WO2021219641A1 - Membrane flexible equipee de cellules photovoltaïques - Google Patents
Membrane flexible equipee de cellules photovoltaïques Download PDFInfo
- Publication number
- WO2021219641A1 WO2021219641A1 PCT/EP2021/060990 EP2021060990W WO2021219641A1 WO 2021219641 A1 WO2021219641 A1 WO 2021219641A1 EP 2021060990 W EP2021060990 W EP 2021060990W WO 2021219641 A1 WO2021219641 A1 WO 2021219641A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- thermoplastic polymer
- substrate
- main substrate
- photovoltaic
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 72
- 239000000758 substrate Substances 0.000 claims abstract description 107
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 44
- 239000003351 stiffener Substances 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 10
- 239000006260 foam Substances 0.000 claims description 9
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 6
- 229920006260 polyaryletherketone Polymers 0.000 claims description 6
- 229920002530 polyetherether ketone Polymers 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims description 4
- 239000012783 reinforcing fiber Substances 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000004760 aramid Substances 0.000 claims description 3
- 229920006231 aramid fiber Polymers 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 claims 1
- 238000007789 sealing Methods 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000003292 glue Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000012815 thermoplastic material Substances 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/0481—Encapsulation of modules characterised by the composition of the encapsulation material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03926—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/222—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/42—Arrangements or adaptations of power supply systems
- B64G1/44—Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
- B64G1/443—Photovoltaic cell arrays
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S30/00—Structural details of PV modules other than those related to light conversion
- H02S30/20—Collapsible or foldable PV modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a membrane equipped with photovoltaic cells.
- the invention applies to the field of satellites and space equipment, but can also find application for products on the ground.
- the invention is described with the example of a membrane for a space solar generator, but it also applies to any other type of electrical generation involving a membrane and solar cells.
- a satellite is provided with solar generators to supply it with electricity from solar cells exposed to solar radiation.
- solar panels are rigid panels stored on the satellite's body and provided with a hinge that allows them to be deployed once in orbit. This solution is not optimal, both in terms of on-board weight (rigid panel and articulation) and on-board power (limited size of the rigid panels) and no longer makes it possible to meet the spatial constraints imposed. Indeed, it is desirable to have increasingly powerful solar generators in a volume stored under the restricted fairing.
- the solar cells are arranged on a main substrate.
- the assembly (substrate and solar cells) can then be in the stored configuration (that is to say rolled up) during the launching phase and in the deployed configuration (that is to say unwound) in operation. Since solar cells are extremely fragile, the membrane must perform several functions.
- the main substrate performs a mechanical function. In the stored configuration, it is necessary to maintain and position the cells in a predefined manner in order to guarantee the inter-turn center distance and to ensure a wedging avoiding shocks or movements of the cells with respect to each other. It is also necessary to take up the loads applied to the whole of the main substrate and the solar cells during launch.
- the membrane In the deployed configuration, it is also necessary to maintain and position the cells in a predefined manner, in particular to have a flatness of the deployed surface. Finally, do not disturb the frequency of the complete wing. In other words, it is necessary guarantee good stiffness in the plane.
- Another function to be performed by the membrane is the electrical function. It is necessary to ensure the connections between the solar cells then towards the base of the solar generator.
- a final function that the membrane must perform is the thermal function in order to ensure good thermal regulation of the cells and to be compatible with the partial shading, the source of very large temperature gradients (between - 100 and + 100 ° C, or even - 200 and + 200 ° C).
- the structural adhesive solution requires specific use of the adhesive and a polymerization time varying from 2 to 7 days.
- the 2-day accelerated polymerization requires the parts to be assembled to be placed in a thermal box. This implementation on a complete wing of a solar generator measuring about twenty meters in length would require considerable and expensive means.
- Polymerization in ambient air, more suitable for the size of the solar generator, requires the equipment and the storage room to be immobilized for 7 days.
- the double-sided adhesive solution requires a specific and complicated implementation. Even if double-sided bonding does not require curing time, the process remains difficult to implement and the mechanical strength of the bonding obtained is much lower than that of a structural adhesive. The resistance is very inferior to cold and the resistance to radiation is low.
- Structural glue has a density of approximately 1000 kg / m 3 .
- the impact of the mass on a wing 20 meters in length is therefore not negligible (of the order of 4 kg).
- the adhesive film has a density equivalent to that of the structural adhesive. Its impact on the mass of the wing is therefore significant.
- a gluing solution also has the drawback of a defect in calibrating the thickness and the quantity of glue related to the assembly.
- the invention aims to overcome all or part of the problems mentioned above by providing a membrane of photovoltaic cells making it possible to create a solar generator as powerful as possible with a volume under the cover and an on-board mass as low as possible, while at the same time providing mechanical, electrical and thermal functions.
- the invention relates to a membrane capable of passing from a configuration wound around a first axis Z to a configuration deployed along a second axis X substantially perpendicular to the first axis Z, the membrane comprising: To. A main substrate comprising an upper surface covered at least partially with a first layer comprising a first thermoplastic polymer, b. at least one electrically conductive track, c.
- a photovoltaic unit comprising a secondary substrate and at least one photovoltaic cell fixed to an upper surface of the secondary substrate, the photovoltaic unit being intended to produce an electric current, and being electrically connected to the at least one electrically conductive track
- the secondary substrate comprising a lower surface, opposite the upper surface of the secondary substrate, oriented towards the upper surface of the main substrate, the lower surface of the secondary substrate being at least partially covered with a second layer comprising a second thermoplastic polymer, and the lower surface of the secondary substrate of the photovoltaic unit and the upper surface of the main substrate being at least partially heat-sealed.
- the photovoltaic unit is a photovoltaic module comprising a plurality of photovoltaic cells fixed on the upper surface of the secondary substrate.
- the main substrate can be perforated.
- the membrane according to the invention may further comprise at least one additional element comprising a bonding surface covered at least partially with a third layer comprising a third thermoplastic polymer, said bonding surface of the 'additional element being at least partially heat-sealed to the upper surface or a lower surface of the main substrate, opposite the upper surface of the main substrate, the additional element being a protective foam, a cable sheath, an insulator, a connector, an electrical component, a membrane stiffener or a membrane stiffener support loop.
- the main substrate can comprise reinforcing fibers, preferably glass fibers, carbon fibers and / or aramid fibers.
- the first thermoplastic polymer, the second thermoplastic polymer and / or the third thermoplastic polymer is a polymer of the family of polyaryletherketone polymers (PAEK), preferably a polymer of the polyetheretherketone (PEEK) type.
- PAEK polyaryletherketone polymers
- PEEK polyetheretherketone
- thermoplastic polymer and / or the second thermoplastic polymer and / or the third thermoplastic polymer are the same thermoplastic polymer.
- the invention also relates to a satellite comprising at least one such membrane.
