WO2021218179A1 - 异常数据查询方法、装置、计算机设备及存储介质 - Google Patents

异常数据查询方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2021218179A1
WO2021218179A1 PCT/CN2020/136080 CN2020136080W WO2021218179A1 WO 2021218179 A1 WO2021218179 A1 WO 2021218179A1 CN 2020136080 W CN2020136080 W CN 2020136080W WO 2021218179 A1 WO2021218179 A1 WO 2021218179A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal
data
time
information
historical
Prior art date
Application number
PCT/CN2020/136080
Other languages
English (en)
French (fr)
Inventor
李林鸽
祁明远
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021218179A1 publication Critical patent/WO2021218179A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application relates to the field of data query in big data, and in particular to an abnormal data query method, device, computer equipment and storage medium.
  • a method for querying abnormal data including:
  • a formatted configuration file When abnormal information is detected, a formatted configuration file is obtained; the formatted configuration file includes at least one abnormal command line for processing at least one historical abnormal information at historical time; one abnormal command line includes Log-in fields of historical log-in information and time query fields containing time query information;
  • the abnormal information matching the abnormal information is retrieved from the formatted configuration file Command Line;
  • the target abnormal system is screened according to the abnormal information, the login field in the called abnormal command line is acquired, the target abnormal system is automatically logged in according to the login field, and the target abnormal system is retrieved from the target abnormal system according to the time query field. Query the abnormal time matching the abnormal information in the system abnormal log of.
  • the operating data between and the abnormal end position is marked as abnormal data of the target abnormal system; the abnormal end time is any point in time between the abnormal start time and the current time.
  • An abnormal data query device including:
  • the first obtaining module is configured to obtain a formatted configuration file when abnormal information is checked;
  • the formatted configuration file contains at least one abnormal command line for processing at least one historical abnormal information at historical time;
  • one The abnormal command line includes a login field of historical login information and a time query field including time query information;
  • the retrieval module is used to retrieve and retrieve the abnormal information from the formatted configuration file when it is determined that the abnormal information does not appear for the first time according to the matching relationship between the formatted configuration file and the abnormal information.
  • the first query module is configured to screen the target abnormal system according to the abnormal information, obtain the login field in the called abnormal command line, automatically log in the target abnormal system according to the login field, and query according to the time The field searches for the abnormal time matching the abnormal information from the system abnormal log of the target abnormal system;
  • the positioning module is configured to mark the abnormal time as the abnormal start time in the preset time granularity component, and locate the abnormal start position from the operating data of the target abnormal system according to the abnormal start time;
  • the marking module is used to obtain the abnormal end time entered in the preset time granularity component, locate the abnormal end position in the operating data of the target abnormal system according to the abnormal end time, and retrieve the abnormal end position in the sequence of time according to the abnormal end time.
  • the operating data between the abnormal start position and the abnormal end position are marked as abnormal data of the target abnormal system; the abnormal end time is any time between the abnormal start time and the current time Point in time.
  • a computer device includes a memory, a processor, and computer-readable instructions that are stored in the memory and can run on the processor, and the processor implements the following steps when the processor executes the computer-readable instructions:
  • a formatted configuration file When abnormal information is detected, a formatted configuration file is obtained; the formatted configuration file includes at least one abnormal command line for processing at least one historical abnormal information at historical time; one abnormal command line includes Log-in fields of historical log-in information and time query fields containing time query information;
  • the abnormal information matching the abnormal information is retrieved from the formatted configuration file Command Line;
  • the target abnormal system is screened according to the abnormal information, the login field in the called abnormal command line is acquired, the target abnormal system is automatically logged in according to the login field, and the target abnormal system is retrieved from the target abnormal system according to the time query field. Query the abnormal time matching the abnormal information in the system abnormal log of.
  • the operating data between and the abnormal end position is marked as abnormal data of the target abnormal system; the abnormal end time is any point in time between the abnormal start time and the current time.
  • One or more readable storage media storing computer readable instructions, when the computer readable instructions are executed by one or more processors, the one or more processors execute the following steps:
  • a formatted configuration file When abnormal information is detected, a formatted configuration file is obtained; the formatted configuration file includes at least one abnormal command line for processing at least one historical abnormal information at historical time; one abnormal command line includes Log-in fields of historical log-in information and time query fields containing time query information;
  • the abnormal information matching the abnormal information is retrieved from the formatted configuration file Command Line;
  • the target abnormal system is screened according to the abnormal information, the login field in the called abnormal command line is acquired, the target abnormal system is automatically logged in according to the login field, and the target abnormal system is retrieved from the target abnormal system according to the time query field. Query the abnormal time matching the abnormal information in the system abnormal log of.
  • the operating data between and the abnormal end position is marked as abnormal data of the target abnormal system; the abnormal end time is any point in time between the abnormal start time and the current time.
  • the above abnormal data query method, device, computer equipment and storage medium can accurately locate the abnormal data belonging to the target abnormal system from each target abnormal system, and the abnormal data location process will not be interfered by other interference data (back-end and The data fed back by the front-end), so that the process of locating abnormal data will not be passively affected, and it can also reduce the time to obtain feedback data from the back-end and the front-end, so that there will be no delay in locating abnormal data, so the final Exception processing is performed on the abnormal data accurately and efficiently located, which improves the processing efficiency of the abnormal data of the target abnormal system.
  • FIG. 1 is a schematic diagram of an application environment of an abnormal data query method in an embodiment of the present application
  • FIG. 2 is a flowchart of a method for querying abnormal data in an embodiment of the present application
  • FIG. 3 is a schematic diagram of the structure of an abnormal data query device in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a computer device in an embodiment of the present application.
  • the abnormal data query method provided by this application can be applied in the application environment as shown in Fig. 1, in which the client communicates with the server through the network.
  • the client can be, but is not limited to, various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices.
  • the server can be implemented as an independent server or a server cluster composed of multiple servers.
  • a method for querying abnormal data is provided. Taking the method applied to the server in FIG. 1 as an example, the method includes the following steps:
  • a formatted configuration file is obtained;
  • the formatted configuration file contains at least one abnormal command line for processing at least one historical abnormal information at historical time; one abnormal command line
  • the login field containing historical login information and the time query field containing time query information;
  • abnormal information is a kind of feedback information that can be fed back to the server when there is a data abnormality on the data level in the system (for example, the abnormal information can be severely differentiated data amplitude and long-term data gaps, etc.).
  • the server recognizes the feedback information, it can be determined that one or more systems corresponding to the server are abnormal.
  • the formatted configuration file refers to the historical exception information (historical exception information refers to the exception information that occurred before the current time) and the exception command line (including the exception handling for the historical exception information when the historical exception information occurs) The instruction corresponding to the exception handling action.
  • the exception command line is composed of a login field and a query field.
  • the login field is the information used to log in to the system
  • the time query field is the information used to query the login time of the login system
  • Pre-configured file Pre-configured file ,
  • the configuration file will not correspond to a historical exception information and only store the same exception command line (not repeated storage), the formatted configuration file can be stored in the local database in the server, of which, an exception command The row can correspond to a historical exception information.
  • the formatted configuration file configured in this embodiment is used to process an abnormal information that matches historical abnormal information without repeating and gradually determining the abnormal handling action corresponding to the abnormal information and gradually executing the abnormal handling action, but only It is necessary to retrieve an exception command line matching the exception information from the formatted configuration file, and directly process the exception information according to the exception command line, and the formatted configuration file in this application corresponds to the same Or similar exception information, only one corresponding exception command line can be stored.
  • the login field containing historical login information in the command line can be used to directly log in to the abnormal system through the login field, which can reduce the login time to log in to the abnormal system (the login information of each abnormal system can be stored in the configuration file history
  • the exception information corresponds to the login field of the exception command line).
