WO2021220419A1 - Positioning system, control device, positioning method, and program - Google Patents

Positioning system, control device, positioning method, and program Download PDF

Info

Publication number
WO2021220419A1
WO2021220419A1 PCT/JP2020/018163 JP2020018163W WO2021220419A1 WO 2021220419 A1 WO2021220419 A1 WO 2021220419A1 JP 2020018163 W JP2020018163 W JP 2020018163W WO 2021220419 A1 WO2021220419 A1 WO 2021220419A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
positioning
nodes
reference station
information
Prior art date
Application number
PCT/JP2020/018163
Other languages
French (fr)
Japanese (ja)
Inventor
誠史 吉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/018163 priority Critical patent/WO2021220419A1/en
Priority to JP2022518505A priority patent/JP7380857B2/en
Publication of WO2021220419A1 publication Critical patent/WO2021220419A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the present invention relates to a technique for measuring the position of a mobile station with high accuracy.
  • GNSS Global Navigation Satellite System
  • the mobile station receives a plurality of GNSS satellite signals (hereinafter, satellite signal receiver) received by its own GNSS satellite signal receiver (hereinafter, satellite signal receiver).
  • satellite signal Satellite signal
  • Satellite signal observation data satellite signal observation data received by the satellite signal receiver at a fixed station (reference station) whose position is located at a known reference point, and movement using the position information of the fixed station (reference station).
  • the baseline analysis by the carrier phase positioning calculation hereinafter referred to as the carrier phase positioning calculation is performed.
  • the observation data is information on the result of pseudo-distance and carrier phase phase measurement in the signal processing of the satellite signal receiver, and is also called Raw data (raw data).
  • the observation data shall include information necessary for positioning (information included in the navigation message, etc.) obtained by receiving the satellite signal.
  • the carrier phase positioning method for example, a real-time kinematic method is used.
  • the convergence (Fix) rate of carrier phase positioning deteriorates in an urban canyon reception environment where a structure exists around the reception position of the satellite signal, and as a result, the positioning accuracy of the mobile station deteriorates.
  • the baseline length the linear distance between the mobile station and the reference station
  • the deterioration tends to be large.
  • the mobile station it is desirable to select a reference station having a short baseline length and having highly reliable position information (position information is managed with high reliability), but a reference station having highly reliable position information
  • position information is managed with high reliability
  • the electronic reference points are not arranged at a geographically sufficient density, so that there is a problem that it is difficult for the mobile station to select an appropriate reference station.
  • the present invention has been made in view of the above points, and even when electronic reference points and the like are not densely arranged, higher positioning accuracy can be achieved by selecting a more appropriate reference station in which a mobile station exists in the vicinity. It is an object of the present invention to provide a method for realizing carrier phase positioning that can be obtained.
  • a positioning system including a plurality of nodes that operate as a reference station in carrier phase positioning.
  • the plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
  • Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
  • the position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
  • a positioning system is provided in which a mobile station uses the lowest node among the plurality of nodes as a reference station to perform carrier phase positioning.
  • the mobile station can select an appropriate reference station and perform subordinate carrier phase positioning via a plurality of reference stations.
  • a station arranged at a reference point used for carrier phase positioning by a mobile station is referred to as a "reference station”.
  • the object to be positioned (the one whose position is unknown) is called a "mobile station”.
  • the reference station may be a fixed station fixed to the ground or the like, or may be a moving mobile body (Moving Base Station).
  • Moving Base Station Moving Mobile body
  • the reference station is a fixed station, it may be described as a reference station (fixed station), and when it is clearly stated that the reference station is a mobile body, it may be described as a reference station (mobile body).
  • a positioning system consisting of a master reference station, an intermediate reference station, a mobile station, etc. will be described, but the master reference station, the intermediate reference station, the mobile station, etc. are collectively referred to as a "node”.
  • FIG. 1 shows a configuration example of an existing carrier wave phase positioning that does not have an intermediate reference station for comparison with the configuration according to the present embodiment.
  • the mobile station 20 performs carrier phase phase positioning using a reference station 10 selected from a plurality of reference stations geographically dispersed.
  • the mobile station 20 selects, for example, the reference station 10 having the shortest baseline length from a plurality of reference stations, but the baseline length may not be sufficiently shortened depending on the arrangement density of the reference stations.
  • the reception state of satellite signals at either or both of the reference station 10 and the mobile station 20 may not be good. In these situations, the mobile station 20 may not be able to obtain a convergent (Fix) solution for carrier phase positioning. If only the float solution or the differential (DGNSS) solution can be obtained without obtaining the convergence (Fix) solution, the accuracy of the position information as the positioning solution is low.
  • DGNSS differential
  • the reference station 10 is an electronic reference point, it can be seen that the position accuracy of the reference station 10 is high, but since the electronic reference points are not geographically sufficiently densely arranged, the mobile station 20 uses the electronic reference point as the reference station. It is assumed that there are many cases where selection is not possible.
  • the mobile station performs subordinate carrier phase positioning via a plurality of reference stations. That is, the reference station whose absolute position is strictly controlled is set as the master (parent) reference station, and one or more intermediate reference stations for positioning directly or indirectly subordinate to the master reference station are provided, and the master reference station is provided. And the one or more intermediate reference stations form one path to the mobile station.
  • a fixed station is usually used as the master reference station, and an electronic reference point or the like is applicable.
  • subordinate means a relative relationship in which an intermediate reference station is a mobile station (position is unknown) that performs carrier phase positioning using a reference station (position is known).
  • the intermediate reference station that is the mobile station is said to be “subordinate” to the intermediate reference station (or master reference station) that is the reference station, and this relationship goes back to one or more reference stations.
  • the intermediate reference station to which it is “subordinate” is also “subordinate” to other intermediate reference points to which it is “subordinate”.
  • the position accuracy of the intermediate reference point depends on the position accuracy of the "subordinate" intermediate reference station (or master reference station).
  • the mobile station performs carrier phase positioning using the lowest intermediate reference station among one or more intermediate reference stations. Further, one mobile station is subordinate to one master reference station via one or more intermediate reference stations.
  • the "path" may be formed between the master reference station and the lowest intermediate reference station, or may be formed between the master reference station and the mobile station using the lowest intermediate reference station. You may.
  • One or more intermediate reference stations are reference stations selected from a plurality of geographically dispersed reference stations.
  • the intermediate reference station may be a fixed station or a mobile (Moving Base Station). That is, a mobile station that performs carrier phase positioning using a certain intermediate reference station may be an intermediate reference station for another mobile station.
  • FIG. 2 shows an example of a positioning system that forms the above path.
  • the positioning system shown in FIG. 2 includes a master reference station 100, an intermediate reference station 101, an intermediate reference station 102, an intermediate reference station 103, and a mobile station 200, and one path is formed by connecting these nodes.
  • connection here means that one node becomes a reference station (a node whose position is known) and the other node uses the reference station to perform carrier phase positioning (a node whose position is unknown). It means that there is a relationship of becoming.
  • the upper (reference station) node and the lower (mobile station) node are connected by a communication network, and the upper (reference station) node to the lower (mobile station) node via the communication network.
  • Observation data, location information, and other information detailed below are transmitted.
  • the master reference station 100 is the highest reference station, and as described above, for example, it is a reference point such as an electronic reference point whose position (coordinates) is strictly controlled.
  • Each intermediate reference station which is a reference station other than the master reference station 100, uses an intermediate reference station closer (upper) to the master reference station as a reference station, and sets itself as a mobile station (station whose position is unknown). Perform the operation.
  • "Closer to the master reference station” means that the number of hops to the master reference station is smaller.
  • the intermediate reference station 101 having one hop to the master reference station 100 is closer to the master reference station 100 than the intermediate reference station 102 having two hops to the master reference station 100.
  • an upper limit may be set for the number of intermediate reference stations (that is, the number of hops) that can be subordinate to the master reference station 100.
  • the intermediate reference station 101 performs carrier phase positioning using the master reference station 100
  • the intermediate reference station 102 performs carrier phase positioning using the intermediate reference station 101
  • the intermediate reference station 103 performs carrier phase positioning.
  • the carrier wave phase positioning is performed using the 102
  • the mobile station 200 performs the carrier wave phase positioning using the intermediate reference station 103.
  • Each of the master reference station 100 and the intermediate reference stations 101 to 103 has its own position information (coordinate values), observation data obtained from its own received satellite signal, and information on its own positioning status, which is one node below ( Send to the direct lower node).
  • the one lower node can perform the carrier phase positioning operation using the position information and the observation data received from the one higher node (direct upper node).
  • the position information of the node itself is the result of the carrier phase positioning operation in the node using the direct upper node as the reference station.
  • the direct lower node may acquire the position information of the master reference station 100 from the server or the like that manages the master reference station 100 (electronic reference point or the like).
  • Each node does not have to transmit the position information, the observation data, and the information regarding the positioning state at the same timing.
  • the position information may be transmitted only when the position information changes by a predetermined threshold value or more.
  • the position information, the observation data, and the information on the positioning status may all be transmitted directly from the upper node to the lower node directly via the network, or may be transmitted via the server on the network. May be good. That is, the higher-level node may send the information to the server, and the server may send the information to the directly lower-level node of the higher-level node.
  • the information on the positioning status includes, for example, traceability information on positioning accuracy, the carrier phase positioning status (convergence (Fix), Float, DGNSS, positioning impossible), and carrier phase positioning at the node on which the carrier phase positioning is performed. Any one, any two, or all of the information indicating the reliability of the node.
  • the traceability information regarding the positioning accuracy may also serve as information indicating the reliability of the node that has performed the carrier phase positioning.
  • each information regarding the positioning state will be described.
  • the traceability information regarding the positioning accuracy that a node sends directly to the lower node is, for example, the convergence (Fix) solution of the carrier phase positioning in all the nodes from the master reference station, which is the highest node for the node, to the node. It is information indicating whether or not it has been obtained.
  • the "traceability information regarding positioning accuracy" transmitted by a certain node is larger than that of the master reference station for that node. It may be information indicating whether or not a convergence (Fix) solution of carrier phase positioning is obtained in all the nodes from the intermediate reference station one lower to the node.
  • Fix convergence
  • the intermediate reference station 101 uses the electronic reference as traceability information regarding positioning accuracy.
  • Information indicating that there is traceability to the point is transmitted to the intermediate reference station 102.
  • the intermediate reference station 102 transmits information indicating that there is traceability to the electronic reference point to the intermediate reference station 103.
  • the intermediate reference station 103 When the intermediate reference station 103 that has received the information has obtained a convergence (Fix) solution, the intermediate reference station 103 transmits information indicating that there is traceability to the electronic reference point to the mobile station 200. Upon receiving this information, the mobile station 200 performs carrier phase phase positioning using the intermediate reference station 103, so that the mobile station 200 is in a convergent (Fix) state of carrier phase positioning from an electronic reference point whose position is strictly controlled. Carrier phase positioning can be performed using the reference station (intermediate reference station 103) that continues to be used.
  • the intermediate reference station 102 directly provides the traceability information regarding the positioning accuracy, which indicates that the traceability to the electronic reference point is cut off. It is transmitted to the intermediate reference station 103 which is a lower node. Further, the intermediate reference station 103 transmits information indicating that the traceability to the electronic reference point is cut off to the mobile station 200 as the traceability information regarding the positioning accuracy.
  • the mobile station 200 Upon receiving the information indicating that the traceability to the electronic reference point is cut off, the mobile station 200 stops using the intermediate reference station 103 as the reference station, and uses the intermediate reference station belonging to another path for carrier phase positioning, for example. It can be used as an opportunity to switch the path, which is selected as the reference station to be used. An example of the selection method will be described later.
  • the state of carrier phase positioning transmitted by a node directly to a lower node is, for example, FIX (information indicating that a convergent (Fix) solution has been obtained), FLOAT (information indicating that a Float solution has been obtained), and the like.
  • DGNSS information indicating that a DGNSS solution has been obtained
  • positioning impossible information indicating that a positioning solution cannot be obtained.
  • the following nodes can know whether or not a convergence (Fix) solution has been obtained in the carrier phase positioning using the upper node directly above the direct upper node.
  • Fix convergence
  • the traceability to the master reference station is cut off as the traceability information regarding the positioning accuracy from the direct upper node.
  • the node that has received the information may not trust the position information of the direct higher-level node.
  • the reliability information that a node sends directly to the subordinate nodes is, for example, whether or not the node is a fixed station, the actual availability of the node, the quality of the network (link status, packet loss rate, propagation delay, etc.). ), Interference signal reception status, convergence (Fix) rate, cycle slip rate, etc. From these reliability information, the lower node can determine the reliability (whether or not it is accurate) of the position information obtained from the direct upper node. For example, if it is found that the reliability is lower than the threshold value, it is possible to notify the direct lower node that the reliability (or accuracy) of the carrier phase positioning using itself as a reference station is low.
  • the availability of a node is the probability that it will be able to receive services from that node at some point in time.
  • receiving the service means obtaining the observation data and the position information used by the lower node from the node. For example, if a node is aging and often fails, its availability will be low. In addition, even if it is a little old, if it has a dual configuration such as hot standby, the decrease in availability can be suppressed.
  • the "network" in the quality of the network is a network to which the nodes are connected, and the observation data and the position information obtained by the node are transmitted to the lower node via the network. If the quality of the network is low (eg, irregular link breaks, frequent packet loss, high propagation delay), the lower node may not be able to receive the observation data and location information of the upper node. Occurs. Therefore, the quality of the network should be high.
  • the reception status of the interference signal is, for example, when a base station of the mobile network exists near the node, the downlink signal from the base station constantly affects the satellite signal received by the node as an interference signal. In some cases. When the node receives an interference signal, the reception quality of the satellite signal received by the node deteriorates, and the phase of the carrier wave of the satellite signal may not be accurately observed. Therefore, the strength of the interference signal should be small. The influence of the interference signal strength can be reduced when the satellite signal is received by means such as mounting a frequency filter that reduces the signal outside the band of the satellite signal.
  • the convergence (Fix) rate is the ratio of the time spent in the convergence (Fix) state in a certain period in the past.
  • the convergence (Fix) rate depends on the reception status of satellite signals of the node (and the node directly above the node) and the carrier phase positioning performance of the node.
  • the convergence (Fix) rate is high, it is assumed that the node is in a relatively good reception environment (a reception environment with a high open porosity and close to open skies), and the carrier phase positioning performance of the node is high. , It is expected that the convergence (Fix) rate will be high in the future. Therefore, when the convergence (Fix) rate is high, the reliability of the node is high. The higher the convergence (Fix) rate, the better.
  • Cycle slip is a temporary synchronization of the satellite signal with the carrier phase in the satellite signal receiver when a momentary interruption in the reception of the satellite signal or a momentary change in the transmission path length due to multipath occurs while the node is observing the satellite signal. This means that the phase data is interrupted and the phase data is shifted (jumped).
  • the cycle slip rate is the rate at which cycle slip occurs. If a node has a high cycle slip rate, that node is unreliable. The lower the cycle slip rate, the better.
  • the node determines traceability information regarding positioning accuracy based on its own reliability information and carrier phase positioning information, and notifies the traceability information directly to the lower node.
  • the traceability information regarding the positioning accuracy may be, for example, simple information indicated by "0" or "1".
  • "0” is information indicating that the traceability to the master reference station is cut off
  • "1" is information indicating that there is traceability to the master reference station.
  • the node concerned Upon receiving "0" (information indicating that traceability to the master reference station has been cut off) from the direct higher-level node, the node concerned has the state of carrier phase positioning using the direct higher-level node and its own reliability. Regardless of the information, "0" (information indicating that traceability to the master reference station has been cut off) is notified directly to the lower node.
  • the node that received "1" (information indicating that it has traceability to the master reference station) from the direct upper node has the carrier phase positioning state of FIX using the direct upper node and owns itself. If the reliability is, for example, better than the threshold value, "1" (information indicating that there is traceability to the master reference station) is notified directly to the lower node.
  • the node that received "1" (information indicating that it has traceability to the master reference station) from the direct superior node "is in the state of carrier phase positioning using the direct superior node is FIX, and is itself. If the reliability of is not better than the threshold, for example, "0" (information indicating that the traceability to the master reference station is cut off) is notified to the direct lower node.
  • the reliability may not be used as described below.
  • the node that has received "1" (information indicating that it has traceability to the master reference station) from the direct upper node has the carrier phase phase positioning state using the direct upper node FIX. For example, "1" (information indicating that there is traceability to the master reference station) is notified directly to the lower node. Further, the node that has received "1" (information indicating that it has traceability to the master reference station) from the direct higher-level node has "1" (information indicating that there is traceability to the master reference station), unless the state of carrier phase positioning using the direct higher-level node is FIX. 0 ”(information indicating that traceability to the master reference station has been cut off) is notified to the direct lower node.
  • the node of interest is the intermediate reference station of the mobile body
  • the node if the state of the carrier phase positioning using the direct upper node is not FIX, the node immediately responds to the direct lower node by itself. Send information that tells you "Not available (Do not Use)".
  • the node that receives the information that conveys "Unavailable (Do not Use)” stops the carrier phase positioning using the moving body, and at the same time, transfers the information that conveys "Unavailable (Do not Use)" to the lower node directly. Notify against. Note that this operation may be performed regardless of the type of node (mobile or fixed station).
  • the node determines traceability information related to positioning accuracy based on its own reliability information and carrier phase positioning information, and notifies it directly to the lower node. Further, as in the operation example 1, "0" is information indicating that the traceability to the master reference station is cut off, and "1" is information indicating that the traceability to the master reference station is present. ..
  • the node receives "1" (information indicating that it has traceability to the master reference station) from a direct higher-level node, and then "0" (indicates that traceability to the master reference station has been cut off). Information) is received.
  • the node When the node receives "1" (information indicating that it has traceability to the master reference station), the convergent (Fix) solution (own own) obtained by carrier phase positioning using a direct higher-level node. Position information) is held. When the node receives "0" (information indicating that traceability to the master reference station has been cut off) from a direct higher-level node, it together with "0" (information indicating that traceability to the master reference station has been cut off). , Position information held, observation data, carrier phase positioning status using direct upper node (FIX or not, etc.), own reliability information including own fixed station directly Send to the subordinate nodes of.
  • FIX direct upper node
  • the obtained position information can be regarded as reliable, for example, directly.
  • Sends traceability information (this is referred to as "2" here) indicating that "traceability to the master reference station is cut off, but traceability to a reliable fixed station is provided" to the subordinate nodes of. ..
  • a node that receives "2" from a direct higher node has “2" if the state of carrier phase positioning using the direct higher node is FIX and its reliability is, for example, better than the threshold. (Information indicating that there is traceability to a reliable fixed station) is notified directly to the subordinate nodes.
  • a node that receives "2" from a direct higher node is not "the state of carrier phase positioning using the direct higher node is FIX, and its reliability is not better than the threshold, for example”. Notify "0" (information indicating that there is traceability to the master reference station) directly to the lower node.
  • the node that receives "2" from the direct upper node has "2" (traceability to a reliable fixed station) if the state of carrier phase positioning using the direct upper node is FIX. Information indicating that there is) is notified to the direct lower node.
  • the node that received "2" (information indicating that there is traceability to a reliable fixed station) from the direct upper node must be in the state of carrier phase positioning using the direct upper node unless it is FIX. Notify the direct lower node of "0" (information indicating that traceability has been cut off).
  • the path connecting the master reference station, one or more intermediate reference stations, and the mobile station may be set by a manual operation to set a higher node in each intermediate reference station and the mobile station, or may be set automatically.
  • it When it is set automatically, it may be constructed by the autonomous operation of each node, or information is collected from each node that becomes a master reference station, one or more intermediate reference stations, and a mobile station via a network.
  • a capable control device 300 may determine the path and notify each node of the direct higher-level node.
  • a path construction method example 1 an example in which a path is constructed by the autonomous operation of each node
  • an example in which the control device 300 constructs a path will be described as a path construction method example 2.
  • Example 1 of the path construction method will be described with reference to FIG.
  • node 100 is a node serving as a master reference station
  • node 101 is a node serving as an intermediate reference station
  • node 200 is a mobile station.
  • the node 100 knows in advance that it is a node that can be a master reference station. That is, the node 100 does not need to search (select) the reference station.
  • the node 101 may be a fixed station or a mobile body.
  • each node other than the node 100 collects and holds the information necessary for selecting its own direct superior node as the reference station from each of the other nodes.
  • This information may include information for identifying the "domain" of the reference station.
  • a "domain” is used, for example, to identify the administrator of a reference station when a node selects a reference station in order to configure a path with reference stations of the same operator.
  • the access authority to the information of the node may be managed.
  • the state shown in (a) is a state in which a connection relationship does not yet exist.
  • the node 101 determines the direct upper node as the node 100 based on the collected information of the node 100 and the information of the node 200. This state is shown in (b).
  • the above-mentioned operation (notification of information on positioning from the upper node to the lower node, etc.) is performed, and the node 200 also uses that information when directly selecting the upper node. can do.
