WO2021220886A1 - Evaluating device, evaluating method, and program for metal-air battery - Google Patents

Evaluating device, evaluating method, and program for metal-air battery Download PDF

Info

Publication number
WO2021220886A1
WO2021220886A1 PCT/JP2021/016037 JP2021016037W WO2021220886A1 WO 2021220886 A1 WO2021220886 A1 WO 2021220886A1 JP 2021016037 W JP2021016037 W JP 2021016037W WO 2021220886 A1 WO2021220886 A1 WO 2021220886A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
charge
discharge
amount
metal
Prior art date
Application number
PCT/JP2021/016037
Other languages
French (fr)
Japanese (ja)
Inventor
晃敬 野村
佳実 久保
恵美子 藤井
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2022517658A priority Critical patent/JP7450978B2/en
Publication of WO2021220886A1 publication Critical patent/WO2021220886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an evaluation device, an evaluation method, and a program for continuously and automatically evaluating the battery characteristics of a metal-air battery.
  • the lithium-air battery has the highest theoretical energy density, and can achieve an energy density that greatly exceeds that of the lithium-ion battery currently in widespread use.
  • Lithium-air batteries use lithium metal as the negative electrode active material and atmospheric oxygen as the positive electrode active material.
  • lithium metal anode is eluted (Li ⁇ Li + + e -)
  • lithium peroxide reacts with the absorbed oxygen from the atmosphere at the positive electrode is deposited (2Li + + 2e - + O 2 ⁇ Li 2 O 2).
  • the positive electrode is also called an air electrode because it is an electrode having a function of absorbing and discharging atmospheric oxygen in accordance with charging and discharging.
  • the amount of Li 2 O 2 detected by the above method is less than 90% of the amount estimated to be generated from the amount of discharge or charge, and the generated Li 2 O 2 cannot be completely supplemented.
  • the workability is low and the variation due to individual differences is large (see, for example, Non-Patent Document 1).
  • the method of quantifying the oxygen absorbed and discharged into the cell is performed by measuring the oxygen partial pressure that decreases by discharging the cell in a closed housing. At the time of charging, the housing is replaced with an inert gas, the cell is charged, and all the discharged oxygen is recovered and weighed. Since the pressure fluctuates according to the discharge / charge state, there is a problem that the measurement does not reflect the actual cell environment, for example, the atmospheric environment (see, for example, Non-Patent Document 1). In addition, it is difficult to track the reaction efficiency of multiple cycles because it is necessary to replace the gas and switch the measurement method according to the switching between discharging and charging.
  • Non-Patent Document 2 a measurement method that can accurately and easily evaluate the battery reaction efficiency in long-term, multi-cycle charge / discharge operation.
  • Lithium-air battery cells absorb and discharge oxygen by discharging and charging, which causes the weight to change little by little.
  • the battery reaction efficiency can be estimated by measuring the amount of oxygen fixed in the cell from the discharge / charge capacity of the cell and the amount of weight change.
  • the amount of volatilization of the electrolytic solution can be estimated from a slight change in cell weight when there is no current (during rest).
  • the weight of a stationary cell cannot be continuously weighed for a long period of time, the cell weight before and after discharge / charge or after a certain period of time is compared and estimated one by one.
  • an object of the present invention is to provide an evaluation device for continuously and automatically evaluating the battery characteristics of a metal-air battery, a method thereof, and a program thereof.
  • the evaluation device for evaluating the battery characteristics of the metal air battery of the present invention includes a weight measuring unit for measuring the weight of the metal air battery and a stage for mounting the metal air battery, and raises and lowers the stage.
  • a control unit that controls the operation with the discharge characteristic measuring unit and evaluates the battery characteristics of the metal air battery is provided, and the control unit raises and lowers the stage of the elevating unit to raise and lower the weight measuring unit and the charging / discharging unit.
  • the calculating and evaluation unit the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) weight change amount difference Wt of the change in weight Wt r0 of dividing the r -wt r0 by the time difference t r -t r0, electrolyte evaporation rate ((Wt r -Wt r0) / (t r -t r0)) further comprise an electrolyte solution evaporation rate calculation unit for calculating a good.
  • the calculation / evaluation unit estimates the volatilization of the electrolytic solution at the time t d from the amount of change in weight at the time t d during the discharge of the charge / discharge characteristics using the volatilization rate of the electrolytic solution in the rest immediately before the discharge.
  • a discharge weight change amount calculation unit may be further provided, which reduces the amount and calculates the weight change amount due only to the discharge reaction.
  • the calculation / evaluation unit divides the amount of weight change due only to the discharge reaction of the time interval ⁇ t d during discharge of the charge / discharge characteristics calculated by the discharge weight change amount calculation unit by the time interval ⁇ t d.
  • the number of reaction electrons for calculating the weight change rate dividing the current value used for measuring the charge / discharge characteristics by the weight change rate, and calculating the number of electrons reacting with the air absorbed in the metal air battery.
  • a calculation unit may be further provided.
  • the calculation / evaluation unit estimates the volatilization of the electrolyte at time t c from the amount of change in weight at time t c during charging of the charge / discharge characteristics using the volatilization rate of the electrolyte in the rest immediately before charging.
  • a charge weight change amount calculation unit may be further provided, which reduces the amount and calculates the weight change amount due only to the charge reaction.
  • the calculation / evaluation unit divides the amount of weight change due only to the charging reaction of the time interval ⁇ t c during charging of the charge / discharge characteristics calculated by the charge weight change amount calculation unit by the time interval ⁇ t c. ,
  • the reaction to calculate the weight change rate divide the current value used for measuring the charge / discharge characteristics by the weight change rate, and calculate the number of electrons required to discharge the air fixed to the metal-air battery.
  • An electron number calculation unit may be further provided.
  • the calculation / calculation unit calculates the capacitance from the time ⁇ T required for the weight change to occur after the start of discharge of the charge / discharge characteristics and the current value flowing during the time ⁇ T. May be further provided.
  • the control unit may further include a display unit that displays the result of the calculation / evaluation unit.
  • a temperature detection unit may be further provided in the housing.
  • An atmospheric pressure detection unit may be further provided in the housing.
  • the control unit may further include a weighing value correction unit that corrects the weighing value by the weight measuring unit with the sensitivity drift value of the weight measuring unit.
  • the housing may include a gas air supply port and a gas exhaust port.
  • a temperature control device for holding the temperature inside the housing may be further provided.
  • the charge / discharge characteristics of the metal air battery are measured at the same time as the repeated measurement of the weight, the weight change amount obtained by the repeated measurement, and the charge / discharge. It includes calculating and evaluating the battery characteristics of the metal air battery based on the charge / discharge characteristics obtained by measuring the characteristics, thereby solving the above-mentioned problems.
  • the calculation and evaluation that is, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of dividing the Wt r -wt r0 by the time difference t r -t r0, may further include calculating the electrolyte volatilization rate ((Wt r -Wt r0) / (t r -t r0)).
  • the calculation / evaluation is an electrolytic solution at the time t d estimated from the amount of change in weight at the time t d during the discharge of the charge / discharge characteristics and the volatilization rate of the electrolytic solution in the rest immediately before the discharge. It may further include reducing the amount of volatilization and calculating the amount of weight change due only to the discharge reaction.
  • the calculation / evaluation is to calculate the weight change rate by dividing the amount of weight change caused only by the discharge reaction of the time interval ⁇ t d during discharge of the calculated charge / discharge characteristics by the time interval ⁇ t d. Then, the current value used for measuring the charge / discharge characteristics may be divided by the weight change rate to calculate the number of electrons reacting with the air absorbed by the metal air battery.
  • the calculation / evaluation is an electrolytic solution at the time t c estimated from the amount of change in weight at the time t c during charging of the charge / discharge characteristics using the electrolytic solution volatilization rate in the rest immediately before the charge. It may further include reducing the amount of volatilization and calculating the amount of weight change due only to the charging reaction.
  • the calculation / evaluation is to calculate the weight change rate by dividing the amount of weight change caused only by the charging reaction of the time interval ⁇ t c during charging of the calculated charge / discharge characteristics by the time interval ⁇ t c. Further, it may further include calculating the number of electrons required for discharging the air fixed to the metal-air battery by dividing the current value used for measuring the charge / discharge characteristics by the weight change rate. good.
  • the calculation / evaluation further includes calculating the capacitance from the time ⁇ T required for the weight change to occur after the start of discharge of the charge / discharge characteristics and the current value flowing during the time ⁇ T. You may.
  • the placement of the immutable weight product at the measurement position of the weight measuring unit and the separation of the immutable weight product from the measurement position are repeated, and the weight of the immutable weight product is repeatedly measured.
  • the temperature change and / or the atmospheric pressure change in the measurement environment is measured, and the weighed value of the immutable weight product is the temperature change and / or.
  • the weighing value is corrected by the sensitivity drift value of the weight measuring unit, and the determination is made. If it is determined that there is no fluctuation, it may further include not correcting the weighing value. Prior to the repeated measurement, the flow of the atmosphere control gas in the measurement environment may be further included.
  • the program for evaluating the battery characteristics of the metal air battery of the present invention repeats the arrangement of the metal air battery at the measurement position of the weight measuring unit and the separation of the metal air battery from the measurement position, and the metal air battery.
  • the function of repeatedly measuring the weight of the metal the function of measuring the charge / discharge characteristics of the metal air battery at the same time as the repeated measurement of the weight, the amount of change in weight obtained by the repeated measurement, and the charge / discharge.
  • the computer is realized with a function of calculating and evaluating the battery characteristics of the metal air battery, thereby solving the above-mentioned problems.
  • the calculation and evaluation functions, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of dividing the Wt r -wt r0 by the time difference t r -t r0, electrolyte evaporation rate ((Wt r -Wt r0) / (t r -t r0)) may further comprise a function of calculating the.
  • the calculation / evaluation function calculates the weight change rate by dividing the amount of weight change caused only by the discharge reaction of the time interval ⁇ t d during discharge of the calculated charge / discharge characteristics by the time interval ⁇ t d.
  • the function of dividing the current value used for measuring the charge / discharge characteristics by the weight change rate and calculating the number of electrons reacting with the air absorbed by the metal air battery may be further included.
  • the calculation / evaluation function calculates the weight change rate by dividing the amount of weight change caused only by the charging reaction of the time interval ⁇ t c during charging of the calculated charge / discharge characteristics by the time interval ⁇ t c. Then, the function of dividing the current value used for measuring the charge / discharge characteristics by the weight change rate and calculating the number of electrons required for discharging the air fixed to the metal-air battery may be further included.
  • the function of calculating and evaluating further includes a function of calculating the capacitance from the time ⁇ T required for the weight change to occur after the start of discharging the charge / discharge characteristics and the current value flowing during the time ⁇ T. It may be.
  • the evaluation device for evaluating the battery characteristics of the metal-air battery of the present invention is provided with an elevating part, and the zero point correction of the weight measuring part is performed every time measurement is performed.
  • the weight change of the metal-air battery can be continuously and accurately measured over a long period of time.
  • the charge / discharge process of the metal air battery is based on the results of the weight change amount and the charge / discharge characteristics.
  • the volatilization rate of electrolyte, the amount of weight change due to discharge or charging reaction, the number of electrons required for absorption or discharge of air (oxygen), capacitance, etc. can be calculated, and the performance evaluation of metal air batteries is continuously high for a long period of time. It can be carried out with high accuracy.
  • the weight of the metal-air battery is repeatedly measured, and at the same time, the charge / discharge characteristics are measured, and the battery characteristics of the metal-air battery are determined based on the obtained weight change amount and charge / discharge characteristics. evaluate. Since various battery characteristics are evaluated based on the amount of change in weight over time, which is zero-point corrected each time the weight is measured, and the charge / discharge characteristics over time associated with this, the performance evaluation of the metal-air battery is lengthened. It can be carried out continuously and with high accuracy over a period of time.
  • the present invention also provides a program in which a computer executes such a function.
  • Schematic diagram showing the evaluation apparatus of the present invention A block diagram showing a configuration of a control unit of the evaluation device of the present invention.
  • Diagram showing an exemplary graphical user interface (GUI) screen The figure which shows the exemplary weight measurement condition setting screen.
  • Diagram showing exemplary weight measurement results The figure which shows another example weight measurement condition setting screen.
  • Figure showing another exemplary weight measurement result The figure which shows the example charge / discharge characteristic measurement condition setting screen.
  • Diagram showing an exemplary evaluation item setting screen Show exemplary results Diagram showing another exemplary result
  • the figure which shows another result of the battery characteristic of the lithium-air battery of Example 4. The figure which shows another result of the battery characteristic of the lithium-air battery of Example 4.
  • FIG. 1 is a schematic view showing the evaluation device of the present invention.
  • the evaluation device 100 of the present invention measures the battery characteristics of a metal-air battery.
  • the target metal-air battery is a metal battery that exchanges with an external gas such as a lithium air battery, a lithium carbon dioxide battery, a sodium air battery, an air zinc battery, an air iron battery, an air aluminum battery, and an air magnesium battery.
  • an external gas such as a lithium air battery, a lithium carbon dioxide battery, a sodium air battery, an air zinc battery, an air iron battery, an air aluminum battery, and an air magnesium battery.
  • a lithium-air battery will be used as the metal-air battery, and the case where the external gas is oxygen will be described.
  • external gases may be collectively referred to as air.
  • the evaluation device 100 of the present invention includes a weight measuring unit 110 for measuring the weight of a metal-air battery (shown as a cell in FIG. 1) and a stage 120 for mounting the metal-air battery, and raises and lowers the stage 120.
  • the elevating unit 130, the housing 140 accommodating at least the weight measuring unit 110 and the metal-air battery, the charge / discharge characteristic measuring unit 150 for measuring the charge / discharge characteristics of the metal-air battery, and the elevating unit 130 and the weight measuring unit 110.
  • It includes a control unit 160 that controls the operation with the charge / discharge characteristic measurement unit 150 and evaluates the battery characteristics of the metal-air battery.
  • the evaluation device 100 of the present invention accurately measures the weight change of the metal-air battery over a long period of time, simultaneously measures the weight measurement and the charge / discharge measurement of the metal-air battery, and obtains the results. Since it is stored in association with each other, it is possible to calculate the electrolyte volatilization rate associated with the charge / discharge reaction of the metal-air battery, the amount of weight change due to charge / discharge, the number of electrons due to the reaction / discharge of air, the capacitance, etc. Performance evaluation can be performed with high accuracy over a long period of time.
  • each component will be described in detail.
  • the weight measuring unit 110 is not particularly limited as long as it can measure the weight of the metal-air battery, but an electronic balance is an example. Although the weight measuring unit 110 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth.
  • the elevating unit 130 includes a stage 120 on which a metal-air battery is placed, and the stage 120 is at a measurement position of the weight measuring unit 110 (left figure in FIG. 1) and a position where the stage 120 is separated from the weight measuring unit 110 (FIG. 1). It is equipped with a drive mechanism such as a motor that repeatedly raises and lowers (the figure on the right). In this way, the weight of the metal-air battery is measured by the elevating unit 130 at intervals set by the user. As a result, the weight measurement of the metal-air battery is zero-point corrected for each measurement, and the weight of the metal-air battery is accurately measured.
  • the elevating unit 130 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth.
  • the housing 140 accommodates at least the weighing pan of the weight measuring unit 110 and the metal-air battery, and functions to control the environment such as temperature and atmosphere at the time of measurement.
  • the housing 140 may preferably include a gas air supply port 170 and a gas exhaust port 180, and the gas air supply port 170 may be connected to an atmosphere control gas so that the atmosphere inside the housing 140 can be controlled.
  • an atmosphere control gas oxygen gas, carbon dioxide gas, and noble gases such as nitrogen, argon, helium, and xenon can be adopted.
  • the housing 140 is shown to include the elevating unit 130 in addition to the weight measuring unit 110 and the metal-air battery, but it is not essential that the housing 140 includes the elevating unit 130.
  • the charge / discharge characteristic measuring unit 150 may be a charge / discharge tester that measures the discharge charge / discharge characteristics at the time of rest (pause or no current) of the metal-air battery, charging and discharging.
  • the charge / discharge characteristic measuring unit 150 is connected to the metal-air battery via a conducting wire.
  • a conducting wire is not particularly limited, but a copper wire, a carbon nanotube wire, a gold wire or the like having a diameter of 10 ⁇ m or more and 250 ⁇ m or less can be used in consideration of the influence on the weight change amount of the weight measuring unit 110.
  • a gold wire having a diameter of 10 ⁇ m or more and 50 ⁇ m or less is preferable because it has a small influence on the amount of weight change.
  • the charge / discharge characteristic measuring unit 150 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth. .. Further, the charge / discharge characteristic measuring unit 150 does not need to be housed in the housing 140, but may be housed depending on the capacity of the housing 140.
  • the evaluation device 100 of the present invention may further include a temperature detection unit 190 in the housing 140. Thereby, the temperature inside the housing 140 can be measured.
  • a temperature detection unit 190 may be a thermocouple as an example.
  • the temperature detection unit 190 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth.
  • the evaluation device 100 of the present invention may further include an atmospheric pressure detection unit (not shown) in the housing 140.
  • an atmospheric pressure detection unit (not shown) in the housing 140.
  • the atmospheric pressure inside the housing 140 can be measured.
  • a barometric pressure detector may be, for example, a barometer.
  • the barometric pressure detection unit may be connected to the control unit 160 by wire or wirelessly.
  • the evaluation device 100 may include both the temperature detection unit 190 and the atmospheric pressure detection unit, or either one, but by providing both, the influence of the temperature and the atmospheric pressure on the weight change amount of the metal-air battery is affected. Since the measurement can be performed in consideration, highly accurate evaluation is possible.
  • the evaluation device 100 of the present invention may further include a temperature control device (not shown) for holding the temperature inside the housing 140. As a result, the temperature inside the housing 140 can be kept constant.
  • a temperature control device can be heated and / or cooled, and a constant temperature tester, a constant temperature bath, or the like can be adopted.
  • the temperature control device may also be connected to the control unit 160 by wire or wirelessly.
  • the control unit 160 controls the operation of the elevating unit 130, the weight measurement unit 110, and the charge / discharge characteristic measurement unit 150, and based on the information acquired by the weight measurement unit 110 and the charge / discharge characteristic measurement unit 150, the metal-air battery Evaluate battery characteristics.
  • a control unit 160 may be a general-purpose personal computer or a dedicated terminal device.
  • FIG. 1 shows, as an example, a personal computer provided with an input device such as a keyboard and a mouse and a display device such as a display as the control unit 160.
  • FIG. 2 is a block diagram showing a configuration of a control unit of the evaluation device of the present invention.
  • the control unit 160 raises and lowers the stage 120 of the elevating unit 130 as a functional block, executes measurement by the weight measuring unit 110 and the charging / discharging characteristic measuring unit 150, and acquires the weight change amount and the charging / discharging characteristic of the metal air battery. It includes a measurement control unit 210 and a calculation / evaluation unit 220 that calculates / evaluates the battery characteristics of a metal air battery based on the weight change amount and charge / discharge characteristics acquired by the measurement control unit 210.
  • the elevating unit 130 measures the amount of change in the weight of the metal-air battery while repeating the measurement position and the distance from the stage 120, so that the zero point correction of the weight measuring unit is measured every time. Can be done. As a result, the amount of change in weight of the metal-air battery can be accurately measured over a long period of time. Furthermore, since the charge / discharge characteristics are measured at the same time as the amount of weight change, the charge / discharge reaction efficiency of the metal-air battery can be calculated and evaluated with high accuracy. From this point of view, in the present specification, the evaluation of the battery characteristics is intended to evaluate the metal-air battery by the charge / discharge characteristics.
  • the control unit 160 may include a display unit 230 that displays the result of the calculation / evaluation unit 220.
  • the display unit 230 is, for example, a liquid crystal display.
  • the display unit 230 may display a screen for setting measurement conditions of the weight measuring unit 110 and the charge / discharge characteristic measuring unit 150 performed by the measurement control unit 210.
  • the control unit 160 may include an input unit 240 that receives an input operation from the user.
  • the input unit 240 is, for example, a keyboard, a mouse, a button, a touch panel, a touch sensor, a touch pen, a voice input, or the like.
  • the control unit 160 includes a measurement control unit 210, various programs (evaluation programs) executed by the calculation / evaluation unit 220, etc., an OS program, an application program, and a storage unit 250 that records various data to be read when these are executed. You may be.
  • the storage unit 250 stores the amount of change in weight measured by the weight measuring unit 110 and the charging / discharging characteristic measured by the charging / discharging characteristic measuring unit 150 in association with each other.
  • a storage unit 250 is a non-volatile storage device such as a hard disk or a flash memory.
  • the control unit 160 may include a weighing value correction unit 260 that corrects the amount of change in weight by the weight measurement unit 110.
  • the weighing value correction unit 260 is a weight measuring unit 110 when a fluctuation of the weighing value occurs due to the temperature fluctuation and / or the atmospheric pressure fluctuation measured by the temperature detecting unit 190 and / or the atmospheric pressure detecting unit (not shown). Correct the weighing value with the sensitivity drift value.
  • the sensitivity drift value may be provided in advance by the weight measuring unit 110, or immediately before the measurement, it is investigated whether or not there is a temperature fluctuation / atmospheric pressure fluctuation dependence of the change in the weighing value of an immutable heavy product such as a weight or a cell holder, and the change amount is determined. It may be set accordingly. From such a viewpoint, the measurement control unit 210 may acquire the weight change amount (weighing value) of the immutable weight product in addition to the metal-air battery.
  • the control unit 160 further includes an electrolytic solution volatilization rate calculation unit 221, a discharge weight change amount calculation unit 222, a reaction electron number calculation unit 223, a charge weight change amount calculation unit 224, and a capacitance calculation unit 225 as functional blocks. You may be prepared.
  • the calculation / evaluation unit 220 preferably includes an electrolytic solution volatilization rate calculation unit 221 that calculates the rate at which the electrolytic solution in the metal-air battery spontaneously volatilizes with the elapsed time.
  • An exemplary time difference is a time difference of 30 minutes or more and 50 hours or less.
  • electrolyte evaporation rate calculation unit 221 reads the change in weight between the time t r and t r0 from the storage unit 250.
  • the electrolytic solution volatilization rate is referred to as r vol.
  • the calculation / evaluation unit 220 preferably includes a discharge weight change amount calculation unit 222 that calculates the weight change amount of the metal-air battery caused only by the discharge reaction.
  • Discharge weight change calculator 222 from the change in weight at time t d during the discharge of the charge-discharge characteristics due to charging and discharging characteristic measuring section 150 subtracts the electrolyte volatilization amount naturally volatilized until the time t d, which Is the amount of change in discharge weight.
  • the discharge weight change calculator 222 calculates the time amount of electrolyte solution spontaneously volatilize during (t d -t d0) (r vol x (t d -t d0))
  • the amount of change in discharge weight is reduced to ((Wt d ⁇ Wt d0 ) ⁇ (r vol x (t d ⁇ t d0 ))).
  • r vol is the electrolytic solution volatilization rate obtained earlier.
  • discharge weight change amount calculation unit 222 reads the change in weight Wt d of time t d from the storage unit 250, the time t d calculated using the electrolyte volatilization rate during rest just before discharge from the value Reduces the amount of electrolyte volatilized in.
  • the electrolytic solution volatilization rate is a value calculated by the electrolytic solution volatilization rate calculation unit 221.
  • rest immediately before discharge means a rest before discharge in the case of charge / discharge characteristics in the order of rest, discharge, rest, and charge, and in the case of charge / discharge characteristics in the order of rest, discharge, and charge. Is intended to be a rest before discharge.
  • the discharge weight change amount calculation unit 222 may be calculated at predetermined time intervals according to the user's setting, or may be calculated every time the weight change amount of the metal-air battery is measured.
  • the calculation / evaluation unit 220 preferably includes a reaction electron number calculation unit 223 that calculates the number of electrons reacting with oxygen in the metal-air battery during the discharge reaction.
  • the reaction electron number calculation unit 223 divides the weight change amount caused only by the discharge reaction of the time interval ⁇ t d during discharge of the charge / discharge characteristics calculated by the discharge weight change amount calculation unit 222 by the time interval ⁇ t d .
  • the weight change rate is calculated, and the current value used for measuring the charge / discharge characteristics is divided by this weight change rate, and this is taken as the number of reaction electrons.
  • the exemplary time interval ⁇ t d is in the range of 1 second or more and 60 seconds or less.
  • the metal-air battery is a lithium-air battery
  • an electrochemical reaction represented by the following equation occurs during discharge. 2Li + + 2e - + O 2 ⁇ Li 2 O 2 Therefore, the closer the number of reaction electrons is to +2, the more it can be evaluated that the lithium-air battery has excellent discharge efficiency.
  • the calculation / evaluation unit 220 preferably includes a charge weight change amount calculation unit 224 that calculates the weight change amount of the electrolytic solution in the metal-air battery due only to the charge reaction.
  • the charge weight change amount calculation unit 224 reduces the amount of electrolyte volatilized naturally volatilized by that time t c from the amount of weight change at time t c during charging of the charge / discharge characteristics by the charge / discharge characteristic measurement unit 150. Is the charge weight conversion amount.
  • the charge weight change amount calculating unit 224 and the change in weight Wt c at time t c in the charge of the charge-discharge characteristics, the time t c0 (However, t c> t c0) and the change in weight Wt c0 of from weight change amount difference (wt c -Wt c0), this by calculating the time amount of electrolyte solution spontaneously volatilize during (t c -t c0) (r vol x (t c -t c0)) The amount of change in charge weight is reduced to ((Wt c ⁇ Wt c0 ) ⁇ (r vol x (t c ⁇ t c0 ))).
  • r vol is the electrolytic solution volatilization rate obtained earlier.
  • the charge weight change amount calculation unit 224 reads the weight change amount at time t c from the storage unit 250, and electrolyzes at time t c calculated from this value using the electrolytic solution volatilization rate at the time of rest immediately before charging. Reduce the amount of liquid volatilization.
  • the electrolytic solution volatilization rate is a value calculated by the electrolytic solution volatilization rate calculation unit 221.
  • the charge weight change amount calculation unit 224 may be calculated at predetermined time intervals according to the user's setting, or may be calculated every time the weight change amount of the metal-air battery is measured.
  • the reaction electron number calculation unit 223 may calculate the number of electrons required for discharging oxygen from the metal-air battery during the charging reaction. In this case, the reaction electron number calculation unit 223 determines the amount of weight change due only to the charging reaction at the time interval ⁇ t c during charging of the charge / discharge characteristics calculated by the charge weight change amount calculation unit 224 at the time interval ⁇ t c . Divide to calculate the weight change rate, divide the current value used for measuring the charge / discharge characteristics by this weight change rate, and use this as the number of reaction electrons.
  • the exemplary time interval ⁇ t c is in the range of 1 second or more and 60 seconds or less.
  • the metal-air battery is a lithium-air battery
  • an electrochemical reaction represented by the following formula occurs during charging. 2Li + + 2e - + O 2 ⁇ Li 2 O 2 Therefore, the closer the number of reaction electrons is to -2, the more it can be evaluated that the lithium-air battery has excellent charging efficiency.
