WO2021220685A1 - Moving body - Google Patents

Moving body Download PDF

Info

Publication number
WO2021220685A1
WO2021220685A1 PCT/JP2021/012637 JP2021012637W WO2021220685A1 WO 2021220685 A1 WO2021220685 A1 WO 2021220685A1 JP 2021012637 W JP2021012637 W JP 2021012637W WO 2021220685 A1 WO2021220685 A1 WO 2021220685A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
mode
storage battery
heat medium
medium
Prior art date
Application number
PCT/JP2021/012637
Other languages
French (fr)
Japanese (ja)
Inventor
孝 吉田
猛 戸神
裕貴 佐藤
慶紀 成岡
Original Assignee
株式会社スリーダム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーダム filed Critical 株式会社スリーダム
Publication of WO2021220685A1 publication Critical patent/WO2021220685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/31Supply or distribution of electrical power generated by photovoltaics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a mobile body including a storage battery.
  • Japanese Patent No. 5861484 proposes to provide a heater module at a specific position in a vehicle and to face the side surface of the battery module, and to heat the battery module by the heater module.
  • the heater module is operated by using the electric power of the storage battery, the electric power of the storage battery cannot be supplied to the power source (for example, a motor) of the moving body by that amount, and is relative.
  • the cruising range of the moving object due to the storage battery is reduced.
  • the power consumption of the heater must be increased, and as a result, the cruising range of the moving body due to the storage battery is further reduced.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to suppress a decrease in the remaining battery level of a storage battery for heating the storage battery in a mobile body provided with the storage battery.
  • One embodiment of the present invention includes a heat collector that heats a heat medium with sunlight, a storage battery that supplies electric power to a power source, and a medium supply unit that supplies the heat medium heated by the heat collector to the storage battery. It is a moving body equipped with.
  • a mobile body provided with a storage battery it is possible to suppress a decrease in the remaining battery level of the storage battery for heating the storage battery.
  • the moving body of the present invention is not limited to a flying body such as an aircraft, and can be applied to other types of moving bodies such as automobiles and railroad vehicles.
  • the aircraft of the present embodiment may be a manned aircraft or an unmanned aerial vehicle such as a drone, but the case of an unmanned aerial vehicle will be described below.
  • the aircraft of the present embodiment uses a motor (motor) for rotationally driving a propeller as a power source, and supplies electric power of a battery module (storage battery) to the motor to operate the motor.
  • the aircraft of the present embodiment is equipped with a heat supply device described later.
  • the heat supply device is configured to heat the battery module by supplying the heat medium heated by the heat collector to the battery module.
  • FIG. 1 shows a schematic diagram of an exemplary aircraft AV of the present embodiment.
  • An aircraft AV is an electric vehicle that obtains propulsion by driving a motor with electric power generated by a solar panel.
  • An aircraft control system 1, which will be described later, is mounted on the aircraft AV.
  • the aircraft AV includes a wing portion 12, a drive portion 4 attached to the wing portion 12, a propeller 14 connected to the drive portion 4, and a fuselage portion 16.
  • the number of propellers 14 mounted on the aircraft AV may be arbitrary.
  • the drive unit 4 includes a motor that rotationally drives the propeller 14.
  • battery module BTs that supply electric power to the drive unit 4 are provided on both wings of the wing unit 12.
  • the battery module BT is wired so as to be electrically connectable to the solar panel 32 and the drive unit 4.
  • the solar panel 32 is preferably provided on the wing portion 12 in order to receive a large amount of sunlight and increase the amount of power generation. That is, by providing the solar panel 32 on the wing portion 12, the installation area of the solar panel 32 can be made as large as possible.
  • a heat collector 51 is arranged on the wing portion 12 of the aircraft AV.
  • the heat collector 51 transfers the heat energy of sunlight (that is, solar heat) to a heat medium.
  • the heat medium is not limited, but for example, water or an antifreeze solution containing a solvent such as ethylene glycol or methyl alcohol is adopted. As will be described later, the heat medium is used to heat the battery module BT.
  • the position of the heat collector 51 is not limited, it is preferable that the heat collector 51 is arranged on the wing portion 12 in order to transfer as much solar heat as possible to the heat medium.
  • the aircraft control system 1 includes an ECU (Electrical Control Unit) 2 for controlling the entire aircraft AV of the present embodiment such as flight control, charge / discharge control of the battery module BT, and solar.
  • a BMS (Battery Management System) 31 for controlling the power generated by the panel 32 is included.
  • the ECU 2 and the BMS 31 are provided, for example, on the body portion 16.
  • the heat supply device 5 includes a heat collector 51, a control valve 510, a pump 511, a heat radiating unit 512, and conduits 513 and 514.
  • the heat collector 51 for example, a vacuum tube type in which the heat medium HM is passed through a cylindrical glass tube (not shown) having a vacuum inside can be adopted so as to transfer solar heat to the heat medium HM in the glass tube. It is composed of.
  • the heat collector 51 is not limited to the vacuum tube type, and a flat plate type (a heat collecting plate arranged on the surface and a heat insulating material provided inside to prevent heat from escaping) may be used.
  • the conduit 513 is a tube that guides the heat medium HM heated by the heat collector 51 to the heat radiating section 512. As shown in FIG. 2, for example, the heat radiating unit 512 is arranged adjacent to the battery module BT, preferably arranged at the bottom of the battery module BT so as to make surface contact, and directs the heat of the heat medium HM toward the battery module BT. Heat is dissipated (the battery module BT receives heat).
  • the conduit 514 is a tube that returns the heat medium HM radiated to the battery module BT to the collector 51.
  • the conduits 513 and 514 form part of a closed circuit of the heat medium HM that circulates the heat medium HM between the collector 51 and the heat radiating unit 512 in the heat supply device 5.
  • the control valve 510 is a valve for adjusting the flow rate of the heat medium HM discharged from the heat collector 51 to the closed circuit, but is not an essential component.
  • the control valve 510 is, for example, a solenoid valve that operates based on a signal for controlling the valve opening degree from the ECU 2.
  • the pump 511 is a circulation pump for promoting the circulation of the heat medium HM in the closed circuit of the heat supply device 5.
  • FIG. 2 shows an example in which the pump 511 is provided in the conduit 513, it may be provided in the vessel 514.
  • the ON / OFF of the operation of the pump 511 and the flow rate of the pump 511 are preferably controlled by the ECU 2.
  • a heater device 52 for heating the battery module BT is arranged.
  • the aircraft control system 1 includes an ECU 2, a power supply unit 3, a drive unit 4, a heat supply device 5, a data acquisition unit 6, a storage 7, and a communication unit 8.
  • the aircraft control system 1 preferably includes a heater device 52.
  • the ECU 2 has a processor and a memory (RAM (Random Access Memory) and ROM (Read Only Memory)), and controls the entire aircraft control system 1 by executing a predetermined program.
  • the ECU 2 performs various controls such as flight control (for example, autonomous navigation control) based on the data acquired by the data acquisition unit 6, but power control processing is performed as control related to the power supply unit 3 and the heat supply device 5. And heat control processing.
  • flight control for example, autonomous navigation control
  • power control processing is performed as control related to the power supply unit 3 and the heat supply device 5.
  • heat control processing The power control process and the thermal control process will be described later.
  • the ECU 2 is an example of a control unit and a failure determination unit.
  • the data acquisition unit 6 includes, for example, a GPS receiver 61, an air velocity sensor 62, an inertial measurement unit 63, a video camera 64, and a real-time clock (RTC) 65. ..
  • the airspeed sensor 62 and the video camera 64 are optional elements at least in the power control process and the thermal control process described later.
  • the ECU 2 sequentially or, if necessary, records the data acquired by each device of the data acquisition unit 6 in the storage 7.
  • the storage 7 is a large-scale storage device such as an HDD (Hard Disk Drive).
  • the GPS (Global Positioning System) receiver 61 identifies the position (latitude and latitude value) of the aircraft AV based on the signal received from the GPS satellite.
  • the airspeed sensor 62 detects the airspeed of an aircraft AV using, for example, a Pitot tube.
  • the inertial measurement unit 63 includes, for example, a 3-axis gyro and a 3-axis acceleration sensor, and measures three-dimensional angular velocity and acceleration.
  • the inertial measurement unit 63 allows the ECU 2 to sequentially recognize the attitude of the aircraft AV during flight.
  • the video camera 64 sequentially acquires images of the aircraft AV in flight.
  • the real-time clock 65 is a device that measures the current time.
  • the ECU 2 When performing the power control process and the thermal control process described later, the ECU 2 flies based on the latitude and longitude information of the aircraft AV acquired by the GPS receiver 61 and the current time information acquired by the real-time clock 65. Determine whether the current position of the aircraft AV inside is daytime or nighttime. Further, when the current position of the aircraft AV in flight is daytime, the ECU 2 determines whether the wing portion 12 is in a direction to receive sunlight based on the attitude information of the aircraft AV acquired by the inertial measurement unit 63. judge.
  • the drive unit 4 includes an ESC (Electric Speed Controller) 41 and a motor 42.
  • the motor 42 is a power source for an aircraft AV operated by the electric power of the battery module BT.
  • the ESC 41 controls the rotation speed of the motor 42 based on the required speed command of the aircraft AV from the ECU 2.
  • the communication unit 8 receives instruction information such as the operation route and / or operation speed of the aircraft AV from an external communication device (not shown) operated by the user who manages the aircraft AV, and notifies the ECU 2.
  • the ECU 2 performs autonomous navigation control of the aircraft AV based on the instruction information received from the communication unit 8. When the ECU 2 detects a failure, the communication unit 8 also transmits a failure notification to an external communication device based on the instruction from the ECU 2.
  • the power supply unit 3 includes a BMS 31, a solar panel 32, a DC / DC converter 33, a charging unit 34, an auxiliary battery 35, a voltage sensor 36, a current sensor 37, 321 and a temperature sensor 38, and a battery module. Equipped with BT.
  • the BMS 31 has a processor and a memory (RAM and ROM), and controls the entire power supply unit 3 by executing a predetermined program.
  • the solar panel 32 is configured by integrating a plurality of solar cells and connecting them in series, and generates, for example, a DC voltage of several V to several tens of V.
  • the DC / DC converter 33 boosts the DC voltage generated by the solar panel 32 to the voltage required to charge the battery module BT.
  • the DC / DC converter 33 boosts the DC voltage of several V to several tens of V generated by the solar panel 32 to the DC voltage of several tens V to several hundred V, but this is only an example.
  • the DC voltage generated by the solar panel 32 and the DC voltage after boosting by the DC / DC converter 33 can be arbitrarily determined according to the specifications of the aircraft AV.
  • the battery module BT is, for example, a module in which a plurality of cells (batteries) are connected in series and / or in parallel.
  • the voltage sensor 36 is configured to detect the charging voltage (voltage across the battery module BT) of the battery module BT.
  • the current sensor 37 is configured to detect the current flowing through the wiring connected to the battery module BT.
  • the temperature sensor 38 is configured to detect the surface temperature, the internal temperature of the battery module BT, or the atmospheric temperature in the vicinity thereof.
  • the current sensor 321 is configured to detect the current flowing from the solar panel 32 to the DC / DC converter 33. The detection signals of the voltage sensor 36, the current sensors 37, 321 and the temperature sensor 38 are sequentially transmitted to the BMS 31.
  • the charging unit 34 is an interface for charging the battery module BT by connecting to an external charger (or charging station) (not shown), for example, before the aircraft AV takes off (that is, before the start of operation).
  • the charging of the battery module BT by the external charger via the charging unit 34 is performed under the control of the BMS 31.
  • the auxiliary battery 35 is an optional element.
  • the auxiliary battery 35 is used when the battery module BT that generates the main power source fails during navigation or is unable to generate sufficient electric power due to lack of electric power.
  • the BMS 31 has an A / D converter that receives detection signals from each sensor in the power supply unit 3 and converts each detection signal into a digital signal. The digital signal of each detection signal is taken into the processor.
  • the processor executes a program to calculate the SOC (State of Charge) of the battery module BT based on, for example, the detection signals (digital values) of the voltage sensor 36 and the current sensor 37.
  • FIGS. 4 to 9 are processes executed by the ECU 2 and the BMS 31 in cooperation with each other.
  • FIG. 4 is a flowchart showing the overall processing performed in relation to the electric power control and the thermal control in the aircraft control system 1, and is sequentially executed by the ECU 2.
  • the ECU 2 acquires the current time information (current time information) from the real-time clock 65 (step S2), and acquires the latitude and longitude information (current position information) of the aircraft AV acquired from the GPS receiver 61 (step S4). ..
  • the ECU 2 determines whether the current position of the aircraft AV in flight is daytime or nighttime based on the current time information acquired in step S2 and the current position information acquired in step S4 (step S6).
  • step S6 When the current position of the aircraft AV in flight is daytime (step S6: YES), the ECU 2 has both the daytime mode power control process (step S10) and the daytime mode thermal control process (step S10), which will be described later.
  • step S20 is executed. The execution order of steps S10 and S20 may be reversed.
  • step S30 when the current position of the aircraft AV in flight is at night (step S6: NO), the ECU 2 performs the night mode power control process (step S30) and the night mode thermal control, which will be described later.
  • the process (step S40) is executed.
  • the execution order of steps S30 and S40 may be reversed.