  • the abnormal command line corresponding to the historical abnormal information stored in the formatted configuration file can be retrieve from the configuration file, where the retrieved exception command line has a matching relationship with the exception information.
  • subsequent exception processing can be performed on the exception information according to the exception command line.
  • the abnormal command line that matches the abnormal information is retrieved, which can speed up the processing efficiency of the abnormal information.
  • S30 Screen the target abnormal system according to the abnormal information, obtain the log-in field in the called abnormal command line, automatically log in the target abnormal system according to the log-in field, and retrieve data from the target according to the time query field. Query the abnormal time matching the abnormal information in the system abnormal log of the abnormal system;
  • the target abnormal system needs to be distinguished from the non-abnormal system, because one server corresponds to multiple systems (the system may refer to the user access system that the user can log in and perform operations, etc.), and Each system involves a lot of data, so by filtering the target abnormal system, it is possible to avoid the invalid data integration work on the data in the system without abnormality.
  • the target abnormal system can also be selected according to requirements. For example, there are two target abnormal systems in the current period, namely target abnormal system A and target abnormal system B.
  • the two target abnormal systems have already fed back abnormal information to the server.
  • the abnormal information can directly filter out the target abnormal system A and target abnormal system B from the majority of the systems in the server (select multiple target abnormal systems in the form of the box below), if the current conditions (the target abnormal system is not available for the time being) Under the time and conditions of B) can only process the target abnormal system A, so the target abnormal system A can be selected in the form of dragging the box to complete the self-screening.
  • this embodiment can correspond to all target abnormal systems Integrate the abnormal data, or you can individually select the abnormal data corresponding to one of the target abnormal systems for integration.
  • the login field of the abnormal command line in the formatted configuration file is also used to reduce the login time
  • the time query field in the formatted configuration file is used to determine the location of the abnormal information in the target abnormal system. Abnormal time.
  • S40 Mark the abnormal time as the abnormal start time in the preset time granularity component, and locate the abnormal start position from the operating data of the target abnormal system according to the abnormal start time;
  • the preset time granularity component is a tool that connects to the server and allows the server to determine the abnormal start time and abnormal end time. It also provides the user with a function to display and select the time; in the operating data of the target abnormal system The data involved in the operation of the target abnormal system at various times is recorded, and the operation data records the abnormal start position in the operation data corresponding to the abnormal start time when the target abnormal system operates abnormally.
  • the abnormal time obtained in step S30 can be converted into the abnormal start time at which the server can start abnormal processing in the preset time granularity component, so the server can locate the operation corresponding to the target abnormal system according to the abnormal start time
  • There is an abnormal abnormal starting position in the data and borrowing the abnormal starting position can facilitate subsequent accurate positioning of abnormal data, avoiding omissions in the process of integrating abnormal data.
  • the abnormal end time is any point in time between the abnormal start time and the current time, where the abnormal end time does not include the abnormal start time, but may include the current time, and the abnormal end time may be in the preset time granularity component Enter according to the user's choice, or directly according to the abnormal log corresponding to the abnormal information, directly and automatically query the end time of the abnormal information and automatically set the end time as the abnormal end time; the abnormal end position in the operating data of the target abnormal system is the same.
  • abnormal data refers to the data corresponding to the abnormal information that actually caused the target abnormal system, where abnormal information refers to the target abnormal system when there is a long-term data gap, the abnormal data can refer to the target abnormal system There are data corresponding to long-term vacancies in the data.
  • abnormal data can also refer to the target abnormal system's concurrent access volume data range significantly reduced or The data corresponding to the increase, when the abnormal information refers to the severely differentiated data submission volume of the target abnormal system, the abnormal data can also refer to the data corresponding to the significant drop or increase in the data submission volume of the target abnormal system.
  • this embodiment can accurately locate the abnormal data belonging to the target abnormal system from each target abnormal system, and will not be interfered by other interference data (data fed back from the back end and the front end) during the process of locating the abnormal data, so this implementation For example, the process of locating abnormal data will not be passively affected, and this embodiment can also reduce the time to obtain feedback data from the back-end and front-end, so that there will be no delay in locating abnormal data, so the final accurate and efficient positioning can be achieved.
  • the abnormal data that comes out is subjected to abnormal processing, which improves the processing efficiency of abnormal data of the target abnormal system.
  • the target abnormal system When judging that the abnormal information appears for the first time according to the matching relationship between the formatted configuration file and the abnormal information, the target abnormal system is screened out according to the abnormal information, and the log in is obtained from the target abnormal system.
  • Information convert the entered login information into a login field, and configure a time query field for the login field after conversion;
  • the converted login field and the configured time query field are assembled into the abnormal command line of the abnormal information that appears for the first time, and the abnormal information that appears for the first time is recorded as a historical abnormal information. After that, it is associated with the abnormal command line after assembly and configured in the formatted configuration file.
  • This embodiment is to convert the first occurrence of abnormal information into historical abnormal information, and to assemble the login field and time query field in the abnormal information into an abnormal command line that matches the historical abnormal information in a formatted configuration file. Therefore, the abnormal command line corresponding to the abnormal information can be directly and quickly retrieved in the formatted configuration file next time.
  • the obtaining the formatted configuration file includes:
  • this embodiment is to verify whether the exception handler currently logged in on the server has the authority to process exception information.
  • this embodiment Can reduce the risk of data leakage.
  • step S50 it further includes:
  • the target abnormal system locate the historical abnormal time period corresponding to the abnormal start time and the abnormal end time from the preset time granularity component, and correspond to the abnormal command line matching the abnormal information In the historical abnormal information of, query historical abnormal data matching the historical abnormal time period;
  • the online users of each target abnormal system that are associated with the abnormal information are determined.
  • This embodiment is to more intuitively determine the abnormal statistical result corresponding to the abnormal data (the abnormal statistical result is obtained by comparing the abnormal data with the historical abnormal data matching the historical abnormal time period, and the historical abnormal time period is obtained by comparing the abnormal start time and the abnormal time period.
  • the time period of the end time is determined. For example, the time period between the abnormal start time and the abnormal end time is from 8:00 to 10:00 today, and the historical abnormal time period corresponding to the abnormal start time and abnormal end time is from 8:00 to yesterday. 10 points).
  • the data can be analyzed in many aspects through the abnormal statistical results. Among them, the abnormal information that affects the online users and the number of the target abnormal system can be determined, so that the abnormal information can be processed at any time. Notify all online users associated with it. It should be noted that in this embodiment, the corresponding historical abnormal time period can be determined through the abnormal start time and the abnormal end time, and historical abnormal data matching the historical abnormal time period can be queried according to the historical abnormal time period.
  • the method further includes:
  • the user identity information corresponding to the online user can be determined, and finally the user contact information (which can be A type of contact information of the user client corresponding to the target abnormal system). Due to the abnormal data in the target abnormal system, the system may appear on the user client when online users use the user client where the target abnormal system is located. Crash and other phenomena, so when the abnormal information of the target abnormal system is successfully processed, the system repair success information of the target abnormal system can be pushed to the online user through the contact information, which can facilitate the user to continue to use the target abnormal system corresponding to the first time User client.
  • the user contact information which can be A type of contact information of the user client corresponding to the target abnormal system.
  • the method further includes:
  • the abnormal data, the historical abnormal data, and the abnormal statistical results are converted into a preset visual display mode for display, and when the acquisition request of the preset data receiver is received, the abnormal data, the abnormal statistics
  • the historical abnormal data and the abnormal statistical results are sent to the preset data recipient in a preset format document; the preset format document contains the aggregated abnormal data, the historical abnormal data, and the abnormal statistics result.
  • This embodiment is mainly to enable abnormal data, historical abnormal data and abnormal statistical results to be displayed in one of the most intuitive data viewing modes (the preset visual display mode may include charts or graphs, etc.); abnormal data, historical abnormalities
  • the data and abnormal statistical results are sent in a preset format file (for example, downloaded and obtained by the preset data recipient), which can reduce the work of the preset data recipient in data format conversion (provide multiple formats for the data recipient to do their own choose).