  • the node 200 has information that a convergent (Fix) solution has been obtained by carrier phase positioning using a higher-level node (node 100) obtained from the node 101 (information that it has traceability to the master reference station), and , The reliability of the node 101 is high, and the baseline length between the node 101 and the node 101 is sufficiently short compared to the baseline length between the node 100 and the node 101. decide. As a result, the path shown in (c) is constructed. By repeating such an operation, a longer path can be constructed.
  • a convergent (Fix) solution has been obtained by carrier phase positioning using a higher-level node (node 100) obtained from the node 101 (information that it has traceability to the master reference station)
  • the reliability of the node 101 is high, and the baseline length between the node 101 and the node 101 is sufficiently short compared to the baseline length between the node 100 and the node 101. decide.
  • the path shown in (c) is constructed. By repeating
  • the node 200 detects the failure and selects another node as a direct upper node. In this way, when each node detects that the upper node has failed, it autonomously selects another node, so that the path is autonomously switched dynamically.
  • Example 2 of the path construction method will be described with reference to FIG.
  • the control device 300 is provided.
  • the control device 300 can communicate with each node via a communication network such as a mobile network or the Internet.
  • node 100 is a node serving as a master reference station
  • node 101 is a node serving as an intermediate reference station
  • node 200 is a mobile station.
  • control device 300 collects information necessary for selecting a direct higher-level node as a reference station from each node (S1, S2, S3).
  • the control device 300 grasps that the node 100 is the only electronic reference point, for example, the node 100 is uniquely determined as the master reference station 100.
  • control device 300 executes the selection process described with reference to FIG. That is, first, regarding the node 101, the control device 300 determines the direct higher-level node as the node 100 based on the collected information of the node 100 and the information of the node 200. This state is shown in FIG. 3 (b).
  • the control device 300 notifies the node 101 that the node 100 is the master reference station and the node 100 is selected as a direct superior node to the node 101.
  • the above-mentioned operation (notification of information on positioning from upper to lower) is performed, and the notification information is notified from the node 101 to the control device 300.
  • the control device 300 can also use the information in selecting a direct superior node with respect to the node 200.
  • the control device 300 has information that a convergent (Fix) solution has been obtained by carrier phase positioning using a higher-level node (node 100) obtained from node 101 (information that it has traceability to a master reference station). And, regarding the node 200, the node 101 is set to the node based on the information that the reliability of the node 101 is high and the baseline length with the node 101 is sufficiently shorter than the baseline length with the node 100. Determined as a direct superior node to 200. As a result, the path shown in FIG. 3C is constructed. By repeating such an operation, a longer path can be constructed.
  • a convergent (Fix) solution has been obtained by carrier phase positioning using a higher-level node (node 100) obtained from node 101 (information that it has traceability to a master reference station).
  • the node 101 is set to the node based on the information that the reliability of the node 101 is high and the baseline length with the node 101 is sufficiently shorter than the baseline length with the
  • the control device 300 detects the failure and selects another node as a direct superior node to the node 200. In this way, when the control device 300 detects that any of the nodes constituting the path has failed, it selects another node for the node that used that node as the higher-level node, so that the path becomes It switches dynamically.
  • judgment method for selecting a direct upper node by the control device 300 will be described.
  • a judgment criterion for selecting a direct upper node by the control device 300.
  • a combination of judgment criteria such as scoring
  • Example 1 Baseline length>
  • the control device 300 selects a directly higher node of the target node based on the linear distance (baseline length) between the nodes calculated based on the position information of each node.
  • the baseline length can be used when narrowing down the candidates, such as setting a threshold value for the baseline length and selecting one or more nodes within the threshold range.
  • the node having the shortest baseline length is selected from the plurality of nodes, and finally the direct upper node is determined.
  • Baseline length can also be used for.
  • each node holds its own position accuracy index value (accuracy index value), notifies the control device 300 of the accuracy index value, and the control device 300 holds the accuracy index value.
  • the accuracy index value takes a value from 0 to 100, and the larger the value, the better (higher) the accuracy.
  • Node D 60.
  • the control device 300 selects node A as the node with the best position accuracy.
  • a threshold value of the accuracy index value may be set, and a node whose accuracy is equal to or higher than the threshold value may be selected. As an example, assuming that the threshold value is 80, the control device 300 selects the node A and the node B.
  • a node a node other than the electronic reference point
  • directly refers to the electronic reference point (directly subordinate to the electronic reference point) and performs carrier phase positioning to obtain its own position information. Since the traceability to the electronic reference point is high, a high value such as accuracy index value 90 is set.
  • a node (a node other than the electronic reference point) performs carrier wave phase positioning using "a node that obtains its own position information by performing carrier wave phase positioning depending on the electronic reference point".
  • the node when the node is a mobile body, a lower value is usually set as the accuracy index value than when the node is a fixed station.
  • the moving body is equipped with a high-precision relative positioning unit (IMU (Inertial Measurement Unit), LiDAR (Light Detection and Ranking), etc.) together with an absolute positioning unit (GNSS carrier phase positioning means), and cooperates with them. If it is possible to perform highly accurate positioning at all times by providing a mechanism for operating the unit, a higher value is set as the accuracy index value in consideration of this.
  • IMU Inertial Measurement Unit
  • LiDAR Light Detection and Ranking
  • GNSS carrier phase positioning means absolute positioning unit
  • the above-mentioned accuracy index value may be set manually (manually) by the node owner, the service provider of the control device 300, or the like, or the rule as shown in the above example may be programmed. Then, the node itself or the control device 300 may automatically set the accuracy index value. Further, the accuracy index value may be set dynamically.
  • the accuracy index value as described above when directly selecting the upper node based on the position accuracy of the node.
  • Example 3 Satellite signal reception status> Basically, carrier phase positioning by the target node when the degree of coincidence between the satellite signal well received by the target node and the satellite signal well received by the direct superior node is higher than when it is low.
  • the convergence (Fix) rate of the calculation and the accuracy of the positioning solution are high.
  • Example 3 is an example based on such a viewpoint, and Examples 3-1 to 3-3 will be described below.
  • Example 3-1 and Example 3-2 and Example 3-3 may be used individually, or a plurality of them (including all of them) may be applied in combination.
  • Example 3-1 the control device 300 is based on the degree of coincidence between the satellite signal well received by the target node and the satellite signal well received by another node that is a direct candidate for the superior node. Then, select the upper node directly for the target node.
  • “good reception” means, for example, reception quality of satellite signals (eg, CNR (Carrier-to-Noise Ratio: carrier-to-noise ratio)) or SNR (Signal-to-Noise Ratio: signal-to-noise ratio). The ratio)) can be determined by being equal to or greater than a predetermined threshold.
  • CNR Carrier-to-Noise Ratio: carrier-to-noise ratio
  • SNR Signal-to-noise ratio
  • each node transmits the received satellite signal identification information (code) and its CNR to the control device 300 as real-time information.
  • the control device 300 directly selects a higher-level node using the information.
  • node X and node Y which are candidates for direct higher-level nodes
  • the node Y has a higher degree of coincidence of the satellite signals with the target node (the number of matching satellite signals is larger), so that the control device 300 can use the node X and the node Y.
  • node Y is directly selected as the upper node.
  • the satellite signal whose CNR is equal to or higher than a predetermined threshold is used, because the satellite signal having a high CNR is a visible satellite signal (a signal that arrives directly from the GNSS satellite without being blocked by a building or the like). This is because it can be estimated that there is.
  • the position information of each node that is a direct candidate for the upper node the position information of the target node, the orbit information of each GNSS satellite, and the geospatial information of the structure around each node ( Based on the dynamic map, 3D building map, sky image information, etc.), the visible satellite signal at the current time of each node that is a candidate for the target node at the current time and the direct superior node is calculated, and based on that. You may directly select the upper node.
  • Example 3-2 the control device 300 uses a satellite signal that matches a satellite signal that is well received by the target node and a satellite signal that is well received by the node that is a direct candidate for the higher-level node.
  • the upper node is directly selected based on the obtained DOP (Division of Precision) value.
  • the DOP value is a value that indexes the arrangement state of satellites, and the smaller the value, the higher the positioning accuracy tends to be.
  • the “goodly received satellite signal” in Example 3-2 may be a satellite signal based on reception quality (CNR, SNR, etc.), or may be a position information of each node that is a direct candidate for a higher-level node.
  • the visible satellite signal obtained by calculation from the position information of the target node, the orbit information of the GNSS satellite, the geospatial information of the structures around each node, and the like.
  • node X and node Y that are directly candidates for higher-level nodes
  • the satellite signals that match between the node X and the target node are S1, S2, S4, and S5.
  • the satellite signals that match between the node Y and the target node are S3, S5, S6, S7, and S8. If the DOP value in S1, S2, S4, S5 is 2 and the DOP value in S3, S5, S6, S7, S8 is 3, the control device 300 is among the node X and the node Y. Select node X directly as the superior node.
  • Example 3-3 If the degree of coincidence between the satellite type and the frequency band of the satellite signals used by the direct upper node and the target node is high, it can be expected that the accuracy of the carrier phase positioning solution of the target node is high. Therefore, in Example 3-3, the control device 300 uses the target node based on the degree of coincidence between the satellite type and frequency band used by the target node and the satellite type and frequency band directly used by each candidate node of the upper node. Select the direct upper node for.
  • node X and node Y the satellite type (A, B, C) and frequency band (F1, F2) used by node X, node Y, and the target node, respectively.
  • node Y A F1 , A F2 , A F3 , B F1 , B F2 , C F1
  • Tiget nodes A F1 , A F2 , B F1 , B F2 , C F1 ).
  • the node Y has a higher degree of coincidence with the target node (the number of matching satellite types and frequency bands is larger), so that the control device 300 can use the node X and the node Y.
  • node Y is directly selected as the upper node.
  • the node used by the target node for performing carrier phase positioning has high reliability from the viewpoint of maintaining stable and high positioning accuracy than when the reliability is low.
  • reliability index As the reliability index, as described above, availability performance, network quality (link state, packet loss rate, propagation delay, etc.), interference signal reception status, convergence (Fix) rate, cycle slip rate, convergence (Fix) ) There are conditions, etc. These are examples, and indicators other than these may be used as reliability indicators.
  • Each of these pieces of information is transmitted from each node to the control device 300 as real-time information.
  • information having low real-time property may be transmitted to the control device 300 from, for example, a server that manages each node.
  • the control device 300 selects the node with the highest reliability from the plurality of candidate nodes. Alternatively, the control device 300 selects one or more nodes whose reliability is higher than a predetermined threshold value.
  • network quality (link state, packet loss rate, propagation delay, etc.), interference signal reception status, convergence (Fix) rate, cycle slip rate, convergence (Fix) state, etc. are independent of each other. It may be used, or one index value of reliability may be obtained by combining any one or more (including all).
  • each value or state itself may be used as a condition for directly selecting a higher-level node, or a unified index value (referred to as a reliability index value here) may be directly converted into a higher-level node. May be used to select.
  • the conversion from each index value to a unified reliability index value may be performed manually, or may be performed automatically by determining a rule.
  • one reliability index value may be derived by combining a plurality of index values. For example, "availability x A + packet loss rate x B + interference signal strength x C + cycle slip rate x D" (A, B, C, D are predetermined constants) may be used as the reliability index value.
  • the control device 300 selects node A as the most reliable node.
  • a node whose reliability index value threshold value is set and the accuracy is equal to or higher than the threshold value may be selected.
  • the threshold value is 80, the control device 300 selects the node A and the node B.
  • the control device 300 combines at least any one or more (or all) of the above-mentioned determination criteria of Examples 1 to 4 and scores them to obtain a score for the target node from among a plurality of nodes whose baseline length is equal to or less than the threshold value. You may directly select the upper node.
  • ⁇ , ⁇ , ⁇ , and ⁇ are determined in advance by, for example, experiments.
  • the constant of any one or more of ⁇ , ⁇ , ⁇ , and ⁇ may be 0.
  • the baseline length may be used only to narrow down the first candidate, and ⁇ may be set to 0 in the above score calculation. That is, the baseline length may be excluded from the above score calculation.
  • the combination of judgment criteria used for node selection may be changed depending on the use case.
  • FIG. 5 shows a functional configuration diagram of the nodes 200 constituting the positioning system according to the present embodiment.
  • the node 200 is assumed to be a mobile body (mobile station), but even if it is a fixed station, it has basically the same configuration.
  • the node 200 has an information transmission / reception unit 210, a higher reference station determination unit 220, a data storage unit 230, an absolute positioning unit 240, a relative positioning unit 250, a positioning control unit 260, and an output unit 270.
  • the information transmission / reception unit 210 acquires the information transmitted from each of the other nodes (information necessary for directly selecting the upper node).
  • the acquired information is stored in the data storage unit 230.
  • the data storage unit 230 also stores the information necessary for directly selecting the upper node of the node 200 itself.
  • the information transmission / reception unit 210 receives the observation data, the position information, and the information on the positioning status from the selected direct upper node, and transmits the observation data, the position information, and the information on the positioning status to the direct lower node.
  • the upper reference station determination unit 220 reads information from the data storage unit 230, and uses the read information to directly select a higher node for the node 200.
  • the selection operation of the upper reference station determination unit 220 is the same as the selection operation of the control device 300 described above.
  • the absolute positioning unit 240 receives the satellite signal and performs code positioning or carrier phase positioning.
  • the relative positioning unit 250 is a vehicle speed pulse measuring unit, an IMU, an in-vehicle camera, a LiDAR, a GNSS Doppler shift measuring unit, and the like.
  • the vehicle speed pulse measuring device shows the speed of the vehicle, that is, the distance traveled in a unit time.
  • a three-dimensional angular velocity and acceleration are obtained by a three-axis gyro and a three-direction accelerometer mounted on the IMU.
  • the relative position of the vehicle can be obtained from the movement of the object in the image taken by the in-vehicle camera.
  • the distance to the object can be measured and the relative position of the vehicle can be obtained by irradiating the object with the laser beam and observing the scattered or reflected light.
  • the relative position can be obtained from the speed of the vehicle obtained by measuring the frequency change of the carrier wave.
  • the relative positioning unit 250 may be a plurality of positioning means among positioning means such as a vehicle speed pulse measuring machine, an IMU, an in-vehicle camera, a LiDAR, and a GNSS Doppler shift measuring machine, or may be one positioning means. good.
  • a mechanism may be provided for selecting and outputting the most accurate positioning result from the positioning results obtained by each of the plurality of positioning means.
  • a mechanism may be provided in which all or part of the positioning results obtained by each of the plurality of positioning means are coupled by a Kalman filter or the like and output.
  • the relative positioning unit 250 is supplied with a high-precision clock signal obtained by time synchronization with the GNSS signal from the absolute positioning unit 240. Even if the high-precision clock signal is interrupted, the relative positioning unit 250 can maintain the accuracy of the clock signal by holdover (self-propelled operation of the oscillator) regardless of the time synchronization with the GNSS signal. When the node 200 is a fixed station, the relative positioning unit 250 may not be provided.
  • the positioning control unit 260 switches the positioning means to the relative positioning unit 250 to perform positioning when, for example, in an urban canyon environment or the like, the absolute positioning unit 240 cannot obtain a convergence (Fix) solution. Perform continuous control. Further, the positioning control unit 260 determines the traceability to the master reference station and determines the action based on the information regarding the positioning state directly received from the higher-level node. Also, based on its own positioning result, it creates information to be sent directly to the lower node.
  • the positioning control unit 260 when the positioning control unit 260 receives the information for transmitting "unavailable (Do not Use)" directly from the upper node, the positioning control unit 260 transmits "unavailable (Do not Use)" directly to the lower node and another It is possible to instruct the upper reference station determination unit 220 to directly select the node as the upper node.
  • the output unit 270 outputs the current position, which is the positioning solution output from the positioning control unit 260, to the outside of the device.
  • the current position is represented by (x, y, z) three-dimensional coordinates, but the output information may be the three-dimensional coordinates themselves in the geographic coordinate system or the projected coordinate system, or other information. You may.
  • a control signal may be output to the control unit of the autonomous vehicle, or image information indicating the position on the map may be output.
  • the node 200 may be a single physically cohesive device, or a device in which some functional parts are physically separated and a plurality of separated functional parts are connected by a network. May be good.
  • the node 200 may include all the functions shown in FIG. 5, or even if some functions are provided on the network (for example, on the cloud) and the remaining functions are mounted on the node 200 and used. good.
  • observation data (also called Raw data) is output from the GNSS carrier phase positioning receiver provided in the node 200, and the observation data is provided on the cloud for carrier phase positioning calculation processing via the information transmission / reception unit 210.
  • the carrier wave phase positioning calculation may be performed on the cloud by transmitting to the functional unit.
  • the carrier phase positioning calculation processing function unit on the cloud returns the positioning calculation result to the positioning control unit 260 via the information transmission / reception unit 210.
  • FIG. 6 is a diagram showing an operation example of the node 200.
  • the upper reference station determination unit 220 directly selects the upper node. Further, here, it is assumed that there is also a directly lower node in which the node 200 is directly selected as the upper node.
  • the absolute positioning unit 240 directly executes the carrier phase positioning operation using the upper node.
  • the positioning control unit 260 uses the information transmission / reception unit 210 to observe observation data, position information which is a positioning result, information on a positioning state, and information necessary for directly selecting a higher-level node (traceability information, etc.). Is sent directly to the lower node.
  • the positioning control unit 260 directly transmits observation data, position information, information on the positioning status, and information necessary for directly selecting the upper node (traceability information, etc.) via the information transmission / reception unit 210. Receive from.
  • FIG. 7 shows an example of the functional configuration of the control device 300.
  • the control device 300 includes an information acquisition unit 310, a path determination unit 320, a data storage unit 330, and an information providing unit 340.
  • the information acquisition unit 310 acquires the information transmitted from each node.
  • the acquired information is stored in the data storage unit 330.
  • the path determination unit 320 reads information from the data storage unit 330 and creates a path by directly selecting a higher-level node for each node using the read information. The selection method is as described above.
  • the information providing unit 340 transmits the information of the directly higher node selected by the path determining unit 320 to each node.
  • FIG. 8 shows a hardware configuration example of a computer that can be used as the control device 300 or the “information transmission / reception unit 210, higher reference station determination unit 220, positioning control unit 260” of the node 200 according to the embodiment of the present invention. It is a figure which shows.
  • the computer of FIG. 8 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, and the like, each of which is connected to each other by a bus B. ..
  • the program that realizes the processing on the computer is provided by, for example, a recording medium 1001 such as a CD-ROM or a memory card.
  • a recording medium 1001 such as a CD-ROM or a memory card.
  • the program is installed in the auxiliary storage device 1002 from the recording medium 1001 via the drive device 1000.
  • the program does not necessarily have to be installed from the recording medium 1001, and may be downloaded from another computer via the network.
  • the auxiliary storage device 1002 stores the installed program and also stores necessary files, data, and the like.
  • the memory device 1003 reads and stores the program from the auxiliary storage device 1002 when the program is instructed to start.
  • the CPU 1004 realizes the functions related to the control device 300 or the "information transmission / reception unit 210, higher reference station determination unit 220, positioning control unit 260" of the node 200, etc., according to the program stored in the memory device 1003.
  • the interface device 1005 is used as an interface for connecting to a network.
  • the display device 1006 displays a programmatic GUI (Graphical User Interface) or the like.
  • the input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, and the like, and is used for inputting various operation instructions.
  • the output device 1008 outputs the calculation result.
  • the display device 1006 is an example of the output unit 270.
  • the mobile station selects an appropriate reference station and subordinate carrier phase positioning via a plurality of reference stations. Can be done. As a result, the convergence (Fix) rate can be increased by shortening the baseline length, and the GNSS positioning performance in a non-ideal reception environment such as an urban canyon reception environment can be improved.
  • the positioning system, control device, positioning method, and program described in the following items are provided.
  • (Section 1) A positioning system equipped with multiple nodes that operate as a reference station in carrier phase positioning.
  • the plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
  • Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
  • the position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
  • a positioning system in which a mobile station performs carrier phase positioning using the lowest node among the plurality of nodes as a reference station.
  • Each node other than the highest-level node in the plurality of nodes transmits information indicating whether or not a convergence solution has been obtained at each node from the highest-level node to its own node to a lower-level node.
  • the positioning system described in the section. (Section 3) In the carrier phase positioning using the upper node, the fixed station node in the plurality of nodes is lower than the position information when the convergent solution is obtained as its own position information when the convergent solution cannot be obtained.
  • the positioning system according to paragraph 1 or 2 transmitted to a node.
  • the node in the plurality of nodes transmits information indicating that the node cannot be used to the lower node when a convergent solution cannot be obtained.
  • the positioning system according to any one of the third items.
  • An information acquisition unit that acquires information on each node in the plurality of nodes of the positioning system according to any one of items 1 to 4.
  • a control device including a path determination unit that determines the path by selecting one node higher than each node based on one or more information including information other than the baseline length.
  • the plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
  • Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
  • the position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
  • a positioning method in which a mobile station performs carrier phase phase positioning using the lowest node among the plurality of nodes as a reference station. (Section 7) A program for operating a computer as each part of the control device according to the fifth item.
  • the present invention is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It is possible.
  • the master reference station is mainly assumed to be a fixed station in which position information such as an electronic reference point is highly managed is described, but the master reference station is a mobile body. May be good. That is, in an embodiment such as platooning, the leading vehicle is provided with means for estimating its own position with high accuracy by using LiDAR, a camera, a dynamic map, or the like, and a plurality of subsequent vehicles have a subordinate carrier phase with the leading vehicle as the master reference station. This corresponds to a usage pattern such as adjusting the distance between vehicles and the traveling lane by positioning.
  • Reference station 20 Mobile station 100 Master reference station 101-103 Intermediate reference station 200 Mobile station, node 210 Information transmission / reception unit 220 Upper reference station determination unit 230 Data storage unit 240 Absolute positioning unit 250 Relative positioning unit 260 Positioning control unit 270 Output unit 300 Control Device 310 Information acquisition section 320 Path determination section 330 Data storage section 340 Information provision section 1000 Drive device 1001 Recording medium 1002 Auxiliary storage device 1003 Memory device 1004 CPU 1005 Interface device 1006 Display device 1007 Input device 1008 Output device