  • reaction electron number calculation unit 223 may calculate the number of electrons required for oxygen absorption / discharge only during discharging, charging, or both discharging and charging.
  • the calculation / evaluation unit 220 preferably includes a capacitance calculation unit 225 for calculating the capacitance.
  • the capacitance calculation unit 225 calculates from the time ⁇ T required after the start of discharge of the charge / discharge characteristics and until the weight change occurs, and the current value (mA) passed during the time ⁇ T.
  • the capacitance (mAh) is based on the following equation. It can be seen that the discharge of only the calculated capacitance is in progress.
  • Capacitance (mAh) current (mA) x time ⁇ T
  • the measurement control unit 210 of the control unit 160 uses the user. Receives the measurement conditions of the weight measurement unit 110 and the charge / discharge characteristic measurement unit 150 from the above, raises and lowers the stage 120 of the elevating unit 130, and simultaneously executes the measurements of the weight measurement unit 110 and the charge / discharge characteristic measurement unit 150, and the amount of weight change. And the charge / discharge characteristics are continuously acquired.
  • the acquired data related to the amount of weight change and the charge / discharge characteristics may be temporarily stored in the measurement control unit 210 or stored in the storage unit 250 in association with each other according to the elapsed time, for example.
  • the data is acquired and stored in the storage unit 250.
  • the calculation / evaluation unit 220 of the control unit 160 reads the acquired weight change amount and charge / discharge characteristic data from the storage unit 250, and calculates and evaluates the battery characteristics of the metal-air battery. Specifically, the calculation / evaluation unit 220 receives the evaluation conditions from the user, the electrolytic solution volatilization rate calculation unit 221 calculates the electrolytic solution volatilization rate, and the discharge weight change amount calculation unit 222 changes the weight during the discharge reaction. The amount is calculated, the charge weight change amount calculation unit 224 calculates the weight change amount during the charge reaction, and the reaction electron number calculation unit 223 is used for absorbing and discharging air during the discharge reaction and / or the charge reaction. The required number of electrons is calculated, and the capacitance calculation unit 225 calculates the capacitance. These evaluations may be performed at the same time, or one of them may be selected. The control unit 160 may display these results on the display unit 230.
  • the calculation / evaluation unit 220 can evaluate the performance of the metal-air battery for a long period of time by using the data of the weight change amount and the charge / discharge characteristics associated with each other. Further, since the weight change amount of the metal-air battery is zero-point corrected for each measurement, the obtained performance evaluation is highly accurate and highly reliable.
  • FIG. 3 is a diagram showing an exemplary graphical user interface (GUI) screen.
  • GUI graphical user interface
  • FIG. 3 shows an exemplary GUI screen as an operation screen for the user to operate the evaluation device 100.
  • the operation screen may be displayed on the display unit 230 of the control unit 160.
  • Such screen operations are performed by the above-mentioned input unit 240.
  • the top page 300 includes a weight measurement condition setting button 310, a charge / discharge characteristic measurement condition setting button 320, an evaluation item setting button 330, a measurement execution button 340, a result button 350, and an end button 360.
  • FIG. 4 is a diagram showing an exemplary weight measurement condition setting screen.
  • the screen moves to the weight measurement condition setting screen 400.
  • the user appropriately sets the conditions for measuring the weight of the metal-air battery and the immutable weight product. For example, in FIG. 4, it is possible to set the ascending / descending speed of the stage 120 included in the elevating unit 130, the measurement cycle, the number of measurements, the waiting time until weight measurement, and the waiting time until Tare. In FIG. 4, the weighing value correction is turned off. Further, the weight measurement condition setting screen 400 may display the weight at the time of measurement, the current number of measurements, the elapsed time, and the like in real time.
  • the measurement control unit 210 sends the measurement conditions set in the weight measurement conditions to the elevating unit 130 and the weight measuring unit 110, and the elevating unit 130 moves the stage 120 up and down while moving the metal-air battery. Carry out a weight measurement.
  • the charge / discharge characteristic measurement conditions are not input, only the weight measurement of the metal-air battery is performed.
  • FIG. 5 is a diagram showing an exemplary weight measurement result.
  • the measurement result 500 shows the time change of the temperature inside the housing 140 and the time change of the weight change amount of the metal-air battery.
  • FIG. 5 shows how the weighed value of the load, which is an immutable heavy product, changes (drifts) as the temperature increases or decreases.
  • FIG. 6 is a diagram showing another exemplary weight measurement condition setting screen.
  • FIG. 6 shows the weight measurement condition setting screen 600, which is different from FIG. 4 in that the weighing value correction is turned on.
  • the weighing value correction unit 260 of the control unit 160 corrects the weighing value based on the sensitivity drift value.
  • the result of measurement execution after setting is shown in FIG.
  • FIG. 7 is a diagram showing another exemplary weight measurement result.
  • the weighing value correction unit 260 automatically corrects the weighing value using the sensitivity drift value.
  • a corrected amount of weight change is constant regardless of fluctuations in temperature and atmospheric pressure.
  • the sensitivity drift value may be a sensitivity drift value previously possessed by the weight measuring unit 110, or may be set using the drift value shown in FIG.
  • FIG. 8 is a diagram showing an exemplary charge / discharge characteristic measurement condition setting screen.
  • the screen moves to the charge / discharge characteristic measurement condition setting screen 800.
  • the user selects a sequence related to the number of repeated measurements of charging / discharging (number of cycles), and selects a pattern for setting the charging electricity amount at the time of charging, the rest, and the discharging capacity at the time of discharging.
  • the user can see the sequence No. on the sequence tab. 1 is selected, and the sequence No. 1 is the pattern No. Using 2, it can be seen that the number of cycles consists of a sequence of 20 times. Further, the user can display the sequence No. on the sequence tab. Pattern No. 1 cited in 1. Set the details of 2 (mode, control time, recording time interval, cutoff (target) voltage, current). It can be seen that the target voltage is 2V to 4.5V.
  • FIG. 9 is a diagram showing an exemplary evaluation item setting screen.
  • the evaluation item setting button 330 Enter the weight measurement condition settings and charge / discharge characteristics measurement condition settings, select the setting button, confirm the measurement conditions, and then return to the top page 300.
  • the evaluation item setting button 330 is selected, the evaluation item setting screen 900 for setting various evaluations of the metal-air battery shown in FIG. 9 is displayed.
  • various evaluation items such as electrolytic solution volatilization rate, weight change amount due to discharge reaction, electron number calculation due to discharge reaction, weight change amount due to charge reaction, electron number calculation due to charge reaction, capacitance calculation, etc. are performed. You can choose. The user can select a desired evaluation item and input a calculation interval and the like.
  • the measurement control unit 210 measures the weight.
  • the measurement conditions set in the conditions and charge / discharge characteristic measurement conditions are sent to the elevating unit 130, the weight measuring unit 110, and the charge / discharge characteristic measuring unit 150, and the elevating unit 130 raises and lowers the stage 120 to measure the weight of the metal air battery. And the charge / discharge characteristics are measured.
  • FIG. 10 is a diagram showing exemplary results.
  • FIG. 11 is a diagram showing another exemplary result.
  • the result screen 1000 shows the change in the amount of electrolyte volatilization based on the electrolyte volatilization rate selected on the evaluation item setting screen 900, in addition to the net weight change amount and charge / discharge characteristics of the metal-air battery.
  • the result screen 1100 shows the amount of change in weight due to the charge / discharge reaction selected on the evaluation item setting screen 900, the rate of change in weight due to the charge / discharge reaction, and the change in the number of reaction electrons in the charge / discharge reaction.
  • the number of electrons is - labeled "e / O 2”. Focusing on the number of reaction electrons during the charging reaction of the result screen 1100, it shows a tendency to deviate from -2 with the elapsed time, suggesting that the normal charging reaction does not proceed.
  • the evaluation device 100 of the present invention can carry out the battery evaluation of the metal-air battery over time based on the accurate weight change.
  • the measurement results before the characteristic evaluation of the weight change amount and the charge / discharge characteristics of the metal-air battery may be displayed.
  • FIG. 12 is a flowchart showing a method for evaluating the battery characteristics of the metal-air battery of the present invention.
  • Step S1210 Atmosphere control gas is flowed into the measurement environment such as the housing 140. As a result, the atmosphere of the measurement environment of the metal-air battery is controlled.
  • the atmosphere control gas may be an oxygen gas, a carbon dioxide gas, and a rare gas such as nitrogen, argon, helium, or xenon.
  • step S1210 is not essential, more accurate battery evaluation can be performed by controlling the measurement environment.
  • Step S1220 The arrangement of the metal-air battery at the measurement position of the weight measuring unit 110 (left figure in FIG. 1) and the separation of the metal-air battery from the measurement position (right figure in FIG. 1) are repeated to obtain the metal-air battery. Weigh repeatedly. As a result, the zero point is corrected every time the weight of the metal-air battery is measured, and an accurate weight change amount can be obtained.
  • Such repeated measurement of the weight of the metal-air battery is performed by the elevating unit 130 raising and lowering the stage 120 on which the metal-air battery is placed at regular intervals.
  • the zero point correction of the weight measuring unit 110 is performed, and when the metal-air battery reaches the measurement position, the weight measuring unit 110 measures the weight of the metal-air battery.
  • the measured weight change amount is stored in, for example, the storage unit 250 of the control unit 160 of the evaluation device 100.
  • Step S1230 At the same time as step S1220, the charge / discharge characteristics of the metal-air battery are measured. Since the measurements are taken at the same time, the charge / discharge characteristics can be associated with the amount of change in weight over time, which is zero-point corrected for each weight measurement. The charge / discharge characteristics are performed by a charge / discharge tester or the like. The measured charge / discharge characteristics are stored in a storage unit 250 or the like of the control unit 160 of the evaluation device 100, and are stored in association with the value of the weight change amount, for example, by time.
  • Step S1240 The metal-air battery is calculated and evaluated based on the weight change amount obtained in step S1220 and the charge / discharge characteristic data obtained in step S1230. In this way, the electrolyte volatilization rate associated with the charge / discharge reaction of the metal-air battery, the amount of weight change associated with the charge / discharge, and the number of reaction electrons associated with the charge / discharge are based on the accurate weight change amount and charge / discharge characteristics associated with each other. , Since the battery characteristics such as capacitance are calculated and evaluated, the performance evaluation of the metal-air battery can be continuously performed with high accuracy for a long period of time. The calculation / evaluation is performed by the control unit 160 of the evaluation device 100.
  • the calculation / evaluation of step S1240 preferably calculates the rate at which the electrolytic solution in the metal-air battery spontaneously volatilizes with the elapsed time. And the change in weight W tr time t r during rest of the charge-discharge characteristics, time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of Wt r -wt r0 the time difference t divided by the r -t r0, to calculate the electrolyte evaporation rate ((Wt r -Wt r0) / (t r -t r0)).
  • An exemplary time difference is a time difference of 30 minutes or more and 50 hours or less.
  • the electrolytic solution volatilization rate can be calculated accurately.
  • the electrolytic solution volatilization rate is called r vol.
  • the calculation / evaluation preferably calculates the amount of change in the weight of the metallic air due only to the discharge reaction.
  • the amount of change in discharge weight is calculated by subtracting the amount of volatilization of the electrolytic solution that naturally volatilized by that time t d from the amount of change in weight at time t d during discharge of the charge / discharge characteristics.
  • the change in weight Wt d of time t d during the discharge of the charge-discharge characteristics time t d0 (However, t d> t d0) the change in weight difference between the change in weight Wt d0 of (Wt d - From Wt d0 ), calculate the amount of electrolyte (r vol x (t d- t d0 )) that naturally volatilized during the time (t d- t d0 ), subtract this, and subtract the amount of change in discharge weight ((Wt-t d0)).
  • r vol is the electrolytic solution volatilization rate obtained earlier.
  • the weight change amount Wt d at time t d is read from the storage unit 250, and the electrolyte volatilization amount at time t d calculated by using the electrolyte volatilization rate at the rest immediately before discharge is subtracted from this value.
  • the "rest immediately before discharge” is intended to be a rest before discharge in the case of charge / discharge characteristics in the order of rest, discharge, rest, and charge, and in the case of charge / discharge characteristics in the order of rest, discharge, and charge. , Intended to rest before discharge.
  • the amount of change in discharge weight may be calculated at predetermined time intervals according to the user's settings, or may be calculated each time the amount of change in weight of the metal-air battery is measured.
  • the calculation / evaluation preferably calculates the number of electrons reacting with the air of the metal-air battery during the discharge reaction.
  • the amount of weight change caused only by the discharge reaction at the time interval ⁇ t d during discharge of the charge / discharge characteristics is divided by the time interval ⁇ t d to calculate the weight change rate, and the current value used for measuring the charge / discharge characteristics is this. Divide by the rate of weight change to calculate the number of air reaction electrons.
  • the exemplary time interval ⁇ t d is in the range of 1 second or more and 60 seconds or less.
  • the calculation / evaluation preferably calculates the amount of change in the weight of the electrolytic solution in the metal-air battery due only to the charging reaction.
  • the charge weight conversion amount is calculated by subtracting the volatilization amount of the electrolytic solution naturally volatilized by that time t c from the weight change amount at time t c during charging of the charge / discharge characteristics.
  • the change in weight Wt c at time t c in the charge of the charge-discharge characteristics calculate the amount of electrolyte (r vol x (t c- t c0 )) that naturally volatilized during the time (t c- t c0 ), subtract this, and subtract the amount of change in charge weight ((Wt c0)).
  • r vol is the electrolytic solution volatilization rate obtained earlier.
  • the amount of change in weight at time t c is read from the storage unit 250, and the amount of electrolyte volatilization at time t c calculated using the electrolyte volatilization rate at the time of rest immediately before charging is subtracted from this value.
  • the electrolytic solution volatilization rate the value calculated above is used.
  • the charge weight change amount may be calculated at predetermined time intervals according to the user's setting, or may be calculated each time the weight change amount of the metal-air battery is measured.
  • the calculation / evaluation preferably calculates the number of electrons required to discharge oxygen from the metal-air battery during the charging reaction.
  • the amount of weight change caused only by the charging reaction of the time interval ⁇ t c during charging of the charge / discharge characteristics is divided by the time interval ⁇ t c to calculate the weight change rate, and the current value used for measuring the charge / discharge characteristics is this. Divide by the rate of weight change to calculate the number of reaction electrons.
  • the exemplary time interval ⁇ t c is in the range of 1 second or more and 60 seconds or less.
  • the calculation / evaluation preferably calculates the capacitance.
  • the capacitance is calculated from the time ⁇ T required after the start of discharge of the charge / discharge characteristics and until the weight change occurs, and the current value (mA) flowing during the time ⁇ T.
  • FIG. 13 is a flowchart showing a method for evaluating the battery characteristics of another metal-air battery of the present invention.
  • Step S1310 Prior to step S1210 in FIG. 12, the arrangement of the immutable heavy goods such as the weight and the cell holder at the measurement position of the weight measuring unit 110 (left figure in FIG. 1) and the separation of the immutable heavy goods from the measurement position (the left figure of FIG. 1). The weight of the immutable weight product is repeatedly measured by repeating (the right figure of FIG. 1). Since this step is the same as step S1220, the description thereof will be omitted.
  • the immutable heavy goods such as the weight and the cell holder at the measurement position of the weight measuring unit 110 (left figure in FIG. 1) and the separation of the immutable heavy goods from the measurement position (the left figure of FIG. 1).
  • the weight of the immutable weight product is repeatedly measured by repeating (the right figure of FIG. 1). Since this step is the same as step S1220, the description thereof will be omitted.
  • Step S1320 At the same time as step S1310, the temperature change in the measurement environment inside the housing 140 and / or the atmospheric pressure change inside the housing 140 are measured. Since it is measured at the same time, temperature change and / or barometric pressure change can be associated with the amount of weight change.
  • the measured temperature change and / or barometric pressure change data is stored, for example, in the storage unit 250 of the control unit 160 of the evaluation device 100 in association with the value of the weight change amount in time.
  • Step S1330 Determine whether the weighed value of the immutable weight product fluctuates due to temperature change and / or atmospheric pressure change. Normally, it is known that a temperature change of about ⁇ 1 ° C. and a pressure change of about ⁇ 20 Pa occur even in a limited space such as a housing 140, and with such a slight change, it is known. When the amount of change in weight increases or decreases within the range of ⁇ 5 ppm ( ⁇ 0.0005%), it is determined that the weighed value has changed. If the range of increase / decrease in the amount of weight change is within the above range, the effect on the battery evaluation is small and can be ignored. Such a determination may be made by the control unit 160 by comparing the values of the weight change amount, the temperature change, and the atmospheric pressure change.
  • step S1330 If it is determined that the weighed value of the immutable heavy product fluctuates due to temperature change and / or atmospheric pressure change, the process proceeds to step S1330. If it is not determined that the weighed value of the immutable weight product is fluctuating due to temperature change and / or atmospheric pressure change (that is, it is determined that the weighed value is not fluctuating), the weighing value is not corrected, and step S1210 is performed. Proceed to evaluate the metal-air battery.
  • Step S1340 In step S1330, when it is determined that the weighed value of the immutable weight product fluctuates due to temperature change and / or atmospheric pressure change, the weighed value is corrected by the sensitivity drift value of the weight measuring unit 110. ..
  • the sensitivity drift value may be a value provided in the weight measuring unit 110 in advance, or may be set according to the amount of change obtained in step S1320. As a result, the effects of temperature and atmospheric pressure on the amount of weight change of the metal-air battery can be taken into consideration, which enables highly accurate evaluation.
  • the process proceeds to step S1210 to evaluate the metal-air battery. The following procedure has been described with reference to FIG. 12, and will be omitted.
  • Each functional block in the control unit 160 of the evaluation device 100 of the present invention described with reference to FIG. 2 may be configured by hardware logic, or may be realized by software using a CPU (Central Processing Unit). good.
  • CPU Central Processing Unit
  • the evaluation device 100 of the present invention includes a CPU (not shown) that executes instructions of a program that realizes each function, a ROM (Read Only Memory, not shown) that stores the program, and a RAM (Randam Access) that expands the program.
  • a recording medium such as a memory (not shown), a memory for storing a program and various data may be provided.
  • a computer or a CPU may read and execute the program code recorded on the recording medium on a recording medium in which the program code of a program that is software that realizes the above-mentioned functions is readablely recorded by a computer. In this way, a method of evaluating the battery characteristics of the metal-air battery by the evaluation device 100 can be realized.
  • Such recording media include, for example, disks such as CD-ROMs, cards such as IC cards, and semiconductor memories such as flash ROMs.
  • the evaluation device 100 of the present invention may be connected to a communication network, and the program code may be supplied via the communication network.
  • a communication network is not particularly limited, and may be, for example, the Internet, an intranet, a LAN, an ISDN, a CATV communication network, a telephone line network, a satellite communication network, or the like.
  • the program code may be in the form of a computer data signal embodied in electronic transmission and embedded in a carrier wave.
  • Example 1 In Example 1, the evaluation device of FIG. 1 was constructed and the battery characteristics of the lithium ion battery were evaluated. Since the lithium ion battery is weight-invariant, it was used as an invariant weight product.
  • the weight measuring unit 110 in FIG. 1 is an electronic balance (A & D Co., Ltd., AD-4212B-23), and the charge / discharge characteristic measuring unit 150 is a charge / discharge tester (ECAD-1000, manufactured by EC Frontier Co., Ltd.).
  • ECAD-1000 manufactured by EC Frontier Co., Ltd.
  • a thermocouple was used as the temperature detection unit 190, and a personal computer was used as the control unit 160.
  • the lithium ion battery was a CR-2032 coin cell battery in which a Li metal foil / LFP (LiFePO 4 : lithium iron phosphate) positive electrode ( ⁇ 16 mm) was opposed to each other.
  • a lithium-ion battery was placed on the stage 120, which is a battery holder.
  • the battery holder could be raised and lowered by the raising and lowering unit 130.
  • the weight measuring unit 150 and the elevating unit 130 were housed in a housing 140 (internal volume 5L) having a gas supply port and a gas exhaust port.
  • the lithium ion battery was electrically contacted with the charge / discharge tester by a gold wire having a diameter of 30 ⁇ m.
  • the cables and conductors required to control the electronic balance, elevating part, and charge / discharge tester were wired through the gas exhaust port and connected to a personal computer or the like.
  • FIG. 14 is a diagram showing a charge / discharge characteristic measurement condition setting screen of Example 1.
  • the battery characteristics of the lithium ion battery were evaluated under the same weight measurement conditions as in FIG. 4 and the charge / discharge characteristic measurement conditions shown in FIG. The results are shown in FIG.
  • FIG. 15 is a diagram showing the weight change amount and charge / discharge characteristics of the lithium ion battery of Example 1.
  • Example 2 the battery characteristics of the lithium-ion battery were evaluated in the same manner as in Example 1 under the same weight measurement conditions as in FIG. 4 (that is, the same weight measurement conditions as in FIG. 6) except that the weighing value correction was turned on. The results are shown in FIGS. 16 and 17. The sensitivity drift value of the electronic balance was 2.8 ppm / ° C.
  • FIG. 16 is a diagram showing a weight change amount and a temperature change of the lithium ion battery of Example 1.
  • FIG. 17 is a diagram showing a weight change amount and a temperature change of the lithium ion battery of Example 2.
  • FIGS. 16 and 17 are temperature changes inside the housing.
  • FIG. 16 is a diagram showing an enlarged amount of weight change in FIG. 15 in Example 1 together with a temperature change. According to FIG. 16, it was found that the temperature fluctuates at ⁇ 1 ° C. even inside the housing, and the weighed value of the lithium ion battery also fluctuates at ⁇ 40 ⁇ g following this temperature fluctuation.
  • the weighing value of the lithium ion battery of Example 2 was constant without following the temperature change, and was continuously weighed with a standard deviation of 8 ⁇ g.
  • the standard deviation of this weighed value was also valid from the accuracy specifications of the electronic balance. From this, it was shown that the weight correction based on the sensitivity drift value of the weight measuring unit is effective. In all subsequent examples, measurements were taken with weighing value correction turned on.
  • Example 3 the evaluation device constructed in Example 1 was used to evaluate the battery characteristics (1 cycle of rest, discharge, and charge) of the lithium-air battery cell while flowing pure oxygen into the housing (flow velocity 150 mL / min).
  • the lithium-air battery cell is a CR-2032 coin cell in which a Li metal foil / CNT carbon nanotube air electrode ( ⁇ 16 mm) is opposed to each other, and a large number of air holes ( ⁇ 0.7 mm) for absorbing and discharging oxygen are provided on the air electrode side. Had.
  • FIG. 18 is a diagram showing a charge / discharge characteristic measurement condition setting screen of Example 3.
  • the battery characteristics of the lithium-air battery were evaluated under the weight measurement conditions shown in FIG. 6 and the charge / discharge characteristic measurement conditions shown in FIG.
  • the calculation of the electrolytic solution volatilization rate shown in FIG. 9 the calculation of the weight change amount associated with the charge reaction / discharge reaction, and the calculation of the number of electrons associated with the charge reaction / discharge reaction were selected.
  • the time interval of the electrolyte volatilization rate is 50 hours, the amount of weight change due to the charge reaction / discharge reaction is performed every time the weight is measured, and the time interval for calculating the number of electrons associated with the charge reaction / discharge reaction is every 30 seconds. rice field. The results are shown in FIGS. 19 and 20.
  • FIG. 19 is a diagram showing the results of the battery characteristics of the lithium-air battery of Example 3.
  • FIG. 20 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 3.
  • the upper part of FIG. 20 shows the amount of weight change due to the charge reaction / discharge reaction calculated from the electrolyte volatilization rate of FIG.
  • the weight change rate is shown in the charge reaction / discharge reaction calculated from the amount of weight change accompanying the charge reaction / discharge reaction.
  • the lower part of FIG. 20 shows the air reaction / number of discharged electrons calculated from the weight change rate and the current value in the charge reaction / discharge reaction.
  • the rate of weight change during the discharge reaction excluding the loss of volatile electrolyte is +122.11 ( ⁇ 0.08) ⁇ g / h, and +1.955 ⁇ 0.005 electrons per oxygen molecule react. It turned out that oxygen was fixed. This value was one to two orders of magnitude more accurate than the method described in Non-Patent Document 1. From this, it was shown that the battery characteristics of the metal-air battery can be evaluated with high accuracy by using the evaluation device of the present invention.
  • the weight change rate during the charging reaction (however, at the initial stage of charging start) excluding the loss of volatilization of the electrolytic solution is -114.50 ( ⁇ 0.08) ⁇ g / h, and -2. It was found that 109 ⁇ 0.006 electrons reacted and oxygen was released. Looking at FIG. 20, the weight of the lithium ion battery decreased linearly due to oxygen release at the initial stage of charging, but the weight decreased remarkably in the latter half of charging, showing a weight loss equal to or greater than the fixed amount of oxygen. This suggests that the gas was released due to the decomposition and deterioration of the electrolyte and the electrode material of the lithium-air battery.
  • Example 4 In Example 4, the evaluation device constructed in Example 1 was used to evaluate the battery characteristics (multiple cycles of rest, discharge, rest, and charge) of the lithium-air battery while flowing pure oxygen into the housing.
  • FIG. 21 is a diagram showing a weight measurement condition setting screen of Example 4.
  • the battery characteristics of the lithium-air battery were evaluated under the weight measurement conditions shown in FIG. 6 and the charge / discharge characteristic measurement conditions shown in FIG.
  • the calculation of the electrolytic solution volatilization rate shown in FIG. 9 the calculation of the weight change amount due to the charge reaction / discharge reaction, the calculation of the number of electrons due to the charge reaction / discharge reaction, and the calculation of the capacitance are selected. bottom.
  • the time interval of the electrolyte volatilization rate is 50 hours, the amount of weight change due to the charge reaction / discharge reaction is performed every time the weight is measured, and the time interval for calculating the number of electrons associated with the charge reaction / discharge reaction is every 30 seconds. rice field. The results are shown in FIGS. 22 to 25.
  • FIG. 22 is a diagram showing the results of the battery characteristics of the lithium-air battery of Example 4.
  • FIG. 23 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 4.
  • the volatilization rate of the electrolytic solution at the time of the first rest is ⁇ 5.36 ( ⁇ 0.07) ⁇ g / h, and it depends on the discharge reaction by performing a plurality of cycles of rest, discharge, rest, and charge. It was found that the weight of the lithium-ion battery was reduced as a whole while repeating the weight increase and the weight decrease due to the charging reaction. This suggests that in addition to the weight loss due to the volatilization of the electrolytic solution, the outgassing due to the decomposition and deterioration of the electrolytic solution and the electrode material has a great influence.
  • FIG. 22 shows only the electrolyte volatilization rate at the first rest, the electrolyte volatilization rate at all rests is actually calculated.
  • the upper part of FIG. 23 shows the amount of weight change due to the charge reaction / discharge reaction calculated from the electrolyte volatilization rate of FIG. 22.
  • the weight change rate is shown in the charge reaction / discharge reaction calculated from the amount of weight change accompanying the charge reaction / discharge reaction.
  • the lower part of FIG. 23 shows the number of reaction electrons calculated from the weight change rate and the current value in the charge reaction / discharge reaction.
  • FIG. 24 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 4.
  • FIG. 25 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 4.
  • FIG. 24 is an enlarged view of a part of FIG. 23. According to FIG. 24, it can be seen that the weight is changed according to the start / stop of charging / discharging, and the charging / discharging reaction is accurately tracked.
  • the metal-air battery evaluation device of the present invention By using the metal-air battery evaluation device of the present invention, minute weight changes of the metal-air battery can be continuously measured for a long period of time. Therefore, among the battery reactions at the air electrode, the reaction efficiency of oxygen and electrons taken into the cell Can be accurately measured over a long period of time over multiple charge / discharge cycles. In addition, it is possible to measure and evaluate the volatilization rate of the electrolytic solution from the change in the weight of the cell when there is no current (rest). In addition to the metal-air battery, such an evaluation device can also evaluate the absorption / discharge characteristics of materials that exchange with external gas.
  • Evaluation device 100
  • Weight measuring unit 120
  • Stage 130 Elevating unit 140
  • Charging / discharging characteristic measuring unit 160
  • Control unit 170 Gas intake port 180
  • Gas exhaust port 190