- FIG.1 Figure 1 schematically shows a membrane with a photovoltaic cell of the prior art
- FIG.2 Figure 2 schematically shows a membrane with a photovoltaic cell according to the invention
- FIG.3 Figure 3 schematically shows an embodiment of the membrane according to the invention
- Figure 4 schematically shows another embodiment of the membrane according to the invention
- FIG.5 Figure 5 schematically shows another embodiment of the membrane according to the invention.
- FIG.6 Figure 6 schematically shows another embodiment of the membrane according to the invention.
- Figure 7 shows a satellite equipped with at least one membrane according to the invention.
- the same elements will bear the same references in the different figures.
- the invention is presented with the non-limiting example of a membrane for a satellite.
- the invention does not apply only to space equipment, but it can be applied to any membrane with solar cells.
- FIG. 1 schematically shows a membrane 5 with a photovoltaic cell 6 of the prior art.
- the membrane 5 comprises a substrate 7.
- the lower surface of the photovoltaic cell 6 is attached to the upper surface of the substrate 7 by means of a glue, an adhesive or a Velcro type fastening system (reference 8).
- the prior art therefore requires the addition of material to assemble the photovoltaic cell 6 on the substrate 7, with all the drawbacks mentioned above.
- FIG. 2 schematically shows a membrane 10 with a photovoltaic cell 17 according to the invention.
- the membrane 10 is able to pass from a configuration wound around a mandrel around a first axis Z to a configuration deployed along a second axis X substantially perpendicular to the first axis Z.
- the mandrel is rotated by a device for motorization, as is usual and known to those skilled in the art.
- the membrane 10 comprises a main substrate 11 comprising an upper surface 12 covered at least partially with a first layer 13 comprising a first thermoplastic polymer.
- the membrane 10 comprises at least one electrically conductive track 14.
- the membrane 10 comprises a photovoltaic unit 15 comprising a secondary substrate 16 and at least one photovoltaic cell 17 fixed on an upper surface 18 of the substrate. secondary 16.
- the photovoltaic unit 15 is intended to produce an electric current, and is electrically connected to the at least one electrically conductive track 14.
- the electrically conductive track 14 is intended to supply the satellite with electrical energy coming from the photovoltaic unit. 15.
- the secondary substrate 16 comprises a lower surface 19, opposite the upper surface 18 of the secondary substrate 16, oriented towards the upper surface 12 of the main substrate 11.
- the lower surface 19 of the secondary substrate 16 is at least partially covered with a second layer 23 comprising a second thermoplastic polymer.
- the lower surface 19 of the secondary substrate 16 of the photovoltaic unit 15 and the upper surface 12 of the main substrate 11 are at least partially heat-sealed.
- the main substrate and the secondary substrate are fused together at their two contacting surfaces (the upper surface 12 of the main substrate 11 and the lower surface 19 of the secondary substrate 16).
- the main substrate 11 and the secondary substrate 16 form a continuous medium.
- the two substrates do not exhibit any discontinuity.
- the upper surface 12 can be partially covered with the first layer 13 comprising the first thermoplastic polymer or completely.
- the lower surface 19 of the secondary substrate 16 can be partially covered with the second layer 23 comprising the second thermoplastic polymer or completely.
- the first layer 13 and the second layer 23, when they partially cover the surface, can be in the form of bands or dots, with a surface allowing the heat-sealing of the two substrates together.
- the secondary substrate on which the photovoltaic cell 17 is fixed can be seen as an intermediate substrate, but it can also be a part of the photovoltaic cell 17.
- the The invention is applied as above with one or more photovoltaic cells 17, the rear face of which is at least partially covered with the second layer 23 comprising the second thermoplastic polymer.
- the invention therefore makes it possible to assemble the photovoltaic unit to the main substrate 11 without adding material. The assembly is obtained by heat sealing the parts to be assembled.
- the substrates used for this type of application were made of carbon, aluminum or an imide-based polymer (also known as Kapton), that is to say not heat-sealable, so that there was no incentive to practice heat sealing for the assembly of photovoltaic units on a membrane substrate.
- an imide-based polymer also known as Kapton
- the solution proposed by the invention is to heat seal the parts to be assembled.
- the process is applicable on thermoplastic materials or comprising at least one surface of thermoplastic material.
- the two substrates are assembled by external heat input. This external contribution can be made, for example, by heating mirror: the two substrates to be assembled are positioned facing each other, leaving a space in which a heating mirror on both sides is positioned. The substrates are approached to this mirror until the two layers of thermoplastic material have reached their surface melting temperature. When the melting temperatures are reached, the heated mirror is removed. Then the two substrates are brought into contact with each other for a few seconds, as shown at the top of Figure 2. After cooling for a few seconds, heat sealing is performed, as shown at the bottom of Figure 2. Both The substrates no longer form one and the same single piece, as can be seen at the level of the reference 21. Via the zone 21, the two substrates 11, 16 are no longer separate.
- This solution also has the advantage of not adding any assembly material, and therefore, given the thicknesses of the material used, this represents a significant gain in mass on the mass of the solar generator.
- the assembly by heat sealing is also found to be excellent for increasing the thermal conductivity between the two assembled parts, compared to a conventional assembly by glue, film or Velcro.
- thermoelastic effect on the entire wing of the solar generator is optimized with a CTE (coefficient of thermal expansion) homogeneous between the different parts (here the substrates 11, 16). This constitutes an improvement of the prior art in which thermoelastic effects could appear between the elements and their binder.
- FIG 3 schematically shows an embodiment of the membrane 10 according to the invention.
- the main substrate 11 is perforated.
- the opening of the main substrate 11 allows better thermal dissipation of heat from the rear face of the photovoltaic cells.
- the photovoltaic unit 15 can be a photovoltaic module 20 comprising a plurality of photovoltaic cells 17 fixed on the upper surface 18 of the secondary substrate 16.
- the invention relates to a membrane 10 on which photovoltaic cells can be fixed on the upper surface 18 of the secondary substrate 16 which is itself heat-sealed to the main substrate 11.
- the photovoltaic cells can themselves comprise a layer of thermoplastic polymer heat-sealed to the main substrate 11.
- the photovoltaic cells can be grouped together in the form of a photovoltaic module, itself either comprising a lower surface of thermoplastic polymer, or being fixed on a substrate with a lower surface of thermoplastic polymer.
- the membrane can include a combination of these variants.
- the invention is therefore based on photovoltaic cells or photovoltaic modules optionally assembled together and on the main substrate by heat sealing. As will appear in the remainder of the description, the invention also aims to relate to the main substrate and / or to the photovoltaic unit other additional elements on the same principle of heat sealing, such as for example membrane stiffeners, loops. , wiring brackets, connectors, etc.
- the assembly therefore constitutes a complete solar generator wing which can be very large, without using additional assembly material.
- the invention makes it possible to avoid electrical discontinuities in the case of antistatic photovoltaic modules.