  • the daytime mode is an example of the first mode in which the heat medium can be sufficiently heated by the heat collector 51.
  • the night mode is an example of a second mode in which the heat medium cannot be sufficiently heated by the collector 51.
  • FIG. 5 shows a detailed flow chart of the power control process of the daytime mode in step S10 of FIG.
  • the ECU 2 charges the battery module BT with the electric power generated by the solar panel 32 and transfers the electric power of the battery module BT to the motor 42. Instruct the power supply unit 3 to supply the power (step S11).
  • the next steps S13 to S15 are processes for detecting the presence or absence of a failure in the power supply unit 3. That is, the ECU 2 acquires the current attitude information of the aircraft AV from the inertial measurement unit 63 (step S12), and the solar panel 32 provided on the wing portion 12 of the aircraft AV receives sunlight based on the acquired attitude information. It is determined whether or not the direction is to be applied (step S13). Here, when the solar panel 32 is oriented to receive sunlight, the ECU 2 acquires information on the amount of current flowing from the solar panel 32 to the DC / DC converter 33 from the BMS 31, and the amount of current is less than a predetermined threshold value. It is determined whether or not there is (step S14).
  • the ECU 2 notifies the failure (step S15). For example, the ECU 2 controls the communication unit 8 so that the communication unit 8 transmits a failure notification to an external communication device operated by a user who manages the aircraft AV.
  • the solar panel 32 is not oriented to receive sunlight (step S13: NO)
  • the amount of current flowing from the solar panel 32 to the DC / DC converter 33 is equal to or greater than the above-mentioned predetermined threshold value (step S14: NO). ECU 2 does nothing.
  • FIG. 6 shows a detailed flow chart of the heat control process of the daytime mode in step S20 of FIG.
  • the heater device 52 can be turned off to suppress the power consumption. Therefore, first, the ECU 2 turns off the heater device 52 (step S22) when the heater device 52 is ON in the daytime mode (step S21: YES). Next, the ECU 2 turns on the heat supply device 5 (step S23). That is, the ECU 2 operates the pump 511 of the heat supply device 5, whereby the heat medium starts to circulate in the closed circuit of the heat supply device 5. When the heat medium begins to circulate, the heat medium heated by the heat collector 51 is propagated to the heat radiating section 512 and dissipates heat toward the battery module BT, thereby heating the battery module BT.
  • the steps S24 to S28 performed next correspond to the detection of the presence or absence of a failure of the heat supply device 5 and the processing at the time of the failure. That is, the ECU 2 acquires the current attitude information of the aircraft AV from the inertial measurement unit 63 (step S24), and the heat collector 51 provided on the wing portion 12 of the aircraft AV collects sunlight based on the acquired attitude information. It is determined whether or not the receiving direction is received (step S25).
  • the collector 51 is oriented to receive sunlight
  • the ECU 2 sequentially starts with the BMS 31 and sequentially determines the surface temperature, the internal temperature, or the ambient temperature in the vicinity of the battery module BT (that is, the temperature of the battery module BT). Get the data.
  • the temperature of the battery module BT is based on the detection signal received by the BMS 31 from the temperature sensor 38. For example, when the amount of decrease in temperature of the battery module BT for a predetermined time after determining that the heat collector 51 is suitable for receiving sunlight is larger than a predetermined threshold value (step S26: YES), the heat supply device It is considered that the battery module BT is not heated by 5 and the heat supply device 5 is out of order. In that case, the ECU 2 notifies the failure (step S27). For example, the ECU 2 controls the communication unit 8 so that the communication unit 8 transmits a failure notification to an external communication device operated by a user who manages the aircraft AV.
  • the ECU 2 Since the battery module BT cannot be heated by the heat supply device 5, the ECU 2 turns on the heater device 52 in order to heat the battery module BT by the heater device 52 (step S28). If the collector 51 is not oriented to receive sunlight (step S25: NO), or if the amount of decrease in temperature of the battery module BT is not larger than a predetermined threshold value (step S26: NO), the ECU 2 has nothing. do not.
  • the flowchart of FIG. 6 illustrates a case where the heater device 52 is not operated and only the heat supply device 5 is operated under normal conditions, but this is not the case.
  • the heater device 52 may also be operated as an auxiliary according to the amount of heat required for the battery module BT. In that case, if it is determined in step S26 that the heat supply device 5 is out of order, control may be performed to increase the amount of heat generated by the heater device 52. Thereby, the amount of heat that the heat supply device 5 cannot provide can be covered by the heater device 52.
  • the flowchart of FIG. 7 shows a modified example of the thermal control process of the night mode of FIG. FIG. 7 differs from FIG. 6 only in step S26A. That is, in the detection of the presence or absence of failure of the heat supply device 5 in the flowchart of FIG. 7, the amount of decrease in the temperature of the heat collector 51 for a predetermined time after determining that the heat collector 51 is in the direction of receiving sunlight is determined. If it is larger than a predetermined threshold value (step S26A: YES), it is determined that the heat supply device 5 has failed, and the ECU 2 notifies the failure (step S27). In this modification, it is necessary to provide a temperature sensor for detecting the surface temperature or the internal temperature of the heat collector 51, or the temperature in the vicinity thereof.
  • a temperature sensor for measuring the temperature of the heat medium on the upstream side of the heat radiating unit 512 is provided, for example, in the conduit 513, and it is determined that the heat collector 51 is oriented to receive sunlight.
  • the amount of decrease in temperature of the temperature sensor over time is larger than a predetermined threshold value, it may be determined that the heat supply device 5 is out of order.
  • FIG. 8 shows a detailed flow chart of the power control process of the night mode in step S30 of FIG.
  • the solar panel 32 cannot generate electric power, so that the electric power of the aircraft AV during navigation depends exclusively on the battery module BT. Therefore, the ECU 2 instructs the power supply unit 3 to supply the electric power of the battery module BT to the motor 42 (step S31).
  • the ECU 2 sequentially confirms whether or not the aircraft AV can continue sailing at night. Specifically, the ECU 2 determines whether or not the remaining battery level of the battery module BT is equal to or greater than the nighttime power consumption of the motor 42 (step S32).
  • the ECU 2 when calculating the nighttime power consumption by the motor 42, the ECU 2 sets the day based on, for example, the current time information acquired from the real-time clock 65 and the current position information acquired from the GPS receiver 61. You may estimate the time until the solar panel 32 can start charging after dawn. If the average power consumption per unit time by the motor 42 is empirically known, the nighttime power consumption by the motor 42 can be estimated. Further, the BMS 31 can be configured to estimate the remaining battery level of the battery module BT based on the detection signals of the voltage sensor 36 and the current sensor 37 and notify the ECU 2.
  • step S32: NO When the remaining battery level of the battery module BT is less than the power consumption at night by the motor 42 (step S32: NO), the aircraft AV cannot continue sailing at night. Therefore, for example, the ECU 2 notifies the forced landing (step S32: NO). Step S33). For example, the ECU 2 controls the communication unit 8 so that the communication unit 8 transmits a forced landing notification to an external communication device operated by a user who manages the aircraft AV.
  • FIG. 9 shows a detailed flow chart of the heat control process of the night mode in step S40 of FIG.
  • the battery module BT cannot be heated by using the heat supply device 5, so it is necessary to heat the battery module BT by using the heater device 52. Therefore, first, when the heat supply device 5 is ON (step S41: YES) in the night mode, the ECU 2 turns off the heat supply device 5 (step S42). Specifically, the ECU 2 stops the operation of the pump 511 to stop the circulation of the heat medium. Next, the ECU 2 controls the heater device 52 to be turned on (step S43). As a result, the battery module BT is heated by the heat generated by the heater device 52.
  • the heater device 52 is already operated as an auxiliary in addition to the heat supply device 5 in the daytime mode, the amount of heat generated by the heater device 52 is largely controlled in step S43 in the flowchart of the nighttime mode. May be good.
  • the aircraft AV of the present embodiment has a battery module BT that supplies electric power to the motor 42 that is a power source, and a heat collector 51 that heats a heat medium with sunlight. It is configured to include a heat supply device 5 configured to supply the heat medium heated by the battery module BT to the battery module BT. Therefore, since the battery module BT can be heated by the heat medium, it is not necessary to operate the heater device 52 to heat the battery module BT itself, so that it is possible to suppress a decrease in the remaining battery level of the battery module BT. ..
  • the aircraft AV of the present embodiment may be provided with a heater device 52 in order to provide an auxiliary heating function for the heat supply device 5.
  • the operation of the heater device 52 can be performed with low power consumption such as in a power saving mode. Further, by providing the heater device 52, the battery module BT can be heated by the heater device 52 instead of the heat supply device 5 in the night mode in which the heat supply device 5 cannot supply the heat medium to the battery module BT.
  • the aircraft of the present embodiment has a heat supply device different from that of the first embodiment (see FIG. 2), but other parts are the same as those of the first embodiment, so duplicate description will be omitted. In the following, a description will be made focusing on a portion different from the first embodiment.
  • FIG. 10 The configuration of the heat supply device 5A mounted on the aircraft of the present embodiment is shown in FIG.
  • the heat supply device 5A includes a heat collector 51, control valves 510A, 510B, 510C, a pump 511A, a heat radiating unit 512, a heat storage tank 53, and conduits 515 to 517.
  • the heat collector 51 and the heat radiating unit 512 may be the same as those in the first embodiment (see FIG. 2).
  • the heat supply device 5A of the present embodiment is different from the heat supply device 5 in that the heat storage tank 53 is provided in the closed circuit of the heat medium HM.
  • the heat medium HM heated by the heat collector 51 is supplied to the heat storage tank 53 via the conduit 515.
  • the heat storage tank 53 has a structure in which a heat insulating material is interposed between the container (not shown) for storing the heat medium HM and the exterior, and the loss of heat to the outside can be suppressed.
  • the heat medium HM is stored in the heat storage tank 53 so that the heat medium HM can be provided to the battery module BT at night when the heat medium HM cannot be heated by the heat collector 51.
  • the conduit 515 is a pipe that guides the heat medium HM heated by the heat collector 51 to the heat storage tank 53.
  • the control valve 510A is provided in the conduit 515 and controls the flow rate of the heat medium HM from the heat collector 51 to the heat storage tank 53.
  • the conduit 516 is a pipe that guides the heat medium HM stored in the heat storage tank 53 to the heat dissipation unit 512.
  • the control valve 510B is provided in the conduit 516 and controls the flow rate of the heat medium HM from the heat storage tank 53 to the heat dissipation unit 512.
  • the conduit 517 is a pipe that returns the heat medium HM of the heat radiating unit 512 to the collector 51.
  • the control valve 510C is provided in the conduit 517 and controls the flow rate of the heat medium HM from the heat radiating unit 512 to the heat collector 51.
  • the control valves 510A, 510B, and 510C can be composed of solenoid valves like the control valve 510, and the valve opening degree of each valve can be independently controlled by the ECU 2.
  • the pump 511A is a circulation pump for promoting the circulation of the heat medium HM in the closed circuit of the heat supply device 5A.
  • FIG. 10 shows an example in which the pump 511A is provided in the conduit 516, it may be provided in another conduit.
  • the ON / OFF of the operation of the pump 511A and the flow rate of the pump 511 are preferably controlled by the ECU 2.
  • a heater device 52 for heating the battery module BT is arranged.
  • the ECU 2 closes all the control valves 510A, 510B, and 510C and stops the pump 511A. In this state, the heat medium is accumulated in the heat storage tank 53.
  • FIG. 11 shows a detailed flow chart of the heat control process of the night mode in the present embodiment of step S40 of FIG.
  • the heat medium is accumulated in the heat storage tank 53.
  • the heat medium in the heat storage tank 53 retains high heat energy even at night due to the effect of the heat insulating material of the heat storage tank 53. Therefore, when the night mode is set, the ECU 2 opens the control valve 510B and operates the pump 511A to send the heat medium having high thermal energy in the heat storage tank 53 to the heat radiating unit 512 (step S51). .. Thereby, the battery module BT can be heated even at night.
  • the ECU 2 can operate the heater device 52 (step S52). For example, after executing step S51, the ECU 2 sequentially acquires temperature data of the battery module BT from the BMS 31, and when the amount of increase in the temperature is less than a predetermined threshold value after a lapse of a predetermined time, the heater device 52 is used. You may decide to operate. In the present embodiment, even when the heater device 52 is operated, the battery module BT is heated by the heat medium provided from the heat storage tank 53 to the heat radiating unit 512, so that the heater device 52 is in the power saving mode. It is possible to suppress the power consumption of the heater device 52, such as by operating the heater device 52.
  • the amount of heat medium supplied to the battery module BT (that is, the heat radiation unit 512 is supplied in the night mode).
  • the amount of heat medium may be controlled to be larger than in the daytime mode.
  • the rotation speed of the pump 511A is set to the first rotation speed in the daytime mode, and the rotation speed of the pump 511A is set to the first rotation speed in the nighttime mode.
  • the second rotation speed may be higher than that.
  • valve opening degree of the control valve 510B may be set as the first opening degree
  • the valve opening degree of the control valve 510B in the nighttime mode, may be set as the second opening degree larger than the first opening degree.
  • Both the rotation speed of the pump 511A and the valve opening degree of the control valve 510B may be different values in the daytime mode and the nighttime mode.

