omitted range is shown by a broken line. The same applies to FIGS. 7A to 7C described later.
 教示データ群生成部302が行う前処理は、以下の処理P1及び処理P2を含む。
 処理P1は、図6に示すように、教示データ群生成部302が、教示データ作成装置20によって予め撮像された複数の被検査物14の画像IMG1、IMG2、IMG3、・・・(教示データ群TD)について、それぞれ、予めその位置が特定された欠陥Dを特徴づける画素の明るさを、予め決められた大きさが異なる複数の閾値(明るさの範囲を判断するための基準となる基準値の一例)TH1~TH10と比較して、その欠陥Dを特徴づける画素の明るさの範囲に含まれる複数の閾値を、欠陥Dを特徴づける明るさを表す特徴値として求める処理である。
 処理P2は、教示データ群生成部302が、処理P1にて求められた複数の特徴値に応じて、各画像IMG1、IMG2、IMG3、・・・(教示データ群TD)を教示データ群TD1、TD2、TD3、TD4、・・・に分類する処理である。ただし、その際、教示データ群生成部302が、一つの画像をいずれか一つの教示データ群TD1、TD2、TD3、TD4、・・・に分類するのではなく、元の画像をコピーをすることで特徴値の数と同じ枚数の画像を用意して、各閾値に対応する教示データ群TD1、TD2、TD3、TD4、・・・に分類する。
 従って、この前処理により、図4に示すように、教示データ群TDから、教示データ群TD1、TD2、TD3、TD4、・・・が生成される。
The pre-processing performed by the teaching data group generating unit 302 includes the following processing P1 and processing P2.
In the processing P1, as shown in FIG. 6, the teaching data group generation unit 302 uses the images IMG1, IMG2, IMG3, ... For TD), the brightness of the pixels that characterize the defect D whose position has been specified in advance is set to a reference value that serves as a reference for determining a plurality of thresholds (brightness ranges) having different predetermined sizes. Example) Compared with TH1 to TH10, this is a process of obtaining a plurality of threshold values included in the range of brightness of the pixels that characterize the defect D as feature values representing the brightness that characterizes the defect D.
In the processing P2, the teaching data group generating unit 302 transmits each image IMG1, IMG2, IMG3, ... (Teaching data group TD) according to the plurality of feature values obtained in the processing P1. It is a process of classifying into TD2, TD3, TD4, .... However, at that time, the teaching data group generation unit 302 does not classify one image into any one teaching data group TD1, TD2, TD3, TD4, ..., But copies the original image. Prepare the same number of images as the number of feature values, and classify them into teaching data groups TD1, TD2, TD3, TD4, ... Corresponding to each threshold value.
Therefore, by this preprocessing, as shown in FIG. 4, the teaching data groups TD1, TD2, TD3, TD4, ... Are generated from the teaching data group TD.
 次に、この前処理の具体例について、それぞれ被検査物14の画像IMG1、IMG2、IMG3の一例である画像A、B、C・・・に基づいて説明する。
 画像IMG1に対応する画像Aは、図7Aに示すように予め位置が特定された欠陥D1を含み、欠陥D1を特徴づける明るさの範囲が155~205である。
 画像IMG2に対応する画像Bは、図7Bに示すように予め位置が特定された欠陥D2を含み、欠陥D2を特徴づける明るさの範囲が165~215である。
 画像IMG3に対応する画像Cは、図7Cに示すように予め位置が特定された欠陥D3を含み、欠陥D3を特徴づける明るさの範囲が155~230である。
Next, specific examples of this pretreatment will be described based on images A, B, C ... Which are examples of images IMG1, IMG2, and IMG3 of the object 14 to be inspected, respectively.
The image A corresponding to the image IMG1 includes the defect D1 whose position is specified in advance as shown in FIG. 7A, and the range of brightness that characterizes the defect D1 is 155 to 205.
The image B corresponding to the image IMG2 includes the defect D2 whose position is specified in advance as shown in FIG. 7B, and the brightness range that characterizes the defect D2 is 165 to 215.
The image C corresponding to the image IMG3 includes the defect D3 whose position is specified in advance as shown in FIG. 7C, and the range of brightness that characterizes the defect D3 is 155 to 230.
 前述の処理P1においては、まず、複数の閾値(基準値の一例)20、40、60、80、100、120、140、160、180、200、220、240が設定され、画像A(図7A参照)について、欠陥D1を特徴づける明るさの範囲155~205に含まれる3つの閾値160、180、200が特徴値として求められる。 In the above-described process P1, first, a plurality of threshold values (examples of reference values) 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240 are set, and image A (FIG. 7A). (See), three thresholds 160, 180, and 200 included in the brightness range 155 to 205 that characterize the defect D1 are obtained as feature values.
 前述の処理P2においては、画像Aをコピーすることにより、特徴値の数と同じ枚数、すなわち、3枚の画像Aが用意され、各画像が、図8に示すように、特徴値160に対応する教示データ群TD1、特徴値180に対応する教示データ群TD2及び特徴値200に対応する教示データ群TD3に分類される。 In the above-mentioned process P2, by copying the image A, the same number of images as the number of feature values, that is, three images A are prepared, and each image corresponds to the feature value 160 as shown in FIG. It is classified into the teaching data group TD1 corresponding to the teaching data group TD1, the teaching data group TD2 corresponding to the feature value 180, and the teaching data group TD3 corresponding to the feature value 200.
 以上の処理P1及び処理P2が、残りの画像B、C・・・についても行われる。
 すなわち、画像B(図7B参照)については、欠陥D2を特徴づける明るさの範囲165~215に含まれる2つの閾値180、200が特徴値として求められ、画像Bが、特徴値180に対応する教示データ群TD2及び特徴値200に対応する教示データ群TD3に分類される(図8参照)。
 画像C(図7C参照)については、欠陥D3を特徴づける明るさの範囲155~230に含まれる4つの閾値160、180、200、220が特徴値として求められ、画像Cが、特徴値160に対応する教示データ群TD1、特徴値180に対応する教示データ群TD2、特徴値200に対応する教示データ群TD3及び特徴値220に対応する教示データ群TD4に分類される(図8参照)。
 更に、教示データ群TDに含まれる残りの画像(画像A、B、C以外の画像)についても、求められた各特徴値に応じて、対応する教示データ群TD1、TD2、TD3、TD4、・・・に分類され、教示データ群の集合TDg(図4参照)が生成される。
The above processes P1 and P2 are also performed on the remaining images B, C ...
That is, for image B (see FIG. 7B), two thresholds 180 and 200 included in the brightness range 165 to 215 that characterize the defect D2 are obtained as feature values, and image B corresponds to the feature value 180. It is classified into the teaching data group TD2 and the teaching data group TD3 corresponding to the feature value 200 (see FIG. 8).
For image C (see FIG. 7C), four thresholds 160, 180, 200, 220 included in the brightness range 155 to 230 that characterize the defect D3 are obtained as feature values, and image C is set to feature value 160. It is classified into the corresponding teaching data group TD1, the teaching data group TD2 corresponding to the feature value 180, the teaching data group TD3 corresponding to the feature value 200, and the teaching data group TD4 corresponding to the feature value 220 (see FIG. 8).
Further, with respect to the remaining images (images other than images A, B, and C) included in the teaching data group TD, the corresponding teaching data groups TD1, TD2, TD3, TD4, ... A set of teaching data groups TDg (see FIG. 4) is generated.
 欠陥を特徴づける明るさに応じて分類されたこれらの教示データ群TD1、TD2、TD3、TD4、・・・は、それぞれ被検査物14の良否を判定する機械学習モデルM1、M2、M3、M4・・・を構築するための教示データ群となる。 These teaching data groups TD1, TD2, TD3, TD4, ... Classified according to the brightness that characterizes the defect are machine learning models M1, M2, M3, M4 that determine the quality of the object 14 to be inspected, respectively. It is a teaching data group for constructing ...
 なお、前処理において、画像IMG1、IMG2、IMG3、・・・(教示データ群TD)は、明るさに基づいて各教示データ群TD1、TD2、TD3、TD4、・・・に分類されることに限定されるものではなく、明るさ以外のパラメータに基づいて分類されてもよい。明るさ以外のパラメータとして、例えば、HSV色空間を構成する色相(Hue)、彩度(Saturation)及び明度(Value)や、RGBカラーモデルにおける階調表現されたR(Red)、G(Green)及びB(Blue)が挙げられる。すなわち、パラメータは、非欠陥部分と区別して欠陥部分を特徴づけることができれば任意でよい。
 また、前処理として、欠陥部分を非欠陥部分よりも際立たせるためのフィルタ処理が含まれてもよい。
In the preprocessing, the images IMG1, IMG2, IMG3, ... (Teaching data group TD) are classified into each teaching data group TD1, TD2, TD3, TD4, ... Based on the brightness. It is not limited, and may be classified based on parameters other than brightness. Parameters other than brightness include, for example, the hue, saturation, and lightness that make up the HSV color space, and the gradation-expressed R (Red) and G (Green) in the RGB color model. And B (Blue). That is, the parameters may be arbitrary as long as the defective portion can be characterized so as to be distinguished from the non-defective portion.
Further, as the pretreatment, a filter treatment for making the defective portion stand out more than the non-defective portion may be included.
 ここで、図1及び図4に示す機械学習モデル構築サービス80は、クラウドコンピューティングサービスとして提供され、アップロードされた教示データに基づいて、学習済みの機械学習モデルを構築できる。この機械学習モデル構築サービス80は、例えば、Google Cloud Platform(GCP)にて提供されるCloud AutoML Visionである。 Here, the machine learning model construction service 80 shown in FIGS. 1 and 4 is provided as a cloud computing service, and a trained machine learning model can be constructed based on the uploaded teaching data. This machine learning model construction service 80 is, for example, a Cloud AutoML Vision provided by Google Cloud Platform (GCP).
 最適モデル選択部(最適モデル選択手段の一例)306(図3参照)は、機械学習モデル構築サービス80が構築した複数の学習済みの機械学習モデルによる被検査物14の良否の判定結果を評価し、最適な機械学習モデルを選択できる。 The optimum model selection unit (an example of the optimum model selection means) 306 (see FIG. 3) evaluates the quality judgment result of the object 14 to be inspected by a plurality of learned machine learning models constructed by the machine learning model construction service 80. , You can choose the best machine learning model.
 管理部(管理手段の一例)308は、ユーザが使用する検査システム40aの状態を管理できる。詳細には、管理部308は、検査システム40aが有する撮像部460(図1参照)の稼働状態に関する稼働情報を記録できる。この稼働情報については後述する。 The management unit (an example of management means) 308 can manage the state of the inspection system 40a used by the user. Specifically, the management unit 308 can record operation information regarding the operating state of the imaging unit 460 (see FIG. 1) included in the inspection system 40a. This operation information will be described later.
 なお、サーバ30は、サーバ30の内部にて実行されるプログラムによって、教示データ群生成手段、最適モデル選択手段及び管理手段として機能する。 The server 30 functions as a teaching data group generation means, an optimum model selection means, and a management means by a program executed inside the server 30.