  • the method further includes:
  • the preset database derives the historical abnormal solution and the historical abnormal cause associated with the historical abnormal data, sending the historical abnormal solution and the historical abnormal cause to the preset data recipient in a preset sending manner;
  • the abnormal data with successful abnormal grading is sent to the preset data receiver, and after receiving the abnormal data
  • the preset data receiver feedbacks at least one current abnormal solution and the current abnormal cause for the abnormal data, it stores all the current abnormal solutions, the current abnormal cause and the abnormal data in association with the abnormal data.
  • the current abnormality solution and the current abnormality cause are generated by the preset data recipient according to the historical abnormality solution and the historical abnormality cause.
  • This embodiment can not only perform abnormal grading for abnormal data, so as to cause the preset data receiver to pay attention to the abnormal data, but also provide the preset data receiver with a reference solution for abnormal data (historical abnormality solution). ), so that the preset data receiver can make a more accurate current abnormal solution through the reference scheme to quickly solve the abnormal data mentioned above.
  • the sending the historical abnormality solution and the historical abnormality cause to a preset data recipient in a preset sending manner includes:
  • the order of occurrence time of historical abnormal causes is that when the system has multiple abnormalities, the general historical abnormal causes will be the same or similar, but the historical abnormalities corresponding to the historical abnormal causes will be different.
  • the order of occurrence is
  • the later historical anomaly scheme has a relatively large reference value (the system may have a continuous phenomenon when an abnormality occurs in the system), so this embodiment prioritizes the historical anomaly causes and their corresponding responses in the later (and within the preset time) order of time.
  • the historical anomaly plan of is sent to the preset data recipient for priority reference and subsequent processing. In this way, the current cause of the anomaly and the current anomaly solution can be quickly determined.
  • the above provides an abnormal data query method, which can accurately locate abnormal data belonging to the target abnormal system from each target abnormal system, and the abnormal data location process will not be interfered by other interference data (back-end And the data fed back by the front-end), so that the process of locating abnormal data will not be passively affected, and it can also reduce the time to obtain feedback data from the back-end and the front-end, so that there will be no delay in locating abnormal data, so finally
  • the abnormal data located by the abnormal data of the accurate target abnormal system can be abnormally processed, which improves the processing efficiency of the abnormal data of the target abnormal system.
  • an abnormal data query device is provided, and the abnormal data query device corresponds to the abnormal data query method in the above-mentioned embodiment in a one-to-one correspondence.
  • the abnormal data query device includes a first acquisition module 11, a retrieval module 12, a first query module 13, a positioning module 14 and a marking module 15.
  • the detailed description of each functional module is as follows:
  • the first obtaining module 11 is configured to obtain a formatted configuration file when abnormal information is checked; the formatted configuration file includes at least one abnormal command line for processing at least one historical abnormal information at historical time; A login field containing historical login information and a time query field containing time query information in the abnormal command line;
  • the retrieval module 12 is configured to retrieve and retrieve the abnormal information from the formatted configuration file when it is determined that the abnormal information does not appear for the first time according to the matching relationship between the formatted configuration file and the abnormal information.
  • the abnormal command line matched by the abnormal information
  • the first query module 13 is configured to screen the target abnormal system according to the abnormal information, obtain the login field in the called abnormal command line, automatically log in the target abnormal system according to the login field, and according to the time
  • the query field queries the abnormal time matching the abnormal information from the system abnormal log of the target abnormal system;
  • the positioning module 14 is configured to mark the abnormal time as the abnormal start time in the preset time granularity component, and locate the abnormal start position from the operating data of the target abnormal system according to the abnormal start time;
  • the marking module 15 is used to obtain the abnormal end time entered in the preset time granularity component, locate the abnormal end position in the operating data of the target abnormal system according to the abnormal end time, and call the time sequence and The operating data located between the abnormal start position and the abnormal end position are marked as abnormal data of the target abnormal system; the abnormal end time is the interval between the abnormal start time and the current time Any point in time.
  • abnormal data query device further includes:
  • the first configuration module is used to screen out the target abnormal system based on the abnormal information when judging that the abnormal information appears for the first time according to the matching relationship between the formatted configuration file and the abnormal information, and obtain it from the The login information entered by the target abnormal system, convert the entered login information into a login field, and configure a time query field for the login field after the conversion;
  • the second configuration module assembles the converted login field and the configured time query field into the abnormal command line of the abnormal information that appears for the first time, and records the abnormal information that appears for the first time as After a piece of historical abnormal information, it is associated with the assembled abnormal command line and configured in the formatted configuration file.
  • the first obtaining module includes:
  • the obtaining submodule is used to receive the configuration file obtaining request sent by the exception handler, obtain the permission information of the exception handler, and obtain the formatted configuration file when verifying that the permission information matches the preset permission information .
  • abnormal data query device further includes:
  • the second query module is used to locate the historical abnormal time period corresponding to the abnormal start time and the abnormal end time from the preset time granularity component in the target abnormal system, and self-associate with the abnormal In the historical abnormal information corresponding to the abnormal command line that matches the information, query historical abnormal data matching the historical abnormal time period;
  • the second obtaining module is configured to compare the abnormal data with the historical abnormal data, and obtain the abnormal statistical result after the comparison;
  • the determining module is configured to determine, according to the abnormal statistical result, the online users of each of the target abnormal systems that are associated with the abnormal information.
  • abnormal data query device further includes:
  • the push module is used to obtain the user contact information of each online user from the corresponding back-end database in each target abnormal system, and when the abnormal information of the target abnormal system associated with the abnormal data is processed successfully , Push system repair success information to all online users according to the user contact information.
  • abnormal data query device further includes:
  • the first sending module is used to convert the abnormal data, the historical abnormal data, and the abnormal statistical results into a preset visual display mode for display, and when receiving a request for obtaining the preset data, the The abnormal data, the historical abnormal data, and the abnormal statistical result are sent to the preset data recipient in a preset format document; the preset format document contains the aggregated abnormal data and the history Abnormal data and statistical results of the abnormality.
  • abnormal data query device further includes:
  • the second sending module is used to send the historical abnormal solution and the historical abnormal cause to the pre-determined in a preset sending mode when the historical abnormal solution and historical abnormal cause associated with the historical abnormal data are exported from the preset database.
  • the storage module is used to de-duplicate and merge the repeated abnormal data, perform abnormal grading on all the abnormal data, and send the abnormal data with successful abnormal grading to the preset data receiver, and After receiving at least one current abnormal solution and the current abnormal cause that the preset data receiver feedbacks on the abnormal data, all the current abnormal solutions and the current abnormal cause are associated with the abnormal data Stored in the preset database; the current abnormality solution and the current abnormality cause are generated by the preset data recipient according to the historical abnormality solution and the historical abnormality cause.
  • each module in the above abnormal data query device can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 4.
  • the computer equipment includes a processor, a memory, a network interface, and a database connected through a system bus. Among them, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes computer readable instructions and internal memory.
  • the computer readable instructions are stored with an operating system, computer readable instructions and a database.
  • the internal memory provides an environment for the operation of the operating system and the computer-readable instructions in the computer-readable instructions.
  • the database of the computer equipment is used to store multiple pieces of historical test data, and each piece of historical test data corresponds to a test problem record.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer readable instruction is executed by the processor to realize an abnormal data query method.
  • a computer device including a memory, a processor, and computer-readable instructions stored on the memory and capable of running on the processor.
  • the processor executes the computer-readable instructions to implement the above-mentioned embodiment
  • the abnormal data query method is described.
  • one or more readable storage media storing computer readable instructions are provided.
  • the readable storage media provided in this embodiment include non-volatile readable storage media and volatile readable storage. Medium; the readable storage medium stores computer readable instructions, and when the computer readable instructions are executed by one or more processors, the one or more processors implement the abnormal data query method described in the foregoing embodiment.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Debugging And Monitoring (AREA)

