WO2021220615A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2021220615A1
WO2021220615A1 PCT/JP2021/008838 JP2021008838W WO2021220615A1 WO 2021220615 A1 WO2021220615 A1 WO 2021220615A1 JP 2021008838 W JP2021008838 W JP 2021008838W WO 2021220615 A1 WO2021220615 A1 WO 2021220615A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
broadcast
communication device
storage unit
link
Prior art date
Application number
PCT/JP2021/008838
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 田中
浩介 相尾
龍一 平田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021220615A1 publication Critical patent/WO2021220615A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the technology disclosed in this specification (hereinafter referred to as "the present disclosure”) relates to a communication device and a communication method for performing wireless communication by bundling a plurality of links.
  • MLO Multi-Link operation
  • AP access point
  • MAC Media Access Control
  • the data received from the upper layer is stored in the buffer corresponding to the common MAC processing unit regardless of the context (meaning in the application) in the upper layer, and is received by the individual MAC processing unit corresponding to the link for which the transmission right has been acquired.
  • common MAC processing is performed at an appropriate timing (for example, when transmission is performed for data that is not retransmitted, and when a reception confirmation (ACK) signal is received for data that is retransmitted). It is deleted from the buffer corresponding to the part.
  • MLO there can be both a terminal that connects to the AP with multiple links and a terminal that connects to the AP with a single link.
  • signals addressed to all terminals such as ARP (Address Resolution Protocol) need to be transmitted from the AP to the broadcast on all links.
  • ARP Address Resolution Protocol
  • the data transmitted on one link is deleted from the buffer corresponding to the common MAC processing unit, and the same data is transmitted on another link. Can not do it.
  • data to a broadcast is transmitted on a certain link, if the same data is kept in the buffer corresponding to the common MAC processing unit so that the same data can be transmitted on other links, the link that has already transmitted the same data. When the transmission right is acquired again in, the same data is transmitted again even though it has already been transmitted.
  • the buffer is wasted and the memory capacity request is increased.
  • Non-Patent Document 1 In the published contribution of IEEE802.11 (19 / 1542r2) (Non-Patent Document 1), it is possible to set a problem when a terminal corresponding to MLO receives a broadcast signal and a link (Connected Link) for receiving the broadcast signal. It is stated. However, the contribution does not mention the above-mentioned problem regarding buffering of data addressed to broadcast, and broadcast transmission in MLO cannot be realized.
  • An object of the present disclosure is to provide a communication device and a communication method for performing broadcast transmission corresponding to MLO.
  • the present disclosure has been made in consideration of the above problems, and the first aspect thereof is a communication device that performs wireless communication using a plurality of links.
  • a storage unit that holds data and a data processing unit that performs a process of transmitting the data held in the storage unit are provided.
  • the storage unit stores data addressed to the broadcast in association with each of the plurality of links.
  • the data processing unit takes out the data addressed to the broadcast for each link from the storage unit and transmits the data via the corresponding links. It is a communication device.
  • the data processing unit includes a plurality of individual data processing units associated with each of the plurality of links, and each individual data processing unit retrieves data addressed to the broadcast of the link associated with itself from the storage unit. And perform the process of sending with that link.
  • the second aspect of the present disclosure is a communication method for performing wireless communication using a plurality of links.
  • FIG. 1 is a diagram showing a configuration example of a communication system.
  • FIG. 2 is a diagram showing an example of the internal configuration of the communication device 200.
  • FIG. 3 is a diagram showing a functional configuration example of AP MLD.
  • FIG. 4 is a flowchart showing a processing procedure when the AP MLD transmits data.
  • FIG. 5 is a diagram showing information exchange (corresponding to FIG. 4) in the AP MLD.
  • FIG. 6 is a flowchart showing another processing procedure when the MLD transmits data.
  • FIG. 7 is a diagram showing information exchange (corresponding to FIG. 6) in the AP MLD.
  • FIG. 8 is a diagram showing an example of a communication sequence in which the AP performs broadcast transmission corresponding to MLO.
  • FIG. 1 is a diagram showing a configuration example of a communication system.
  • FIG. 2 is a diagram showing an example of the internal configuration of the communication device 200.
  • FIG. 3 is a diagram showing a functional configuration example of AP
  • FIG. 9 is a diagram showing an architecture in which a communication device holds data addressed to a broadcast and a signal flow.
  • FIG. 10 is a diagram showing a structure of a memory area in a communication device having the architecture shown in FIG.
  • FIG. 11 is a diagram showing another example of the structure of the memory area in the communication device having the architecture shown in FIG.
  • the AP corresponding to MLO includes an individual buffer for broadcast-addressed data in the individual MAC processing unit in addition to the buffer corresponding to the common MAC processing unit. Broadcast-addressed data input from the upper layer is stored in a separate buffer.
  • the individual buffer may be realized in a separate memory area, but it is also realized by managing a flag indicating whether or not transmission is performed on each link in the unified memory area. Therefore, according to the present disclosure, the AP corresponding to MLO can realize data management for broadcast transmission and broadcast.
  • FIG. 1 schematically shows a configuration example of a communication system to which the present disclosure is applied.
  • the illustrated communication system is composed of AP MLD (Multi Link Device), Non-AP MLD, and STA1 and STA2.
  • AP MLD Multi Link Device
  • Non-AP MLD Non-AP MLD
  • STA1 and STA2 STA2
  • AP MLD is a communication device equivalent to a base station that supports MLO.
  • Non-AP MLD is a communication device equivalent to a terminal compatible with MLO.
  • STA1 and STA2 are equipped with a legacy communication device that does not support MLO, or a single RF block (antenna, wireless interface, etc.), and communicates with a terminal equivalent to an MLO that communicates with a single link. It is a device.
  • Non-AP MLD and STA1 and STA2 are connected to AP MLD, respectively. Further, in FIG. 1, the solid line and the broken line connecting each of Non-AP MLD, STA1 and STA2 and AP MLD indicate that they are connected by different links.
  • the "link” referred to in the present specification is a wireless transmission line capable of transmitting data between two communication devices. Each link is selected from, for example, a plurality of independent radio transmission lines (channels) divided in the frequency domain.
  • the two links used in the communication system shown in FIG. 1 are selected from a plurality of channels included in any one of the frequency bands such as 2.4 GHz band, 5 GHz band, 6 GHz band, and 920 GHz band, respectively. Use the channel.
  • the two links used in the communication system shown in FIG. 1 may be two channels selected from the same frequency band or two channels selected from different frequency bands. Further, even if the frequency band including the channel selected by at least one of the two links used in the communication system shown in FIG. 1 is a frequency band permitted to be used by database access such as SAS (Spectrum Access System). good.
  • SAS Specific Access System
  • FIG. 2 shows an example of the internal configuration of the communication device 200.
  • the communication device 200 is a communication device corresponding to MLO, and is assumed to operate as an AP MLD or a Non-AP MLD in the communication system shown in FIG.
  • the communication device 200 is mainly composed of a communication unit 210, a control unit 220, a storage unit 230, and an antenna 240.
  • the communication unit 210 includes a communication control unit 211, a communication storage unit 212, a data processing unit including a common data processing unit 213 and an individual data processing unit 214, a signal processing unit 215, and a wireless interface (IF) unit 216.
  • the amplification unit 217 is provided.
  • the individual data processing unit 214, the signal processing unit 215, the wireless interface (IF) unit 216, the amplification unit 217, and the antenna 240 are provided for each link.
  • the communication device 200 assumes that MLO is performed using two links, a first link and a second link.
  • the individual data processing unit 214-1, the signal processing unit 215-1, the wireless interface unit 216-1, the amplification unit 217-1, and the antenna 240-1 are set as one set for transmission / reception processing in the first link.
  • the individual data processing unit 214-2, the signal processing unit 215-2, the wireless interface unit 216-2, the amplification unit 217-2, and the antenna 240-2 are made into another set for transmission / reception processing in the second link.
  • the communication control unit 211 controls the operation of each unit in the communication unit 210 and the information transmission between each unit. Further, the communication control unit 211 passes the control information and management information to be notified to other communication devices to the data processing unit (common data processing unit 213, individual data processing unit 214-1 and individual data processing unit 214-2). Take control.
  • the communication control unit 211 controls the operation of each unit in the communication unit 210 so as to transmit data to the broadcast on a plurality of links (for example, the first link and the second link).
  • the communication control unit 211 controls the communication storage unit 212 in particular to hold data addressed to the broadcast at each link.
  • the communication storage unit 212 holds the information used by the communication control unit 211. Further, the communication storage unit 212 holds the data transmitted by the communication device 200 and the data received by the communication device 200.
  • the data processing unit includes a common data processing unit 213 and an individual data processing unit 214. Further, the individual data processing unit 214 includes an individual data processing unit 214-1 for each link and an individual data processing unit 214-2.
  • the common data processing unit 213 manages the sequence of the data held in the communication storage unit 212 and the control information and management information received from the communication control unit 211, performs encryption processing and the like to generate a data unit. , Allocate to individual data processing units 214-1 and 214-2. Further, the common data processing unit 213 performs decoding processing and reordering processing of the data unit at the time of reception.
  • the individual data processing units 214-1 and 214-2 include channel access operations based on carrier sense at the corresponding links, addition of MAC headers and error detection codes to the data to be transmitted, and a plurality of data units. Perform the concatenation process. Further, the individual data processing units 214-1 and 214-2 perform the disconnection processing, analysis and error detection, and retransmission request operation of the MAC header of the received data unit at the time of reception.
  • the operations of the common data processing unit 213 and the individual data processing units 214-1 and 214-2 are not limited to the above, and for example, one may perform the other operation.
  • the signal processing units 215-1 and 215-1-2 perform coding, interleaving, modulation, etc. on the data unit, add a physical header, and generate a symbol stream.
  • the signal processing units 215-1 and 215-2 analyze the physical header, demodulate, deinterleave, and decode the symbol stream to generate a data unit. Further, the signal processing units 215-1 and 215-2 perform estimation of complex channel characteristics and spatial separation processing as necessary.
  • the wireless interface units 216-1 and 216-2 perform digital-analog signal conversion, filtering, up-conversion, and phase control on the symbol stream to generate a transmission signal. Further, the wireless interface units 216-1 and 216-2 perform down-conversion, filtering, and analog-digital signal conversion on the received signal at the time of reception to generate a symbol stream.
  • the amplification units 217-1 and 217-2 amplify the signals input from the wireless interface units 216-1 and 216-2 at the time of transmission, and amplify the signals input from the antennas 240-1 and 240-2 at the time of reception. ..
  • a part of the amplification units 217-1 and 217-2 may be components outside the communication unit 210. Further, a part of the amplification units 217-1 and 217-2 may be included in the wireless interface units 216-1 and 216.2.
  • the control unit 220 controls the communication unit 210 and the communication control unit 211. Further, the control unit 220 may perform a part of the operation of the communication control unit 211 instead. Further, the communication control unit 211 and the control unit 220 may be configured as one block.
  • the storage unit 230 holds information used by the communication unit 210 and the control unit 220. Further, the storage unit 230 may perform a part of the operation of the communication storage unit 212 instead. Further, the storage unit 230 and the communication storage unit 212 may be configured as one block.
  • the individual data processing unit 214-1, the signal processing unit 215-1, the wireless interface unit 216-1, the amplification unit 217-1, and the antenna 240-1 are used as one set to perform wireless communication on the first link. Further, the individual data processing unit 214-2, the signal processing unit 215-2, the wireless interface unit 216-2, the amplification unit 217-2, and the antenna 240-2 are used as another set, and wireless communication is performed by the second link. To carry out. Although only two sets are drawn in FIG. 2, three or more sets are components of the communication device 200, and each set may be configured to carry out wireless communication on its own link. Further, the storage unit 230 or the communication storage unit 212 may be included in each set.
  • a link is a wireless transmission line capable of transmitting data between two communication devices, and each link is selected from, for example, a plurality of independent wireless transmission lines (channels) divided by a frequency domain. ..
  • the links used by each of the above sets may be two channels selected from the same frequency band or two channels selected from different frequency bands.
  • the individual data processing unit 214 and the signal processing unit 215 may be combined into one set, and two or more sets may be configured to be connected to one wireless interface unit 216.
  • the wireless interface unit 216, the amplification unit 217, and the antenna 240 may be one set, and two or more sets may be components of the communication device 200.
  • the communication unit 210 can also be configured by one or more LSIs (Large Scale Integration).
  • LSIs Large Scale Integration
  • the common data processing unit 213 is also referred to as an Upper MAC or a Higher MAC, and the individual data processing unit 214 is also referred to as a Lower MAC. Further, the pair of the individual data processing unit 214 and the signal processing unit 215 is also referred to as AP entity or Non-AP entity.
  • the communication control unit 211 is also referred to as an MLD management entity.
  • FIG. 1 shows a communication system in which AP MLD, Non-AP MLD, and STA1 and STA2 are connected using two links.
  • AP MLD and Non-AP MLD are communication devices that support communication using a plurality of links.
  • the AP MLD can be realized by the communication unit 210 or the components of the communication unit 210.
  • FIG. 3 shows an example of a functional configuration of AP MLD.
  • the MAC SAP (Service Access Point) block is an interface between AP MLD and the upper layer.
  • the Sequence Number Assignment block is a functional block that assigns a sequence number to the data passed from the upper layer.
  • the Transmit Buffer is a functional block that holds the data passed from the upper layer. When the data passed from the upper layer is the data addressed to the broadcast, it may be held by the Broadcast Buffer described later.
  • the Sequence Number Assignment block and the Transmit Buffer can be realized by the common data processing unit 213 and the communication storage unit 212.
  • the AP MLD shown in FIG. 3 includes two MAC blocks for each link used.
  • the portion of the AP MLD excluding the two MAC blocks corresponds to the common data processing unit 213 of the communication device 200 shown in FIG. 2, and is also referred to as an Upper MAC or a Higher MAC.
  • each MAC block corresponds to individual data processing units 214-1 and 214-2, respectively, and is also referred to as Lower MAC.
  • Each MAC block is an entity that performs media access corresponding to each link, and can be realized by the individual data processing unit 214 and the communication storage unit 212.
  • Each MAC block includes each functional block of Broadcast Buffer, CRC Creation block, Aggregation block, and Channel Access block.
  • the Broadcast Buffer is a functional block that holds data addressed to the broadcast. That is, it is a functional block owned by each MAC block separately from the above-mentioned Transmit Buffer outside the MAC block.
  • the data addressed to the broadcast may be passed from the Transmit Buffer to the Broadcast Buffer, or may be passed directly from the upper layer to the Broadcast Buffer without going through the Transmit Buffer.
  • Broadcast Buffer can be realized by the communication storage unit 212.
  • the Broadcast Buffer is an AP MLD when the Non-AP MLD or STA is not connected at at least one of the plurality of links used by the AP MLD and another Non-AP MLD or STA is connected. May be enabled.
  • the Transmit Buffer and the Broadcast Buffer may be memory areas individually assigned to each of the common data processing unit 213, the individual data processing units 214-1 and 214-2 in the communication storage unit 212, respectively.
  • the CRC Creation block is a functional block that adds an error detection code (Cyclic Redundancy Code: CRC) to the data unit generated by performing encryption processing etc. on the data passed from the Transmit Buffer or Broadcast Buffer. be.