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are an evaluating device, an evaluating method, and a program for continuously and automatically evaluating the battery characteristics of a metal-air battery. This evaluating device for evaluating the battery characteristics of a metal-air battery is provided with a weight measuring unit for measuring weight, a raising and lowering unit which is provided with a stage that is raised and lowered, a housing accommodating at least the weight measuring unit and the metal-air battery, a charge/discharge characteristic measuring unit for measuring charge/discharge characteristics, and a control unit which evaluates the battery characteristics by controlling the operations of the raising and lowering unit, the weight measuring unit, and the charge/discharge characteristic measuring unit, wherein the control unit is provided with a measurement control unit which causes the stage of the raising and lowering unit to be raised and lowered, and which executes measurements by means of the weight measuring unit and the charge/discharge characteristic measuring unit to acquire an amount of change in weight and the charge/discharge characteristics, and a calculating/evaluating unit which calculates and evaluates the battery characteristics on the basis of the change in weight and the charge/discharge characteristics.

Description

金属空気電池用の評価装置、評価方法、および、プログラムEvaluation equipment, evaluation methods, and programs for metal-air batteries
 本発明は、金属空気電池の電池特性を連続して自動評価する評価装置、評価方法、および、プログラムに関する。 The present invention relates to an evaluation device, an evaluation method, and a program for continuously and automatically evaluating the battery characteristics of a metal-air battery.
 近年、再生可能エネルギーの普及や自動車の電動化への要請により、軽量かつ大容量、すなわちより高いエネルギー密度をもつ蓄電池の開発が要求されている。実現が想定されうる二次電池の中でも、リチウム空気電池は最も高い理論エネルギー密度を有しており、現在普及しているリチウムイオン電池を大幅に超えるエネルギー密度を達成しうる。 In recent years, due to the spread of renewable energy and the demand for electrification of automobiles, the development of a storage battery that is lightweight and has a large capacity, that is, has a higher energy density is required. Among the secondary batteries that can be realized, the lithium-air battery has the highest theoretical energy density, and can achieve an energy density that greatly exceeds that of the lithium-ion battery currently in widespread use.
 リチウム空気電池は負極活物質にリチウム金属、正極活物質に大気酸素を用いるものである。放電時はリチウム金属負極が溶出し(Li⇔Li+e)、正極にて大気から吸収された酸素と反応し過酸化リチウムが析出する(2Li+2e+O⇔Li)。充電時はこれと逆の反応が起こり、これらを繰り返して充放電を行うものである。ここで正極は、充放電にあわせて大気酸素を吸収・排出するはたらきを有する電極であることから、空気極とも呼ばれる。 Lithium-air batteries use lithium metal as the negative electrode active material and atmospheric oxygen as the positive electrode active material. During discharge of the lithium metal anode is eluted (Li⇔Li + + e -), lithium peroxide reacts with the absorbed oxygen from the atmosphere at the positive electrode is deposited (2Li + + 2e - + O 2 ⇔Li 2 O 2). At the time of charging, the opposite reaction occurs, and these are repeated to charge and discharge. Here, the positive electrode is also called an air electrode because it is an electrode having a function of absorbing and discharging atmospheric oxygen in accordance with charging and discharging.
 リチウム空気電池セルの充放電サイクル特性を向上させるには空気極における上記の電気化学反応がほぼ100%近い効率で可逆的に進行する状況を作り出す必要がある。そのためこれらの電池反応「効率」を正確に計測し決定する必要があるが、それらの方法は限定的であり精度や信頼性に欠ける場合が多く、また実際にセルが充放電される環境を反映するものではない場合が多い。 In order to improve the charge / discharge cycle characteristics of the lithium-air battery cell, it is necessary to create a situation in which the above-mentioned electrochemical reaction at the air electrode proceeds reversibly with an efficiency of almost 100%. Therefore, it is necessary to accurately measure and determine the "efficiency" of these battery reactions, but these methods are limited and often lack accuracy and reliability, and reflect the environment in which the cell is actually charged and discharged. Often not something to do.
 空気極における電池反応(2Li+2e+O⇔Li)の効率を見積もる方法として、現状では1.空気極に析出・分解するLiを滴定により定量する方法と、2.セルに吸収・排出される酸素ガスを定量する方法が考案され広く検討されている。 Cell reaction at the air electrode (2Li + + 2e - + O 2 ⇔Li 2 O 2) as a method of estimating the efficiency, at present 1. A method for quantifying Li 2 O 2 that precipitates and decomposes on the air electrode by titration, and 2. A method for quantifying oxygen gas absorbed and discharged into a cell has been devised and widely studied.
 しかしながら、1.の方法で検出されるLi量は放電量ないし充電量から生成が推定される量の90%等量以下しか検出されず、生成したLiを完全に補足できていないのか、あるいは、現に90%以下の電池反応効率で充放電が進行しているのか、はっきりしない。また放電・充電状態の異なる複数のセルを用意し個別に解体、滴定作業する必要があるため、作業性は低く個体差によるバラツキも大きい(例えば、非特許文献1を参照)。 However, 1. The amount of Li 2 O 2 detected by the above method is less than 90% of the amount estimated to be generated from the amount of discharge or charge, and the generated Li 2 O 2 cannot be completely supplemented. Alternatively, it is not clear whether charging / discharging is actually proceeding with a battery reaction efficiency of 90% or less. Further, since it is necessary to prepare a plurality of cells having different discharge / charge states and individually disassemble and titrate the cells, the workability is low and the variation due to individual differences is large (see, for example, Non-Patent Document 1).
 2.のセルに吸収・排出される酸素を定量する方法は、密閉した筐体内でセルを放電させ低下する酸素分圧を計測することでなされる。充電時は、筐体を不活性ガスで置換した後セルを充電し、排出される酸素を全量回収し計量することでなされる。放電・充電状態に応じて圧力が変動することから、実際に置かれるセル環境、例えば大気環境下など、を反映した測定にならない問題がある(例えば、非特許文献1を参照)。また、放電・充電の切り替えに合わせてガスを置換し、測定方法を切り替える必要があるため、多サイクルの反応効率を追跡することは困難である。 2. The method of quantifying the oxygen absorbed and discharged into the cell is performed by measuring the oxygen partial pressure that decreases by discharging the cell in a closed housing. At the time of charging, the housing is replaced with an inert gas, the cell is charged, and all the discharged oxygen is recovered and weighed. Since the pressure fluctuates according to the discharge / charge state, there is a problem that the measurement does not reflect the actual cell environment, for example, the atmospheric environment (see, for example, Non-Patent Document 1). In addition, it is difficult to track the reaction efficiency of multiple cycles because it is necessary to replace the gas and switch the measurement method according to the switching between discharging and charging.
 一方で最近、リチウム空気電池セルの電解液・電極材料の開発が進展し、放電・充電できる容量やサイクル数も増えつつある。それに合わせて長期・多サイクルの充放電運転における電池反応効率を正確かつ簡便に評価できる計測手法の確立が必要とされている(例えば、非特許文献2を参照)。 On the other hand, recently, the development of electrolytes and electrode materials for lithium-air battery cells has progressed, and the capacity and number of cycles that can be discharged and charged are increasing. In line with this, it is necessary to establish a measurement method that can accurately and easily evaluate the battery reaction efficiency in long-term, multi-cycle charge / discharge operation (see, for example, Non-Patent Document 2).
 また、基礎的な電池反応試験用途よりも広い電極面積や積層構造を有し、大きな電流を取れるよう設計されたセルも開発されるようになった。これらが大気環境あるいは酸素フロー環境下において空気孔を通してどれくらいの電解液の揮発が進行するのか、計測する方法の開発が必要とされている(例えば、非特許文献3を参照)。また大気環境下においては、大気に含まれる水や二酸化炭素など、正常な電池反応に関わらない不純物ガスをセルがどれくらい吸収するのか調べる必要がある。 In addition, cells that have a wider electrode area and laminated structure than basic battery reaction test applications and are designed to take a large current have also been developed. It is necessary to develop a method for measuring how much the electrolytic solution volatilizes through the air holes in an atmospheric environment or an oxygen flow environment (see, for example, Non-Patent Document 3). In the atmospheric environment, it is necessary to investigate how much the cell absorbs impurity gases such as water and carbon dioxide contained in the atmosphere that are not involved in the normal battery reaction.
 そのなかで注目されるのがセルの質量である。リチウム空気電池セルは放電・充電によって酸素を吸収・排出するため、それによって自重を少しずつ変化させる。セルの放電・充電容量と重量変化量からセルが固定した酸素量を計測し、電池反応効率を見積もることができる。また、無電流時(レスト中)の微小なセル重量変化から電解液の揮発量を見積もることができる。ところが、静置されたセルの重量を長期間連続して秤量し続けることはできないため、あくまで放電・充電の前後、あるいは一定時間経過後のセル重量を逐一比較し、推定するにとどまる。 Among them, the mass of the cell is the focus of attention. Lithium-air battery cells absorb and discharge oxygen by discharging and charging, which causes the weight to change little by little. The battery reaction efficiency can be estimated by measuring the amount of oxygen fixed in the cell from the discharge / charge capacity of the cell and the amount of weight change. In addition, the amount of volatilization of the electrolytic solution can be estimated from a slight change in cell weight when there is no current (during rest). However, since the weight of a stationary cell cannot be continuously weighed for a long period of time, the cell weight before and after discharge / charge or after a certain period of time is compared and estimated one by one.
 以上より、本発明の課題は、金属空気電池の電池特性を連続して自動評価する評価装置、その方法およびそのプログラムを提供することである。 From the above, an object of the present invention is to provide an evaluation device for continuously and automatically evaluating the battery characteristics of a metal-air battery, a method thereof, and a program thereof.
 本発明の金属空気電池の電池特性を評価する評価装置は、前記金属空気電池の重量を測定する重量測定部と、前記金属空気電池を載置するためのステージを備え、前記ステージを昇降させる昇降部と、少なくとも前記重量測定部と前記金属空気電池とを収容する筐体と、前記金属空気電池の充放電特性を測定する充放電特性測定部と、前記昇降部と前記重量測定部と前記充放電特性測定部との動作を制御し、前記金属空気電池の電池特性を評価する制御部とを備え、前記制御部は、前記昇降部の前記ステージを昇降させ、前記重量測定部および前記充放電特性測定部による測定を実行し、前記金属空気電池の重量変化量および充放電特性を取得する測定制御部と、前記測定制御部で取得された前記重量変化量および前記充放電特性に基づいて、前記金属空気電池の電池特性を算出・評価する算出・評価部とを備え、これにより上記課題を解決する。
 前記算出・評価部は、前記充放電特性のレスト中における時刻tの重量変化量Wtと時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出する電解液揮発速度算出部をさらに備えてもよい。
 前記算出・評価部は、前記充放電特性の放電中における時刻tの重量変化量から、前記放電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、放電反応のみに起因する重量変化量を算出する放電重量変化量算出部をさらに備えてもよい。
 前記算出・評価部は、前記放電重量変化量算出部で算出された前記充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に吸収された空気と反応している電子数を算出する反応電子数算出部をさらに備えてもよい。
 前記算出・評価部は、前記充放電特性の充電中における時刻tの重量変化量から、前記充電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、充電反応のみに起因する重量変化量を算出する充電重量変化量算出部をさらに備えてもよい。
 前記算出・評価部は、前記充電重量変化量算出部で算出された前記充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に固定された空気の排出に要している電子数を算出する反応電子数算出部をさらに備えてもよい。
 前記算出・演算部は、前記充放電特性の放電開始後、重量変化が生じるまでに要した時間ΔTと前記時間ΔTの間に流れた電流値とから静電容量を算出する静電容量算出部をさらに備えてもよい。
 前記制御部は、前記算出・評価部による結果を表示する表示部をさらに備えもよい。
 前記筐体内に温度検出部をさらに備えてもよい。
 前記筐体内に気圧検出部をさらに備えてもよい。
 前記制御部は、前記重量測定部による秤量値を前記重量測定部の感度ドリフト値で補正する秤量値補正部をさらに備えてもよい。
 前記筐体は、ガス給気口およびガス排気口を備えてもよい。
 前記筐体内の温度を保持する温度制御装置をさらに備えてもよい。
 本発明の金属空気電池の電池特性を評価する方法は、重量測定部の測定位置への前記金属空気電池の配置と、前記測定位置からの前記金属空気電池の離間とを繰り返し、前記金属空気電池の重量を繰り返し測定することと、前記重量の繰り返し測定と同時に、前記金属空気電池の充放電特性を測定することと、前記繰り返し測定することによって得られた前記重量変化量、および、前記充放電特性を測定することによって得られた前記充放電特性に基づいて、前記金属空気電池の電池特性を算出・評価することとを包含し、これにより上記課題を解決する。
 前記算出・評価することは、前記充放電特性のレスト中における時刻tの重量変化量Wtと時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出することをさらに包含してもよい。
 前記算出・評価することは、前記充放電特性の放電中における時刻tの重量変化量から、前記放電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、放電反応のみに起因する重量変化量を算出することをさらに包含してもよい。
 前記算出・評価することは、前記算出された前記充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に吸収された空気と反応している電子数を算出することをさらに包含してもよい。
 前記算出・評価することは、前記充放電特性の充電中における時刻tの重量変化量から、前記充電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、充電反応のみに起因する重量変化量を算出することをさらに包含してもよい。
 前記算出・評価することは、前記算出された前記充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に固定された空気の排出に要している電子数を算出することをさらに包含してもよい。
 前記算出・評価することは、前記充放電特性の放電開始後、重量変化が生じるまでに要した時間ΔTと前記時間ΔTの間に流れた電流値とから静電容量を算出することをさらに包含してもよい。
 前記繰り返し測定することに先立って、前記重量測定部の測定位置への不変重量品の配置と、前記測定位置からの前記不変重量品の離間とを繰り返し、前記不変重量品の重量を繰り返し測定することと、前記不変重量品の重量の繰り返し測定と同時に測定環境内の温度変化、および/または、気圧変化を測定することと、前記不変重量品の秤量値が、前記温度変化、および/または、前記気圧変化に伴い変動しているかどうかを判定することと、前記判定することにおいて変動していると判定した場合、秤量値を前記重量測定部の感度ドリフト値で補正し、前記判定することにおいて変動していないと判定した場合、秤量値を補正しないこととをさらに包含してもよい。
 前記繰り返し測定することに先立って、測定環境内に雰囲気制御ガスをフローすることをさらに包含してもよい。
 本発明の金属空気電池の電池特性を評価するプログラムは、重量測定部の測定位置への前記金属空気電池の配置と、前記測定位置からの前記金属空気電池の離間とを繰り返し、前記金属空気電池の重量を繰り返し測定する機能と、前記重量の繰り返し測定と同時に、前記金属空気電池の充放電特性を測定する機能と、前記繰り返し測定することによって得られた前記重量変化量、および、前記充放電特性を測定することによって得られた前記充放電特性に基づいて、前記金属空気電池の電池特性を算出・評価する機能とをコンピュータに実現させ、これにより上記課題を解決する。
 前記算出・評価する機能は、前記充放電特性のレスト中における時刻tの重量変化量Wtと時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出する機能をさらに含んでもよい。
 前記算出・評価する機能は、前記充放電特性の放電中における時刻tの重量変化量から、前記放電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、放電反応のみに起因する重量変化量を算出する機能をさらに含んでもよい。
 前記算出・評価する機能は、前記算出された前記充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に吸収された空気と反応している電子数を算出する機能をさらに含んでもよい。
 前記算出・評価する機能は、前記充放電特性の充電中における時刻tの重量変化量から、前記充電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、充電反応のみに起因する重量変化量を算出する機能をさらに含んでもよい。
 前記算出・評価する機能は、前記算出された前記充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に固定された空気の排出に要している電子数を算出する機能をさらに含んでもよい。
 前記算出・評価する機能は、前記充放電特性の放電開始後、重量変化が生じるまでに要した時間ΔTと前記時間ΔTの間に流れた電流値とから静電容量を算出する機能をさらに含んでもよい。
The evaluation device for evaluating the battery characteristics of the metal air battery of the present invention includes a weight measuring unit for measuring the weight of the metal air battery and a stage for mounting the metal air battery, and raises and lowers the stage. A unit, a housing accommodating at least the weight measuring unit and the metal air battery, a charge / discharge characteristic measuring unit for measuring the charge / discharge characteristics of the metal air battery, an elevating unit, the weight measuring unit, and the charging unit. A control unit that controls the operation with the discharge characteristic measuring unit and evaluates the battery characteristics of the metal air battery is provided, and the control unit raises and lowers the stage of the elevating unit to raise and lower the weight measuring unit and the charging / discharging unit. Based on the measurement control unit that executes the measurement by the characteristic measurement unit and acquires the weight change amount and charge / discharge characteristics of the metal air battery, and the weight change amount and the charge / discharge characteristics acquired by the measurement control unit. It is provided with a calculation / evaluation unit that calculates / evaluates the battery characteristics of the metal air battery, thereby solving the above-mentioned problems.
The calculating and evaluation unit, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) weight change amount difference Wt of the change in weight Wt r0 of dividing the r -wt r0 by the time difference t r -t r0, electrolyte evaporation rate ((Wt r -Wt r0) / (t r -t r0)) further comprise an electrolyte solution evaporation rate calculation unit for calculating a good.
The calculation / evaluation unit estimates the volatilization of the electrolytic solution at the time t d from the amount of change in weight at the time t d during the discharge of the charge / discharge characteristics using the volatilization rate of the electrolytic solution in the rest immediately before the discharge. A discharge weight change amount calculation unit may be further provided, which reduces the amount and calculates the weight change amount due only to the discharge reaction.
The calculation / evaluation unit divides the amount of weight change due only to the discharge reaction of the time interval Δt d during discharge of the charge / discharge characteristics calculated by the discharge weight change amount calculation unit by the time interval Δt d. , The number of reaction electrons for calculating the weight change rate, dividing the current value used for measuring the charge / discharge characteristics by the weight change rate, and calculating the number of electrons reacting with the air absorbed in the metal air battery. A calculation unit may be further provided.
The calculation / evaluation unit estimates the volatilization of the electrolyte at time t c from the amount of change in weight at time t c during charging of the charge / discharge characteristics using the volatilization rate of the electrolyte in the rest immediately before charging. A charge weight change amount calculation unit may be further provided, which reduces the amount and calculates the weight change amount due only to the charge reaction.
The calculation / evaluation unit divides the amount of weight change due only to the charging reaction of the time interval Δt c during charging of the charge / discharge characteristics calculated by the charge weight change amount calculation unit by the time interval Δt c. , The reaction to calculate the weight change rate, divide the current value used for measuring the charge / discharge characteristics by the weight change rate, and calculate the number of electrons required to discharge the air fixed to the metal-air battery. An electron number calculation unit may be further provided.
The calculation / calculation unit calculates the capacitance from the time ΔT required for the weight change to occur after the start of discharge of the charge / discharge characteristics and the current value flowing during the time ΔT. May be further provided.
The control unit may further include a display unit that displays the result of the calculation / evaluation unit.
A temperature detection unit may be further provided in the housing.
An atmospheric pressure detection unit may be further provided in the housing.
The control unit may further include a weighing value correction unit that corrects the weighing value by the weight measuring unit with the sensitivity drift value of the weight measuring unit.
The housing may include a gas air supply port and a gas exhaust port.
A temperature control device for holding the temperature inside the housing may be further provided.
In the method for evaluating the battery characteristics of the metal air battery of the present invention, the arrangement of the metal air battery at the measurement position of the weight measuring unit and the separation of the metal air battery from the measurement position are repeated, and the metal air battery is evaluated. The charge / discharge characteristics of the metal air battery are measured at the same time as the repeated measurement of the weight, the weight change amount obtained by the repeated measurement, and the charge / discharge. It includes calculating and evaluating the battery characteristics of the metal air battery based on the charge / discharge characteristics obtained by measuring the characteristics, thereby solving the above-mentioned problems.
The calculation and evaluation that is, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of dividing the Wt r -wt r0 by the time difference t r -t r0, may further include calculating the electrolyte volatilization rate ((Wt r -Wt r0) / (t r -t r0)).
The calculation / evaluation is an electrolytic solution at the time t d estimated from the amount of change in weight at the time t d during the discharge of the charge / discharge characteristics and the volatilization rate of the electrolytic solution in the rest immediately before the discharge. It may further include reducing the amount of volatilization and calculating the amount of weight change due only to the discharge reaction.
The calculation / evaluation is to calculate the weight change rate by dividing the amount of weight change caused only by the discharge reaction of the time interval Δt d during discharge of the calculated charge / discharge characteristics by the time interval Δt d. Then, the current value used for measuring the charge / discharge characteristics may be divided by the weight change rate to calculate the number of electrons reacting with the air absorbed by the metal air battery.
The calculation / evaluation is an electrolytic solution at the time t c estimated from the amount of change in weight at the time t c during charging of the charge / discharge characteristics using the electrolytic solution volatilization rate in the rest immediately before the charge. It may further include reducing the amount of volatilization and calculating the amount of weight change due only to the charging reaction.
The calculation / evaluation is to calculate the weight change rate by dividing the amount of weight change caused only by the charging reaction of the time interval Δt c during charging of the calculated charge / discharge characteristics by the time interval Δt c. Further, it may further include calculating the number of electrons required for discharging the air fixed to the metal-air battery by dividing the current value used for measuring the charge / discharge characteristics by the weight change rate. good.
The calculation / evaluation further includes calculating the capacitance from the time ΔT required for the weight change to occur after the start of discharge of the charge / discharge characteristics and the current value flowing during the time ΔT. You may.
Prior to the repeated measurement, the placement of the immutable weight product at the measurement position of the weight measuring unit and the separation of the immutable weight product from the measurement position are repeated, and the weight of the immutable weight product is repeatedly measured. At the same time as the repeated measurement of the weight of the immutable weight product, the temperature change and / or the atmospheric pressure change in the measurement environment is measured, and the weighed value of the immutable weight product is the temperature change and / or. In determining whether or not it is fluctuating due to the change in atmospheric pressure, and when it is determined in the determination that it is fluctuating, the weighing value is corrected by the sensitivity drift value of the weight measuring unit, and the determination is made. If it is determined that there is no fluctuation, it may further include not correcting the weighing value.
Prior to the repeated measurement, the flow of the atmosphere control gas in the measurement environment may be further included.
The program for evaluating the battery characteristics of the metal air battery of the present invention repeats the arrangement of the metal air battery at the measurement position of the weight measuring unit and the separation of the metal air battery from the measurement position, and the metal air battery. The function of repeatedly measuring the weight of the metal, the function of measuring the charge / discharge characteristics of the metal air battery at the same time as the repeated measurement of the weight, the amount of change in weight obtained by the repeated measurement, and the charge / discharge. Based on the charge / discharge characteristics obtained by measuring the characteristics, the computer is realized with a function of calculating and evaluating the battery characteristics of the metal air battery, thereby solving the above-mentioned problems.
The calculation and evaluation functions, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of dividing the Wt r -wt r0 by the time difference t r -t r0, electrolyte evaporation rate ((Wt r -Wt r0) / (t r -t r0)) may further comprise a function of calculating the.
The function of calculating and evaluating the electrolytic solution at the time t d estimated from the amount of change in the weight of the electrolytic solution at the time t d during the discharge of the charge / discharge characteristics using the volatilization rate of the electrolytic solution in the rest immediately before the discharge. It may further include a function of reducing the amount of volatilization and calculating the amount of weight change due only to the discharge reaction.
The calculation / evaluation function calculates the weight change rate by dividing the amount of weight change caused only by the discharge reaction of the time interval Δt d during discharge of the calculated charge / discharge characteristics by the time interval Δt d. Then, the function of dividing the current value used for measuring the charge / discharge characteristics by the weight change rate and calculating the number of electrons reacting with the air absorbed by the metal air battery may be further included.
The function of calculating and evaluating the electrolytic solution at the time t c estimated from the amount of change in weight at the time t c during charging of the charge / discharge characteristics using the electrolytic solution volatilization rate in the rest immediately before the charge. It may further include a function of reducing the amount of volatilization and calculating the amount of weight change due only to the charging reaction.
The calculation / evaluation function calculates the weight change rate by dividing the amount of weight change caused only by the charging reaction of the time interval Δt c during charging of the calculated charge / discharge characteristics by the time interval Δt c. Then, the function of dividing the current value used for measuring the charge / discharge characteristics by the weight change rate and calculating the number of electrons required for discharging the air fixed to the metal-air battery may be further included.
The function of calculating and evaluating further includes a function of calculating the capacitance from the time ΔT required for the weight change to occur after the start of discharging the charge / discharge characteristics and the current value flowing during the time ΔT. It may be.
 本発明の金属空気電池の電池特性を評価する評価装置は、上述のように、昇降部を備え、重量測定部のゼロ点補正を測定のたびに行う。これにより金属空気電池の重量変化を長期間にわたって連続して正確に測定することができる。また、重量測定部による重量変化の測定と、充放電特性測定部による充放電測定とは、同時に実施されるため、重量変化量と充放電特性との結果から、金属空気電池の充放電プロセスにおける電解液揮発速度、放電ないし充電反応にともなう重量変化量、空気(酸素)の吸収ないし排出に要する電子数、静電容量等を算出でき、金属空気電池の性能評価を長期間にわたって連続して高精度に実施できる。 As described above, the evaluation device for evaluating the battery characteristics of the metal-air battery of the present invention is provided with an elevating part, and the zero point correction of the weight measuring part is performed every time measurement is performed. As a result, the weight change of the metal-air battery can be continuously and accurately measured over a long period of time. Further, since the weight change measurement by the weight measuring unit and the charge / discharge measurement by the charge / discharge characteristic measurement unit are performed at the same time, the charge / discharge process of the metal air battery is based on the results of the weight change amount and the charge / discharge characteristics. The volatilization rate of electrolyte, the amount of weight change due to discharge or charging reaction, the number of electrons required for absorption or discharge of air (oxygen), capacitance, etc. can be calculated, and the performance evaluation of metal air batteries is continuously high for a long period of time. It can be carried out with high accuracy.