Abstract

Provided is a positioning system which is provided with a plurality of nodes that operate as reference stations in carrier phase positioning, wherein: the plurality of nodes constitute a path including the top node and one or more nodes which are sequentially subordinate to the top node; each of nodes other than the top node in the plurality of nodes uses the immediately upper node thereof as a reference station to carry out carrier phase positioning; position information obtained as a result of carrier phase positioning in each node is transmitted to the immediately lower node thereof together with observation data of GNSS satellite signals which have been received in that node; and a mobile station uses the bottom node in the plurality of nodes as a reference station to carry out carrier phase positioning.

Description

測位システム、制御装置、測位方法、及びプログラムPositioning systems, control devices, positioning methods, and programs
 本発明は、移動局の位置を高精度に計測する技術に関連するものである。 The present invention relates to a technique for measuring the position of a mobile station with high accuracy.
 近年、航法衛星システム、GNSS(Global Navigation Satellite System)による測位が幅広いアプリケーションに活用されている。 In recent years, positioning by the navigation satellite system, GNSS (Global Navigation Satellite System) has been utilized in a wide range of applications.
 GNSS搬送波位相測位方式(又はGNSS干渉測位方式:以降、搬送波位相測位)においては、移動局は、自身のGNSS衛星信号受信装置(以降、衛星信号受信装置)で受信した複数のGNSS衛星信号(以降、衛星信号)の観測データと、位置が既知の基準点に置かれた固定局(基準局)における衛星信号受信装置で受信した衛星信号の観測データ及び固定局(基準局)の位置情報を用いて移動局の固定局に対する相対的な変位(基線ベクトル)を算出するために、搬送波位相測位演算による基線解析(以降、搬送波位相測位演算)を実施する。ここで、観測データとは衛星信号受信装置の信号処理における疑似距離及び搬送波位相計測の結果の情報であり、Raw data(生データ)とも呼ばれる。尚、以降の説明では観測データは衛星信号を受信することによって得られる測位に必要な情報(航法メッセージに含まれる情報、等)を含むものとする。搬送波位相測位の方式としては、例えば、リアルタイムキネマティック(Real Time Kinematic)方式が使用される。 In the GNSS carrier phase positioning method (or GNSS interference positioning method: hereinafter, carrier phase positioning), the mobile station receives a plurality of GNSS satellite signals (hereinafter, satellite signal receiver) received by its own GNSS satellite signal receiver (hereinafter, satellite signal receiver). , Satellite signal) observation data, satellite signal observation data received by the satellite signal receiver at a fixed station (reference station) whose position is located at a known reference point, and movement using the position information of the fixed station (reference station). In order to calculate the relative displacement (baseline vector) of the station with respect to the fixed station, the baseline analysis by the carrier phase positioning calculation (hereinafter referred to as the carrier phase positioning calculation) is performed. Here, the observation data is information on the result of pseudo-distance and carrier phase phase measurement in the signal processing of the satellite signal receiver, and is also called Raw data (raw data). In the following description, the observation data shall include information necessary for positioning (information included in the navigation message, etc.) obtained by receiving the satellite signal. As the carrier phase positioning method, for example, a real-time kinematic method is used.
 搬送波位相測位において、衛星信号の受信位置の周辺に構造物の存在するアーバンキャニオン受信環境では搬送波位相測位の収束(Fix)率が劣化し、結果として移動局の測位精度が劣化する。特に、移動局と基準局との直線距離(基線長という)が長い場合には劣化が大きくなる傾向がある。 In carrier phase positioning, the convergence (Fix) rate of carrier phase positioning deteriorates in an urban canyon reception environment where a structure exists around the reception position of the satellite signal, and as a result, the positioning accuracy of the mobile station deteriorates. In particular, when the linear distance between the mobile station and the reference station (called the baseline length) is long, the deterioration tends to be large.
 移動局は、基線長が短く、かつ、信頼性の高い位置情報を有する(高い信頼性で位置情報が管理された)基準局を選択することが望ましいが、信頼性の高い位置情報を有する基準局の一例である電子基準点は、地理的に十分な密度では配置されてはいないため、移動局が適切な基準局を選択することが難しいという課題がある。 For the mobile station, it is desirable to select a reference station having a short baseline length and having highly reliable position information (position information is managed with high reliability), but a reference station having highly reliable position information As an example, the electronic reference points are not arranged at a geographically sufficient density, so that there is a problem that it is difficult for the mobile station to select an appropriate reference station.
 本発明は上記の点に鑑みてなされたものであり、電子基準点等が密に配置されない場合でも、移動局が近傍に存在する、より適切な基準局を選択することにより、より高い測位精度を得ることが可能な搬送波位相測位を実現する方法を提供することを目的とする。 The present invention has been made in view of the above points, and even when electronic reference points and the like are not densely arranged, higher positioning accuracy can be achieved by selecting a more appropriate reference station in which a mobile station exists in the vicinity. It is an object of the present invention to provide a method for realizing carrier phase positioning that can be obtained.
 開示の技術によれば、搬送波位相測位における基準局として動作する複数のノードを備える測位システムであって、
 前記複数のノードは、最上位のノードと、当該最上位のノードに順次従属する1以上のノードからなるパスを構成し、
 前記複数のノードにおける前記最上位のノード以外の各ノードは、1つ上位のノードを基準局として用いた搬送波位相測位を行い、
 各ノードにおける搬送波位相測位の結果得られる位置情報が、そのノードにおいて受信したGNSS衛星信号の観測データとともに、1つ下位のノードに送信され、
 移動局が、前記複数のノードにおける最下位のノードを基準局として用いて搬送波位相測位を行う
 測位システムが提供される。
According to the disclosed technology, it is a positioning system including a plurality of nodes that operate as a reference station in carrier phase positioning.
The plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
The position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
A positioning system is provided in which a mobile station uses the lowest node among the plurality of nodes as a reference station to perform carrier phase positioning.
 開示の技術によれば、電子基準点等が密に配置されない場合でも、移動局が適切な基準局を選択し、複数の基準局を経由した、従属的な搬送波位相測位を行うことが可能となる。 According to the disclosed technology, even when the electronic reference points and the like are not densely arranged, the mobile station can select an appropriate reference station and perform subordinate carrier phase positioning via a plurality of reference stations.
1つの基準局を用いた搬送波位相測位の例を説明するための図である。It is a figure for demonstrating the example of the carrier phase positioning using one reference station. 本発明の実施の形態におけるシステム構成の例を示す図である。It is a figure which shows the example of the system configuration in embodiment of this invention. 自律的にパスを構成する場合の例を示す図である。It is a figure which shows the example of the case of constructing a path autonomously. 制御装置によりパスを構成する場合の例を示す図である。It is a figure which shows the example of the case where a path is constructed by a control device. ノードの機能構成例を示す図である。It is a figure which shows the functional configuration example of a node. 中間基準局の動作例を示すフローチャートである。It is a flowchart which shows the operation example of an intermediate reference station. 制御装置の構成図である。It is a block diagram of a control device. 装置のハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of the apparatus.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限定されるわけではない。 Hereinafter, an embodiment of the present invention (the present embodiment) will be described with reference to the drawings. The embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本実施の形態において、移動局による搬送波位相測位で用いられる基準点に配置される局を「基準局」と呼ぶ。また、測位を行う対象(位置が未知であるもの)を「移動局」と呼ぶ。 In the present embodiment, a station arranged at a reference point used for carrier phase positioning by a mobile station is referred to as a "reference station". In addition, the object to be positioned (the one whose position is unknown) is called a "mobile station".
 基準局は、地面等に固定されている固定局であってもよいし、移動する移動体(Moving Base Station)であってもよい。以下、基準局が固定局であることを明示する場合に、基準局(固定局)と記載し、基準局が移動体であることを明示する場合に、基準局(移動体)と記載する場合がある。 The reference station may be a fixed station fixed to the ground or the like, or may be a moving mobile body (Moving Base Station). Hereinafter, when it is clearly stated that the reference station is a fixed station, it may be described as a reference station (fixed station), and when it is clearly stated that the reference station is a mobile body, it may be described as a reference station (mobile body).
 以下では、マスタ基準局、中間基準局、移動局等からなる測位システムについて説明するが、マスタ基準局、中間基準局、移動局等を総称して「ノード」と呼ぶ。 In the following, a positioning system consisting of a master reference station, an intermediate reference station, a mobile station, etc. will be described, but the master reference station, the intermediate reference station, the mobile station, etc. are collectively referred to as a "node".
 (実施の形態の概要)
 まず、図1に、本実施の形態に係る構成との比較のために、中間基準局を持たない既存の搬送波位相測位の構成例を示す。図1に示す構成例において、移動局20は、地理的に分散配置される複数の基準局の中から選択した基準局10を用いて搬送波位相測位を行う。
(Outline of Embodiment)
First, FIG. 1 shows a configuration example of an existing carrier wave phase positioning that does not have an intermediate reference station for comparison with the configuration according to the present embodiment. In the configuration example shown in FIG. 1, the mobile station 20 performs carrier phase phase positioning using a reference station 10 selected from a plurality of reference stations geographically dispersed.
 移動局20は、例えば、複数の基準局の中から基線長が最短の基準局10を選択するが、基準局の配置密度によっては基線長が十分に短くならない場合がある。また、基準局10と移動局20のいずれか、又は両方における衛星信号の受信状態が良好ではない場合もある。これらの状況においては、移動局20は、搬送波位相測位の収束(Fix)解を得られない可能性がある。収束(Fix)解を得られずにフロート(Float)解、もしくはディファレンシャル(DGNSS)解しか得られない場合には、当該測位解としての位置情報の精度は低い。 The mobile station 20 selects, for example, the reference station 10 having the shortest baseline length from a plurality of reference stations, but the baseline length may not be sufficiently shortened depending on the arrangement density of the reference stations. In addition, the reception state of satellite signals at either or both of the reference station 10 and the mobile station 20 may not be good. In these situations, the mobile station 20 may not be able to obtain a convergent (Fix) solution for carrier phase positioning. If only the float solution or the differential (DGNSS) solution can be obtained without obtaining the convergence (Fix) solution, the accuracy of the position information as the positioning solution is low.
 収束(Fix)解が得られたとしても、基準局10の位置精度が低い場合、移動局20において搬送波位相測位演算(基線長解析)の結果得られる位置精度も低くなる。しかし、従来技術では、移動局20は、基準局10の位置精度を知ることができないため、自身が選択した基準局10を使用した搬送波位相測位による測位結果が信頼のおけるものかどうか、また、その信頼性の度合いを知ることができなかった。 Even if a convergence (Fix) solution is obtained, if the position accuracy of the reference station 10 is low, the position accuracy obtained as a result of the carrier phase positioning operation (baseline length analysis) at the mobile station 20 is also low. However, in the prior art, since the mobile station 20 cannot know the position accuracy of the reference station 10, whether the positioning result by the carrier phase positioning using the reference station 10 selected by itself is reliable and its reliability. I couldn't know the degree of sex.
 基準局10が電子基準点であれば、基準局10の位置精度が高いことがわかるが、電子基準点は地理的に十分に密に配置されてはいないので、移動局20が基準局として電子基準点を選択できない場合が多いことが想定される。 If the reference station 10 is an electronic reference point, it can be seen that the position accuracy of the reference station 10 is high, but since the electronic reference points are not geographically sufficiently densely arranged, the mobile station 20 uses the electronic reference point as the reference station. It is assumed that there are many cases where selection is not possible.
 上記の観点から、本実施の形態では、移動局は、複数の基準局を経由した従属的な搬送波位相測位を行う。すなわち、絶対位置が厳密に管理されている基準局をマスタ(親)基準局とし、マスタ基準局に直接に、又は中間基準局を介して間接的に従属して測位する1以上の中間基準局を備え、マスタ基準局と当該1以上の中間基準局とで、移動局に対する1本のパスが形成される。マスタ基準局には通常、固定局を使用し、電子基準点等が該当する。 From the above viewpoint, in the present embodiment, the mobile station performs subordinate carrier phase positioning via a plurality of reference stations. That is, the reference station whose absolute position is strictly controlled is set as the master (parent) reference station, and one or more intermediate reference stations for positioning directly or indirectly subordinate to the master reference station are provided, and the master reference station is provided. And the one or more intermediate reference stations form one path to the mobile station. A fixed station is usually used as the master reference station, and an electronic reference point or the like is applicable.
 ここで「従属」とは、中間基準局がある基準局(位置が既知)を用いて搬送波位相測位を行う移動局(位置が未知)であるという、相対的な関係性を意味する。この場合、移動局となる中間基準局は基準局となる中間基準局(又はマスタ基準局)に対し「従属」しているといい、この関係性は1以上の基準局を遡る。つまり、自身が「従属」している中間基準局が「従属」する他の中間基準点に対してもまた「従属」していることになる。中間基準点の位置精度は「従属」する中間基準局(又はマスタ基準局)の位置精度に依存する。 Here, "subordinate" means a relative relationship in which an intermediate reference station is a mobile station (position is unknown) that performs carrier phase positioning using a reference station (position is known). In this case, the intermediate reference station that is the mobile station is said to be "subordinate" to the intermediate reference station (or master reference station) that is the reference station, and this relationship goes back to one or more reference stations. In other words, the intermediate reference station to which it is "subordinate" is also "subordinate" to other intermediate reference points to which it is "subordinate". The position accuracy of the intermediate reference point depends on the position accuracy of the "subordinate" intermediate reference station (or master reference station).
 移動局は、1以上の中間基準局のうちの最下位の中間基準局を用いて搬送波位相測位を行う。また、1つの移動局が、1以上の中間基準局を介して従属するマスタ基準局は1つである。尚、「パス」は、マスタ基準局~最下位の中間基準局の間で形成されるものであってもよいし、マスタ基準局~最下位の中間基準局を用いる移動局の間で形成されるものであってもよい。 The mobile station performs carrier phase positioning using the lowest intermediate reference station among one or more intermediate reference stations. Further, one mobile station is subordinate to one master reference station via one or more intermediate reference stations. The "path" may be formed between the master reference station and the lowest intermediate reference station, or may be formed between the master reference station and the mobile station using the lowest intermediate reference station. You may.
 1以上の中間基準局は、地理的に分散配置される複数の基準局から選択された基準局である。中間基準局は固定局であってもよいし、移動体(Moving Base Station)であってもよい。つまり、ある中間基準局を用いて搬送波位相測位を行う移動局が、他の移動局に対する中間基準局となる場合もある。 One or more intermediate reference stations are reference stations selected from a plurality of geographically dispersed reference stations. The intermediate reference station may be a fixed station or a mobile (Moving Base Station). That is, a mobile station that performs carrier phase positioning using a certain intermediate reference station may be an intermediate reference station for another mobile station.
 (本実施の形態における測位システムの例)
 上記のようなパスを形成する測位システムの例を図2に示す。図2に示す測位システムは、マスタ基準局100、中間基準局101、中間基準局102、中間基準局103、移動局200を備え、これらのノードが接続されることにより、1本のパスが形成される。なお、ここでの「接続」とは、一方のノードが基準局(位置が既知のノード)になり、他方のノードが、その基準局を用いて搬送波位相測位を行う移動局(位置が未知のノード)になるという関係ができていることをいう。より具体的には、上位(基準局)のノードと下位(移動局)のノードが通信ネットワークにより接続され、上位(基準局)のノードから下位(移動局)のノードに対して通信ネットワークを経由して、観測データ、位置情報、及び、以下に詳述するその他の情報が送信される。
(Example of positioning system in this embodiment)
FIG. 2 shows an example of a positioning system that forms the above path. The positioning system shown in FIG. 2 includes a master reference station 100, an intermediate reference station 101, an intermediate reference station 102, an intermediate reference station 103, and a mobile station 200, and one path is formed by connecting these nodes. The term "connection" here means that one node becomes a reference station (a node whose position is known) and the other node uses the reference station to perform carrier phase positioning (a node whose position is unknown). It means that there is a relationship of becoming. More specifically, the upper (reference station) node and the lower (mobile station) node are connected by a communication network, and the upper (reference station) node to the lower (mobile station) node via the communication network. , Observation data, location information, and other information detailed below are transmitted.
 マスタ基準局100は最上位の基準局であり、前述したとおり、例えば、その位置(座標)が厳密に管理された電子基準点等の基準点である。 The master reference station 100 is the highest reference station, and as described above, for example, it is a reference point such as an electronic reference point whose position (coordinates) is strictly controlled.
 マスタ基準局100以外の基準局である各中間基準局は、自身よりマスタ基準局に対してより近い(上位の)中間基準局を基準局として用いて、自身を移動局(位置が未知の局)とする搬送波位相測位演算を行う。「マスタ基準局により近い」とは、マスタ基準局までのホップ数がより小さいことを意味する。例えば、図2の測位システムにおいて、マスタ基準局100までのホップ数が2である中間基準局102よりも、マスタ基準局100までのホップ数が1である中間基準局101のほうがマスタ基準局100に近い。なお、本実施の形態において、マスタ基準局100に従属できる中間基準局の数(つまりホップ数)に上限値が設けられてもよい。 Each intermediate reference station, which is a reference station other than the master reference station 100, uses an intermediate reference station closer (upper) to the master reference station as a reference station, and sets itself as a mobile station (station whose position is unknown). Perform the operation. "Closer to the master reference station" means that the number of hops to the master reference station is smaller. For example, in the positioning system of FIG. 2, the intermediate reference station 101 having one hop to the master reference station 100 is closer to the master reference station 100 than the intermediate reference station 102 having two hops to the master reference station 100. In this embodiment, an upper limit may be set for the number of intermediate reference stations (that is, the number of hops) that can be subordinate to the master reference station 100.
 図2の測位システムの例では、中間基準局101が、マスタ基準局100を用いて搬送波位相測位を行い、中間基準局102が、中間基準局101を用いて搬送波位相測位を行い、中間基準局103が、中間基準局102を用いて搬送波位相測位を行い、移動局200が、中間基準局103を用いて搬送波位相測位を行う。 In the example of the positioning system of FIG. 2, the intermediate reference station 101 performs carrier phase positioning using the master reference station 100, the intermediate reference station 102 performs carrier phase positioning using the intermediate reference station 101, and the intermediate reference station 103 performs carrier phase positioning. The carrier wave phase positioning is performed using the 102, and the mobile station 200 performs the carrier wave phase positioning using the intermediate reference station 103.
 (上位ノードから下位ノードへ送られる情報について)
 マスタ基準局100と中間基準局101~103のそれぞれは、自身の位置情報(座標値)と、自身の受信した衛星信号から得られる観測データと、自身の測位の状態に関する情報を1つ下位のノード(直接の下位ノード)に送信する。1つ下位のノードは、1つ上位のノード(直接の上位ノード)から受信した位置情報と観測データとを用いて搬送波位相測位演算を行うことができる。
(About the information sent from the upper node to the lower node)
Each of the master reference station 100 and the intermediate reference stations 101 to 103 has its own position information (coordinate values), observation data obtained from its own received satellite signal, and information on its own positioning status, which is one node below ( Send to the direct lower node). The one lower node can perform the carrier phase positioning operation using the position information and the observation data received from the one higher node (direct upper node).
 なお、ノード自身の位置情報は、直接の上位ノードを基準局として使用した、当該ノードにおける搬送波位相測位演算の結果である。ただし、マスタ基準局100(電子基準点等)に関しては、その直接の下位ノードはマスタ基準局100の位置情報を、マスタ基準局100(電子基準点等)を管理するサーバ等から取得してもよい。 The position information of the node itself is the result of the carrier phase positioning operation in the node using the direct upper node as the reference station. However, regarding the master reference station 100 (electronic reference point or the like), the direct lower node may acquire the position information of the master reference station 100 from the server or the like that manages the master reference station 100 (electronic reference point or the like).
  <情報の送信方法>
 各ノードは、位置情報と、観測データと、測位の状態に関する情報とを、同じタイミングで送信しなくてもよい。例えば、位置情報に関しては、位置情報に所定閾値以上の変化があったときにのみ送信することとしてもよい。位置情報と、観測データと、測位の状態に関する情報はいずれも、上位のノードから直接の下位ノードにネットワークを介して直接に送信されてもよいし、ネットワーク上のサーバを経由して送信されてもよい。つまり、上位のノードが情報をサーバに送り、サーバが、当該上位のノードの直接の下位ノードにその情報を送信することとしてもよい。
<How to send information>
Each node does not have to transmit the position information, the observation data, and the information regarding the positioning state at the same timing. For example, the position information may be transmitted only when the position information changes by a predetermined threshold value or more. The position information, the observation data, and the information on the positioning status may all be transmitted directly from the upper node to the lower node directly via the network, or may be transmitted via the server on the network. May be good. That is, the higher-level node may send the information to the server, and the server may send the information to the directly lower-level node of the higher-level node.
  <測位の状態に関する情報>
 測位の状態に関する情報は、例えば、測位精度に関するトレーサビリティの情報、搬送波位相測位を行ったノードにおける、その搬送波位相測位の状態(収束(Fix)、Float、DGNSS、測位不能)、搬送波位相測位を行ったノードの信頼性を示す情報、のうちのいずれか1つ、いずれか2つ、又は全部である。なお、測位精度に関するトレーサビリティの情報が、搬送波位相測位を行ったノードの信頼性を示す情報を兼ねてもよい。以下、測位の状態に関する各情報について説明する。
<Information on positioning status>
The information on the positioning status includes, for example, traceability information on positioning accuracy, the carrier phase positioning status (convergence (Fix), Float, DGNSS, positioning impossible), and carrier phase positioning at the node on which the carrier phase positioning is performed. Any one, any two, or all of the information indicating the reliability of the node. Note that the traceability information regarding the positioning accuracy may also serve as information indicating the reliability of the node that has performed the carrier phase positioning. Hereinafter, each information regarding the positioning state will be described.
  <測位精度に関するトレーサビリティの情報>
 あるノードが直接の下位ノードに送信する測位精度に関するトレーサビリティの情報とは、例えば、当該ノードに対する最上位ノードであるマスタ基準局から当該ノードまでの全てのノードにおいて搬送波位相測位の収束(Fix)解が得られているか、否かを示す情報である。
<Traceability information on positioning accuracy>
The traceability information regarding the positioning accuracy that a node sends directly to the lower node is, for example, the convergence (Fix) solution of the carrier phase positioning in all the nodes from the master reference station, which is the highest node for the node, to the node. It is information indicating whether or not it has been obtained.
 ただし、マスタ基準局の位置情報を、マスタ基準局(電子基準点等)を管理するサーバから取得する場合には、あるノードが送信する「測位精度に関するトレーサビリティの情報」が、当該ノードに対するマスタ基準局よりも1つ下位の中間基準局から当該ノードまでの全てのノードで搬送波位相測位の収束(Fix)解が得られているか否かを示す情報であってもよい。 However, when the position information of the master reference station is acquired from the server that manages the master reference station (electronic reference point, etc.), the "traceability information regarding positioning accuracy" transmitted by a certain node is larger than that of the master reference station for that node. It may be information indicating whether or not a convergence (Fix) solution of carrier phase positioning is obtained in all the nodes from the intermediate reference station one lower to the node.
 例えば、図2の例において、マスタ基準局100が電子基準点であるとして、中間基準局101で収束(Fix)解が得られている場合、中間基準局101は、測位精度に関するトレーサビリティの情報として、電子基準点へのトレーサビリティがあることを示す情報を中間基準局102に送信する。当該情報を受信した中間基準局102で収束(Fix)解が得られている場合、中間基準局102は、電子基準点へのトレーサビリティがあることを示す情報を中間基準局103に送信する。 For example, in the example of FIG. 2, when the master reference station 100 is an electronic reference point and a convergence (Fix) solution is obtained at the intermediate reference station 101, the intermediate reference station 101 uses the electronic reference as traceability information regarding positioning accuracy. Information indicating that there is traceability to the point is transmitted to the intermediate reference station 102. When the intermediate reference station 102 that has received the information has obtained a convergent (Fix) solution, the intermediate reference station 102 transmits information indicating that there is traceability to the electronic reference point to the intermediate reference station 103.