Abstract

一种异常数据查询方法、装置、计算机设备及存储介质。所述方法包括:检查到存在异常信息时,获取配置文件;根据异常信息筛选目标异常系统,获取配置文件中的登录字段,根据登录字段自动登录目标异常系统,并根据配置文件中的时间查询字段从目标异常系统的查询出与异常信息匹配的异常时间;将异常时间标记为异常开始时间,并根据异常开始时间自目标异常系统中的运行数据定位异常开始位置;根据异常结束时间在目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于异常开始位置和异常结束位置之间的运行数据并将其标记为目标异常系统的异常数据。所述方法可精准高效定位出异常数据,进而提高异常数据的处理效率。

Description

异常数据查询方法、装置、计算机设备及存储介质
本申请要求于2020年04月28日提交中国专利局、申请号为202010350351.0,发明名称为“异常数据查询方法、装置、计算机设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及大数据中的数据查询领域,尤其涉及一种异常数据查询方法、装置、计算机设备及存储介质。
 
背景技术
目前随着各个公司在业务方面上的发展,各个公司需用到的业务系统数量也在增加,其中,各个业务系统涉及到的业务数据也在增加,系统逻辑也变得越加复杂,因此当前的业务系统很容易出现异常问题,而第一时间快速定位异常问题也变得越加重要,但目前并不能快速整合和判断异常问题所对应的异常数据,且目前很多判断方式都只是通过系统层面来进行判断,并没有针对业务系统的业务层面,也即需要人工去结合后端及前端用户的反馈信息去进行整合和判断,发明人意识到目前的该种判断方式会在出现异常问题时对业务的层面判断会出现被动和延迟的现象,造成异常数据处理速率低的问题。因此本领域人员亟需寻找一种新的技术方案来解决上述提到的定位异常数据慢和处理异常数据速率低的问题。
 
发明内容
基于此,有必要针对上述技术问题,提供一种异常数据查询方法、装置、计算机设备及存储介质,用于精准高效定位出异常数据,从而提高异常数据的处理效率。
一种异常数据查询方法,包括:
检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
一种异常数据查询装置,包括:
第一获取模块,用于检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
调取模块,用于在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
第一查询模块,用于根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
定位模块,用于在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
标记模块,用于获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机可读指令,所述处理器执行所述计算机可读指令时实现如下步骤:
检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
一个或多个存储有计算机可读指令的可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如下步骤:
检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
上述异常数据查询方法、装置、计算机设备及存储介质,可从各个目标异常系统精准定位出属于该目标异常系统的异常数据,定位异常数据的过程中不会受到其他干扰数据的干扰(后端和前端所反馈的数据),从而定位异常数据的过程中不会被动受到影响,且也可减少时间去跟后端和前端获取反馈的数据,从而不会出现延迟定位异常数据的现象,因此最后可对精准高效定位出来的异常数据进行异常处理,提高了目标异常系统的异常数据的处理效率。
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其他特征和优点将从说明书、附图以及权利要求变得明显。
 
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中异常数据查询方法的一应用环境示意图;
图2是本申请一实施例中异常数据查询方法的一流程图;
图3是本申请一实施例中异常数据查询装置的结构示意图;
图4是本申请一实施例中计算机设备的一示意图。
 