- the assembly of the invention offers insensitivity to radiation compared to a traditional bonding.
- the invention also simplifies the repair in the event of a malfunction of a member of the membrane.
- the solution provides a gain in the overall mechanical performance of the wing by eliminating the mechanical discontinuity between the main substrate and the photovoltaic modules, or else between the photovoltaic modules between them.
- the solution provides thermal gain due to the continuity of material between the assembled elements. This conductive aspect is very important in the case for example of a photovoltaic module on a solid substrate (non-perforated), where the heat exchange between the front face and the rear face of the module is essential. This increased thermal conductivity is beneficial for the electrical performance of the wing.
- By reducing the operating temperature of photovoltaic cells their efficiency is increased. This means that with the same number of photovoltaic cells, the solar generator is more efficient electrically, or at iso-power delivered, the generator will be less expensive with fewer cells.
- the membrane 10 according to the invention may further comprise at least one additional element 30 comprising a connecting surface 31 covered at least partially with a third layer 33 comprising a third thermoplastic polymer.
- said connecting surface 31 of the additional element 30 being at least partially heat-sealed to the upper surface 12 or a lower surface 32 of the main substrate 11, opposite the upper surface 12 of the main substrate 11, the additional element 30 being a protective foam 34, a sheath 35 of cable 36, an insulator, a connector, an electrical component, a membrane stiffener or a support loop 41 of a membrane stiffener.
- FIG. 4 schematically shows another embodiment of the membrane according to the invention.
- the membrane comprises a protective foam 34.
- the protective foam comprises a bonding surface covered at least partially with a layer of thermoplastic polymer.
- the foam 34 is preferably heat-sealed to the lower surface of the main substrate 11 so as to protect, in the coiled configuration of the membrane 10, the photovoltaic cells of the lower coil of the coiled membrane.
- the foam 34 can be heat-sealed to the underside of the secondary substrate, or to the upper surfaces of the substrates 11, 16, at locations making it possible to prevent possible impacts between the cells and / or between the additional elements when the membrane is rolled up.
- All of the foams used can represent large bonding surfaces.
- the heat-sealing of the foam on the substrate allows a mass gain of the membrane.
- FIG. 5 schematically represents another embodiment of the membrane according to the invention.
- the membrane comprises a membrane stiffener support loop 41.
- the support loop 41 comprises a connecting surface covered at least partially with a thermoplastic polymer layer.
- the support loop 41 is preferably heat-sealed to the lower surface of the main substrate 11 so as to ensure material continuity for better mechanical performance as explained previously.
- a stiffener can then be slipped into the support loop 41 to provide better stiffness to the membrane 10.
- the membrane stiffener can comprise a connecting surface covered at least partially with a layer of thermoplastic polymer and the stiffener can then be directly heat-welded to the main substrate 11.
- the invention also applies with a main substrate 11 comprising reinforcing fibers, preferably glass fibers, carbon fibers and / or aramid fibers. These reinforcing fibers are preferably in the main substrate 11.
- FIG. 6 schematically shows another embodiment of the membrane according to the invention.
- the membrane comprises a sheath 35 of cable 36.
- the sheath 35 comprises a connecting surface covered at least partially with a layer of thermoplastic polymer.
- the sheath 35 is preferably heat-sealed to the lower surface of the main substrate 11 so as to ensure material continuity as explained previously.
- the sheath 35 can also be heat sealed to the upper surface of the main substrate 11, near the photovoltaic cells.
- the cable 36 is positioned in the sheath 35.
- the cable 36 can also include a connecting surface covered at least partially with a layer of thermoplastic polymer and the cable 36 can then be directly heat-welded to the main substrate 11.
- any other additional element that can be used on the membrane 10 for example an insulator, a connector, an electrical component such as a thermistor, a diode, a diod board.
- the solution provided by the invention provides an advantage of simplifying the replacement and / or repair of a defective or damaged element, whether it is a photovoltaic cell or one of the additional elements mentioned above. All of these can be replaced if they are defective by a sound element, without risk of delamination or damage to the substrate or the photovoltaic module to which they are attached.
- the first thermoplastic polymer, the second thermoplastic polymer and / or the third thermoplastic polymer is a polymer of the family of polyaryletherketone polymers (PAEK), preferably a polymer of the polyetheretherketone (PEEK) type.
- thermoplastic polymer and / or the second thermoplastic polymer and / or the third thermoplastic polymer are the same thermoplastic polymer. This facilitates the performance of the heat-sealing since the melting temperature to be reached is the same. The insertion and removal of the heated mirror between the surfaces to be fused is therefore more easily controlled.
- Figure 7 shows a satellite equipped with at least one membrane according to the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
L'invention concerne une membrane (10) apte à passer d'une configuration enroulée autour d'un premier axe Z à une configuration déployée selon un deuxième axe X sensiblement perpendiculaire au premier axe Z, comprenant : a. Un substrat principal (11) comprenant une surface supérieure (12) recouverte au moins partiellement d'une première couche (13) comprenant un premier polymère thermoplastique, b. au moins une piste électriquement conductrice (14), c. une unité photovoltaïque (15) comprenant un substrat secondaire (16) et au moins une cellule photovoltaïque (17) fixée sur une surface supérieure (18) du substrat secondaire (16), l'unité photovoltaïque (15) étant destinée à produire un courant électrique, et étant connectée électriquement à la au moins une piste électriquement conductrice (14), le substrat secondaire (16) comprenant une surface inférieure (19), opposée à la surface supérieure (18) du substrat secondaire (16), orientée vers la surface supérieure (12) du substrat principal (11), la surface inférieure (19) du substrat secondaire (16) étant recouverte au moins partiellement d'une deuxième couche (23) comprenant un deuxième polymère thermoplastique, la surface inférieure (19) du substrat secondaire (16) de l'unité photovoltaïque (15) et la surface supérieure (12) du substrat principal (11) étant au moins partiellement thermosoudées.
Description
DESCRIPTION
Titre de l’invention : Membrane flexible équipée de cellules photovoltaïques
[0001] La présente invention se rapporte à une membrane équipée de cellules photovoltaïques. L’invention s’applique au domaine des satellites et des équipements spatiaux, mais peut également trouver application pour des produits au sol.
[0002] L’invention est décrite avec l’exemple d’une membrane pour générateur solaire spatial, mais elle s’applique aussi à tout autre type de génération électrique faisant intervenir une membrane et des cellules solaires.
[0003] Un satellite est pourvu de générateurs solaires pour l’alimenter en électricité à partir de cellules solaires exposées au rayonnement solaire. Généralement, les panneaux solaires sont des panneaux rigides stockés sur la caisse du satellite et pourvus d’une articulation permettant de les déployer une fois en orbite. Cette solution n’est pas optimale, à la fois en termes de masse embarquée (panneau rigide et articulation) et de puissance embarquable (taille des panneaux rigides limitée) et ne permet plus de répondre aux contraintes spatiales imposées. En effet, il est souhaitable d’avoir des générateurs solaires de plus en plus puissants dans un volume stocké sous la coiffe restreint.