Abstract

An aspect of the present invention is a moving body comprising a thermal collector that heats a heat transfer medium with sunlight, a storage battery that supplies electric power to a power source, and a medium supply unit that supplies the heat transfer medium heated by the thermal collector to the storage battery. Preferably, the moving body further comprises a heater that heats the storage battery and a control unit that determines, on the basis of the current time, whether a mode is a first mode in which the heat transfer medium can be heated sufficiently by the thermal collector or a second mode in which the heat transfer medium cannot be heated sufficiently by the thermal collector. In this case, the control unit supplies the heat transfer medium from the medium supply unit to the storage battery if the mode is the first mode, and activates the heater or increases the amount of heat produced by the heater if the mode is the second mode.

Description

移動体Mobile
 本発明は、蓄電池を備えた移動体に関する。 The present invention relates to a mobile body including a storage battery.
 例えば寒冷地の自動車、あるいは夜間等の低温環境下の自動車において、蓄電池の能力の低下防止、あるいは走行中の蓄電池の利用効率の向上を図るために、蓄電池を加温する技術が知られている。例えば特許第5861484号には、車両内の特定の位置であって、かつバッテリモジュールの側面に対向するようにヒータモジュールを設け、当該ヒータモジュールによりバッテリモジュールを加温することが提案されている。 For example, in a car in a cold region or a car in a low temperature environment such as at night, a technique for heating the storage battery is known in order to prevent a decrease in the capacity of the storage battery or improve the utilization efficiency of the storage battery while driving. .. For example, Japanese Patent No. 5861484 proposes to provide a heater module at a specific position in a vehicle and to face the side surface of the battery module, and to heat the battery module by the heater module.
 ところで、従来の自動車等の移動体においては、蓄電池の電力を用いてヒータモジュールを動作させているため、その分当該蓄電池の電力を移動体の動力源(例えばモータ)に供給できず、相対的に蓄電池による移動体の航続距離が低下する。また、従来よりも低温の温度環境まで蓄電池の動作を保証するためには、ヒータの消費電力を増加させねばならず、結果として、蓄電池による移動体のさらなる航続距離の低下を招来する。
 本発明は、上述した課題を鑑みてなされたものであり、その目的は、蓄電池を備えた移動体において、蓄電池を加温するための蓄電池の電池残量の低下を抑制することである。
By the way, in a conventional mobile body such as an automobile, since the heater module is operated by using the electric power of the storage battery, the electric power of the storage battery cannot be supplied to the power source (for example, a motor) of the moving body by that amount, and is relative. In addition, the cruising range of the moving object due to the storage battery is reduced. Further, in order to guarantee the operation of the storage battery even in a temperature environment lower than the conventional one, the power consumption of the heater must be increased, and as a result, the cruising range of the moving body due to the storage battery is further reduced.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to suppress a decrease in the remaining battery level of a storage battery for heating the storage battery in a mobile body provided with the storage battery.
 本発明のある態様は、太陽光により熱媒体を加熱する集熱器と、動力源に電力を供給する蓄電池と、前記集熱器によって加熱された熱媒体を前記蓄電池に供給する媒体供給部と、を備えた、移動体である。 One embodiment of the present invention includes a heat collector that heats a heat medium with sunlight, a storage battery that supplies electric power to a power source, and a medium supply unit that supplies the heat medium heated by the heat collector to the storage battery. It is a moving body equipped with.
 本発明のある態様によれば、蓄電池を備えた移動体において、蓄電池を加温するための蓄電池の電池残量の低下を抑制することができる。 According to an aspect of the present invention, in a mobile body provided with a storage battery, it is possible to suppress a decrease in the remaining battery level of the storage battery for heating the storage battery.
第1の実施形態の飛行体の概略図である。It is the schematic of the flying object of 1st Embodiment. 第1の実施形態の飛行体に実装される熱供給装置の構成を示す図である。It is a figure which shows the structure of the heat supply device mounted on the flying object of 1st Embodiment. 第1の実施形態の飛行体制御システムのシステム構成を示すブロック図である。It is a block diagram which shows the system structure of the flying object control system of 1st Embodiment. 第1の実施形態の飛行体制御システムの全体制御を示すフローチャートである。It is a flowchart which shows the whole control of the flying object control system of 1st Embodiment. 昼間モードの電力制御処理を示すフローチャートである。It is a flowchart which shows the power control processing of a daytime mode. 昼間モードの熱制御処理を示すフローチャートである。It is a flowchart which shows the heat control process of a daytime mode. 昼間モードの熱制御処理を示すフローチャートの変形例である。This is a modified example of the flowchart showing the heat control process in the daytime mode. 夜間モードの電力制御処理を示すフローチャートである。It is a flowchart which shows the power control processing of a night mode. 夜間モードの熱制御処理を示すフローチャートである。It is a flowchart which shows the heat control process of a night mode. 第2の実施形態の飛行体に実装される熱供給装置の構成を示す図である。It is a figure which shows the structure of the heat supply device mounted on the flying object of the 2nd Embodiment. 第2の実施形態の飛行体における夜間モードの熱制御処理を示すフローチャートである。It is a flowchart which shows the heat control processing of the night mode in the flying body of the 2nd Embodiment.
 本出願は、2020年4月27日に日本国特許庁に出願された特願2020-78064の特許出願に関連しており、この出願のすべての内容がこの明細書に参照によって組み込まれる。 This application is related to the patent application of Japanese Patent Application No. 2020-78064 filed with the Japan Patent Office on April 27, 2020, and the entire contents of this application are incorporated by reference in this specification.
 (1)第1の実施形態
 以下、移動体の一実施形態である航空機について説明する。なお、本発明の移動体は、航空機等の飛行体に限られず、その他の種類の移動体として例えば自動車、鉄道車両等にも適用可能である。
 本実施形態の航空機は、有人航空機であってもよいし、例えばドローン等の無人航空機であってもよいが、以下では、無人航空機の場合について説明する。
 本実施形態の航空機は、プロペラを回転駆動させるモータ(電動機)を動力源として利用し、モータに対して電池モジュール(蓄電池)の電力を供給してモータを動作させる。
 航空機は、高高度を飛行し、また、高緯度を飛行し得ることから、氷点下数度~数十度の極低温下で電池モジュールを動作させることが必要である。そのため、本実施形態の航空機には、後述する熱供給装置が搭載されている。熱供給装置は、集熱器によって加熱された熱媒体を電池モジュールに供給することで電池モジュールを加温するように構成されている。
(1) First Embodiment Hereinafter, an aircraft, which is an embodiment of a mobile body, will be described. The moving body of the present invention is not limited to a flying body such as an aircraft, and can be applied to other types of moving bodies such as automobiles and railroad vehicles.
The aircraft of the present embodiment may be a manned aircraft or an unmanned aerial vehicle such as a drone, but the case of an unmanned aerial vehicle will be described below.
The aircraft of the present embodiment uses a motor (motor) for rotationally driving a propeller as a power source, and supplies electric power of a battery module (storage battery) to the motor to operate the motor.
Since an aircraft can fly at high altitudes and at high latitudes, it is necessary to operate the battery module at a cryogenic temperature of several degrees to several tens of degrees below freezing. Therefore, the aircraft of the present embodiment is equipped with a heat supply device described later. The heat supply device is configured to heat the battery module by supplying the heat medium heated by the heat collector to the battery module.
 (1-1)例示的な航空機AVの構成
 図1に、本実施形態の例示的な航空機AVの概略的な図を示す。航空機AVは、ソーラーパネルが発電する電力によってモータを駆動することで推進力を得る電動飛行体である。航空機AVには、後述する航空機制御システム1が実装される。
 図1に示すように、航空機AVは、翼部12と、翼部12に取り付けられた駆動部4と、駆動部4に連結されたプロペラ14と、胴体部16とを備える。なお、航空機AVに搭載されるプロペラ14の数は任意でよい。駆動部4は、プロペラ14を回転駆動するモータを含む。
 図1の例では、駆動部4に電力を供給する電池モジュールBTが翼部12の両翼に設けられている。図1には図示していないが、電池モジュールBTは、ソーラーパネル32および駆動部4に電気的に接続可能となるように配線されている。
(1-1) Configuration of an exemplary aircraft AV FIG. 1 shows a schematic diagram of an exemplary aircraft AV of the present embodiment. An aircraft AV is an electric vehicle that obtains propulsion by driving a motor with electric power generated by a solar panel. An aircraft control system 1, which will be described later, is mounted on the aircraft AV.
As shown in FIG. 1, the aircraft AV includes a wing portion 12, a drive portion 4 attached to the wing portion 12, a propeller 14 connected to the drive portion 4, and a fuselage portion 16. The number of propellers 14 mounted on the aircraft AV may be arbitrary. The drive unit 4 includes a motor that rotationally drives the propeller 14.
In the example of FIG. 1, battery module BTs that supply electric power to the drive unit 4 are provided on both wings of the wing unit 12. Although not shown in FIG. 1, the battery module BT is wired so as to be electrically connectable to the solar panel 32 and the drive unit 4.
 多くの太陽光を受光して発電量を高めるべく、図1に示すように、ソーラーパネル32は、翼部12に設けられていることが好ましい。すなわち、ソーラーパネル32を翼部12に設けることで、ソーラーパネル32の設置面積を極力広くとることができる。
 図1に示すように、航空機AVの翼部12には、集熱器51が配置される。集熱器51は、太陽光の熱エネルギー(つまり、太陽熱)を熱媒体に伝達する。熱媒体は限定しないが、例えば、水、あるいは、エチレングリコール、メチルアルコール等の溶剤を含む不凍液が採用される。後述するように、熱媒体は、電池モジュールBTを加温するために利用される。集熱器51の位置は限定しないが、できるだけ多くの太陽熱を熱媒体に伝達すべく、集熱器51は翼部12に配置されることが好ましい。
As shown in FIG. 1, the solar panel 32 is preferably provided on the wing portion 12 in order to receive a large amount of sunlight and increase the amount of power generation. That is, by providing the solar panel 32 on the wing portion 12, the installation area of the solar panel 32 can be made as large as possible.
As shown in FIG. 1, a heat collector 51 is arranged on the wing portion 12 of the aircraft AV. The heat collector 51 transfers the heat energy of sunlight (that is, solar heat) to a heat medium. The heat medium is not limited, but for example, water or an antifreeze solution containing a solvent such as ethylene glycol or methyl alcohol is adopted. As will be described later, the heat medium is used to heat the battery module BT. Although the position of the heat collector 51 is not limited, it is preferable that the heat collector 51 is arranged on the wing portion 12 in order to transfer as much solar heat as possible to the heat medium.
 後述するように、航空機制御システム1は、飛行制御等、本実施形態の航空機AVの全体の制御を行うためのECU(Electrical Control Unit)2と、電池モジュールBTの充放電の制御、および、ソーラーパネル32が発電する電力の制御を行うためのBMS(Battery Management System)31と、を含む。ECU2およびBMS31は、例えば胴体部16に設けられる。 As will be described later, the aircraft control system 1 includes an ECU (Electrical Control Unit) 2 for controlling the entire aircraft AV of the present embodiment such as flight control, charge / discharge control of the battery module BT, and solar. A BMS (Battery Management System) 31 for controlling the power generated by the panel 32 is included. The ECU 2 and the BMS 31 are provided, for example, on the body portion 16.
 (1-2)熱供給装置5の構成
 次に、図2を参照して、本実施形態の航空機AVに搭載される熱供給装置5(媒体供給部の一例)の構成例について説明する。
 図2に示すように、熱供給装置5は、集熱器51、制御弁510、ポンプ511、放熱部512、および、導管513,514を有する。集熱器51として、例えば、内部を真空にした円筒状のガラス管(図示せず)に熱媒体HMを通す真空管型を採用することができ、ガラス管内の熱媒体HMに太陽熱を伝達するように構成される。なお、集熱器51としては真空管型に限られず、平板型(表面に集熱板を配置し、熱が逃げないように内部に断熱材を設けたもの)を利用してもよい。
 導管513は、集熱器51によって加熱された熱媒体HMを放熱部512まで導く管である。放熱部512は、例えば図2に示すように、電池モジュールBTに隣接して配置され、好ましくは面接触するように電池モジュールBTの底部に配置され、熱媒体HMの熱を電池モジュールBTに向けて放熱する(電池モジュールBTは受熱する)。導管514は、電池モジュールBTに放熱した熱媒体HMを集熱器51に戻す管である。導管513,514は、熱供給装置5において熱媒体HMを集熱器51と放熱部512の間で循環させる熱媒体HMの閉回路の一部を構成する。
 制御弁510は、集熱器51から閉回路に放出される熱媒体HMの流量を調整するための弁であるが、必須の構成要素ではない。制御弁510は、例えば、ECU2からの弁開度を制御する信号に基づいて動作する電磁弁である。
 ポンプ511は、熱供給装置5の閉回路において熱媒体HMの循環を促進させるための循環ポンプである。図2では、ポンプ511が導管513に設けられている例が示されるが、導管514に設けられてもよい。ポンプ511の動作のON/OFFやポンプ511の流量は、好ましくはECU2によって制御される。
(1-2) Configuration of Heat Supply Device 5 Next, a configuration example of the heat supply device 5 (an example of the medium supply unit) mounted on the aircraft AV of the present embodiment will be described with reference to FIG.
As shown in FIG. 2, the heat supply device 5 includes a heat collector 51, a control valve 510, a pump 511, a heat radiating unit 512, and conduits 513 and 514. As the heat collector 51, for example, a vacuum tube type in which the heat medium HM is passed through a cylindrical glass tube (not shown) having a vacuum inside can be adopted so as to transfer solar heat to the heat medium HM in the glass tube. It is composed of. The heat collector 51 is not limited to the vacuum tube type, and a flat plate type (a heat collecting plate arranged on the surface and a heat insulating material provided inside to prevent heat from escaping) may be used.
The conduit 513 is a tube that guides the heat medium HM heated by the heat collector 51 to the heat radiating section 512. As shown in FIG. 2, for example, the heat radiating unit 512 is arranged adjacent to the battery module BT, preferably arranged at the bottom of the battery module BT so as to make surface contact, and directs the heat of the heat medium HM toward the battery module BT. Heat is dissipated (the battery module BT receives heat). The conduit 514 is a tube that returns the heat medium HM radiated to the battery module BT to the collector 51. The conduits 513 and 514 form part of a closed circuit of the heat medium HM that circulates the heat medium HM between the collector 51 and the heat radiating unit 512 in the heat supply device 5.
The control valve 510 is a valve for adjusting the flow rate of the heat medium HM discharged from the heat collector 51 to the closed circuit, but is not an essential component. The control valve 510 is, for example, a solenoid valve that operates based on a signal for controlling the valve opening degree from the ECU 2.