 本発明の金属空気電池の評価方法は、金属空気電池の重量を繰り返し測定し、同時に、充放電特性を測定し、得られた重量変化量および充放電特性に基づいて金属空気電池の電池特性を評価する。重量測定のたびにゼロ点補正された経時的な重量変化量と、これに関連付けられた経時的な充放電特性とに基づいて各種電池特性が評価されるため、金属空気電池の性能評価を長期間にわたって連続して高精度に実施できる。また、本発明は、このような機能をコンピュータが実行するプログラムを提供する。 In the method for evaluating a metal-air battery of the present invention, the weight of the metal-air battery is repeatedly measured, and at the same time, the charge / discharge characteristics are measured, and the battery characteristics of the metal-air battery are determined based on the obtained weight change amount and charge / discharge characteristics. evaluate. Since various battery characteristics are evaluated based on the amount of change in weight over time, which is zero-point corrected each time the weight is measured, and the charge / discharge characteristics over time associated with this, the performance evaluation of the metal-air battery is lengthened. It can be carried out continuously and with high accuracy over a period of time. The present invention also provides a program in which a computer executes such a function.
本発明の評価装置を示す概略図Schematic diagram showing the evaluation apparatus of the present invention 本発明の評価装置の制御部の構成を示すブロック図A block diagram showing a configuration of a control unit of the evaluation device of the present invention. 例示的なグラフィカルユーザインターフェース(GUI)画面を示す図Diagram showing an exemplary graphical user interface (GUI) screen 例示的な重量測定条件設定画面を示す図The figure which shows the exemplary weight measurement condition setting screen. 例示的な重量測定結果を示す図Diagram showing exemplary weight measurement results 別の例示的な重量測定条件設定画面を示す図The figure which shows another example weight measurement condition setting screen. 別の例示的な重量測定結果を示す図Figure showing another exemplary weight measurement result 例示的な充放電特性測定条件設定画面を示す図The figure which shows the example charge / discharge characteristic measurement condition setting screen. 例示的な評価項目設定画面を示す図Diagram showing an exemplary evaluation item setting screen 例示的な結果を示すShow exemplary results 別の例示的な結果を示す図Diagram showing another exemplary result 本発明の金属空気電池の電池特性を評価する方法を示すフローチャートA flowchart showing a method for evaluating the battery characteristics of the metal-air battery of the present invention. 本発明の別の金属空気電池の電池特性を評価する方法を示すフローチャートA flowchart showing a method for evaluating the battery characteristics of another metal-air battery of the present invention. 例1の充放電特性測定条件設定画面を示す図The figure which shows the charge / discharge characteristic measurement condition setting screen of Example 1. 例1のリチウムイオン電池の重量変化量と充放電特性とを示す図The figure which shows the weight change amount and charge / discharge characteristics of the lithium ion battery of Example 1. 例1のリチウムイオン電池の重量変化量と温度変化とを示す図The figure which shows the weight change amount and the temperature change of the lithium ion battery of Example 1. 例2のリチウムイオン電池の重量変化量と温度変化とを示す図The figure which shows the weight change amount and the temperature change of the lithium ion battery of Example 2. 例3の充放電特性測定条件設定画面を示す図The figure which shows the charge / discharge characteristic measurement condition setting screen of Example 3. 例3のリチウム空気電池の電池特性の結果を示す図The figure which shows the result of the battery characteristic of the lithium-air battery of Example 3. 例3のリチウム空気電池の電池特性の別の結果を示す図The figure which shows another result of the battery characteristic of the lithium-air battery of Example 3. 例4の重量測定条件設定画面を示す図The figure which shows the weight measurement condition setting screen of Example 4. 例4のリチウム空気電池の電池特性の結果を示す図The figure which shows the result of the battery characteristic of the lithium-air battery of Example 4. 例4のリチウム空気電池の電池特性の別の結果を示す図The figure which shows another result of the battery characteristic of the lithium-air battery of Example 4. 例4のリチウム空気電池の電池特性の別の結果を示す図The figure which shows another result of the battery characteristic of the lithium-air battery of Example 4. 例4のリチウム空気電池の電池特性の別の結果を示す図The figure which shows another result of the battery characteristic of the lithium-air battery of Example 4.
 以下、図面を参照しながら本発明の実施の形態を説明する。なお、同様の要素には同様の番号を付し、その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same elements are given the same numbers, and the description thereof will be omitted.
 図1は、本発明の評価装置を示す概略図である。 FIG. 1 is a schematic view showing the evaluation device of the present invention.
 本発明の評価装置100は、金属空気電池の電池特性を測定する。ここで、対象とする金属空気電池は、リチウム空気電池、リチウム二酸化炭素電池、ナトリウム空気電池、空気亜鉛電池、空気鉄電池、空気アルミニウム電池、空気マグネシウム電池等の外部ガスとやり取りをする金属電池である。以降の説明では簡単のため金属空気電池としてリチウム空気電池を用い、外部ガスが酸素である場合を参照して説明する。なお、本願明細書において外部ガスを総称して単に空気と称する場合がある。 The evaluation device 100 of the present invention measures the battery characteristics of a metal-air battery. Here, the target metal-air battery is a metal battery that exchanges with an external gas such as a lithium air battery, a lithium carbon dioxide battery, a sodium air battery, an air zinc battery, an air iron battery, an air aluminum battery, and an air magnesium battery. be. In the following description, for the sake of simplicity, a lithium-air battery will be used as the metal-air battery, and the case where the external gas is oxygen will be described. In the specification of the present application, external gases may be collectively referred to as air.
 本発明の評価装置100は、金属空気電池(図1中ではセルとして示す)の重量を測定する重量測定部110と、金属空気電池を載置するためのステージ120を備え、ステージ120を昇降させる昇降部130と、少なくとも重量測定部110と金属空気電池とを収容する筐体140と、金属空気電池の充放電特性を測定する充放電特性測定部150と、昇降部130と重量測定部110と充放電特性測定部150との動作を制御し、金属空気電池の電池特性を評価する制御部160とを備える。 The evaluation device 100 of the present invention includes a weight measuring unit 110 for measuring the weight of a metal-air battery (shown as a cell in FIG. 1) and a stage 120 for mounting the metal-air battery, and raises and lowers the stage 120. The elevating unit 130, the housing 140 accommodating at least the weight measuring unit 110 and the metal-air battery, the charge / discharge characteristic measuring unit 150 for measuring the charge / discharge characteristics of the metal-air battery, and the elevating unit 130 and the weight measuring unit 110. It includes a control unit 160 that controls the operation with the charge / discharge characteristic measurement unit 150 and evaluates the battery characteristics of the metal-air battery.
 このような構成により、本発明の評価装置100は、金属空気電池の重量変化を長期間にわたって正確に測定するとともに、金属空気電池の重量測定と充放電測定とを同時に測定し、それらの結果を互いに関連付けて記憶するので、金属空気電池の充放電反応に伴う、電解液揮発速度、充放電に伴う重量変化量、空気の反応排出に伴う電子数、静電容量等を算出でき、金属空気電池の性能評価を長期間にわたって高精度に実施できる。以降では、各構成要素を詳細に説明する。 With such a configuration, the evaluation device 100 of the present invention accurately measures the weight change of the metal-air battery over a long period of time, simultaneously measures the weight measurement and the charge / discharge measurement of the metal-air battery, and obtains the results. Since it is stored in association with each other, it is possible to calculate the electrolyte volatilization rate associated with the charge / discharge reaction of the metal-air battery, the amount of weight change due to charge / discharge, the number of electrons due to the reaction / discharge of air, the capacitance, etc. Performance evaluation can be performed with high accuracy over a long period of time. Hereinafter, each component will be described in detail.
 重量測定部110は、金属空気電池の重量を測定可能なものであれば特に制限はないが、一例として電子天秤がある。重量測定部110は、図1では、有線にて制御部160と接続されているが、Wi-Fi(登録商標)およびBluetoothなどの無線通信によって制御部160と接続するようにしてもよい。 The weight measuring unit 110 is not particularly limited as long as it can measure the weight of the metal-air battery, but an electronic balance is an example. Although the weight measuring unit 110 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth.
 昇降部130は、金属空気電池を載置するステージ120を備え、ステージ120が重量測定部110の測定位置(図1の左図)と、ステージ120が重量測定部110から離間した位置(図1の右図)とを繰り返し昇降するモータ等の駆動機構を備える。このように、昇降部130によって、金属空気電池の重量は、ユーザが設定した間隔で測定されることになる。この結果、金属空気電池の重量測定は、測定ごとにゼロ点補正がされることになり、金属空気電池の重量が正確に測定される。昇降部130は、図1では、有線にて制御部160と接続されているが、Wi-Fi(登録商標)およびBluetoothなどの無線通信によって制御部160と接続するようにしてもよい。 The elevating unit 130 includes a stage 120 on which a metal-air battery is placed, and the stage 120 is at a measurement position of the weight measuring unit 110 (left figure in FIG. 1) and a position where the stage 120 is separated from the weight measuring unit 110 (FIG. 1). It is equipped with a drive mechanism such as a motor that repeatedly raises and lowers (the figure on the right). In this way, the weight of the metal-air battery is measured by the elevating unit 130 at intervals set by the user. As a result, the weight measurement of the metal-air battery is zero-point corrected for each measurement, and the weight of the metal-air battery is accurately measured. Although the elevating unit 130 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth.
 筐体140は、少なくとも、重量測定部110の秤量皿と金属空気電池とを収容し、測定時の温度、雰囲気等の環境を制御するよう機能する。筐体140は、好ましくは、ガス給気口170およびガス排気口180を備え、ガス給気口170を雰囲気制御ガスに接続し、筐体140内の雰囲気を制御できるようにしてもよい。このような雰囲気制御ガスには、酸素ガス、二酸化炭素ガス、および、窒素、アルゴン、ヘリウム、キセノン等の希ガスを採用できる。なお、図1では、筐体140は、重量測定部110および金属空気電池に加えて、昇降部130を含むように示すが、昇降部130を含むことは必須ではない。 The housing 140 accommodates at least the weighing pan of the weight measuring unit 110 and the metal-air battery, and functions to control the environment such as temperature and atmosphere at the time of measurement. The housing 140 may preferably include a gas air supply port 170 and a gas exhaust port 180, and the gas air supply port 170 may be connected to an atmosphere control gas so that the atmosphere inside the housing 140 can be controlled. As such an atmosphere control gas, oxygen gas, carbon dioxide gas, and noble gases such as nitrogen, argon, helium, and xenon can be adopted. In FIG. 1, the housing 140 is shown to include the elevating unit 130 in addition to the weight measuring unit 110 and the metal-air battery, but it is not essential that the housing 140 includes the elevating unit 130.
 充放電特性測定部150は、金属空気電池のレスト(休止または無電流)、充電および放電時の放電充放電特性を測定する充放電試験機であってよい。充放電特性測定部150は金属空気電池と導線を介して接続される。このような導線には特に制限はないが、重量測定部110の重量変化量への影響を考慮して、直径10μm以上250μm以下を有する銅線、カーボンナノチューブワイヤ、金線等を使用できる。中でも、直径10μm以上50μm以下を有する金線は、重量変化量への影響が小さいため好ましい。 The charge / discharge characteristic measuring unit 150 may be a charge / discharge tester that measures the discharge charge / discharge characteristics at the time of rest (pause or no current) of the metal-air battery, charging and discharging. The charge / discharge characteristic measuring unit 150 is connected to the metal-air battery via a conducting wire. Such a conducting wire is not particularly limited, but a copper wire, a carbon nanotube wire, a gold wire or the like having a diameter of 10 μm or more and 250 μm or less can be used in consideration of the influence on the weight change amount of the weight measuring unit 110. Among them, a gold wire having a diameter of 10 μm or more and 50 μm or less is preferable because it has a small influence on the amount of weight change.
 充放電特性測定部150は、図1では、有線にて制御部160と接続されているが、Wi-Fi(登録商標)およびBluetoothなどの無線通信によって制御部160と接続するようにしてもよい。また、充放電特性測定部150は、筐体140に収容させる必要はないが、筐体140の容量によっては収容させてもよい。 Although the charge / discharge characteristic measuring unit 150 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth. .. Further, the charge / discharge characteristic measuring unit 150 does not need to be housed in the housing 140, but may be housed depending on the capacity of the housing 140.
 本発明の評価装置100は、筐体140内に温度検出部190をさらに備えてもよい。これにより、筐体140内の温度を測定できる。このような温度検出部190は、一例として、熱電対であり得る。温度検出部190は、図1では、有線にて制御部160と接続されているが、Wi-Fi(登録商標)およびBluetoothなどの無線通信によって制御部160と接続するようにしてもよい。 The evaluation device 100 of the present invention may further include a temperature detection unit 190 in the housing 140. Thereby, the temperature inside the housing 140 can be measured. Such a temperature detection unit 190 may be a thermocouple as an example. Although the temperature detection unit 190 is connected to the control unit 160 by wire in FIG. 1, it may be connected to the control unit 160 by wireless communication such as Wi-Fi (registered trademark) and Bluetooth.
 本発明の評価装置100は、筐体140内に気圧検出部(図示せず)をさらに備えてもよい。これにより、筐体140内の気圧を測定できる。このような気圧検出部は、一例として、気圧計であり得る。温度検出部190と同様に、気圧検出部も、有線または無線にて制御部160と接続されてよい。評価装置100が、温度検出部190と気圧検出部とを両方備えていてもよいし、いずれか一方でもよいが、両方備えることにより、温度および気圧が金属空気電池の重量変化量に及ぼす影響を考慮した測定を実施できるため、高精度な評価を可能にする。 The evaluation device 100 of the present invention may further include an atmospheric pressure detection unit (not shown) in the housing 140. As a result, the atmospheric pressure inside the housing 140 can be measured. Such a barometric pressure detector may be, for example, a barometer. Like the temperature detection unit 190, the barometric pressure detection unit may be connected to the control unit 160 by wire or wirelessly. The evaluation device 100 may include both the temperature detection unit 190 and the atmospheric pressure detection unit, or either one, but by providing both, the influence of the temperature and the atmospheric pressure on the weight change amount of the metal-air battery is affected. Since the measurement can be performed in consideration, highly accurate evaluation is possible.
 本発明の評価装置100は、筐体140内の温度を保持する温度制御装置(図示せず)をさらに備えてもよい。これにより、筐体140内の温度を一定に保持することができる。このような温度制御装置は、加熱および/または冷却が可能なものであり、恒温試験機、恒温槽等を採用できる。温度制御装置も、有線または無線にて制御部160と接続されてよい。 The evaluation device 100 of the present invention may further include a temperature control device (not shown) for holding the temperature inside the housing 140. As a result, the temperature inside the housing 140 can be kept constant. Such a temperature control device can be heated and / or cooled, and a constant temperature tester, a constant temperature bath, or the like can be adopted. The temperature control device may also be connected to the control unit 160 by wire or wirelessly.
 制御部160は、昇降部130と重量測定部110と充放電特性測定部150との動作を制御し、重量測定部110および充放電特性測定部150が取得した情報に基づいて、金属空気電池の電池特性の評価を行う。このような制御部160は、汎用のパーソナルコンピュータであってもよいし、専用の端末装置であってもよい。図1では、制御部160として、例示として、キーボード、マウス等の入力装置とディスプレイ等の表示装置を備えたパーソナルコンピュータを示す。 The control unit 160 controls the operation of the elevating unit 130, the weight measurement unit 110, and the charge / discharge characteristic measurement unit 150, and based on the information acquired by the weight measurement unit 110 and the charge / discharge characteristic measurement unit 150, the metal-air battery Evaluate battery characteristics. Such a control unit 160 may be a general-purpose personal computer or a dedicated terminal device. FIG. 1 shows, as an example, a personal computer provided with an input device such as a keyboard and a mouse and a display device such as a display as the control unit 160.
 図2は、本発明の評価装置の制御部の構成を示すブロック図である。 FIG. 2 is a block diagram showing a configuration of a control unit of the evaluation device of the present invention.
 制御部160は、機能ブロックとして、昇降部130のステージ120を昇降させ、重量測定部110および充放電特性測定部150による測定を実行し、金属空気電池の重量変化量および充放電特性を取得する測定制御部210と、測定制御部210で取得された重量変化量および充放電特性に基づいて、金属空気電池の電池特性を算出・評価する算出・評価部220とを備える。 The control unit 160 raises and lowers the stage 120 of the elevating unit 130 as a functional block, executes measurement by the weight measuring unit 110 and the charging / discharging characteristic measuring unit 150, and acquires the weight change amount and the charging / discharging characteristic of the metal air battery. It includes a measurement control unit 210 and a calculation / evaluation unit 220 that calculates / evaluates the battery characteristics of a metal air battery based on the weight change amount and charge / discharge characteristics acquired by the measurement control unit 210.
 本発明の評価装置100は、昇降部130がステージ120を測定位置とそこからの離間とを繰り返しながら、金属空気電池の重量変化量を測定するので、重量測定部のゼロ点補正を測定のたびに行うことができる。これにより金属空気電池の重量変化量を長期間にわたって正確に測定することができる。さらに、重量変化量とともに充放電特性も同時に測定するため、金属空気電池の充放電反応効率を高精度に算出・評価できる。このような観点から、本願明細書において、電池特性の評価とは、金属空気電池を充放電特性によって評価するものを意図する。 In the evaluation device 100 of the present invention, the elevating unit 130 measures the amount of change in the weight of the metal-air battery while repeating the measurement position and the distance from the stage 120, so that the zero point correction of the weight measuring unit is measured every time. Can be done. As a result, the amount of change in weight of the metal-air battery can be accurately measured over a long period of time. Furthermore, since the charge / discharge characteristics are measured at the same time as the amount of weight change, the charge / discharge reaction efficiency of the metal-air battery can be calculated and evaluated with high accuracy. From this point of view, in the present specification, the evaluation of the battery characteristics is intended to evaluate the metal-air battery by the charge / discharge characteristics.
 制御部160は、算出・評価部220による結果を表示する表示部230を備えてよい。表示部230は、例えば、液晶ディスプレイである。表示部230には、結果に加えて、測定制御部210が行う重量測定部110および充放電特性測定部150の測定条件の設定画面等が表示されてもよい。 The control unit 160 may include a display unit 230 that displays the result of the calculation / evaluation unit 220. The display unit 230 is, for example, a liquid crystal display. In addition to the result, the display unit 230 may display a screen for setting measurement conditions of the weight measuring unit 110 and the charge / discharge characteristic measuring unit 150 performed by the measurement control unit 210.
 制御部160は、ユーザからの入力操作を受け付ける入力部240を備えていてよい。入力部240は、例えば、キーボート、マウス、ボタン、タッチパネル、タッチセンサ、タッチペン、音声入力等である。 The control unit 160 may include an input unit 240 that receives an input operation from the user. The input unit 240 is, for example, a keyboard, a mouse, a button, a touch panel, a touch sensor, a touch pen, a voice input, or the like.
 制御部160は、測定制御部210、算出・評価部220等が実行する各種のプログラム(評価プログラム)、OSプログラム、アプリケーションプログラム、これらを実行するときに読み出す各種データを記録する記憶部250を備えていてよい。記憶部250は、重量測定部110が測定した重量変化量と、充放電特性測定部150が測定した充放電特性とを互いに関連付けて記憶する。このような記憶部250は、ハードディスク、フラッシュメモリなどの不揮発性の記憶装置である。 The control unit 160 includes a measurement control unit 210, various programs (evaluation programs) executed by the calculation / evaluation unit 220, etc., an OS program, an application program, and a storage unit 250 that records various data to be read when these are executed. You may be. The storage unit 250 stores the amount of change in weight measured by the weight measuring unit 110 and the charging / discharging characteristic measured by the charging / discharging characteristic measuring unit 150 in association with each other. Such a storage unit 250 is a non-volatile storage device such as a hard disk or a flash memory.
 制御部160は、重量測定部110による重量変化量を補正する秤量値補正部260を備えてもよい。秤量値補正部260は、温度検出部190および/または気圧検出部(図示せず)によって測定された温度変動および/または気圧変動に伴う、秤量値の変動が生じる場合に、重量測定部110の感度ドリフト値で秤量値を補正する。感度ドリフト値は、予め、重量測定部110が備えていてもよいし、測定直前に分銅やセルホルダ等不変重量品の秤量値変化の温度変動/気圧変動依存性があるかを調べ、変化量に応じて設定してもよい。このような観点から、測定制御部210は、金属空気電池以外にも不変重量品の重量変化量(秤量値)を取得してもよい。 The control unit 160 may include a weighing value correction unit 260 that corrects the amount of change in weight by the weight measurement unit 110. The weighing value correction unit 260 is a weight measuring unit 110 when a fluctuation of the weighing value occurs due to the temperature fluctuation and / or the atmospheric pressure fluctuation measured by the temperature detecting unit 190 and / or the atmospheric pressure detecting unit (not shown). Correct the weighing value with the sensitivity drift value. The sensitivity drift value may be provided in advance by the weight measuring unit 110, or immediately before the measurement, it is investigated whether or not there is a temperature fluctuation / atmospheric pressure fluctuation dependence of the change in the weighing value of an immutable heavy product such as a weight or a cell holder, and the change amount is determined. It may be set accordingly. From such a viewpoint, the measurement control unit 210 may acquire the weight change amount (weighing value) of the immutable weight product in addition to the metal-air battery.
 図2を参照して、算出・評価部220をさらに詳述する。
 制御部160は、さらに、電解液揮発速度算出部221、放電重量変化量算出部222、反応電子数算出部223、充電重量変化量算出部224、および、静電容量算出部225を機能ブロックとして備えてよい。
The calculation / evaluation unit 220 will be described in more detail with reference to FIG.
The control unit 160 further includes an electrolytic solution volatilization rate calculation unit 221, a discharge weight change amount calculation unit 222, a reaction electron number calculation unit 223, a charge weight change amount calculation unit 224, and a capacitance calculation unit 225 as functional blocks. You may be prepared.
 算出・評価部220は、好ましくは、金属空気電池中の電解液が経過時間に伴い自然に揮発する速度を算出する電解液揮発速度算出部221を備える。電解液揮発速度算出部221は、充放電特性測定部150による充放電特性のレスト中における時刻tの重量変化量Wtrと、時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出する。例示的な時間差は、30分以上50時間以下の時間差である。この時間差を使用することにより、電解液揮発速度を算出できる。ここで、電解液揮発速度算出部221は、記憶部250から時間tとtr0との重量変化量を読み出す。以降では電解液揮発速度をrvolと称す。 The calculation / evaluation unit 220 preferably includes an electrolytic solution volatilization rate calculation unit 221 that calculates the rate at which the electrolytic solution in the metal-air battery spontaneously volatilizes with the elapsed time. Electrolyte volatilization rate calculation unit 221, a weight change amount W tr time t r during rest of the charge and discharge characteristics due to charge-discharge characteristic measurement unit 150, the time t r0 (However, t r> t r0) the change in weight of dividing the change in weight difference wt r -wt r0 and wt r0 time difference t r -t r0, calculates the electrolyte volatilization rate ((wt r -Wt r0) / (t r -t r0)). An exemplary time difference is a time difference of 30 minutes or more and 50 hours or less. By using this time difference, the electrolytic solution volatilization rate can be calculated. Here, electrolyte evaporation rate calculation unit 221 reads the change in weight between the time t r and t r0 from the storage unit 250. Hereinafter, the electrolytic solution volatilization rate is referred to as r vol.
 算出・評価部220は、好ましくは、放電反応のみに起因する金属空気電池の重量変化量を算出する放電重量変化量算出部222を備える。放電重量変化量算出部222は、充放電特性測定部150による充放電特性の放電中における時刻tの重量変化量から、その時刻tまでに自然に揮発した電解液揮発量を減じ、これを放電重量変化量とする。 The calculation / evaluation unit 220 preferably includes a discharge weight change amount calculation unit 222 that calculates the weight change amount of the metal-air battery caused only by the discharge reaction. Discharge weight change calculator 222, from the change in weight at time t d during the discharge of the charge-discharge characteristics due to charging and discharging characteristic measuring section 150 subtracts the electrolyte volatilization amount naturally volatilized until the time t d, which Is the amount of change in discharge weight.
 詳細には、放電重量変化量算出部222は、充放電特性の放電中における時刻tの重量変化量Wtと、時刻td0(ただし、t>td0)の重量変化量Wtd0との重量変化量差(Wt-Wtd0)から、時間(t-td0)の間に自然に揮発した電解液量(rvolx(t-td0))を計算してこれを減じ、放電重量変化量((Wt-Wtd0)-(rvolx(t-td0)))とする。ここで、rvolは、先に求めた電解液揮発速度である。 In particular, the discharge weight change calculator 222, and the change in weight Wt d of time t d during the discharge of the charge-discharge characteristics, time t d0 (However, t d> t d0) and the change in weight Wt d0 of from weight change amount difference (wt d -Wt d0), it calculates the time amount of electrolyte solution spontaneously volatilize during (t d -t d0) (r vol x (t d -t d0)) The amount of change in discharge weight is reduced to ((Wt d − Wt d0 ) − (r vol x (t d −t d0 ))). Here, r vol is the electrolytic solution volatilization rate obtained earlier.
 このように、放電重量変化量算出部222は、記憶部250から時刻tの重量変化量Wtを読み出し、この値から放電直前のレスト時の電解液揮発速度を用いて算出した時刻tにおける電解液揮発量を減じる。電解液揮発速度は、電解液揮発速度算出部221が算出した値である。また、「放電直前のレスト」とは、レスト、放電、レスト、充電の順番の充放電特性の場合には、放電前のレストを意図し、レスト、放電、充電の順番の充放電特性の場合には、放電前のレストを意図する。 Thus, discharge weight change amount calculation unit 222 reads the change in weight Wt d of time t d from the storage unit 250, the time t d calculated using the electrolyte volatilization rate during rest just before discharge from the value Reduces the amount of electrolyte volatilized in. The electrolytic solution volatilization rate is a value calculated by the electrolytic solution volatilization rate calculation unit 221. Further, "rest immediately before discharge" means a rest before discharge in the case of charge / discharge characteristics in the order of rest, discharge, rest, and charge, and in the case of charge / discharge characteristics in the order of rest, discharge, and charge. Is intended to be a rest before discharge.
 放電重量変化量算出部222は、ユーザの設定により所定の時間間隔で算出するようにしてもよいし、金属空気電池の重量変化量を測定するたびに算出するようにしてもよい。 The discharge weight change amount calculation unit 222 may be calculated at predetermined time intervals according to the user's setting, or may be calculated every time the weight change amount of the metal-air battery is measured.
 算出・評価部220は、好ましくは、放電反応時に金属空気電池の酸素と反応している電子数を算出する反応電子数算出部223を備える。反応電子数算出部223は、放電重量変化量算出部222で算出された充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、時間間隔Δtで除し、重量変化速度を算出し、充放電特性の測定に用いた電流値をこの重量変化速度で除し、これを反応電子数とする。例示的な時間間隔Δtは、1秒以上60秒以下の範囲である。 The calculation / evaluation unit 220 preferably includes a reaction electron number calculation unit 223 that calculates the number of electrons reacting with oxygen in the metal-air battery during the discharge reaction. The reaction electron number calculation unit 223 divides the weight change amount caused only by the discharge reaction of the time interval Δt d during discharge of the charge / discharge characteristics calculated by the discharge weight change amount calculation unit 222 by the time interval Δt d . The weight change rate is calculated, and the current value used for measuring the charge / discharge characteristics is divided by this weight change rate, and this is taken as the number of reaction electrons. The exemplary time interval Δt d is in the range of 1 second or more and 60 seconds or less.
 例えば、金属空気電池がリチウム空気電池の場合、放電時は次式で表される電気化学反応が生じる。
 2Li +2e + O →Li
 したがって、反応電子数が+2に近い値であればあるほど、放電効率に優れたリチウム空気電池であると評価できる。
For example, when the metal-air battery is a lithium-air battery, an electrochemical reaction represented by the following equation occurs during discharge.
2Li + + 2e - + O 2 → Li 2 O 2
Therefore, the closer the number of reaction electrons is to +2, the more it can be evaluated that the lithium-air battery has excellent discharge efficiency.
 算出・評価部220は、好ましくは、充電反応のみに起因する金属空気電池中の電解液の重量変化量を算出する充電重量変化量算出部224を備える。充電重量変化量算出部224は、充放電特性測定部150による充放電特性の充電中における時刻tの重量変化量から、その時刻tまでに自然に揮発した電解液揮発量を減じ、これを充電重量変換量とする。 The calculation / evaluation unit 220 preferably includes a charge weight change amount calculation unit 224 that calculates the weight change amount of the electrolytic solution in the metal-air battery due only to the charge reaction. The charge weight change amount calculation unit 224 reduces the amount of electrolyte volatilized naturally volatilized by that time t c from the amount of weight change at time t c during charging of the charge / discharge characteristics by the charge / discharge characteristic measurement unit 150. Is the charge weight conversion amount.
 詳細には、充電重量変化量算出部224は、充放電特性の充電中における時刻tの重量変化量Wtと、時刻tc0(ただし、t>tc0)の重量変化量Wtc0との重量変化量差(Wt-Wtc0)から、時間(t-tc0)の間に自然に揮発した電解液量(rvolx(t-tc0))を計算してこれを減じ、充電重量変化量((Wt-Wtc0)-(rvolx(t-tc0)))とする。ここでも、rvolは、先に求めた電解液揮発速度である。 In particular, the charge weight change amount calculating unit 224, and the change in weight Wt c at time t c in the charge of the charge-discharge characteristics, the time t c0 (However, t c> t c0) and the change in weight Wt c0 of from weight change amount difference (wt c -Wt c0), this by calculating the time amount of electrolyte solution spontaneously volatilize during (t c -t c0) (r vol x (t c -t c0)) The amount of change in charge weight is reduced to ((Wt c − Wt c0 ) − (r vol x (t c −t c0 ))). Here, too, r vol is the electrolytic solution volatilization rate obtained earlier.