 検査システム40aは、図1に示すように、端末440、PLC(Programmable Logic Controller)450及び被検査物14を撮像するとともにその良否を判定する撮像部(判定装置の一例)460を有している。端末440、PLC450及び撮像部460は、有線通信又は無線通信により互いに接続されている。 As shown in FIG. 1, the inspection system 40a includes a terminal 440, a PLC (Programmable Logic Controller) 450, and an imaging unit (an example of a determination device) 460 that images the object 14 to be inspected and determines the quality thereof. .. The terminal 440, the PLC 450, and the imaging unit 460 are connected to each other by wire communication or wireless communication.
 端末440は、ユーザによって管理される。端末440は、例えばパーソナルコンピュータやスマートフォン等の携帯端末であり、PLC450の上位コントローラであってもよい。
 端末440は、図9に示すように、機械学習モデル受信部440a、制御部440b及び稼働状態出力部440cを有している。
The terminal 440 is managed by the user. The terminal 440 is, for example, a mobile terminal such as a personal computer or a smartphone, and may be a higher-level controller of the PLC 450.
As shown in FIG. 9, the terminal 440 has a machine learning model receiving unit 440a, a control unit 440b, and an operating state output unit 440c.
 機械学習モデル受信部(受信手段の一例)440aは、機械学習モデル構築サービス80が構築した各機械学習モデルをダウンロードできる。なお、各機械学習モデルのダウンロードは、セキュア通信によりなされる。 The machine learning model receiving unit (an example of receiving means) 440a can download each machine learning model constructed by the machine learning model construction service 80. Note that each machine learning model is downloaded by secure communication.
 制御部(制御手段の一例)440bは、PLC450及び撮像部460を制御できる。 The control unit (an example of control means) 440b can control the PLC450 and the imaging unit 460.
 稼働状態出力部(稼働状態出力手段の一例)440cは、撮像部460の稼働状態に関する稼働情報を出力できる。この稼働情報は、例えば、撮像部460が画像の撮像を開始してから終了するまでの時間の情報である。稼働情報は、撮像部460が撮像した画像の枚数の情報であってもよい。 The operating state output unit (an example of the operating state output means) 440c can output operation information related to the operating state of the imaging unit 460. This operation information is, for example, information on the time from when the imaging unit 460 starts capturing an image to when it ends. The operation information may be information on the number of images captured by the imaging unit 460.
 なお、端末440は、端末440の内部にて実行されるプログラムによって、受信手段、制御手段及び稼働状態出力手段として機能する。
 また、1台の端末440が機械学習モデル受信部440a、制御部440b及び稼働状態出力部440cを全て有していることに限定されるものではなく、各部が互いに接続された複数の端末に分かれて存在していてもよい。
 更に、端末440が、図2に示す教示データ作成装置20に代わって教示データ作成部202を有していてもよい。
The terminal 440 functions as a receiving means, a control means, and an operating state output means by a program executed inside the terminal 440.
Further, one terminal 440 is not limited to having all the machine learning model receiving unit 440a, the control unit 440b, and the operating state output unit 440c, and each unit is divided into a plurality of terminals connected to each other. May exist.
Further, the terminal 440 may have a teaching data creating unit 202 instead of the teaching data creating device 20 shown in FIG.
 PLC450は、ユーザによって管理され、図1に示すように、被検査物14を検査する検査装置470を制御するコントローラである。 The PLC 450 is a controller managed by a user and controls an inspection device 470 that inspects the inspected object 14 as shown in FIG.
 撮像部460(図9参照)は、ユーザによって管理され、被検査物14の画像を撮像できる。また、撮像部460は、複数の機械学習モデルに基づいて、それぞれ撮像した被検査物14の良否を判定できる。
 撮像部460は、例えば、GPU(Graphics Processing Unit)を搭載したカメラである。ただし、撮像部460は、スマートフォン等のカメラ付きの携帯端末であってもよい。
 撮像部460は、カメラ部460a、記憶部460b及び判定部460cを有している。
The image pickup unit 460 (see FIG. 9) is managed by the user and can capture an image of the object 14 to be inspected. In addition, the imaging unit 460 can determine the quality of the imaged object 14 to be inspected, based on a plurality of machine learning models.
The image pickup unit 460 is, for example, a camera equipped with a GPU (Graphics Processing Unit). However, the image pickup unit 460 may be a mobile terminal with a camera such as a smartphone.
The imaging unit 460 has a camera unit 460a, a storage unit 460b, and a determination unit 460c.
 カメラ部460aは、被検査物14の画像を撮像し、画像データを取得できる。
 記憶部460bは、機械学習モデル受信部440aによってダウンロードされた複数の機械学習モデルを記憶できる。
 判定部460cは、カメラ部460aが撮像した被検査物14の画像データ及び記憶部460bに記憶された機械学習モデルに基づいて、被検査物14の欠陥の有無、すなわち、被検査物14の良否を判定できる。判定部460cは、機械学習モデルによる演算処理を高速に行うことができ、例えば、GPUにより構成されている。
The camera unit 460a can capture an image of the object to be inspected 14 and acquire image data.
The storage unit 460b can store a plurality of machine learning models downloaded by the machine learning model receiving unit 440a.
The determination unit 460c determines the presence or absence of defects in the inspected object 14, that is, the quality of the inspected object 14, based on the image data of the inspected object 14 captured by the camera unit 460a and the machine learning model stored in the storage unit 460b. Can be determined. The determination unit 460c can perform arithmetic processing by the machine learning model at high speed, and is composed of, for example, a GPU.
 次に、良否判定システム10aの動作(被検査物14の良否判定方法)について、図10に基づいて説明する。良否判定システム10aは、以下のステップS1~S9に従って動作する。ステップS1~S9のうち、ステップS1~S7は、実際の良否判定を行うまでに必要な準備段階としての動作であり、以降のステップS8、S9は、部品等の出荷前の検査工程における実際の良否判定の動作である。
 なお、可能な場合には、各ステップS1~S7は順番を入れ替えて実施されてもよいし、並行して実施されてもよい。
Next, the operation of the quality determination system 10a (the method for determining the quality of the object to be inspected 14) will be described with reference to FIG. The pass / fail determination system 10a operates according to the following steps S1 to S9. Of steps S1 to S9, steps S1 to S7 are operations as preparatory steps necessary for performing an actual pass / fail judgment, and subsequent steps S8 and S9 are actual operations in the inspection process before shipment of parts and the like. This is a pass / fail judgment operation.
If possible, the steps S1 to S7 may be performed in a different order, or may be performed in parallel.
(ステップS1)
 教示データ作成装置20(図1参照)の教示データ作成部202(図2参照)が、撮像部460が撮像した被検査物14の画像データに基づいて、図4に示す教示データ群TDとなる被検査物14の画像データを複数作成する。
 教示データ群TDは、規定の欠陥を含む被検査物14の複数の画像データ及び規定の欠陥を含まない被検査物14の複数の画像データ群である。なお、欠陥の種類として、例えば、傷、ボイド、汚れ、及び異物混入等が挙げられる。ただし、検査対象とすべき欠陥は、被検査物14によって異なる。
 作成された複数の被検査物14の画像は、図示しない記憶手段に記憶され、図3に示すサーバ30に送信される。
 教示データ群TDは、教示データ作成部202が作成することに代えて、予め準備された被検査物14の画像データに基づいて手作業により作成されてもよい。
(Step S1)
The teaching data creating unit 202 (see FIG. 2) of the teaching data creating device 20 (see FIG. 1) becomes the teaching data group TD shown in FIG. 4 based on the image data of the object 14 to be inspected captured by the imaging unit 460. Create a plurality of image data of the object to be inspected 14.
The teaching data group TD is a plurality of image data of the inspected object 14 including the specified defect and a plurality of image data groups of the inspected object 14 not including the specified defect. Examples of the types of defects include scratches, voids, stains, and foreign matter contamination. However, the defects to be inspected differ depending on the object 14 to be inspected.
The created images of the plurality of objects to be inspected 14 are stored in a storage means (not shown) and transmitted to the server 30 shown in FIG.
The teaching data group TD may be manually created based on the image data of the object to be inspected 14 prepared in advance, instead of being created by the teaching data creating unit 202.
(ステップS2)
 サーバ30の教示データ群生成部302が、図4に示すように、教示データ作成装置20が生成した被検査物14の複数の画像(教示データ群TD)を前処理し、特徴値に応じて分類された複数の教示データ群TD1、TD2、TD3、TD4、・・・を生成する。前処理においては、例えば、明るさについての複数の閾値TH1~TH10(図6参照)が用いられる。
 なお、各閾値は、欠陥Dの明るさの最大値を求め、この最大値を分割することによって、求められてもよい。
 その後、サービス提供事業者又はユーザの操作により、サーバ30が、前処理後の教示データ群TD1、TD2、TD3、TD4、・・・をそれぞれ機械学習モデル構築サービス80にアップロードする。
 このように、ノウハウが必要な教示データの前処理をユーザではなくサービス提供事業者が行うので、ユーザは簡単に機械学習モデルによる良否判定システム10aを導入できる。
(Step S2)
As shown in FIG. 4, the teaching data group generating unit 302 of the server 30 preprocesses a plurality of images (teaching data group TD) of the object 14 to be inspected generated by the teaching data creating device 20, and according to the feature value. A plurality of classified teaching data groups TD1, TD2, TD3, TD4, ... Are generated. In the pretreatment, for example, a plurality of threshold values TH1 to TH10 (see FIG. 6) for brightness are used.
Each threshold value may be obtained by obtaining the maximum value of the brightness of the defect D and dividing the maximum value.
After that, the server 30 uploads the preprocessed teaching data groups TD1, TD2, TD3, TD4, ... To the machine learning model construction service 80 by the operation of the service provider or the user.
In this way, since the service provider, not the user, performs the preprocessing of the teaching data that requires know-how, the user can easily introduce the pass / fail judgment system 10a based on the machine learning model.
(ステップS3)
 アップロードされた教示データ群に基づき、機械学習モデル構築サービス80によってそれぞれ機械学習モデルM1、M2、M3、M4・・・が構築される。
 構築された学習済みの機械学習モデルは、それぞれサーバ30の最適モデル選択部306(図3参照)によって各機械学習モデルM1、M2、M3、M4・・・の精度が検証される。
 なお、精度が予め決められた基準よりも悪い場合には、前ステップS2に戻り、教示データ群生成部302は、フィルタ処理を更に適用するなどして前処理する。
(Step S3)
Machine learning models M1, M2, M3, M4 ... Are constructed by the machine learning model construction service 80 based on the uploaded teaching data group, respectively.
The accuracy of each machine learning model M1, M2, M3, M4 ... Is verified by the optimum model selection unit 306 (see FIG. 3) of the server 30 for each of the constructed machine learning models.
If the accuracy is worse than the predetermined standard, the process returns to the previous step S2, and the teaching data group generating unit 302 performs preprocessing by further applying filter processing or the like.
(ステップS4)
 ユーザの操作により、端末440の機械学習モデル受信部440a(図9参照)が、機械学習モデル構築サービス80によって構築された学習済みの各機械学習モデルをダウンロードする。ダウンロードされた学習済みの各機械学習モデルは、端末440を介して撮像部460に送信される。
(Step S4)
By the operation of the user, the machine learning model receiving unit 440a (see FIG. 9) of the terminal 440 downloads each trained machine learning model constructed by the machine learning model construction service 80. Each of the downloaded machine learning models that has been learned is transmitted to the imaging unit 460 via the terminal 440.