The pump 511 is a circulation pump for promoting the circulation of the heat medium HM in the closed circuit of the heat supply device 5. Although FIG. 2 shows an example in which the pump 511 is provided in the conduit 513, it may be provided in the vessel 514. The ON / OFF of the operation of the pump 511 and the flow rate of the pump 511 are preferably controlled by the ECU 2.
 図2において仮想線で示しているが、好ましくは、電池モジュールBTの近傍には(図2の例では、電池モジュールBTの上部)、熱供給装置5に代えて、又は、熱供給装置5とともに電池モジュールBTを加温するためのヒータ装置52が配置される。 Although shown by a virtual line in FIG. 2, preferably, in the vicinity of the battery module BT (in the example of FIG. 2, the upper part of the battery module BT), instead of the heat supply device 5, or together with the heat supply device 5. A heater device 52 for heating the battery module BT is arranged.
 (1-3)航空機制御システム1のシステム構成
 次に、図3を参照して、本実施形態の航空機制御システム1のシステム構成例について説明する。
 図3に示すように、航空機制御システム1は、ECU2、電源部3、駆動部4、熱供給装置5、データ取得部6、ストレージ7、および、通信部8を備える。航空機制御システム1は、好ましくは、ヒータ装置52を備える。
(1-3) System Configuration of Aircraft Control System 1 Next, an example of a system configuration of the aircraft control system 1 of the present embodiment will be described with reference to FIG.
As shown in FIG. 3, the aircraft control system 1 includes an ECU 2, a power supply unit 3, a drive unit 4, a heat supply device 5, a data acquisition unit 6, a storage 7, and a communication unit 8. The aircraft control system 1 preferably includes a heater device 52.
 ECU2は、プロセッサおよびメモリ(RAM(Random Access Memory)およびROM(Read Only Memory))を有し、所定のプログラムを実行することで、航空機制御システム1の全体を制御する。ECU2は、データ取得部6によって取得されるデータに基づいて、飛行制御(例えば、自律航行制御)等の様々な制御を行うが、電源部3および熱供給装置5に関連する制御として電力制御処理および熱制御処理を行う。電力制御処理および熱制御処理については、後述する。
 なお、ECU2は、制御部および故障判定部の一例である。
The ECU 2 has a processor and a memory (RAM (Random Access Memory) and ROM (Read Only Memory)), and controls the entire aircraft control system 1 by executing a predetermined program. The ECU 2 performs various controls such as flight control (for example, autonomous navigation control) based on the data acquired by the data acquisition unit 6, but power control processing is performed as control related to the power supply unit 3 and the heat supply device 5. And heat control processing. The power control process and the thermal control process will be described later.
The ECU 2 is an example of a control unit and a failure determination unit.
 データ取得部6は、図3に示すように、例えば、GPS受信機61、対気速度センサ62、慣性計測装置63、ビデオカメラ64、および、リアルタイムクロック(RTC:Real-Time Clock)65を含む。なお、対気速度センサ62およびビデオカメラ64は、少なくとも後述する電力制御処理および熱制御処理においては任意的要素である。ECU2は、データ取得部6の各装置によって取得されたデータを逐次、あるいは必要に応じて、ストレージ7に記録する。ストレージ7は、HDD(Hard Disk Drive)等の大規模記憶装置である。 As shown in FIG. 3, the data acquisition unit 6 includes, for example, a GPS receiver 61, an air velocity sensor 62, an inertial measurement unit 63, a video camera 64, and a real-time clock (RTC) 65. .. The airspeed sensor 62 and the video camera 64 are optional elements at least in the power control process and the thermal control process described later. The ECU 2 sequentially or, if necessary, records the data acquired by each device of the data acquisition unit 6 in the storage 7. The storage 7 is a large-scale storage device such as an HDD (Hard Disk Drive).
 GPS(Global Positioning System)受信機61は、GPS衛星から受信する信号を基に航空機AVの位置(経緯度の値)を特定する。対気速度センサ62は、例えばピトー管を利用して航空機AVの対気速度を検出する。
 慣性計測装置63は、例えば3軸のジャイロと3軸の加速度センサを含み、3次元の角速度と加速度を計測する。慣性計測装置63によってECU2は、航空機AVの飛行中の姿勢を逐次認識することができる。
 ビデオカメラ64は、航空機AVの飛行中の映像を逐次取得する。リアルタイムクロック65は、現在時刻を計測するデバイスである。
The GPS (Global Positioning System) receiver 61 identifies the position (latitude and latitude value) of the aircraft AV based on the signal received from the GPS satellite. The airspeed sensor 62 detects the airspeed of an aircraft AV using, for example, a Pitot tube.
The inertial measurement unit 63 includes, for example, a 3-axis gyro and a 3-axis acceleration sensor, and measures three-dimensional angular velocity and acceleration. The inertial measurement unit 63 allows the ECU 2 to sequentially recognize the attitude of the aircraft AV during flight.
The video camera 64 sequentially acquires images of the aircraft AV in flight. The real-time clock 65 is a device that measures the current time.
 後述する電力制御処理および熱制御処理を行うときには、ECU2は、GPS受信機61によって取得される航空機AVの経緯度の情報と、リアルタイムクロック65によって取得される現在時刻の情報とに基づいて、飛行中の航空機AVの現在位置が昼間であるか夜間であるか判定する。また、ECU2は、飛行中の航空機AVの現在位置が昼間である場合に、慣性計測装置63によって取得される航空機AVの姿勢情報に基づいて、翼部12が太陽光を受けられる向きが否か判定する。 When performing the power control process and the thermal control process described later, the ECU 2 flies based on the latitude and longitude information of the aircraft AV acquired by the GPS receiver 61 and the current time information acquired by the real-time clock 65. Determine whether the current position of the aircraft AV inside is daytime or nighttime. Further, when the current position of the aircraft AV in flight is daytime, the ECU 2 determines whether the wing portion 12 is in a direction to receive sunlight based on the attitude information of the aircraft AV acquired by the inertial measurement unit 63. judge.
 駆動部4は、ESC(Electric Speed Controller)41およびモータ42を含む。
 モータ42は、電池モジュールBTの電力によって動作する航空機AVの動力源である。ESC41は、ECU2からの航空機AVの要求速度指令に基づいてモータ42の回転数の制御を行う。
 通信部8は、航空機AVを管理するユーザが操作する外部の通信機器(図示せず)から、航空機AVの運行経路及び/又は運行速度等の指示情報を受信し、ECU2に通知する。ECU2は、通信部8から受信する指示情報に基づいて航空機AVの自律航行制御を行う。通信部8はまた、ECU2が故障を検出した場合、ECU2による指示に基づいて、外部の通信機器に対して故障通知を送信する。
The drive unit 4 includes an ESC (Electric Speed Controller) 41 and a motor 42.
The motor 42 is a power source for an aircraft AV operated by the electric power of the battery module BT. The ESC 41 controls the rotation speed of the motor 42 based on the required speed command of the aircraft AV from the ECU 2.
The communication unit 8 receives instruction information such as the operation route and / or operation speed of the aircraft AV from an external communication device (not shown) operated by the user who manages the aircraft AV, and notifies the ECU 2. The ECU 2 performs autonomous navigation control of the aircraft AV based on the instruction information received from the communication unit 8. When the ECU 2 detects a failure, the communication unit 8 also transmits a failure notification to an external communication device based on the instruction from the ECU 2.
 図3に示すように、電源部3は、BMS31、ソーラーパネル32、DC/DCコンバータ33、充電部34、補助バッテリ35、電圧センサ36、電流センサ37,321、温度センサ38、および、電池モジュールBTを備える。
 BMS31は、プロセッサおよびメモリ(RAMおよびROM)を有し、所定のプログラムを実行することで電源部3の全体を制御する。
 ソーラーパネル32は、複数の太陽電池を集積して直列に接続されて構成されており、例えば、数V~数10Vの直流電圧を発生させる。
 DC/DCコンバータ33は、ソーラーパネル32によって発生する直流電圧を、電池モジュールBTを充電するのに必要な電圧まで昇圧する。例えば、DC/DCコンバータ33は、ソーラーパネル32によって発生する数V~数10Vの直流電圧を数10V~数100Vの直流電圧まで昇圧させるが、これは一例に過ぎない。本実施形態において、ソーラーパネル32によって発生する直流電圧およびDC/DCコンバータ33による昇圧後の直流電圧は、航空機AVの仕様に応じて任意に決定可能である。
 電池モジュールBTは、例えば、複数のセル(電池)を直列及び/又は並列に接続してモジュール化したものである。
As shown in FIG. 3, the power supply unit 3 includes a BMS 31, a solar panel 32, a DC / DC converter 33, a charging unit 34, an auxiliary battery 35, a voltage sensor 36, a current sensor 37, 321 and a temperature sensor 38, and a battery module. Equipped with BT.
The BMS 31 has a processor and a memory (RAM and ROM), and controls the entire power supply unit 3 by executing a predetermined program.
The solar panel 32 is configured by integrating a plurality of solar cells and connecting them in series, and generates, for example, a DC voltage of several V to several tens of V.
The DC / DC converter 33 boosts the DC voltage generated by the solar panel 32 to the voltage required to charge the battery module BT. For example, the DC / DC converter 33 boosts the DC voltage of several V to several tens of V generated by the solar panel 32 to the DC voltage of several tens V to several hundred V, but this is only an example. In the present embodiment, the DC voltage generated by the solar panel 32 and the DC voltage after boosting by the DC / DC converter 33 can be arbitrarily determined according to the specifications of the aircraft AV.
The battery module BT is, for example, a module in which a plurality of cells (batteries) are connected in series and / or in parallel.
 電圧センサ36は、電池モジュールBTの充電電圧(両端電圧)を検出するように構成される。電流センサ37は、電池モジュールBTに接続される配線を流れる電流を検出するように構成される。温度センサ38は、電池モジュールBTの表面温度、内部温度又はその近傍の雰囲気温度を検出するように構成される。電流センサ321は、ソーラーパネル32からDC/DCコンバータ33に流れる電流を検出するように構成される。
 電圧センサ36、電流センサ37,321、および、温度センサ38の検出信号は、逐次BMS31に送信される。
The voltage sensor 36 is configured to detect the charging voltage (voltage across the battery module BT) of the battery module BT. The current sensor 37 is configured to detect the current flowing through the wiring connected to the battery module BT. The temperature sensor 38 is configured to detect the surface temperature, the internal temperature of the battery module BT, or the atmospheric temperature in the vicinity thereof. The current sensor 321 is configured to detect the current flowing from the solar panel 32 to the DC / DC converter 33.
The detection signals of the voltage sensor 36, the current sensors 37, 321 and the temperature sensor 38 are sequentially transmitted to the BMS 31.
 充電部34は、例えば航空機AVの離陸前(つまり、運行開始前)に、図示しない外部の充電器(あるいは充電ステーション)に接続して電池モジュールBTの充電を行うためのインタフェースである。充電部34を介した外部の充電器による電池モジュールBTに対する充電は、BMS31による制御の下で行われる。
 補助バッテリ35は、任意的要素である。例えば、主電源を生成する電池モジュールBTが航行中に故障し、あるいは電欠することで十分な電力を発生できなくなった場合に、補助バッテリ35が利用される。
The charging unit 34 is an interface for charging the battery module BT by connecting to an external charger (or charging station) (not shown), for example, before the aircraft AV takes off (that is, before the start of operation). The charging of the battery module BT by the external charger via the charging unit 34 is performed under the control of the BMS 31.
The auxiliary battery 35 is an optional element. For example, the auxiliary battery 35 is used when the battery module BT that generates the main power source fails during navigation or is unable to generate sufficient electric power due to lack of electric power.
 BMS31は、電源部3内の各センサからの検出信号を受信し、各検出信号をデジタル信号に変換するA/D変換器を有する。各検出信号のデジタル信号がプロセッサに取り込まれる。BMS31では、プロセッサがプログラムを実行することで、例えば、電圧センサ36および電流センサ37の検出信号(デジタル値)を基に、電池モジュールBTのSOC(State of Charge)を算出する。 The BMS 31 has an A / D converter that receives detection signals from each sensor in the power supply unit 3 and converts each detection signal into a digital signal. The digital signal of each detection signal is taken into the processor. In the BMS 31, the processor executes a program to calculate the SOC (State of Charge) of the battery module BT based on, for example, the detection signals (digital values) of the voltage sensor 36 and the current sensor 37.
 (1-4)航空機制御システム1の処理
 次に、本実施形態の航空機制御システム1の処理について、図4~図9のフローチャートを参照して説明する。図4~図9のフローチャートは、ECU2およびBMS31が協働して実行される処理である。
(1-4) Processing of Aircraft Control System 1 Next, the processing of the aircraft control system 1 of the present embodiment will be described with reference to the flowcharts of FIGS. 4 to 9. The flowcharts of FIGS. 4 to 9 are processes executed by the ECU 2 and the BMS 31 in cooperation with each other.
 (1-4-1)全体処理(図4)
 図4は、航空機制御システム1において、電力制御および熱制御に関連して行われる全体的な処理を示すフローチャートであり、ECU2によって逐次、実行される。
 ECU2は、リアルタイムクロック65から現在時刻の情報(現在時刻情報)を取得し(ステップS2)、GPS受信機61から取得する航空機AVの経緯度の情報(現在位置情報)を取得する(ステップS4)。ECU2は、ステップS2で取得した現在時刻情報と、ステップS4で取得した現在位置情報とに基づいて、飛行中の航空機AVの現在位置が昼間であるか夜間であるか判定する(ステップS6)。
 飛行中の航空機AVの現在位置が昼間である場合には(ステップS6:YES)、ECU2は、いずれも後述する昼間モードの電力制御処理(ステップS10)、および、昼間モードの熱制御処理(ステップS20)を実行する。なお、ステップS10とステップS20の実行順序は逆でもよい。
 逆に、飛行中の航空機AVの現在位置が夜間である場合には(ステップS6:NO)、ECU2は、いずれも後述する夜間モードの電力制御処理(ステップS30)、および、夜間モードの熱制御処理(ステップS40)を実行する。なお、ステップS30とステップS40の実行順序は逆でもよい。
 なお、昼間モードは、集熱器51により熱媒体を十分に加熱可能である第1モードの一例である。夜間モードは、集熱器51により熱媒体を十分に加熱可能でない第2モードの一例である。
(1-4-1) Overall processing (Fig. 4)
FIG. 4 is a flowchart showing the overall processing performed in relation to the electric power control and the thermal control in the aircraft control system 1, and is sequentially executed by the ECU 2.
The ECU 2 acquires the current time information (current time information) from the real-time clock 65 (step S2), and acquires the latitude and longitude information (current position information) of the aircraft AV acquired from the GPS receiver 61 (step S4). .. The ECU 2 determines whether the current position of the aircraft AV in flight is daytime or nighttime based on the current time information acquired in step S2 and the current position information acquired in step S4 (step S6).
When the current position of the aircraft AV in flight is daytime (step S6: YES), the ECU 2 has both the daytime mode power control process (step S10) and the daytime mode thermal control process (step S10), which will be described later. S20) is executed. The execution order of steps S10 and S20 may be reversed.
On the contrary, when the current position of the aircraft AV in flight is at night (step S6: NO), the ECU 2 performs the night mode power control process (step S30) and the night mode thermal control, which will be described later. The process (step S40) is executed. The execution order of steps S30 and S40 may be reversed.
The daytime mode is an example of the first mode in which the heat medium can be sufficiently heated by the heat collector 51. The night mode is an example of a second mode in which the heat medium cannot be sufficiently heated by the collector 51.