 このように、充電重量変化量算出部224は、記憶部250から時刻tの重量変化量を読み出し、この値から充電直前のレスト時の電解液揮発速度を用いて算出した時刻tにおける電解液揮発量を減じる。電解液揮発速度は、電解液揮発速度算出部221が算出した値である。 In this way, the charge weight change amount calculation unit 224 reads the weight change amount at time t c from the storage unit 250, and electrolyzes at time t c calculated from this value using the electrolytic solution volatilization rate at the time of rest immediately before charging. Reduce the amount of liquid volatilization. The electrolytic solution volatilization rate is a value calculated by the electrolytic solution volatilization rate calculation unit 221.
 充電重量変化量算出部224は、ユーザの設定により所定の時間間隔で算出するようにしてもよいし、金属空気電池の重量変化量を測定するたびに算出するようにしてもよい。 The charge weight change amount calculation unit 224 may be calculated at predetermined time intervals according to the user's setting, or may be calculated every time the weight change amount of the metal-air battery is measured.
 反応電子数算出部223は、充電反応時に金属空気電池の酸素の排出に要する電子数を算出してもよい。この場合、反応電子数算出部223は、充電重量変化量算出部224で算出された充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、時間間隔Δtで除し、重量変化速度を算出し、充放電特性の測定に用いた電流値をこの重量変化速度で除し、これを反応電子数とする。例示的な時間間隔Δtは、1秒以上60秒以下の範囲である。 The reaction electron number calculation unit 223 may calculate the number of electrons required for discharging oxygen from the metal-air battery during the charging reaction. In this case, the reaction electron number calculation unit 223 determines the amount of weight change due only to the charging reaction at the time interval Δt c during charging of the charge / discharge characteristics calculated by the charge weight change amount calculation unit 224 at the time interval Δt c . Divide to calculate the weight change rate, divide the current value used for measuring the charge / discharge characteristics by this weight change rate, and use this as the number of reaction electrons. The exemplary time interval Δt c is in the range of 1 second or more and 60 seconds or less.
 例えば、金属空気電池がリチウム空気電池の場合、充電時は次式で表される電気化学反応が生じる。
 2Li +2e + O ←Li
 したがって、反応電子数が-2に近い値であればあるほど、充電効率に優れたリチウム空気電池であると評価できる。
For example, when the metal-air battery is a lithium-air battery, an electrochemical reaction represented by the following formula occurs during charging.
2Li + + 2e - + O 2 ← Li 2 O 2
Therefore, the closer the number of reaction electrons is to -2, the more it can be evaluated that the lithium-air battery has excellent charging efficiency.
 上述したように、反応電子数算出部223は、放電時のみ、充電時のみ、あるいは、放電時および充電時の両方に酸素の吸収/排出に要した電子数を算出してもよい。 As described above, the reaction electron number calculation unit 223 may calculate the number of electrons required for oxygen absorption / discharge only during discharging, charging, or both discharging and charging.
 算出・評価部220は、好ましくは、静電容量を算出する静電容量算出部225を備える。静電容量算出部225は、充放電特性の放電開始後、かつ、重量変化が生じるまでに要した時間ΔTと、時間ΔTの間に流された電流値(mA)とから算出する。詳細には、静電容量(mAh)は、次式に基づく。算出された静電容量だけの放電が進行していることが分かる。
 静電容量(mAh)=電流(mA)×時間ΔT
The calculation / evaluation unit 220 preferably includes a capacitance calculation unit 225 for calculating the capacitance. The capacitance calculation unit 225 calculates from the time ΔT required after the start of discharge of the charge / discharge characteristics and until the weight change occurs, and the current value (mA) passed during the time ΔT. Specifically, the capacitance (mAh) is based on the following equation. It can be seen that the discharge of only the calculated capacitance is in progress.
Capacitance (mAh) = current (mA) x time ΔT
 次に、本発明の評価装置100の動作を説明する。
 評価されるべき金属空気電池が昇降部130のステージ120に載置され、必要に応じて、筐体140内の雰囲気ガスや温度が制御されると、制御部160の測定制御部210は、ユーザからの重量測定部110および充放電特性測定部150の測定条件を受け取り、昇降部130のステージ120を昇降させ、重量測定部110および充放電特性測定部150の測定を同時に実行し、重量変化量および充放電特性を連続して取得する。取得した重量変化量および充放電特性に係るデータは、例えば、経過時間によって互いに関連付けて測定制御部210に一時的に格納してもよいし、記憶部250に格納するようにしてもよい。ここでは、記憶部250に取得しデータが記憶されるものとする。
Next, the operation of the evaluation device 100 of the present invention will be described.
When the metal air battery to be evaluated is placed on the stage 120 of the elevating unit 130 and the atmospheric gas and temperature in the housing 140 are controlled as needed, the measurement control unit 210 of the control unit 160 uses the user. Receives the measurement conditions of the weight measurement unit 110 and the charge / discharge characteristic measurement unit 150 from the above, raises and lowers the stage 120 of the elevating unit 130, and simultaneously executes the measurements of the weight measurement unit 110 and the charge / discharge characteristic measurement unit 150, and the amount of weight change. And the charge / discharge characteristics are continuously acquired. The acquired data related to the amount of weight change and the charge / discharge characteristics may be temporarily stored in the measurement control unit 210 or stored in the storage unit 250 in association with each other according to the elapsed time, for example. Here, it is assumed that the data is acquired and stored in the storage unit 250.
 次いで、制御部160の算出・評価部220は、取得された重量変化量および充放電特性のデータを記憶部250から読み出し、金属空気電池の電池特性を算出・評価する。詳細には、算出・評価部220は、ユーザからの評価条件を受け取り、電解液揮発速度算出部221が電解液揮発速度を算出したり、放電重量変化量算出部222が放電反応時の重量変化量を算出したり、充電重量変化量算出部224が充電反応時の重量変化量を算出したり、反応電子数算出部223が、放電反応時および/または充電反応時の空気の吸収・排出に要する電子数を算出したり、静電容量算出部225が静電容量を算出したりする。これらの評価を同時に行ってもよいし、いずれかを選択して行ってもよい。制御部160は、これらの結果を表示部230に表示してもよい。 Next, the calculation / evaluation unit 220 of the control unit 160 reads the acquired weight change amount and charge / discharge characteristic data from the storage unit 250, and calculates and evaluates the battery characteristics of the metal-air battery. Specifically, the calculation / evaluation unit 220 receives the evaluation conditions from the user, the electrolytic solution volatilization rate calculation unit 221 calculates the electrolytic solution volatilization rate, and the discharge weight change amount calculation unit 222 changes the weight during the discharge reaction. The amount is calculated, the charge weight change amount calculation unit 224 calculates the weight change amount during the charge reaction, and the reaction electron number calculation unit 223 is used for absorbing and discharging air during the discharge reaction and / or the charge reaction. The required number of electrons is calculated, and the capacitance calculation unit 225 calculates the capacitance. These evaluations may be performed at the same time, or one of them may be selected. The control unit 160 may display these results on the display unit 230.
 算出・評価部220は、互いに関連付けられた重量変化量および充放電特性のデータを用いて、長期間にわたって金属空気電池の性能評価を行うことができる。さらに、金属空気電池の重量変化量は、測定のたびにゼロ点補正されているため、得られる性能評価は高精度であり、信頼性が高い。 The calculation / evaluation unit 220 can evaluate the performance of the metal-air battery for a long period of time by using the data of the weight change amount and the charge / discharge characteristics associated with each other. Further, since the weight change amount of the metal-air battery is zero-point corrected for each measurement, the obtained performance evaluation is highly accurate and highly reliable.
 図3は、例示的なグラフィカルユーザインターフェース(GUI)画面を示す図である。 FIG. 3 is a diagram showing an exemplary graphical user interface (GUI) screen.
 図3には、ユーザが評価装置100を操作するための操作画面として、例示的なGUI画面を示す。操作画面は、制御部160の表示部230に表示されてよい。このような画面の操作は、上述の入力部240によって行われる。 FIG. 3 shows an exemplary GUI screen as an operation screen for the user to operate the evaluation device 100. The operation screen may be displayed on the display unit 230 of the control unit 160. Such screen operations are performed by the above-mentioned input unit 240.
 トップページ300は、重量測定条件設定ボタン310、充放電特性測定条件設定ボタン320、評価項目設定ボタン330、測定実行ボタン340、結果ボタン350および終了ボタン360を備える。 The top page 300 includes a weight measurement condition setting button 310, a charge / discharge characteristic measurement condition setting button 320, an evaluation item setting button 330, a measurement execution button 340, a result button 350, and an end button 360.
 図4は、例示的な重量測定条件設定画面を示す図である。 FIG. 4 is a diagram showing an exemplary weight measurement condition setting screen.
 ユーザが重量測定条件設定ボタン310を選択すると、重量測定条件設定画面400に移る。ユーザは、金属空気電池や不変重量品の重量測定の条件を適宜設定する。例えば、図4では、昇降部130が備えるステージ120の昇降速度、測定周期、測定回数、重量測定までの待機時間およびTareまでの待機時間を設定できる。図4では、秤量値補正はオフとなっている。また、重量測定条件設定画面400には、測定時の重量、現在の測定回数、経過時間などをリアルタイムに表示されてもよい。 When the user selects the weight measurement condition setting button 310, the screen moves to the weight measurement condition setting screen 400. The user appropriately sets the conditions for measuring the weight of the metal-air battery and the immutable weight product. For example, in FIG. 4, it is possible to set the ascending / descending speed of the stage 120 included in the elevating unit 130, the measurement cycle, the number of measurements, the waiting time until weight measurement, and the waiting time until Tare. In FIG. 4, the weighing value correction is turned off. Further, the weight measurement condition setting screen 400 may display the weight at the time of measurement, the current number of measurements, the elapsed time, and the like in real time.
 重量測定条件の設定を入力し、設定ボタンを選択し、測定条件を確定させた後、トップページ300に戻る。測定実行ボタン340を選択すると、測定制御部210は、重量測定条件で設定された測定条件を昇降部130および重量測定部110に送り、昇降部130がステージ120を昇降させながら、金属空気電池の重量測定を実施する。ここでは、充放電特性測定条件が入力されていないため、金属空気電池の重量測定のみが行われる。測定が終了し、結果ボタン350を選択すると、結果が表示される。 Enter the weight measurement condition settings, select the setting button, confirm the measurement conditions, and then return to the top page 300. When the measurement execution button 340 is selected, the measurement control unit 210 sends the measurement conditions set in the weight measurement conditions to the elevating unit 130 and the weight measuring unit 110, and the elevating unit 130 moves the stage 120 up and down while moving the metal-air battery. Carry out a weight measurement. Here, since the charge / discharge characteristic measurement conditions are not input, only the weight measurement of the metal-air battery is performed. When the measurement is completed and the result button 350 is selected, the result is displayed.
 図5は、例示的な重量測定結果を示す図である。 FIG. 5 is a diagram showing an exemplary weight measurement result.
 評価装置100が温度検出部190を備えている場合、測定結果500には、筐体140内の温度の時間変化と、金属空気電池の重量変化量の時間変化とが示される。図5では、不変重量品である負荷の秤量値が、温度の増減に応じて、変化(ドリフト)している様子が示される。 When the evaluation device 100 includes the temperature detection unit 190, the measurement result 500 shows the time change of the temperature inside the housing 140 and the time change of the weight change amount of the metal-air battery. FIG. 5 shows how the weighed value of the load, which is an immutable heavy product, changes (drifts) as the temperature increases or decreases.
 図6は、別の例示的な重量測定条件設定画面を示す図である。 FIG. 6 is a diagram showing another exemplary weight measurement condition setting screen.
 図6は、重量測定条件設定画面600であるが、秤量値補正がオンになっている点が図4と異なる。制御部160の秤量値補正部260は、感度ドリフト値により秤量値を補正する。設定後、測定実行した結果を図7に示す。 FIG. 6 shows the weight measurement condition setting screen 600, which is different from FIG. 4 in that the weighing value correction is turned on. The weighing value correction unit 260 of the control unit 160 corrects the weighing value based on the sensitivity drift value. The result of measurement execution after setting is shown in FIG.
 図7は、別の例示的な重量測定結果を示す図である。 FIG. 7 is a diagram showing another exemplary weight measurement result.
 秤量値補正をオンにすると、測定結果700によれば、負荷の秤量値が、温度の増減に関わらず、一定となる様子が示される。このように、秤量値補正をオンにすることにより、秤量値補正部260が感度ドリフト値を用いて自動的に秤量値を補正する。このような補正された重量変化量は、温度や気圧の変動に関わらず、一定となる。感度ドリフト値は、重量測定部110が予め有する感度ドリフト値であってもよいし、図5のドリフト値を用いて設定してもよい。 When the weighing value correction is turned on, the measurement result 700 shows that the weighing value of the load becomes constant regardless of the increase or decrease in temperature. In this way, by turning on the weighing value correction, the weighing value correction unit 260 automatically corrects the weighing value using the sensitivity drift value. Such a corrected amount of weight change is constant regardless of fluctuations in temperature and atmospheric pressure. The sensitivity drift value may be a sensitivity drift value previously possessed by the weight measuring unit 110, or may be set using the drift value shown in FIG.
 図8は、例示的な充放電特性測定条件設定画面を示す図である。 FIG. 8 is a diagram showing an exemplary charge / discharge characteristic measurement condition setting screen.
 再度、図3に戻り、ユーザが充放電特性測定条件設定ボタン320を選択すると、充放電特性測定条件設定画面800に移る。ここで、ユーザは、充放電の繰り返し測定回数(サイクル数)に関するシーケンスの選択と、充電時の充電電気量、レストおよび放電時の放電容量を設定するパターンの選択とを行う。 Returning to FIG. 3 again, when the user selects the charge / discharge characteristic measurement condition setting button 320, the screen moves to the charge / discharge characteristic measurement condition setting screen 800. Here, the user selects a sequence related to the number of repeated measurements of charging / discharging (number of cycles), and selects a pattern for setting the charging electricity amount at the time of charging, the rest, and the discharging capacity at the time of discharging.
 図8では、ユーザは、シーケンスタブにて、シーケンスNo.1を選択して
おり、シーケンスNo.1は、パターンNo.2を用い、サイクル数が20回のシーケンスからなることが分かる。さらに、ユーザは、シーケンスタブにて、シーケンスNo.1で引用されるパターンNo.2の詳細(モード、制御時間、記録時間間隔、カットオフ(目標)電圧、電流)を設定する。目標電圧が2V~4.5Vであることが分かる。
In FIG. 8, the user can see the sequence No. on the sequence tab. 1 is selected, and the sequence No. 1 is the pattern No. Using 2, it can be seen that the number of cycles consists of a sequence of 20 times. Further, the user can display the sequence No. on the sequence tab. Pattern No. 1 cited in 1. Set the details of 2 (mode, control time, recording time interval, cutoff (target) voltage, current). It can be seen that the target voltage is 2V to 4.5V.
 予め種々のシーケンス、および、種々のパターンを記憶部250に保存しておけば、読み出すだけでよい。 If various sequences and various patterns are stored in the storage unit 250 in advance, it is only necessary to read them out.
 図9は、例示的な評価項目設定画面を示す図である。 FIG. 9 is a diagram showing an exemplary evaluation item setting screen.
 重量測定条件の設定および充放電特性測定条件の設定を入力し、設定ボタンを選択し、測定条件を確定させた後、トップページ300に戻る。評価項目設定ボタン330を選択すると、図9に示す金属空気電池の各種評価を設定する評価項目設定画面900が表示される。ここで、電解液揮発速度、放電反応に伴う重量変化量、放電反応に伴う電子数算出、充電反応に伴う重量変化量、充電反応に伴う電子数算出、静電容量算出等の各種評価項目を選択できる。ユーザは、所望の評価項目を選択し、算出間隔等を入力できる。 Enter the weight measurement condition settings and charge / discharge characteristics measurement condition settings, select the setting button, confirm the measurement conditions, and then return to the top page 300. When the evaluation item setting button 330 is selected, the evaluation item setting screen 900 for setting various evaluations of the metal-air battery shown in FIG. 9 is displayed. Here, various evaluation items such as electrolytic solution volatilization rate, weight change amount due to discharge reaction, electron number calculation due to discharge reaction, weight change amount due to charge reaction, electron number calculation due to charge reaction, capacitance calculation, etc. are performed. You can choose. The user can select a desired evaluation item and input a calculation interval and the like.
 このように、重量測定条件の設定、充放電特性測定条件の設定、および、評価項目の設定を入力し、トップページ300に戻り、測定実行ボタン340を選択すると、測定制御部210は、重量測定条件および充放電特性測定条件で設定された測定条件を、昇降部130、重量測定部110および充放電特性測定部150に送り、昇降部130がステージ120を昇降させながら、金属空気電池の重量測定および充放電特性測定を実施する。 In this way, when the weight measurement condition setting, the charge / discharge characteristic measurement condition setting, and the evaluation item setting are input, the top page 300 is returned, and the measurement execution button 340 is selected, the measurement control unit 210 measures the weight. The measurement conditions set in the conditions and charge / discharge characteristic measurement conditions are sent to the elevating unit 130, the weight measuring unit 110, and the charge / discharge characteristic measuring unit 150, and the elevating unit 130 raises and lowers the stage 120 to measure the weight of the metal air battery. And the charge / discharge characteristics are measured.
 図10は、例示的な結果を示す図である。
 図11は、別の例示的な結果を示す図である。
FIG. 10 is a diagram showing exemplary results.
FIG. 11 is a diagram showing another exemplary result.
 測定が終了し、トップページ300の結果ボタン350を選択すると、図10や図11に示す結果画面1000、1100が表示される。結果画面1000は、金属空気電池の正味の重量変化量および充放電特性に加えて、評価項目設定画面900で選択した電解液揮速度に基づいた電解液揮発量の変化を示す。 When the measurement is completed and the result button 350 on the top page 300 is selected, the result screens 1000 and 1100 shown in FIGS. 10 and 11 are displayed. The result screen 1000 shows the change in the amount of electrolyte volatilization based on the electrolyte volatilization rate selected on the evaluation item setting screen 900, in addition to the net weight change amount and charge / discharge characteristics of the metal-air battery.
 結果画面1000において次のページへを選択すると、結果画面1100が表示される。結果画面1100は、評価項目設定画面900で選択した充放電反応に伴う重量変化量、充放電反応に伴う重量変化速度、および、充放電反応における反応電子数の変化を示す。ここでは、金属空気電池としてリチウム空気電池の場合を示すため、外部とやりとりする空気は酸素であることから、電子数は「e-/O」と表示されている。結果画面1100の充電反応時の反応電子数に着目すれば、経過時間に伴い-2からずれる傾向を示し、正常な充電反応が進行しなくなることが示唆される。 When the next page is selected on the result screen 1000, the result screen 1100 is displayed. The result screen 1100 shows the amount of change in weight due to the charge / discharge reaction selected on the evaluation item setting screen 900, the rate of change in weight due to the charge / discharge reaction, and the change in the number of reaction electrons in the charge / discharge reaction. Here, in order to show the case of a lithium-air battery as the metal-air battery, since air to be exchanged with the outside is oxygen, the number of electrons is - labeled "e / O 2". Focusing on the number of reaction electrons during the charging reaction of the result screen 1100, it shows a tendency to deviate from -2 with the elapsed time, suggesting that the normal charging reaction does not proceed.
 結果画面1000、1100からトップページ300に戻り、終了ボタン360を選択すると、アプリケーションが終了する。このようにして、本発明の評価装置100は、金属空気電池の経時的な電池評価を正確な重量変化に基づいて実施できる。 Return to the top page 300 from the result screens 1000 and 1100 and select the end button 360 to end the application. In this way, the evaluation device 100 of the present invention can carry out the battery evaluation of the metal-air battery over time based on the accurate weight change.
 図10、図11に示す結果画面以外にも、金属空気電池の重量変化量と充放電特性との特性評価前の測定結果を表示させてもよい。 In addition to the result screens shown in FIGS. 10 and 11, the measurement results before the characteristic evaluation of the weight change amount and the charge / discharge characteristics of the metal-air battery may be displayed.
 次に、本発明の金属空気電池の評価方法を説明する。本発明の評価方法は、図1に示す評価装置を用いて実施されるものとして説明するが、本発明の評価装置に限定されない。各ステップを実施可能な任意の装置を採用し、本発明の評価方法を実施してもよい。
 図12は、本発明の金属空気電池の電池特性を評価する方法を示すフローチャートである。
Next, the evaluation method of the metal-air battery of the present invention will be described. The evaluation method of the present invention will be described as being carried out using the evaluation device shown in FIG. 1, but is not limited to the evaluation device of the present invention. The evaluation method of the present invention may be carried out by adopting any device capable of carrying out each step.
FIG. 12 is a flowchart showing a method for evaluating the battery characteristics of the metal-air battery of the present invention.
 ステップS1210:筐体140等の測定環境内に雰囲気制御ガスをフローする。これにより、金属空気電池の測定環境の雰囲気が制御される。雰囲気制御ガスは、酸素ガス、二酸化炭素ガス、および、窒素、アルゴン、ヘリウム、キセノン等の希ガスであってよい。なお、ステップS1210は必須ではないが、測定環境を制御することにより、より高精度な電池評価を行える。 Step S1210: Atmosphere control gas is flowed into the measurement environment such as the housing 140. As a result, the atmosphere of the measurement environment of the metal-air battery is controlled. The atmosphere control gas may be an oxygen gas, a carbon dioxide gas, and a rare gas such as nitrogen, argon, helium, or xenon. Although step S1210 is not essential, more accurate battery evaluation can be performed by controlling the measurement environment.
 ステップS1220:重量測定部110の測定位置への金属空気電池の配置(図1の左図)と、測定位置からの金属空気電池の離間(図1の右図)とを繰り返し、金属空気電池の重量を繰り返し測定する。これにより、金属空気電池の重量測定のたびにゼロ点補正がなされ、正確な重量変化量が得られる。 Step S1220: The arrangement of the metal-air battery at the measurement position of the weight measuring unit 110 (left figure in FIG. 1) and the separation of the metal-air battery from the measurement position (right figure in FIG. 1) are repeated to obtain the metal-air battery. Weigh repeatedly. As a result, the zero point is corrected every time the weight of the metal-air battery is measured, and an accurate weight change amount can be obtained.
 このような金属空気電池の重量の繰り返し測定は、昇降部130が金属空気電池を載置したステージ120を一定間隔で昇降させることにより行われる。金属空気電池が測定位置から離間すると、重量測定部110のゼロ点補正がされ、金属空気電池が測定位置になると、重量測定部110が金属空気電池の重量を測定する。測定された重量変化量は、例えば、評価装置100の制御部160の記憶部250に記憶される。 Such repeated measurement of the weight of the metal-air battery is performed by the elevating unit 130 raising and lowering the stage 120 on which the metal-air battery is placed at regular intervals. When the metal-air battery is separated from the measurement position, the zero point correction of the weight measuring unit 110 is performed, and when the metal-air battery reaches the measurement position, the weight measuring unit 110 measures the weight of the metal-air battery. The measured weight change amount is stored in, for example, the storage unit 250 of the control unit 160 of the evaluation device 100.
 ステップS1230:ステップS1220と同時に、金属空気電池の充放電特性を測定する。同時に測定するため、充放電特性を、重量測定のたびにゼロ点補正された経時的な重量変化量と関連付けることができる。充放電特性は、充放電試験機等によって行われる。測定された充放電特性は、評価装置100の制御部160の記憶部250等に記憶されるが、重量変化量の値と、例えば時間で関連付けて記憶される。 Step S1230: At the same time as step S1220, the charge / discharge characteristics of the metal-air battery are measured. Since the measurements are taken at the same time, the charge / discharge characteristics can be associated with the amount of change in weight over time, which is zero-point corrected for each weight measurement. The charge / discharge characteristics are performed by a charge / discharge tester or the like. The measured charge / discharge characteristics are stored in a storage unit 250 or the like of the control unit 160 of the evaluation device 100, and are stored in association with the value of the weight change amount, for example, by time.
 ステップS1240:ステップS1220で得られた重量変化量、および、ステップS1230で得られた充放電特性のデータに基づいて、金属空気電池を算出・評価する。このように、互いに関連付けられた正確な重量変化量および充放電特性に基づいて金属空気電池の充放電反応に伴う、電解液揮発速度、充放電に伴う重量変化量、充放電に伴う反応電子数、静電容量等の電池特性を算出・評価するため、金属空気電池の性能評価が長期間にわたって連続して高精度に実施できる。算出・評価は、評価装置100の制御部160が行う。 Step S1240: The metal-air battery is calculated and evaluated based on the weight change amount obtained in step S1220 and the charge / discharge characteristic data obtained in step S1230. In this way, the electrolyte volatilization rate associated with the charge / discharge reaction of the metal-air battery, the amount of weight change associated with the charge / discharge, and the number of reaction electrons associated with the charge / discharge are based on the accurate weight change amount and charge / discharge characteristics associated with each other. , Since the battery characteristics such as capacitance are calculated and evaluated, the performance evaluation of the metal-air battery can be continuously performed with high accuracy for a long period of time. The calculation / evaluation is performed by the control unit 160 of the evaluation device 100.
 ステップS1240の算出・評価をさらに詳述する。
 算出・評価は、好ましくは、金属空気電池中の電解液が経過時間に伴い自然に揮発する速度を算出する。充放電特性のレスト中における時刻tの重量変化量Wtrと、時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出する。例示的な時間差は、30分以上50時間以下の時間差である。この時間差を使用することにより、電解液揮発速度を正確に算出できる。ここで、時間tとtr0との重量変化量を記憶部250から読み出し、算出に使用する。電解液揮発速度をrvolと称す。
The calculation / evaluation of step S1240 will be described in more detail.
The calculation / evaluation preferably calculates the rate at which the electrolytic solution in the metal-air battery spontaneously volatilizes with the elapsed time. And the change in weight W tr time t r during rest of the charge-discharge characteristics, time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of Wt r -wt r0 the time difference t divided by the r -t r0, to calculate the electrolyte evaporation rate ((Wt r -Wt r0) / (t r -t r0)). An exemplary time difference is a time difference of 30 minutes or more and 50 hours or less. By using this time difference, the electrolytic solution volatilization rate can be calculated accurately. Here, reading out the change in weight between the time t r and t r0 from the storage unit 250, to be used in the calculation. The electrolytic solution volatilization rate is called r vol.
 算出・評価は、好ましくは、放電反応のみに起因する金属空気の重量変化量を算出する。充放電特性の放電中における時刻tの重量変化量から、その時刻tまでに自然に揮発した電解液揮発量を減じ、放電重量変化量を算出する。 The calculation / evaluation preferably calculates the amount of change in the weight of the metallic air due only to the discharge reaction. The amount of change in discharge weight is calculated by subtracting the amount of volatilization of the electrolytic solution that naturally volatilized by that time t d from the amount of change in weight at time t d during discharge of the charge / discharge characteristics.
 詳細には、充放電特性の放電中における時刻tの重量変化量Wtと、時刻td0(ただし、t>td0)の重量変化量Wtd0との重量変化量差(Wt-Wtd0)から、時間(t-td0)の間に自然に揮発した電解液量(rvolx(t-td0))を計算してこれを減じ、放電重量変化量((Wt-Wtd0)-(rvolx(t-td0)))とする。rvolは、先に求めた電解液揮発速度である。 In particular, the change in weight Wt d of time t d during the discharge of the charge-discharge characteristics, time t d0 (However, t d> t d0) the change in weight difference between the change in weight Wt d0 of (Wt d - From Wt d0 ), calculate the amount of electrolyte (r vol x (t d- t d0 )) that naturally volatilized during the time (t d- t d0 ), subtract this, and subtract the amount of change in discharge weight ((Wt-t d0)). d −Wt d0 ) − (r vol x (t d −t d0 ))). r vol is the electrolytic solution volatilization rate obtained earlier.
 詳細には、記憶部250から時刻tの重量変化量Wtを読み出し、この値から放電直前のレスト時の電解液揮発速度を用いて算出した時刻tにおける電解液揮発量を減じる。「放電直前のレスト」とは、レスト、放電、レスト、充電の順番の充放電特性の場合には、放電前のレストを意図し、レスト、放電、充電の順番の充放電特性の場合には、放電前のレストを意図する。 Specifically, the weight change amount Wt d at time t d is read from the storage unit 250, and the electrolyte volatilization amount at time t d calculated by using the electrolyte volatilization rate at the rest immediately before discharge is subtracted from this value. The "rest immediately before discharge" is intended to be a rest before discharge in the case of charge / discharge characteristics in the order of rest, discharge, rest, and charge, and in the case of charge / discharge characteristics in the order of rest, discharge, and charge. , Intended to rest before discharge.
 放電重量変化量をユーザの設定により所定の時間間隔で算出してもよいし、金属空気電池の重量変化量を測定するたびに算出してもよい。 The amount of change in discharge weight may be calculated at predetermined time intervals according to the user's settings, or may be calculated each time the amount of change in weight of the metal-air battery is measured.
 算出・評価は、好ましくは、放電反応時に金属空気電池の空気と反応している電子数を算出する。充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、時間間隔Δtで除し、重量変化速度を算出し、充放電特性の測定に用いた電流値をこの重量変化速度で除し、空気反応電子数を算出する。例示的な時間間隔Δtは、1秒以上60秒以下の範囲である。 The calculation / evaluation preferably calculates the number of electrons reacting with the air of the metal-air battery during the discharge reaction. The amount of weight change caused only by the discharge reaction at the time interval Δt d during discharge of the charge / discharge characteristics is divided by the time interval Δt d to calculate the weight change rate, and the current value used for measuring the charge / discharge characteristics is this. Divide by the rate of weight change to calculate the number of air reaction electrons. The exemplary time interval Δt d is in the range of 1 second or more and 60 seconds or less.