  • the Aggregation block is a functional block that connects a plurality of data blocks.
  • the Channel Access block is a functional block that acquires a transmission right based on a carrier sense at a corresponding link. Each functional block of CRC Creation, Aggregation, and Channel Acees can be realized by the individual data processing unit 214.
  • the AP MLD is provided with a Broadcast Buffer that holds data addressed to the broadcast in addition to a common Transmission Buffer that holds the data passed from the upper layer for each MAC block corresponding to each link. Allows data to be broadcast to multiple links. That is, when each MAC block acquires the transmission right with the corresponding link, by extracting the data addressed to the broadcast from its own Broadcast Buffer, it affects the data addressed to the broadcast stored in the Broadcast Buffer provided by the other MAC blocks. Allows you to send without having to.
  • each MAC block can prevent data from being transmitted to the same broadcast again the next time the transmission right is acquired by deleting the data addressed to the broadcast from its own Broadcast Buffer. As a result, it is possible to suppress the waste of memory and the increase in the memory capacity request of the communication storage unit 212.
  • FIG. 4 shows a processing procedure when the AP MLD transmits data in the form of a flowchart.
  • the AP MLD entity checks whether the destination of the input data is broadcast (step S402).
  • the AP MLD entity transfers the data to all MAC blocks and stores the data in each Broadcast Buffer (step S403). At that time, incidental information (described later) necessary for transmission processing of data addressed to the broadcast is also transferred to each MAC block and stored in the Broadcast Buffer.
  • the MAC block extracts the data from its own Broadcast Buffer and uses it as the accompanying information passed from the AP MLD entity. Data is transmitted based on this (step S405). After that, the data transmitted in step S405 is deleted from the Broadcast Buffer in the MAC block (step S406).
  • step S407 If data still remains in the Broadcast Buffer of another MAC block (Yes in step S407), the process returns to step S404 and the data transmission process addressed to the broadcast of the other MAC block is repeatedly executed. If no data remains in the Broadcast Buffer of another MAC block (No in step S407), this process ends.
  • the AP MLD entity stores the data in the Transmit Buffer (step S408). Then, when the MAC block connected to the destination of the data acquires the transmission right (Yes in step S409), the AP MLD entity takes out the data from the Transmit Buffer and delivers it to the MAC block. Then, the MAC block transmits the data passed from the AP MLD entity (step S410). After that, when the MAC block receives an ACK signal from the data transmission destination or exceeds the retransmission / retention upper limit of the data, the data is deleted from the Transmission Buffer (step S411), and this process ends.
  • FIG. 5 shows an operation sequence for exchanging information in the AP MLD when transmitting data to a broadcast.
  • the illustrated operation sequence shows an operation sequence when the AP MLD transmits data to the broadcast, and mainly shows an operation sequence corresponding to the processing of steps S403 to S407 in the flowchart shown in FIG.
  • the AP MLD entity in FIG. 5 corresponds to any of the AP MLD shown in FIG. 3, Upper MAC, and AP MLD management entity.
  • AP entity 1 and AP entity 2 correspond to one MAC block and the other MAC block in the AP MLD shown in FIG. 3, respectively.
  • the AP MLD entity When the AP MLD entity receives the data addressed to the broadcast from the upper layer through the MAC SAP block (SEQ501), the AP MLD entity passes the data to each of the AP entity 1 and the AP entity 2. At that time, AP MLD entity notifies each of AP entity 1 and AP entity 2 of the following data information.
  • Data information -Data payload (data addressed to broadcast) -Received address (Received Address: RA) -Traffic ID (TID) -Sequence number (SN) -Access Category (AC)
  • AP entity 1 and AP entity 2 store the broadcast-addressed data received from the AP MLD entity in their respective Broadcast Buffers together with the above-mentioned incidental information such as RA, TID, SN, and AC.
  • AP entity 1 and AP entity 2 each acquire a transmission right (Transmission: Operation: TXOP) at the corresponding link (SEQ 511, SEQ 521), they take out data addressed to the broadcast from their respective Broadcast Buffers and together with the data payload from the AP MLD. Data is transmitted based on the passed incidental information (RA, TID, SN, AC) (SEQ512, SEQ522). After that, AP entity 1 and AP entity 2 delete the data addressed to the broadcast from their respective Broadcast Buffers (SEQ 513, SEQ 523).
  • FIG. 6 shows another processing procedure when the AP MLD transmits data in the form of a flowchart.
  • the AP MLD entity When data is input from the upper layer through the MAC SAP block (step S601), the AP MLD entity stores the input data in the Transmit Buffer (step S602). In the processing procedure shown in FIG. 6, the data is temporarily stored in the Transmit Buffer regardless of whether the destination of the data is broadcast. At that time, incidental information (described later) necessary for the data transmission process and the like is transferred to each MAC block.
  • the MAC block transmits the transmission data to the AP MLD entity. Request.
  • the AP MLD entity takes out the transmission data from the Transmit Buffer and checks whether the destination of the transmission data is broadcast (step S604).
  • the AP MLD entity transfers the data to all MAC blocks and stores the transmission data in each Broadcast Buffer (step S605). In addition, AP MLD entity deletes the data transferred to the Broadcast Buffer of each MAC block from the Transmit Buffer.
  • the MAC block that has acquired the transmission right in step S603 extracts data from its own Broadcast Buffer and transmits data based on the accompanying information previously passed from the AP MLD entity in step S602 (step S606). ). After that, the MAC block deletes the data transmitted in step S606 from its own Broadcast Buffer (step S607).
  • the other MAC blocks check whether or not data still remains in their own Broadcast Buffer (step S608). If data still remains in the Broadcast Buffer of another MAC block (Yes in step S608), it waits until the other MAC block acquires the transmission right (No in step S609). Then, when the other MAC block acquires the transmission right (Yes in step S609), the process returns to step S606 to repeatedly transmit data to the broadcast in the other MAC block and delete the data from the Broadcast Buffer. If no data remains in the Broadcast Buffer of another MAC block (No in step S608), this process ends.
  • the AP MLD entity takes out the data from the Transmit Buffer and passes the data to the MAC block that acquired the transmission right in step S603. Then, the MAC block transmits the data based on the incidental information previously passed from the AP MLD entity in step S602 (step S610). After that, when the MAC block receives an ACK signal from the data transmission destination, retransmits the data, or exceeds the holding upper limit of the Transmission Buffer, the AP MLD entity deletes the data from the Transmission Buffer ( Step S611), this process is terminated.
  • FIG. 7 shows an operation sequence for exchanging information in the AP MLD when transmitting data to a broadcast.
  • the illustrated operation sequence mainly shows the operation sequence when the AP MLD transmits data to the broadcast, and shows the operation sequence corresponding to the processing of steps S604 to S609 in the flowchart shown in FIG. 7.
  • the AP MLD entity in FIG. 5 corresponds to any of the AP MLD shown in FIG. 3, Upper MAC, and AP MLD management entity.
  • AP entity 1 and AP entity 2 correspond to one MAC block and the other MAC block in the AP MLD shown in FIG. 3, respectively.
  • the AP MLD entity When the AP MLD entity receives data addressed to the broadcast from the upper layer through the MAC SAP block (SEQ701), it stores the received data in the Transmission Buffer and also stores the following information accompanying this data in each of the AP entity1 and AP entity2. Notice. At this point, the data payload has not yet been passed to AP entry 1 and AP entity 2.
  • AP entity1 When AP entity1 acquires the transmission right with the corresponding link (SEQ711), it requests transmission data (Data Request) from AP MLD entity. In response to this request, the AP MLD entity extracts data addressed to the broadcast from the Transmit Buffer and delivers it to each of the AP entity 1 and the AP entity 2.
  • Data Request transmission data
  • the AP MLD entity extracts data addressed to the broadcast from the Transmit Buffer and delivers it to each of the AP entity 1 and the AP entity 2.
  • AP entity 1 and AP entity 2 store the broadcast-addressed data delivered from the AP MLD entity in their respective Broadcast Buffers together with the above-mentioned incidental information such as RA, TID, SN, and AC. Then, the AP MLD entity deletes the data addressed to the broadcast from the Transmit Buffer (SEQ702).
  • AP entity1 extracts data addressed to the broadcast from its own Broadcast Buffer and transmits the data based on the accompanying information (RA, TID, SN, AC) of the data (SEQ712). Then, AP entity1 deletes the transmitted data addressed to the broadcast from its own Broadcast Buffer (SEQ713).
  • AP entity2 acquires the transmission right with the corresponding link (SEQ721), it extracts data addressed to the broadcast from its own Broadcast Buffer, and data based on the accompanying information (RA, TID, SN, AC) of the data. Transmission is performed (SEQ722). Then, AP entity2 deletes the transmitted data addressed to the broadcast from its own Broadcast Buffer (SEQ723).
  • whether or not the destination of the transmission data in steps S402 and S604 is broadcast is determined by, for example, the data passed from the upper layer by the communication control unit 211. Judgment is made based on whether or not the MAC address of the destination is a broadcast address. Further, this determination may be performed based on the accompanying information of the data.
  • the accompanying information may be information indicating that the data is stored in the Broadcast Buffer of all MACs, or may be an identifier. This identifier may be a specific value of the Traffic Identity specified in 802.11.
  • FIG. 8 shows an example of a communication sequence in which the AP performs broadcast transmission corresponding to MLO in the communication system shown in FIG.
  • this communication system is composed of AP MLD, Non-AP MLD, and STA1 and STA2.
  • a first link (Link1) and a second link (Link2) can be used, and AP MLD and Non-AP MLD corresponding to MLO are connected by Link1 and Link2, and STA1 is connected to AP MLD. It is assumed that it is connected by Link1 and STA2 is connected by AP MLD and Link2.
  • the horizontal axis in FIG. 8 is the time axis, and shows the communication operation for each time on each link of AP MLD, Non-AP MLD, STA1 and STA2.
  • the square block drawn with a solid line indicates the transmission frame at the corresponding communication device, link, and time, and the vertical solid arrow indicates the frame transmission to the destination.
  • the parallelogram block drawn with a solid line shows the back-off operation.
  • each MAC block of AP MLD starts backoff in Link1 and Link2, respectively, and performs carrier sense.
  • Backoff is an operation of setting a random waiting time and subtracting the waiting time.
  • the random wait time may be determined based on the priority of broadcast-addressed data stored in the Broadcast Buffer of each MAC block (eg, access category (AC)), or may be selected from a unique width value. good. Further, the random waiting time may be determined based on the priority (for example, access category (AC)) of other data stored in the Transmit Buffer of the AP MLD. Further, the random waiting time may be a different value for each MAC block, and a value determined outside each MAC block may be used in common by each MAC block.
  • the MAC block corresponding to Link1 of AP MLD expires the backoff and acquires the transmission right, it takes out the data addressed to the broadcast from its own Blockcast Buffer and transfers the data to Non-AP MLD and STA1.
  • the transmission signal including the transmission signal is started to be transmitted by Link1.
  • the MAC block corresponding to Link1 of the AP MLD deletes the transmitted data from its own Broadcast Buffer when the transmission of the transmission signal in Link1 is completed.
  • the MAC block corresponding to Link2 of AP MLD deletes the transmitted data from its own Broadcast Buffer in accordance with the completion of transmission of the transmission signal in Link2.
  • Embodiments in IEEE 802.11 This section describes an embodiment in which the present disclosure is applied to a communication system conforming to the IEEE 802.11 standard to perform broadcast transmission corresponding to MLO.
  • FIG. 9 shows an architecture in which a communication device (for example, AP MLD) conforming to IEEE802.11 holds data addressed to a broadcast and a signal transmission flow.
  • a communication device for example, AP MLD
  • the direction below the paper surface is the transmission flow direction.
  • the Sequence Number Assignment block performs a process common to all the links.
  • MPDU medium access protocol protocol data unit
  • Encryption Broadcast advanced data holding, MPDU Header + CRC Creation, A-MPDU (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU
  • Data is input to the AP MLD through the Upper Layer, the LLC (Logical Link Control) Sublayer, and the 802.1 function function.
  • the data unit input to the AP MLD is assigned a sequence number by the Sequence Number Assignment block, and then distributed to the processing flow for each link.
  • the data unit is stored in the Broadcast Buffer in the corresponding MAC block by the Broadcast added data holding block after being encrypted by the MPDU Encryption block.
  • the data unit after the encryption process is stored in the Broadcast Buffer. This makes it possible to transmit the data unit encrypted using the encryption key set for each link for each link.
  • the data unit encryption process may be performed as a process common to all links, not as a process flow for each link. In that case, the encryption key used for the encryption processing of the data unit for each link may be the encryption key set for each link.
  • the data unit is taken out from the Broadcast Buffer corresponding to the link, and the MPDU header and the error detection code (CRC) are added by the MPDU Header + CRC Creation block.
  • CRC error detection code
  • an error detection code is added to the data unit taken out from the Broadcast Buffer, in other words, the data unit before the error detection code is added is stored in the Broadcast Buffer. I want to be. As a result, processing can be performed based on the address of the data unit in the same block of architecture on the transmitting side and the receiving side.
  • the A-MPDU Addition block connects the MPDU header and a plurality of data units to which an error detection code is added.
  • the linked data units are wirelessly transmitted from the corresponding link as a process of the PHY layer.
  • FIG. 10 schematically shows the structure of a memory area in a communication device (AP MLD) having the architecture shown in FIG.
  • FIG. 10 shows the structure of a memory area (Integrated Memory area) that integrates and manages the Transmit Buffer and the Broadcast Buffer of each MAC.
  • the memory area shown in FIG. 10 is realized by the communication storage unit 212 that the individual data processing unit 214 and the common data processing unit 213 can access in common.
  • the data payload (Store data area) to be held, the destination data (Destination) of the data, the accompanying information (Data Property) of the data, and the data are the first.
  • a flag (Link1 retrieved) indicating whether or not the data was retrieved by the MAC corresponding to the link (Link1) of 1 and a flag (Link2 retried) indicating whether or not the data was retrieved by the MAC corresponding to the second link (Link2) are set. Shown. Note that these flags are 0 for not yet retrieved by the corresponding MAC (ie, not yet transmitted on the corresponding link) and have already been retrieved by the corresponding MAC (ie, the corresponding link).
  • the accompanying information is information such as RA, TID, SN, and AC of the corresponding data payload, and is used when transmitting the data payload. Then, in each row of the memory area shown in FIG. 10, the information of each of the above columns is stored for each held data.
  • the data input to the AP MLD from the upper layer is stored in the communication storage unit 212 in the format of the memory area shown in FIG. Then, each time data transmission is performed on each link, the flag of the corresponding link in the line corresponding to the transmitted data is changed from 0 to 1. As a result, even when data is transmitted to the broadcast on a certain link, the data is still held in the memory area and can be transmitted on other links as well. In addition, even if the transmission right is acquired on the link that has already transmitted the data, it is possible to prevent duplicate transmission on the same link by referring to the flag of the link in the line corresponding to the data. .. Further, when the flags of all the links are 1, the data (the line corresponding to the data) may be deleted from this memory area.
  • FIG. 11 schematically shows another structure of the memory area in the communication device (AP MLD) having the architecture shown in FIG.