 当該情報を受信した中間基準局103で収束(Fix)解が得られている場合、中間基準局103は、電子基準点へのトレーサビリティがあることを示す情報を移動局200に送信する。この情報を受信した移動局200は、中間基準局103を利用した搬送波位相測位を行うことで、移動局200は、位置が厳密に管理された電子基準点からの搬送波位相測位の収束(Fix)状態が継続している基準局(中間基準局103)を利用した搬送波位相測位を行うことができる。 When the intermediate reference station 103 that has received the information has obtained a convergence (Fix) solution, the intermediate reference station 103 transmits information indicating that there is traceability to the electronic reference point to the mobile station 200. Upon receiving this information, the mobile station 200 performs carrier phase phase positioning using the intermediate reference station 103, so that the mobile station 200 is in a convergent (Fix) state of carrier phase positioning from an electronic reference point whose position is strictly controlled. Carrier phase positioning can be performed using the reference station (intermediate reference station 103) that continues to be used.
 仮に、中間基準局102において、収束(Fix)解が得られなくなったとすると、中間基準局102は、測位精度に関するトレーサビリティの情報として、電子基準点へのトレーサビリティが絶たれたことを示す情報を、直接の下位ノードである中間基準局103に送信する。また、中間基準局103は、測位精度に関するトレーサビリティの情報として、電子基準点へのトレーサビリティが断たれたことを示す情報を移動局200に送信する。 Assuming that the convergence (Fix) solution cannot be obtained at the intermediate reference station 102, the intermediate reference station 102 directly provides the traceability information regarding the positioning accuracy, which indicates that the traceability to the electronic reference point is cut off. It is transmitted to the intermediate reference station 103 which is a lower node. Further, the intermediate reference station 103 transmits information indicating that the traceability to the electronic reference point is cut off to the mobile station 200 as the traceability information regarding the positioning accuracy.
 電子基準点へのトレーサビリティが絶たれたことを示す情報を受信した移動局200は、例えば、中間基準局103を基準局として使用することを停止し、別のパスに属する中間基準局を搬送波位相測位に使用する基準局として選択する、パスの切り替えを行う契機とすることができる。選択方法の例については後述する。 Upon receiving the information indicating that the traceability to the electronic reference point is cut off, the mobile station 200 stops using the intermediate reference station 103 as the reference station, and uses the intermediate reference station belonging to another path for carrier phase positioning, for example. It can be used as an opportunity to switch the path, which is selected as the reference station to be used. An example of the selection method will be described later.
  <搬送波位相測位の状態>
 あるノードが直接の下位ノードに送信する搬送波位相測位の状態は、例えば、FIX(収束(Fix)解が得られたことを示す情報)、FLOAT(Float解が得られたことを示す情報)、DGNSS(DGNSS解が得られたことを示す情報)、又は、測位不能(測位解が得られないことを示す情報)である。
<Status of carrier phase positioning>
The state of carrier phase positioning transmitted by a node directly to a lower node is, for example, FIX (information indicating that a convergent (Fix) solution has been obtained), FLOAT (information indicating that a Float solution has been obtained), and the like. DGNSS (information indicating that a DGNSS solution has been obtained) or positioning impossible (information indicating that a positioning solution cannot be obtained).
 この情報により、下記のノードは、直接の上位ノードがその更に一つ上の上位のノードを使用した搬送波位相測位において収束(Fix)解が得られているか否かを知ることができる。 From this information, the following nodes can know whether or not a convergence (Fix) solution has been obtained in the carrier phase positioning using the upper node directly above the direct upper node.
 ただし、あるノードが、直接の上位ノードから「FIX」を受信したとしても、当該直接の上位ノードから、測位精度に関するトレーサビリティの情報として、マスタ基準局へのトレーサビリティが絶たれていることを示す情報を受信した場合には、当該情報を受信したノードは、直接の上位ノードの位置情報を信頼しないこととしてもよい。 However, even if a certain node receives "FIX" from the direct upper node, the traceability to the master reference station is cut off as the traceability information regarding the positioning accuracy from the direct upper node. When it is received, the node that has received the information may not trust the position information of the direct higher-level node.
  <信頼性の情報>
 あるノードが直接の下位ノードに送信する信頼性の情報は、例えば、当該ノードが固定局であるか否か、当該ノードのアベイラビリティの実績、ネットワークの品質(リンク状態、パケット損失率、伝搬遅延等)、干渉信号の受信状況、収束(Fix)率、サイクルスリップ率、等である。これら信頼性の情報により、当該下位のノードは、直接の上位ノードから得た位置情報の信頼性(正確かどうか)を判断できる。例えば、信頼性が閾値よりも低いことが分かれば、直接の下位ノードに対し、自身を基準局とした搬送波位相測位の信頼性(あるいは精度)が低いことを通知できる。
<Reliability information>
The reliability information that a node sends directly to the subordinate nodes is, for example, whether or not the node is a fixed station, the actual availability of the node, the quality of the network (link status, packet loss rate, propagation delay, etc.). ), Interference signal reception status, convergence (Fix) rate, cycle slip rate, etc. From these reliability information, the lower node can determine the reliability (whether or not it is accurate) of the position information obtained from the direct upper node. For example, if it is found that the reliability is lower than the threshold value, it is possible to notify the direct lower node that the reliability (or accuracy) of the carrier phase positioning using itself as a reference station is low.
 ノードのアベイラビリティは、ある時点でそのノードからサービスを受けることのできる確率である。本例の場合、サービスを受けるとは、当該ノードから、下位のノードが利用する観測データ及び位置情報を得られることである。例えば、ノードが老朽化していて、たびたび故障する場合、アベイラビリティは低くなる。また、多少老朽化していても、ホットスタンバイ等の二重化構成になっていれば、アベイラビリティの低下は抑えられる。 The availability of a node is the probability that it will be able to receive services from that node at some point in time. In the case of this example, receiving the service means obtaining the observation data and the position information used by the lower node from the node. For example, if a node is aging and often fails, its availability will be low. In addition, even if it is a little old, if it has a dual configuration such as hot standby, the decrease in availability can be suppressed.
 ネットワークの品質における「ネットワーク」とは、ノードが接続されるネットワークであり、そのネットワークを介して、当該ノードで得られた観測データ及び位置情報が下位のノードに送信される。そのネットワークの品質が低い場合(例:不定期にリンク断になる、頻繁にパケットが失われる、伝搬遅延が大きい)場合、下位ノードは、上位のノードの観測データ及び位置情報を受信できない場合が生じる。よって、ネットワークの品質は高いほうがよい。 The "network" in the quality of the network is a network to which the nodes are connected, and the observation data and the position information obtained by the node are transmitted to the lower node via the network. If the quality of the network is low (eg, irregular link breaks, frequent packet loss, high propagation delay), the lower node may not be able to receive the observation data and location information of the upper node. Occurs. Therefore, the quality of the network should be high.
 干渉信号の受信状況とは、例えば、ノードの近くにモバイル網の基地局が存在する場合、基地局からのダウンリンク信号が、当該ノードが受信する衛星信号に対する干渉信号として定常的に影響を与える場合がある。当該ノードが干渉信号を受ける場合、当該ノードが受信する衛星信号の受信品質が低下し、衛星信号の搬送波の位相の観測を正確に行えない場合が生じる。よって、干渉信号の強度は小さいほうがよい。尚、干渉信号の強度は衛星信号の帯域外の信号を低減する周波数フィルタを実装する等の手段により、衛星信号を受信する際にその影響を低減することができる。 The reception status of the interference signal is, for example, when a base station of the mobile network exists near the node, the downlink signal from the base station constantly affects the satellite signal received by the node as an interference signal. In some cases. When the node receives an interference signal, the reception quality of the satellite signal received by the node deteriorates, and the phase of the carrier wave of the satellite signal may not be accurately observed. Therefore, the strength of the interference signal should be small. The influence of the interference signal strength can be reduced when the satellite signal is received by means such as mounting a frequency filter that reduces the signal outside the band of the satellite signal.
 収束(Fix)率とは過去のある期間において収束(Fix)状態にあった時間の比率である。収束(Fix)率は当該ノード(及び当該ノードの直接の上位ノード)の衛星信号の受信状況や当該ノードの搬送波位相測位性能に依存する。収束(Fix)率が高い場合、当該ノードは比較的良好な受信環境(開空間率の高い、オープンスカイに近い受信環境)にあり、当該ノードの搬送波位相測位性能が高いことが想定されるので、将来も収束(Fix)率が高いことが期待される。したがって収束(Fix)率が高い場合、そのノードの信頼性は高い。収束(Fix)率は高いほうがよい。 The convergence (Fix) rate is the ratio of the time spent in the convergence (Fix) state in a certain period in the past. The convergence (Fix) rate depends on the reception status of satellite signals of the node (and the node directly above the node) and the carrier phase positioning performance of the node. When the convergence (Fix) rate is high, it is assumed that the node is in a relatively good reception environment (a reception environment with a high open porosity and close to open skies), and the carrier phase positioning performance of the node is high. , It is expected that the convergence (Fix) rate will be high in the future. Therefore, when the convergence (Fix) rate is high, the reliability of the node is high. The higher the convergence (Fix) rate, the better.
 サイクルスリップとは、ノードによる衛星信号の観測中に衛星信号の受信に瞬断やマルチパスによる伝送路長の瞬時の変化が発生すると、衛星信号受信装置において衛星信号の搬送波位相への同期が一時的に中断し、位相データにずれ(とび)が生じることである。サイクルスリップ率は、サイクルスリップが生じる割合である。あるノードのサイクルスリップ率が高い場合、そのノードの信頼性は低い。サイクルスリップ率は低いほうがよい。 Cycle slip is a temporary synchronization of the satellite signal with the carrier phase in the satellite signal receiver when a momentary interruption in the reception of the satellite signal or a momentary change in the transmission path length due to multipath occurs while the node is observing the satellite signal. This means that the phase data is interrupted and the phase data is shifted (jumped). The cycle slip rate is the rate at which cycle slip occurs. If a node has a high cycle slip rate, that node is unreliable. The lower the cycle slip rate, the better.
 以下、測位精度に関するトレーサビリティの情報に関する、あるノード(中間基準局であることを想定)の動作例を説明する。 The operation example of a certain node (assuming that it is an intermediate reference station) regarding traceability information related to positioning accuracy will be described below.
 (動作例1)
 当該ノードは、自身の信頼性の情報と搬送波位相測位の情報に基づいて、測位精度に関するトレーサビリティの情報を決定し、それを直接の下位ノードに通知する。また、測位精度に関するトレーサビリティの情報が、例えば、「0」か「1」で示される簡単な情報であってもよい。ここで、「0」は、マスタ基準局へのトレーサビリティが絶たれたことを示す情報であり、「1」は、マスタ基準局へのトレーサビリティがあることを示す情報である。
(Operation example 1)
The node determines traceability information regarding positioning accuracy based on its own reliability information and carrier phase positioning information, and notifies the traceability information directly to the lower node. Further, the traceability information regarding the positioning accuracy may be, for example, simple information indicated by "0" or "1". Here, "0" is information indicating that the traceability to the master reference station is cut off, and "1" is information indicating that there is traceability to the master reference station.
 直接の上位ノードから、「0」(マスタ基準局へのトレーサビリティが絶たれたことを示す情報)を受信した当該ノードは、直接の上位ノードを用いた搬送波位相測位の状態や、自身の信頼性の情報に関わらずに、「0」(マスタ基準局へのトレーサビリティが絶たれたことを示す情報)を直接の下位ノードに対して通知する。 Upon receiving "0" (information indicating that traceability to the master reference station has been cut off) from the direct higher-level node, the node concerned has the state of carrier phase positioning using the direct higher-level node and its own reliability. Regardless of the information, "0" (information indicating that traceability to the master reference station has been cut off) is notified directly to the lower node.
 直接の上位ノードから、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を受信した当該ノードは、直接の上位ノードを用いた搬送波位相測位の状態がFIXであり、かつ、自身の信頼性が例えば閾値以上に良好であれば、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を直接の下位ノードに対して通知する。 The node that received "1" (information indicating that it has traceability to the master reference station) from the direct upper node has the carrier phase positioning state of FIX using the direct upper node and owns itself. If the reliability is, for example, better than the threshold value, "1" (information indicating that there is traceability to the master reference station) is notified directly to the lower node.
 直接の上位ノードから、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を受信した当該ノードは、"直接の上位ノードを用いた搬送波位相測位の状態がFIXであり、かつ、自身の信頼性が例えば閾値以上に良好"ではない場合、「0」(マスタ基準局へのトレーサビリティが絶たれたことを示す情報)を直接の下位ノードに対して通知する。 The node that received "1" (information indicating that it has traceability to the master reference station) from the direct superior node "is in the state of carrier phase positioning using the direct superior node is FIX, and is itself. If the reliability of is not better than the threshold, for example, "0" (information indicating that the traceability to the master reference station is cut off) is notified to the direct lower node.
 FIXが得られることは信頼性が高い場合に生じることと推定すれば、下記のように、信頼性を用いないこととしてもよい。 If it is presumed that the acquisition of FIX occurs when the reliability is high, the reliability may not be used as described below.
 すなわち、この場合、直接の上位ノードから、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を受信した当該ノードは、直接の上位ノードを用いた搬送波位相測位の状態がFIXであれば、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を直接の下位ノードに対して通知する。また、直接の上位ノードから、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を受信した当該ノードは、直接の上位ノードを用いた搬送波位相測位の状態がFIXでなければ、「0」(マスタ基準局へのトレーサビリティが絶たれたことを示す情報)を直接の下位ノードに対して通知する。 That is, in this case, the node that has received "1" (information indicating that it has traceability to the master reference station) from the direct upper node has the carrier phase phase positioning state using the direct upper node FIX. For example, "1" (information indicating that there is traceability to the master reference station) is notified directly to the lower node. Further, the node that has received "1" (information indicating that it has traceability to the master reference station) from the direct higher-level node has "1" (information indicating that there is traceability to the master reference station), unless the state of carrier phase positioning using the direct higher-level node is FIX. 0 ”(information indicating that traceability to the master reference station has been cut off) is notified to the direct lower node.
 なお、着目するノードが移動体の中間基準局である場合において、当該ノードは、直接の上位ノードを用いた搬送波位相測位の状態がFIXでなければ、直ちに直接の下位ノードに対して、自身が「利用不可(Do not Use)」を伝える情報を送信する。「利用不可(Do not Use)」を伝える情報を受信したノードは、その移動体を用いた搬送波位相測位を停止するとともに、「利用不可(Do not Use)」を伝える情報を直接の下位ノードに対して通知する。なお、この動作は、ノードの種類(移動体か固定局か)に関わらずに行うこととしてもよい。 In addition, when the node of interest is the intermediate reference station of the mobile body, if the state of the carrier phase positioning using the direct upper node is not FIX, the node immediately responds to the direct lower node by itself. Send information that tells you "Not available (Do not Use)". The node that receives the information that conveys "Unavailable (Do not Use)" stops the carrier phase positioning using the moving body, and at the same time, transfers the information that conveys "Unavailable (Do not Use)" to the lower node directly. Notify against. Note that this operation may be performed regardless of the type of node (mobile or fixed station).
 (動作例2)
 動作例2では、着目するノードが固定局の中間基準局であるとする。
(Operation example 2)
In operation example 2, it is assumed that the node of interest is an intermediate reference station of a fixed station.
 当該ノードは、自身の信頼性の情報と搬送波位相測位の情報に基づいて、測位精度に関するトレーサビリティの情報を決定し、それを直接の下位ノードに対して通知する。また、動作例1と同様に、「0」は、マスタ基準局へのトレーサビリティが絶たれたことを示す情報であり、「1」は、マスタ基準局へのトレーサビリティがあることを示す情報であるとする。 The node determines traceability information related to positioning accuracy based on its own reliability information and carrier phase positioning information, and notifies it directly to the lower node. Further, as in the operation example 1, "0" is information indicating that the traceability to the master reference station is cut off, and "1" is information indicating that the traceability to the master reference station is present. ..
 当該ノードは、直接の上位ノードから、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を受信している状態から、「0」(マスタ基準局へのトレーサビリティが絶たれたことを示す情報)を受信したとする。 The node receives "1" (information indicating that it has traceability to the master reference station) from a direct higher-level node, and then "0" (indicates that traceability to the master reference station has been cut off). Information) is received.
 当該ノードは、「1」(マスタ基準局へのトレーサビリティがあることを示す情報)を受信しているときに、直接の上位ノードを用いた搬送波位相測位で得られた収束(Fix)解(自身の位置情報)を保持している。当該ノードは、直接の上位ノードから「0」(マスタ基準局へのトレーサビリティが絶たれたことを示す情報)を受信すると、「0」(マスタ基準局へのトレーサビリティが絶たれたことを示す情報)とともに、保持していた位置情報、観測データ、直接の上位ノードを使用した搬送波位相測位状態(FIXか、否か、等)、自身が固定局であることを含む、自身の信頼性の情報を直接の下位ノードに対して送信する。 When the node receives "1" (information indicating that it has traceability to the master reference station), the convergent (Fix) solution (own own) obtained by carrier phase positioning using a direct higher-level node. Position information) is held. When the node receives "0" (information indicating that traceability to the master reference station has been cut off) from a direct higher-level node, it together with "0" (information indicating that traceability to the master reference station has been cut off). , Position information held, observation data, carrier phase positioning status using direct upper node (FIX or not, etc.), own reliability information including own fixed station directly Send to the subordinate nodes of.
 当該直接の下位ノードは、収束(Fix)解が得られた時点において固定局である直接の上位ノードの信頼性等が十分であれば、得られた位置情報は信頼できるものとして、例えば、直接の下位ノードに対して、「マスタ基準局へのトレーサビリティは絶たれているが、信頼できる固定局へのトレーサビリティを有する」ことを示すトレーサビリティの情報(これをここでは「2」とする)を送信する。 As for the direct lower node, if the reliability of the direct upper node which is a fixed station at the time when the convergence (Fix) solution is obtained is sufficient, the obtained position information can be regarded as reliable, for example, directly. Sends traceability information (this is referred to as "2" here) indicating that "traceability to the master reference station is cut off, but traceability to a reliable fixed station is provided" to the subordinate nodes of. ..
 直接の上位ノードから、「2」を受信したノードは、直接の上位ノードを用いた搬送波位相測位の状態がFIXであり、かつ、自身の信頼性が例えば閾値以上に良好であれば、「2」(信頼できる固定局へのトレーサビリティがあることを示す情報)を直接の下位ノードに対して通知する。 A node that receives "2" from a direct higher node has "2" if the state of carrier phase positioning using the direct higher node is FIX and its reliability is, for example, better than the threshold. (Information indicating that there is traceability to a reliable fixed station) is notified directly to the subordinate nodes.
 直接の上位ノードから、「2」を受信したノードは、"直接の上位ノードを用いた搬送波位相測位の状態がFIXであり、かつ、自身の信頼性が例えば閾値以上に良好"ではない場合、「0」(マスタ基準局へのトレーサビリティがあることを示す情報)を直接の下位ノードに対して通知する。 A node that receives "2" from a direct higher node is not "the state of carrier phase positioning using the direct higher node is FIX, and its reliability is not better than the threshold, for example". Notify "0" (information indicating that there is traceability to the master reference station) directly to the lower node.
 FIXが得られることは信頼性が高いことと推定すれば、下記のように、信頼性を用いないこととしてもよい。 Assuming that obtaining FIX is highly reliable, reliability may not be used as described below.
 すなわち、この場合、直接の上位ノードから、「2」を受信したノードは、直接の上位ノードを用いた搬送波位相測位の状態がFIXであれば、「2」(信頼できる固定局へのトレーサビリティがあることを示す情報)を直接の下位ノードに対して通知する。また、直接の上位ノードから、「2」(信頼できる固定局へのトレーサビリティがあることを示す情報)を受信したノードは、直接の上位ノードを用いた搬送波位相測位の状態がFIXでなければ、「0」(トレーサビリティが絶たれたことを示す情報)を直接の下位ノードに対して通知する。 That is, in this case, the node that receives "2" from the direct upper node has "2" (traceability to a reliable fixed station) if the state of carrier phase positioning using the direct upper node is FIX. Information indicating that there is) is notified to the direct lower node. In addition, the node that received "2" (information indicating that there is traceability to a reliable fixed station) from the direct upper node must be in the state of carrier phase positioning using the direct upper node unless it is FIX. Notify the direct lower node of "0" (information indicating that traceability has been cut off).
 (パスの構築方法について)
 マスタ基準局、1以上の中間基準局、及び移動局を接続するパスは、マニュアルでの操作によって、各中間基準局及び移動局に上位のノードが設定されてもよいし、自動で設定されてもよい。自動で設定される場合は、各ノードの自律的動作で構築されることとしてもよいし、ネットワークを介して、マスタ基準局、1以上の中間基準局、及び移動局となる各ノードから情報を収集することのできる制御装置300がパスを決定し、各ノードに直接の上位ノードを通知することとしてもよい。以下、各ノードの自律的動作でパスが構築される例をパス構築方法例1として説明し、制御装置300がパスを構築する例をパス構築方法例2として説明する。
(How to build a path)
The path connecting the master reference station, one or more intermediate reference stations, and the mobile station may be set by a manual operation to set a higher node in each intermediate reference station and the mobile station, or may be set automatically. When it is set automatically, it may be constructed by the autonomous operation of each node, or information is collected from each node that becomes a master reference station, one or more intermediate reference stations, and a mobile station via a network. A capable control device 300 may determine the path and notify each node of the direct higher-level node. Hereinafter, an example in which a path is constructed by the autonomous operation of each node will be described as a path construction method example 1, and an example in which the control device 300 constructs a path will be described as a path construction method example 2.
   <パス構築方法例1>
 図3を参照してパス構築方法例1を説明する。ここでは3つのノードがあり、ノード100がマスタ基準局となるノードであり、ノード101が中間基準局となるノードであり、ノード200が移動局であるとする。また、ノード100は、自身が、マスタ基準局になれるノードであることを予め知っているとする。つまり、ノード100は基準局を探索(選択)する必要はない。ノード101は固定局であってもよいし、移動体であってもよい。
<Example of path construction method 1>
Example 1 of the path construction method will be described with reference to FIG. Here, it is assumed that there are three nodes, node 100 is a node serving as a master reference station, node 101 is a node serving as an intermediate reference station, and node 200 is a mobile station. Further, it is assumed that the node 100 knows in advance that it is a node that can be a master reference station. That is, the node 100 does not need to search (select) the reference station. The node 101 may be a fixed station or a mobile body.
 ノード100以外の各ノードは、基準局として自身の直接の上位ノードを選択するために必要な情報を他の各ノードから収集し、保持しているものとする。この情報には基準局の「ドメイン」を識別するための情報が含まれていてもよい。「ドメイン」は例えば、パスを同一の事業者の基準局で構成するために、ノードが基準局を選択する際に基準局の管理者を識別する、といった用途において使用される。また、ノードの情報へのアクセス権限が管理されていてもよい。 It is assumed that each node other than the node 100 collects and holds the information necessary for selecting its own direct superior node as the reference station from each of the other nodes. This information may include information for identifying the "domain" of the reference station. A "domain" is used, for example, to identify the administrator of a reference station when a node selects a reference station in order to configure a path with reference stations of the same operator. In addition, the access authority to the information of the node may be managed.
 (a)に示す状態は、まだ接続関係が存在しない状態である。まず、ノード101が、収集したノード100の情報とノード200の情報に基づいて、直接の上位ノードをノード100として決定する。この状態は(b)に示されている。 The state shown in (a) is a state in which a connection relationship does not yet exist. First, the node 101 determines the direct upper node as the node 100 based on the collected information of the node 100 and the information of the node 200. This state is shown in (b).
 (b)になった時点で、前述した動作(上位ノードから下位ノードへの測位に関する情報の通知等)が行われており、ノード200は、直接の上位ノードを選択するにあたって、その情報も使用することができる。 At the time of (b), the above-mentioned operation (notification of information on positioning from the upper node to the lower node, etc.) is performed, and the node 200 also uses that information when directly selecting the upper node. can do.
 例えば、ノード200は、ノード101から得られる、上位ノード(ノード100)を用いた搬送波位相測位で収束(Fix)解が得られているという情報(マスタ基準局へのトレーサビリティがあるという情報)、及び、ノード101の信頼性が高く、かつノード101との間の基線長がノード100との間の基線長と比較して十分に短い、等の情報に基づいて、ノード101を直接の上位ノードとして決定する。これにより、(c)に示すパスが構築される。このような動作を繰り返すことで、より長いパスも構築可能である。 For example, the node 200 has information that a convergent (Fix) solution has been obtained by carrier phase positioning using a higher-level node (node 100) obtained from the node 101 (information that it has traceability to the master reference station), and , The reliability of the node 101 is high, and the baseline length between the node 101 and the node 101 is sufficiently short compared to the baseline length between the node 100 and the node 101. decide. As a result, the path shown in (c) is constructed. By repeating such an operation, a longer path can be constructed.