 (1-4-2)昼間モードの電力制御処理(図5)
 図5に、図4のステップS10の昼間モードの電力制御処理の詳細な処理のフローチャートを示す。
 昼間モードでは、太陽光によってソーラーパネル32が十分に電力を発生することが見込まれるため、ECU2は、ソーラーパネル32によって発生する電力によって電池モジュールBTを充電するとともに電池モジュールBTの電力をモータ42に供給するように、電源部3に指示する(ステップS11)。
(1-4-2) Daytime mode power control processing (Fig. 5)
FIG. 5 shows a detailed flow chart of the power control process of the daytime mode in step S10 of FIG.
In the daytime mode, it is expected that the solar panel 32 will generate sufficient electric power due to sunlight. Therefore, the ECU 2 charges the battery module BT with the electric power generated by the solar panel 32 and transfers the electric power of the battery module BT to the motor 42. Instruct the power supply unit 3 to supply the power (step S11).
 次いで行われるステップS13~S15は、電源部3の故障有無を検出するための処理である。すなわち、ECU2は、慣性計測装置63から航空機AVの現在の姿勢情報を取得し(ステップS12)、取得した姿勢情報に基づいて航空機AVの翼部12に設けられたソーラーパネル32が太陽光を受けられる向きが否か判定する(ステップS13)。ここで、ECU2は、ソーラーパネル32が太陽光を受けられる向きである場合、ソーラーパネル32からDC/DCコンバータ33へ流れる電流量の情報をBMS31から取得し、当該電流量が所定の閾値未満であるか否か判断する(ステップS14)。ソーラーパネル32が太陽光を受けられる向きであるにも関わらず、当該電流量が少ない場合(つまり、所定の閾値未満である場合)には、ソーラーパネル32及び/又はDC/DCコンバータ33が故障していると考えられる。そこで、ECU2は、故障通知を行う(ステップS15)。例えば、航空機AVを管理するユーザが操作する外部の通信機器に対して通信部8が故障通知を送信するように、ECU2が通信部8を制御する。
 ソーラーパネル32が太陽光を受けられる向きでない場合(ステップS13:NO)、又は、ソーラーパネル32からDC/DCコンバータ33へ流れる電流量が上記所定の閾値以上である場合(ステップS14:NO)、ECU2は何もしない。
The next steps S13 to S15 are processes for detecting the presence or absence of a failure in the power supply unit 3. That is, the ECU 2 acquires the current attitude information of the aircraft AV from the inertial measurement unit 63 (step S12), and the solar panel 32 provided on the wing portion 12 of the aircraft AV receives sunlight based on the acquired attitude information. It is determined whether or not the direction is to be applied (step S13). Here, when the solar panel 32 is oriented to receive sunlight, the ECU 2 acquires information on the amount of current flowing from the solar panel 32 to the DC / DC converter 33 from the BMS 31, and the amount of current is less than a predetermined threshold value. It is determined whether or not there is (step S14). If the amount of current is small (that is, if it is less than a predetermined threshold value) even though the solar panel 32 is oriented to receive sunlight, the solar panel 32 and / or the DC / DC converter 33 fails. it seems to do. Therefore, the ECU 2 notifies the failure (step S15). For example, the ECU 2 controls the communication unit 8 so that the communication unit 8 transmits a failure notification to an external communication device operated by a user who manages the aircraft AV.
When the solar panel 32 is not oriented to receive sunlight (step S13: NO), or when the amount of current flowing from the solar panel 32 to the DC / DC converter 33 is equal to or greater than the above-mentioned predetermined threshold value (step S14: NO). ECU 2 does nothing.
 (1-4-3)昼間モードの熱制御処理(図6,図7)
 図6に、図4のステップS20の昼間モードの熱制御処理の詳細な処理のフローチャートを示す。
 昼間モードの場合には、太陽光による熱供給装置5を用いて電池モジュールBTを加温することができるため、ヒータ装置52をOFFにして消費電力を抑制することができる。
 そこで、先ず、ECU2は、昼間モードの場合にヒータ装置52がONである場合には(ステップS21:YES)、ヒータ装置52をOFFにする(ステップS22)。次いでECU2は、熱供給装置5をONにする(ステップS23)。すなわち、ECU2は、熱供給装置5のポンプ511を動作させ、それによって熱供給装置5の閉回路を熱媒体が循環し始める。熱媒体が循環し始めると、集熱器51によって加熱された熱媒体が放熱部512まで伝搬されて電池モジュールBTに向けて放熱することで、電池モジュールBTが加温される。
(1-4-3) Daytime mode thermal control processing (Figs. 6 and 7)
FIG. 6 shows a detailed flow chart of the heat control process of the daytime mode in step S20 of FIG.
In the daytime mode, since the battery module BT can be heated by using the heat supply device 5 by sunlight, the heater device 52 can be turned off to suppress the power consumption.
Therefore, first, the ECU 2 turns off the heater device 52 (step S22) when the heater device 52 is ON in the daytime mode (step S21: YES). Next, the ECU 2 turns on the heat supply device 5 (step S23). That is, the ECU 2 operates the pump 511 of the heat supply device 5, whereby the heat medium starts to circulate in the closed circuit of the heat supply device 5. When the heat medium begins to circulate, the heat medium heated by the heat collector 51 is propagated to the heat radiating section 512 and dissipates heat toward the battery module BT, thereby heating the battery module BT.
 次いで行われるステップS24~S28は、熱供給装置5の故障有無の検出と、故障の際の処理に相当する。すなわち、ECU2は、慣性計測装置63から航空機AVの現在の姿勢情報を取得し(ステップS24)、取得した姿勢情報に基づいて航空機AVの翼部12に設けられた集熱器51が太陽光を受けられる向きが否か判定する(ステップS25)。ここで、ECU2は、集熱器51が太陽光を受けられる向きである場合、BMS31から逐次、電池モジュールBTの表面温度、内部温度又はその近傍の雰囲気温度(つまり、電池モジュールBTの温度)のデータを取得する。電池モジュールBTの温度は、BMS31が温度センサ38から受信する検出信号に基づいている。
 例えば、集熱器51が太陽光を受けられる向きであることを判断してから所定時間の電池モジュールBTの温度の低下量が所定の閾値よりも大きい場合(ステップS26:YES)、熱供給装置5によって電池モジュールBTが加温されず、熱供給装置5が故障していると考えられる。その場合、ECU2は、故障通知を行う(ステップS27)。例えば、航空機AVを管理するユーザが操作する外部の通信機器に対して通信部8が故障通知を送信するように、ECU2が通信部8を制御する。熱供給装置5によって電池モジュールBTを加温することができないため、ヒータ装置52によって電池モジュールBTを加温するべく、ECU2はヒータ装置52をONにする(ステップS28)。
 集熱器51が太陽光を受けられる向きでない場合(ステップS25:NO)、又は、電池モジュールBTの温度の低下量が所定の閾値よりも大きくない場合(ステップS26:NO)、ECU2は何もしない。
The steps S24 to S28 performed next correspond to the detection of the presence or absence of a failure of the heat supply device 5 and the processing at the time of the failure. That is, the ECU 2 acquires the current attitude information of the aircraft AV from the inertial measurement unit 63 (step S24), and the heat collector 51 provided on the wing portion 12 of the aircraft AV collects sunlight based on the acquired attitude information. It is determined whether or not the receiving direction is received (step S25). Here, when the collector 51 is oriented to receive sunlight, the ECU 2 sequentially starts with the BMS 31 and sequentially determines the surface temperature, the internal temperature, or the ambient temperature in the vicinity of the battery module BT (that is, the temperature of the battery module BT). Get the data. The temperature of the battery module BT is based on the detection signal received by the BMS 31 from the temperature sensor 38.
For example, when the amount of decrease in temperature of the battery module BT for a predetermined time after determining that the heat collector 51 is suitable for receiving sunlight is larger than a predetermined threshold value (step S26: YES), the heat supply device It is considered that the battery module BT is not heated by 5 and the heat supply device 5 is out of order. In that case, the ECU 2 notifies the failure (step S27). For example, the ECU 2 controls the communication unit 8 so that the communication unit 8 transmits a failure notification to an external communication device operated by a user who manages the aircraft AV. Since the battery module BT cannot be heated by the heat supply device 5, the ECU 2 turns on the heater device 52 in order to heat the battery module BT by the heater device 52 (step S28).
If the collector 51 is not oriented to receive sunlight (step S25: NO), or if the amount of decrease in temperature of the battery module BT is not larger than a predetermined threshold value (step S26: NO), the ECU 2 has nothing. do not.
 なお、図6のフローチャートでは、正常時には、ヒータ装置52を動作させず熱供給装置5のみを動作させる場合を例示したが、その限りではない。電池モジュールBTに必要とする熱量に応じて、補助的にヒータ装置52も動作させてもよい。その場合、ステップS26において熱供給装置5が故障していると判断した場合には、ヒータ装置52が発生する熱量を大きくする制御を行ってもよい。それによって、熱供給装置5が提供できない熱量をヒータ装置52によってカバーすることができる。 Note that the flowchart of FIG. 6 illustrates a case where the heater device 52 is not operated and only the heat supply device 5 is operated under normal conditions, but this is not the case. The heater device 52 may also be operated as an auxiliary according to the amount of heat required for the battery module BT. In that case, if it is determined in step S26 that the heat supply device 5 is out of order, control may be performed to increase the amount of heat generated by the heater device 52. Thereby, the amount of heat that the heat supply device 5 cannot provide can be covered by the heater device 52.
 図7のフローチャートは、図6の夜間モードの熱制御処理の変形例を示している。
 図7が図6と異なるのは、ステップS26Aのみである。すなわち、図7のフローチャートにおいて熱供給装置5の故障有無の検出では、集熱器51が太陽光を受けられる向きであることを判断してから所定時間の集熱器51の温度の低下量が所定の閾値よりも大きい場合(ステップS26A:YES)、熱供給装置5が故障していると判断し、ECU2は故障通知を行う(ステップS27)。なお、この変形例では、集熱器51の表面温度又は内部温度、あるいはその近傍の温度を検出するための温度センサを設ける必要がある。
 別の変形例として、放熱部512よりも上流側の熱媒体の温度を計測する温度センサを例えば導管513に設け、集熱器51が太陽光を受けられる向きであることを判断してから所定時間の当該温度センサの温度の低下量が所定の閾値よりも大きい場合、熱供給装置5が故障していると判断してもよい。
The flowchart of FIG. 7 shows a modified example of the thermal control process of the night mode of FIG.
FIG. 7 differs from FIG. 6 only in step S26A. That is, in the detection of the presence or absence of failure of the heat supply device 5 in the flowchart of FIG. 7, the amount of decrease in the temperature of the heat collector 51 for a predetermined time after determining that the heat collector 51 is in the direction of receiving sunlight is determined. If it is larger than a predetermined threshold value (step S26A: YES), it is determined that the heat supply device 5 has failed, and the ECU 2 notifies the failure (step S27). In this modification, it is necessary to provide a temperature sensor for detecting the surface temperature or the internal temperature of the heat collector 51, or the temperature in the vicinity thereof.
As another modification, a temperature sensor for measuring the temperature of the heat medium on the upstream side of the heat radiating unit 512 is provided, for example, in the conduit 513, and it is determined that the heat collector 51 is oriented to receive sunlight. When the amount of decrease in temperature of the temperature sensor over time is larger than a predetermined threshold value, it may be determined that the heat supply device 5 is out of order.
 (1-4-4)夜間モードの電力制御処理(図8)
 図8に、図4のステップS30の夜間モードの電力制御処理の詳細な処理のフローチャートを示す。
 夜間モードでは、ソーラーパネル32が電力を発生できないため、航行中の航空機AVの電力は、専ら電池モジュールBTに依存することになる。そこで、ECU2は、電池モジュールBTの電力をモータ42に供給するように電源部3に指示する(ステップS31)。
(1-4-4) Night mode power control processing (Fig. 8)
FIG. 8 shows a detailed flow chart of the power control process of the night mode in step S30 of FIG.
In the night mode, the solar panel 32 cannot generate electric power, so that the electric power of the aircraft AV during navigation depends exclusively on the battery module BT. Therefore, the ECU 2 instructs the power supply unit 3 to supply the electric power of the battery module BT to the motor 42 (step S31).
 なお、航行中に電池モジュールBTが電欠になった場合には航行することができないため、ECU2は、夜間に航空機AVが航行を続けられるか否かについて逐次、確認することが好ましい。具体的には、ECU2は、電池モジュールBTの電池残量が、モータ42による夜間の消費電力以上であるか否か判断する(ステップS32)。 Note that if the battery module BT runs out of electricity during navigation, it is not possible to navigate. Therefore, it is preferable that the ECU 2 sequentially confirms whether or not the aircraft AV can continue sailing at night. Specifically, the ECU 2 determines whether or not the remaining battery level of the battery module BT is equal to or greater than the nighttime power consumption of the motor 42 (step S32).
 ここで、モータ42による夜間の消費電力の算出に際し、ECU2は、例えば、リアルタイムクロック65から取得される現在時刻情報と、GPS受信機61から取得される現在位置情報と、に基づいて、日が明けてソーラーパネル32による充電を開始できるようになるまでの時間を推定してもよい。モータ42による単位時間当たりの平均消費電力が経験的に既知である場合、モータ42による夜間の消費電力を推定できる。また、BMS31は、電圧センサ36および電流センサ37の検出信号に基づいて電池モジュールBTの電池残量を推定し、ECU2に通知するように構成することができる。 Here, when calculating the nighttime power consumption by the motor 42, the ECU 2 sets the day based on, for example, the current time information acquired from the real-time clock 65 and the current position information acquired from the GPS receiver 61. You may estimate the time until the solar panel 32 can start charging after dawn. If the average power consumption per unit time by the motor 42 is empirically known, the nighttime power consumption by the motor 42 can be estimated. Further, the BMS 31 can be configured to estimate the remaining battery level of the battery module BT based on the detection signals of the voltage sensor 36 and the current sensor 37 and notify the ECU 2.
 電池モジュールBTの電池残量がモータ42による夜間の消費電力より少ない場合には(ステップS32:NO)、夜間に航空機AVが航行を続けられないため、例えば、ECU2は、強制着陸を通知する(ステップS33)。例えば、航空機AVを管理するユーザが操作する外部の通信機器に対して通信部8が強制着陸通知を送信するように、ECU2が通信部8を制御する。 When the remaining battery level of the battery module BT is less than the power consumption at night by the motor 42 (step S32: NO), the aircraft AV cannot continue sailing at night. Therefore, for example, the ECU 2 notifies the forced landing (step S32: NO). Step S33). For example, the ECU 2 controls the communication unit 8 so that the communication unit 8 transmits a forced landing notification to an external communication device operated by a user who manages the aircraft AV.
 (1-4-5)夜間モードの熱制御処理(図9)
 図9に、図4のステップS40の夜間モードの熱制御処理の詳細な処理のフローチャートを示す。
 夜間モードの場合には、熱供給装置5を用いて電池モジュールBTを加温することができないため、ヒータ装置52を利用して電池モジュールBTを加温させる必要がある。
 そこで、先ず、ECU2は、夜間モードの場合に熱供給装置5がONである場合(ステップS41:YES)、熱供給装置5をOFFにする(ステップS42)。具体的には、ECU2は、ポンプ511の動作を停止させて熱媒体の循環を停止させる。次いでECU2は、ヒータ装置52がONするように制御する(ステップS43)。それによって、ヒータ装置52が発生する熱によって電池モジュールBTが加温される。
 なお、昼間モードにおいて熱供給装置5に加えて補助的にヒータ装置52も既に動作させている場合には、夜間モードのフローチャートにおいてステップS43では、ヒータ装置52が発生する熱量を大きく制御を行ってもよい。
(1-4-5) Thermal control processing in night mode (Fig. 9)