  • the Transmit Buffer and the Broadcast Buffer of each MAC are realized by independent memory areas. That is, the Memory area 1 shown in the upper half of FIG. 11 is a memory area corresponding to the Transmit Buffer, and the Memory area 2/3 shown in the lower half of FIG. 11 corresponds to the Broadcast Buffer of each MAC block.
  • the memory area shown in FIG. 11 is realized by a communication storage unit corresponding to the common data processing unit 213 and a plurality of communication storage units corresponding to the plurality of individual data processing units 214-1 and 214-2, respectively. These communication storage units may be logically independent memory areas within one communication storage unit 212, or may be composed of physically different storage units.
  • Each column of the memory area shown in FIG. 11 shows the data payload (Stored data area) to be held, the destination data (Destination) of the data, and the accompanying information (Data Property) of the data in order from the left.
  • the accompanying information is information such as RA, TID, SN, and AC of the corresponding data payload, and is used when transmitting the data payload. Then, in each row of the memory area, the information of each of the above columns for each held data is stored.
  • the data payload input to the AP MLD from the upper layer is stored in the Memory area 2/3 shown in the lower half of FIG. 11 if it is addressed to the broadcast, and in the Memory area 1 shown in the upper half of FIG. 11 if it is not addressed to the broadcast. Stored.
  • the line corresponding to the transmitted data is deleted from one of the memory areas of Memory area 2 or Memory area 3 corresponding to the link, but the line corresponding to the transmitted data is deleted from the other memory area. Not done.
  • the data transmitted by all the links is deleted from the memory areas of both Memory area 2 and Memory area 3. Further, when the data not addressed to the broadcast is transmitted, the line corresponding to the transmission data of Memory are1 is deleted.
  • a communication device that implements a multi-link function can execute broadcast transmission corresponding to MLO, and has a high throughput. Can be realized.
  • MLO communication device
  • the same effect can be obtained by applying the present disclosure to a wireless system that has become another communication standard.
  • a communication device that performs wireless communication using a plurality of links.
  • a storage unit that holds data and a data processing unit that performs a process of transmitting the data held in the storage unit are provided.
  • the storage unit stores data addressed to the broadcast in association with each of the plurality of links.
  • the data processing unit takes out the data addressed to the broadcast for each link from the storage unit and transmits the data via the corresponding links.
  • the data processing unit includes a plurality of individual data processing units associated with each of the plurality of links, and each individual data processing unit stores the data addressed to the broadcast of the link associated with itself. Process to take out from the department and send with that link, The communication device according to (1) above.
  • the storage unit includes an individual storage area for holding data addressed to a broadcast in association with each link, and a common storage area common to all links.
  • the communication device according to any one of (1) and (2) above.
  • the storage unit is composed of a single storage area.
  • the single storage area manages whether or not data addressed to the broadcast is transmitted by each link.
  • the individual storage area is composed of a plurality of storage areas for each link.
  • the storage unit holds data addressed to the broadcast together with accompanying information.
  • the communication device according to any one of (1) to (8) above.
  • the accompanying information includes at least one of a destination address, a traffic identifier, a sequence number, and an access category.
  • a communication method for performing wireless communication using a plurality of links A step of associating data addressed to a broadcast with each of the plurality of links and holding the data in a storage unit, A data processing step in which data addressed to a broadcast for each link is taken out from the storage unit and transmitted via the corresponding links, and a data processing step. Communication method with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a communication device that carries out MLO-compatible broadcast transmission. A communication device according to the present invention uses links from a plurality of communication devices to carry out wireless communication and comprises a storage unit that retains data, and a data processing unit that executes a process that transmits the data retained in the storage unit. The storage unit retains broadcast-addressed data in association with the plurality of respective links. The data processing unit executes a process that retrieves the broadcast-addressed data for each link from the storage unit, and transmits the data via the corresponding link.

Description

通信装置及び通信方法Communication device and communication method
 本明細書で開示する技術(以下、「本開示」とする)は、複数のリンクを束ねて無線通信を行う通信装置及び通信方法に関する。 The technology disclosed in this specification (hereinafter referred to as "the present disclosure") relates to a communication device and a communication method for performing wireless communication by bundling a plurality of links.
 近年、XRや8Kのビデオ伝送などの高い伝送速度要求に対応する方法として、複数の周波数帯(リンク)を用いた無線通信(Multi-Link operation:MLO)の規格化が進められている。このMLOに対応したアクセスポイント(Access Point:AP)は、単一のリンクでの通信を行うAPとは異なるアーキテクチャを持つことが想定される。具体的には、通信プロトコルの上位層との単一のインターフェースを介して接続される共通のMAC(Media Access Control)層処理部と、各リンクへアクセスする複数のPHY層処理部及び各PHY層処理部に接続される個別MAC処理部から構成される。通常、上位層から受け取ったデータは、上位層におけるコンテキスト(アプリケーションにおける意味合い)によらず共通MAC処理部に対応するバッファに格納され、送信権を獲得したリンクに対応する個別MAC処理部へと受け渡された後、適当なタイミング(例えば、再送を行わないデータであれば送信を実施した時点、再送を行うデータであれば受信確認(Acknowledgement:ACK)信号を受信した時点)で、共通MAC処理部に対応するバッファから削除される。 In recent years, as a method for responding to high transmission speed demands such as XR and 8K video transmission, standardization of wireless communication (Multi-Link operation: MLO) using a plurality of frequency bands (links) has been promoted. It is assumed that the access point (Access Point: AP) corresponding to this MLO has an architecture different from that of the AP that communicates with a single link. Specifically, a common MAC (Media Access Control) layer processing unit connected via a single interface with the upper layer of the communication protocol, a plurality of PHY layer processing units that access each link, and each PHY layer. It consists of individual MAC processing units connected to the processing unit. Normally, the data received from the upper layer is stored in the buffer corresponding to the common MAC processing unit regardless of the context (meaning in the application) in the upper layer, and is received by the individual MAC processing unit corresponding to the link for which the transmission right has been acquired. After being passed, common MAC processing is performed at an appropriate timing (for example, when transmission is performed for data that is not retransmitted, and when a reception confirmation (ACK) signal is received for data that is retransmitted). It is deleted from the buffer corresponding to the part.
 MLOでは、APに対し複数のリンクで接続する端末と単一のリンクで接続する端末の両方があり得る。このような接続状態において、ARP(Address Resolution Protocol)など全端末宛ての信号は、すべてのリンクにおいてAPからブロードキャスト宛てに送信される必要がある。しかしながら、通常、ブロードキャスト宛ての信号は再送がされないため、上記の処理に従うと、あるリンクで送信が実施されたデータは共通MAC処理部に対応するバッファから削除され、他のリンクにおいて同じデータを送信することができない。また、あるリンクでブロードキャスト宛てのデータの送信が実施された際に、他のリンクにおいて同じデータを送信できるように共通MAC処理部に対応するバッファで保持し続けると、既に同じデータを送信したリンクにおいて再度送信権を獲得したときに、既に送信済みにも関わらず同じデータを再度送信してしまう。加えて、同じデータを共通MAC処理部に対応するバッファで保持し続けてしまうため、バッファの浪費やメモリ容量要求の増大を引き起こす。 In MLO, there can be both a terminal that connects to the AP with multiple links and a terminal that connects to the AP with a single link. In such a connected state, signals addressed to all terminals such as ARP (Address Resolution Protocol) need to be transmitted from the AP to the broadcast on all links. However, since the signal addressed to the broadcast is not normally retransmitted, according to the above processing, the data transmitted on one link is deleted from the buffer corresponding to the common MAC processing unit, and the same data is transmitted on another link. Can not do it. Also, when data to a broadcast is transmitted on a certain link, if the same data is kept in the buffer corresponding to the common MAC processing unit so that the same data can be transmitted on other links, the link that has already transmitted the same data. When the transmission right is acquired again in, the same data is transmitted again even though it has already been transmitted. In addition, since the same data is continuously held in the buffer corresponding to the common MAC processing unit, the buffer is wasted and the memory capacity request is increased.
 IEEE802.11の公開寄書(19/1542r2)(非特許文献1)では、MLOに対応した端末がブロードキャスト信号を受信する際の課題と、ブロードキャスト信号を受信するリンク(Configured Link)を設定することが述べられている。しかしながら、当該寄書は、ブロードキャスト宛てデータのバッファリングに関する上述の課題については言及しておらず、MLOにおけるブロードキャスト送信を実現することはできない。 In the published contribution of IEEE802.11 (19 / 1542r2) (Non-Patent Document 1), it is possible to set a problem when a terminal corresponding to MLO receives a broadcast signal and a link (Connected Link) for receiving the broadcast signal. It is stated. However, the contribution does not mention the above-mentioned problem regarding buffering of data addressed to broadcast, and broadcast transmission in MLO cannot be realized.
 また、マルチバンドAPが所定の情報をブロードキャストする方法について提案がなされているが(特許文献1を参照のこと)、この方法は、ブロードキャスト宛てデータのバッファリングに関して提案するものではなく、MLOにおけるブロードキャスト送信を実現することができない。 Further, although a method has been proposed for a multi-band AP to broadcast predetermined information (see Patent Document 1), this method does not propose a method for buffering data addressed to a broadcast, but broadcasts in an MLO. Transmission cannot be realized.
特開2008-535398号公報Japanese Unexamined Patent Publication No. 2008-535398
 本開示の目的は、MLOに対応したブロードキャスト送信を行う通信装置及び通信方法を提供することにある。 An object of the present disclosure is to provide a communication device and a communication method for performing broadcast transmission corresponding to MLO.
 本開示は、上記課題を参酌してなされたものであり、その第1の側面は、複数のリンクを用いて無線通信を行う通信装置であって、
 データを保持する記憶部と、前記記憶部に保持されたデータを送信する処理を行うデータ処理部を具備し、
 前記記憶部は、ブロードキャスト宛てのデータを前記複数のリンクの各々に対応付けて保持し、
 前記データ処理部は、リンク毎のブロードキャスト宛てのデータを前記記憶部から取り出して、それぞれ対応するリンクで送信する処理を行う、
通信装置である。
The present disclosure has been made in consideration of the above problems, and the first aspect thereof is a communication device that performs wireless communication using a plurality of links.
A storage unit that holds data and a data processing unit that performs a process of transmitting the data held in the storage unit are provided.
The storage unit stores data addressed to the broadcast in association with each of the plurality of links.
The data processing unit takes out the data addressed to the broadcast for each link from the storage unit and transmits the data via the corresponding links.
It is a communication device.
 前記データ処理部は、前記複数のリンクの各々に対応付けられた複数の個別データ処理部を含み、各個別データ処理部は自分に対応付けられたリンクのブロードキャスト宛てのデータを前記記憶部から取り出してそのリンクで送信する処理を行う。 The data processing unit includes a plurality of individual data processing units associated with each of the plurality of links, and each individual data processing unit retrieves data addressed to the broadcast of the link associated with itself from the storage unit. And perform the process of sending with that link.
 また、本開示の第2の側面は、複数のリンクを用いて無線通信を行う通信方法であって、
 ブロードキャスト宛てのデータを前記複数のリンクの各々に対応付けて記憶部に保持するステップと、
 リンク毎のブロードキャスト宛てのデータを前記記憶部から取り出して、それぞれ対応するリンクで送信する処理を行うデータ処理ステップと、
を有する通信方法である。
Further, the second aspect of the present disclosure is a communication method for performing wireless communication using a plurality of links.
A step of associating data addressed to a broadcast with each of the plurality of links and holding the data in a storage unit,
A data processing step in which data addressed to a broadcast for each link is taken out from the storage unit and transmitted via the corresponding links, and a data processing step.
It is a communication method having.
 本開示によれば、MLOに対応したブロードキャスト送信及びブロードキャスト送信のためのデータ管理を行う通信装置及び通信方法を提供することができる。 According to the present disclosure, it is possible to provide a communication device and a communication method for performing data management for broadcast transmission and broadcast transmission corresponding to MLO.
 なお、本明細書に記載された効果は、あくまでも例示であり、本開示によりもたらされる効果はこれに限定されるものではない。また、本開示が、上記の効果以外に、さらに付加的な効果を奏する場合もある。 It should be noted that the effects described in the present specification are merely examples, and the effects brought about by the present disclosure are not limited thereto. In addition to the above effects, the present disclosure may have additional effects.
 本開示のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Still other objectives, features and advantages of the present disclosure will be clarified by more detailed description based on embodiments and accompanying drawings described below.
図1は、通信システムの構成例を示した図である。FIG. 1 is a diagram showing a configuration example of a communication system. 図2は、通信装置200の内部構成例を示した図である。FIG. 2 is a diagram showing an example of the internal configuration of the communication device 200. 図3は、AP MLDの機能的構成例を示した図である。FIG. 3 is a diagram showing a functional configuration example of AP MLD. 図4は、AP MLDがデータを送信する際の処理手順を示したフローチャートである。FIG. 4 is a flowchart showing a processing procedure when the AP MLD transmits data. 図5は、AP MLD内における情報の授受(図4に対応)を示した図である。FIG. 5 is a diagram showing information exchange (corresponding to FIG. 4) in the AP MLD. 図6は、MLDがデータを送信する際の別の処理手順を示したフローチャートである。FIG. 6 is a flowchart showing another processing procedure when the MLD transmits data. 図7は、AP MLD内における情報の授受(図6に対応)を示した図である。FIG. 7 is a diagram showing information exchange (corresponding to FIG. 6) in the AP MLD. 図8は、APがMLOに対応したブロードキャスト送信を行う通信シーケンス例を示した図である。FIG. 8 is a diagram showing an example of a communication sequence in which the AP performs broadcast transmission corresponding to MLO. 図9は、通信装置がブロードキャスト宛てデータを保持するアーキテクチャ及び信号のフローを示した図である。FIG. 9 is a diagram showing an architecture in which a communication device holds data addressed to a broadcast and a signal flow. 図10は、図9に示すアーキテクチャを備えた通信装置におけるメモリ領域の構造を示した図である。FIG. 10 is a diagram showing a structure of a memory area in a communication device having the architecture shown in FIG. 図11は、図9に示すアーキテクチャを備えた通信装置におけるメモリ領域の構造の他の例を示した図である。FIG. 11 is a diagram showing another example of the structure of the memory area in the communication device having the architecture shown in FIG.
 以下、図面を参照しながら本開示について、以下の順に従って説明する。
A.概要
B.システム構成
C.装置構成
D.AP MLDの機能的構成
E.AP MLDのブロードキャスト宛てデータの送信処理(1)
F.AP MLDのブロードキャスト宛てデータの送信処理(2)
G.通信シーケンス例
H.IEE802.11における実施形態
Hereinafter, the present disclosure will be described in the following order with reference to the drawings.