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的异常数据查询方法,可应用在如图1的应用环境中,其中,客户端通过网络与服务器进行通信。其中,客户端可以但不限于各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。服务器可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一实施例中,如图2所示,提供一种异常数据查询方法,以该方法应用在图1中的服务器为例进行说明,包括如下步骤:
S10,检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
可理解地,异常信息为当系统存在数据层面上的数据异常而生成的一种可以反馈到服务器的反馈信息(比如,异常信息可为数据幅度差别化严重和数据出现长时间的空缺等),一旦服务器识别到此反馈信息,就可确定出该服务器对应的一个或者多个系统存在异常。
格式化的配置文件是指根据历史异常信息(历史异常信息是指在当前时间之前出现的异常信息)以及异常命令行(包含在出现历史异常信息时对该历史异常信息进行异常处理时所使用的异常处理动作对应的指令,该异常命令行由登录字段和查询字段组成,登陆字段是用于登录系统的信息,而时间查询字段是用于查询登陆系统的登录时间的信息)预先配置好的文件,该配置文件中不会对应于一个历史异常信息仅存储一个相同的异常命令行(不会重复存储),该格式化的配置文件可被存储至服务器中的本地数据库中,其中,一个异常命令行可对应一个历史异常信息。
本实施例配置的格式化的配置文件,用于在处理一个与历史异常信息匹配的异常信息时,无需重复逐步确定与该异常信息对应的异常处理动作并逐步执行该异常处理动作,而是只需从格式化的配置文件调取一个与该异常信息匹配的异常命令行,并根据该异常命令行直接处理该异常信息即可,并且,本申请中的格式化的配置文件中,对应于相同或者类似的异常信息,仅存储一个对应的异常命令行即可,因此可减少配置文件存储多个相同的异常命令行,也可减少重复的异常命令行切换的时间;如在后续步骤中,异常命令行中包含历史登录信息的登录字段,通过该登录字段直接登录存在异常的系统,可减少登录到存在异常的系统的登录时间(可将各个存在异常的系统的登陆信息存储至配置文件中历史异常信息对应的异常命令行的登录字段中)。
S20,在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
可理解地,在格式化的配置文件中,若存在处理过与异常信息相匹配的历史异常信息的记录,存储在格式化的配置化文件中与该历史异常信息对应的异常命令行就可被从配置化文件中调取出,其中,调取出的异常命令行与异常信息存在匹配关系,可选地,后续可根据该异常命令行对该异常信息进行后续的异常处理。本实施例在确定异常信息不为第一次出现时,才去调取与异常信息匹配的异常命令行,可加快异常信息的处理效率。
S30,根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
在本实施例中,目标异常系统需要与未存在异常的系统进行区分开来,由于一个服务器中对应于多个系统(该系统可以是指用户可以登录并进行操作的用户访问系统等),且每个系统中又涉及繁多数据,因此通过筛选目标异常系统可避免对未存在异常的系统中的数据进行无效的数据整合的工作。
目标异常系统也可根据需求来自行筛选,比如,当前时段存在两个目标异常系统,分别为目标异常系统A和目标异常系统B,两个目标异常系统已向服务器反馈了异常信息,此时通过该异常信息可从服务器中存在多数系统中直接筛选出目标异常系统A和目标异常系统B(以下拉框被选择的形式选择多个目标异常系统),若当前条件(暂时不具备处理目标异常系统B的时间以及条件下)只能处理目标异常系统A,因此可将目标异常系统A以下拉框选择的形式去完成自行筛选,其中需要说明的是,本实施例可对所有的目标异常系统对应的异常数据进行整合,也可只单独选择出其中一个目标异常系统对应的异常数据进行整合。
在本实施例中,也借用格式化的配置文件中的异常命令行的登录字段来减少登录时间,而借用格式化的配置文件中的时间查询字段来确定出该异常信息在目标异常系统所在的异常时间。
S40,在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
可理解地,预设时间粒度组件是一种连接服务器并可供本服务器去确定异常开始时间和异常结束时间的工具,也提供给用户一个显示和选择时间的功能;目标异常系统的运行数据中记录了目标异常系统在各个时间的运行过程中涉及到的数据,其中运行数据中记录了目标异常系统运行异常时,与异常开始时间对应的运行数据中的异常开始位置。
在本实施例中,可在预设时间粒度组件中将上述步骤S30中得到的异常时间转换成服务器可开始进行异常处理的异常开始时间,因此服务器可根据异常开始时间定位目标异常系统对应的运行数据中存在异常的异常开始位置,并借用该异常开始位置可方便后续去精准定位出异常数据,避免整合异常数据的过程中出现遗漏的现象。
S50,获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
可理解地,异常结束时间为异常开始时间与当前时间之间的任意时间点,其中,异常结束时间不包括异常开始时间,但可包括当前时间,且异常结束时间可在预设时间粒度组件中根据用户选择录入,亦可直接根据与异常信息对应的异常日志直接自动查询异常信息的结束时间并自动将该结束时间设定为异常结束时间;目标异常系统的运行数据中的异常结束位置同理也可按照异常结束时间进行定位;异常数据是指真正引起目标异常系统的异常信息对应的数据,其中,在异常信息是指目标异常系统存在数据长时间的空缺时,异常数据可指目标异常系统存在数据长时间的空缺所对应的数据,同理,在异常信息是指目标异常系统的同期访问量幅度差别化严重时,异常数据也可指目标异常系统的同期访问量数据幅度大幅度下降或上升所对应的数据,在异常信息是指目标异常系统的数据提交量幅度差别化严重时,异常数据也可指目标异常系统的数据提交量大幅度下降或上升所对应的数据等。
本实施例最后可从各个目标异常系统精准定位出属于该目标异常系统的异常数据,定位异常数据的过程中不会受到其他干扰数据的干扰(后端和前端所反馈的数据),从而本实施例定位异常数据的过程中不会被动受到影响,且本实施例也可减少时间去跟后端和前端获取反馈的数据,从而不会出现延迟定位异常数据的现象,因此最后可对精准高效定位出来的异常数据进行异常处理,提高了目标异常系统的异常数据的处理效率。
进一步地,所述获取格式化的配置文件之后,还包括:
在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息为第一次出现时,根据所述异常信息筛选出目标异常系统,获取自所述目标异常系统录入的登录信息,将录入的所述登录信息转换为登录字段,并为转换之后的所述登录字段配置一个时间查询字段;
将转换之后的所述登录字段和配置的所述时间查询字段组装成第一次出现的所述异常信息的异常命令行,并在将第一次出现的所述异常信息记录为一个历史异常信息之后,将其与组装之后的所述异常命令行关联配置在所述格式化的配置文件中。
本实施例是为了将第一次出现的异常信息转换成历史异常信息,以及为了将异常信息中的登录字段和时间查询字段组装成格式化的配置文件中与历史异常信息匹配的异常命令行,因此,下次可在格式化的配置文件中直接快速调取出与异常信息对应的异常命令行。
进一步地,所述获取格式化的配置文件,包括:
接收异常处理方发送的配置文件获取请求,获取所述异常处理方的权限信息,并在验证所述权限信息与预设权限信息匹配时,获取所述格式化的配置文件。
本实施例一方面是为了验证本服务器当前登录的异常处理方是否有处理异常信息的权限,另一方面是由于部分目标异常系统中的异常信息涉及到重要的数据或者信息,因此通过本实施例可减少数据泄露的风险。
进一步地,所述步骤S50之后,还包括:
在所述目标异常系统中,自所述预设时间粒度组件中定位与所述异常开始时间以及所述异常结束时间对应的历史异常时间段,并自与所述异常信息匹配的异常命令行对应的历史异常信息中,查询与所述历史异常时间段匹配的历史异常数据;
将所述异常数据与所述历史异常数据进行对比后,获取对比之后的异常统计结果;
根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户。
本实施例是为了更直观确定出异常数据对应的异常统计结果(该异常统计结果是根据异常数据与历史异常时间段匹配的历史异常数据对比得到,而历史异常时间段是通过异常开始时间与异常结束时间所在的时间段确定的,比如,在异常开始时间与异常结束时间所在的时间段为今天8点到10点,而异常开始时间以及异常结束时间对应的历史异常时间段为昨天8点到10点),通过该异常统计结果可实现数据的多方面分析,其中可确定影响到目标异常系统对应的线上用户及其数量的异常信息,以便于在对该异常信息进行处理时,随时可以通知与其存在关联的各线上用户。需要说明的是,本实施例是可通过异常开始时间和异常结束时间确定出对应的历史异常时间段,并根据该历史异常时间段段查询出与其匹配的历史异常数据。
进一步地,所述根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户之后,还包括:
从各个所述目标异常系统中对应的后端数据库中获取与各所述线上用户的用户联系信息,在与所述异常数据关联的目标异常系统的异常信息被处理成功时,根据所述用户联系信息向所有所述线上用户推送系统修复成功信息。
在本实施例中,在确定出影响到目标异常系统对应的线上用户数量后,接着可确定出线上用户对应的用户身份信息,最后通过该用户身份信息就可确定出用户联系信息(可为一种与目标异常系统所对应的用户客户端的联系信息),由于上述目标异常系统存在的异常数据,将导致线上用户在使用目标异常系统所在的用户客户端的时候,用户客户端可能会出现系统崩溃等现象,因此在将目标异常系统的异常信息处理成功时,可通过联系信息向线上用户推送目标异常系统的系统修复成功信息,进而可方便用户第一时间去继续使用目标异常系统所对应的用户客户端。
进一步地,所述获取对比之后的异常统计结果之后,还包括:
将所述异常数据、所述历史异常数据和所述异常统计结果转换成预设的可视化显示方式进行显示,并在接收到预设数据接收方的获取请求时,将所述异常数据、所述历史异常数据和所述异常统计结果以预设格式文档发送至所述预设数据接收方;所述预设格式文档中包含汇总之后的所述异常数据、所述历史异常数据和所述异常统计结果。
本实施例主要是为了使异常数据、历史异常数据和异常统计结果可以以一种最直观的数据查看方式进行显现(预设的可视化显示方式可包括图表或曲线图等);异常数据、历史异常数据和异常统计结果以预设格式文档被发送(比如,被预设数据接收方下载获取)可减少预设数据接收方在数据格式转换方面上的工作(提供多种格式给数据接收方进行自行选择)。
进一步地,所述将所述异常数据与所述历史异常数据进行对比之后,还包括:
在预设数据库导出与所述历史异常数据关联的历史异常方案和历史异常原因时,将所述历史异常解决方案和所述历史异常原因以预设发送方式发送至预设数据接收方;
将重复的所述异常数据去重合并后,对所有的所述异常数据进行异常定级,将异常定级成功的所述异常数据发送至所述预设数据接收方,并在接收到所述预设数据接收方针对所述异常数据反馈的至少一个当前异常解决方案和当前异常原因之后,将所有的所述当前异常解决方案、所述当前异常原因与所述异常数据关联存储至所述预设数据库中;所述当前异常解决方案和当前异常原因为预设数据接收方根据所述历史异常解决方案和所述历史异常原因生成。
本实施例不但可以为异常数据进行异常定级,从而引起预设数据接收方对异常数据的重视,而且本实施例中可给预设数据接收方提供一个异常数据的参考方案(历史异常解决方案),从而预设数据接收方可通过该参考方案做出更为准确的当前异常解决方案来快速解决上述提到的异常数据。
进一步地,所述将所述历史异常解决方案和所述历史异常原因以预设发送方式发送至预设数据接收方,包括:
在所述预设数据库中遍历查询出与所述当前异常原因匹配的所述历史异常原因,根据匹配的所述历史异常原因的发生时间对所有所述历史异常原因进行排序,将时间最靠后的预设时长内的所有所述历史异常原因及其对应的历史异常方案以所述预设发送方式发送至所述预设数据接收方。
在本实施例中,按照历史异常原因的发生时间的先后顺序是由于系统发生多次异常的时候,一般历史异常原因会相同或者相近,但历史异常原因对应的历史异常方案会不同,发生顺序在后的历史异常方案参考价值比较大(系统发生异常时可能有持续性的现象),因此本实施例优先将发生的时间顺序在后(且在预设时长内的)的历史异常原因及其对应的历史异常方案发送至预设数据接收方,以便于优先参考并进行后续处理,如此,可加速确定出当前异常原因和当前异常解决方案。
综上所述,上述提供了一种异常数据查询方法,可从各个目标异常系统精准定位出属于该目标异常系统的异常数据,定位异常数据的过程中不会受到其他干扰数据的干扰(后端和前端所反馈的数据),从而定位异常数据的过程中不会被动受到影响,且也可减少时间去跟后端和前端获取反馈的数据,从而不会出现延迟定位异常数据的现象,因此最后可对精准目标异常系统的异常数据定位出来的异常数据进行异常处理,提高了目标异常系统的异常数据的处理效率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
 