(ステップS5)
 撮像部460の記憶部460bが、機械学習モデル受信部440aによってダウンロードされた各機械学習モデルを記憶する。
(Step S5)
The storage unit 460b of the imaging unit 460 stores each machine learning model downloaded by the machine learning model receiving unit 440a.
(ステップS6)
 端末440の制御部440bがPLC450及び撮像部460を制御し、検査装置470(図1参照)にて製造された被検査物14の良否を試験的に判定する。
 詳細には、被検査物14を出荷する際の良否判定を行う準備段階として、撮像部460のカメラ部460a(図9参照)が被検査物14の画像を撮像し、判定部460cが、撮像された画像及び記憶部460bに記憶された複数の機械学習モデルに基づいて、それぞれ被検査物14に欠陥が存在するか否かを検査し、欠陥がない場合は良品と判定し、欠陥がある場合には不良品と判定する。
(Step S6)
The control unit 440b of the terminal 440 controls the PLC 450 and the imaging unit 460, and the quality of the inspected object 14 manufactured by the inspection device 470 (see FIG. 1) is judged on a trial basis.
Specifically, as a preparatory step for determining the quality of the object 14 to be inspected, the camera unit 460a (see FIG. 9) of the imaging unit 460 captures an image of the object 14 to be inspected, and the determination unit 460c captures the image. Based on the image and a plurality of machine learning models stored in the storage unit 460b, it is inspected whether or not there is a defect in each of the objects to be inspected 14, and if there is no defect, it is determined as a non-defective product and there is a defect. In that case, it is judged as a defective product.
(ステップS7)
 前ステップS6における試験的な各判定結果は、撮像部60から端末440を介して、サーバ30へと送信される。
 図3に示すサーバ30が有する最適モデル選択部306は、試験的な各判定結果に基づいて、各機械学習モデルの良否を評価し、最適な機械学習モデル(以下、「最適モデル」という。)を選択する。
 選択された最適モデルの情報は、サーバ30から端末440に送信される。
(Step S7)
Each test determination result in the previous step S6 is transmitted from the imaging unit 60 to the server 30 via the terminal 440.
The optimum model selection unit 306 of the server 30 shown in FIG. 3 evaluates the quality of each machine learning model based on each test determination result, and the optimum machine learning model (hereinafter referred to as “optimal model”). Select.
The information of the selected optimum model is transmitted from the server 30 to the terminal 440.
 前述の通り、本ステップS7までは、実際の良否判定を行うまでに必要な準備段階としての動作である。
 次ステップS8以降が、部品等の出荷前の検査工程における実際の良否判定の動作となる。
As described above, up to this step S7 is an operation as a preparatory step necessary for actually performing the pass / fail judgment.
The next step S8 and subsequent steps are the actual pass / fail judgment operations in the inspection process before shipping the parts and the like.
(ステップS8)
 端末440の制御部440b(図9参照)がPLC450及び撮像部460を制御し、撮像部60は、選択された最適モデルに基づいて、検査装置470(図1参照)のコンベヤに載って搬送されてくる被検査物14の良否を判定する。
 詳細には、撮像部460のカメラ部460a(図9参照)が被検査物14の画像を撮像し、判定部460cが、撮像された画像及び記憶部460bに記憶されている最適モデルに基づいて、被検査物14に欠陥が存在するか否かを検査し、欠陥がない場合は良品と判定し、欠陥がある場合には不良品と判定する。
(Step S8)
The control unit 440b (see FIG. 9) of the terminal 440 controls the PLC 450 and the imaging unit 460, and the imaging unit 60 is conveyed on the conveyor of the inspection device 470 (see FIG. 1) based on the selected optimum model. The quality of the incoming object 14 to be inspected is determined.
Specifically, the camera unit 460a (see FIG. 9) of the imaging unit 460 captures an image of the object 14 to be inspected, and the determination unit 460c is based on the captured image and the optimum model stored in the storage unit 460b. , It is inspected whether or not the inspected object 14 has a defect, and if there is no defect, it is determined as a non-defective product, and if there is a defect, it is determined as a defective product.
(ステップS9)
 端末440の稼働状態出力部440c(図9参照)が、撮像部460の稼働状態に関する稼働情報をサーバ30に送信する。送信された稼働情報はサーバ30の記憶部(不図示)に記憶され、良否判定システム10aの稼働状態がサーバ30にて一元的に管理される。
(Step S9)
The operating state output unit 440c (see FIG. 9) of the terminal 440 transmits the operating information regarding the operating state of the imaging unit 460 to the server 30. The transmitted operation information is stored in a storage unit (not shown) of the server 30, and the operation state of the pass / fail determination system 10a is centrally managed by the server 30.
 このように、本実施の形態に係る良否判定システム10aは、構築された複数の機械学習モデルの中から選択された最適な機械学習モデルを用いて被検査物14の良否を判定するので、より精度が高い判定結果が得られる。
 なお、良否判定システム10aは、カメラ部460aの種類によっては、被検査物14の外観以外についての状態の良否を判定できる。例えば、カメラ部460aが赤外線カメラである場合には、被検査物14の内部の状態の良否を判定することも可能である。
As described above, the quality determination system 10a according to the present embodiment determines the quality of the object to be inspected 14 by using the optimum machine learning model selected from the plurality of constructed machine learning models. A highly accurate judgment result can be obtained.
The quality determination system 10a can determine the quality of the condition other than the appearance of the object 14 to be inspected, depending on the type of the camera unit 460a. For example, when the camera unit 460a is an infrared camera, it is possible to determine whether the internal state of the object 14 to be inspected is good or bad.
〔第2の実施の形態〕
 続いて、本発明の第2の実施の形態に係る良否判定システム10bについて説明する。第1の実施の形態に係る良否判定システム10aと同一の機能を有する構成要素については、同じ符号を付して詳しい説明を省略する場合がある。
 良否判定システム10bは、図11に示すように、教示データ作成装置20、サーバ30及び検査システム40bを備えている。
 検査システム40bは、端末442、PLC(Programmable Logic Controller)450及び被検査物14を撮像する撮像部462を有している。
[Second Embodiment]
Subsequently, the quality determination system 10b according to the second embodiment of the present invention will be described. The components having the same functions as the quality determination system 10a according to the first embodiment may be designated by the same reference numerals and detailed description thereof may be omitted.
As shown in FIG. 11, the quality determination system 10b includes a teaching data creation device 20, a server 30, and an inspection system 40b.
The inspection system 40b includes a terminal 442, a PLC (Programmable Logic Controller) 450, and an imaging unit 462 that images the object 14 to be inspected.
 端末442(判定装置の一例)は、例えば、パーソナルコンピュータ、スマートフォン、MR(Mixed Reality)を実現するためのMRデバイス、又はAR(Augmented Reality)を実現するためのARデバイスである。
 端末442は、図12に示すように、機械学習モデル受信部(受信手段の一例)440a、制御部(制御手段の一例)440b、稼働状態出力部(稼働状態出力手段の一例)440c、記憶部(記憶手段の一例)460b及び判定部(判定手段の一例)460cを有し、複数の機械学習モデルに基づいてそれぞれ被検査物の良否を判定できる。
 なお、端末442は、端末442の内部にて実行されるプログラムによって、受信手段、制御手段、稼働状態出力手段、記憶手段及び判定手段として機能する。
The terminal 442 (an example of a determination device) is, for example, a personal computer, a smartphone, an MR device for realizing MR (Mixed Reality), or an AR device for realizing AR (Augmented Reality).
As shown in FIG. 12, the terminal 442 includes a machine learning model receiving unit (an example of receiving means) 440a, a control unit (an example of a controlling means) 440b, an operating state output unit (an example of an operating state output means) 440c, and a storage unit. It has (an example of storage means) 460b and a determination unit (an example of a determination means) 460c, and can determine the quality of an object to be inspected based on a plurality of machine learning models.
The terminal 442 functions as a receiving means, a control means, an operating state output means, a storage means, and a determination means by a program executed inside the terminal 442.
 撮像部462は、カメラ部460aを有している。 The imaging unit 462 has a camera unit 460a.
 すなわち、本良否判定システム10bは、第1の実施の形態に係る撮像部460が有していた記憶部460b及び判定部460cを端末442が有している。
 なお、端末442が、機械学習モデル受信部440a、制御部440b、稼働状態出力部440c、記憶部460b及び判定部460cのうちの一部を有し、PLC450が、それ以外を有していてもよい。すなわち、検査システム40bが全体として機械学習モデル受信部440a、制御部440b、稼働状態出力部440c、記憶部460b及び判定部460cを有していればよい。
 更に言えば、機械学習モデル受信部440a、記憶部460b及び判定部460cを検査システム40bが有しているのではなく、図11に示すサーバ30が有していてもよい。
That is, in the quality determination system 10b, the terminal 442 has the storage unit 460b and the determination unit 460c that the imaging unit 460 according to the first embodiment has.
Even if the terminal 442 has a part of the machine learning model receiving unit 440a, the control unit 440b, the operating state output unit 440c, the storage unit 460b, and the determination unit 460c, and the PLC 450 has the other parts. good. That is, the inspection system 40b may have a machine learning model receiving unit 440a, a control unit 440b, an operating state output unit 440c, a storage unit 460b, and a determination unit 460c as a whole.
Furthermore, the inspection system 40b may not have the machine learning model receiving unit 440a, the storage unit 460b, and the determination unit 460c, but the server 30 shown in FIG.
 本実施の形態に係る良否判定システム10bと、第1の実施の形態に係る良否判定システム10aと、を比較すると、図9及び図12に示すように、撮像部460に設けられていた記憶部460b及び判定部460cが端末442に設けられている点が相違するのみである。
 従って、良否判定システム10bの動作については、実質的に良否判定システム10aの動作(ステップS1~S9)と同様であるので、その説明は省略する。
Comparing the quality determination system 10b according to the present embodiment and the quality determination system 10a according to the first embodiment, as shown in FIGS. 9 and 12, a storage unit provided in the imaging unit 460 is provided. The only difference is that the 460b and the determination unit 460c are provided in the terminal 442.
Therefore, the operation of the pass / fail determination system 10b is substantially the same as the operation of the pass / fail determination system 10a (steps S1 to S9), and the description thereof will be omitted.
〔第3の実施の形態〕
 続いて、本発明の第3の実施の形態に係る予知保全システム(良否判定システムの一例)10cについて説明する。第2の実施の形態に係る良否判定システム10bと同一の機能を有する構成要素については、同じ符号を付して詳しい説明を省略する場合がある。
[Third Embodiment]
Subsequently, the predictive maintenance system (an example of the quality determination system) 10c according to the third embodiment of the present invention will be described. The components having the same functions as the quality determination system 10b according to the second embodiment may be designated by the same reference numerals and detailed description thereof may be omitted.