[0004] Une solution à ce problème est de se tourner vers une membrane flexible. Les cellules solaires sont disposées sur un substrat principal. L’ensemble (substrat et cellules solaires) peut alors être en configuration stockée (c’est-à-dire enroulé) lors de la phase de lancement et en configuration déployée (c’est-à-dire déroulé) en fonctionnement. Les cellules solaires étant extrêmement fragiles, la membrane doit assurer plusieurs fonctions. Tout d’abord, le substrat principal assure une fonction mécanique. En configuration stockée, il faut maintenir et positionner les cellules de manière prédéfinie afin de garantir l’entraxe inter-spires et assurer un calage évitant les chocs ou les mouvements des cellules les unes par rapport aux autres. Il est aussi nécessaire de reprendre les charges appliquées sur l’ensemble du substrat principal et des cellules solaires lors du lancement. En configuration déployée, il faut également maintenir et positionner les cellules de manière prédéfinie, notamment pour avoir une planéité de la surface déployée. Enfin, il ne faut pas perturber la fréquence de l’aile complète. Autrement dit, il faut
garantir une bonne raideur dans le plan. Une autre fonction à assurer par la membrane est la fonction électrique. Il faut assurer les connexions entre les cellules solaires puis vers la base du générateur solaire. Une dernière fonction que la membrane doit assurer est la fonction thermique afin d’assurer une bonne régulation thermique des cellules et être compatible avec l’ombrage partiel source de gradients de températures très importants (entre - 100 et + 100°C, voire - 200 et + 200 °C).
[0005] Toutefois, une telle membrane flexible présente plusieurs inconvénients. Les éléments, et notamment les cellules solaires, sont assemblés sur le substrat avec de la colle structurale, de l’adhésif double face ou bien par un système de fixations mécanique par crochets et boucles textiles (aussi connu sous la dénomination Velcro).
[0006] La solution par colle structurale nécessite une mise en oeuvre spécifique de la colle et un temps de polymérisation variant de 2 à 7 jours. La polymérisation accélérée de 2 jours nécessite la mise en caisson thermique des pièces à assembler. Cette mise en oeuvre sur une aile complète de générateur solaire mesurant une vingtaine de mètres de longueur nécessiterait des moyens considérables et coûteux. La polymérisation à l’air ambiant, plus adaptée à la taille de générateur solaire, nécessite l’immobilisation du matériel et de la salle de stockage pendant 7 jours.
[0007] La solution par adhésif double face nécessite une mise en oeuvre spécifique et compliquée. Même si le collage par double face ne nécessite pas de temps de polymérisation, le processus reste délicat à mettre en oeuvre et la tenue mécanique du collage obtenue est largement inférieure à celle d’une colle structurale. La tenue est très inférieure à froid et la tenue aux radiations est faible.
[0008] De plus, une solution basée sur un collage ou un système de fixations mécanique par crochets et boucles textiles découple thermiquement les éléments entre eux et ajoute du volume à l’assemblage.
[0009] Les trois solutions de l’art antérieur mentionnées ci-dessus ont en outre l’inconvénient de rajouter de la masse aux éléments à assembler. La colle structurale a une masse volumique d’environ 1000 kg/m3. L’impact de la masse sur une aile de 20 mètres de longueur est ainsi non-négligeable (de l’ordre de 4
kg). Le film adhésif a une masse volumique équivalente à celle de la colle structurale. Son impact sur la masse de l’aile est donc significatif.
[0010] Par ailleurs, une solution par collage présente également un inconvénient de défaut de calibration de l’épaisseur et de la quantité de colle rapportée à l’assemblage.
[0011] L’invention vise à pallier tout ou partie des problèmes cités plus haut en proposant une membrane de cellules photovoltaïques permettant de créer un générateur solaire le plus puissant possible avec un volume sous coiffe et une masse embarquée les plus faibles possibles, tout en assurant les fonctions mécanique, électrique et thermique.
[0012] A cet effet, l’invention a pour objet une membrane apte à passer d’une configuration enroulée autour d’un premier axe Z à une configuration déployée selon un deuxième axe X sensiblement perpendiculaire au premier axe Z, la membrane comprenant: a. Un substrat principal comprenant une surface supérieure recouverte au moins partiellement d’une première couche comprenant un premier polymère thermoplastique, b. au moins une piste électriquement conductrice, c. une unité photovoltaïque comprenant un substrat secondaire et au moins une cellule photovoltaïque fixée sur une surface supérieure du substrat secondaire, l’unité photovoltaïque étant destinée à produire un courant électrique, et étant connectée électriquement à la au moins une piste électriquement conductrice, le substrat secondaire comprenant une surface inférieure, opposée à la surface supérieure du substrat secondaire, orientée vers la surface supérieure du substrat principal, la surface inférieure du substrat secondaire étant recouverte au moins partiellement d’une deuxième couche comprenant un deuxième polymère thermoplastique, et la surface inférieure du substrat secondaire de l’unité photovoltaïque et la surface supérieure du substrat principal étant au moins partiellement thermosoudées.
[0013] Avantageusement, l’unité photovoltaïque est un module photovoltaïque comprenant une pluralité de cellules photovoltaïques fixées sur la surface supérieure du substrat secondaire.
[0014] Avantageusement, le substrat principal peut être ajouré.
[0015] Dans un mode de réalisation, la membrane selon l’invention peut comprendre en outre au moins un élément additionnel comprenant une surface de liaison recouverte au moins partiellement d’une troisième couche comprenant un troisième polymère thermoplastique, ladite surface de liaison de l’élément additionnel étant au moins partiellement thermosoudée à la surface supérieure ou une surface inférieure du substrat principal, opposée à la surface supérieure du substrat principal, l’élément additionnel étant une mousse de protection, une gaine de câble, un isolant, un connecteur, un composant électrique, un raidisseur de membrane ou une boucle support de raidisseur de membrane.
[0016] Avantageusement, le substrat principal peut comprendre des fibres de renforcement, préférentiellement des fibres de verre, des fibres de carbone et/ou des fibres d’aramide.
[0017] Avantageusement, le premier polymère thermoplastique, le deuxième polymère thermoplastique et/ou le troisième polymère thermoplastique est un polymère de la famille des polymères polyaryléthercétones (PAEK), préférentiellement un polymère du type polyétheréthercétone (PEEK).
[0018] Avantageusement, le premier polymère thermoplastique et/ou le deuxième polymère thermoplastique et/ou le troisième polymère thermoplastique sont le même polymère thermoplastique.
[0019] L’invention concerne aussi un satellite comprenant au moins une telle membrane.