在一实施例中,提供一种异常数据查询装置,该异常数据查询装置与上述实施例中异常数据查询方法一一对应。如图3所示,该异常数据查询装置包括第一获取模块11、调取模块12、第一查询模块13、定位模块14和标记模块15。各功能模块详细说明如下:
第一获取模块11,用于检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
调取模块12,用于在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
第一查询模块13,用于根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
定位模块14,用于在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
标记模块15,用于获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
进一步地,所述异常数据查询装置还包括:
第一配置模块,用于在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息为第一次出现时,根据所述异常信息筛选出目标异常系统,获取自所述目标异常系统录入的登录信息,将录入的所述登录信息转换为登录字段,并为转换之后的所述登录字段配置一个时间查询字段;
第二配置模块将转换之后的所述登录字段和配置的所述时间查询字段组装成第一次出现的所述异常信息的异常命令行,并在将第一次出现的所述异常信息记录为一个历史异常信息之后,将其与组装之后的所述异常命令行关联配置在所述格式化的配置文件中。
进一步地,所述第一获取模块包括:
获取子模块,用于接收异常处理方发送的配置文件获取请求,获取所述异常处理方的权限信息,并在验证所述权限信息与预设权限信息匹配时,获取所述格式化的配置文件。
进一步地,所述异常数据查询装置还包括:
第二查询模块,用于在所述目标异常系统中,自所述预设时间粒度组件中定位与所述异常开始时间以及所述异常结束时间对应的历史异常时间段,并自与所述异常信息匹配的异常命令行对应的历史异常信息中,查询与所述历史异常时间段匹配的历史异常数据;
第二获取模块,用于将所述异常数据与所述历史异常数据进行对比后,获取对比之后的异常统计结果;
确定模块,用于根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户。
进一步地,所述异常数据查询装置还包括:
推送模块,用于从各个所述目标异常系统中对应的后端数据库中获取与各所述线上用户的用户联系信息,在与所述异常数据关联的目标异常系统的异常信息被处理成功时,根据所述用户联系信息向所有所述线上用户推送系统修复成功信息。
进一步地,所述异常数据查询装置还包括:
第一发送模块,用于将所述异常数据、所述历史异常数据和所述异常统计结果转换成预设的可视化显示方式进行显示,并在接收到预设数据接收方的获取请求时,将所述异常数据、所述历史异常数据和所述异常统计结果以预设格式文档发送至所述预设数据接收方;所述预设格式文档中包含汇总之后的所述异常数据、所述历史异常数据和所述异常统计结果。
进一步地,所述异常数据查询装置还包括:
第二发送模块,用于在预设数据库导出与所述历史异常数据关联的历史异常方案和历史异常原因时,将所述历史异常解决方案和所述历史异常原因以预设发送方式发送至预设数据接收方;
存储模块,用于将重复的所述异常数据去重合并后,对所有的所述异常数据进行异常定级,将异常定级成功的所述异常数据发送至所述预设数据接收方,并在接收到所述预设数据接收方针对所述异常数据反馈的至少一个当前异常解决方案和当前异常原因之后,将所有的所述当前异常解决方案、所述当前异常原因与所述异常数据关联存储至所述预设数据库中;所述当前异常解决方案和当前异常原因为预设数据接收方根据所述历史异常解决方案和所述历史异常原因生成。
关于异常数据查询装置的具体限定可以参见上文中对于异常数据查询方法的限定,在此不再赘述。上述异常数据查询装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图4所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括计算机可读指令、内存储器。该计算机可读指令存储有操作系统、计算机可读指令和数据库。该内存储器为计算机可读指令中的操作系统和计算机可读指令的运行提供环境。该计算机设备的数据库用于存储多条历史测试数据,每条历史测试数据对应有测试问题记录。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机可读指令被处理器执行时以实现一种异常数据查询方法。
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机可读指令,处理器执行计算机可读指令时实现上述实施例中所述异常数据查询方法。
在一个实施例中,提供了一个或多个存储有计算机可读指令的可读存储介质,本实施例所提供的可读存储介质包括非易失性可读存储介质和易失性可读存储介质;该可读存储介质上存储有计算机可读指令,该计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器实现上述实施例中所述异常数据查询方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质或易失性可读存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。
 

Claims (20)