 本実施の形態に係る予知保全システム10cは、監視対象が発する音を測定することで監視対象の稼働状態の良否を判定でき、監視対象の不具合を予知する予知保全に適用できる。
 監視対象は、例えば、機械装置であり、具体的にはプレス機である。ただし、監視対象は、音により不具合が予知できる装置や機器であればプレス機に限定されるものではない。
The predictive maintenance system 10c according to the present embodiment can determine the quality of the operating state of the monitored object by measuring the sound emitted by the monitored object, and can be applied to predictive maintenance for predicting a defect of the monitored object.
The monitoring target is, for example, a mechanical device, specifically a press machine. However, the monitoring target is not limited to the press machine as long as it is a device or device that can predict a defect by sound.
 予知保全システムは、図13に示すように、音源可視化装置(可視化装置の一例)500、教示データ作成装置20、サーバ33及び端末443を備えている。 As shown in FIG. 13, the predictive maintenance system includes a sound source visualization device (an example of the visualization device) 500, a teaching data creation device 20, a server 33, and a terminal 443.
 音源可視化装置500は、被監視対象600を撮像するカメラ(不図示)及び被監視対象600から発生する音源を特定するための複数のマイクロフォン502を有し、音源周辺の実画像に音の強度分布をリアルタイムに重ね合わせて音源を可視化した音源可視化画像を出力できる。この音の強度分布は、音圧の大きさに応じた異なる色によって、ヒートマップ状の視覚化された情報として表現される。
 なお、音源可視化装置500は、音響カメラと呼ばれる場合がある。
The sound source visualization device 500 includes a camera (not shown) that captures the monitored target 600 and a plurality of microphones 502 for identifying the sound source generated from the monitored target 600, and distributes the sound intensity in the actual image around the sound source. Can output a sound source visualization image that visualizes the sound source by superimposing the above in real time. This sound intensity distribution is expressed as heat map-like visualized information by different colors according to the magnitude of sound pressure.
The sound source visualization device 500 may be called an acoustic camera.
 教示データ作成装置20は、図2に示すように、教示データ作成部202を有し、音源可視化画像を取り込んで教示データとしての画像を作成できる。 As shown in FIG. 2, the teaching data creating device 20 has a teaching data creating unit 202, and can capture a sound source visualization image and create an image as teaching data.
 サーバ33は、サービス提供事業者によって管理され、図14に示すように、教示データ群生成部302、判定部334、最適モデル選択部306及び管理部308を有している。
 教示データ群生成部(教示データ群生成手段の一例)302は、図4に示すように、教示データ作成装置20が作成した教示データ群TDを前処理し、前処理された教示データ群の集合TDg、すなわち、教示データ群TD1、TD2、TD3、TD4、・・・を作成する。
The server 33 is managed by the service provider, and has a teaching data group generation unit 302, a determination unit 334, an optimum model selection unit 306, and a management unit 308, as shown in FIG.
As shown in FIG. 4, the teaching data group generation unit (an example of the teaching data group generation means) 302 preprocesses the teaching data group TD created by the teaching data creating device 20, and sets the preprocessed teaching data groups. TDg, that is, teaching data groups TD1, TD2, TD3, TD4, ... Are created.
 判定部(判定手段の一例)334は、教示データ群TD及び械学習モデル構築サービス80が構築した複数の学習済みの機械学習モデルに基づいて、それぞれ被監視対象600の稼働状態の良否を仮想的に判定できる。 The determination unit (an example of the determination means) 334 virtually determines the quality of the operating state of the monitored target 600 based on the plurality of learned machine learning models constructed by the teaching data group TD and the machine learning model construction service 80. Can be judged.
 最適モデル選択部(最適モデル選択手段の一例)306は、判定部334による判定結果を評価し、最適な機械学習モデルを選択できる。 The optimum model selection unit (an example of the optimum model selection means) 306 can evaluate the determination result by the determination unit 334 and select the optimum machine learning model.
 管理部(管理手段の一例)308は、端末443又は音源可視化装置500の状態を管理できる。詳細には、管理部308は、端末443又は音源可視化装置500の稼働状態に関する稼働情報を記録できる。
 なお、サーバ33は、サーバ33の内部にて実行されるプログラムによって、教示データ群生成手段、判定手段、最適モデル選択手段及び管理手段として機能する。
The management unit (an example of the management means) 308 can manage the state of the terminal 443 or the sound source visualization device 500. Specifically, the management unit 308 can record operation information regarding the operation state of the terminal 443 or the sound source visualization device 500.
The server 33 functions as a teaching data group generation means, a determination means, an optimum model selection means, and a management means by a program executed inside the server 33.
 端末(判定装置の一例)443は、図15に示すように、音源可視化装置500に接続されている。端末443は、機械学習モデル受信部440a、制御部443b、稼働状態出力部443c、記憶部443d及び判定部443eを有し、最適モデルに基づいて被監視対象600の良否を判定できる。 The terminal (an example of the determination device) 443 is connected to the sound source visualization device 500 as shown in FIG. The terminal 443 has a machine learning model receiving unit 440a, a control unit 443b, an operating state output unit 443c, a storage unit 443d, and a determination unit 443e, and can determine the quality of the monitored target 600 based on the optimum model.
 機械学習モデル受信部(受信手段の一例)440aは、サーバ33から最適モデル選択部306が選択した最適モデルを受信できる。なお、最適モデルの受信は、セキュア通信によりなされる。 The machine learning model receiving unit (an example of receiving means) 440a can receive the optimum model selected by the optimum model selection unit 306 from the server 33. The optimum model is received by secure communication.
 制御部(制御手段の一例)443bは、PLC450及び音源可視化装置500を制御できる。 The control unit (an example of control means) 443b can control the PLC 450 and the sound source visualization device 500.
 稼働状態出力部(稼働状態出力手段の一例)443cは、端末443又は音源可視化装置500の稼働状態に関する稼働情報を出力できる。この稼働情報は、例えば、音源可視化装置500が画像の撮像を開始してから終了するまでの時間の情報である。稼働情報は、音源可視化装置500から出力された画像の枚数の情報であってもよい。 The operating state output unit (an example of the operating state output means) 443c can output operation information related to the operating state of the terminal 443 or the sound source visualization device 500. This operation information is, for example, information on the time from when the sound source visualization device 500 starts capturing an image to when it ends. The operation information may be information on the number of images output from the sound source visualization device 500.
 記憶部(記憶手段の一例)443dは、機械学習モデル受信部400aが受信した最適モデルを記憶できる。 The storage unit (an example of storage means) 443d can store the optimum model received by the machine learning model reception unit 400a.
 判定部(判定手段の一例)443eは、音源可視化装置500が出力する複数の音源可視化画像及び記憶部443dに記憶された最適モデルに基づいて、被監視対象600の稼働状態の良否を判定できる。
 なお、端末443は、端末443の内部にて実行されるプログラムによって、受信手段、制御手段、稼働状態出力手段、記憶手段及び判定手段として機能する。
The determination unit (an example of the determination means) 443e can determine the quality of the operating state of the monitored target 600 based on the plurality of sound source visualization images output by the sound source visualization device 500 and the optimum model stored in the storage unit 443d.
The terminal 443 functions as a receiving means, a control means, an operating state output means, a storage means, and a determination means by a program executed inside the terminal 443.
 次に、予知保全システム10cの動作(被監視対象600の稼働状態の良否判定方法)について、図16に基づいて説明する。予知保全システム10cは、以下のステップS3-1~S3-9に従って動作する。ステップS3-1~S3-9のうち、ステップS3-1~S3-7は、準備段階としての動作であり、以降のステップS3-8、S3-9は、実際の監視対象600の稼働状態の良否判定の動作である。
 なお、可能な場合には、各ステップS3-1~S3-7は順番を入れ替えて実施されてもよいし、並行して実施されてもよい。
Next, the operation of the predictive maintenance system 10c (method for determining the quality of the operating state of the monitored object 600) will be described with reference to FIG. The predictive maintenance system 10c operates according to the following steps S3-1 to S3-9. Of steps S3-1 to S3-9, steps S3-1 to S3-7 are operations as a preparatory stage, and subsequent steps S3-8 and S3-9 are actual operating states of the monitored target 600. This is a pass / fail judgment operation.
If possible, each step S3-1 to S3-7 may be carried out in a different order, or may be carried out in parallel.
(ステップS3-1)
 教示データ作成装置20(図13参照)の教示データ作成部202(図2参照)が、音源可視化装置500が生成した音源可視化画像を取り込んで教示データとし、図4に示す教示データ群TDを作成する。
 複数の音源可視化画像(教示データ群TD)は、図示しない記憶手段に記憶され、図14に示すサーバ33に送信される。
 教示データ群TDは、教示データ作成部202が作成することに代えて、予め準備された被監視対象600の音源可視化画像に基づいて手作業により作成されてもよい。
(Step S3-1)
The teaching data creation unit 202 (see FIG. 2) of the teaching data creating device 20 (see FIG. 13) takes in the sound source visualization image generated by the sound source visualization device 500 and uses it as teaching data to create the teaching data group TD shown in FIG. do.
The plurality of sound source visualization images (teaching data group TD) are stored in a storage means (not shown) and transmitted to the server 33 shown in FIG.
The teaching data group TD may be manually created based on the sound source visualization image of the monitored target 600 prepared in advance, instead of being created by the teaching data creation unit 202.
(ステップS3-2)
 サーバ33の教示データ群生成部302が、図4に示すように、教示データ作成装置20が生成した音源可視化画像(教示データ群TD)を前処理し、特徴値に応じて分類された複数の教示データ群TD1、TD2、TD3、TD4、・・・を生成する。なお、前処理においては、例えば、明るさについての複数の閾値TH1~TH10(図6参照)が用いられる。
 なお、各閾値は、欠陥Dの明るさの最大値を求め、この最大値を分割することによって、求められてもよい。
 その後、サービス提供事業者又はユーザの操作により、サーバ33が、前処理後の教示データ群TD1、TD2、TD3、TD4、・・・をそれぞれ機械学習モデル構築サービス80にアップロードする。
 このように、ノウハウが必要な教示データの前処理をユーザではなくサービス提供事業者が行うので、ユーザは簡単に機械学習モデルによる予知保全システムを導入できる。
(Step S3-2)
As shown in FIG. 4, the teaching data group generation unit 302 of the server 33 preprocesses the sound source visualization image (teaching data group TD) generated by the teaching data creation device 20, and classifies the plurality of sound source visualization images (teaching data group TD) according to the feature values. Teaching data groups TD1, TD2, TD3, TD4, ... Are generated. In the pretreatment, for example, a plurality of threshold values TH1 to TH10 (see FIG. 6) for brightness are used.