FIG. 9 shows a detailed flow chart of the heat control process of the night mode in step S40 of FIG.
In the night mode, the battery module BT cannot be heated by using the heat supply device 5, so it is necessary to heat the battery module BT by using the heater device 52.
Therefore, first, when the heat supply device 5 is ON (step S41: YES) in the night mode, the ECU 2 turns off the heat supply device 5 (step S42). Specifically, the ECU 2 stops the operation of the pump 511 to stop the circulation of the heat medium. Next, the ECU 2 controls the heater device 52 to be turned on (step S43). As a result, the battery module BT is heated by the heat generated by the heater device 52.
When the heater device 52 is already operated as an auxiliary in addition to the heat supply device 5 in the daytime mode, the amount of heat generated by the heater device 52 is largely controlled in step S43 in the flowchart of the nighttime mode. May be good.
 以上説明したように、本実施形態の航空機AVは、動力源であるモータ42に電力を供給する電池モジュールBTと、太陽光により熱媒体を加熱する集熱器51を有し、集熱器51によって加熱された熱媒体を電池モジュールBTに供給するように構成された熱供給装置5と、を備えるように構成される。そのため、熱媒体によって電池モジュールBTを加温できるため、電池モジュールBT自身を加温させるためにヒータ装置52を動作させる必要がないため、電池モジュールBTの電池残量の低下を抑制することができる。
 本実施形態の航空機AVには、熱供給装置5に対する補助的な加温機能を提供するために、ヒータ装置52を設けてもよい。その場合であってもヒータ装置52の動作は例えば節電モード等の低消費電力で済む。
 また、ヒータ装置52を設けることで、熱供給装置5が熱媒体を電池モジュールBTに供給できない夜間モードにおいて、熱供給装置5に代えてヒータ装置52によって電池モジュールBTを加温することができる。
As described above, the aircraft AV of the present embodiment has a battery module BT that supplies electric power to the motor 42 that is a power source, and a heat collector 51 that heats a heat medium with sunlight. It is configured to include a heat supply device 5 configured to supply the heat medium heated by the battery module BT to the battery module BT. Therefore, since the battery module BT can be heated by the heat medium, it is not necessary to operate the heater device 52 to heat the battery module BT itself, so that it is possible to suppress a decrease in the remaining battery level of the battery module BT. ..
The aircraft AV of the present embodiment may be provided with a heater device 52 in order to provide an auxiliary heating function for the heat supply device 5. Even in that case, the operation of the heater device 52 can be performed with low power consumption such as in a power saving mode.
Further, by providing the heater device 52, the battery module BT can be heated by the heater device 52 instead of the heat supply device 5 in the night mode in which the heat supply device 5 cannot supply the heat medium to the battery module BT.
 (2)第2の実施形態
 以下、第2の実施形態である航空機について説明する。
 本実施形態の航空機は、熱供給装置が第1の実施形態(図2参照)とは異なるが、その他の部分は第1の実施形態と同じであるため、重複説明は省略する。以下では、第1の実施形態と異なる部分に着目して説明する。
(2) Second Embodiment Hereinafter, the aircraft which is the second embodiment will be described.
The aircraft of the present embodiment has a heat supply device different from that of the first embodiment (see FIG. 2), but other parts are the same as those of the first embodiment, so duplicate description will be omitted. In the following, a description will be made focusing on a portion different from the first embodiment.
 (2-1)熱供給装置5Aの構成
 本実施形態の航空機に搭載されている熱供給装置5Aの構成を図10に示す。
 図10に示すように、熱供給装置5Aは、集熱器51、制御弁510A,510B,510C、ポンプ511A、放熱部512、蓄熱タンク53、および、導管515~517を有する。集熱器51および放熱部512については、第1の実施形態(図2参照)と同様のものでよい。
 本実施形態の熱供給装置5Aは、熱媒体HMの閉回路において蓄熱タンク53を設けている点が熱供給装置5とは異なる。蓄熱タンク53には、集熱器51によって加熱された熱媒体HMが導管515を介して供給される。蓄熱タンク53は、熱媒体HMを貯蔵する容器(図示せず)と外装との間に断熱材が介在され、熱の外部への損失を抑制可能な構造となっている。本実施形態では、集熱器51で熱媒体HMを加熱できない夜間において熱媒体HMを電池モジュールBTに提供できるようにするため、熱媒体HMを蓄熱タンク53に貯蔵するように構成されている。
(2-1) Configuration of Heat Supply Device 5A The configuration of the heat supply device 5A mounted on the aircraft of the present embodiment is shown in FIG.
As shown in FIG. 10, the heat supply device 5A includes a heat collector 51, control valves 510A, 510B, 510C, a pump 511A, a heat radiating unit 512, a heat storage tank 53, and conduits 515 to 517. The heat collector 51 and the heat radiating unit 512 may be the same as those in the first embodiment (see FIG. 2).
The heat supply device 5A of the present embodiment is different from the heat supply device 5 in that the heat storage tank 53 is provided in the closed circuit of the heat medium HM. The heat medium HM heated by the heat collector 51 is supplied to the heat storage tank 53 via the conduit 515. The heat storage tank 53 has a structure in which a heat insulating material is interposed between the container (not shown) for storing the heat medium HM and the exterior, and the loss of heat to the outside can be suppressed. In the present embodiment, the heat medium HM is stored in the heat storage tank 53 so that the heat medium HM can be provided to the battery module BT at night when the heat medium HM cannot be heated by the heat collector 51.
 図10を参照すると、導管515は、集熱器51で加熱された熱媒体HMを蓄熱タンク53に導く管である。制御弁510Aは、導管515に設けられており、集熱器51から蓄熱タンク53への熱媒体HMの流量を制御する。
 導管516は、蓄熱タンク53に貯蔵される熱媒体HMを放熱部512に導く管である。制御弁510Bは、導管516に設けられており、蓄熱タンク53から放熱部512への熱媒体HMの流量を制御する。
 導管517は、放熱部512の熱媒体HMを集熱器51に戻す管である。制御弁510Cは、導管517に設けられており、放熱部512から集熱器51への熱媒体HMの流量を制御する。
 制御弁510A,510B,510Cは、制御弁510と同様に電磁弁で構成することができ、ECU2によって各弁の弁開度を独立に制御しうる。
 ポンプ511Aは、熱供給装置5Aの閉回路において熱媒体HMの循環を促進させるための循環ポンプである。図10では、ポンプ511Aが導管516に設けられている例が示されるが、他の導管に設けられてもよい。ポンプ511Aの動作のON/OFFやポンプ511の流量は、好ましくはECU2によって制御される。
Referring to FIG. 10, the conduit 515 is a pipe that guides the heat medium HM heated by the heat collector 51 to the heat storage tank 53. The control valve 510A is provided in the conduit 515 and controls the flow rate of the heat medium HM from the heat collector 51 to the heat storage tank 53.
The conduit 516 is a pipe that guides the heat medium HM stored in the heat storage tank 53 to the heat dissipation unit 512. The control valve 510B is provided in the conduit 516 and controls the flow rate of the heat medium HM from the heat storage tank 53 to the heat dissipation unit 512.
The conduit 517 is a pipe that returns the heat medium HM of the heat radiating unit 512 to the collector 51. The control valve 510C is provided in the conduit 517 and controls the flow rate of the heat medium HM from the heat radiating unit 512 to the heat collector 51.
The control valves 510A, 510B, and 510C can be composed of solenoid valves like the control valve 510, and the valve opening degree of each valve can be independently controlled by the ECU 2.
The pump 511A is a circulation pump for promoting the circulation of the heat medium HM in the closed circuit of the heat supply device 5A. Although FIG. 10 shows an example in which the pump 511A is provided in the conduit 516, it may be provided in another conduit. The ON / OFF of the operation of the pump 511A and the flow rate of the pump 511 are preferably controlled by the ECU 2.
 図10において仮想線で示しているが、好ましくは、電池モジュールBTの近傍には(図10の例では、電池モジュールBTの上部)、熱供給装置5Aに代えて、又は、熱供給装置5Aとともに電池モジュールBTを加温するためのヒータ装置52が配置される。 Although shown by a virtual line in FIG. 10, preferably, in the vicinity of the battery module BT (in the example of FIG. 10, the upper part of the battery module BT), instead of the heat supply device 5A or together with the heat supply device 5A. A heater device 52 for heating the battery module BT is arranged.
 (2-2)熱制御処理
 次に、本実施形態の熱制御処理について説明する。
(2-2) Thermal Control Process Next, the thermal control process of the present embodiment will be described.
 (2-2-1)昼間モードの熱制御処理
 昼間モードの熱制御処理については、図6のフローチャートに示したとおりであるが、ステップS23において熱供給装置5AをONしたときの動作は、以下のとおりである。
 本実施形態のECU2は、熱供給装置5Aにおいて制御弁510A,510B,510Cがすべて開状態となり、かつポンプ511Aが動作するように制御する。それによって熱供給装置5Aの閉回路を熱媒体が循環し始める。熱媒体が循環し始めると、集熱器51によって加熱された熱媒体が蓄熱タンク53を介して放熱部512まで伝搬されて電池モジュールBTに向けて放熱することで、電池モジュールBTが加温される。
 航空機AVの現在位置が昼間でなくなり、これ以上昼間モードの熱制御処理を行わない場合には、ECU2は、制御弁510A,510B,510Cをすべて閉状態とし、ポンプ511Aを停止させる。この状態で、熱媒体が蓄熱タンク53に蓄積される。
(2-2-1) Heat control process in daytime mode The heat control process in daytime mode is as shown in the flowchart of FIG. 6, but the operation when the heat supply device 5A is turned on in step S23 is as follows. It is as follows.
The ECU 2 of the present embodiment controls the heat supply device 5A so that the control valves 510A, 510B, and 510C are all opened and the pump 511A operates. As a result, the heat medium begins to circulate in the closed circuit of the heat supply device 5A. When the heat medium begins to circulate, the heat medium heated by the heat collector 51 is propagated to the heat radiating section 512 via the heat storage tank 53 and dissipates heat toward the battery module BT, thereby heating the battery module BT. NS.
When the current position of the aircraft AV is no longer in the daytime and the heat control process in the daytime mode is not performed any more, the ECU 2 closes all the control valves 510A, 510B, and 510C and stops the pump 511A. In this state, the heat medium is accumulated in the heat storage tank 53.
 (2-2-2)夜間モードの熱制御処理(図11)
 図11に、図4のステップS40の本実施形態での夜間モードの熱制御処理の詳細な処理のフローチャートを示す。
 昼間モードで熱供給装置5Aを動作させたことで蓄熱タンク53には熱媒体が蓄積されている。蓄熱タンク53内の熱媒体は、蓄熱タンク53の断熱材の効果によって夜間においても高い熱エネルギーを保持している。そこで、夜間モードになった場合には、ECU2は、制御弁510Bを開け、かつポンプ511Aを動作させることで、蓄熱タンク53内の熱エネルギーが高い熱媒体を放熱部512に送り出す(ステップS51)。それによって、夜間においても電池モジュールBTを加温することができる。
(2-2-2) Thermal control processing in night mode (Fig. 11)
FIG. 11 shows a detailed flow chart of the heat control process of the night mode in the present embodiment of step S40 of FIG.
By operating the heat supply device 5A in the daytime mode, the heat medium is accumulated in the heat storage tank 53. The heat medium in the heat storage tank 53 retains high heat energy even at night due to the effect of the heat insulating material of the heat storage tank 53. Therefore, when the night mode is set, the ECU 2 opens the control valve 510B and operates the pump 511A to send the heat medium having high thermal energy in the heat storage tank 53 to the heat radiating unit 512 (step S51). .. Thereby, the battery module BT can be heated even at night.
 熱媒体による加温効果では十分でない場合、ECU2は、ヒータ装置52を動作させることができる(ステップS52)。例えば、ECU2は、ステップS51を実行した後に、BMS31から逐次、電池モジュールBTの温度のデータを取得し、所定時間経過した後に当該温度の増加量が所定の閾値未満である場合、ヒータ装置52を動作させることを決定してもよい。
 本実施形態では、ヒータ装置52を動作させる場合であっても、蓄熱タンク53内から放熱部512に提供される熱媒体によって電池モジュールBTが加温されていることから、ヒータ装置52を節電モードで動作させる等、ヒータ装置52の消費電力を抑制することができる。
If the heating effect of the heat medium is not sufficient, the ECU 2 can operate the heater device 52 (step S52). For example, after executing step S51, the ECU 2 sequentially acquires temperature data of the battery module BT from the BMS 31, and when the amount of increase in the temperature is less than a predetermined threshold value after a lapse of a predetermined time, the heater device 52 is used. You may decide to operate.
In the present embodiment, even when the heater device 52 is operated, the battery module BT is heated by the heat medium provided from the heat storage tank 53 to the heat radiating unit 512, so that the heater device 52 is in the power saving mode. It is possible to suppress the power consumption of the heater device 52, such as by operating the heater device 52.
 なお、昼間モードよりも夜間モードにおいて電池モジュールBTが低温環境下に置かれるため、夜間モードである場合には、電池モジュールBTに供給される熱媒体の量(つまり、放熱部512に供給される熱媒体の量)を昼間モードの場合よりも多くするように制御してもよい。
 例えば、夜間モードにおいてポンプ511Aの流量を昼間モードよりも多くするため、昼間モードの場合にポンプ511Aの回転数を第1回転数とし、夜間モードの場合にポンプ511Aの回転数を第1回転数よりも高い第2回転数としてもよい。あるいは、昼間モードの場合に制御弁510Bの弁開度を第1開度とし、夜間モードの場合には制御弁510Bの弁開度を第1開度よりも大きい第2開度としてもよい。ポンプ511Aの回転数および制御弁510Bの弁開度の両方を、昼間モードと夜間モードとで異なる値としてもよい。
Since the battery module BT is placed in a low temperature environment in the night mode rather than the day mode, the amount of heat medium supplied to the battery module BT (that is, the heat radiation unit 512 is supplied in the night mode). The amount of heat medium) may be controlled to be larger than in the daytime mode.
For example, in order to make the flow rate of the pump 511A larger than that in the daytime mode in the nighttime mode, the rotation speed of the pump 511A is set to the first rotation speed in the daytime mode, and the rotation speed of the pump 511A is set to the first rotation speed in the nighttime mode. The second rotation speed may be higher than that. Alternatively, in the daytime mode, the valve opening degree of the control valve 510B may be set as the first opening degree, and in the nighttime mode, the valve opening degree of the control valve 510B may be set as the second opening degree larger than the first opening degree. Both the rotation speed of the pump 511A and the valve opening degree of the control valve 510B may be different values in the daytime mode and the nighttime mode.
 以上、本発明の移動体の実施形態について詳細に説明したが、本発明は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。例えば、各実施形態および変形例に記載された個別の技術的事項は、矛盾が生じない限り、適宜組み合わせることが可能である。 Although the mobile body embodiment of the present invention has been described in detail above, the present invention is not limited to the above embodiment. Further, the above-described embodiment can be improved or modified in various ways without departing from the spirit of the present invention. For example, the individual technical matters described in each embodiment and modification can be appropriately combined as long as there is no contradiction.