[0020] L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :
[0021] [Fig.1] La figure 1 représente schématiquement une membrane avec une cellule photovoltaïque de l’art antérieur ;
[0022] [Fig.2] La figure 2 représente schématiquement une membrane avec une cellule photovoltaïque selon l’invention ;
[0023] [Fig.3] La figure 3 représente schématiquement un mode de réalisation de la membrane selon l’invention;
[0024] [Fig.4] La figure 4 représente schématiquement un autre mode de réalisation de la membrane selon l’invention;
[0025] [Fig.5] La figure 5 représente schématiquement un autre mode de réalisation de la membrane selon l’invention ;
[0026] [Fig.6] La figure 6 représente schématiquement un autre mode de réalisation de la membrane selon l’invention;
[0027] [Fig.7] La figure 7 représente un satellite équipé d’au moins une membrane selon l’invention.
[0028] Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures. Dans cette demande, l’invention est présentée avec l’exemple non limitatif d’une membrane destinée à un satellite. Néanmoins, l’invention ne s’applique pas uniquement à un équipement spatial, mais elle peut s’appliquer à toute membrane avec des cellules solaires.
[0029] La figure 1 représente schématiquement une membrane 5 avec une cellule photovoltaïque 6 de l’art antérieur. La membrane 5 comprend un substrat 7. La surface inférieure de la cellule photovoltaïque 6 est fixée à la surface supérieure du substrat 7 au moyen d’une colle, d’un adhésif ou un système de fixation de type Velcro (référence 8). L’art antérieur nécessite donc l’ajout de matière pour réaliser l’assemblage de la cellule photovoltaïque 6 sur le substrat 7, avec tous les inconvénients cités précédemment.
[0030] La figure 2 représente schématiquement une membrane 10 avec une cellule photovoltaïque 17 selon l’invention. La membrane 10 est apte à passer d’une configuration enroulée autour d’un mandrin autour d’un premier axe Z à une configuration déployée selon un deuxième axe X sensiblement perpendiculaire au premier axe Z. Le mandrin est mis en rotation par un dispositif de motorisation, comme cela est usuel et connu de l’Homme du métier. Selon l’invention, la membrane 10 comprend un substrat principal 11 comprenant une surface supérieure 12 recouverte au moins partiellement d’une première couche 13 comprenant un premier polymère thermoplastique. La membrane 10 comprend au moins une piste électriquement conductrice 14. La membrane 10 comprend une unité photovoltaïque 15 comprenant un substrat secondaire 16 et au moins une cellule photovoltaïque 17 fixée sur une surface supérieure 18 du substrat
secondaire 16. L’unité photovoltaïque 15 est destinée à produire un courant électrique, et est connectée électriquement à la au moins une piste électriquement conductrice 14. La piste électriquement conductrice 14 est destinée à alimenter le satellite en énergie électrique issue de l’unité photovoltaïque 15.
[0031] Le substrat secondaire 16 comprend une surface inférieure 19, opposée à la surface supérieure 18 du substrat secondaire 16, orientée vers la surface supérieure 12 du substrat principal 11. La surface inférieure 19 du substrat secondaire 16 est recouverte au moins partiellement d’une deuxième couche 23 comprenant un deuxième polymère thermoplastique.
[0032] La surface inférieure 19 du substrat secondaire 16 de l’unité photovoltaïque 15 et la surface supérieure 12 du substrat principal 11 sont au moins partiellement thermosoudées. En d’autres termes, le substrat principal et le substrat secondaire sont fusionnés entre eux au niveau de leurs deux surfaces en contact (la surface supérieure 12 du substrat principal 11 et la surface inférieure 19 du substrat secondaire 16). Autrement dit, le substrat principal 11 et le substrat secondaire 16 forment un milieu continu. Les deux substrats ne présentent pas de discontinuité.
[0033] La surface supérieure 12 peut être recouverte partiellement de la première couche 13 comprenant le premier polymère thermoplastique ou totalement. De même, la surface inférieure 19 du substrat secondaire 16 peut être recouverte partiellement de la deuxième couche 23 comprenant le deuxième polymère thermoplastique ou totalement. La première couche 13 et la deuxième couche 23, lorsqu’elles recouvrent partiellement la surface, peuvent être sous forme de bandes ou de points, avec une surface permettant le thermosoudage des deux substrats entre eux.
[0034] Par ailleurs, le substrat secondaire sur lequel la cellule photovoltaïque 17 est fixée peut être vu comme un substrat intermédiaire, mais il peut également s’agir d’une partie de la cellule photovoltaïque 17. En d’autres termes, l’invention s’applique telle que précédemment avec une ou plusieurs cellules photovoltaïques 17 dont la face arrière est recouverte au moins partiellement de la deuxième couche 23 comprenant le deuxième polymère thermoplastique.
[0035] L’invention permet donc d’assembler l’unité photo voltaïque au substrat principal 11 sans ajout de matière. L’assemblage est obtenu par thermosoudage des parties à assembler. Jusqu’alors, les substrats utilisés pour ce type d’application étaient en carbone, en aluminium ou en polymère à base d’imide (aussi connu sous le nom de Kapton), c’est-à-dire non thermosoudable, si bien que rien n’incitait à pratiquer le thermosoudage pour l’assemblage d’unité photovoltaïque sur un substrat pour membrane.
[0036] La solution proposée par l’invention est de thermosouder les parties à assembler. Le processus est applicable sur des matériaux thermoplastiques ou comprenant au moins une surface en matériau thermoplastique. L’assemblage des deux substrats se fait par apport extérieur de chaleur. Cet apport extérieur peut être fait par exemple par miroir chauffant : les deux substrats à assembler sont positionnés en vis-à-vis l’un de l’autre en laissant un espace dans lequel un miroir chauffant de ses deux côtés est positionné. Les substrats sont approchés de ce miroir jusqu'à ce que les deux couches en matériau thermoplastique aient atteint leur température de fusion en surface. Lorsque les températures de fusion sont atteintes, le miroir chauffant est retiré. Puis les deux substrats sont mis en contact l'un avec l'autre pendant quelques secondes, comme représenté en haut de la figure 2. Après quelques secondes de refroidissement, la thermosoudure est réalisée, comme représenté en bas de la figure 2. Les deux substrats ne forment plus qu’une seule et même pièce monobloc, comme on peut le voir au niveau de la référence 21. Via la zone 21 , les deux substrats 11 , 16 ne sont plus disjoints.
Ils sont unis. La matière est continue. L’assemblage peut aussi se faire par air chaud ou tout autre procédé adapté.
[0037] Il en résulte que comme les deux substrats 11 , 16 se retrouvent fusionnés entre eux, la tenue mécanique de l’assemblage (substrat principal 11 et substrat secondaire 16 avec son unité photovoltaïque 15) est renforcée. Il n’existe pas de discontinuité mécanique entre le substrat principal 11 et l’unité photovoltaïque 15, ce qui constitue un optimum pour les sollicitations fonctionnelles du générateur solaire lors de l’enroulement de la membrane 10 sur son mandrin, lors du déploiement de la membrane 10, le passage de bulbe et la tenue du bulbe en position partiellement déroulée de la membrane.