  1. 一种异常数据查询方法,其中,包括:
    检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
    在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
    根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
    在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
    获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
  2. 如权利要求1所述的异常数据查询方法,其中,所述获取格式化的配置文件之后,还包括:
    在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息为第一次出现时,根据所述异常信息筛选出所述目标异常系统,获取自所述目标异常系统录入的登录信息,将录入的所述登录信息转换为登录字段,并为转换之后的所述登录字段配置一个时间查询字段;
    将转换之后的所述登录字段和配置的所述时间查询字段组装成第一次出现的所述异常信息的异常命令行,并在将第一次出现的所述异常信息记录为一个历史异常信息之后,将其与组装之后的所述异常命令行关联配置在所述格式化的配置文件中。
  3. 如权利要求1所述的异常数据查询方法,其中,所述获取格式化的配置文件,包括:
    接收异常处理方发送的配置文件获取请求,获取所述异常处理方的权限信息,并在验证所述权限信息与预设权限信息匹配时,获取所述格式化的配置文件。
  4. 如权利要求1所述的异常数据查询方法,其中,所述调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据之后,还包括:
    在所述目标异常系统中,自所述预设时间粒度组件中定位与所述异常开始时间以及所述异常结束时间对应的历史异常时间段,并自与所述异常信息匹配的异常命令行对应的历史异常信息中,查询与所述历史异常时间段匹配的历史异常数据;
    将所述异常数据与所述历史异常数据进行对比后,获取对比之后的异常统计结果;
    根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户。
  5. 如权利要求4所述的异常数据查询方法,其中,所述根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户之后,还包括:
    从各个所述目标异常系统中对应的后端数据库中获取与各所述线上用户的用户联系信息,在与所述异常数据关联的目标异常系统的异常信息被处理成功时,根据所述用户联系信息向所有所述线上用户推送系统修复成功信息。
  6. 如权利要求4所述的异常数据查询方法,其中,所述获取对比之后的异常统计结果之后,还包括:
    将所述异常数据、所述历史异常数据和所述异常统计结果转换成预设的可视化显示方式进行显示,并在接收到预设数据接收方的获取请求时,将所述异常数据、所述历史异常数据和所述异常统计结果以预设格式文档发送至所述预设数据接收方;所述预设格式文档中包含汇总之后的所述异常数据、所述历史异常数据和所述异常统计结果。
  7. 如权利要求4所述的异常数据查询方法,其中,所述将所述异常数据与所述历史异常数据进行对比之后,还包括:
    在预设数据库导出与所述历史异常数据关联的历史异常方案和历史异常原因时,将所述历史异常解决方案和所述历史异常原因以预设发送方式发送至预设数据接收方;
    将重复的所述异常数据去重合并后,对所有的所述异常数据进行异常定级,将异常定级成功的所述异常数据发送至所述预设数据接收方,并在接收到所述预设数据接收方针对所述异常数据反馈的至少一个当前异常解决方案和当前异常原因之后,将所有的所述当前异常解决方案、所述当前异常原因与所述异常数据关联存储至所述预设数据库中;所述当前异常解决方案和当前异常原因为预设数据接收方根据所述历史异常解决方案和所述历史异常原因生成。
  8. 一种异常数据查询装置,其中,包括:
    第一获取模块,用于检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
    调取模块,用于在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
    第一查询模块,用于根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
    定位模块,用于在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
    标记模块,用于获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
  9. 一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机可读指令,其中,所述处理器执行所述计算机可读指令时实现如下步骤:
    检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
    在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
    根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
    在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
    获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
  10. 如权利要求9所述的计算机设备,其中,所述获取格式化的配置文件之后,所述处理器执行所述计算机可读指令时实现如下步骤:
    在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息为第一次出现时,根据所述异常信息筛选出所述目标异常系统,获取自所述目标异常系统录入的登录信息,将录入的所述登录信息转换为登录字段,并为转换之后的所述登录字段配置一个时间查询字段;
    将转换之后的所述登录字段和配置的所述时间查询字段组装成第一次出现的所述异常信息的异常命令行,并在将第一次出现的所述异常信息记录为一个历史异常信息之后,将其与组装之后的所述异常命令行关联配置在所述格式化的配置文件中。
  11. 如权利要求9所述的计算机设备,其中,所述调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据之后,所述处理器执行所述计算机可读指令时实现如下步骤:
    在所述目标异常系统中,自所述预设时间粒度组件中定位与所述异常开始时间以及所述异常结束时间对应的历史异常时间段,并自与所述异常信息匹配的异常命令行对应的历史异常信息中,查询与所述历史异常时间段匹配的历史异常数据;
    将所述异常数据与所述历史异常数据进行对比后,获取对比之后的异常统计结果;
    根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户。
  12. 如权利要求11所述的计算机设备,其中,所述根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户之后,所述处理器执行所述计算机可读指令时实现如下步骤:
    从各个所述目标异常系统中对应的后端数据库中获取与各所述线上用户的用户联系信息,在与所述异常数据关联的目标异常系统的异常信息被处理成功时,根据所述用户联系信息向所有所述线上用户推送系统修复成功信息。
  13. 如权利要求11所述的计算机设备,其中,所述获取对比之后的异常统计结果之后,所述处理器执行所述计算机可读指令时实现如下步骤:
    将所述异常数据、所述历史异常数据和所述异常统计结果转换成预设的可视化显示方式进行显示,并在接收到预设数据接收方的获取请求时,将所述异常数据、所述历史异常数据和所述异常统计结果以预设格式文档发送至所述预设数据接收方;所述预设格式文档中包含汇总之后的所述异常数据、所述历史异常数据和所述异常统计结果。
  14. 如权利要求11所述的计算机设备,其中,所述将所述异常数据与所述历史异常数据进行对比之后,所述处理器执行所述计算机可读指令时实现如下步骤:
    在预设数据库导出与所述历史异常数据关联的历史异常方案和历史异常原因时,将所述历史异常解决方案和所述历史异常原因以预设发送方式发送至预设数据接收方;
    将重复的所述异常数据去重合并后,对所有的所述异常数据进行异常定级,将异常定级成功的所述异常数据发送至所述预设数据接收方,并在接收到所述预设数据接收方针对所述异常数据反馈的至少一个当前异常解决方案和当前异常原因之后,将所有的所述当前异常解决方案、所述当前异常原因与所述异常数据关联存储至所述预设数据库中;所述当前异常解决方案和当前异常原因为预设数据接收方根据所述历史异常解决方案和所述历史异常原因生成。
  15. 一个或多个存储有计算机可读指令的可读存储介质,其中,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如下步骤:
    检查到存在异常信息时,获取格式化的配置文件;所述格式化的配置文件包含在历史时间时,对至少一个历史异常信息进行处理的至少一个异常命令行;一个所述异常命令行中包含历史登录信息的登录字段以及包含时间查询信息的时间查询字段;
    在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息不为第一次出现时,则从所述格式化的配置文件中调取与所述异常信息匹配的异常命令行;
    根据所述异常信息筛选目标异常系统,获取调取的所述异常命令行中的登录字段,根据所述登录字段自动登录所述目标异常系统,并根据所述时间查询字段从所述目标异常系统的系统异常日志中查询出与所述异常信息匹配的异常时间;
    在预设时间粒度组件中将所述异常时间标记为异常开始时间,并根据所述异常开始时间自所述目标异常系统的运行数据中定位异常开始位置;
    获取自所述预设时间粒度组件中录入的异常结束时间,根据所述异常结束时间在所述目标异常系统的运行数据中定位异常结束位置,调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据;所述异常结束时间为所述异常开始时间与当前时间之间的任意时间点。
  16. 如权利要求15所述的可读存储介质,其中,所述获取格式化的配置文件之后,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如下步骤:
    在根据所述格式化的配置文件和所述异常信息的匹配关系判断所述异常信息为第一次出现时,根据所述异常信息筛选出所述目标异常系统,获取自所述目标异常系统录入的登录信息,将录入的所述登录信息转换为登录字段,并为转换之后的所述登录字段配置一个时间查询字段;
    将转换之后的所述登录字段和配置的所述时间查询字段组装成第一次出现的所述异常信息的异常命令行,并在将第一次出现的所述异常信息记录为一个历史异常信息之后,将其与组装之后的所述异常命令行关联配置在所述格式化的配置文件中。
  17. 如权利要求15所述的可读存储介质,其中,所述调取以时间为序列且位于所述异常开始位置和所述异常结束位置之间的所述运行数据并将其标记为所述目标异常系统的异常数据之后,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如下步骤:
    在所述目标异常系统中,自所述预设时间粒度组件中定位与所述异常开始时间以及所述异常结束时间对应的历史异常时间段,并自与所述异常信息匹配的异常命令行对应的历史异常信息中,查询与所述历史异常时间段匹配的历史异常数据;
    将所述异常数据与所述历史异常数据进行对比后,获取对比之后的异常统计结果;
    根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户。
  18. 如权利要求17所述的可读存储介质,其中,所述根据所述异常统计结果确定出与所述异常信息存在关联的各个所述目标异常系统的线上用户之后,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如下步骤:
    从各个所述目标异常系统中对应的后端数据库中获取与各所述线上用户的用户联系信息,在与所述异常数据关联的目标异常系统的异常信息被处理成功时,根据所述用户联系信息向所有所述线上用户推送系统修复成功信息。
  19. 如权利要求17所述的可读存储介质,其中,所述获取对比之后的异常统计结果之后,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如下步骤:
    将所述异常数据、所述历史异常数据和所述异常统计结果转换成预设的可视化显示方式进行显示,并在接收到预设数据接收方的获取请求时,将所述异常数据、所述历史异常数据和所述异常统计结果以预设格式文档发送至所述预设数据接收方;所述预设格式文档中包含汇总之后的所述异常数据、所述历史异常数据和所述异常统计结果。
  20. 如权利要求17所述的可读存储介质,其中,所述将所述异常数据与所述历史异常数据进行对比之后,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行如下步骤:
    在预设数据库导出与所述历史异常数据关联的历史异常方案和历史异常原因时,将所述历史异常解决方案和所述历史异常原因以预设发送方式发送至预设数据接收方;
    将重复的所述异常数据去重合并后,对所有的所述异常数据进行异常定级,将异常定级成功的所述异常数据发送至所述预设数据接收方,并在接收到所述预设数据接收方针对所述异常数据反馈的至少一个当前异常解决方案和当前异常原因之后,将所有的所述当前异常解决方案、所述当前异常原因与所述异常数据关联存储至所述预设数据库中;所述当前异常解决方案和当前异常原因为预设数据接收方根据所述历史异常解决方案和所述历史异常原因生成。
     
PCT/CN2020/136080 2020-04-28 2020-12-14 异常数据查询方法、装置、计算机设备及存储介质 WO2021218179A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010350351.0 2020-04-28
CN202010350351.0A CN111666491B (zh) 2020-04-28 2020-04-28 异常数据查询方法、装置、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021218179A1 true WO2021218179A1 (zh) 2021-11-04

Family

ID=72382873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136080 WO2021218179A1 (zh) 2020-04-28 2020-12-14 异常数据查询方法、装置、计算机设备及存储介质

Country Status (2)