Claims (10)

  1.  太陽光により熱媒体を加熱する集熱器と、
     動力源に電力を供給する蓄電池と、
     前記集熱器によって加熱された熱媒体を前記蓄電池に供給する媒体供給部と、
     を備えた、移動体。
    A heat collector that heats the heat medium with sunlight,
    A storage battery that supplies power to the power source,
    A medium supply unit that supplies the heat medium heated by the heat collector to the storage battery, and
    A mobile body equipped with.
  2.  前記媒体供給部は、前記熱媒体を貯蔵するタンクをさらに備えた、
     請求項1に記載された移動体。
    The medium supply unit further includes a tank for storing the heat medium.
    The mobile body according to claim 1.
  3.  前記蓄電池を加熱するヒータをさらに備えた、
     請求項1又は2に記載された移動体。
    Further provided with a heater for heating the storage battery,
    The mobile body according to claim 1 or 2.
  4.  前記蓄電池を加熱するヒータと、
     現在時刻に基づいて、前記集熱器により熱媒体を十分に加熱可能である第1モードであるか、又は、前記集熱器により熱媒体を十分に加熱可能でない第2モードであるか判断する制御部と、をさらに備え、
     前記制御部は、前記第1モードである場合、前記媒体供給部により熱媒体を前記蓄電池に供給し、前記第2モードである場合、前記ヒータを動作させるか、若しくは前記ヒータが発生する熱量を大きくする、
     請求項1又は2に記載された移動体。
    A heater that heats the storage battery and
    Based on the current time, it is determined whether the mode is the first mode in which the heat collector can sufficiently heat the heat medium, or the second mode in which the heat collector cannot sufficiently heat the heat medium. With a control unit,
    In the first mode, the control unit supplies a heat medium to the storage battery by the medium supply unit, and in the second mode, operates the heater or generates heat generated by the heater. Enlarge,
    The mobile body according to claim 1 or 2.
  5.  現在時刻に基づいて、前記集熱器により熱媒体を十分に加熱可能である第1モードであるか、又は、前記集熱器により熱媒体を十分に加熱可能でない第2モードであるか判断する制御部をさらに備え、
     前記制御部は、前記第2モードである場合には、前記蓄電池に供給される熱媒体の量を前記第1モードである場合よりも多くするように、前記媒体供給部を制御する、
     請求項1~4のいずれかに記載された移動体。
    Based on the current time, it is determined whether the mode is the first mode in which the heat collector can sufficiently heat the heat medium, or the second mode in which the heat collector cannot sufficiently heat the heat medium. Equipped with a control unit
    The control unit controls the medium supply unit so that the amount of heat medium supplied to the storage battery in the second mode is larger than that in the first mode.
    The mobile body according to any one of claims 1 to 4.
  6.  前記媒体供給部により前記蓄電池に熱媒体を供給しているときの前記蓄電池又は前記集熱器の温度変化に基づいて、故障の有無を判定する故障判定部をさらに備えた、
     請求項1~5のいずれかに記載された移動体。
    A failure determination unit for determining the presence or absence of a failure based on a temperature change of the storage battery or the heat collector when the heat medium is being supplied to the storage battery by the medium supply unit is further provided.
    The mobile body according to any one of claims 1 to 5.
  7.  前記媒体供給部により前記蓄電池に熱媒体を供給しているときの、前記蓄電池に供給される熱媒体の温度変化に基づいて、故障の有無を判定する故障判定部をさらに備えた、
     請求項1~5のいずれかに記載された移動体。
    A failure determination unit for determining the presence or absence of a failure based on a temperature change of the heat medium supplied to the storage battery when the heat medium is being supplied to the storage battery by the medium supply unit is further provided.
    The mobile body according to any one of claims 1 to 5.
  8.  前記蓄電池を加熱するヒータをさらに備え、
     前記故障判定部により故障有りと判定された場合には、前記ヒータを動作させるか、若しくは前記ヒータが発生する熱量を大きくする、
     請求項6又は7に記載された移動体。
    Further provided with a heater for heating the storage battery,
    When the failure determination unit determines that there is a failure, the heater is operated or the amount of heat generated by the heater is increased.
    The mobile body according to claim 6 or 7.
  9.  前記移動体は、飛行体である、
     請求項1~8のいずれかに記載された移動体。
    The moving body is a flying body,
    The mobile body according to any one of claims 1 to 8.
  10.  前記動力源であるモータと、
     前記モータに連結されたプロペラと、をさらに備えた、
     請求項1~9のいずれかに記載された移動体。
    The motor that is the power source and
    Further equipped with a propeller connected to the motor,
    The mobile body according to any one of claims 1 to 9.
PCT/JP2021/012637 2020-04-27 2021-03-25 Moving body WO2021220685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-078064 2020-04-27
JP2020078064A JP2021174686A (en) 2020-04-27 2020-04-27 Mobile body