 算出・評価は、好ましくは、充電反応のみに起因する金属空気電池中の電解液の重量変化量を算出する。充放電特性の充電中における時刻tの重量変化量から、その時刻tまでに自然に揮発した電解液揮発量を減じ、充電重量変換量を算出する。 The calculation / evaluation preferably calculates the amount of change in the weight of the electrolytic solution in the metal-air battery due only to the charging reaction. The charge weight conversion amount is calculated by subtracting the volatilization amount of the electrolytic solution naturally volatilized by that time t c from the weight change amount at time t c during charging of the charge / discharge characteristics.
 詳細には、充放電特性の充電中における時刻tの重量変化量Wtと、時刻tc0(ただし、t>tc0)の重量変化量Wtc0との重量変化量差(Wt-Wtc0)から、時間(t-tc0)の間に自然に揮発した電解液量(rvolx(t-tc0))を計算してこれを減じ、充電重量変化量((Wt-Wtc0)-(rvolx(t-tc0)))とする。rvolは、先に求めた電解液揮発速度である。 In particular, the change in weight Wt c at time t c in the charge of the charge-discharge characteristics, the time t c0 (However, t c> t c0) the change in weight difference between the change in weight Wt c0 of (Wt c - From Wt c0 ), calculate the amount of electrolyte (r vol x (t c- t c0 )) that naturally volatilized during the time (t c- t c0 ), subtract this, and subtract the amount of change in charge weight ((Wt c0)). c- Wt c0 )-(r vol x (t c- t c0 ))). r vol is the electrolytic solution volatilization rate obtained earlier.
 このように、記憶部250から時刻tの重量変化量を読み出し、この値から充電直前のレスト時の電解液揮発速度を用いて算出した時刻tにおける電解液揮発量を減じる。電解液揮発速度は、先に算出した値を用いる。 In this way, the amount of change in weight at time t c is read from the storage unit 250, and the amount of electrolyte volatilization at time t c calculated using the electrolyte volatilization rate at the time of rest immediately before charging is subtracted from this value. For the electrolytic solution volatilization rate, the value calculated above is used.
 充電重量変化量をユーザの設定により所定の時間間隔で算出してもよいし、金属空気電池の重量変化量を測定するたびに算出してもよい。 The charge weight change amount may be calculated at predetermined time intervals according to the user's setting, or may be calculated each time the weight change amount of the metal-air battery is measured.
 算出・評価は、好ましくは、充電反応時に金属空気電池の酸素の排出に要する電子数を算出する。充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、時間間隔Δtで除し、重量変化速度を算出し、充放電特性の測定に用いた電流値をこの重量変化速度で除し、反応電子数を算出する。例示的な時間間隔Δtは、1秒以上60秒以下の範囲である。 The calculation / evaluation preferably calculates the number of electrons required to discharge oxygen from the metal-air battery during the charging reaction. The amount of weight change caused only by the charging reaction of the time interval Δt c during charging of the charge / discharge characteristics is divided by the time interval Δt c to calculate the weight change rate, and the current value used for measuring the charge / discharge characteristics is this. Divide by the rate of weight change to calculate the number of reaction electrons. The exemplary time interval Δt c is in the range of 1 second or more and 60 seconds or less.
 算出・評価は、好ましくは、静電容量を算出する。充放電特性の放電開始後、かつ、重量変化が生じるまでに要した時間ΔTと、時間ΔTの間に流れた電流値(mA)とから静電容量を算出する。詳細には、静電容量(mAh)は、次式に基づく。
 静電容量(mAh)=電流(mA)×時間ΔT
The calculation / evaluation preferably calculates the capacitance. The capacitance is calculated from the time ΔT required after the start of discharge of the charge / discharge characteristics and until the weight change occurs, and the current value (mA) flowing during the time ΔT. Specifically, the capacitance (mAh) is based on the following equation.
Capacitance (mAh) = current (mA) x time ΔT
 図13は、本発明の別の金属空気電池の電池特性を評価する方法を示すフローチャートである。 FIG. 13 is a flowchart showing a method for evaluating the battery characteristics of another metal-air battery of the present invention.
 ステップS1310:図12のステップS1210に先立って、重量測定部110の測定位置への分銅やセルホルダ等の不変重量品の配置(図1の左図)と、測定位置からの不変重量品の離間(図1の右図)とを繰り返し、不変重量品の重量を繰り返し測定する。このステップは、ステップS1220と同様であるため説明を省略する。 Step S1310: Prior to step S1210 in FIG. 12, the arrangement of the immutable heavy goods such as the weight and the cell holder at the measurement position of the weight measuring unit 110 (left figure in FIG. 1) and the separation of the immutable heavy goods from the measurement position (the left figure of FIG. 1). The weight of the immutable weight product is repeatedly measured by repeating (the right figure of FIG. 1). Since this step is the same as step S1220, the description thereof will be omitted.
 ステップS1320:ステップS1310と同時に、筐体140内等の測定環境の温度変化、および/または、筐体140内の気圧変化を測定する。同時に測定するため、温度変化および/または気圧変化を、重量変化量と関連付けることができる。測定された温度変化および/または気圧変化のデータは、例えば、評価装置100の制御部160の記憶部250に、重量変化量の値と、時間で関連付けて記憶される。 Step S1320: At the same time as step S1310, the temperature change in the measurement environment inside the housing 140 and / or the atmospheric pressure change inside the housing 140 are measured. Since it is measured at the same time, temperature change and / or barometric pressure change can be associated with the amount of weight change. The measured temperature change and / or barometric pressure change data is stored, for example, in the storage unit 250 of the control unit 160 of the evaluation device 100 in association with the value of the weight change amount in time.
 ステップS1330:不変重量品の秤量値が、温度変化、および/または、気圧変化に伴い変動しているかどうかを判定する。通常、筐体140のような限られた空間であっても、±1℃程度の温度変化や、±20Pa程度の気圧変化が生じることが知られており、このようなわずかな変化に伴い、重量変化量が、±5ppm(±0.0005%)の範囲で増減する場合、秤量値が変動していると判定する。重量変化量の増減の範囲が上記範囲内であれば、電池評価への影響は少ないため、無視できる。このような判定は、制御部160が重量変化量、温度変化および気圧変化の値を比較して行ってよい。 Step S1330: Determine whether the weighed value of the immutable weight product fluctuates due to temperature change and / or atmospheric pressure change. Normally, it is known that a temperature change of about ± 1 ° C. and a pressure change of about ± 20 Pa occur even in a limited space such as a housing 140, and with such a slight change, it is known. When the amount of change in weight increases or decreases within the range of ± 5 ppm (± 0.0005%), it is determined that the weighed value has changed. If the range of increase / decrease in the amount of weight change is within the above range, the effect on the battery evaluation is small and can be ignored. Such a determination may be made by the control unit 160 by comparing the values of the weight change amount, the temperature change, and the atmospheric pressure change.
 不変重量品の秤量値が、温度変化、および/または、気圧変化に伴い変動していると判定すると、ステップS1330に進む。不変重量品の秤量値が、温度変化、および/または、気圧変化に伴い変動していると判定しない(すなわち、変動していないと判定する)と、秤量値を補正することなく、ステップS1210に進み、金属空気電池の電池評価を行う。 If it is determined that the weighed value of the immutable heavy product fluctuates due to temperature change and / or atmospheric pressure change, the process proceeds to step S1330. If it is not determined that the weighed value of the immutable weight product is fluctuating due to temperature change and / or atmospheric pressure change (that is, it is determined that the weighed value is not fluctuating), the weighing value is not corrected, and step S1210 is performed. Proceed to evaluate the metal-air battery.
 ステップS1340:ステップS1330において、不変重量品の秤量値が、温度変化、および/または、気圧変化に伴い変動していると判定された場合、秤量値を重量測定部110の感度ドリフト値で補正する。感度ドリフト値は、予め、重量測定部110が備える値を採用してもよいし、ステップS1320で得られた変化量に応じて設定してもよい。これにより、温度および気圧が金属空気電池の重量変化量に及ぼす影響を考慮できるため、高精度な評価を可能にする。次いで、ステップS1210へ進み、金属空気電池の電池評価を行う。以降の手順は、図12を参照して説明したため、省略する。 Step S1340: In step S1330, when it is determined that the weighed value of the immutable weight product fluctuates due to temperature change and / or atmospheric pressure change, the weighed value is corrected by the sensitivity drift value of the weight measuring unit 110. .. The sensitivity drift value may be a value provided in the weight measuring unit 110 in advance, or may be set according to the amount of change obtained in step S1320. As a result, the effects of temperature and atmospheric pressure on the amount of weight change of the metal-air battery can be taken into consideration, which enables highly accurate evaluation. Next, the process proceeds to step S1210 to evaluate the metal-air battery. The following procedure has been described with reference to FIG. 12, and will be omitted.
 図2を参照して説明した本発明の評価装置100の制御部160における各機能ブロックは、ハードウェアロジックによって構成してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 Each functional block in the control unit 160 of the evaluation device 100 of the present invention described with reference to FIG. 2 may be configured by hardware logic, or may be realized by software using a CPU (Central Processing Unit). good.
 本発明の評価装置100は、各機能を実現するプログラムの命令を実行するCPU(図示せず)、そのプログラムを格納したROM(Read Only Memory、図示せず)、プログラムを展開するRAM(Randam Access Memory、図示せず)、プログラムおよび各種データを格納するメモリ等の記録媒体を備えてよい。上述した機能を実現するソフトウェアであるプログラムのプログラムコードをコンピュータで読み取り可能に記録した記録媒体を、コンピュータあるいはCPUが記録媒体に記録されているプログラムコードを読み出し実行してもよい。このようにして、評価装置100による金属空気電池の電池特性の評価方法が実現され得る。 The evaluation device 100 of the present invention includes a CPU (not shown) that executes instructions of a program that realizes each function, a ROM (Read Only Memory, not shown) that stores the program, and a RAM (Randam Access) that expands the program. A recording medium such as a memory (not shown), a memory for storing a program and various data may be provided. A computer or a CPU may read and execute the program code recorded on the recording medium on a recording medium in which the program code of a program that is software that realizes the above-mentioned functions is readablely recorded by a computer. In this way, a method of evaluating the battery characteristics of the metal-air battery by the evaluation device 100 can be realized.
 このような記録媒体は、例えば、CD-ROM等のディスク、ICカード等のカード、フラッシュROM等の半導体メモリなどがある。 Such recording media include, for example, disks such as CD-ROMs, cards such as IC cards, and semiconductor memories such as flash ROMs.
 本発明の評価装置100を通信ネットワークと接続し、通信ネットワークを介してプログラムコードを供給してもよい。このような通信ネットワークは、特に制限はないが、例えば、インターネット、イントラネット、LAN、ISDN、CATV通信網、電話回線網、衛星通信網等であり得る。プログラムコードは、電子的な伝送で具現化され、搬送波に埋め込まれたコンピュータデータ信号の形態であってもよい。 The evaluation device 100 of the present invention may be connected to a communication network, and the program code may be supplied via the communication network. Such a communication network is not particularly limited, and may be, for example, the Internet, an intranet, a LAN, an ISDN, a CATV communication network, a telephone line network, a satellite communication network, or the like. The program code may be in the form of a computer data signal embodied in electronic transmission and embedded in a carrier wave.
 次に具体的な実施例を用いて本発明を詳述するが、本発明がこれら実施例に限定されないことに留意されたい。 Next, the present invention will be described in detail with reference to specific examples, but it should be noted that the present invention is not limited to these examples.
[例1]
 例1では、図1の評価装置を構築し、リチウムイオン電池の電池特性を評価した。なお、リチウムイオン電池は、重量不変であるため、不変重量品として使用した。
[Example 1]
In Example 1, the evaluation device of FIG. 1 was constructed and the battery characteristics of the lithium ion battery were evaluated. Since the lithium ion battery is weight-invariant, it was used as an invariant weight product.
 図1の重量測定部110として電子天秤(株式会社エー・アンド・デイ製、AD-4212B-23)、充放電特性測定部150として充放電試験機(株式会社イーシーフロンティア製、ECAD-1000)、温度検出部190として熱電対、制御部160としてパーソナルコンピュータを用いた。リチウムイオン電池は、Li金属箔/LFP(LiFePO:リン酸鉄リチウム)正極(φ16mm)を対向させたCR-2032コインセル電池であった。 The weight measuring unit 110 in FIG. 1 is an electronic balance (A & D Co., Ltd., AD-4212B-23), and the charge / discharge characteristic measuring unit 150 is a charge / discharge tester (ECAD-1000, manufactured by EC Frontier Co., Ltd.). A thermocouple was used as the temperature detection unit 190, and a personal computer was used as the control unit 160. The lithium ion battery was a CR-2032 coin cell battery in which a Li metal foil / LFP (LiFePO 4 : lithium iron phosphate) positive electrode (φ16 mm) was opposed to each other.
 リチウムイオン電池を電池ホルダであるステージ120に配置した。電池ホルダは昇降部130により昇降可能であった。重量測定部150および昇降部130は、ガス供給口とガス排気口とを有する筐体140(内部容積5L)に収容された。リチウムイオン電池を、直径30μmを有する金線によって充放電試験機と電気接触させた。電子天秤、昇降部、充放電試験機の制御に必要なケーブルや導線は、ガス排気口を通して配線し、パーソナルコンピュータ等に接続した。 A lithium-ion battery was placed on the stage 120, which is a battery holder. The battery holder could be raised and lowered by the raising and lowering unit 130. The weight measuring unit 150 and the elevating unit 130 were housed in a housing 140 (internal volume 5L) having a gas supply port and a gas exhaust port. The lithium ion battery was electrically contacted with the charge / discharge tester by a gold wire having a diameter of 30 μm. The cables and conductors required to control the electronic balance, elevating part, and charge / discharge tester were wired through the gas exhaust port and connected to a personal computer or the like.
 図14は、例1の充放電特性測定条件設定画面を示す図である。 FIG. 14 is a diagram showing a charge / discharge characteristic measurement condition setting screen of Example 1.
 図4と同じ重量測定条件および図14に示す充放電特性測定条件でリチウムイオン電池の電池特性を評価した。結果を図15に示す。 The battery characteristics of the lithium ion battery were evaluated under the same weight measurement conditions as in FIG. 4 and the charge / discharge characteristic measurement conditions shown in FIG. The results are shown in FIG.
 図15は、例1のリチウムイオン電池の重量変化量と充放電特性とを示す図である。 FIG. 15 is a diagram showing the weight change amount and charge / discharge characteristics of the lithium ion battery of Example 1.
 図15によれば、7日間(168時間)にわたって、リチウムイオン電池の重量はほとんど変化せず、正常にリチウムイオン電池を充放電制御できることが分かった。 According to FIG. 15, it was found that the weight of the lithium ion battery hardly changed for 7 days (168 hours), and the lithium ion battery could be normally charged and discharged.
[例2]
 例2では、秤量値補正をオンにした以外は図4と同じ重量測定条件(すなわち、図6と同じ重量測定条件)にて、例1と同様に、リチウムイオン電池の電池特性を評価した。結果を図16および図17に示す。電子天秤の感度ドリフト値は、2.8ppm/℃であった。
[Example 2]
In Example 2, the battery characteristics of the lithium-ion battery were evaluated in the same manner as in Example 1 under the same weight measurement conditions as in FIG. 4 (that is, the same weight measurement conditions as in FIG. 6) except that the weighing value correction was turned on. The results are shown in FIGS. 16 and 17. The sensitivity drift value of the electronic balance was 2.8 ppm / ° C.
 図16は、例1のリチウムイオン電池の重量変化量と温度変化とを示す図である。
 図17は、例2のリチウムイオン電池の重量変化量と温度変化とを示す図である。
FIG. 16 is a diagram showing a weight change amount and a temperature change of the lithium ion battery of Example 1.
FIG. 17 is a diagram showing a weight change amount and a temperature change of the lithium ion battery of Example 2.
 なお、図16および図17の温度変化は、筐体内の温度変化である。図16は、例1における図15の重量変化量を拡大し、温度変化と併せて示した図である。図16によれば、筐体内であっても、温度は±1℃で変動しており、この温度変動に追随してリチウムイオン電池の秤量値も±40μgで変動していることが分かった。 Note that the temperature changes in FIGS. 16 and 17 are temperature changes inside the housing. FIG. 16 is a diagram showing an enlarged amount of weight change in FIG. 15 in Example 1 together with a temperature change. According to FIG. 16, it was found that the temperature fluctuates at ± 1 ° C. even inside the housing, and the weighed value of the lithium ion battery also fluctuates at ± 40 μg following this temperature fluctuation.
 一方、図17によれば、例2のリチウムイオン電池の秤量値は、温度変化に追随することなく、一定であり、標準偏差8μgで連続秤量されていた。この秤量値の標準偏差は、電子天秤の精度仕様からも妥当であった。このことから、重量測定部の感度ドリフト値による重量の補正は有効であることが示された。以降の例では、すべて、秤量値補正をオンにして測定を行った。 On the other hand, according to FIG. 17, the weighing value of the lithium ion battery of Example 2 was constant without following the temperature change, and was continuously weighed with a standard deviation of 8 μg. The standard deviation of this weighed value was also valid from the accuracy specifications of the electronic balance. From this, it was shown that the weight correction based on the sensitivity drift value of the weight measuring unit is effective. In all subsequent examples, measurements were taken with weighing value correction turned on.
[例3]
 例3では、例1で構築した評価装置を用い、筐体内に純酸素をフロー(流速150mL/min)しながらリチウム空気電池セルの電池特性(レスト、放電、充電の1サイクル)を評価した。なお、リチウム空気電池セルは、Li金属箔/CNTカーボンナノチューブ空気極(φ16mm)を対向させたCR-2032コインセルであり、空気極側には酸素吸収排出用の多数の空気孔(φ0.7mm)を有した。
[Example 3]
In Example 3, the evaluation device constructed in Example 1 was used to evaluate the battery characteristics (1 cycle of rest, discharge, and charge) of the lithium-air battery cell while flowing pure oxygen into the housing (flow velocity 150 mL / min). The lithium-air battery cell is a CR-2032 coin cell in which a Li metal foil / CNT carbon nanotube air electrode (φ16 mm) is opposed to each other, and a large number of air holes (φ0.7 mm) for absorbing and discharging oxygen are provided on the air electrode side. Had.
 図18は、例3の充放電特性測定条件設定画面を示す図である。 FIG. 18 is a diagram showing a charge / discharge characteristic measurement condition setting screen of Example 3.
 図6に示す重量測定条件および図18に示す充放電特性測定条件でリチウム空気電池の電池特性を評価した。電池特性の評価項目として、図9に示す電解液揮発速度の算出、充電反応/放電反応に伴う重量変化量の算出、充電反応/放電反応に伴う電子数の算出を選択した。電解液揮発速度の時間間隔は50時間とし、充電反応/放電反応に伴う重量変化量は重量測定のたびに行い、充電反応/放電反応に伴う電子数の算出の時間間隔は30秒おきに行った。結果を図19および図20に示す。 The battery characteristics of the lithium-air battery were evaluated under the weight measurement conditions shown in FIG. 6 and the charge / discharge characteristic measurement conditions shown in FIG. As the evaluation items of the battery characteristics, the calculation of the electrolytic solution volatilization rate shown in FIG. 9, the calculation of the weight change amount associated with the charge reaction / discharge reaction, and the calculation of the number of electrons associated with the charge reaction / discharge reaction were selected. The time interval of the electrolyte volatilization rate is 50 hours, the amount of weight change due to the charge reaction / discharge reaction is performed every time the weight is measured, and the time interval for calculating the number of electrons associated with the charge reaction / discharge reaction is every 30 seconds. rice field. The results are shown in FIGS. 19 and 20.
 図19は、例3のリチウム空気電池の電池特性の結果を示す図である。
 図20は、例3のリチウム空気電池の電池特性の別の結果を示す図である。
FIG. 19 is a diagram showing the results of the battery characteristics of the lithium-air battery of Example 3.
FIG. 20 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 3.
 図19によれば、レスト時の電解液揮発速度が-5.63(±0.06)μg/hであることが分かり、リチウム空気電池に含まれる電解液が自然に揮発していることが分かった。 According to FIG. 19, it was found that the electrolytic solution volatilization rate at the time of rest was −5.63 (± 0.06) μg / h, and the electrolytic solution contained in the lithium-air battery volatilized naturally. Do you get it.
 図20の上段には、図19の電解液揮発速度から算出された充電反応/放電反応に伴う重量変化量が示される。図20の中段には、充電反応/放電反応に伴う重量変化量から算出された充電反応/放電反応に重量変化速度が示される。図20の下段には、充電反応/放電反応に重量変化速度と電流値とから算出された空気反応/排出電子数が示される。 The upper part of FIG. 20 shows the amount of weight change due to the charge reaction / discharge reaction calculated from the electrolyte volatilization rate of FIG. In the middle of FIG. 20, the weight change rate is shown in the charge reaction / discharge reaction calculated from the amount of weight change accompanying the charge reaction / discharge reaction. The lower part of FIG. 20 shows the air reaction / number of discharged electrons calculated from the weight change rate and the current value in the charge reaction / discharge reaction.
 電解液揮発損失分を除いた放電反応時の重量変化速度は、+122.11(±0.08)μg/hであり、1酸素分子当たり+1.955±0.005個の電子が反応し、酸素が固定されていることが分かった。この値は、非特許文献1に記載の方法よりも1桁~2桁高い精度であった。このことから、本発明の評価装置を用いれば、金属空気電池の電池特性を高精度に評価できることが示された。 The rate of weight change during the discharge reaction excluding the loss of volatile electrolyte is +122.11 (± 0.08) μg / h, and +1.955 ± 0.005 electrons per oxygen molecule react. It turned out that oxygen was fixed. This value was one to two orders of magnitude more accurate than the method described in Non-Patent Document 1. From this, it was shown that the battery characteristics of the metal-air battery can be evaluated with high accuracy by using the evaluation device of the present invention.
 同様に、電解液揮発損失分を除いた充電反応時(ただし、充電開始初期)の重量変化速度は、-114.50(±0.08)μg/hであり、1酸素分子当たり-2.109±0.006個の電子が反応し、酸素が放出されていることが分かった。図20を見れば、充電開始初期では、酸素放出によりリチウムイオン電池の重量が直線的に減少したが、充電後半では、その重量が著しく減少し、酸素固定量以上の重量損失を示した。これは、リチウム空気電池の電解液および電極材料の分解劣化によりガスが放出したことを示唆する。 Similarly, the weight change rate during the charging reaction (however, at the initial stage of charging start) excluding the loss of volatilization of the electrolytic solution is -114.50 (± 0.08) μg / h, and -2. It was found that 109 ± 0.006 electrons reacted and oxygen was released. Looking at FIG. 20, the weight of the lithium ion battery decreased linearly due to oxygen release at the initial stage of charging, but the weight decreased remarkably in the latter half of charging, showing a weight loss equal to or greater than the fixed amount of oxygen. This suggests that the gas was released due to the decomposition and deterioration of the electrolyte and the electrode material of the lithium-air battery.
[例4]
 例4では、例1で構築した評価装置を用い、筐体内に純酸素をフローしながらリチウム空気電池の電池特性(レスト、放電、レスト、充電の複数サイクル)を評価した。
[Example 4]
In Example 4, the evaluation device constructed in Example 1 was used to evaluate the battery characteristics (multiple cycles of rest, discharge, rest, and charge) of the lithium-air battery while flowing pure oxygen into the housing.
 図21は、例4の重量測定条件設定画面を示す図である。 FIG. 21 is a diagram showing a weight measurement condition setting screen of Example 4.
 図6に示す重量測定条件および図21に示す充放電特性測定条件でリチウム空気電池の電池特性を評価した。電池特性の評価項目として、図9に示す電解液揮発速度の算出、充電反応/放電反応に伴う重量変化量の算出、充電反応/放電反応に伴う電子数の算出、静電容量の算出を選択した。電解液揮発速度の時間間隔は50時間とし、充電反応/放電反応に伴う重量変化量は重量測定のたびに行い、充電反応/放電反応に伴う電子数の算出の時間間隔は30秒おきに行った。結果を図22~図25に示す。 The battery characteristics of the lithium-air battery were evaluated under the weight measurement conditions shown in FIG. 6 and the charge / discharge characteristic measurement conditions shown in FIG. As the evaluation items of the battery characteristics, the calculation of the electrolytic solution volatilization rate shown in FIG. 9, the calculation of the weight change amount due to the charge reaction / discharge reaction, the calculation of the number of electrons due to the charge reaction / discharge reaction, and the calculation of the capacitance are selected. bottom. The time interval of the electrolyte volatilization rate is 50 hours, the amount of weight change due to the charge reaction / discharge reaction is performed every time the weight is measured, and the time interval for calculating the number of electrons associated with the charge reaction / discharge reaction is every 30 seconds. rice field. The results are shown in FIGS. 22 to 25.
 図22は、例4のリチウム空気電池の電池特性の結果を示す図である。
 図23は、例4のリチウム空気電池の電池特性の別の結果を示す図である。
FIG. 22 is a diagram showing the results of the battery characteristics of the lithium-air battery of Example 4.
FIG. 23 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 4.
 図22によれば、最初のレスト時の電解液揮発速度は-5.36(±0.07)μg/hであり、レスト、放電、レスト、充電の複数サイクルを行うことにより、放電反応による重量増加と充電反応による重量減少とを繰り返しながら、全体として、リチウムイオン電池の重量が軽量化していくことが分かった。これは、電解液の揮発による重量損失に加えて、電解液および電極材料の分解劣化によるガス放出が大きく影響していることを示唆する。図22には最初のレスト時の電解液揮発速度のみを示すが、実際にはすべてのレスト時の電解液揮発速度が算出されている。 According to FIG. 22, the volatilization rate of the electrolytic solution at the time of the first rest is −5.36 (± 0.07) μg / h, and it depends on the discharge reaction by performing a plurality of cycles of rest, discharge, rest, and charge. It was found that the weight of the lithium-ion battery was reduced as a whole while repeating the weight increase and the weight decrease due to the charging reaction. This suggests that in addition to the weight loss due to the volatilization of the electrolytic solution, the outgassing due to the decomposition and deterioration of the electrolytic solution and the electrode material has a great influence. Although FIG. 22 shows only the electrolyte volatilization rate at the first rest, the electrolyte volatilization rate at all rests is actually calculated.
 図23の上段には、図22の電解液揮発速度から算出された充電反応/放電反応に伴う重量変化量が示される。図23の中段には、充電反応/放電反応に伴う重量変化量から算出された充電反応/放電反応に重量変化速度が示される。図23の下段には、充電反応/放電反応に重量変化速度と電流値とから算出された反応電子数が示される。 The upper part of FIG. 23 shows the amount of weight change due to the charge reaction / discharge reaction calculated from the electrolyte volatilization rate of FIG. 22. In the middle of FIG. 23, the weight change rate is shown in the charge reaction / discharge reaction calculated from the amount of weight change accompanying the charge reaction / discharge reaction. The lower part of FIG. 23 shows the number of reaction electrons calculated from the weight change rate and the current value in the charge reaction / discharge reaction.
 充電反応時の反応電子数に着目すると、サイクル後半になると電子数は理想的な値(-2)から大きくずれており、電解液および電極材料の分解劣化によりガスが放出したことを示唆する。 Focusing on the number of reacted electrons during the charging reaction, the number of electrons deviated significantly from the ideal value (-2) in the latter half of the cycle, suggesting that the gas was released due to the decomposition and deterioration of the electrolyte and the electrode material.
 図24は、例4のリチウム空気電池の電池特性の別の結果を示す図である。
 図25は、例4のリチウム空気電池の電池特性の別の結果を示す図である。
FIG. 24 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 4.
FIG. 25 is a diagram showing another result of the battery characteristics of the lithium-air battery of Example 4.
 図24は、図23の一部を拡大して示す図である。図24によれば、充放電の開始・停止に合わせて重量を変化させており、充放電反応を正確に追跡していることが分かる。 FIG. 24 is an enlarged view of a part of FIG. 23. According to FIG. 24, it can be seen that the weight is changed according to the start / stop of charging / discharging, and the charging / discharging reaction is accurately tracked.
 しかしながら、図25によれば、放電開始後と重量変化が始まる期間に十数分程度のずれが見られた。このずれの期間の電流値と時間とから0.2mAhの静電容量が算出された。例4で用いたリチウム空気電池は、この静電容量だけ放電が進行していることが分かった。なお、この静電容量は、電圧降下速度から見積もられる静電容量(0.2mAh)と良好に一致し、信頼できる値であった。 However, according to FIG. 25, a deviation of about ten minutes was observed between the start of discharge and the start of weight change. The capacitance of 0.2 mAh was calculated from the current value and the time during this deviation period. It was found that the lithium-air battery used in Example 4 was discharged by this capacitance. This capacitance was in good agreement with the capacitance (0.2 mAh) estimated from the voltage drop rate, and was a reliable value.
 本発明の金属空気電池の評価装置を用いれば、金属空気電池の微小な重量変化を長期間連続して測定できるので、空気極における電池反応のうち、セルに取り込まれる酸素と電子との反応効率を複数の充放電サイクルにわたって長期間正確に計測することを可能とする。また無電流(レスト)時のセルの重量変化から電解液の揮発速度を計測し評価することを可能とする。このような評価装置は、金属空気電池以外にも、外部ガスとやり取りをする材料の吸収・排出特性評価も可能である。 By using the metal-air battery evaluation device of the present invention, minute weight changes of the metal-air battery can be continuously measured for a long period of time. Therefore, among the battery reactions at the air electrode, the reaction efficiency of oxygen and electrons taken into the cell Can be accurately measured over a long period of time over multiple charge / discharge cycles. In addition, it is possible to measure and evaluate the volatilization rate of the electrolytic solution from the change in the weight of the cell when there is no current (rest). In addition to the metal-air battery, such an evaluation device can also evaluate the absorption / discharge characteristics of materials that exchange with external gas.
 100 評価装置
 110 重量測定部
 120 ステージ
 130 昇降部
 140 筐体
 150 充放電特性測定部
 160 制御部
 170 ガス吸気口
 180 ガス排気口
 190 温度検出部
100 Evaluation device 110 Weight measuring unit 120 Stage 130 Elevating unit 140 Housing 150 Charging / discharging characteristic measuring unit 160 Control unit 170 Gas intake port 180 Gas exhaust port 190 Temperature detection unit