 もしも、ノード101が故障した場合には、ノード200は、その故障を検知すると、直接の上位ノードとして別のノードを選択する。このように、各ノードは、上位のノードが故障したことを検知すると、自律的に別のノードを選択するので、自律的にパスがダイナミックに切り替わる。 If the node 101 fails, the node 200 detects the failure and selects another node as a direct upper node. In this way, when each node detects that the upper node has failed, it autonomously selects another node, so that the path is autonomously switched dynamically.
   <パス構築方法例2>
 図4を参照してパス構築方法例2を説明する。パス構築方法例2では、制御装置300が備えられる。制御装置300は、モバイルネットワークやインターネット等の通信ネットワークを介して各ノードと通信可能である。
<Path construction method example 2>
Example 2 of the path construction method will be described with reference to FIG. In the path construction method example 2, the control device 300 is provided. The control device 300 can communicate with each node via a communication network such as a mobile network or the Internet.
 ここでも3つのノードがあり、ノード100がマスタ基準局となるノードであり、ノード101が中間基準局となるノードであり、ノード200が移動局であるとする。 Here, too, there are three nodes, node 100 is a node serving as a master reference station, node 101 is a node serving as an intermediate reference station, and node 200 is a mobile station.
 制御装置300は、各ノードについて、直接の上位ノードを基準局として選択するために必要な情報を各ノードから収集する(S1、S2、S3)。 For each node, the control device 300 collects information necessary for selecting a direct higher-level node as a reference station from each node (S1, S2, S3).
 制御装置300は、例えば、ノード100が唯一の電子基準点であることを把握すると、ノード100をマスタ基準局100として一意に決定する。 When the control device 300 grasps that the node 100 is the only electronic reference point, for example, the node 100 is uniquely determined as the master reference station 100.
 以降は、図3で説明した選択処理を制御装置300が実行する。すなわち、まず、ノード101に関して、制御装置300は、収集したノード100の情報とノード200の情報に基づいて、直接の上位ノードをノード100として決定する。この状態は図3(b)に示されている。 After that, the control device 300 executes the selection process described with reference to FIG. That is, first, regarding the node 101, the control device 300 determines the direct higher-level node as the node 100 based on the collected information of the node 100 and the information of the node 200. This state is shown in FIG. 3 (b).
 (b)の選択がなされた時点で、制御装置300は、ノード101に対し、ノード100がマスタ基準局であり、ノード100が、ノード101に対する直接の上位ノードとして選択されたことを通知する。 At the time when the selection of (b) is made, the control device 300 notifies the node 101 that the node 100 is the master reference station and the node 100 is selected as a direct superior node to the node 101.
 それにより、前述した動作(上位から下位への測位に関する情報の通知等)が行われ、その通知情報は、ノード101から制御装置300に通知される。制御装置300は、ノード200に対する直接の上位ノードを選択するにあたって、その情報も使用することができる。 As a result, the above-mentioned operation (notification of information on positioning from upper to lower) is performed, and the notification information is notified from the node 101 to the control device 300. The control device 300 can also use the information in selecting a direct superior node with respect to the node 200.
 例えば、制御装置300は、ノード101から得られる、上位ノード(ノード100)を用いた搬送波位相測位で収束(Fix)解が得られているという情報(マスタ基準局へのトレーサビリティがあるという情報)、及び、ノード200に関して、ノード101の信頼性が高く、かつノード101との間の基線長がノード100との間の基線長と比較して十分に短い等の情報に基づいて、ノード101をノード200に対する直接の上位ノードとして決定する。これにより、図3(c)に示すパスが構築される。このような動作を繰り返すことで、より長いパスも構築可能である。 For example, the control device 300 has information that a convergent (Fix) solution has been obtained by carrier phase positioning using a higher-level node (node 100) obtained from node 101 (information that it has traceability to a master reference station). And, regarding the node 200, the node 101 is set to the node based on the information that the reliability of the node 101 is high and the baseline length with the node 101 is sufficiently shorter than the baseline length with the node 100. Determined as a direct superior node to 200. As a result, the path shown in FIG. 3C is constructed. By repeating such an operation, a longer path can be constructed.
 もしも、ノード101が故障した場合には、制御装置300は、その故障を検知すると、ノード200に対する直接の上位ノードとして別のノードを選択する。このように、制御装置300は、パスを構成するいずれかのノードが故障したことを検知すると、そのノードを上位ノードとして使用していたノードに対して、別のノードを選択するので、パスがダイナミックに切り替わる。 If the node 101 fails, the control device 300 detects the failure and selects another node as a direct superior node to the node 200. In this way, when the control device 300 detects that any of the nodes constituting the path has failed, it selects another node for the node that used that node as the higher-level node, so that the path becomes It switches dynamically.
   (ノード選択方法について)
 次に、制御装置300が、あるノード(対象ノード)の直接の上位ノード(直接上位ノード)を選択する方法(判断基準)の例を説明する。各ノードが、自律的に自身の直接上位ノードを選択する場合も同様の選択方法が適用される。
(About node selection method)
Next, an example of a method (determination criterion) in which the control device 300 selects a direct superior node (direct superior node) of a certain node (target node) will be described. The same selection method is applied when each node autonomously selects its own direct superior node.
 以下、制御装置300による直接上位ノードの選択の判断基準(判断方法)の例を説明する。以下、便宜上、個々の判断基準で直接上位ノードを選択する場合の例を説明し、その後にスコア化等の判断基準の組み合わせの例について説明する。以下の各判断方法で用いられる情報は、各ノードから収集され、制御装置300のデータ格納部330が保持している。 Hereinafter, an example of a judgment criterion (judgment method) for selecting a direct upper node by the control device 300 will be described. Hereinafter, for convenience, an example in which a higher-order node is directly selected based on individual judgment criteria will be described, and then an example of a combination of judgment criteria such as scoring will be described. The information used in each of the following determination methods is collected from each node and is held by the data storage unit 330 of the control device 300.
  <(例1)基線長>
 例1では、制御装置300は、各ノードの位置情報に基づき算出された、ノード間の直線距離(基線長)に基づき、対象ノードの直接上位ノードを選択する。
<(Example 1) Baseline length>
In Example 1, the control device 300 selects a directly higher node of the target node based on the linear distance (baseline length) between the nodes calculated based on the position information of each node.
 例えば、基線長の閾値を設け、その閾値の範囲にある1以上のノードを選択するといったように、候補を絞る際に基線長を使用することができる。また、基線長以外の判断基準によって複数のノードが選択された場合において、当該複数のノードの中から基線長が最短のノードを選択するといったように、最終的に直接の上位ノードを決定する際に基線長を使用することもできる。 For example, the baseline length can be used when narrowing down the candidates, such as setting a threshold value for the baseline length and selecting one or more nodes within the threshold range. In addition, when a plurality of nodes are selected by a criterion other than the baseline length, the node having the shortest baseline length is selected from the plurality of nodes, and finally the direct upper node is determined. Baseline length can also be used for.
  <(例2)位置精度>
 対象ノードの搬送波位相測位において、直接上位ノードの位置精度が低いと、対象ノードの搬送波位相測位の測位解の精度も低くなる。そこで、例2では、制御装置300は、ノードの位置精度に基づいて、直接上位ノードを選択する。
<(Example 2) Position accuracy>
In the carrier phase positioning of the target node, if the position accuracy of the direct upper node is low, the accuracy of the positioning solution of the carrier phase positioning of the target node is also low. Therefore, in Example 2, the control device 300 directly selects the upper node based on the position accuracy of the node.
 例えば、各ノードが、自身の位置精度の指標値(精度指標値)を保持し、その精度指標値を制御装置300に通知し、制御装置300はその精度指標値を保持しているとする。 For example, it is assumed that each node holds its own position accuracy index value (accuracy index value), notifies the control device 300 of the accuracy index value, and the control device 300 holds the accuracy index value.
 一例として、精度指標値が0~100の値をとり、値が大きいほど精度が良い(高い)とする。対象ノードに対する直接上位ノードの候補として、ノードA、ノードB、ノードC、ノードDの4つのノードがあるとし、それぞれの精度指標値は、ノードA=90、ノードB=85、ノードC=75、ノードD=60であるとする。 As an example, the accuracy index value takes a value from 0 to 100, and the larger the value, the better (higher) the accuracy. Assuming that there are four nodes, node A, node B, node C, and node D, as candidates for direct superior nodes to the target node, the accuracy index values of each are node A = 90, node B = 85, and node C = 75. , Node D = 60.
 例えば、制御装置300は、位置精度が最も良いノードとしてノードAを選択する。あるいは、精度指標値の閾値が設定され、精度がその閾値以上のノードを選択することとしてもよい。一例として、閾値=80とすると、制御装置300は、ノードAとノードBを選択する。 For example, the control device 300 selects node A as the node with the best position accuracy. Alternatively, a threshold value of the accuracy index value may be set, and a node whose accuracy is equal to or higher than the threshold value may be selected. As an example, assuming that the threshold value is 80, the control device 300 selects the node A and the node B.
 上記の精度指標値の設定に関して、例えば、ノードが電子基準点である場合には、精度指標値=100といった高い値が設定される。また、ノード(電子基準点以外のノード)が、電子基準点を直接に参照して(電子基準点に直接従属して)、搬送波位相測位を行うことで自身の位置情報を得ている場合、電子基準点へのトレーサビリティが高いため、例えば、精度指標値=90といった高い値が設定される。 Regarding the setting of the accuracy index value described above, for example, when the node is an electronic reference point, a high value such as accuracy index value = 100 is set. In addition, when a node (a node other than the electronic reference point) directly refers to the electronic reference point (directly subordinate to the electronic reference point) and performs carrier phase positioning to obtain its own position information. Since the traceability to the electronic reference point is high, a high value such as accuracy index value = 90 is set.
 また、例えば、ノード(電子基準点以外のノード)が、「電子基準点に従属して搬送波位相測位を行うことで自身の位置情報を得ているノード」を用いて、搬送波位相測位を行うことで自身の位置情報を得ているノードである場合、電子基準点へのトレーサビリティが上記の場合よりも低下するため、例えば、精度指標値=80といった値が設定される。 Further, for example, a node (a node other than the electronic reference point) performs carrier wave phase positioning using "a node that obtains its own position information by performing carrier wave phase positioning depending on the electronic reference point". In the case of a node that has obtained its own position information in, the traceability to the electronic reference point is lower than in the above case, so for example, a value such as accuracy index value = 80 is set.
 また、例えば、ノードが移動体である場合には、通常、ノードが固定局である場合よりも精度指標値としてより低い値が設定される。ただし、移動体が、絶対位置測位部(GNSS搬送波位相測位手段)とともに、高精度の相対位置測位部(IMU(Inertial Measurement Unit)、LiDAR(Light Detection and Ranging)、等)を備え、それらを連携させて動作させる仕組みを備えることで、常時、精度の高い測位を行うことができる場合には、精度指標値としてはこれを考慮した、より高い値が設定される。 Further, for example, when the node is a mobile body, a lower value is usually set as the accuracy index value than when the node is a fixed station. However, the moving body is equipped with a high-precision relative positioning unit (IMU (Inertial Measurement Unit), LiDAR (Light Detection and Ranking), etc.) together with an absolute positioning unit (GNSS carrier phase positioning means), and cooperates with them. If it is possible to perform highly accurate positioning at all times by providing a mechanism for operating the unit, a higher value is set as the accuracy index value in consideration of this.
 上述した精度指標値の設定は、ノードの保有者、あるいは、制御装置300のサービス提供者等が、マニュアルで(手動で)設定してもよいし、上記の例で示したようなルールをプログラム化して、ノード自身が、あるいは、制御装置300が、自動的に精度指標値の設定を行うこととしてもよい。また、精度指標値は動的に設定されてもよい。 The above-mentioned accuracy index value may be set manually (manually) by the node owner, the service provider of the control device 300, or the like, or the rule as shown in the above example may be programmed. Then, the node itself or the control device 300 may automatically set the accuracy index value. Further, the accuracy index value may be set dynamically.
 ノードの位置精度に基づいて直接上位ノードを選択する場合に、上記のように精度指標値を用いることは一例である。精度指標値を用いずに、例えば、マスタ基準局(電子基準点等)へのトレーサビリティに関する情報(電子基準点まで何ホップ離れているか、等)に応じて、電子基準点へのトレーサビリティが高いほど(電子基準点へのホップ数が小さいほど)、位置精度が良いとみなしてノードを選択することとしてもよい。 It is an example to use the accuracy index value as described above when directly selecting the upper node based on the position accuracy of the node. The higher the traceability to the electronic reference point, the higher the traceability to the electronic reference point, for example, according to the information on the traceability to the master reference station (electronic reference point, etc.) (how many hops are away from the electronic reference point, etc.) without using the accuracy index value ( The smaller the number of hops to the electronic reference point), the better the position accuracy may be considered and the node may be selected.
 <(例3)衛星信号受信状態>
 基本的に、対象ノードが良好に受信している衛星信号と、直接上位ノードが良好に受信している衛星信号との一致度合いが高いほうが、それが低い場合よりも、対象ノードによる搬送波位相測位演算の収束(Fix)率や測位解の精度は高くなる。例3はこのような観点に基づく例であり、以下、例3-1~例3-3を説明する。なお、例3-1、例3-2、例3-3はそれぞれ単独で使用してもよいし、いずれか複数(全部を含む)を組み合わせて適用してもよい。
<(Example 3) Satellite signal reception status>
Basically, carrier phase positioning by the target node when the degree of coincidence between the satellite signal well received by the target node and the satellite signal well received by the direct superior node is higher than when it is low. The convergence (Fix) rate of the calculation and the accuracy of the positioning solution are high. Example 3 is an example based on such a viewpoint, and Examples 3-1 to 3-3 will be described below. In addition, Example 3-1 and Example 3-2 and Example 3-3 may be used individually, or a plurality of them (including all of them) may be applied in combination.
 <例3-1>
 例3-1では、制御装置300は、対象ノードが良好に受信している衛星信号と、直接上位ノードの候補となる他のノードが良好に受信している衛星信号との一致の度合いに基づいて、対象ノードに対する直接上位ノードを選択する。なお、「良好に受信している」ことは、例えば、衛星信号の受信品質(例:CNR(Carrier-to-Noise Ratio:キャリア対雑音比)やSNR(Signal-to-Noise Ratio:信号対雑音比))が所定閾値以上であることで判定することができる。以下、例として、受信品質としてCNRを用いる。
<Example 3-1>
In Example 3-1 the control device 300 is based on the degree of coincidence between the satellite signal well received by the target node and the satellite signal well received by another node that is a direct candidate for the superior node. Then, select the upper node directly for the target node. It should be noted that "good reception" means, for example, reception quality of satellite signals (eg, CNR (Carrier-to-Noise Ratio: carrier-to-noise ratio)) or SNR (Signal-to-Noise Ratio: signal-to-noise ratio). The ratio)) can be determined by being equal to or greater than a predetermined threshold. Hereinafter, as an example, CNR is used as the reception quality.
 例えば、各ノードは、受信した衛星信号の識別情報(コード)と、そのCNRを、リアルタイムの情報として制御装置300に送信する。制御装置300はその情報を用いて直接上位ノードを選択する。 For example, each node transmits the received satellite signal identification information (code) and its CNR to the control device 300 as real-time information. The control device 300 directly selects a higher-level node using the information.
 一例として、直接上位ノードの候補となるノードがノードX、ノードYの2つあるとし、ノードX、ノードY、対象ノードがそれぞれ閾値以上のCNRで受信した衛星信号が(ノードX=S1、S2、S3、S4、S5)、(ノードY=S3、S4、S5、S6、S7、S8)、(対象ノード=S1、S2、S5、S6、S7、S8)であるとする。 As an example, suppose that there are two nodes, node X and node Y, which are candidates for direct higher-level nodes, and the satellite signals received by the node X, node Y, and the target node at the CNR equal to or higher than the threshold value are (node X = S1, S2). , S3, S4, S5), (node Y = S3, S4, S5, S6, S7, S8), (target node = S1, S2, S5, S6, S7, S8).
 この場合、ノードXとノードYのうち、ノードYのほうが対象ノードとの衛星信号の一致度合いが高い(一致している衛星信号の数が多い)ので、制御装置300は、ノードXとノードYのうちノードYを直接上位ノードとして選択する。 In this case, of the node X and the node Y, the node Y has a higher degree of coincidence of the satellite signals with the target node (the number of matching satellite signals is larger), so that the control device 300 can use the node X and the node Y. Of these, node Y is directly selected as the upper node.
 上記の例では、CNRが所定閾値以上の衛星信号を用いているが、その理由は、CNRの高い衛星信号が、可視衛星信号(建物等に遮られることなくGNSS衛星から直接に届く信号)であると推定できるからである。 In the above example, the satellite signal whose CNR is equal to or higher than a predetermined threshold is used, because the satellite signal having a high CNR is a visible satellite signal (a signal that arrives directly from the GNSS satellite without being blocked by a building or the like). This is because it can be estimated that there is.
 CNRを用いることに代えて、直接上位ノードの候補となる各ノードの位置情報と、対象ノードの位置情報と、各GNSS衛星の軌道情報と、それぞれのノードの周辺の構造物の地理空間情報(ダイナミックマップ、3次元建物地図、天空画像情報、等)とに基づいて、現在時刻での対象ノードと直接上位ノードの候補となる各ノードそれぞれの現在時刻での可視衛星信号を算出し、それに基づいて直接上位ノードの選択を行ってもよい。 Instead of using CNR, the position information of each node that is a direct candidate for the upper node, the position information of the target node, the orbit information of each GNSS satellite, and the geospatial information of the structure around each node ( Based on the dynamic map, 3D building map, sky image information, etc.), the visible satellite signal at the current time of each node that is a candidate for the target node at the current time and the direct superior node is calculated, and based on that. You may directly select the upper node.
 <例3-2>
 例3-2では、制御装置300は、対象ノードが良好に受信している衛星信号と、直接上位ノードの候補となるノードが良好に受信している衛星信号とのうち、一致する衛星信号により得られるDOP(Dilution of Precision)値に基づいて直接上位ノードを選択する。DOP値は、衛星の配置状態を指標化した値であり、値が小さいほど測位精度が高い傾向を示す。
<Example 3-2>
In Example 3-2, the control device 300 uses a satellite signal that matches a satellite signal that is well received by the target node and a satellite signal that is well received by the node that is a direct candidate for the higher-level node. The upper node is directly selected based on the obtained DOP (Division of Precision) value. The DOP value is a value that indexes the arrangement state of satellites, and the smaller the value, the higher the positioning accuracy tends to be.
 例3-2における「良好に受信している衛星信号」とは、受信品質(CNR、SNR等)に基づく衛星信号であってもよいし、直接上位ノードの候補となる各ノードの位置情報と、対象ノードの位置情報と、GNSS衛星の軌道情報、それぞれのノードの周辺の構造物の地理空間情報、等から計算で得られる可視衛星信号であってもよい。 The “goodly received satellite signal” in Example 3-2 may be a satellite signal based on reception quality (CNR, SNR, etc.), or may be a position information of each node that is a direct candidate for a higher-level node. , The visible satellite signal obtained by calculation from the position information of the target node, the orbit information of the GNSS satellite, the geospatial information of the structures around each node, and the like.
 一例として、直接上位ノードの候補となるノードがノードX、ノードYの2つあるとし、ノードX、ノードY、対象ノードがそれぞれ良好に受信している衛星信号が(ノードX=S1、S2、S4、S5)、(ノードY=S3、S5、S6、S7、S8)、(対象ノード=S1、S2、S3、S4、S5、S6、S7、S8)であるとする。 As an example, suppose that there are two nodes, node X and node Y, that are directly candidates for higher-level nodes, and the satellite signals that node X, node Y, and the target node are receiving well are (nodes X = S1, S2, S4, S5), (node Y = S3, S5, S6, S7, S8), (target node = S1, S2, S3, S4, S5, S6, S7, S8).
 このとき、ノードXと対象ノードとの間で一致する衛星信号はS1、S2、S4、S5である。ノードYと対象ノードとの間で一致する衛星信号はS3、S5、S6、S7、S8である。もしも、S1、S2、S4、S5でのDOP値が2であり、S3、S5、S6、S7、S8でのDOP値が3である場合、制御装置300は、ノードXとノードYのうち、ノードXを直接上位ノードとして選択する。 At this time, the satellite signals that match between the node X and the target node are S1, S2, S4, and S5. The satellite signals that match between the node Y and the target node are S3, S5, S6, S7, and S8. If the DOP value in S1, S2, S4, S5 is 2 and the DOP value in S3, S5, S6, S7, S8 is 3, the control device 300 is among the node X and the node Y. Select node X directly as the superior node.
 <例3-3>
 直接上位ノードと対象ノードの使用する衛星信号の衛星種別及び周波数帯の一致度合いが高ければ、対象ノードの搬送波位相測位解の精度が高いことが期待できる。そこで、例3-3では、制御装置300は、対象ノードが使用する衛星種別及び周波数帯と、直接上位ノードの候補の各ノードが使用する衛星種別及び周波数帯の一致度合いに基づいて、対象ノードに対する直接上位ノードを選択する。
<Example 3-3>
If the degree of coincidence between the satellite type and the frequency band of the satellite signals used by the direct upper node and the target node is high, it can be expected that the accuracy of the carrier phase positioning solution of the target node is high. Therefore, in Example 3-3, the control device 300 uses the target node based on the degree of coincidence between the satellite type and frequency band used by the target node and the satellite type and frequency band directly used by each candidate node of the upper node. Select the direct upper node for.
 一例として、直接上位ノードの候補のノードがノードX、ノードYの2つあるとし、ノードX、ノードY、対象ノードがそれぞれ使用する衛星種別(A、B、C)及び周波数帯(F1、F2、F3)を(ノードX=AF1、BF1、BF2、CF1、CF2、CF3)、(ノードY=AF1、AF2、AF3、BF1、BF2、CF1)、(対象ノード=AF1、AF2、BF1、BF2、CF1)であるとする。 As an example, assuming that there are two direct upper node candidate nodes, node X and node Y, the satellite type (A, B, C) and frequency band (F1, F2) used by node X, node Y, and the target node, respectively. , F3) (node X = A F1 , B F1 , B F2 , C F1 , C F2 , C F3 ), (node Y = A F1 , A F2 , A F3 , B F1 , B F2 , C F1 ), (Target nodes = A F1 , A F2 , B F1 , B F2 , C F1 ).
 この場合、ノードXとノードYのうち、ノードYのほうが対象ノードとの一致度合いが高い(一致している衛星種別、周波数帯の数が多い)ので、制御装置300は、ノードXとノードYのうちノードYを直接上位ノードとして選択する。 In this case, of the node X and the node Y, the node Y has a higher degree of coincidence with the target node (the number of matching satellite types and frequency bands is larger), so that the control device 300 can use the node X and the node Y. Of these, node Y is directly selected as the upper node.
 <(例4)信頼性>
 対象ノードが搬送波位相測位を行うために用いるノードの信頼性が高いほうが、信頼性が低い場合よりも、安定して高い測位精度を保つ観点で好ましい。
<(Example 4) Reliability>
It is preferable that the node used by the target node for performing carrier phase positioning has high reliability from the viewpoint of maintaining stable and high positioning accuracy than when the reliability is low.
 信頼性の指標として、前述したように、アベイラビリティの実績、ネットワークの品質(リンク状態、パケット損失率、伝搬遅延等)、干渉信号の受信状況、収束(Fix)率、サイクルスリップ率、収束(Fix)状態、等がある。なお、これらは例であり、これら以外の指標が信頼性の指標として用いられてもよい。 As the reliability index, as described above, availability performance, network quality (link state, packet loss rate, propagation delay, etc.), interference signal reception status, convergence (Fix) rate, cycle slip rate, convergence (Fix) ) There are conditions, etc. These are examples, and indicators other than these may be used as reliability indicators.
 これらそれぞれの情報は、リアルタイムの情報として各ノードから制御装置300に送信される。ただし、リアルタイム性の低い情報(例えばアベイラビリティの実績)については、例えば、各ノードを管理するサーバ等から制御装置300に送信されることとしてもよい。制御装置300は、候補の複数のノードの中で、信頼性の最も高いノードを選択する。あるいは、制御装置300は、信頼性が予め定めた閾値よりも高い1以上のノードを選択する。 Each of these pieces of information is transmitted from each node to the control device 300 as real-time information. However, information having low real-time property (for example, actual availability) may be transmitted to the control device 300 from, for example, a server that manages each node. The control device 300 selects the node with the highest reliability from the plurality of candidate nodes. Alternatively, the control device 300 selects one or more nodes whose reliability is higher than a predetermined threshold value.
 上記のアベイラビリティの実績、ネットワークの品質(リンク状態、パケット損失率、伝搬遅延等)、干渉信号の受信状況、収束(Fix)率、サイクルスリップ率、収束(Fix)状態、等は、それぞれ単独で用いてもよいし、いずれか複数(全部を含む)を組み合わせることで、信頼性の1つの指標値を得ることとしてもよい。 The above availability results, network quality (link state, packet loss rate, propagation delay, etc.), interference signal reception status, convergence (Fix) rate, cycle slip rate, convergence (Fix) state, etc. are independent of each other. It may be used, or one index value of reliability may be obtained by combining any one or more (including all).
   <指標の使用例>
 上述した各指標について、それぞれの値や状態そのものを条件として直接上位ノードの選択に使用してもよいし、統一された指標値(ここでは信頼性指標値と呼ぶ)に変換して直接上位ノードの選択に使用してもよい。それぞれの指標値から統一された信頼性指標値への変換はマニュアルで行ってもよいし、ルールを決めて自動で行ってもよい。また、複数の指標値を組み合わせることで1つの信頼性指標値を導出することとしてもよい。例えば、「アベイラビリティ×A+パケットロス率×B+干渉信号強度×C+サイクルスリップ率×D」(A、B、C、Dは予め定めた定数)を信頼性指標値としてもよい。
<Example of index usage>
For each of the above-mentioned indexes, each value or state itself may be used as a condition for directly selecting a higher-level node, or a unified index value (referred to as a reliability index value here) may be directly converted into a higher-level node. May be used to select. The conversion from each index value to a unified reliability index value may be performed manually, or may be performed automatically by determining a rule. Further, one reliability index value may be derived by combining a plurality of index values. For example, "availability x A + packet loss rate x B + interference signal strength x C + cycle slip rate x D" (A, B, C, D are predetermined constants) may be used as the reliability index value.