Country Link
CN (1) CN111666491B (zh)
WO (1) WO2021218179A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114201090A (zh) * 2021-12-22 2022-03-18 苏州浪潮智能科技有限公司 产品生产异常预警系统、方法、计算机设备和存储介质
CN114285700A (zh) * 2021-12-28 2022-04-05 江苏通过宝信息技术有限公司 一种工业物联网网关中的数据处理方法及工业物联网网关
CN114327638A (zh) * 2021-12-27 2022-04-12 武汉联影医疗科技有限公司 监控文档生成方法、装置、计算机设备及可读存储介质
CN114663073A (zh) * 2022-04-20 2022-06-24 平安科技(深圳)有限公司 异常节点的发现方法及其相关设备
CN114710401A (zh) * 2022-04-29 2022-07-05 北京达佳互联信息技术有限公司 异常定位方法和装置
CN115809417A (zh) * 2023-02-09 2023-03-17 新风光电子科技股份有限公司 用于高压变频器控制柜的生产线运行信号检测方法
CN116244106A (zh) * 2023-03-22 2023-06-09 中航信移动科技有限公司 一种民航数据的数据检测方法、存储介质及电子设备
CN116436761A (zh) * 2023-06-12 2023-07-14 深圳和润达科技有限公司 设备的位置在线识别和在线注册的实现方法及装置
CN116709062A (zh) * 2023-08-07 2023-09-05 安徽融兆智能有限公司 一种具有检测功能的用电信息采集设备
CN116877355A (zh) * 2023-08-11 2023-10-13 江苏千尧海洋工程有限公司 一种海上风电结构状态监测方法、装置、设备和介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111666491B (zh) * 2020-04-28 2024-05-03 平安科技(深圳)有限公司 异常数据查询方法、装置、计算机设备及存储介质
CN113867841A (zh) * 2021-09-29 2021-12-31 中国平安财产保险股份有限公司 业务系统的调用异常处理方法、装置、设备及存储介质
CN114612213A (zh) * 2022-03-07 2022-06-10 中银金融科技有限公司 一种交易运行时刻的处理方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110029817A1 (en) * 2009-07-30 2011-02-03 Hitachi, Ltd. Abnormality detection method, device and program
CN104375928A (zh) * 2013-08-12 2015-02-25 鸿富锦精密工业(深圳)有限公司 异常日志管理方法及系统
CN108304447A (zh) * 2017-12-07 2018-07-20 北京趣拿软件科技有限公司 异常信息的处理方法、装置、存储介质和处理器
CN109325865A (zh) * 2018-08-13 2019-02-12 中国平安人寿保险股份有限公司 异常处理方法、装置、计算机设备及存储介质
CN110109841A (zh) * 2019-05-17 2019-08-09 深圳前海微众银行股份有限公司 异常问题的定位方法、装置、设备及计算机可读存储介质
CN110442498A (zh) * 2019-06-28 2019-11-12 平安科技(深圳)有限公司 异常数据节点的定位方法、装置、存储介质及计算机设备
CN111666491A (zh) * 2020-04-28 2020-09-15 平安科技(深圳)有限公司 异常数据查询方法、装置、计算机设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162420B (zh) * 2019-04-26 2022-10-11 平安科技(深圳)有限公司 数据辅助定位方法、装置、计算机设备及存储介质
CN110262870B (zh) * 2019-05-15 2024-06-28 平安科技(深圳)有限公司 利用dump文件定位异常的方法、装置、计算机设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110029817A1 (en) * 2009-07-30 2011-02-03 Hitachi, Ltd. Abnormality detection method, device and program
CN104375928A (zh) * 2013-08-12 2015-02-25 鸿富锦精密工业(深圳)有限公司 异常日志管理方法及系统
CN108304447A (zh) * 2017-12-07 2018-07-20 北京趣拿软件科技有限公司 异常信息的处理方法、装置、存储介质和处理器
CN109325865A (zh) * 2018-08-13 2019-02-12 中国平安人寿保险股份有限公司 异常处理方法、装置、计算机设备及存储介质
CN110109841A (zh) * 2019-05-17 2019-08-09 深圳前海微众银行股份有限公司 异常问题的定位方法、装置、设备及计算机可读存储介质
CN110442498A (zh) * 2019-06-28 2019-11-12 平安科技(深圳)有限公司 异常数据节点的定位方法、装置、存储介质及计算机设备
CN111666491A (zh) * 2020-04-28 2020-09-15 平安科技(深圳)有限公司 异常数据查询方法、装置、计算机设备及存储介质

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114201090B (zh) * 2021-12-22 2023-08-04 苏州浪潮智能科技有限公司 产品生产异常预警系统、方法、计算机设备和存储介质
CN114201090A (zh) * 2021-12-22 2022-03-18 苏州浪潮智能科技有限公司 产品生产异常预警系统、方法、计算机设备和存储介质
CN114327638A (zh) * 2021-12-27 2022-04-12 武汉联影医疗科技有限公司 监控文档生成方法、装置、计算机设备及可读存储介质
CN114285700A (zh) * 2021-12-28 2022-04-05 江苏通过宝信息技术有限公司 一种工业物联网网关中的数据处理方法及工业物联网网关
CN114663073A (zh) * 2022-04-20 2022-06-24 平安科技(深圳)有限公司 异常节点的发现方法及其相关设备
CN114663073B (zh) * 2022-04-20 2024-05-07 平安科技(深圳)有限公司 异常节点的发现方法及其相关设备
CN114710401A (zh) * 2022-04-29 2022-07-05 北京达佳互联信息技术有限公司 异常定位方法和装置
CN114710401B (zh) * 2022-04-29 2024-02-06 北京达佳互联信息技术有限公司 异常定位方法和装置
CN115809417A (zh) * 2023-02-09 2023-03-17 新风光电子科技股份有限公司 用于高压变频器控制柜的生产线运行信号检测方法
CN116244106A (zh) * 2023-03-22 2023-06-09 中航信移动科技有限公司 一种民航数据的数据检测方法、存储介质及电子设备
CN116244106B (zh) * 2023-03-22 2023-12-29 中航信移动科技有限公司 一种民航数据的数据检测方法、存储介质及电子设备
CN116436761A (zh) * 2023-06-12 2023-07-14 深圳和润达科技有限公司 设备的位置在线识别和在线注册的实现方法及装置
CN116436761B (zh) * 2023-06-12 2023-08-25 深圳和润达科技有限公司 设备的位置在线识别和在线注册的实现方法及装置
CN116709062A (zh) * 2023-08-07 2023-09-05 安徽融兆智能有限公司 一种具有检测功能的用电信息采集设备
CN116709062B (zh) * 2023-08-07 2023-10-20 安徽融兆智能有限公司 一种具有检测功能的用电信息采集设备
CN116877355A (zh) * 2023-08-11 2023-10-13 江苏千尧海洋工程有限公司 一种海上风电结构状态监测方法、装置、设备和介质
CN116877355B (zh) * 2023-08-11 2024-02-20 江苏千尧海洋工程有限公司 一种海上风电结构状态监测方法、装置、设备和介质

Also Published As

Publication number Publication date
CN111666491A (zh) 2020-09-15
CN111666491B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2021218179A1 (zh) 异常数据查询方法、装置、计算机设备及存储介质
US11789943B1 (en) Configuring alerts for tags associated with high-latency and error spans for instrumented software
US9449074B1 (en) Determining and extracting changed data from a data source
US10565172B2 (en) Adjusting application of a set of data quality rules based on data analysis
US10135693B2 (en) System and method for monitoring performance of applications for an entity
US9356966B2 (en) System and method to provide management of test data at various lifecycle stages
US11768776B1 (en) Evicting data associated with a data intake and query system from a local storage
US11966797B2 (en) Indexing data at a data intake and query system based on a node capacity threshold
US12019634B1 (en) Reassigning a processing node from downloading to searching a data group
US11119843B2 (en) Verifying application behavior based on distributed tracing
US11741413B2 (en) Digital fingerprint analysis
US11892976B2 (en) Enhanced search performance using data model summaries stored in a remote data store
EP3881195A1 (en) Approach for a controllable trade-off between cost and availability of indexed data in a cloud log aggregation solution such as splunk or sumo
CN113297182B (zh) 数据迁移方法、设备、存储介质及程序产品
CN113688288B (zh) 数据关联分析方法、装置、计算机设备和存储介质
US20230004478A1 (en) Systems and methods of continuous stack trace collection to monitor an application on a server and resolve an application incident
CN112395333A (zh) 用于排查数据异常的方法、装置、电子设备及存储介质
US20210200751A1 (en) Monitoring and data validation of process log information imported from multiple diverse data sources
US11841827B2 (en) Facilitating generation of data model summaries
CN113468218A (zh) 一种对数据库慢sql进行监测和管理的方法和装置
CN112631929A (zh) 测试用例生成方法、装置、存储介质及电子设备
CN110955710A (zh) 一种数据交换作业中脏数据的处理方法及装置
US12050507B1 (en) System and method for data ingestion, anomaly detection and notification
US20220350849A1 (en) Controlling Precision of Searches
KR101567550B1 (ko) 제조업에서의 데이터 수집 및 제공 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933057

Country of ref document: EP

Kind code of ref document: A1