A. Overview B. System configuration C. Device configuration D. Functional configuration of AP MLD E.I. Data transmission process for AP MLD broadcast (1)
F. Data transmission process for AP MLD broadcast (2)
G. Communication sequence example H. Embodiment in IEE802.11
A.概要
 本開示によれば、MLOに対応したAPは、共通MAC処理部に対応するバッファに加え、個別MAC処理部にブロードキャスト宛てデータ用の個別バッファを備えている。上位層から入力されたブロードキャスト宛てデータは、個別バッファに格納される。個別バッファは、個別のメモリ領域で実現されてもよいが、統一のメモリ領域において各リンクでの送信が行われたかどうかを示すフラグを管理することによっても実現される。したがって、本開示によれば、MLOに対応したAPは、ブロードキャスト送信及びブロードキャストのためのデータ管理を実現することができる。
A. Outline According to the present disclosure, the AP corresponding to MLO includes an individual buffer for broadcast-addressed data in the individual MAC processing unit in addition to the buffer corresponding to the common MAC processing unit. Broadcast-addressed data input from the upper layer is stored in a separate buffer. The individual buffer may be realized in a separate memory area, but it is also realized by managing a flag indicating whether or not transmission is performed on each link in the unified memory area. Therefore, according to the present disclosure, the AP corresponding to MLO can realize data management for broadcast transmission and broadcast.
B.システム構成
 図1には、本開示が適用される通信システムの一構成例を模式的に示している。図示の通信システムは、AP MLD(Multi Link Device)と、Non-AP MLDと、STA1及びSTA2によって構成される。
B. System Configuration FIG. 1 schematically shows a configuration example of a communication system to which the present disclosure is applied. The illustrated communication system is composed of AP MLD (Multi Link Device), Non-AP MLD, and STA1 and STA2.
 AP MLDは、MLOに対応した基地局相当の通信装置である。Non-AP MLDは、MLOに対応した端末相当の通信装置である。STA1及びSTA2は、MLOに対応していないレガシーの通信装置、又は単一のRFブロック(アンテナ、無線インターフェースなど)を装備し、単一のリンクでの通信を行うMLOに対応した端末相当の通信装置である。 AP MLD is a communication device equivalent to a base station that supports MLO. Non-AP MLD is a communication device equivalent to a terminal compatible with MLO. STA1 and STA2 are equipped with a legacy communication device that does not support MLO, or a single RF block (antenna, wireless interface, etc.), and communicates with a terminal equivalent to an MLO that communicates with a single link. It is a device.
 Non-AP MLDとSTA1及びSTA2は、それぞれAP MLDに接続している。また、図1中で、Non-AP MLD、STA1、STA2の各々とAP MLDの間を結ぶ実線及び破線は、それぞれ異なるリンクで接続していることを示している。 Non-AP MLD and STA1 and STA2 are connected to AP MLD, respectively. Further, in FIG. 1, the solid line and the broken line connecting each of Non-AP MLD, STA1 and STA2 and AP MLD indicate that they are connected by different links.
 なお、本明細書で言う「リンク」とは、2つの通信装置間でデータの伝送を行うことができる無線伝送路である。個々のリンクは、例えば周波数領域で分割された、互いに独立した複数の無線伝送路(チャネル)の中から選択される。図1に示す通信システムで使用する2つのリンクは、例えば2.4GHz帯、5GHz帯、6GHz帯、920GHz帯などの周波数帯のうちいずれかの帯域に含まれる複数のチャネルの中からそれぞれ選択されたチャネルを使用する。図1に示す通信システムで使用する2つのリンクは、同じ周波数帯から選択された2つのチャネルであっても、異なる周波数帯から選択された2つのチャネルであってもよい。また、図1に示す通信システムで使用する2つのリンクのうち少なくとも一方が選択したチャネルを含む周波数帯は、SAS(Spectrum Access System)などのデータベースアクセスにより使用が許可される周波数帯であってもよい。 The "link" referred to in the present specification is a wireless transmission line capable of transmitting data between two communication devices. Each link is selected from, for example, a plurality of independent radio transmission lines (channels) divided in the frequency domain. The two links used in the communication system shown in FIG. 1 are selected from a plurality of channels included in any one of the frequency bands such as 2.4 GHz band, 5 GHz band, 6 GHz band, and 920 GHz band, respectively. Use the channel. The two links used in the communication system shown in FIG. 1 may be two channels selected from the same frequency band or two channels selected from different frequency bands. Further, even if the frequency band including the channel selected by at least one of the two links used in the communication system shown in FIG. 1 is a frequency band permitted to be used by database access such as SAS (Spectrum Access System). good.
C.装置構成
 図2には、通信装置200の内部構成例を示している。通信装置200は、MLOに対応した通信装置であり、図1に示した通信システムにおいてAP MLD又はNon-AP MLDとして動作することを想定している。通信装置200は、主に通信部210と、制御部220と、記憶部230と、アンテナ240で構成される。また、通信部210は、通信制御部211と、通信記憶部212と、共通データ処理部213及び個別データ処理部214からなるデータ処理部と、信号処理部215と、無線インターフェース(IF)部216と、増幅部217を備えている。
C. Device Configuration FIG. 2 shows an example of the internal configuration of the communication device 200. The communication device 200 is a communication device corresponding to MLO, and is assumed to operate as an AP MLD or a Non-AP MLD in the communication system shown in FIG. The communication device 200 is mainly composed of a communication unit 210, a control unit 220, a storage unit 230, and an antenna 240. Further, the communication unit 210 includes a communication control unit 211, a communication storage unit 212, a data processing unit including a common data processing unit 213 and an individual data processing unit 214, a signal processing unit 215, and a wireless interface (IF) unit 216. And the amplification unit 217 is provided.
 個別データ処理部214と、信号処理部215と、無線インターフェース(IF)部216と、増幅部217と、アンテナ240は、リンク毎に装備される。通信装置200は、第1のリンクと第2のリンクの2つのリンクを使ってMLOを実施することを想定している。例えば、個別データ処理部214-1、信号処理部215-1、無線インターフェース部216-1、増幅部217-1、及びアンテナ240-1を第1のリンクにおける送受信処理用の1つの組とし、個別データ処理部214-2、信号処理部215-2、無線インターフェース部216-2、増幅部217-2、及びアンテナ240-2を第2のリンクにおける送受信処理用の別の組とする。 The individual data processing unit 214, the signal processing unit 215, the wireless interface (IF) unit 216, the amplification unit 217, and the antenna 240 are provided for each link. The communication device 200 assumes that MLO is performed using two links, a first link and a second link. For example, the individual data processing unit 214-1, the signal processing unit 215-1, the wireless interface unit 216-1, the amplification unit 217-1, and the antenna 240-1 are set as one set for transmission / reception processing in the first link. The individual data processing unit 214-2, the signal processing unit 215-2, the wireless interface unit 216-2, the amplification unit 217-2, and the antenna 240-2 are made into another set for transmission / reception processing in the second link.
 通信制御部211は、通信部210内の各部の動作及び各部間の情報伝達の制御を行う。また、通信制御部211は、他の通信装置へ通知する制御情報及び管理情報をデータ処理部(共通データ処理部213、個別データ処理部214-1及び個別データ処理部214-2)へ受け渡す制御を行う。 The communication control unit 211 controls the operation of each unit in the communication unit 210 and the information transmission between each unit. Further, the communication control unit 211 passes the control information and management information to be notified to other communication devices to the data processing unit (common data processing unit 213, individual data processing unit 214-1 and individual data processing unit 214-2). Take control.
 本開示においては、通信制御部211は、複数のリンク(例えば第1のリンク及び第2のリンク)におけるブロードキャスト宛てデータの送信を行うように、通信部210内の各部の動作を制御する。通信制御部211は、特に通信記憶部212に対し、各リンクにおいてブロードキャスト宛てデータを保持するように制御する。 In the present disclosure, the communication control unit 211 controls the operation of each unit in the communication unit 210 so as to transmit data to the broadcast on a plurality of links (for example, the first link and the second link). The communication control unit 211 controls the communication storage unit 212 in particular to hold data addressed to the broadcast at each link.
 通信記憶部212は、通信制御部211で使用する情報を保持する。また、通信記憶部212は、通信装置200が送信するデータ及び通信装置200が受信したデータを保持する。 The communication storage unit 212 holds the information used by the communication control unit 211. Further, the communication storage unit 212 holds the data transmitted by the communication device 200 and the data received by the communication device 200.
 データ処理部は、共通データ処理部213及び個別データ処理部214からなる。また、個別データ処理部214は、リンク毎の個別データ処理部214-1及び個別データ処理部214-2からなる。 The data processing unit includes a common data processing unit 213 and an individual data processing unit 214. Further, the individual data processing unit 214 includes an individual data processing unit 214-1 for each link and an individual data processing unit 214-2.
 共通データ処理部213は、送信時には、通信記憶部212に保持されたデータ及び通信制御部211から受け取った制御情報及び管理情報のシーケンス管理を行い、暗号化処理などを行ってデータユニットを生成し、個別データ処理部214-1及び214-2への割り振りを行う。また、共通データ処理部213は、受信時には、データユニットの解読処理とリオーダー処理を行う。 At the time of transmission, the common data processing unit 213 manages the sequence of the data held in the communication storage unit 212 and the control information and management information received from the communication control unit 211, performs encryption processing and the like to generate a data unit. , Allocate to individual data processing units 214-1 and 214-2. Further, the common data processing unit 213 performs decoding processing and reordering processing of the data unit at the time of reception.
 個別データ処理部214-1及び214-2は、送信時には、対応するリンクにおけるキャリアセンスに基づくチャネルアクセス動作と、送信するデータへのMACヘッダの付加及び誤り検出符号の付加、及びデータユニットの複数連結処理を行う。また、個別データ処理部214-1及び214-2は、受信時には、受信したデータユニットのMACヘッダの連結解除処理、解析及び誤り検出、及び再送要求動作を行う。 At the time of transmission, the individual data processing units 214-1 and 214-2 include channel access operations based on carrier sense at the corresponding links, addition of MAC headers and error detection codes to the data to be transmitted, and a plurality of data units. Perform the concatenation process. Further, the individual data processing units 214-1 and 214-2 perform the disconnection processing, analysis and error detection, and retransmission request operation of the MAC header of the received data unit at the time of reception.
 なお、共通データ処理部213と個別データ処理部214-1及び214-2の動作は、上記に限定されるものではなく、例えば一方が他方の動作を行うこともあり得る。 The operations of the common data processing unit 213 and the individual data processing units 214-1 and 214-2 are not limited to the above, and for example, one may perform the other operation.
 信号処理部215-1及び215-1-2は、送信時には、データユニットに対する符号化、インターリーブ及び変調などを行い、物理ヘッダを付加しシンボルストリームを生成する。また、信号処理部215-1及び215-2は、受信時には、物理ヘッダを解析し、シンボルストリームに対する復調、デインターリーブ及び復号化などを行い、データユニットを生成する。また、信号処理部215-1及び215-2は、必要に応じて複素チャネル特性の推定及び空間分離処理を行う。 At the time of transmission, the signal processing units 215-1 and 215-1-2 perform coding, interleaving, modulation, etc. on the data unit, add a physical header, and generate a symbol stream. At the time of reception, the signal processing units 215-1 and 215-2 analyze the physical header, demodulate, deinterleave, and decode the symbol stream to generate a data unit. Further, the signal processing units 215-1 and 215-2 perform estimation of complex channel characteristics and spatial separation processing as necessary.
 無線インターフェース部216-1及び216-2は、送信時には、シンボルストリームに対するデジタル-アナログ信号変換、フィルタリング、アップコンバート、位相制御を行い、送信信号を生成する。また、無線インターフェース部216-1及び216-2は、受信時には、受信信号に対しダウンコンバート、フィルタリング、アナログ-デジタル信号変換を行い、シンボルストリームを生成する。 At the time of transmission, the wireless interface units 216-1 and 216-2 perform digital-analog signal conversion, filtering, up-conversion, and phase control on the symbol stream to generate a transmission signal. Further, the wireless interface units 216-1 and 216-2 perform down-conversion, filtering, and analog-digital signal conversion on the received signal at the time of reception to generate a symbol stream.
 増幅部217-1及び217-2は、送信時には無線インターフェース部216-1及び216-2から入力された信号を増幅し、受信時にはアンテナ240-1及び240-2から入力された信号を増幅する。増幅部217-1及び217-2は、一部が通信部210外の構成要素となっていてもよい。また、増幅部217-1及び217-2の一部が無線インターフェース部216-1及び216-2に内包されてもよい。 The amplification units 217-1 and 217-2 amplify the signals input from the wireless interface units 216-1 and 216-2 at the time of transmission, and amplify the signals input from the antennas 240-1 and 240-2 at the time of reception. .. A part of the amplification units 217-1 and 217-2 may be components outside the communication unit 210. Further, a part of the amplification units 217-1 and 217-2 may be included in the wireless interface units 216-1 and 216.2.
 制御部220は、通信部210及び通信制御部211の制御を行う。また、制御部220は、通信制御部211の一部の動作を代わりに行ってもよい。また、通信制御部211と制御部220は1つのブロックとして構成されてもよい。 The control unit 220 controls the communication unit 210 and the communication control unit 211. Further, the control unit 220 may perform a part of the operation of the communication control unit 211 instead. Further, the communication control unit 211 and the control unit 220 may be configured as one block.
 記憶部230は、通信部210及び制御部220で使用する情報を保持する。また、記憶部230は、通信記憶部212の一部の動作を代わりに行ってもよい。また、記憶部230と通信記憶部212は1つのブロックとして構成されてもよい。 The storage unit 230 holds information used by the communication unit 210 and the control unit 220. Further, the storage unit 230 may perform a part of the operation of the communication storage unit 212 instead. Further, the storage unit 230 and the communication storage unit 212 may be configured as one block.
 個別データ処理部214-1、信号処理部215-1、無線インターフェース部216-1、増幅部217-1、及びアンテナ240-1を1つの組として、第1のリンクで無線通信を実施する。また、個別データ処理部214-2、信号処理部215-2、無線インターフェース部216-2、増幅部217-2、及びアンテナ240-2を他の1つの組として、第2のリンクで無線通信を実施する。図2では、2組しか描いていないが、3つ以上の組が通信装置200の構成要素となり、各組がそれぞれのリンクで無線通信を実施するように構成することもできる。また、記憶部230又は通信記憶部212が各々の組に含まれていてもよい。 The individual data processing unit 214-1, the signal processing unit 215-1, the wireless interface unit 216-1, the amplification unit 217-1, and the antenna 240-1 are used as one set to perform wireless communication on the first link. Further, the individual data processing unit 214-2, the signal processing unit 215-2, the wireless interface unit 216-2, the amplification unit 217-2, and the antenna 240-2 are used as another set, and wireless communication is performed by the second link. To carry out. Although only two sets are drawn in FIG. 2, three or more sets are components of the communication device 200, and each set may be configured to carry out wireless communication on its own link. Further, the storage unit 230 or the communication storage unit 212 may be included in each set.
 リンクは2つの通信装置間でデータの伝送を行うことができる無線伝送路であり、個々のリンクは例えば周波数領域で分割された互いに独立した複数の無線伝送路(チャネル)の中から選択される。上記の各組がそれぞれ用いるリンクは、同じ周波数帯から選択された2つのチャネルであっても、異なる周波数帯から選択された2つのチャネルであってもよい。また、個別データ処理部214と信号処理部215を1つの組とし、2つ以上の組が1つの無線インターフェース部216と接続されるように構成してもよい。 A link is a wireless transmission line capable of transmitting data between two communication devices, and each link is selected from, for example, a plurality of independent wireless transmission lines (channels) divided by a frequency domain. .. The links used by each of the above sets may be two channels selected from the same frequency band or two channels selected from different frequency bands. Further, the individual data processing unit 214 and the signal processing unit 215 may be combined into one set, and two or more sets may be configured to be connected to one wireless interface unit 216.