Each threshold value may be obtained by obtaining the maximum value of the brightness of the defect D and dividing the maximum value.
After that, the server 33 uploads the preprocessed teaching data groups TD1, TD2, TD3, TD4, ... To the machine learning model construction service 80 by the operation of the service provider or the user.
In this way, since the service provider, not the user, performs the preprocessing of the teaching data that requires know-how, the user can easily introduce the predictive maintenance system based on the machine learning model.
(ステップS3-3)
 アップロードされた教示データ群に基づき、機械学習モデル構築サービス80によってそれぞれ機械学習モデルM1、M2、M3、M4・・・が構築される。
 構築された学習済みの機械学習モデルは、それぞれサーバ33の最適モデル選択部306(図14参照)によってモデルの精度が検証される。
 なお、精度が悪い場合には、前ステップS3-2に戻り、教示データ群生成部302は、異なるフィルタ処理を適用するなどして音源可視化画像(教示データ群TD)を異なる方法で前処理する。
(Step S3-3)
Machine learning models M1, M2, M3, M4 ... Are constructed by the machine learning model construction service 80 based on the uploaded teaching data group, respectively.
The accuracy of each of the constructed machine learning models is verified by the optimum model selection unit 306 (see FIG. 14) of the server 33.
If the accuracy is poor, the process returns to the previous step S3-2, and the teaching data group generating unit 302 preprocesses the sound source visualization image (teaching data group TD) by a different method by applying different filter processing or the like. ..
(ステップS3-4)
 ユーザの操作により、サーバ33(図14参照)が、機械学習モデル構築サービス80によって構築された学習済みの各機械学習モデルをダウンロードする。ダウンロードされた学習済みの各機械学習モデルは、図示しない記憶部に記憶される。
(Step S3-4)
By the operation of the user, the server 33 (see FIG. 14) downloads each trained machine learning model constructed by the machine learning model construction service 80. Each downloaded machine learning model is stored in a storage unit (not shown).
(ステップS3-5)
 サーバ33の判定部334が、教示データ群TDを記憶部(不図示)に記憶された各機械学習モデルに入力し、被監視対象600の稼働状態の良否を仮想的に判定する。
(Step S3-5)
The determination unit 334 of the server 33 inputs the teaching data group TD into each machine learning model stored in the storage unit (not shown), and virtually determines the quality of the operating state of the monitored target 600.
(ステップS3-6)
 最適モデル選択部306が、前ステップS3ー6における判定部334による被監視対象600の稼働状態の良否の判定結果を評価し、複数の機械学習モデルの中から最適モデルを選択する。
(Step S3-6)
The optimum model selection unit 306 evaluates the judgment result of the quality of the operating state of the monitored target 600 by the determination unit 334 in the previous step S3-6, and selects the optimum model from the plurality of machine learning models.
(ステップS3-7)
 最適モデル選択部306によって選択された最適モデルが、サーバ33から端末442に送信される。
 送信された最適モデルは、機械学習モデル受信部440a(図15参照)にて受信され、記憶部443dに記憶される。
(Step S3-7)
The optimum model selected by the optimum model selection unit 306 is transmitted from the server 33 to the terminal 442.
The transmitted optimum model is received by the machine learning model receiving unit 440a (see FIG. 15) and stored in the storage unit 443d.
(ステップS3-8)
 本ステップS3-8は、被監視対象600を監視するステップである。
 端末443の制御部443bがPLC450を制御し、被監視対象600を稼働させる。一方で、音源可視化装置500が、被監視対象600から発生する音を測定し、予め決められた周期で音源可視化画像を出力する。
 端末442は、出力された音源可視化画像及び記憶部443eに記憶されている最適モデルに基づいて、被監視対象600の稼働状態の良否を判定する。
(Step S3-8)
This step S3-8 is a step of monitoring the monitored target 600.
The control unit 443b of the terminal 443 controls the PLC 450 and operates the monitored target 600. On the other hand, the sound source visualization device 500 measures the sound generated from the monitored object 600 and outputs the sound source visualization image at a predetermined cycle.
The terminal 442 determines the quality of the operating state of the monitored target 600 based on the output sound source visualization image and the optimum model stored in the storage unit 443e.
(ステップS3-9)
 端末440の稼働状態出力部443cが、音源可視化装置500の稼働状態に関する稼働情報をサーバ33に送信する。送信された稼働情報はサーバ33の記憶部(不図示)に記憶され、予知保全システム10cの稼働状態がサーバ33にて一元的に管理される。
(Step S3-9)
The operation state output unit 443c of the terminal 440 transmits the operation information regarding the operation state of the sound source visualization device 500 to the server 33. The transmitted operation information is stored in a storage unit (not shown) of the server 33, and the operation state of the predictive maintenance system 10c is centrally managed by the server 33.
 このように、本実施の形態に係る予知保全システム10cによれば、構築された複数の機械学習モデルの中から選択された最適な機械学習モデルを用いて被監視対象600の稼働状態の良否を判定するので、より高い精度で予知保全が可能となる。
 なお、音源可視化システムに代えて、被監視対象600の不具合が発生する予兆に起因して変化する物理量を測定するための検出器を有し、その物理量を可視化した複数の可視化画像を生成できる任意の可視化装置でもよい。
As described above, according to the predictive maintenance system 10c according to the present embodiment, the quality of the operating state of the monitored target 600 is determined by using the optimum machine learning model selected from the plurality of constructed machine learning models. Since the judgment is made, predictive maintenance can be performed with higher accuracy.
In addition, instead of the sound source visualization system, it has a detector for measuring a physical quantity that changes due to a sign that a defect of the monitored target 600 occurs, and can generate a plurality of visualized images that visualize the physical quantity. Visualization device may be used.
〔第4の実施の形態〕
 続いて、本発明の第4の実施の形態に係る予知保全システム(良否判定システムの一例)10dについて説明する。第3の実施の形態に係る予知保全システム10c(図13参照)と同一の機能を有する構成要素については、同じ符号を付して詳しい説明を省略する場合がある。
[Fourth Embodiment]
Subsequently, the predictive maintenance system (an example of the quality determination system) 10d according to the fourth embodiment of the present invention will be described. Components having the same functions as the predictive maintenance system 10c (see FIG. 13) according to the third embodiment may be designated by the same reference numerals and detailed description thereof may be omitted.
 本実施の形態に係る予知保全システムは、監視対象が発する振動を測定することで監視対象の稼働状態の良否を判定でき、監視対象の不具合を予知する予知保全に適用できる。
 監視対象は、例えば、機械装置であり、具体的には、プレス機や搬送装置である。ただし、監視対象は、振動により不具合が予知できる装置や機器であれば任意でよい。
The predictive maintenance system according to the present embodiment can determine the quality of the operating state of the monitored object by measuring the vibration generated by the monitored object, and can be applied to predictive maintenance for predicting a defect of the monitored object.
The monitoring target is, for example, a mechanical device, specifically, a press machine or a transfer device. However, the monitoring target may be any device or device that can predict a malfunction due to vibration.
 予知保全システム10dは、図17に示すように、振動可視化装置(可視化装置の一例)700、教示データ作成装置20、サーバ33及び端末443(判定装置の一例)を備えている。
 振動可視化装置700は、被監視対象600から発生する振動を検出するための複数の振動センサ702を有し、各振動センサ702により検出された振動を可視化した複数の振動可視化画像を出力できる。この振動可視化画像は、例えば、振動の大きさ及び周波数のうちの少なくとも一方に応じた異なる色によって、視覚化された情報として表現された画像である。
As shown in FIG. 17, the predictive maintenance system 10d includes a vibration visualization device (an example of a visualization device) 700, a teaching data creation device 20, a server 33, and a terminal 443 (an example of a determination device).
The vibration visualization device 700 has a plurality of vibration sensors 702 for detecting the vibration generated from the monitored object 600, and can output a plurality of vibration visualization images that visualize the vibration detected by each vibration sensor 702. This vibration visualization image is, for example, an image represented as information visualized by different colors depending on at least one of the magnitude and frequency of vibration.
 ここで、予知保全システム10dにおいて、振動可視化装置700及び振動可視化画像が、それぞれ第3の実施の形態における音源可視化装置500及び音源可視化画像に対応する。 Here, in the predictive maintenance system 10d, the vibration visualization device 700 and the vibration visualization image correspond to the sound source visualization device 500 and the sound source visualization image in the third embodiment, respectively.
 このような予知保全システム10dを使用し、前述の動作ステップS3-1~S3-9(図16参照)を実施することによって、端末443が有する判定部443e(図15参照)は、被監視対象600に不具合が発生すると、異常であると判定することができる。 By using the predictive maintenance system 10d and performing the above-mentioned operation steps S3-1 to S3-9 (see FIG. 16), the determination unit 443e (see FIG. 15) included in the terminal 443 is monitored. If a problem occurs in 600, it can be determined that it is abnormal.
 このように、本実施の形態に係る予知保全システム10dによれば、構築された複数の機械学習モデルの中から選択された最適な機械学習モデルを用いて被監視対象600の良否を判定するので、より高い精度で予知保全が可能となる。
 なお、振動可視化システムに代えて、被監視対象600の不具合が発生する予兆に起因して変化する物理量を測定するための検出器を有し、その物理量を可視化した複数の可視化画像を生成できる任意の可視化装置でもよい。
As described above, according to the predictive maintenance system 10d according to the present embodiment, the quality of the monitored target 600 is determined by using the optimum machine learning model selected from the plurality of constructed machine learning models. , Predictive maintenance is possible with higher accuracy.
In addition, instead of the vibration visualization system, it has a detector for measuring a physical quantity that changes due to a sign that a defect of the monitored target 600 occurs, and can generate a plurality of visualized images that visualize the physical quantity. Visualization device may be used.
 以上、本発明の実施の形態を説明したが、本発明は、前述の形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions that do not deviate from the gist are within the scope of the present invention.
10a、10b 良否判定システム
10c、10d 予知保全システム
14 被検査物
20 教示データ作成装置
30 サーバ
40a、40b 検査システム
450 PLC
80 機械学習モデル構築サービス
202 教示データ作成部
302 教示データ群生成部
306 最適モデル選択部
308 管理部
334 判定部
440 端末
440a 機械学習モデル受信部
440b 制御部
440c 稼働状態出力部
442、443 端末
443b 制御部
443c 稼働状態出力部
443d 記憶部
443e 判定部
460 撮像部
460a カメラ部
460b 記憶部
460c 判定部
462 撮像部
470 検査装置
500 音源可視化装置
502 マイクロフォン
600 被監視対象
700 振動可視化装置
702 振動センサ
N インターネット
 