[0038] En outre, la durée de réalisation d’une telle membrane 10 est optimale, puisque le thermosoudage est rapide à réaliser. Il n’y a pas de longue polymérisation ou de processus complexe à mettre en oeuvre.
[0039] Cette solution présente aussi l’avantage de ne pas ajouter de matériau d’assemblage, et donc, vu les épaisseurs de matériau mis en oeuvre, cela représente un gain de masse significatif sur la masse du générateur solaire.
[0040] Enfin, d’un point de vue thermique, l’assemblage par thermosoudure s’avère aussi excellent pour augmenter la conductivité thermique entre les deux parties assemblées, par rapport à un assemblage classique par colle, film ou Velcro.
[0041] Grâce à l’invention, l’effet thermoélastique global sur l’aile complète du générateur solaire est optimisée avec un CTE (coefficient de dilatation thermique) homogène entre les différentes parties (ici les substrats 11 , 16). Ceci constitue une amélioration de l’art antérieur dans lequel des effets thermoélastiques pouvaient apparaître entre les éléments et leur liant.
[0042] La figure 3 représente schématiquement un mode de réalisation de la membrane 10 selon l’invention. Dans ce mode de réalisation, le substrat principal 11 est ajouré. L’ajourement du substrat principal 11 permet une meilleure dissipation thermique de la chaleur par la face arrière des cellules photovoltaïques.
[0043] Dans un mode de réalisation, l’unité photovoltaïque 15 peut être un module photovoltaïque 20 comprenant une pluralité de cellules photovoltaïques 17 fixées sur la surface supérieure 18 du substrat secondaire 16. Autrement dit, l’invention concerne une membrane 10 sur laquelle des cellules photovoltaïques peuvent être fixées sur la surface supérieure 18 du substrat secondaire 16 lui-même thermosoudé au substrat principal 11. Ou bien les cellules photovoltaïques peuvent comprendre elles-mêmes une couche en polymère thermoplastique thermosoudé au substrat principal 11. Ou bien les cellules photovoltaïques peuvent être regroupées sous forme d’un module photovoltaïque, lui-même soit comprenant une surface inférieure en polymère thermoplastique, soit étant fixé sur un substrat avec une surface inférieure en polymère thermoplastique. Bien entendu, la membrane peut comprendre une combinaison de ces variantes.
[0044] L’invention repose donc sur des cellules photovoltaïques ou modules photovoltaïques assemblés éventuellement entre eux et sur le substrat principal par thermosoudage. Comme il apparaîtra dans la suite de la description, l’invention vise également à rapporter au substrat principal et/ou à l’unité photovoltaïque d’autres éléments additionnels sur le même principe de thermosoudage, comme par exemple des raidisseurs de membrane, des boucles, des supports de câblage, des connecteurs, etc. L’ensemble constitue donc une aile de générateur solaire complète pouvant être de très grande dimension, sans utiliser de matériau d’assemblage supplémentaire.
[0045] En plus des avantages déjà cités, l’invention permet d’éviter les discontinuités électriques dans le cas de modules photovoltaïques antistatiques. Il y a une conductivité thermique entre les différents substrats accrue. On peut également noter une diminution du niveau de pollution car il n’y a pas de dégazage des colles. Ainsi il n’y a pas de contamination des éléments qui se retrouvent dans le champ de vue des instruments embarqués. En outre, l’assemblage de l’invention offre une insensibilité aux radiations par rapport à un collage traditionnel. Comme expliqué plus loin, l’invention simplifie également la réparation en cas de dysfonctionnement d’un élément de la membrane.
[0046] La solution apporte un gain de performance mécanique globale de l’aile en supprimant la discontinuité mécanique entre le substrat principal et les modules photovoltaïques, ou bien entre les modules photovoltaïques entre eux. La solution apporte un gain thermique du fait de la continuité de matière entre les éléments assemblés. Cet aspect conductif est très important dans le cas par exemple d’un module photovoltaïque sur un substrat plein (non-ajouré), où l’échange thermique entre la face avant et la face arrière du module est primordiale. Cette conductivité thermique accrue s’avère bénéfique pour la performance électrique de l’aile. En diminuant la température de fonctionnement des cellules photovoltaïques, on augmente leur efficacité. Ce qui veut dire qu’avec un même nombre de cellules photovoltaïques, le générateur solaire est plus performant électriquement, ou à iso-puissance délivrée, le générateur sera moins coûteux avec moins de cellules.
Il en résulte un gain de volume et de masse.
[0047] Un meilleur couplage thermique conductif entre les éléments permet d’augmenter la capacité de rejection pour les éléments fortement dissipatifs comme les diodes, les câbles de puissance.
[0048] En effet, comme décrit ci-dessous, la membrane 10 selon l’invention peut comprendre en outre au moins un élément additionnel 30 comprenant une surface de liaison 31 recouverte au moins partiellement d’une troisième couche 33 comprenant un troisième polymère thermoplastique, ladite surface de liaison 31 de l’élément additionnel 30 étant au moins partiellement thermosoudée à la surface supérieure 12 ou une surface inférieure 32 du substrat principal 11 , opposée à la surface supérieure 12 du substrat principal 11 , l’élément additionnel 30 étant une mousse de protection 34, une gaine 35 de câble 36, un isolant, un connecteur, un composant électrique, un raidisseur de membrane ou une boucle support 41 de raidisseur de membrane.
[0049] La figure 4 représente schématiquement un autre mode de réalisation de la membrane selon l’invention. Dans ce mode de réalisation, la membrane comprend une mousse de protection 34. La mousse de protection comprend une surface de liaison recouverte au moins partiellement d’une couche de polymère thermoplastique. La mousse 34 est préférentiellement thermosoudée sur la surface inférieure du substrat principal 11 de sorte à protéger, dans la configuration enroulée de la membrane 10, les cellules photovoltaïques de la spire inférieure de membrane enroulée. Alternativement, la mousse 34 peut être thermosoudée sur la face inférieure du substrat secondaire, ou sur les surfaces supérieures des substrats 11 , 16, à des localisations permettant de prévenir les éventuels chocs entre les cellules et/ou entre les éléments additionnels lorsque la membrane est enroulée.
[0050] La totalité des mousses utilisées peut représenter de grandes surfaces de collage. Le thermosoudage de la mousse sur le substrat permet un gain de masse de la membrane.
[0051] La figure 5 représente schématiquement un autre mode de réalisation de la membrane selon l’invention. Dans ce mode de réalisation, la membrane comprend une boucle support 41 de raidisseur de membrane. La boucle support 41 comprend une surface de liaison recouverte au moins partiellement d’une
couche de polymère thermoplastique. La boucle support 41 est préférentiellement thermosoudée sur la surface inférieure du substrat principal 11 de sorte à assurer une continuité de matière pour une meilleure performance mécanique comme expliqué précédemment. Un raidisseur peut alors être glissé dans la boucle support 41 pour offrir une meilleure raideur à la membrane 10.