 一例として、信頼性指標値が0~100の値をとり、値が大きいほど信頼性が高いとする。直接上位ノードの候補として、ノードA、ノードB、ノードC、ノードDの4つのノードがあるとし、それぞれの信頼性指標値は、ノードA=99、ノードB=85、ノードC=75、ノードD=50であるとする。 As an example, the reliability index value takes a value of 0 to 100, and the larger the value, the higher the reliability. Assuming that there are four nodes, node A, node B, node C, and node D, as direct candidates for higher-level nodes, the reliability index values of each are node A = 99, node B = 85, node C = 75, and node. It is assumed that D = 50.
 例えば、制御装置300は、信頼性の最も高いノードとしてノードAを選択する。あるいは、信頼性指標値の閾値が設定され、精度がその閾値以上のノードを選択することとしてもよい。一例として、閾値=80とすると、制御装置300は、ノードAとノードBを選択する。 For example, the control device 300 selects node A as the most reliable node. Alternatively, a node whose reliability index value threshold value is set and the accuracy is equal to or higher than the threshold value may be selected. As an example, assuming that the threshold value is 80, the control device 300 selects the node A and the node B.
 (ノード選択の判断基準を組み合わせて使用する例)
 制御装置300は、少なくとも、上述した例1~例4の判断基準のいずれか複数(又は全部)を組み合わせ、スコア化することで、基線長が閾値以下の複数のノードの中から、対象ノードに対する直接上位ノードを選択することとしてもよい。
(Example of using a combination of node selection criteria)
The control device 300 combines at least any one or more (or all) of the above-mentioned determination criteria of Examples 1 to 4 and scores them to obtain a score for the target node from among a plurality of nodes whose baseline length is equal to or less than the threshold value. You may directly select the upper node.
 例えば、スコアSを「S=基線長指標値×α+位置精度指標値×β+衛星信号受信状態指標値×δ+信頼性指標値×γ」(α、β、δ、γは予め定めた定数)で計算し、Sが最大のノードを選択する。α、β、δ、γは、例えば、予め実験等で決めておく。なお、α、β、δ、γのいずれか1以上の定数は0であってもよい。例えば、基線長は、最初の候補を絞るためだけに使用することとして、上記スコアの算出では、αを0としてよい。つまり、基線長を上記スコアの計算から除いてもよい。また、ユースケースによって、ノード選択のために使用する判断基準の組み合わせを変えてもよい。 For example, the score S is set to "S = baseline length index value x α + position accuracy index value x β + satellite signal reception state index value x δ + reliability index value x γ" (α, β, δ, γ are predetermined constants). Calculate and select the node with the largest S. α, β, δ, and γ are determined in advance by, for example, experiments. The constant of any one or more of α, β, δ, and γ may be 0. For example, the baseline length may be used only to narrow down the first candidate, and α may be set to 0 in the above score calculation. That is, the baseline length may be excluded from the above score calculation. In addition, the combination of judgment criteria used for node selection may be changed depending on the use case.
 (装置構成例)
 図5に、本実施の形態における測位システムを構成するノード200の機能構成図を示す。ノード200は、移動体(移動局)であることを想定しているが、固定局であっても基本的に同じ構成である。
(Device configuration example)
FIG. 5 shows a functional configuration diagram of the nodes 200 constituting the positioning system according to the present embodiment. The node 200 is assumed to be a mobile body (mobile station), but even if it is a fixed station, it has basically the same configuration.
 図5に示すように、ノード200は、情報送受信部210、上位基準局決定部220、データ格納部230、絶対位置測位部240、相対位置測位部250、測位制御部260、出力部270を有する。 As shown in FIG. 5, the node 200 has an information transmission / reception unit 210, a higher reference station determination unit 220, a data storage unit 230, an absolute positioning unit 240, a relative positioning unit 250, a positioning control unit 260, and an output unit 270.
 情報送受信部210は、他の各ノードから送信された情報(直接上位ノードの選択のために必要な情報)を取得する。取得された情報はデータ格納部230に格納される。また、データ格納部230は、ノード200自身の、直接上位ノード選択のために必要な情報も格納している。また、情報送受信部210は、選択した直接上位ノードから観測データ、位置情報、測位の状態に関する情報を受信するとともに、直接の下位ノードに観測データ、位置情報、測位の状態に関する情報を送信する。 The information transmission / reception unit 210 acquires the information transmitted from each of the other nodes (information necessary for directly selecting the upper node). The acquired information is stored in the data storage unit 230. In addition, the data storage unit 230 also stores the information necessary for directly selecting the upper node of the node 200 itself. In addition, the information transmission / reception unit 210 receives the observation data, the position information, and the information on the positioning status from the selected direct upper node, and transmits the observation data, the position information, and the information on the positioning status to the direct lower node.
 上位基準局決定部220は、データ格納部230から情報を読み出し、読み出した情報を用いてノード200にとっての直接上位ノードを選択する。上位基準局決定部220の選択動作は、前述した制御装置300の選択動作と同じである。 The upper reference station determination unit 220 reads information from the data storage unit 230, and uses the read information to directly select a higher node for the node 200. The selection operation of the upper reference station determination unit 220 is the same as the selection operation of the control device 300 described above.
 絶対位置測位部240は、衛星信号を受信し、コード測位又は搬送波位相測位を行う。相対位置測位部250は、車速パルス計測機、IMU、車載カメラ、LiDAR、GNSSドップラーシフト計測機、等である。車速パルス計測機により、車両の速さ、つまり、単位時間に進む距離がわかる。IMUに搭載された3軸のジャイロと3方向の加速度計によって、3次元の角速度と加速度が求められる。車載カメラにより撮影された画像中の物体の動きにより車両の相対位置を求めることができる。LiDARでは、レーザー光を走査しながら対象物に照射してその散乱や反射光を観測することで、対象物までの距離を計測し、車両の相対位置を求めることができる。GNSSドップラーシフトでは、搬送波の周波数変化を計測することで得られる車両の速度から相対位置を求めることができる。 The absolute positioning unit 240 receives the satellite signal and performs code positioning or carrier phase positioning. The relative positioning unit 250 is a vehicle speed pulse measuring unit, an IMU, an in-vehicle camera, a LiDAR, a GNSS Doppler shift measuring unit, and the like. The vehicle speed pulse measuring device shows the speed of the vehicle, that is, the distance traveled in a unit time. A three-dimensional angular velocity and acceleration are obtained by a three-axis gyro and a three-direction accelerometer mounted on the IMU. The relative position of the vehicle can be obtained from the movement of the object in the image taken by the in-vehicle camera. In LiDAR, the distance to the object can be measured and the relative position of the vehicle can be obtained by irradiating the object with the laser beam and observing the scattered or reflected light. In the GNSS Doppler shift, the relative position can be obtained from the speed of the vehicle obtained by measuring the frequency change of the carrier wave.
 相対位置測位部250は、車速パルス計測機、IMU、車載カメラ、LiDAR、GNSSドップラーシフト計測機等の測位手段のうちの複数の測位手段であってもよいし、1つの測位手段であってもよい。相対位置測位部250が複数の測位手段を有する場合に、複数の測位手段のそれぞれで得られた測位結果のうち、最も精度の良い測位結果を選択して出力する仕組みが備えられていてもよいし、複数の測位手段のそれぞれで得られた測位結果の全て又は一部をカルマンフィルタ等によりカップリングして出力する仕組みが備えられていてもよい。 The relative positioning unit 250 may be a plurality of positioning means among positioning means such as a vehicle speed pulse measuring machine, an IMU, an in-vehicle camera, a LiDAR, and a GNSS Doppler shift measuring machine, or may be one positioning means. good. When the relative positioning unit 250 has a plurality of positioning means, a mechanism may be provided for selecting and outputting the most accurate positioning result from the positioning results obtained by each of the plurality of positioning means. However, a mechanism may be provided in which all or part of the positioning results obtained by each of the plurality of positioning means are coupled by a Kalman filter or the like and output.
 また、相対位置測位部250には、GNSS信号への時刻同期で得られる高精度クロック信号が絶対位置測位部240から供給される。高精度クロック信号が途切れた場合でも、相対位置測位部250は、GNSS信号への時刻同期に依らず、ホールドオーバ(発振器の自走動作)によりクロック信号の精度を維持することが可能である。なお、ノード200が固定局である場合には、相対位置測位部250を備えないこととしてもよい。 Further, the relative positioning unit 250 is supplied with a high-precision clock signal obtained by time synchronization with the GNSS signal from the absolute positioning unit 240. Even if the high-precision clock signal is interrupted, the relative positioning unit 250 can maintain the accuracy of the clock signal by holdover (self-propelled operation of the oscillator) regardless of the time synchronization with the GNSS signal. When the node 200 is a fixed station, the relative positioning unit 250 may not be provided.
 測位制御部260は、例えば、アーバンキャニオン環境等において、絶対位置測位部240で収束(Fix)解が得られない状況になった場合に、測位手段を相対位置測位部250に切り替えて、測位を継続する制御を実行する。また、測位制御部260は、直接上位ノードから受信した測位の状態に関する情報に基づいて、マスタ基準局へのトレーサビリティを判定したり、アクションを決定したりする。また、自身の測位結果に基づいて、直接下位ノードに送信する情報を作成したりする。例えば、測位制御部260は、直接上位ノードから「利用不可(Do not Use)」を伝える情報を受信した場合に、「利用不可(Do not Use)」を直接下位ノードへ送信すると共に、別のノードを直接上位ノードとして選択するよう上位基準局決定部220に指示することができる。 The positioning control unit 260 switches the positioning means to the relative positioning unit 250 to perform positioning when, for example, in an urban canyon environment or the like, the absolute positioning unit 240 cannot obtain a convergence (Fix) solution. Perform continuous control. Further, the positioning control unit 260 determines the traceability to the master reference station and determines the action based on the information regarding the positioning state directly received from the higher-level node. Also, based on its own positioning result, it creates information to be sent directly to the lower node. For example, when the positioning control unit 260 receives the information for transmitting "unavailable (Do not Use)" directly from the upper node, the positioning control unit 260 transmits "unavailable (Do not Use)" directly to the lower node and another It is possible to instruct the upper reference station determination unit 220 to directly select the node as the upper node.
 出力部270は、測位制御部260から出力された測位解である現在位置を装置外部に出力する。現在位置は(x,y,z)の3次元座標で表されるが、出力される情報は、地理座標系や投影座標系による3次元座標そのものであってもよいし、その他の情報であってもよい。例えば、自動走行車両の制御部への制御信号が出力されてもよいし、地図上に位置を示した画像情報が出力されてもよい。 The output unit 270 outputs the current position, which is the positioning solution output from the positioning control unit 260, to the outside of the device. The current position is represented by (x, y, z) three-dimensional coordinates, but the output information may be the three-dimensional coordinates themselves in the geographic coordinate system or the projected coordinate system, or other information. You may. For example, a control signal may be output to the control unit of the autonomous vehicle, or image information indicating the position on the map may be output.
 ノード200は、物理的にまとまった1つの装置であってもよいし、いくつかの機能部が物理的に分離していて、分離された複数の機能部がネットワークにより接続された装置であってもよい。 The node 200 may be a single physically cohesive device, or a device in which some functional parts are physically separated and a plurality of separated functional parts are connected by a network. May be good.
 また、ノード200は、図5に示す機能を全て含むこととしてもよいし、一部の機能がネットワーク上(例えばクラウド上)に備えられ、残りの機能がノード200に搭載されて使用されてもよい。 Further, the node 200 may include all the functions shown in FIG. 5, or even if some functions are provided on the network (for example, on the cloud) and the remaining functions are mounted on the node 200 and used. good.
 例えば、ノード200に備えられたGNSS搬送波位相測位受信機から観測データ(Raw dataとも呼ばれる)を出力し、情報送受信部210を経由して、当該観測データをクラウド上に設けた搬送波位相測位演算処理機能部に送信することで、搬送波位相測位演算をクラウド上で実施してもよい。この場合、クラウド上の搬送波位相測位演算処理機能部から、情報送受信部210を経由して、測位制御部260へ測位演算結果が返される。 For example, observation data (also called Raw data) is output from the GNSS carrier phase positioning receiver provided in the node 200, and the observation data is provided on the cloud for carrier phase positioning calculation processing via the information transmission / reception unit 210. The carrier wave phase positioning calculation may be performed on the cloud by transmitting to the functional unit. In this case, the carrier phase positioning calculation processing function unit on the cloud returns the positioning calculation result to the positioning control unit 260 via the information transmission / reception unit 210.
 図6は、ノード200の動作例を示す図である。S101において、上位基準局決定部220が、直接上位ノードを選択する。また、ここでは、ノード200を直接上位ノードとして選択した直接下位ノードもあるとする。 FIG. 6 is a diagram showing an operation example of the node 200. In S101, the upper reference station determination unit 220 directly selects the upper node. Further, here, it is assumed that there is also a directly lower node in which the node 200 is directly selected as the upper node.
 S102において、絶対位置測位部240が、直接上位ノードを用いて搬送波位相測位演算を実行する。S103において、測位制御部260は、情報送受信部210を介して、観測データ、測位結果である位置情報、測位の状態に関する情報、直接上位ノードの選択のために必要な情報(トレーサビリティの情報等)を直接下位ノードに送信する。S104において、測位制御部260は、情報送受信部210を介して、観測データ、位置情報、測位の状態に関する情報、直接上位ノードの選択のために必要な情報(トレーサビリティの情報等)を直接上位ノードから受信する。 In S102, the absolute positioning unit 240 directly executes the carrier phase positioning operation using the upper node. In S103, the positioning control unit 260 uses the information transmission / reception unit 210 to observe observation data, position information which is a positioning result, information on a positioning state, and information necessary for directly selecting a higher-level node (traceability information, etc.). Is sent directly to the lower node. In S104, the positioning control unit 260 directly transmits observation data, position information, information on the positioning status, and information necessary for directly selecting the upper node (traceability information, etc.) via the information transmission / reception unit 210. Receive from.
 S102~S104の処理が繰り返し行われる中で、例えば、直接上位ノードから「利用不可(Do not Use)」を伝える情報を受信した場合に、START(S101)に遷移し、別のノードを直接上位ノードとして選択する。 While the processes of S102 to S104 are being repeated, for example, when information for transmitting "unavailable (Do not Use)" is directly received from a higher-level node, the process transitions to START (S101) and another node is directly higher-level. Select as a node.
 (制御装置300の構成例)
 図7に、制御装置300の機能構成例を示す。図7に示すように、制御装置300は、情報取得部310、パス決定部320、データ格納部330、情報提供部340を有する。
(Configuration example of control device 300)
FIG. 7 shows an example of the functional configuration of the control device 300. As shown in FIG. 7, the control device 300 includes an information acquisition unit 310, a path determination unit 320, a data storage unit 330, and an information providing unit 340.
 情報取得部310は、各ノードから送信された情報を取得する。取得された情報はデータ格納部330に格納される。 The information acquisition unit 310 acquires the information transmitted from each node. The acquired information is stored in the data storage unit 330.
 パス決定部320は、データ格納部330から情報を読み出し、読み出した情報を用いて各ノードに対する直接上位ノードを選択することで、パスを作成する。選択方法は前述したとおりである。情報提供部340は、パス決定部320により選択された直接上位ノードの情報を各ノードに送信する。 The path determination unit 320 reads information from the data storage unit 330 and creates a path by directly selecting a higher-level node for each node using the read information. The selection method is as described above. The information providing unit 340 transmits the information of the directly higher node selected by the path determining unit 320 to each node.
 (ハードウェア構成例)
 図8は、本発明の実施の形態における制御装置300、あるいは、ノード200の「情報送受信部210、上位基準局決定部220、測位制御部260」として使用することができるコンピュータのハードウェア構成例を示す図である。図8のコンピュータは、それぞれバスBで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、入力装置1007、及び出力装置1008等を有する。
(Hardware configuration example)
FIG. 8 shows a hardware configuration example of a computer that can be used as the control device 300 or the “information transmission / reception unit 210, higher reference station determination unit 220, positioning control unit 260” of the node 200 according to the embodiment of the present invention. It is a figure which shows. The computer of FIG. 8 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, and the like, each of which is connected to each other by a bus B. ..
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。 The program that realizes the processing on the computer is provided by, for example, a recording medium 1001 such as a CD-ROM or a memory card. When the recording medium 1001 storing the program is set in the drive device 1000, the program is installed in the auxiliary storage device 1002 from the recording medium 1001 via the drive device 1000. However, the program does not necessarily have to be installed from the recording medium 1001, and may be downloaded from another computer via the network. The auxiliary storage device 1002 stores the installed program and also stores necessary files, data, and the like.
 メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。CPU1004は、メモリ装置1003に格納されたプログラムに従って、制御装置300、あるいは、ノード200の「情報送受信部210、上位基準局決定部220、測位制御部260」等に係る機能を実現する。インタフェース装置1005は、ネットワークに接続するためのインタフェースとして用いられる。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置1007はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。出力装置1008は演算結果を出力する。なお、表示装置1006は出力部270の一例である。 The memory device 1003 reads and stores the program from the auxiliary storage device 1002 when the program is instructed to start. The CPU 1004 realizes the functions related to the control device 300 or the "information transmission / reception unit 210, higher reference station determination unit 220, positioning control unit 260" of the node 200, etc., according to the program stored in the memory device 1003. The interface device 1005 is used as an interface for connecting to a network. The display device 1006 displays a programmatic GUI (Graphical User Interface) or the like. The input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, and the like, and is used for inputting various operation instructions. The output device 1008 outputs the calculation result. The display device 1006 is an example of the output unit 270.
 (実施の形態の効果)
 以上説明したように、本発明の実施の形態によれば、電子基準点等が密に配置されない場合でも、移動局が適切な基準局を選択し、複数の基準局を経由した従属的な搬送波位相測位を行うことが可能となる。これにより基線長を短縮することにより収束(Fix)率を高めることができ、アーバンキャニオン受信環境などの理想的ではない受信環境におけるGNSS測位性能を向上することができる。  
 (実施の形態のまとめ)
 本実施の形態において、少なくとも、下記の各項に記載された測位システム、制御装置、測位方法、及びプログラムが提供される。
(第1項)
 搬送波位相測位における基準局として動作する複数のノードを備える測位システムであって、
 前記複数のノードは、最上位のノードと、当該最上位のノードに順次従属する1以上のノードからなるパスを構成し、
 前記複数のノードにおける前記最上位のノード以外の各ノードは、1つ上位のノードを基準局として用いた搬送波位相測位を行い、
 各ノードにおける搬送波位相測位の結果得られる位置情報が、そのノードにおいて受信したGNSS衛星信号の観測データとともに、1つ下位のノードに送信され、
 移動局が、前記複数のノードにおける最下位のノードを基準局として用いて搬送波位相測位を行う
 測位システム。
(第2項)
 前記複数のノードにおける前記最上位のノード以外の各ノードは、前記最上位のノードから自ノードまでの各ノードで収束解が得られているか否かを示す情報を下位のノードへ送信する
 第1項に記載の測位システム。
(第3項)
 前記複数のノードにおける固定局のノードは、上位のノードを用いた搬送波位相測位において、収束解を得られない場合に、収束解が得られていたときの位置情報を自身の位置情報として下位のノードに送信する
 第1項又は第2項に記載の測位システム。
(第4項)
 前記複数のノードにおけるノードは、上位のノードを用いた搬送波位相測位において、収束解を得られない場合に、当該ノードは使用不可であることを示す情報を下位のノードに送信する
 第1項ないし第3項のうちいずれか1項に記載の測位システム。
(第5項)
 第1項ないし第4項のうちいずれか1項に記載の測位システムの前記複数のノードにおける各ノードの情報を取得する情報取得部と、
 基線長以外の情報を含む1以上の情報に基づいて、各ノードに対する1つ上位のノードを選択することにより、前記パスを決定するパス決定部と
 を備える制御装置。
(第6項)
 搬送波位相測位における基準局として動作する複数のノードを備える測位システムにおいて実行される測位方法であって、
 前記複数のノードは、最上位のノードと、当該最上位のノードに順次従属する1以上のノードからなるパスを構成し、
 前記複数のノードにおける前記最上位のノード以外の各ノードは、1つ上位のノードを基準局として用いた搬送波位相測位を行い、
 各ノードにおける搬送波位相測位の結果得られる位置情報が、そのノードにおいて受信したGNSS衛星信号の観測データとともに、1つ下位のノードに送信され、
 移動局が、前記複数のノードにおける最下位のノードを基準局として用いて搬送波位相測位を行う
 測位方法。
(第7項)
 コンピュータを、第5項に記載の制御装置における各部として機能させるためのプログラム。
(Effect of embodiment)
As described above, according to the embodiment of the present invention, even when the electronic reference points and the like are not densely arranged, the mobile station selects an appropriate reference station and subordinate carrier phase positioning via a plurality of reference stations. Can be done. As a result, the convergence (Fix) rate can be increased by shortening the baseline length, and the GNSS positioning performance in a non-ideal reception environment such as an urban canyon reception environment can be improved.
(Summary of embodiments)
In this embodiment, at least the positioning system, control device, positioning method, and program described in the following items are provided.
(Section 1)
A positioning system equipped with multiple nodes that operate as a reference station in carrier phase positioning.
The plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
The position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
A positioning system in which a mobile station performs carrier phase positioning using the lowest node among the plurality of nodes as a reference station.
(Section 2)
Each node other than the highest-level node in the plurality of nodes transmits information indicating whether or not a convergence solution has been obtained at each node from the highest-level node to its own node to a lower-level node. The positioning system described in the section.
(Section 3)
In the carrier phase positioning using the upper node, the fixed station node in the plurality of nodes is lower than the position information when the convergent solution is obtained as its own position information when the convergent solution cannot be obtained. The positioning system according to paragraph 1 or 2 transmitted to a node.
(Section 4)
In the carrier phase positioning using the upper node, the node in the plurality of nodes transmits information indicating that the node cannot be used to the lower node when a convergent solution cannot be obtained. The positioning system according to any one of the third items.
(Section 5)
An information acquisition unit that acquires information on each node in the plurality of nodes of the positioning system according to any one of items 1 to 4.
A control device including a path determination unit that determines the path by selecting one node higher than each node based on one or more information including information other than the baseline length.
(Section 6)
A positioning method executed in a positioning system having a plurality of nodes operating as a reference station in carrier phase positioning.
The plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
The position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
A positioning method in which a mobile station performs carrier phase phase positioning using the lowest node among the plurality of nodes as a reference station.
(Section 7)
A program for operating a computer as each part of the control device according to the fifth item.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。例えば、前述の実施形態では主にマスタ基準局が電子基準点等の位置情報が高度に管理された固定局であることを想定した実施形態について説明しているが、マスタ基準局が移動体であってもよい。つまり、隊列走行等の実施形態では先頭車両がLiDAR、カメラ、ダイナミックマップ等により自己位置を高精度に推定する手段を備え、後続の複数の車両が先頭車両をマスタ基準局とする従属的な搬送波位相測位により、車間距離や走行レーンの調整を行うといった、利用形態がこれに該当する。 Although the present embodiment has been described above, the present invention is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It is possible. For example, in the above-described embodiment, the embodiment in which the master reference station is mainly assumed to be a fixed station in which position information such as an electronic reference point is highly managed is described, but the master reference station is a mobile body. May be good. That is, in an embodiment such as platooning, the leading vehicle is provided with means for estimating its own position with high accuracy by using LiDAR, a camera, a dynamic map, or the like, and a plurality of subsequent vehicles have a subordinate carrier phase with the leading vehicle as the master reference station. This corresponds to a usage pattern such as adjusting the distance between vehicles and the traveling lane by positioning.
10 基準局
20 移動局
100 マスタ基準局
101~103 中間基準局
200 移動局、ノード
210 情報送受信部
220 上位基準局決定部
230 データ格納部
240 絶対位置測位部
250 相対位置測位部
260 測位制御部
270 出力部
300 制御装置
310 情報取得部
320 パス決定部
330 データ格納部
340 情報提供部
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置
10 Reference station 20 Mobile station 100 Master reference station 101-103 Intermediate reference station 200 Mobile station, node 210 Information transmission / reception unit 220 Upper reference station determination unit 230 Data storage unit 240 Absolute positioning unit 250 Relative positioning unit 260 Positioning control unit 270 Output unit 300 Control Device 310 Information acquisition section 320 Path determination section 330 Data storage section 340 Information provision section 1000 Drive device 1001 Recording medium 1002 Auxiliary storage device 1003 Memory device 1004 CPU
1005 Interface device 1006 Display device 1007 Input device 1008 Output device