10a, 10b Good / bad judgment system 10c, 10d Predictive maintenance system 14 Inspected object 20 Teaching data creation device 30 Server 40a, 40b Inspection system 450 PLC
80 Machine learning model construction service 202 Teaching data creation unit 302 Teaching data group generation unit 306 Optimal model selection unit 308 Management unit 334 Judgment unit 440 Terminal 440a Machine learning model reception unit 440b Control unit 440c Operation status output unit 442, 443 Terminal 443b Control Unit 443c Operating status Output unit 443d Storage unit 443e Judgment unit 460 Imaging unit 460a Camera unit 460b Storage unit 460c Judgment unit 462 Imaging unit 470 Inspection device 500 Sound source visualization device 502 Microphone 600 Monitored target 700 Vibration visualization device 702 Vibration sensor N Internet

Claims (15)

  1.  複数の被検査物の欠陥を含む画像を、該欠陥を特徴づける明るさに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、
     クラウドコンピューティングサービスとして提供され機械学習モデルを構築する機械学習モデル構築サービスが前記複数の教示データ群に基づいてそれぞれ構築した複数の前記機械学習モデルを記憶する記憶部と、
     前記被検査物の画像を撮像するカメラ部と、
     前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記カメラ部によって撮像された前記被検査物の良否を判定する判定部と、
     前記判定部による判定の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えた良否判定システム。
    An instruction data group generating unit that classifies an image containing a defect of a plurality of objects to be inspected according to the brightness that characterizes the defect and generates a plurality of classified instruction data groups.
    A storage unit that stores a plurality of the machine learning models constructed by the machine learning model construction service provided as a cloud computing service and constructs a machine learning model based on the plurality of teaching data groups.
    A camera unit that captures an image of the object to be inspected,
    Based on the plurality of machine learning models stored in the storage unit, a determination unit for determining the quality of the object to be inspected, which is imaged by the camera unit, and a determination unit.
    A quality determination system including an optimum model selection unit that evaluates the result of determination by the determination unit and selects the optimum machine learning model from the plurality of machine learning models.
  2.  複数の被検査物の欠陥を含む画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、
     前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、
     前記被検査物の画像を撮像するカメラ部と、
     前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記カメラ部によって撮像された前記被検査物の良否を判定する判定部と、
     前記判定部による判定の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えた良否判定システム。
    An instruction data group generation unit that classifies an image containing a defect of a plurality of objects to be inspected according to the parameters that characterize the defect and generates a plurality of classified instruction data groups.
    A storage unit that stores a plurality of the machine learning models constructed based on the plurality of teaching data groups, and a storage unit.
    A camera unit that captures an image of the object to be inspected,
    Based on the plurality of machine learning models stored in the storage unit, a determination unit for determining the quality of the object to be inspected, which is imaged by the camera unit, and a determination unit.
    A quality determination system including an optimum model selection unit that evaluates the result of determination by the determination unit and selects the optimum machine learning model from the plurality of machine learning models.
  3.  請求項1記載の良否判定システムにおいて、
     教示データ群生成部が、前記画像について、それぞれ、
     前記欠陥を特徴づける明るさを表す特徴値を求める処理P1と、
     前記特徴値に応じて前記複数の画像をそれぞれ分類し、分類された前記複数の教示データ群を生成する処理P2と、を実施する良否判定システム。
    In the quality determination system according to claim 1,
    The teaching data group generator has each of the above images.
    Processing P1 for obtaining a feature value representing the brightness that characterizes the defect, and
    A pass / fail determination system that classifies the plurality of images according to the feature values, and performs a process P2 for generating the classified plurality of teaching data groups.
  4.  請求項1記載の良否判定システムにおいて、
     教示データ群生成部が、前記画像について、それぞれ、
     前記欠陥を特徴づける明るさを判断するための基準となる複数の基準値の中から、該欠陥を特徴づける明るさを表す複数の基準値を、それぞれ特徴値として求める処理P1と、
     前記特徴値の数と同じ枚数の前記画像を用意し、該画像を前記複数の異なる特徴値に応じてそれぞれ分類し、分類された前記複数の教示データ群を生成する処理P2と、を実施する良否判定システム。
    In the quality determination system according to claim 1,
    The teaching data group generator has each of the above images.
    From the plurality of reference values that serve as the reference for determining the brightness that characterizes the defect, the process P1 for obtaining a plurality of reference values that represent the brightness that characterizes the defect as feature values, respectively.
    The process P2 of preparing the same number of images as the number of the feature values, classifying the images according to the plurality of different feature values, and generating the classified plurality of teaching data groups is performed. Pass / fail judgment system.
  5.  請求項1記載の良否判定システムを使用した良否判定方法であって、
     前記教示データ群生成部が、前記複数の教示データ群を生成するステップと、
     前記記憶部が、前記複数の機械学習モデルを記憶するステップと、
     前記判定部が、前記複数の機械学習モデルに基づいて、それぞれ前記被検査物の良否を判定するステップと、
     前記最適モデル選択部が、前記複数の機械学習モデルの中から最適な機械学習モデルを選択するステップと、
     前記判定部が、前記最適モデル選択部が選択した前記機械学習モデルを用いて前記被検査物の良否を判定するステップと、を含む良否判定方法。
    A pass / fail judgment method using the pass / fail judgment system according to claim 1.
    A step in which the teaching data group generation unit generates the plurality of teaching data groups,
    A step in which the storage unit stores the plurality of machine learning models,
    A step in which the determination unit determines the quality of the object to be inspected based on the plurality of machine learning models, respectively.
    A step in which the optimum model selection unit selects an optimum machine learning model from the plurality of machine learning models,
    A quality determination method including a step in which the determination unit determines the quality of the object to be inspected using the machine learning model selected by the optimum model selection unit.
  6.  複数の被検査物の欠陥を含む画像が該欠陥を特徴づける明るさに応じて分類された複数の教示データ群に基づいて、それぞれ前記被検査物の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被検査物の良否を判定する判定装置と、にネットワークを介して接続されたサーバであって、
     前記複数の教示データ群を生成する教示データ群生成部と、
     前記判定装置が判定した前記良否の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えたサーバ。
    A plurality of machine learning models for determining the quality of the test object based on a plurality of teaching data groups in which an image containing a defect of the test object is classified according to the brightness that characterizes the defect. A server connected via a network to a cloud computing service for constructing a cloud computing service and a determination device for determining the quality of the object to be inspected based on the plurality of machine learning models.
    The teaching data group generation unit that generates the plurality of teaching data groups, and
    A server including an optimum model selection unit that evaluates the result of the quality determined by the determination device and selects the optimum machine learning model from the plurality of machine learning models.
  7.  複数の被検査物の欠陥を含む画像が該欠陥を特徴づける明るさに応じて分類された複数の教示データ群に基づいて、それぞれ前記被検査物の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被検査物の良否を判定する判定装置と、にネットワークを介して接続されたコンピュータを、
     前記複数の教示データ群を生成する教示データ群生成手段、
     前記判定装置が判定した前記良否の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択手段、として機能させるプログラム。
    A plurality of machine learning models for determining the quality of the object to be inspected, based on a plurality of teaching data groups in which an image containing a defect of the object to be inspected is classified according to the brightness that characterizes the defect. A computer connected via a network to a cloud computing service for constructing a cloud computing service and a determination device for determining the quality of the object to be inspected based on the plurality of machine learning models.
    Teaching data group generating means for generating the plurality of teaching data groups,
    A program that evaluates the result of the quality determined by the determination device and functions as an optimum model selection means for selecting the optimum machine learning model from the plurality of machine learning models.
  8.  複数の被検査物の欠陥を含む画像が該欠陥を特徴づける明るさに応じて分類された複数の教示データ群を生成する教示データ群生成部及びを有するサーバと、前記複数の教示データ群に基づいて、それぞれ前記被検査物の良否を判定する複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記被検査物の画像を撮像する撮像部と、に接続されたコンピュータを、
     前記クラウドコンピューティングサービスが構築した前記複数の機械学習モデルを記憶する記憶手段、
     前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記撮像部によって撮像された前記被検査物の良否を判定する判定手段、として機能させるプログラム。