[0052] Alternativement, le raidisseur de membrane peut comprendre une surface de liaison recouverte au moins partiellement d’une couche de polymère thermoplastique et le raidisseur peut alors être directement thermosoudé sur le substrat principal 11.
[0053] L’invention s’applique également avec un substrat principal 11 comprenant des fibres de renforcement, préférentiellement des fibres de verre, des fibres de carbone et/ou des fibres d’aramide. Ces fibres de renforcement sont préférentiellement dans le substrat principal 11.
[0054] La figure 6 représente schématiquement un autre mode de réalisation de la membrane selon l’invention. Dans ce mode de réalisation, la membrane comprend une gaine 35 de câble 36. La gaine 35 comprend une surface de liaison recouverte au moins partiellement d’une couche de polymère thermoplastique. La gaine 35 est préférentiellement thermosoudée sur la surface inférieure du substrat principal 11 de sorte à assurer une continuité de matière comme expliqué précédemment. La gaine 35 peut également être thermosoudée sur la surface supérieure du substrat principal 11 , à proximité des cellules photovoltaïques. Le câble 36 est positionné dans la gaine 35. Le câble 36 peut également comprendre une surface de liaison recouverte au moins partiellement d’une couche de polymère thermoplastique et le câble 36 peut alors être directement thermosoudé sur le substrat principal 11.
[0055] Le même principe s’applique avec tout autre élément additionnel qui peut être utilisé sur la membrane 10, par exemple un isolant, un connecteur, un composant électrique tel qu’une thermistance, une diode, un diod board.
[0056] Enfin, la solution apportée par l’invention apporte un avantage de simplification de remplacement et/ou réparation d’un élément défectueux en endommagés, que ce soit une cellule photovoltaïque ou un des éléments additionnels précédemment cites. Tous ces éléments peuvent être remplacés s’ils
sont défectueux par un élément sain, sans risque de délaminage ou d’endommagement du substrat ou du module photovoltaïque sur lequel ils sont rapportés.
[0057] Pour ce faire, il suffit de venir appliquer localement un apport extérieur de chaleur près de l’élément à remplacer. Une fois la température de fusion du thermoplastique obtenue, l’élément défectueux est désolidarisé de son substrat et un élément sain y est rapporté en effectuant le même procédé de thermosoudage. De ce fait, même après une réparation, les mêmes performances mécaniques, électriques et thermiques qu’initialement sont assurées. [0058] Avantageusement, le premier polymère thermoplastique, le deuxième polymère thermoplastique et/ou le troisième polymère thermoplastique est un polymère de la famille des polymères polyaryléthercétones (PAEK), préférentiellement un polymère du type polyétheréthercétone (PEEK).
[0059] Avantageusement, le premier polymère thermoplastique et/ou le deuxième polymère thermoplastique et/ou le troisième polymère thermoplastique sont le même polymère thermoplastique. Cela facilite la réalisation du thermosoudage puisque la température de fusion à atteindre est la même. L’insertion et le retrait du miroir chauffant entre les surfaces à fusionner sont donc plus aisément contrôlables. [0060] La figure 7 représente un satellite équipé d’au moins une membrane selon l’invention.
Claims
1. Membrane (10) apte à passer d’une configuration enroulée autour d’un mandrin autour d’un premier axe Z à une configuration déployée selon un deuxième axe X sensiblement perpendiculaire au premier axe Z, caractérisée en ce qu’elle comprend : a. Un substrat principal (11 ) comprenant une surface supérieure (12) recouverte au moins partiellement d’une première couche (13) comprenant un premier polymère thermoplastique, b. au moins une piste électriquement conductrice (14), c. une unité photovoltaïque (15) comprenant un substrat secondaire (16) et au moins une cellule photovoltaïque (17) fixée sur une surface supérieure (18) du substrat secondaire (16), l’unité photovoltaïque (15) étant destinée à produire un courant électrique, et étant connectée électriquement à la au moins une piste électriquement conductrice (14), le substrat secondaire (16) comprenant une surface inférieure (19), opposée à la surface supérieure (18) du substrat secondaire (16), orientée vers la surface supérieure (12) du substrat principal (11), la surface inférieure (19) du substrat secondaire (16) étant recouverte au moins partiellement d’une deuxième couche (23) comprenant un deuxième polymère thermoplastique, et en ce que la surface inférieure (19) du substrat secondaire (16) de l’unité photovoltaïque (15) et la surface supérieure (12) du substrat principal (11) sont au moins partiellement thermosoudées, sans discontinuité mécanique entre le substrat principal (11) et l’unité photovoltaïque (15).
2. Membrane (10) selon la revendication 1, caractérisée en ce que l’unité photovoltaïque (15) est un module photovoltaïque (20) comprenant une pluralité de cellules photovoltaïques (17) fixées sur la surface supérieure (18) du substrat secondaire (16).
3. Membrane (10) selon l’une des revendications 1 ou 2, caractérisée en ce que le substrat principal (11) est ajouré.
4. Membrane (10) selon l’une des revendications 1 à 3, comprenant en outre au moins un élément additionnel (30) comprenant une surface de liaison (31) recouverte au moins partiellement d’une troisième couche (33) comprenant un troisième polymère thermoplastique, ladite surface de liaison (31) de l’élément additionnel (30) étant au moins partiellement thermosoudée à la surface supérieure (12) ou une surface inférieure (32) du substrat principal (11), opposée à la surface
supérieure (12) du substrat principal (11), l’élément additionnel (30) étant une mousse de protection (34), une gaine (35) de câble (36), un isolant, un connecteur, un composant électrique, un raidisseur de membrane ou une boucle support (41) de raidisseur de membrane.
5. Membrane (10) selon l’une des revendications 1 à 4, caractérisée en ce que le substrat principal (11) comprend des fibres de renforcement, préférentiellement des fibres de verre, des fibres de carbone et/ou des fibres d’aramide.
6. Membrane (10) selon la revendication 4, caractérisée en ce que le premier polymère thermoplastique, le deuxième polymère thermoplastique et/ou le troisième polymère thermoplastique est un polymère de la famille des polymères polyaryléthercétones (PAEK), préférentiellement un polymère du type polyétheréthercétone (PEEK).
7. Membrane (10) selon la revendication 4, caractérisée en ce que le premier polymère thermoplastique et/ou le deuxième polymère thermoplastique et/ou le troisième polymère thermoplastique sont le même polymère thermoplastique.