Claims (29)

  1.  金属空気電池の電池特性を評価する評価装置であって、
     前記金属空気電池の重量を測定する重量測定部と、
     前記金属空気電池を載置するためのステージを備え、前記ステージを昇降させる昇降部と、
     少なくとも前記重量測定部と前記金属空気電池とを収容する筐体と、
     前記金属空気電池の充放電特性を測定する充放電特性測定部と、
     前記昇降部と前記重量測定部と前記充放電特性測定部との動作を制御し、前記金属空気電池の電池特性を評価する制御部と
     を備え、
     前記制御部は、
      前記昇降部の前記ステージを昇降させ、前記重量測定部および前記充放電特性測定部による測定を実行し、前記金属空気電池の重量変化量および充放電特性を取得する測定制御部と、
      前記測定制御部で取得された前記重量変化量および前記充放電特性に基づいて、前記金属空気電池の電池特性を算出・評価する算出・評価部と
     を備える、評価装置。
    An evaluation device that evaluates the battery characteristics of metal-air batteries.
    A weight measuring unit that measures the weight of the metal-air battery,
    An elevating part that is provided with a stage for mounting the metal-air battery and raises and lowers the stage,
    A housing that houses at least the weight measuring unit and the metal-air battery,
    A charge / discharge characteristic measuring unit that measures the charge / discharge characteristics of the metal-air battery,
    It is provided with a control unit that controls the operation of the elevating unit, the weight measuring unit, and the charge / discharge characteristic measuring unit, and evaluates the battery characteristics of the metal-air battery.
    The control unit
    A measurement control unit that raises and lowers the stage of the elevating unit, executes measurement by the weight measuring unit and the charging / discharging characteristic measuring unit, and acquires the weight change amount and charging / discharging characteristics of the metal-air battery.
    An evaluation device including a calculation / evaluation unit that calculates / evaluates the battery characteristics of the metal-air battery based on the weight change amount and the charge / discharge characteristics acquired by the measurement control unit.
  2.  前記算出・評価部は、前記充放電特性のレスト中における時刻tの重量変化量Wtと時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出する電解液揮発速度算出部をさらに備える、請求項1に記載の評価装置。 The calculating and evaluation unit, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) weight change amount difference Wt of the change in weight Wt r0 of dividing the r -wt r0 by the time difference t r -t r0, further comprising an electrolyte evaporation rate calculation unit for calculating an electrolyte volatilization rate ((Wt r -Wt r0) / (t r -t r0)), wherein Item 1. The evaluation device according to item 1.
  3.  前記算出・評価部は、前記充放電特性の放電中における時刻tの重量変化量から、前記放電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、放電反応のみに起因する重量変化量を算出する放電重量変化量算出部をさらに備える、請求項2に記載の評価装置。 The calculation / evaluation unit estimates the volatilization of the electrolytic solution at the time t d from the amount of change in weight at the time t d during the discharge of the charge / discharge characteristics using the volatilization rate of the electrolytic solution in the rest immediately before the discharge. The evaluation device according to claim 2, further comprising a discharge weight change amount calculation unit that reduces the amount and calculates the weight change amount due only to the discharge reaction.
  4.  前記算出・評価部は、前記放電重量変化量算出部で算出された前記充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に吸収された空気と反応している電子数を算出する反応電子数算出部をさらに備える、請求項3に記載の評価装置。 The calculation / evaluation unit divides the amount of weight change due only to the discharge reaction of the time interval Δt d during discharge of the charge / discharge characteristics calculated by the discharge weight change amount calculation unit by the time interval Δt d. , The number of reaction electrons for calculating the weight change rate, dividing the current value used for measuring the charge / discharge characteristics by the weight change rate, and calculating the number of electrons reacting with the air absorbed in the metal air battery. The evaluation device according to claim 3, further comprising a calculation unit.
  5.  前記算出・評価部は、前記充放電特性の充電中における時刻tの重量変化量から、前記充電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、充電反応のみに起因する重量変化量を算出する充電重量変化量算出部をさらに備える、請求項2~4のいずれかに記載の評価装置。 The calculation / evaluation unit estimates the volatilization of the electrolyte at time t c from the amount of change in weight at time t c during charging of the charge / discharge characteristics using the volatilization rate of the electrolyte in the rest immediately before charging. The evaluation device according to any one of claims 2 to 4, further comprising a charge weight change amount calculation unit that reduces the amount and calculates the weight change amount due only to the charge reaction.
  6.  前記算出・評価部は、前記充電重量変化量算出部で算出された前記充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に固定された空気の排出に要している電子数を算出する反応電子数算出部をさらに備える、請求項5に記載の評価装置。 The calculation / evaluation unit divides the amount of weight change due only to the charging reaction of the time interval Δt c during charging of the charge / discharge characteristics calculated by the charge weight change amount calculation unit by the time interval Δt c. , The reaction to calculate the weight change rate, divide the current value used for measuring the charge / discharge characteristics by the weight change rate, and calculate the number of electrons required to discharge the air fixed to the metal-air battery. The evaluation device according to claim 5, further comprising an electron number calculation unit.
  7.  前記算出・演算部は、前記充放電特性の放電開始後、重量変化が生じるまでに要した時間ΔTと前記時間ΔTの間に流れた電流値とから静電容量を算出する静電容量算出部をさらに備える、請求項1~6のいずれかに記載の評価装置。 The calculation / calculation unit calculates the capacitance from the time ΔT required for the weight change to occur after the start of discharge of the charge / discharge characteristics and the current value flowing during the time ΔT. The evaluation device according to any one of claims 1 to 6, further comprising.
  8.  前記制御部は、前記算出・評価部による結果を表示する表示部をさらに備える、請求項1~7のいずれかに記載の評価装置。 The evaluation device according to any one of claims 1 to 7, wherein the control unit further includes a display unit that displays the result of the calculation / evaluation unit.
  9.  前記筐体内に温度検出部をさらに備える、請求項1~8のいずれかに記載の評価装置。 The evaluation device according to any one of claims 1 to 8, further comprising a temperature detection unit in the housing.
  10.  前記筐体内に気圧検出部をさらに備える、請求項1~9のいずれかに記載の評価装置。 The evaluation device according to any one of claims 1 to 9, further comprising an atmospheric pressure detection unit in the housing.
  11.  前記制御部は、前記重量測定部による秤量値を前記重量測定部の感度ドリフト値で補正する秤量値補正部をさらに備える、請求項9または10に記載の評価装置。 The evaluation device according to claim 9 or 10, wherein the control unit further includes a weighing value correction unit that corrects a weighing value by the weight measuring unit with a sensitivity drift value of the weight measuring unit.
  12.  前記筐体は、ガス給気口およびガス排気口を備える、請求項1~11のいずれかに記載の評価装置。 The evaluation device according to any one of claims 1 to 11, wherein the housing includes a gas air supply port and a gas exhaust port.
  13.  前記筐体内の温度を保持する温度制御装置をさらに備える、請求項1~12のいずれかに記載の評価装置。 The evaluation device according to any one of claims 1 to 12, further comprising a temperature control device for holding the temperature inside the housing.
  14.  金属空気電池の電池特性を評価する方法であって、
     重量測定部の測定位置への前記金属空気電池の配置と、前記測定位置からの前記金属空気電池の離間とを繰り返し、前記金属空気電池の重量を繰り返し測定することと、
     前記重量の繰り返し測定と同時に、前記金属空気電池の充放電特性を測定することと、
     前記繰り返し測定することによって得られた前記重量変化量、および、前記充放電特性を測定することによって得られた前記充放電特性に基づいて、前記金属空気電池の電池特性を算出・評価することと
     とを包含する方法。
    A method for evaluating the battery characteristics of metal-air batteries.
    The arrangement of the metal-air battery at the measurement position of the weight measuring unit and the separation of the metal-air battery from the measurement position are repeated, and the weight of the metal-air battery is repeatedly measured.
    At the same time as the repeated measurement of the weight, the charge / discharge characteristics of the metal-air battery are measured.
    To calculate and evaluate the battery characteristics of the metal-air battery based on the weight change amount obtained by the repeated measurement and the charge / discharge characteristics obtained by measuring the charge / discharge characteristics. A method that includes and.
  15.  前記算出・評価することは、前記充放電特性のレスト中における時刻tの重量変化量Wtと時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出することをさらに包含する、請求項14に記載の方法。 The calculation and evaluation that is, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of dividing the Wt r -wt r0 by the time difference t r -t r0, further comprising calculating the electrolyte volatilization rate ((Wt r -Wt r0) / (t r -t r0)), in claim 14 The method described.
  16.  前記算出・評価することは、前記充放電特性の放電中における時刻tの重量変化量から、前記放電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、放電反応のみに起因する重量変化量を算出することをさらに包含する、請求項15に記載の方法。 The calculation / evaluation is an electrolytic solution at the time t d estimated from the amount of change in weight at the time t d during the discharge of the charge / discharge characteristics and the volatilization rate of the electrolytic solution in the rest immediately before the discharge. The method of claim 15, further comprising reducing the amount of volatilization and calculating the amount of weight change due solely to the discharge reaction.
  17.  前記算出・評価することは、前記算出された前記充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に吸収された空気と反応している電子数を算出することをさらに包含する、請求項16に記載の方法。 The calculation / evaluation is to calculate the weight change rate by dividing the amount of weight change caused only by the discharge reaction of the time interval Δt d during discharge of the calculated charge / discharge characteristics by the time interval Δt d. 16 of the invention, further comprising dividing the current value used for measuring the charge / discharge characteristics by the weight change rate to calculate the number of electrons reacting with the air absorbed by the metal air battery. The method described in.
  18.  前記算出・評価することは、前記充放電特性の充電中における時刻tの重量変化量から、前記充電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、充電反応のみに起因する重量変化量を算出することをさらに包含する、請求項15~17のいずれかに記載の方法。 The calculation / evaluation is an electrolytic solution at the time t c estimated from the amount of change in weight at the time t c during charging of the charge / discharge characteristics using the electrolytic solution volatilization rate in the rest immediately before the charge. The method of any of claims 15-17, further comprising reducing the amount of volatilization and calculating the amount of weight change due solely to the charging reaction.
  19.  前記算出・評価することは、前記算出された前記充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に固定された空気の排出に要している電子数を算出することをさらに包含する、請求項18に記載の方法。 The calculation / evaluation is to calculate the weight change rate by dividing the amount of weight change caused only by the charging reaction of the time interval Δt c during charging of the calculated charge / discharge characteristics by the time interval Δt c. Further, the present invention further includes calculating the number of electrons required for discharging the air fixed to the metal-air battery by dividing the current value used for measuring the charge / discharge characteristics by the weight change rate. Item 18. The method according to Item 18.
  20.  前記算出・評価することは、前記充放電特性の放電開始後、重量変化が生じるまでに要した時間ΔTと前記時間ΔTの間に流れた電流値とから静電容量を算出することをさらに包含する、請求項14~19のいずれかに記載の方法。 The calculation / evaluation further includes calculating the capacitance from the time ΔT required for the weight change to occur after the start of discharge of the charge / discharge characteristics and the current value flowing during the time ΔT. The method according to any one of claims 14 to 19.
  21.  前記繰り返し測定することに先立って、
     前記重量測定部の測定位置への不変重量品の配置と、前記測定位置からの前記不変重量品の離間とを繰り返し、前記不変重量品の重量を繰り返し測定することと、
     前記不変重量品の重量の繰り返し測定と同時に測定環境内の温度変化、および/または、気圧変化を測定することと、
     前記不変重量品の秤量値が、前記温度変化、および/または、前記気圧変化に伴い変動しているかどうかを判定することと、
     前記判定することにおいて変動していると判定した場合、秤量値を前記重量測定部の感度ドリフト値で補正し、前記判定することにおいて変動していないと判定した場合、秤量値を補正しないことと
     をさらに包含する、請求項14~20のいずれかに記載の方法。
    Prior to the repeated measurement,
    The placement of the immutable weight product at the measurement position of the weight measuring unit and the separation of the immutable weight product from the measurement position are repeated, and the weight of the immutable weight product is repeatedly measured.
    Simultaneously with the repeated measurement of the weight of the immutable weight product, the temperature change and / or the atmospheric pressure change in the measurement environment can be measured.
    Determining whether the weighed value of the immutable weight product fluctuates with the temperature change and / or the atmospheric pressure change.
    If it is determined that the weight is fluctuating in the above determination, the weighing value is corrected by the sensitivity drift value of the weight measuring unit, and if it is determined that the weighing value is not fluctuating in the above determination, the weighing value is not corrected. The method according to any one of claims 14 to 20, further comprising.
  22.  前記繰り返し測定することに先立って、測定環境内に雰囲気制御ガスをフローすることをさらに包含する、請求項14~21のいずれかに記載の方法。 The method according to any one of claims 14 to 21, further comprising flowing an atmosphere control gas into the measurement environment prior to the repeated measurement.
  23.  金属空気電池の電池特性を評価するプログラムであって、
     重量測定部の測定位置への前記金属空気電池の配置と、前記測定位置からの前記金属空気電池の離間とを繰り返し、前記金属空気電池の重量を繰り返し測定する機能と、
     前記重量の繰り返し測定と同時に、前記金属空気電池の充放電特性を測定する機能と、
     前記繰り返し測定することによって得られた前記重量変化量、および、前記充放電特性を測定することによって得られた前記充放電特性に基づいて、前記金属空気電池の電池特性を算出・評価する機能と
     をコンピュータに実現させる、プログラム。
    A program that evaluates the battery characteristics of metal-air batteries.
    A function of repeatedly measuring the weight of the metal-air battery by repeatedly arranging the metal-air battery at the measurement position of the weight measuring unit and separating the metal-air battery from the measuring position.
    A function to measure the charge / discharge characteristics of the metal-air battery at the same time as the repeated measurement of the weight,
    A function of calculating and evaluating the battery characteristics of the metal-air battery based on the weight change amount obtained by the repeated measurement and the charge / discharge characteristics obtained by measuring the charge / discharge characteristics. A program that makes a computer realize.
  24.  前記算出・評価する機能は、前記充放電特性のレスト中における時刻tの重量変化量Wtと時刻tr0(ただし、t>tr0)の重量変化量Wtr0との重量変化量差Wt-Wtr0を時間差t-tr0で除し、電解液揮発速度((Wt-Wtr0)/(t-tr0))を算出する機能をさらに含む、請求項23に記載のプログラム。 The calculation and evaluation functions, the change in weight at time t r during rest of the charge and discharge characteristics Wt r and time t r0 (However, t r> t r0) the change in weight difference between the change in weight Wt r0 of dividing the Wt r -wt r0 by the time difference t r -t r0, further comprising the function of calculating the electrolyte volatilization rate ((Wt r -Wt r0) / (t r -t r0)), according to claim 23 Program.
  25.  前記算出・評価する機能は、前記充放電特性の放電中における時刻tの重量変化量から、前記放電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、放電反応のみに起因する重量変化量を算出する機能をさらに含む、請求項24に記載のプログラム。 The function of calculating and evaluating the electrolytic solution at the time t d estimated from the amount of change in the weight of the electrolytic solution at the time t d during the discharge of the charge / discharge characteristics using the volatilization rate of the electrolytic solution in the rest immediately before the discharge. 24. The program of claim 24, further comprising the function of reducing the amount of volatilization and calculating the amount of weight change due solely to the discharge reaction.
  26.  前記算出・評価する機能は、前記算出された前記充放電特性の放電中における時間間隔Δtの放電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に吸収された空気と反応している電子数を算出する機能をさらに含む、請求項25に記載の方法。 The calculation / evaluation function calculates the weight change rate by dividing the amount of weight change caused only by the discharge reaction of the time interval Δt d during discharge of the calculated charge / discharge characteristics by the time interval Δt d. 25. The claim 25 further includes a function of dividing the current value used for measuring the charge / discharge characteristics by the weight change rate and calculating the number of electrons reacting with the air absorbed by the metal air battery. The method described.
  27.  前記算出・評価する機能は、前記充放電特性の充電中における時刻tの重量変化量から、前記充電の直前におけるレスト中の前記電解液揮発速度を用いて見積もった前記時刻tの電解液揮発量を減じ、充電反応のみに起因する重量変化量を算出する機能をさらに含む、請求項24~26のいずれかに記載のプログラム。 The function of calculating and evaluating the electrolytic solution at the time t c estimated from the amount of change in weight at the time t c during charging of the charge / discharge characteristics using the electrolytic solution volatilization rate in the rest immediately before the charge. The program according to any of claims 24 to 26, further comprising the function of reducing the amount of volatilization and calculating the amount of weight change due only to the charging reaction.
  28.  前記算出・評価する機能は、前記算出された前記充放電特性の充電中における時間間隔Δtの充電反応のみに起因する重量変化量を、前記時間間隔Δtで除し、重量変化速度を算出し、前記充放電特性の測定に用いた電流値を前記重量変化速度で除し、前記金属空気電池に固定された空気の排出に要している電子数を算出する機能をさらに含む、請求項27に記載のプログラム。 The calculation / evaluation function calculates the weight change rate by dividing the amount of weight change caused only by the charging reaction of the time interval Δt c during charging of the calculated charge / discharge characteristics by the time interval Δt c. The claim further includes a function of dividing the current value used for measuring the charge / discharge characteristics by the weight change rate and calculating the number of electrons required for discharging the air fixed to the metal-air battery. 27.
  29.  前記算出・評価する機能は、前記充放電特性の放電開始後、重量変化が生じるまでに要した時間ΔTと前記時間ΔTの間に流れた電流値とから静電容量を算出する機能をさらに含む、請求項23~28のいずれかに記載のプログラム。 The function of calculating and evaluating further includes a function of calculating the capacitance from the time ΔT required for the weight change to occur after the start of discharging the charge / discharge characteristics and the current value flowing during the time ΔT. , The program according to any one of claims 23 to 28.
PCT/JP2021/016037 2020-05-01 2021-04-20 Evaluating device, evaluating method, and program for metal-air battery WO2021220886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022517658A JP7450978B2 (en) 2020-05-01 2021-04-20 Evaluation device, evaluation method, and program for metal-air batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020081264 2020-05-01
JP2020-081264 2020-05-01