    A server having a teaching data group generation unit and a teaching data group generating unit for generating a plurality of teaching data groups in which an image containing a defect of a plurality of objects to be inspected is classified according to the brightness that characterizes the defect, and the plurality of teaching data groups. Based on this, a computer connected to a cloud computing service that builds a plurality of machine learning models for determining the quality of the object to be inspected and an imaging unit that captures an image of the object to be inspected.
    A storage means for storing the plurality of machine learning models constructed by the cloud computing service.
    A program that functions as a determination means for determining the quality of an object to be inspected, which is imaged by the imaging unit, based on the plurality of machine learning models stored in the storage unit.
  9.  被監視対象の不具合が発生する予兆に起因して変化する物理量を測定するための検出器を有し、該物理量を可視化した複数の可視化画像を生成する可視化装置と、
     複数の予め取得した欠陥を含む前記可視化画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、
     前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、
     前記複数の機械学習モデルの中から最適な機械学習モデルとなる最適モデルを選択する最適モデル選択部と、
     前記可視化装置によって生成された前記複数の可視化画像及び前記最適モデル選択部によって選択された前記最適モデルに基づいて、それぞれ前記被監視対象の稼働状態の良否を判定する判定部と、を備えた良否判定システム。
    A visualization device that has a detector for measuring a physical quantity that changes due to a sign that a defect of the monitored object occurs and generates a plurality of visualization images that visualize the physical quantity.
    A teaching data group generating unit that classifies the visualized image including a plurality of previously acquired defects according to the parameters that characterize the defects and generates a plurality of classified teaching data groups.
    A storage unit that stores a plurality of the machine learning models constructed based on the plurality of teaching data groups, and a storage unit.
    An optimum model selection unit that selects the optimum model that is the optimum machine learning model from the plurality of machine learning models, and
    A quality determination unit including a plurality of visualization images generated by the visualization device and a determination unit for determining the quality of the operating state of the monitored object based on the optimum model selected by the optimum model selection unit. Judgment system.
  10.  被監視対象から発生する音源を特定するためのマイクロフォンを有し、該音源を可視化した複数の音源可視化画像を生成する音源可視化装置と、
     複数の予め取得した欠陥を含む前記音源可視化画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、
     前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、
     前記複数の機械学習モデルの中から最適な機械学習モデルとなる最適モデルを選択する最適モデル選択部と、
     前記音源可視化装置によって生成された前記複数の音源可視化画像及び前記最適モデル選択部によって選択された前記最適モデルに基づいて、それぞれ前記被監視対象の稼働状態の良否を判定する判定部と、を備えた良否判定システム。
    A sound source visualization device that has a microphone for identifying a sound source generated from a monitored target and generates a plurality of sound source visualization images that visualize the sound source.
    A teaching data group generation unit that classifies the sound source visualization image including a plurality of previously acquired defects according to the parameters that characterize the defects and generates a plurality of classified teaching data groups.
    A storage unit that stores a plurality of the machine learning models constructed based on the plurality of teaching data groups, and a storage unit.
    An optimum model selection unit that selects the optimum model that is the optimum machine learning model from the plurality of machine learning models, and
    Based on the plurality of sound source visualization images generated by the sound source visualization device and the optimum model selected by the optimum model selection unit, each includes a determination unit for determining the quality of the operating state of the monitored object. Good / bad judgment system.
  11.  被監視対象から発生する振動を検出するための振動センサを有し、該振動を可視化した複数の振動可視化画像を生成する振動可視化装置と、
     複数の予め取得した欠陥を含む前記振動可視化画像を、該欠陥を特徴づけるパラメータに応じて分類し、分類された複数の教示データ群を生成する教示データ群生成部と、
     前記複数の教示データ群に基づいてそれぞれ構築された複数の前記機械学習モデルを記憶する記憶部と、
     前記複数の機械学習モデルの中から最適な機械学習モデルとなる最適モデルを選択する最適モデル選択部と、
     前記振動可視化装置によって生成された前記複数の振動可視化画像及び前記最適モデル選択部によって選択された前記最適モデルに基づいて、それぞれ前記被監視対象の稼働状態の良否を判定する判定部と、を備えた良否判定システム。
    A vibration visualization device that has a vibration sensor for detecting vibration generated from a monitored object and generates a plurality of vibration visualization images that visualize the vibration.
    A teaching data group generating unit that classifies the vibration visualization image including a plurality of previously acquired defects according to the parameters that characterize the defects and generates a plurality of classified teaching data groups.
    A storage unit that stores a plurality of the machine learning models constructed based on the plurality of teaching data groups, and a storage unit.
    An optimum model selection unit that selects the optimum model that is the optimum machine learning model from the plurality of machine learning models, and
    Based on the plurality of vibration visualization images generated by the vibration visualization device and the optimum model selected by the optimum model selection unit, each includes a determination unit for determining the quality of the operating state of the monitored object. Good / bad judgment system.
  12.  請求項9記載の良否判定システムを使用した良否判定方法であって、
     前記可視化装置が、前記可視化画像を生成するステップと、
     前記教示データ群生成部が、前記複数の教示データ群を作成するステップと、
     前記記憶部が、前記複数の機械学習モデルを記憶するステップと、
     前記最適モデル選択部が、前記複数の機械学習モデルの中から最適な機械学習モデルを選択するステップと、
     前記判定部が、前記最適モデル選択部が選択した前記機械学習モデルを用いて前記被監視対象の稼働状態の良否を判定するステップと、を含む良否判定方法。
    A pass / fail judgment method using the pass / fail judgment system according to claim 9.
    A step in which the visualization device generates the visualization image,
    A step in which the teaching data group generator creates the plurality of teaching data groups,
    A step in which the storage unit stores the plurality of machine learning models,
    A step in which the optimum model selection unit selects an optimum machine learning model from the plurality of machine learning models,
    A quality determination method including a step in which the determination unit determines the quality of the operating state of the monitored object using the machine learning model selected by the optimum model selection unit.
  13.  被監視対象の不具合が発生する予兆に起因して変化した物理量を可視化した複数の可視化画像が該不具合を特徴づけるパラメータに応じて分類された複数の教示データ群に基づいて、それぞれ前記被監視対象の稼働状態の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被監視対象の良否を判定する判定装置と、にネットワークを介して接続されたサーバであって、
     前記複数の教示データ群を生成する教示データ群生成部と、
     前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択部と、を備えたサーバ。
    A plurality of visualized images that visualize physical quantities that have changed due to a sign that a defect of the monitored target will occur are classified according to the parameters that characterize the defect, and each of the monitored targets is based on a plurality of teaching data groups. A network is provided in a cloud computing service for constructing a plurality of machine learning models for determining the quality of the operating state of the computer, and a determination device for determining the quality of the monitored object based on the plurality of machine learning models. A server connected via
    The teaching data group generation unit that generates the plurality of teaching data groups, and
    A server including an optimum model selection unit for selecting an optimum machine learning model from the plurality of machine learning models.
  14.  被監視対象の不具合が発生する予兆に起因して変化した物理量を可視化した複数の可視化画像が該不具合を特徴づけるパラメータに応じて分類された複数の教示データ群に基づいて、それぞれ前記被監視対象の稼働状態の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記複数の機械学習モデルに基づいてそれぞれ前記被監視対象の良否を判定する判定装置と、にネットワークを介して接続されたコンピュータを、
     前記複数の教示データ群を生成する教示データ群生成手段、
     前記判定装置が判定した前記良否の結果を評価し、前記複数の機械学習モデルの中から最適な機械学習モデルを選択する最適モデル選択手段、として機能させるプログラム。
    A plurality of visualized images that visualize physical quantities that have changed due to a sign that a defect of the monitored target will occur are classified according to the parameters that characterize the defect, and each of the monitored targets is based on a plurality of teaching data groups. A network is provided in a cloud computing service for constructing a plurality of machine learning models for determining the quality of the operating state of the computer, and a determination device for determining the quality of the monitored object based on the plurality of machine learning models. Computers connected via,
    Teaching data group generating means for generating the plurality of teaching data groups,
    A program that evaluates the result of the quality determined by the determination device and functions as an optimum model selection means for selecting the optimum machine learning model from the plurality of machine learning models.
  15.  被監視対象の不具合が発生する予兆に起因して変化した物理量を可視化した複数の可視化画像が該不具合を特徴づけるパラメータに応じて分類された複数の教示データ群に基づいて、それぞれ前記被監視対象の稼働状態の良否を判定するための複数の機械学習モデルを構築するクラウドコンピューティングサービスと、前記被検査物の画像を撮像する撮像部と、に接続されたコンピュータを、
     前記クラウドコンピューティングサービスが構築した前記複数の機械学習モデルを記憶する記憶手段、
     前記記憶部に記憶された前記複数の機械学習モデルに基づいて、それぞれ前記撮像部によって撮像された前記被検査物の良否を判定する判定手段、として機能させるプログラム。
     