 無線インターフェース部216、増幅部217、及びアンテナ240を1つの組とし、2つ以上の組が通信装置200の構成要素となっていてもよい。 The wireless interface unit 216, the amplification unit 217, and the antenna 240 may be one set, and two or more sets may be components of the communication device 200.
 通信部210は、1つ以上のLSI(Large Scale Integration)によって構成することもできる。 The communication unit 210 can also be configured by one or more LSIs (Large Scale Integration).
 共通データ処理部213は、Upper MAC又はHigher MACとも称され、個別データ処理部214はLower MACとも称される。また、個別データ処理部214と信号処理部215の組は、AP entity又はNon-AP entityとも称される。また、通信制御部211は、MLD management entityとも称される。 The common data processing unit 213 is also referred to as an Upper MAC or a Higher MAC, and the individual data processing unit 214 is also referred to as a Lower MAC. Further, the pair of the individual data processing unit 214 and the signal processing unit 215 is also referred to as AP entity or Non-AP entity. The communication control unit 211 is also referred to as an MLD management entity.
D.AP MLDの機能的構成
 図1には、AP MLDと、Non-AP MLDと、STA1及びSTA2が2つのリンクを用いて接続される通信システムを示した。このうちAP MLDとNon-AP MLDは、複数のリンクを用いた通信に対応した通信装置である。AP MLDは、通信部210又は通信部210の構成要素によって実現され得る。図3には、AP MLDの機能的構成例を示している。
D. Functional Configuration of AP MLD FIG. 1 shows a communication system in which AP MLD, Non-AP MLD, and STA1 and STA2 are connected using two links. Of these, AP MLD and Non-AP MLD are communication devices that support communication using a plurality of links. The AP MLD can be realized by the communication unit 210 or the components of the communication unit 210. FIG. 3 shows an example of a functional configuration of AP MLD.
 MAC SAP(Service Access Point)ブロックは、AP MLDと上位層とのインターフェースである。 The MAC SAP (Service Access Point) block is an interface between AP MLD and the upper layer.
 Sequence Number Assignmentブロックは、上位層から受け渡されたデータにシーケンス番号を割り当てる機能ブロックである。Transmit Bufferは、上位層から受け渡されたデータを保持する機能ブロックである。なお、上位層から受け渡されたデータがブロードキャスト宛のデータである場合、後述するBroadcast Bufferで保持されてもよい。Sequence Number AssignmentブロックとTransmit Bufferは、共通データ処理部213及び通信記憶部212によって実現され得る。 The Sequence Number Assignment block is a functional block that assigns a sequence number to the data passed from the upper layer. The Transmit Buffer is a functional block that holds the data passed from the upper layer. When the data passed from the upper layer is the data addressed to the broadcast, it may be held by the Broadcast Buffer described later. The Sequence Number Assignment block and the Transmit Buffer can be realized by the common data processing unit 213 and the communication storage unit 212.
 図3に示すAP MLDは、使用するリンク毎の2つのMACブロックを備えている。なお、AP MLDのうち、2つのMACブロックを除いた部分は、図2に示した通信装置200のうち、共通データ処理部213に相当し、Upper MAC又はHigher MACとも称される。また、各MACブロックはそれぞれ個別データ処理部214-1及び214-2に相当し、Lower MACとも称される。 The AP MLD shown in FIG. 3 includes two MAC blocks for each link used. The portion of the AP MLD excluding the two MAC blocks corresponds to the common data processing unit 213 of the communication device 200 shown in FIG. 2, and is also referred to as an Upper MAC or a Higher MAC. In addition, each MAC block corresponds to individual data processing units 214-1 and 214-2, respectively, and is also referred to as Lower MAC.
 各MACブロックは、各リンクに対応するメディアアクセスを行うエンティティであり、個別データ処理部214及び通信記憶部212によって実現され得る。各MACブロックは、Broadcast Buffer、CRC Creationブロック、Aggregationブロック、及びChannel Accessブロックの各機能ブロックを含む。 Each MAC block is an entity that performs media access corresponding to each link, and can be realized by the individual data processing unit 214 and the communication storage unit 212. Each MAC block includes each functional block of Broadcast Buffer, CRC Creation block, Aggregation block, and Channel Access block.
 Broadcast Bufferは、ブロードキャスト宛てのデータを保持する機能ブロックである。すなわち、MACブロック外の上記のTransmit Bufferとは別に、各MACブロックが保有する機能ブロックである。ブロードキャスト宛てのデータは、Transmit BufferからBroadcast Bufferに受け渡されてもよく、Transmit Bufferを経由せずに上位層から直接Broadcast Bufferに受け渡されてもよい。Broadcast Bufferは通信記憶部212によって実現され得る。また、Broadcast Bufferは、AP MLDが用いる複数のリンクの少なくとも1つにおいてNon-AP MLD又はSTAが接続されておらず、且つ他のNon-AP MLD又はSTAが接続されている場合に、AP MLDが有効化してもよい。 The Broadcast Buffer is a functional block that holds data addressed to the broadcast. That is, it is a functional block owned by each MAC block separately from the above-mentioned Transmit Buffer outside the MAC block. The data addressed to the broadcast may be passed from the Transmit Buffer to the Broadcast Buffer, or may be passed directly from the upper layer to the Broadcast Buffer without going through the Transmit Buffer. Broadcast Buffer can be realized by the communication storage unit 212. Further, the Broadcast Buffer is an AP MLD when the Non-AP MLD or STA is not connected at at least one of the plurality of links used by the AP MLD and another Non-AP MLD or STA is connected. May be enabled.
 Transmit BufferとBroadcast Bufferは、それぞれ通信記憶部212内で、共通データ処理部213、個別データ処理部214-1及び214-2の各々に対して個別に与えられたメモリ領域であってもよい。 The Transmit Buffer and the Broadcast Buffer may be memory areas individually assigned to each of the common data processing unit 213, the individual data processing units 214-1 and 214-2 in the communication storage unit 212, respectively.
 CRC Creationブロックは、Transmit Buffer又はBroadcast Bufferから受け渡されたデータに対し、暗号化処理などが施されて生成されたデータユニットに、誤り検出符号(Cyclic Redundancy Code:CRC)を付加する機能ブロックである。Aggregationブロックは、データブロックを複数連結する機能ブロックである。Channel Accessブロックは、対応するリンクにおいてキャリアセンスに基づいて送信権の獲得を行う機能ブロックである。CRC Creation、Aggregation、及びChannel Aceesの各機能ブロックは、個別データ処理部214によって実現され得る。 The CRC Creation block is a functional block that adds an error detection code (Cyclic Redundancy Code: CRC) to the data unit generated by performing encryption processing etc. on the data passed from the Transmit Buffer or Broadcast Buffer. be. The Aggregation block is a functional block that connects a plurality of data blocks. The Channel Access block is a functional block that acquires a transmission right based on a carrier sense at a corresponding link. Each functional block of CRC Creation, Aggregation, and Channel Acees can be realized by the individual data processing unit 214.
 上述の通り、AP MLDは、上位層から受け渡されたデータを保持する共通のTransmit Bufferに加えて、ブロードキャスト宛てのデータを保持するBroadcast Bufferを各リンクに対応するMACブロック毎に備えることで、複数のリンクに対してブロードキャスト宛てデータを送信することを可能にする。すなわち、各MACブロックがそれぞれ対応するリンクで送信権を獲得した際に、自身が備えるBroadcast Bufferからブロードキャスト宛てデータを取り出すことで、他のMACブロックが備えるBroadcast Bufferに格納されたブロードキャスト宛てデータに影響することなく、送信を行うことを可能にする。 As described above, the AP MLD is provided with a Broadcast Buffer that holds data addressed to the broadcast in addition to a common Transmission Buffer that holds the data passed from the upper layer for each MAC block corresponding to each link. Allows data to be broadcast to multiple links. That is, when each MAC block acquires the transmission right with the corresponding link, by extracting the data addressed to the broadcast from its own Broadcast Buffer, it affects the data addressed to the broadcast stored in the Broadcast Buffer provided by the other MAC blocks. Allows you to send without having to.
 また、各MACブロックは、自身が備えるBroadcast Bufferからブロードキャスト宛てデータを送信後に削除することで、次に送信権を獲得した際に再度同一のブロードキャスト宛てデータを送信してしまうことを防ぐことができ、それによりメモリの浪費や通信記憶部212のメモリ容量要求の増大を抑えることができる。 In addition, each MAC block can prevent data from being transmitted to the same broadcast again the next time the transmission right is acquired by deleting the data addressed to the broadcast from its own Broadcast Buffer. As a result, it is possible to suppress the waste of memory and the increase in the memory capacity request of the communication storage unit 212.
E.AP MLDのブロードキャスト宛てデータの送信処理(1)
 図4には、AP MLDがデータを送信する際の処理手順をフローチャートの形式で示している。
E. Data transmission process for AP MLD broadcast (1)
FIG. 4 shows a processing procedure when the AP MLD transmits data in the form of a flowchart.
 AP MLD entityは、上位層からMAC SAPブロックを通してデータが入力されると(ステップS401)、入力データの宛て先がブロードキャストかどうかをチェックする(ステップS402)。 When data is input from the upper layer through the MAC SAP block (step S401), the AP MLD entity checks whether the destination of the input data is broadcast (step S402).
 入力データの宛て先がブロードキャストであれば(ステップS402のYes)、AP MLD entityは、すべてのMACブロックにそのデータを転送して、各々のBroadcast Bufferにそのデータを格納する(ステップS403)。その際、ブロードキャスト宛てデータの送信処理などに必要な付随情報(後述)も併せて各MACブロックに転送され、Broadcast Bufferに格納される。 If the destination of the input data is broadcast (Yes in step S402), the AP MLD entity transfers the data to all MAC blocks and stores the data in each Broadcast Buffer (step S403). At that time, incidental information (described later) necessary for transmission processing of data addressed to the broadcast is also transferred to each MAC block and stored in the Broadcast Buffer.
 そして、いずれかのMACブロックが対応するリンクで送信権を獲得すると(ステップS404のYes)、そのMACブロックは、自身のBroadcast Bufferからデータを取り出して、AP MLD entityから受け渡された付随情報に基づいてデータ送信を行う(ステップS405)。その後、そのMACブロック内のBroadcast Bufferから、ステップS405で送信したデータを削除する(ステップS406)。 Then, when one of the MAC blocks acquires the transmission right with the corresponding link (Yes in step S404), the MAC block extracts the data from its own Broadcast Buffer and uses it as the accompanying information passed from the AP MLD entity. Data is transmitted based on this (step S405). After that, the data transmitted in step S405 is deleted from the Broadcast Buffer in the MAC block (step S406).
 他のMACブロックのBroadcast Bufferにデータがまだ残っている場合には(ステップS407のYes)、ステップS404に戻って、他のMACブロックのブロードキャスト宛てデータの送信処理を繰り返し実行する。また、他のMACブロックのBroadcast Bufferにもデータが残っていない場合には(ステップS407のNo)、本処理を終了する。 If data still remains in the Broadcast Buffer of another MAC block (Yes in step S407), the process returns to step S404 and the data transmission process addressed to the broadcast of the other MAC block is repeatedly executed. If no data remains in the Broadcast Buffer of another MAC block (No in step S407), this process ends.
 一方、入力データの宛て先がブロードキャストでない場合には(ステップS402のNo)、AP MLD entityは、Transmit Bufferにそのデータを格納する(ステップS408)。そして、そのデータの宛て先と接続するMACブロックが送信権を獲得すると(ステップS409のYes)、AP MLD entityは、Transmit Bufferからデータを取り出して、そのMACブロックに受け渡す。そして、そのMACブロックは、AP MLD entityから受け渡されたデータの送信を行う(ステップS410)。その後、そのMACブロックがデータの送信先からACK信号を受信するか、そのデータの再送・保持上限を超えたら、Transmit Bufferからそのデータを削除して(ステップS411)、本処理を終了する。 On the other hand, if the destination of the input data is not broadcast (No in step S402), the AP MLD entity stores the data in the Transmit Buffer (step S408). Then, when the MAC block connected to the destination of the data acquires the transmission right (Yes in step S409), the AP MLD entity takes out the data from the Transmit Buffer and delivers it to the MAC block. Then, the MAC block transmits the data passed from the AP MLD entity (step S410). After that, when the MAC block receives an ACK signal from the data transmission destination or exceeds the retransmission / retention upper limit of the data, the data is deleted from the Transmission Buffer (step S411), and this process ends.
 図5には、ブロードキャスト宛てデータを送信する際のAP MLD内で情報を授受する動作シーケンスを示している。図示の動作シーケンスは、AP MLDがブロードキャスト宛てデータを送信する場合の動作シーケンスを示しており、図4に示したフローチャート中で主にステップS403~S407の処理に相当する動作シーケンスを示している。また、図5中のAP MLD entityは、図3に示したAP MLD、又はUpper MAC、AP MLD management entityのいずれかに対応する。また、AP entity1及びAP entity2はそれぞれ図3に示したAP MLD内の一方のMACブロック及び他方のMACブロックに対応する。 FIG. 5 shows an operation sequence for exchanging information in the AP MLD when transmitting data to a broadcast. The illustrated operation sequence shows an operation sequence when the AP MLD transmits data to the broadcast, and mainly shows an operation sequence corresponding to the processing of steps S403 to S407 in the flowchart shown in FIG. Further, the AP MLD entity in FIG. 5 corresponds to any of the AP MLD shown in FIG. 3, Upper MAC, and AP MLD management entity. Further, AP entity 1 and AP entity 2 correspond to one MAC block and the other MAC block in the AP MLD shown in FIG. 3, respectively.
 AP MLD entityは、上位層からMAC SAPブロックを通してブロードキャスト宛てデータを受け取ると(SEQ501)、そのデータをAP entity1及びAP entity2の各々に受け渡す。その際、AP MLD entityは、以下のデータ情報をAP entity1及びAP entity2の各々に通知する。 When the AP MLD entity receives the data addressed to the broadcast from the upper layer through the MAC SAP block (SEQ501), the AP MLD entity passes the data to each of the AP entity 1 and the AP entity 2. At that time, AP MLD entity notifies each of AP entity 1 and AP entity 2 of the following data information.
データ情報:
 -データペイロード(ブロードキャスト宛てデータ)
 -受信アドレス(Received Address:RA)
 -トラフィック識別子(Traffic ID:TID)
 -シーケンス番号(Sequence Number:SN)
 -アクセスカテゴリ(Access Category:AC)
Data information:
-Data payload (data addressed to broadcast)
-Received address (Received Address: RA)
-Traffic ID (TID)
-Sequence number (SN)
-Access Category (AC)
 AP entity1及びAP entity2は、AP MLD entityから受け取ったブロードキャスト宛てデータを、上記のRA、TID、SN、ACなどの付随情報とともに、各々のBroadcast Bufferに格納する。 AP entity 1 and AP entity 2 store the broadcast-addressed data received from the AP MLD entity in their respective Broadcast Buffers together with the above-mentioned incidental information such as RA, TID, SN, and AC.