Claims (7)

  1.  搬送波位相測位における基準局として動作する複数のノードを備える測位システムであって、
     前記複数のノードは、最上位のノードと、当該最上位のノードに順次従属する1以上のノードからなるパスを構成し、
     前記複数のノードにおける前記最上位のノード以外の各ノードは、1つ上位のノードを基準局として用いた搬送波位相測位を行い、
     各ノードにおける搬送波位相測位の結果得られる位置情報が、そのノードにおいて受信したGNSS衛星信号の観測データとともに、1つ下位のノードに送信され、
     移動局が、前記複数のノードにおける最下位のノードを基準局として用いて搬送波位相測位を行う
     測位システム。
    A positioning system equipped with multiple nodes that operate as a reference station in carrier phase positioning.
    The plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
    Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
    The position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
    A positioning system in which a mobile station performs carrier phase positioning using the lowest node among the plurality of nodes as a reference station.
  2.  前記複数のノードにおける前記最上位のノード以外の各ノードは、前記最上位のノードから自ノードまでの各ノードで収束解が得られているか否かを示す情報を下位のノードへ送信する
     請求項1に記載の測位システム。
    A claim in which each node other than the highest-level node in the plurality of nodes transmits information indicating whether or not a convergence solution has been obtained at each node from the highest-level node to its own node to a lower-level node. The positioning system according to 1.
  3.  前記複数のノードにおける固定局のノードは、上位のノードを用いた搬送波位相測位において、収束解を得られない場合に、収束解が得られていたときの位置情報を自身の位置情報として下位のノードに送信する
     請求項1又は2に記載の測位システム。
    In the carrier phase positioning using the upper node, the fixed station node in the plurality of nodes is lower than the position information when the convergent solution is obtained as its own position information when the convergent solution cannot be obtained. The positioning system according to claim 1 or 2, which is transmitted to a node.
  4.  前記複数のノードにおけるノードは、上位のノードを用いた搬送波位相測位において、収束解を得られない場合に、当該ノードは使用不可であることを示す情報を下位のノードに送信する
     請求項1ないし3のうちいずれか1項に記載の測位システム。
    A node in the plurality of nodes transmits information indicating that the node cannot be used to the lower node when a convergent solution cannot be obtained in the carrier phase positioning using the upper node. The positioning system according to any one of 3.
  5.  請求項1ないし4のうちいずれか1項に記載の測位システムの前記複数のノードにおける各ノードの情報を取得する情報取得部と、
     基線長以外の情報を含む1以上の情報に基づいて、各ノードに対する1つ上位のノードを選択することにより、前記パスを決定するパス決定部と
     を備える制御装置。
    An information acquisition unit that acquires information on each node in the plurality of nodes of the positioning system according to any one of claims 1 to 4.
    A control device including a path determination unit that determines the path by selecting one node higher than each node based on one or more information including information other than the baseline length.
  6.  搬送波位相測位における基準局として動作する複数のノードを備える測位システムにおいて実行される測位方法であって、
     前記複数のノードは、最上位のノードと、当該最上位のノードに順次従属する1以上のノードからなるパスを構成し、
     前記複数のノードにおける前記最上位のノード以外の各ノードは、1つ上位のノードを基準局として用いた搬送波位相測位を行い、
     各ノードにおける搬送波位相測位の結果得られる位置情報が、そのノードにおいて受信したGNSS衛星信号の観測データとともに、1つ下位のノードに送信され、
     移動局が、前記複数のノードにおける最下位のノードを基準局として用いて搬送波位相測位を行う
     測位方法。
    A positioning method executed in a positioning system having a plurality of nodes operating as a reference station in carrier phase positioning.
    The plurality of nodes form a path consisting of a top-level node and one or more nodes sequentially subordinate to the top-level node.
    Each node other than the highest node in the plurality of nodes performs carrier phase positioning using the one higher node as a reference station.
    The position information obtained as a result of carrier phase positioning at each node is transmitted to the next lower node together with the observation data of the GNSS satellite signal received at that node.
    A positioning method in which a mobile station performs carrier phase phase positioning using the lowest node among the plurality of nodes as a reference station.
  7.  コンピュータを、請求項5に記載の制御装置における各部として機能させるためのプログラム。 A program for making a computer function as each part in the control device according to claim 5.
PCT/JP2020/018163 2020-04-28 2020-04-28 Positioning system, control device, positioning method, and program WO2021220419A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/018163 WO2021220419A1 (en) 2020-04-28 2020-04-28 Positioning system, control device, positioning method, and program
JP2022518505A JP7380857B2 (en) 2020-04-28 2020-04-28 Positioning system, control device, positioning method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018163 WO2021220419A1 (en) 2020-04-28 2020-04-28 Positioning system, control device, positioning method, and program