Publications (1)

Publication Number Publication Date
WO2021220685A1 true WO2021220685A1 (en) 2021-11-04

Family

ID=78279792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012637 WO2021220685A1 (en) 2020-04-27 2021-03-25 Moving body

Country Status (2)

Country Link
JP (1) JP2021174686A (en)
WO (1) WO2021220685A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101772A (en) * 2011-11-07 2013-05-23 Toyota Industries Corp Battery temperature control system
WO2017207968A1 (en) * 2016-05-31 2017-12-07 Elson Space Engineering Ese Limited Battery arrangement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101772A (en) * 2011-11-07 2013-05-23 Toyota Industries Corp Battery temperature control system
WO2017207968A1 (en) * 2016-05-31 2017-12-07 Elson Space Engineering Ese Limited Battery arrangement

Also Published As

Publication number Publication date
JP2021174686A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
KR101918920B1 (en) Ship for supplying energy and method of supplying energy using the same
US10137983B2 (en) Unmanned aerial vehicle (UAV) having vertical takeoff and landing (VTOL) capability
US7077072B2 (en) Unmanned underwater vehicle turbine powered charging system and method
US20190009756A1 (en) System and Method for Itinerant Power Source for Vehicles
JP6640729B2 (en) System and method for UAV fuel cells
CN103481786B (en) A kind of polar region robot based on wind-solar hybrid energy
CN114041229A (en) Battery thermal management system and method
CN116096635A (en) System and method for multi-module control of a hydrogen-driven hybrid electric powertrain
WO2022006333A1 (en) Method and system for safely landing a battery powered electric vtol aircraft in a low charge condition
JP7305336B2 (en) Underwater energy harvesting drone and operation method
Jalbert et al. A solar-powered autonomous underwater vehicle
US7353768B1 (en) Underwater vehicle propulsion and power generation
GB2542920A (en) A vehicle comprising an engine restart system
WO2017130137A1 (en) Stratospheric drone
CN113998150A (en) Ultra-low orbit satellite full-electric propulsion orbit maintaining system
EP3718897B1 (en) Thermal regulation of batteries
US11851154B2 (en) Lateral propulsion systems and architectures for high altitude balloons
JP2023126830A (en) Base device, base device control method, and base device control program
WO2021220685A1 (en) Moving body
JP4984441B2 (en) Energy control device for heating and cooling
CN107613725A (en) Automobile sensor temprature control method and system
RU2816399C1 (en) Unmanned aerial complex
TWM499371U (en) Unmanned aerial vehicle and lifting device thereof
RU195928U1 (en) AIR AERODYNAMIC STATION
Coyne et al. Phoenix electrical power subsystem-power at the martian pole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796394

Country of ref document: EP

Kind code of ref document: A1