 そして、AP entity1及びAP entity2はそれぞれ、対応するリンクで送信権(Transmission: Opportunity:TXOP)を獲得すると(SEQ511、SEQ521)、各々のBroadcast Bufferからブロードキャスト宛てデータを取り出して、AP MLDからデータペイロードとともに受け渡された付随情報(RA、TID、SN、AC)に基づいて、データ送信を行う(SEQ512、SEQ522)。その後、AP entity1及びAP entity2は、各々のBroadcast Bufferからそのブロードキャスト宛てデータを削除する(SEQ513、SEQ523)。 Then, when AP entity 1 and AP entity 2 each acquire a transmission right (Transmission: Operation: TXOP) at the corresponding link (SEQ 511, SEQ 521), they take out data addressed to the broadcast from their respective Broadcast Buffers and together with the data payload from the AP MLD. Data is transmitted based on the passed incidental information (RA, TID, SN, AC) (SEQ512, SEQ522). After that, AP entity 1 and AP entity 2 delete the data addressed to the broadcast from their respective Broadcast Buffers (SEQ 513, SEQ 523).
F.AP MLDのブロードキャスト宛てデータの送信処理(2)
 図6には、AP MLDがデータを送信する際の別の処理手順をフローチャートの形式で示している。
F. Data transmission process for AP MLD broadcast (2)
FIG. 6 shows another processing procedure when the AP MLD transmits data in the form of a flowchart.
 AP MLD entityは、上位層からMAC SAPブロックを通してデータが入力されると(ステップS601)、その入力データをTransmit Bufferに格納する(ステップS602)。図6に示す処理手順では、データの宛て先がブロードキャストであるかどうかに拘わらず、一旦Transmit Bufferに格納する。その際、そのデータの送信処理などに必要な付随情報(後述)が、各MACブロックに転送される。 When data is input from the upper layer through the MAC SAP block (step S601), the AP MLD entity stores the input data in the Transmit Buffer (step S602). In the processing procedure shown in FIG. 6, the data is temporarily stored in the Transmit Buffer regardless of whether the destination of the data is broadcast. At that time, incidental information (described later) necessary for the data transmission process and the like is transferred to each MAC block.
 その後、複数(図3に示す例では2つ)のMACブロックのうちいずれかが対応するリンクで送信権を獲得すると(ステップS603のYes)、そのMACブロックがAP MLD entityに対して送信データを要求する。AP MLD entityは、MACブロックから送信データを要求されると、Transmit Bufferから送信データを取り出して、その送信データの宛て先がブロードキャストであるかどうかをチェックする(ステップS604)。 After that, when any one of the plurality of MAC blocks (two in the example shown in FIG. 3) acquires the transmission right with the corresponding link (Yes in step S603), the MAC block transmits the transmission data to the AP MLD entity. Request. When the transmission data is requested from the MAC block, the AP MLD entity takes out the transmission data from the Transmit Buffer and checks whether the destination of the transmission data is broadcast (step S604).
 送信データの宛て先がブロードキャストであれば(ステップS604のYes)、AP MLD entityは、すべてのMACブロックにそのデータを転送して、各々のBroadcast Bufferにその送信データを格納する(ステップS605)。また、AP MLD entityは、各MACブロックのBroadcast Bufferに転送したデータを、Transmit Bufferから削除する。 If the destination of the transmission data is broadcast (Yes in step S604), the AP MLD entity transfers the data to all MAC blocks and stores the transmission data in each Broadcast Buffer (step S605). In addition, AP MLD entity deletes the data transferred to the Broadcast Buffer of each MAC block from the Transmit Buffer.
 次いで、ステップS603で送信権を獲得したMACブロックは、自身のBroadcast Bufferからデータを取り出して、ステップS602においてAP MLD entityから事前に受け渡された付随情報に基づいて、データ送信を行う(ステップS606)。その後、そのMACブロックは、自身のBroadcast Bufferから、ステップS606で送信したデータを削除する(ステップS607)。 Next, the MAC block that has acquired the transmission right in step S603 extracts data from its own Broadcast Buffer and transmits data based on the accompanying information previously passed from the AP MLD entity in step S602 (step S606). ). After that, the MAC block deletes the data transmitted in step S606 from its own Broadcast Buffer (step S607).
 次いで、他のMACブロックは自身のBroadcast Bufferにデータがまだ残っているかどうかをチェックする(ステップS608)。他のMACブロックのBroadcast Bufferにデータがまだ残っている場合には(ステップS608のYes)、当該他のMACブロックが送信権を獲得するまで待機する(ステップS609のNo)。そして、当該他のMACブロックが送信権を獲得すると(ステップS609のYes)、ステップS606に戻って、当該他のMACブロックにおけるブロードキャスト宛てデータの送信とBroadcast Bufferからのデータの削除を繰り返し実施する。また、他のMACブロックのBroadcast Bufferにもデータが残っていない場合には(ステップS608のNo)、本処理を終了する。 Next, the other MAC blocks check whether or not data still remains in their own Broadcast Buffer (step S608). If data still remains in the Broadcast Buffer of another MAC block (Yes in step S608), it waits until the other MAC block acquires the transmission right (No in step S609). Then, when the other MAC block acquires the transmission right (Yes in step S609), the process returns to step S606 to repeatedly transmit data to the broadcast in the other MAC block and delete the data from the Broadcast Buffer. If no data remains in the Broadcast Buffer of another MAC block (No in step S608), this process ends.
 一方、送信データの宛て先がブロードキャストでない場合には(ステップS604のNo)、AP MLD entityは、Transmit Bufferからデータを取り出して、ステップS603で送信権を獲得したMACブロックにそのデータを受け渡す。そして、そのMACブロックは、ステップS602においてAP MLD entityから事前に受け渡された付随情報に基づいて、そのデータの送信を行う(ステップS610)。その後、そのMACブロックがデータの送信先からACK信号を受信するか、そのデータを再送するか、又はTransmit Bufferの保持上限を超えたら、AP MLD entityは、Transmit Bufferからそのデータを削除して(ステップS611)、本処理を終了する。 On the other hand, if the destination of the transmission data is not broadcast (No in step S604), the AP MLD entity takes out the data from the Transmit Buffer and passes the data to the MAC block that acquired the transmission right in step S603. Then, the MAC block transmits the data based on the incidental information previously passed from the AP MLD entity in step S602 (step S610). After that, when the MAC block receives an ACK signal from the data transmission destination, retransmits the data, or exceeds the holding upper limit of the Transmission Buffer, the AP MLD entity deletes the data from the Transmission Buffer ( Step S611), this process is terminated.
 図7には、ブロードキャスト宛てデータを送信する際のAP MLD内で情報を授受する動作シーケンスを示している。図示の動作シーケンスは、主にAP MLDがブロードキャスト宛てデータを送信する場合の動作シーケンスを示しており、図7に示したフローチャート中のステップS604~S609の処理に相当する動作シーケンスを示している。また、図5中のAP MLD entityは、図3に示したAP MLD、又はUpper MAC、AP MLD management entityのいずれかに対応する。また、AP entity1及びAP entity2はそれぞれ図3に示したAP MLD内の一方のMACブロック及び他方のMACブロックに対応する。 FIG. 7 shows an operation sequence for exchanging information in the AP MLD when transmitting data to a broadcast. The illustrated operation sequence mainly shows the operation sequence when the AP MLD transmits data to the broadcast, and shows the operation sequence corresponding to the processing of steps S604 to S609 in the flowchart shown in FIG. 7. Further, the AP MLD entity in FIG. 5 corresponds to any of the AP MLD shown in FIG. 3, Upper MAC, and AP MLD management entity. Further, AP entity 1 and AP entity 2 correspond to one MAC block and the other MAC block in the AP MLD shown in FIG. 3, respectively.
 AP MLD entityは、上位層からMAC SAPブロックを通してブロードキャスト宛てデータを受け取ると(SEQ701)、Transmit Bufferに受け取ったデータを格納するとともに、このデータに付随する以下の情報をAP entity1及びAP entity2の各々に通知する。この時点では、まだAP entity1及びAP entity2にデータペイロードを渡さない。 When the AP MLD entity receives data addressed to the broadcast from the upper layer through the MAC SAP block (SEQ701), it stores the received data in the Transmission Buffer and also stores the following information accompanying this data in each of the AP entity1 and AP entity2. Notice. At this point, the data payload has not yet been passed to AP entry 1 and AP entity 2.
データ情報:
 -受信アドレス(Received Address:RA)
 -トラフィック識別子(Traffic ID:TID)
 -シーケンス番号(SN)
 -アクセスカテゴリ(AC)
Data information:
-Received address (Received Address: RA)
-Traffic ID (TID)
-Sequence number (SN)
-Access category (AC)
 AP entity1は、対応するリンクで送信権を獲得すると(SEQ711)AP MLD entityに対して送信データの要求(Data Request)を行う。AP MLD entityは、この要求に応答して、Transmit Bufferからブロードキャスト宛てデータを取り出して、AP entity1及びAP entity2の各々に受け渡す。 When AP entity1 acquires the transmission right with the corresponding link (SEQ711), it requests transmission data (Data Request) from AP MLD entity. In response to this request, the AP MLD entity extracts data addressed to the broadcast from the Transmit Buffer and delivers it to each of the AP entity 1 and the AP entity 2.
 AP entity1及びAP entity2は、AP MLD entityから受け渡されたブロードキャスト宛てデータを、上記のRA、TID、SN、ACなどの付随情報とともに、各々のBroadcast Bufferに格納する。そして、AP MLD entityは、Transmit Bufferからそのブロードキャスト宛てデータを削除する(SEQ702)。 AP entity 1 and AP entity 2 store the broadcast-addressed data delivered from the AP MLD entity in their respective Broadcast Buffers together with the above-mentioned incidental information such as RA, TID, SN, and AC. Then, the AP MLD entity deletes the data addressed to the broadcast from the Transmit Buffer (SEQ702).
 AP entity1は、自身のBroadcast Bufferからブロードキャスト宛てデータを取り出して、そのデータの付随情報(RA、TID、SN、AC)に基づいて、データ送信を行う(SEQ712)。そして、AP entity1は、送信したブロードキャスト宛てデータを自身のBroadcast Bufferから削除する(SEQ713)。 AP entity1 extracts data addressed to the broadcast from its own Broadcast Buffer and transmits the data based on the accompanying information (RA, TID, SN, AC) of the data (SEQ712). Then, AP entity1 deletes the transmitted data addressed to the broadcast from its own Broadcast Buffer (SEQ713).
 また、AP entity2は、対応するリンクで送信権を獲得すると(SEQ721)、自身のBroadcast Bufferからブロードキャスト宛てデータを取り出して、そのデータの付随情報(RA、TID、SN、AC)に基づいて、データ送信を行う(SEQ722)。そして、AP entity2は、送信したブロードキャスト宛てデータを自身のBroadcast Bufferから削除する(SEQ723)。 In addition, when AP entity2 acquires the transmission right with the corresponding link (SEQ721), it extracts data addressed to the broadcast from its own Broadcast Buffer, and data based on the accompanying information (RA, TID, SN, AC) of the data. Transmission is performed (SEQ722). Then, AP entity2 deletes the transmitted data addressed to the broadcast from its own Broadcast Buffer (SEQ723).
 なお、図4及び図6に示したいずれの処理手順においても、ステップS402及びステップS604における送信データの宛て先がブロードキャストであるかどうかは、例えば通信制御部211が上位層から受け渡されたデータの宛て先のMACアドレスがブロードキャストアドレスになっているかどうかによって判定する。また、この判定は、データの付随情報に基づいて実施されてもよい。付随情報は、データをすべてのMACのBroadcast Bufferに格納することを示す情報であってもよく、識別子であってもよい。この識別子は、IEEE802.11で規定されるTraffic Identifierの特定の値であってもよい。 In any of the processing procedures shown in FIGS. 4 and 6, whether or not the destination of the transmission data in steps S402 and S604 is broadcast is determined by, for example, the data passed from the upper layer by the communication control unit 211. Judgment is made based on whether or not the MAC address of the destination is a broadcast address. Further, this determination may be performed based on the accompanying information of the data. The accompanying information may be information indicating that the data is stored in the Broadcast Buffer of all MACs, or may be an identifier. This identifier may be a specific value of the Traffic Identity specified in 802.11.
G.通信シーケンス例
 図8には、図1に示した通信システムにおいて、APがMLOに対応したブロードキャスト送信を行う通信シーケンス例を示している。既に説明したように、この通信システムは、AP MLDと、Non-AP MLDと、STA1及びSTA2によって構成される。また、通信システムでは第1のリンク(Link1)と第2のリンク(Link2)が利用可能であり、MLOに対応したAP MLDとNon-AP MLDはLink1及びLink2で接続され、STA1はAP MLDとLink1で接続され、STA2はAP MLDとLink2で接続されることを想定している。
G. Example of Communication Sequence FIG. 8 shows an example of a communication sequence in which the AP performs broadcast transmission corresponding to MLO in the communication system shown in FIG. As described above, this communication system is composed of AP MLD, Non-AP MLD, and STA1 and STA2. Further, in the communication system, a first link (Link1) and a second link (Link2) can be used, and AP MLD and Non-AP MLD corresponding to MLO are connected by Link1 and Link2, and STA1 is connected to AP MLD. It is assumed that it is connected by Link1 and STA2 is connected by AP MLD and Link2.
 なお、図8中の横軸は時間軸であり、AP MLD、Non-AP MLD、STA1及びSTA2の各リンク上の時間毎の通信動作を示している。実線で描いた四角いブロックは対応する通信装置、リンク、及び時刻における送信フレームを示し、縦方向の実線の矢印は宛て先へのフレーム送信を示している。また、実線で描いた平行四辺形のブロックはバックオフ動作を示している。 The horizontal axis in FIG. 8 is the time axis, and shows the communication operation for each time on each link of AP MLD, Non-AP MLD, STA1 and STA2. The square block drawn with a solid line indicates the transmission frame at the corresponding communication device, link, and time, and the vertical solid arrow indicates the frame transmission to the destination. The parallelogram block drawn with a solid line shows the back-off operation.
 時刻T1において、AP MLDには上位層からブロードキャスト宛てのデータが入力されると、そのデータは各MACブロックのBroadcast Bufferに格納される。これに基づき、AP MLDの各MACブロックは、それぞれLink1及びLink2においてバックオフを開始してキャリアセンスを行う。バックオフは、ランダムな待ち時間の設定とその待ち時間を減算する動作である。ランダムな待ち時間は、各MACブロックのBroadcast Bufferに格納されたブロードキャスト宛てデータの優先度(例えば、アクセスカテゴリ(AC))に基づいて決定されてもよく、一意の幅の値から選択されてもよい。また、ランダムな待ち時間は、AP MLDのTransmit Bufferに格納された他のデータの優先度(例えば、アクセスカテゴリ(AC))に基づいて決定されてもよい。また、ランダムな待ち時間は、MACブロック毎に異なる値でもよく、各MACブロックの外で決定された値を各MACブロックが共通して用いてもよい。 At time T1, when data addressed to the broadcast is input to the AP MLD from the upper layer, the data is stored in the Broadcast Buffer of each MAC block. Based on this, each MAC block of AP MLD starts backoff in Link1 and Link2, respectively, and performs carrier sense. Backoff is an operation of setting a random waiting time and subtracting the waiting time. The random wait time may be determined based on the priority of broadcast-addressed data stored in the Broadcast Buffer of each MAC block (eg, access category (AC)), or may be selected from a unique width value. good. Further, the random waiting time may be determined based on the priority (for example, access category (AC)) of other data stored in the Transmit Buffer of the AP MLD. Further, the random waiting time may be a different value for each MAC block, and a value determined outside each MAC block may be used in common by each MAC block.