Publications (1)

Publication Number Publication Date
WO2021220419A1 true WO2021220419A1 (en) 2021-11-04

Family

ID=78332322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018163 WO2021220419A1 (en) 2020-04-28 2020-04-28 Positioning system, control device, positioning method, and program

Country Status (2)

Country Link
JP (1) JP7380857B2 (en)
WO (1) WO2021220419A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210491A (en) * 1990-01-13 1991-09-13 Matsushita Electric Works Ltd Surveying apparatus
JP2001255363A (en) * 2000-03-09 2001-09-21 Japan Radio Co Ltd Intermittent satellite signal positioning system
US20020120400A1 (en) * 2000-12-26 2002-08-29 Ching-Fang Lin Fully-coupled vehicle positioning method and system thereof
JP2006500567A (en) * 2002-09-23 2006-01-05 トプコン・ジーピーエス・エルエルシー Position estimation using a network of global positioning receivers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522581B2 (en) 1999-04-22 2004-04-26 富士通株式会社 GPS positioning device, GPS positioning method, and computer-readable recording medium recording GPS positioning program
US10871577B2 (en) 2015-03-24 2020-12-22 Panasonic Intellectual Property Management Co., Ltd. Positioning method, positioning system, correction information generation method, correction information generation device, and positioning system relay station and terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210491A (en) * 1990-01-13 1991-09-13 Matsushita Electric Works Ltd Surveying apparatus
JP2001255363A (en) * 2000-03-09 2001-09-21 Japan Radio Co Ltd Intermittent satellite signal positioning system
US20020120400A1 (en) * 2000-12-26 2002-08-29 Ching-Fang Lin Fully-coupled vehicle positioning method and system thereof
JP2006500567A (en) * 2002-09-23 2006-01-05 トプコン・ジーピーエス・エルエルシー Position estimation using a network of global positioning receivers

Also Published As

Publication number Publication date
JP7380857B2 (en) 2023-11-15
JPWO2021220419A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
CN107710016B (en) Satellite navigation receiver and method for switching between real-time motion mode and precise positioning mode
EP2486418B1 (en) Improvements in or relating to radio navigation
RU2476996C2 (en) Method of synchronising network nodes, system and apparatus for realising said method
US10073179B2 (en) Systems, methods and devices for satellite navigation reconciliation
JP4414136B2 (en) Method and apparatus for determining error estimates in a hybrid position determination system
US9611057B2 (en) Systems, methods and devices for satellite navigation
CN108027443B (en) Satellite navigation receiver and method for switching between real-time motion mode and precise positioning mode
RU2446416C2 (en) Method for increasing reliability of position information when transitioning from regional, wide-area, or global carrier-phase differential navigation (wadgps) to local real-time kinematic (rtk) navigation system
Plets et al. Experimental performance evaluation of outdoor tdoa and rss positioning in a public lora network
WO2021220418A1 (en) Base station selection device, base station selection method, and program
EP2699934B1 (en) Process and system to determine temporal changes in retransmission and propagation of signals used to measure distances, synchronize actuators and georeference applications
US8880001B1 (en) Collaborative positioning, navigation and timing
WO2017164118A1 (en) Satellite navigation system, navigation terminal, navigation method and program
JP7220399B2 (en) Server, satellite positioning system, and satellite positioning method
US20130082873A1 (en) Moving Information Determination Apparatus, a Receiver, and a Method Thereby
JP2009025233A (en) Carrier phase positioning system
CN112649821A (en) Self-differential positioning method and device, mobile equipment and storage medium
WO2021220419A1 (en) Positioning system, control device, positioning method, and program
JPH10213643A (en) Gps satellite plotting device
GB2571293A (en) System for providing location corrections
KR102350689B1 (en) Methods and systems for processing satellite signals
Fernández et al. Development of a simulation tool for collaborative navigation systems
JP7364060B2 (en) Position measuring device, control device, positioning system, position measuring method, and program
KR101302674B1 (en) Integer ambiguity resolution based GPS carrier phase relative positioning and GPS positioning method using by the same
WO2024009366A1 (en) Position information computing device, position information computing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933411

Country of ref document: EP

Kind code of ref document: A1