8. Satellite (60) comprenant au moins une membrane (10) selon l’une quelconque des revendications 1 à 7.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL297659A IL297659A (en) | 2020-04-28 | 2021-04-27 | A flexible membrane is provided with solar cells |
US17/921,312 US20230261127A1 (en) | 2020-04-28 | 2021-04-27 | Flexible membrane provided with photovoltaic cells |
EP21720530.1A EP4143890A1 (fr) | 2020-04-28 | 2021-04-27 | Membrane flexible equipee de cellules photovoltaïques |
KR1020227040481A KR20230002886A (ko) | 2020-04-28 | 2021-04-27 | 광전지 셀들이 제공된 가요성 막 |
CN202180038210.8A CN115668514A (zh) | 2020-04-28 | 2021-04-27 | 设置有光伏电池的柔性薄膜 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2004215A FR3109668B1 (fr) | 2020-04-28 | 2020-04-28 | Membrane flexible équipée de cellules photovoltaïques |
FR2004215 | 2020-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021219641A1 true WO2021219641A1 (fr) | 2021-11-04 |
Family
ID=72178673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/060990 WO2021219641A1 (fr) | 2020-04-28 | 2021-04-27 | Membrane flexible equipee de cellules photovoltaïques |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230261127A1 (fr) |
EP (1) | EP4143890A1 (fr) |
KR (1) | KR20230002886A (fr) |
CN (1) | CN115668514A (fr) |
FR (1) | FR3109668B1 (fr) |
IL (1) | IL297659A (fr) |
WO (1) | WO2021219641A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401710A (en) * | 1981-03-17 | 1983-08-30 | Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung | Solar cell carrier membrane comprising a fabric composed of plastic bands reinforced by aramide fibers |
US20050139255A1 (en) * | 2003-12-31 | 2005-06-30 | Korman Charles S. | Solar cell assembly for use in an outer space environment or a non-earth environment |
US20110308563A1 (en) * | 2010-06-22 | 2011-12-22 | Miasole | Flexible photovoltaic modules in a continuous roll |
US8894017B1 (en) * | 2012-12-28 | 2014-11-25 | Space Systems/Loral, Llc | Flexible array support structure |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4860509A (en) * | 1987-05-18 | 1989-08-29 | Laaly Heshmat O | Photovoltaic cells in combination with single ply roofing membranes |
US7211722B1 (en) * | 2002-04-05 | 2007-05-01 | Aec-Able Engineering Co., Inc. | Structures including synchronously deployable frame members and methods of deploying the same |
US7018713B2 (en) * | 2003-04-02 | 2006-03-28 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
WO2013130122A1 (fr) * | 2012-03-01 | 2013-09-06 | 3M Innovative Properties Company | Ensembles barrières protégés par un bord continu |
-
2020
- 2020-04-28 FR FR2004215A patent/FR3109668B1/fr active Active
-
2021
- 2021-04-27 IL IL297659A patent/IL297659A/en unknown
- 2021-04-27 EP EP21720530.1A patent/EP4143890A1/fr active Pending
- 2021-04-27 KR KR1020227040481A patent/KR20230002886A/ko active Search and Examination
- 2021-04-27 WO PCT/EP2021/060990 patent/WO2021219641A1/fr unknown
- 2021-04-27 CN CN202180038210.8A patent/CN115668514A/zh active Pending
- 2021-04-27 US US17/921,312 patent/US20230261127A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401710A (en) * | 1981-03-17 | 1983-08-30 | Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung | Solar cell carrier membrane comprising a fabric composed of plastic bands reinforced by aramide fibers |
US20050139255A1 (en) * | 2003-12-31 | 2005-06-30 | Korman Charles S. | Solar cell assembly for use in an outer space environment or a non-earth environment |
US20110308563A1 (en) * | 2010-06-22 | 2011-12-22 | Miasole | Flexible photovoltaic modules in a continuous roll |
US8894017B1 (en) * | 2012-12-28 | 2014-11-25 | Space Systems/Loral, Llc | Flexible array support structure |
Also Published As
Publication number | Publication date |
---|---|
KR20230002886A (ko) | 2023-01-05 |
US20230261127A1 (en) | 2023-08-17 |
IL297659A (en) | 2022-12-01 |
FR3109668B1 (fr) | 2022-08-12 |
CN115668514A (zh) | 2023-01-31 |
EP4143890A1 (fr) | 2023-03-08 |
FR3109668A1 (fr) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1035017B1 (fr) | Procédé de simulation des flux thermiques externes absorbés en vol par les éléments radiatifs extérieurs d'un engin spatial et engin spatial pour la mise en oeuvre de ce procédé | |
FR2511218A1 (fr) | Structure de support pour cellules solaires destinee aux applications spatiales | |
CA2866603C (fr) | Procede de fabrication d'une peau de bord d'attaque par cuisson d'un empilement integrant des elements chauffants et des couches de fibres preimpregnees | |
FR2956774A1 (fr) | Dispositif convertisseur d'energie pliable a panneaux photovoltaiques | |
FR2964256A1 (fr) | Accumulateur electrochimique bipolaire a emballage ameliore | |
FR2921520A1 (fr) | Element de connexion electrique et vitrage pourvu d'un tel element | |
WO2010034730A2 (fr) | Reseau de cellules photovoltaiques avec decouplage mecanique des cellules par rapport a leur support | |
FR2946459A1 (fr) | Element de structure pour panneau solaire, et structure comportant un tel element | |
EP4143890A1 (fr) | Membrane flexible equipee de cellules photovoltaïques | |
EP3469634A1 (fr) | Procede de fabrication d'un module photovoltaïque | |
EP2623909B1 (fr) | Panneau photovoltaïque à récupération thermique | |
EP3884526A1 (fr) | Générateur solaire flexible de satellite et son procédé de fabrication | |
EP3895221B1 (fr) | Procede de fabrication d'un module photovoltaïque | |
EP4055635B1 (fr) | Procédé de fabrication et d'inspection d'un assemblage photovoltaïque avec réticulation partielle | |
WO2003038911A1 (fr) | Assemblage de cellules photovoltaiques et procede de fabrication d'un tel assemblage | |
EP3721481B1 (fr) | Fabrication d'un sous-module a concentration integrant un materiau dissipateur de chaleur | |
EP3721482B1 (fr) | Fabrication d'un sous-module a concentration utilisant les procedes d'assemblage du photovoltaïque | |
FR3102022A1 (fr) | Membrane multifonctions | |
EP2773826A1 (fr) | Systeme de montage d'un panneau photovoltaïque souple | |
EP4055634B1 (fr) | Procédé de fabrication d'un module photovoltaïque avec réticulation partielle et lamination | |
WO2024126632A1 (fr) | Feuille protectrice chauffante pour dispositif de transport d'êtres humains | |
EP4139126A1 (fr) | Matelas multicouches thermiquement isolant | |
FR3116651A1 (fr) | Procédé de fabrication d’un module photovoltaïque léger et flexible intégrant une protection thermique | |
Yates et al. | The EOS-PM1 solar array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21720530 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227040481 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021720530 Country of ref document: EP Effective date: 20221128 |