 時刻T2において、AP MLDのLink1に対応するMACブロックは、バックオフを満了して送信権を獲得すると、自身のBroadcast Bufferからブロードキャスト宛てデータを取り出して、Non-AP MLD及びSTA1に、そのデータを含む送信信号をLink1で送信開始する。 At time T2, when the MAC block corresponding to Link1 of AP MLD expires the backoff and acquires the transmission right, it takes out the data addressed to the broadcast from its own Blockcast Buffer and transfers the data to Non-AP MLD and STA1. The transmission signal including the transmission signal is started to be transmitted by Link1.
 また、時刻T3において、AP MLDのLink2に対応するMACブロックは、バックオフを満了して送信権を獲得すると、自身のBroadcast Bufferからブロードキャスト宛てデータを取り出して、Non-AP MLD及びSTA2に、そのデータを含む送信信号をLink2で送信開始する。 Further, at time T3, when the MAC block corresponding to Link2 of AP MLD expires the backoff and acquires the transmission right, the data addressed to the broadcast is taken out from its own Blockcast Buffer and sent to Non-AP MLD and STA2. The transmission signal including the data is started to be transmitted by Link2.
 その後、時刻T4において、AP MLDのLink1に対応するMACブロックは、Link1における送信信号の送信が完了すると、それに合わせて自身のBroadcast Bufferから送信完了したデータを削除する。 After that, at time T4, the MAC block corresponding to Link1 of the AP MLD deletes the transmitted data from its own Broadcast Buffer when the transmission of the transmission signal in Link1 is completed.
 また、時刻T5において、AP MLDのLink2に対応するMACブロックは、Link2における送信信号の送信が完了すると、それに合わせて自身のBroadcast Bufferから送信完了したデータを削除する。 Further, at time T5, the MAC block corresponding to Link2 of AP MLD deletes the transmitted data from its own Broadcast Buffer in accordance with the completion of transmission of the transmission signal in Link2.
H.IEEE802.11における実施形態
 この項では、本開示をIEEE802.11規格に則った通信システムに適用して、MLOに対応したブロードキャスト送信を行う実施形態について説明する。
H. Embodiments in IEEE 802.11 This section describes an embodiment in which the present disclosure is applied to a communication system conforming to the IEEE 802.11 standard to perform broadcast transmission corresponding to MLO.
 図9には、IEEE802.11に則った通信装置(例えば、AP MLD)がブロードキャスト宛てデータを保持するアーキテクチャ及び信号の送信フローを示している。図9は、紙面下方向を送信フロー方向とする。図9において、Sequence Number Assignmentブロックはすべてのリンクに共通の処理を行う。また、MPDU (medium access control protocol data unit) Encryption、Broadcast addressed data holding、MPDU Header+CRC Creation、A-MPDU (Aggregate MPDU) Aggregationの各ブロックからなる処理フローは、リンク毎に設けられる。 FIG. 9 shows an architecture in which a communication device (for example, AP MLD) conforming to IEEE802.11 holds data addressed to a broadcast and a signal transmission flow. In FIG. 9, the direction below the paper surface is the transmission flow direction. In FIG. 9, the Sequence Number Assignment block performs a process common to all the links. In addition, MPDU (medium access protocol protocol data unit) Encryption, Broadcast advanced data holding, MPDU Header + CRC Creation, A-MPDU (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU) (A-MPDU)
 AP MLDには、Upper Layer、LLC(Logical Link Control) Sublayer、802.1 convergence functionを通して、データが入力される。AP MLDに入力されたデータユニットは、Sequence Number Assignmentブロックによってシーケンス番号が割り当てられた後、リンク毎の処理フローに分配される。 Data is input to the AP MLD through the Upper Layer, the LLC (Logical Link Control) Sublayer, and the 802.1 function function. The data unit input to the AP MLD is assigned a sequence number by the Sequence Number Assignment block, and then distributed to the processing flow for each link.
 リンク毎の処理フローでは、データユニットは、MPDU Encryptionブロックによって暗号化処理が施された後に、Broadcast addressed data holdingブロックによって該当するMACブロックにおけるBroadcast Bufferに格納される。本実施形態では、暗号化処理が施された後のデータユニットがBroadcast Bufferに格納される、という点に十分留意されたい。これにより、リンク毎に設定された暗号化キーを用いて暗号化処理されたデータユニットを、リンク毎に送信することが可能となる。なお、データユニットの暗号化処理は、リンク毎の処理フローではなく、すべてのリンクに共通の処理として実施されてもよい。その場合、リンク毎のデータユニットの暗号化処理に用いられる暗号化キーは、リンク毎に設定された暗号化キーであってもよい。 In the processing flow for each link, the data unit is stored in the Broadcast Buffer in the corresponding MAC block by the Broadcast added data holding block after being encrypted by the MPDU Encryption block. It should be noted that in the present embodiment, the data unit after the encryption process is stored in the Broadcast Buffer. This makes it possible to transmit the data unit encrypted using the encryption key set for each link for each link. The data unit encryption process may be performed as a process common to all links, not as a process flow for each link. In that case, the encryption key used for the encryption processing of the data unit for each link may be the encryption key set for each link.
 その後、あるリンクで送信権が獲得されると、そのリンクに該当するBroadcast Bufferからデータユニットが取り出され、MPDU Header+CRC CreationブロックによってMPDUヘッダと誤り検出符号(CRC)が付加される。本実施形態では、Broadcast Bufferから取り出されたデータユニットに対して誤り検出符号が付加されること、言い換えれば、誤り検出符号が付加される前のデータユニットがBroadcast Bufferに格納される点に十分留意されたい。これにより、データユニットのアドレスに基づいて処理が実施を、送信側と受信側でアーキテクチャの同一のブロックで実施することができる。 After that, when the transmission right is acquired at a certain link, the data unit is taken out from the Broadcast Buffer corresponding to the link, and the MPDU header and the error detection code (CRC) are added by the MPDU Header + CRC Creation block. In the present embodiment, it is sufficiently noted that an error detection code is added to the data unit taken out from the Broadcast Buffer, in other words, the data unit before the error detection code is added is stored in the Broadcast Buffer. I want to be. As a result, processing can be performed based on the address of the data unit in the same block of architecture on the transmitting side and the receiving side.
 そして、A-MPDU Aggregationブロックは、MPDUヘッダと誤り検出符号が付加された複数のデータユニットを連結する。連結されたデータユニットは、PHY層の処理として、該当するリンクから無線送信される。 Then, the A-MPDU Addition block connects the MPDU header and a plurality of data units to which an error detection code is added. The linked data units are wirelessly transmitted from the corresponding link as a process of the PHY layer.
 図10には、図9に示すアーキテクチャを備えた通信装置(AP MLD)におけるメモリ領域の構造を模式的に示している。図10では、Transmit Bufferと各MACのBroadcast Bufferを統合して管理するメモリ領域(Integrated Memory area)の構造を示している。図10に示すメモリ領域は、個別データ処理部214と共通データ処理部213が共通してアクセス可能な通信記憶部212よって実現される。 FIG. 10 schematically shows the structure of a memory area in a communication device (AP MLD) having the architecture shown in FIG. FIG. 10 shows the structure of a memory area (Integrated Memory area) that integrates and manages the Transmit Buffer and the Broadcast Buffer of each MAC. The memory area shown in FIG. 10 is realized by the communication storage unit 212 that the individual data processing unit 214 and the common data processing unit 213 can access in common.
 図10に示すメモリ領域の各列は、左から順に、保持されるデータペイロード(Stored data area)、そのデータの宛て先データ(Destination)、そのデータの付随情報(Data Property)、そのデータが第1のリンク(Link1)に対応するMACによって引き出されたかどうかを示すフラグ(Link1 retrieved)、そのデータが第2のリンク(Link2)に対応するMACによって取り出されたかどうかを示すフラグ(Link2 retrieved)を示している。なお、これらのフラグは、対応するMACによってまだ取り出されていないこと(すなわち、対応するリンクでまだ送信されていないこと)を0で、対応するMACによって既に取り出されたこと(すなわち、対応するリンクで既に送信されたこと)を1で示している。また、付随情報は、該当するデータペイロードのRA、TID、SN、ACなどの情報であり、そのデータペイロードの送信時に使用される。そして、図10に示すメモリ領域の各行には、保持されたデータ毎に上記の各列の情報が格納される。 In each column of the memory area shown in FIG. 10, in order from the left, the data payload (Store data area) to be held, the destination data (Destination) of the data, the accompanying information (Data Property) of the data, and the data are the first. A flag (Link1 retrieved) indicating whether or not the data was retrieved by the MAC corresponding to the link (Link1) of 1 and a flag (Link2 retried) indicating whether or not the data was retrieved by the MAC corresponding to the second link (Link2) are set. Shown. Note that these flags are 0 for not yet retrieved by the corresponding MAC (ie, not yet transmitted on the corresponding link) and have already been retrieved by the corresponding MAC (ie, the corresponding link). (It has already been sent in) is indicated by 1. Further, the accompanying information is information such as RA, TID, SN, and AC of the corresponding data payload, and is used when transmitting the data payload. Then, in each row of the memory area shown in FIG. 10, the information of each of the above columns is stored for each held data.
 上位層からAP MLDに入力されたデータは、図10に示すメモリ領域の形式で通信記憶部212に格納される。そして、各リンクにおいてデータ送信を実施する度に、その送信データに該当する行の該当するリンクのフラグを0から1に変更する。これにより、あるリンクにおいてブロードキャスト宛てデータの送信が実施された場合でも、そのデータはメモリ領域に保持されたままであり、他のリンクにおいても送信することが可能となる。また、既にデータの送信を実施したリンクにおいて送信権を獲得しても、そのデータに該当する行のそのリンクのフラグを参照することによって、同じリンクで重複して送信することを防ぐことができる。また、すべてのリンクのフラグが1となった場合には、そのデータ(そのデータに該当する行)をこのメモリ領域から削除するようにしてもよい。 The data input to the AP MLD from the upper layer is stored in the communication storage unit 212 in the format of the memory area shown in FIG. Then, each time data transmission is performed on each link, the flag of the corresponding link in the line corresponding to the transmitted data is changed from 0 to 1. As a result, even when data is transmitted to the broadcast on a certain link, the data is still held in the memory area and can be transmitted on other links as well. In addition, even if the transmission right is acquired on the link that has already transmitted the data, it is possible to prevent duplicate transmission on the same link by referring to the flag of the link in the line corresponding to the data. .. Further, when the flags of all the links are 1, the data (the line corresponding to the data) may be deleted from this memory area.
 また、図11には、図9に示すアーキテクチャを備えた通信装置(AP MLD)におけるメモリ領域の他の構造を模式的に示している。図11では、Transmit Bufferと各MACのBroadcast Bufferが独立したメモリ領域によって実現される。すなわち、図11の上半分に示すMemory area1はTransmit Bufferに対応するメモリ領域であり、図11の下半分に示すMemory area2/3は各MACブロックのBroadcast Bufferにそれぞれ対応する。また、図11に示すメモリ領域は、共通データ処理部213に対応する通信記憶部と、複数の個別データ処理部214-1及び214-2に対応する複数の通信記憶部によってそれぞれ実現される。これらの通信記憶部は、1つの通信記憶部212内で論理的に独立したメモリ領域であってもよいし、物理的に異なる記憶部によって構成されてもよい。 Further, FIG. 11 schematically shows another structure of the memory area in the communication device (AP MLD) having the architecture shown in FIG. In FIG. 11, the Transmit Buffer and the Broadcast Buffer of each MAC are realized by independent memory areas. That is, the Memory area 1 shown in the upper half of FIG. 11 is a memory area corresponding to the Transmit Buffer, and the Memory area 2/3 shown in the lower half of FIG. 11 corresponds to the Broadcast Buffer of each MAC block. Further, the memory area shown in FIG. 11 is realized by a communication storage unit corresponding to the common data processing unit 213 and a plurality of communication storage units corresponding to the plurality of individual data processing units 214-1 and 214-2, respectively. These communication storage units may be logically independent memory areas within one communication storage unit 212, or may be composed of physically different storage units.
 図11に示すメモリ領域の各列は、左から順に、保持されるデータペイロード(Stored data area)、そのデータの宛て先データ(Destination)、そのデータの付随情報(Data Property)を示している。付随情報は、該当するデータペイロードのRA、TID、SN、ACなどの情報であり、そのデータペイロードの送信時に使用される。そして、メモリ領域の各行には、保持されたデータ毎の上記の各列の情報が格納される。 Each column of the memory area shown in FIG. 11 shows the data payload (Stored data area) to be held, the destination data (Destination) of the data, and the accompanying information (Data Property) of the data in order from the left. The accompanying information is information such as RA, TID, SN, and AC of the corresponding data payload, and is used when transmitting the data payload. Then, in each row of the memory area, the information of each of the above columns for each held data is stored.
 上位層からAP MLDに入力されたデータペイロードは、ブロードキャスト宛てであれば図11の下半分に示したMemory area2/3に格納され、ブロードキャスト宛てでなければ図11の上半分に示したMemory area1に格納される。あるリンクにおいてブロードキャスト宛てデータの送信が実施されると、Memory area2又はMemory area3のうちそのリンクに対応する一方のメモリ領域から送信データに該当する行が削除されるが、他方のメモリ領域からは削除されない。これにより、あるリンクにおいてブロードキャスト宛てデータの送信が実施された場合でも、そのデータはメモリ領域に保持されたままであり、他のリンクにおいても送信することが可能となる。また、すべてのリンクで送信されたデータは、Memory area2及びMemory area3の両方のメモリ領域から削除される。また、ブロードキャスト宛てでないデータの送信が実施された場合には、Memory area1の送信データに該当する行が削除される。 The data payload input to the AP MLD from the upper layer is stored in the Memory area 2/3 shown in the lower half of FIG. 11 if it is addressed to the broadcast, and in the Memory area 1 shown in the upper half of FIG. 11 if it is not addressed to the broadcast. Stored. When data is transmitted to a broadcast on a certain link, the line corresponding to the transmitted data is deleted from one of the memory areas of Memory area 2 or Memory area 3 corresponding to the link, but the line corresponding to the transmitted data is deleted from the other memory area. Not done. As a result, even when data is transmitted to the broadcast on a certain link, the data is still held in the memory area and can be transmitted on other links as well. In addition, the data transmitted by all the links is deleted from the memory areas of both Memory area 2 and Memory area 3. Further, when the data not addressed to the broadcast is transmitted, the line corresponding to the transmission data of Memory are1 is deleted.