    A plurality of visualized images that visualize the physical quantity changed due to a sign that a defect of the monitored object occurs are classified according to the parameters that characterize the defect, and each of the monitored objects is based on a plurality of teaching data groups. A computer connected to a cloud computing service that builds a plurality of machine learning models for determining the quality of the operating state of the device and an imaging unit that captures an image of the object to be inspected.
    A storage means for storing the plurality of machine learning models constructed by the cloud computing service.
    A program that functions as a determination means for determining the quality of an object to be inspected, which is imaged by the imaging unit, based on the plurality of machine learning models stored in the storage unit.
PCT/JP2021/016695 2020-04-27 2021-04-26 Quality determination system, quality determination method, server, and program WO2021221030A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021549555A JP7049028B2 (en) 2020-04-27 2021-04-26 Good / bad judgment system and good / bad judgment method
JP2021199103A JP2022043134A (en) 2020-04-27 2021-12-08 Quality determination system, quality determination method, server, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020078659 2020-04-27
JP2020-078659 2020-04-27

Publications (1)

Publication Number Publication Date
WO2021221030A1 true WO2021221030A1 (en) 2021-11-04

Family

ID=78374149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016695 WO2021221030A1 (en) 2020-04-27 2021-04-26 Quality determination system, quality determination method, server, and program

Country Status (2)

Country Link
JP (2) JP7049028B2 (en)
WO (1) WO2021221030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550108B1 (en) * 2022-10-31 2023-06-30 (주)바질컴퍼니 Welding defects detecting method using artificial intelligence model in cloud platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266845A (en) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd Image determination device and image determination method
JP2012068965A (en) * 2010-09-24 2012-04-05 Denso Corp Image recognition device
JP2019159961A (en) * 2018-03-14 2019-09-19 オムロン株式会社 Inspection system, image identification system, identification system, discriminator generation system, and learning data generation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266845A (en) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd Image determination device and image determination method
JP2012068965A (en) * 2010-09-24 2012-04-05 Denso Corp Image recognition device
JP2019159961A (en) * 2018-03-14 2019-09-19 オムロン株式会社 Inspection system, image identification system, identification system, discriminator generation system, and learning data generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550108B1 (en) * 2022-10-31 2023-06-30 (주)바질컴퍼니 Welding defects detecting method using artificial intelligence model in cloud platform

Also Published As

Publication number Publication date
JPWO2021221030A1 (en) 2021-11-04
JP7049028B2 (en) 2022-04-06
JP2022043134A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP7004145B2 (en) Defect inspection equipment, defect inspection methods, and their programs
JP6936957B2 (en) Inspection device, data generation device, data generation method and data generation program
JP6924413B2 (en) Data generator, data generation method and data generation program
JP7015001B2 (en) Defect inspection equipment, defect inspection methods, and their programs
JP6869490B2 (en) Defect inspection equipment, defect inspection methods, and their programs
US10824906B2 (en) Image processing device, non-transitory computer readable storage medium, and image processing system
CN112088387B (en) System and method for detecting defects in an imaged article
JP2020013507A (en) Labeled image data creation method, inspection method, program, labeled image data creation device, and inspection device
WO2021221030A1 (en) Quality determination system, quality determination method, server, and program
JP2022043134A5 (en)
JPWO2020071234A1 (en) Image processing equipment, image processing methods, visual inspection systems and computer programs
TW202240546A (en) Image augmentation techniques for automated visual inspection
CN113016023B (en) Information processing method and computer-readable non-transitory recording medium
JPH09264856A (en) Article appearance inspection device
WO2022241574A1 (en) Texture mapping to polygonal models for industrial inspections
JP2019144107A (en) Information processor, terminal device, information processing method, and program
JP2021022257A (en) Inspection support system, server device, inspection support method, and inspection support program
JP2020003219A (en) Defect inspection device for display device
WO2021054478A1 (en) Quality determination system, server and program
JP7439157B2 (en) Inspection equipment
US20240020956A1 (en) Artificial intelligence camera for visual inspection with neural network training onboard
US20240096059A1 (en) Method for classifying images and method for optically examining an object
US20230316492A1 (en) Teacher data generating method and generating device
WO2024106322A1 (en) Device for diagnosing inspection apparatus, method for diagnosing inspection apparatus, and program
JP2002357558A (en) Matching processing method considering quantum error

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549555

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796654

Country of ref document: EP

Kind code of ref document: A1