Publications (1)

Publication Number Publication Date
WO2021220886A1 true WO2021220886A1 (en) 2021-11-04

Family

ID=78331516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016037 WO2021220886A1 (en) 2020-05-01 2021-04-20 Evaluating device, evaluating method, and program for metal-air battery

Country Status (2)

Country Link
JP (1) JP7450978B2 (en)
WO (1) WO2021220886A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361658A (en) * 2021-12-14 2022-04-15 江苏大学 Variable-pitch metal-air fuel cell testing monomer
CN115856651A (en) * 2022-11-30 2023-03-28 徐州科华能源科技有限公司 Performance test system for aluminum-air battery production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260217A (en) * 1993-03-08 1994-09-16 Meidensha Corp Measuring method for charging depth of zinc-bromine battery
JP2010061826A (en) * 2008-09-01 2010-03-18 Equos Research Co Ltd Control system and control method of metal/air battery
JP2019117785A (en) * 2017-11-16 2019-07-18 パナソニックIpマネジメント株式会社 Air battery positive electrode and air battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260217A (en) * 1993-03-08 1994-09-16 Meidensha Corp Measuring method for charging depth of zinc-bromine battery
JP2010061826A (en) * 2008-09-01 2010-03-18 Equos Research Co Ltd Control system and control method of metal/air battery
JP2019117785A (en) * 2017-11-16 2019-07-18 パナソニックIpマネジメント株式会社 Air battery positive electrode and air battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361658A (en) * 2021-12-14 2022-04-15 江苏大学 Variable-pitch metal-air fuel cell testing monomer
CN114361658B (en) * 2021-12-14 2024-04-09 江苏大学 Variable-pitch metal-air fuel cell test monomer
CN115856651A (en) * 2022-11-30 2023-03-28 徐州科华能源科技有限公司 Performance test system for aluminum-air battery production
CN115856651B (en) * 2022-11-30 2023-11-21 徐州科华能源科技有限公司 Performance test system for aluminum air battery production

Also Published As

Publication number Publication date
JP7450978B2 (en) 2024-03-18
JPWO2021220886A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2021220886A1 (en) Evaluating device, evaluating method, and program for metal-air battery
US6262577B1 (en) Method of measuring quantities indicating state of electrochemical device and apparatus for the same
US10534039B2 (en) Apparatus and method for estimating degree of aging of secondary battery
US10338144B2 (en) Calculation apparatus and calculation method
Zheng et al. Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution
US10371757B2 (en) Post-deterioration performance estimating apparatus and post-deterioration performance estimating method for energy storage device, and energy storage system
EP3283893B1 (en) Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
Ahuja et al. Relativity and the lead-acid battery
US8346495B2 (en) Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices
KR101946784B1 (en) method for measuring battery entropy by dual kalman filter
US20110054816A1 (en) Method of estimating the non-measurable characteristics of an electrochemical system
US10451682B2 (en) Apparatus and method for conducting nail penetration test for secondary battery
US20110172939A1 (en) System and Method to Determine an Internal Resistance and State of Charge, State of Health, or Energy Level of a Rechargeable Battery
US20140067297A1 (en) Optimized method for thermal management of an electrochemical storage system
US9645200B2 (en) Battery power measuring method, measuring device and battery-powered equipment
WO2011041094A1 (en) Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells
EP2427932B1 (en) System and method for pressure determination in a li-ion battery
CN108603918A (en) The device and method for testing the performance of battery cell
JP2014220236A (en) Secondary battery device
JP2012122817A (en) Reversible capacity estimation method of nonaqueous electrolyte secondary battery, life prediction method, reversible capacity estimation method, life prediction device and power storage system
US20230266393A1 (en) Device and method for diagnosing battery
JP2003519782A (en) Method and apparatus for characterizing high energy electrochemical cells using power functions obtained by calorimetry
WO2021176748A1 (en) Battery characteristic determination device and secondary battery system
CN114089193A (en) Method and device for estimating temperature and negative pole potential of battery on line and computer equipment
CN106199448A (en) Farmland wireless sensor network node performance of lithium ion battery method of testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795296

Country of ref document: EP

Kind code of ref document: A1