 以上、特定の実施形態を参照しながら、本開示について詳細に説明してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 The present disclosure has been described in detail with reference to the specific embodiment. However, it is self-evident that a person skilled in the art can modify or substitute the embodiment without departing from the gist of the present disclosure.
 例えば、IEEE802.11規格に則った無線LANシステムに本開示を適用することによって、マルチリンク機能を実装する通信装置(MLD)は、MLOに対応したブロードキャスト送信を実行することが可能となり、高スループット化を実現することができる。もちろん、他の通信規格になっとった無線システムに本開示を適用しても、同様の効果を奏することができる。 For example, by applying the present disclosure to a wireless LAN system conforming to the IEEE 802.11 standard, a communication device (MLD) that implements a multi-link function can execute broadcast transmission corresponding to MLO, and has a high throughput. Can be realized. Of course, the same effect can be obtained by applying the present disclosure to a wireless system that has become another communication standard.
 要するに、例示という形態により本開示について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本開示の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the present disclosure has been described in the form of an example, and the contents of the present specification should not be interpreted in a limited manner. In order to judge the gist of this disclosure, the scope of claims should be taken into consideration.
 なお、本開示は、以下のような構成をとることも可能である。 Note that this disclosure can also have the following structure.
(1)複数のリンクを用いて無線通信を行う通信装置であって、
 データを保持する記憶部と、前記記憶部に保持されたデータを送信する処理を行うデータ処理部を具備し、
 前記記憶部は、ブロードキャスト宛てのデータを前記複数のリンクの各々に対応付けて保持し、
 前記データ処理部は、リンク毎のブロードキャスト宛てのデータを前記記憶部から取り出して、それぞれ対応するリンクで送信する処理を行う、
通信装置。
(1) A communication device that performs wireless communication using a plurality of links.
A storage unit that holds data and a data processing unit that performs a process of transmitting the data held in the storage unit are provided.
The storage unit stores data addressed to the broadcast in association with each of the plurality of links.
The data processing unit takes out the data addressed to the broadcast for each link from the storage unit and transmits the data via the corresponding links.
Communication device.
(2)前記データ処理部は、前記複数のリンクの各々に対応付けられた複数の個別データ処理部を含み、各個別データ処理部は自分に対応付けられたリンクのブロードキャスト宛てのデータを前記記憶部から取り出してそのリンクで送信する処理を行う、
上記(1)に記載の通信装置。
(2) The data processing unit includes a plurality of individual data processing units associated with each of the plurality of links, and each individual data processing unit stores the data addressed to the broadcast of the link associated with itself. Process to take out from the department and send with that link,
The communication device according to (1) above.
(3)前記記憶部は、各リンクに対応付けてブロードキャスト宛てのデータを保持する個別記憶領域と、すべてのリンクに共通の共通記憶領域を含む、
上記(1)又は(2)のいずれかに記載の通信装置。
(3) The storage unit includes an individual storage area for holding data addressed to a broadcast in association with each link, and a common storage area common to all links.
The communication device according to any one of (1) and (2) above.
(4)前記記憶部は単一の記憶領域で構成される、
上記(3)に記載の通信装置。
(4) The storage unit is composed of a single storage area.
The communication device according to (3) above.
(5)前記単一の記憶領域は、ブロードキャスト宛てデータが各リンクで送信されたか否かを管理する、
上記(4)に記載の通信装置。
(5) The single storage area manages whether or not data addressed to the broadcast is transmitted by each link.
The communication device according to (4) above.
(6)前記個別記憶領域は、リンク毎の複数の記憶領域で構成される、
上記(3)に記載の通信装置。
(6) The individual storage area is composed of a plurality of storage areas for each link.
The communication device according to (3) above.
(7)データの宛て先がブロードキャストである場合に、前記複数のリンクの各々に対応付けた前記記憶部への保持が実施される、
上記(1)乃至(6)のいずれかに記載の通信装置。
(7) When the destination of the data is broadcast, the data is retained in the storage unit associated with each of the plurality of links.
The communication device according to any one of (1) to (6) above.
(8)データの宛て先がブロードキャストである場合に、前記複数のリンクのいずれかで送信が実施されるときに、前記複数のリンクの各々に対応付けた前記記憶部への保持が実施される、
上記(1)乃至(6)のいずれかに記載の通信装置。
(8) When the destination of the data is broadcast and transmission is performed by any of the plurality of links, the data is held in the storage unit associated with each of the plurality of links. ,
The communication device according to any one of (1) to (6) above.
(9)前記記憶部は、ブロードキャスト宛てのデータを付随情報とともに保持する、
上記(1)乃至(8)のいずれかに記載の通信装置。
(9) The storage unit holds data addressed to the broadcast together with accompanying information.
The communication device according to any one of (1) to (8) above.
(10)前記付随情報は、宛先アドレス、トラフィック識別子、シーケンス番号、アクセスカテゴリのうち少なくとも1つを含む、
上記(9)に記載の通信装置。
(10) The accompanying information includes at least one of a destination address, a traffic identifier, a sequence number, and an access category.
The communication device according to (9) above.
(11)ブロードキャスト宛てのデータが暗号化処理された後に、前記記憶部への保持が実施される、
上記(1)乃至(10)のいずれかに記載の通信装置。
(11) After the data addressed to the broadcast is encrypted, the data is retained in the storage unit.
The communication device according to any one of (1) to (10) above.
(12)ブロードキャスト宛てのデータに誤り検出符号が付加される前に、前記記憶部への保持が実施される、
上記(1)乃至(11)のいずれかに記載の通信装置。
(12) Before the error detection code is added to the data addressed to the broadcast, the data is held in the storage unit.
The communication device according to any one of (1) to (11) above.
(13)複数のリンクの少なくとも1つにおいて、他のリンクで接続している通信装置が接続していない場合に、前記処理を行う、
上記(1)乃至(12)のいずれかに記載の通信装置。
(13) When the communication device connected by the other link is not connected to at least one of the plurality of links, the above processing is performed.
The communication device according to any one of (1) to (12) above.
(14)複数のリンクを用いて無線通信を行う通信方法であって、
 ブロードキャスト宛てのデータを前記複数のリンクの各々に対応付けて記憶部に保持するステップと、
 リンク毎のブロードキャスト宛てのデータを前記記憶部から取り出して、それぞれ対応するリンクで送信する処理を行うデータ処理ステップと、
を有する通信方法。
(14) A communication method for performing wireless communication using a plurality of links.
A step of associating data addressed to a broadcast with each of the plurality of links and holding the data in a storage unit,
A data processing step in which data addressed to a broadcast for each link is taken out from the storage unit and transmitted via the corresponding links, and a data processing step.
Communication method with.
 200…通信装置、210…通信部、211…通信制御部
 212…通信記憶部、213…共通データ処理部
 214…個別データ処理部、215…信号処理部
 216…無線インターフェース部、217…増幅部、220…制御部
 230…記憶部、240…アンテナ
200 ... Communication device, 210 ... Communication unit, 211 ... Communication control unit 212 ... Communication storage unit 213 ... Common data processing unit 214 ... Individual data processing unit 215 ... Signal processing unit 216 ... Wireless interface unit 217 ... Amplification unit, 220 ... Control unit 230 ... Storage unit, 240 ... Antenna

Claims (14)

  1.  複数のリンクを用いて無線通信を行う通信装置であって、
     データを保持する記憶部と、前記記憶部に保持されたデータを送信する処理を行うデータ処理部を具備し、
     前記記憶部は、ブロードキャスト宛てのデータを前記複数のリンクの各々に対応付けて保持し、
     前記データ処理部は、リンク毎のブロードキャスト宛てのデータを前記記憶部から取り出して、それぞれ対応するリンクで送信する処理を行う、
    通信装置。
    A communication device that performs wireless communication using multiple links.
    A storage unit that holds data and a data processing unit that performs a process of transmitting the data held in the storage unit are provided.
    The storage unit stores data addressed to the broadcast in association with each of the plurality of links.
    The data processing unit takes out the data addressed to the broadcast for each link from the storage unit and transmits the data via the corresponding links.
    Communication device.
  2.  前記データ処理部は、前記複数のリンクの各々に対応付けられた複数の個別データ処理部を含み、各個別データ処理部は自分に対応付けられたリンクのブロードキャスト宛てのデータを前記記憶部から取り出してそのリンクで送信する処理を行う、
    請求項1に記載の通信装置。
    The data processing unit includes a plurality of individual data processing units associated with each of the plurality of links, and each individual data processing unit retrieves data addressed to the broadcast of the link associated with itself from the storage unit. Perform the process of sending with that link,
    The communication device according to claim 1.
  3.  前記記憶部は、各リンクに対応付けてブロードキャスト宛てのデータを保持する個別記憶領域と、すべてのリンクに共通の共通記憶領域を含む、
    請求項1に記載の通信装置。
    The storage unit includes an individual storage area for holding data addressed to a broadcast in association with each link, and a common storage area common to all links.
    The communication device according to claim 1.
  4.  前記記憶部は単一の記憶領域で構成される、
    請求項1に記載の通信装置。
    The storage unit is composed of a single storage area.
    The communication device according to claim 1.
  5.  前記単一の記憶領域は、ブロードキャスト宛てデータが各リンクで送信されたか否かを管理する、
    請求項4に記載の通信装置。
    The single storage area controls whether or not data addressed to the broadcast was transmitted on each link.
    The communication device according to claim 4.
  6.  前記個別記憶領域は、リンク毎の複数の記憶領域で構成される、
    請求項3に記載の通信装置。
    The individual storage area is composed of a plurality of storage areas for each link.
    The communication device according to claim 3.
  7.  データの宛て先がブロードキャストである場合に、前記複数のリンクの各々に対応付けた前記記憶部への保持が実施される、
    請求項1に記載の通信装置。
    When the destination of the data is broadcast, the data is retained in the storage unit associated with each of the plurality of links.
    The communication device according to claim 1.
  8.  データの宛て先がブロードキャストである場合に、前記複数のリンクのいずれかで送信が実施されるときに、前記複数のリンクの各々に対応付けた前記記憶部への保持が実施される、
    請求項1に記載の通信装置。
    When the destination of the data is broadcast and transmission is performed on any of the plurality of links, the data is held in the storage unit associated with each of the plurality of links.
    The communication device according to claim 1.
  9.  前記記憶部は、ブロードキャスト宛てのデータを付随情報とともに保持する、
    請求項1に記載の通信装置。
    The storage unit holds data addressed to the broadcast together with accompanying information.
    The communication device according to claim 1.
  10.  前記付随情報は、宛先アドレス、トラフィック識別子、シーケンス番号、アクセスカテゴリのうち少なくとも1つを含む、
    請求項9に記載の通信装置。
    The accompanying information includes at least one of a destination address, a traffic identifier, a sequence number, and an access category.
    The communication device according to claim 9.
  11.  ブロードキャスト宛てのデータが暗号化処理された後に、前記記憶部への保持が実施される、
    請求項1に記載の通信装置。
    After the data addressed to the broadcast is encrypted, the data is retained in the storage unit.
    The communication device according to claim 1.
  12.  ブロードキャスト宛てのデータに誤り検出符号が付加される前に、前記記憶部への保持が実施される、
    請求項1に記載の通信装置。
    Preservation in the storage unit is performed before the error detection code is added to the data addressed to the broadcast.
    The communication device according to claim 1.
  13.  複数のリンクの少なくとも1つにおいて、他のリンクで接続している通信装置が接続していない場合に、前記処理を行う、
    請求項1に記載の通信装置。
    When the communication device connected by the other link is not connected to at least one of the plurality of links, the above processing is performed.
    The communication device according to claim 1.
  14.  複数のリンクを用いて無線通信を行う通信方法であって、
     ブロードキャスト宛てのデータを前記複数のリンクの各々に対応付けて記憶部に保持するステップと、
     リンク毎のブロードキャスト宛てのデータを前記記憶部から取り出して、それぞれ対応するリンクで送信する処理を行うデータ処理ステップと、
    を有する通信方法。
    It is a communication method that performs wireless communication using multiple links.
    A step of associating data addressed to a broadcast with each of the plurality of links and holding the data in a storage unit,
    A data processing step in which data addressed to a broadcast for each link is taken out from the storage unit and transmitted via the corresponding links, and a data processing step.
    Communication method with.
PCT/JP2021/008838 2020-04-30 2021-03-05 Communication device and communication method WO2021220615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020080842 2020-04-30
JP2020-080842 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021220615A1 true WO2021220615A1 (en) 2021-11-04

Family

ID=78373521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008838 WO2021220615A1 (en) 2020-04-30 2021-03-05 Communication device and communication method

Country Status (1)

Country Link
WO (1) WO2021220615A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135909A (en) * 2008-12-02 2010-06-17 Toshiba Corp Radio communication apparatus, and radio communication method
JP2015122660A (en) * 2013-12-24 2015-07-02 沖電気工業株式会社 Radio communication apparatus and method, and radio communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135909A (en) * 2008-12-02 2010-06-17 Toshiba Corp Radio communication apparatus, and radio communication method
JP2015122660A (en) * 2013-12-24 2015-07-02 沖電気工業株式会社 Radio communication apparatus and method, and radio communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAN, M. (HUAWEI: "Multi-link Framework", IEEE 802.22-19/1940R2, 11 November 2019 (2019-11-11), XP068164507, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/19/11-19-1940-02-00be-multi-link-framework.pptx> *

Similar Documents

Publication Publication Date Title
US9554404B2 (en) Method and apparatus for transmitting frame in wireless local area network (WLAN) system
US7826485B2 (en) MAC extensions for smart antenna support
EP3635900B1 (en) Method and apparatus for transmitting and receiving duplicate packets in next-generation mobile communication system
JP5645953B2 (en) Method of repairing a transmission failure frame in a multi-user based wireless communication system
JP3914558B2 (en) Wireless packet communication method
US9585148B2 (en) Apparatus and method for obtaining IP address of terminal using multiple frequency allocations in broadband wireless communication system
GB2408660A (en) Constructing a wireless LAN frame by splitting MAC frame, attaching CRC, preamble and header to each segment and combining into WLAN frame
CN102598624A (en) Apparatus for transmitting MAC pdu with a fragmentation and packing extended header and method thereof
CN110999162B (en) Method and apparatus for transmitting and receiving duplicate packets in a mobile communication system
CN102484813A (en) Apparatus and methods for transmitting and receiving MAC PDU using MAC headers
CN113748607A (en) Communication device and communication method for multi-AP joint retransmission
WO2005027555A1 (en) Radio packet communication method and radio packet communication apparatus
WO2021084010A1 (en) Communication devices and methods
US20090303998A1 (en) Packet Re-transmission Controller for Block Acknowledgement in a Communications System
WO2021220615A1 (en) Communication device and communication method
US20220368481A1 (en) System and Method for Aggregating Communications Links
WO2022219856A1 (en) Communication device and communication method
EP4142397A1 (en) Communication device and communication method
US20230412557A1 (en) Method and device for arp operation in communication system supporting multiple links
CN114554544B (en) Transmission method, notification method, transmission unit and network side equipment
TW202243510A (en) Communication device and communication method
US20240014861A1 (en) Communication apparatus and communication method
JP2002204242A (en) Radio communication system
JP7183869B2 (en) Wireless communication system and wireless communication method
US20230164784A1 (en) Communication device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP