WO2021217426A1 - Methods and reagents for high-throughput detection of viral sequences in single cells - Google Patents

Methods and reagents for high-throughput detection of viral sequences in single cells Download PDF

Info

Publication number
WO2021217426A1
WO2021217426A1 PCT/CN2020/087525 CN2020087525W WO2021217426A1 WO 2021217426 A1 WO2021217426 A1 WO 2021217426A1 CN 2020087525 W CN2020087525 W CN 2020087525W WO 2021217426 A1 WO2021217426 A1 WO 2021217426A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
virus
rna
cdna
cell
Prior art date
Application number
PCT/CN2020/087525
Other languages
French (fr)
Inventor
Wenqi ZHU
Original Assignee
Singleron (Nanjing) Biotechnologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singleron (Nanjing) Biotechnologies, Ltd. filed Critical Singleron (Nanjing) Biotechnologies, Ltd.
Priority to PCT/CN2020/087525 priority Critical patent/WO2021217426A1/en
Priority to PCT/CN2021/087517 priority patent/WO2021209009A1/en
Priority to US17/996,195 priority patent/US20230193355A1/en
Priority to EP21787533.5A priority patent/EP4136255A1/en
Priority to CN202180047351.6A priority patent/CN115956115A/en
Publication of WO2021217426A1 publication Critical patent/WO2021217426A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage

Definitions

  • the present disclosure involves methods and reagents for high-throughput detection of expressed viral sequences in host cells at single cell level
  • 2019 novel coronavirus 2019-nCoV; or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
  • 2019-nCoV severe acute respiratory syndrome coronavirus 2
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • Flaviviruses which include dengue (DENV) and Zika (ZIKV) viruses, infect several hundred million people annually and are associated with severe morbidity and mortality [3-5] .
  • Virus infection causes approximately 12 %of cancers in the world [3] , Human papilloma virus (HPV) , Epstein-Barr virus (EBV) , hepatitis B virus (HBV) , Kaposi’s sarcoma-associated herpes virus (KSHV) , Merkel cell polyomavirus (MCPyV) , hepatitis C virus (HCV) , Human immunodeficiency virus (HIV) and human T cell lymphotropic virus type 1 (HTLV-1) are associated with multiple forms of malignancies [4-11] .
  • HPV Human papilloma virus
  • EBV Epstein-Barr virus
  • HBV hepatitis B virus
  • KSHV Kaposi’s sarcoma-associated herpes virus
  • MCPyV Merkel cell polyomavirus
  • HCV hepatitis C virus
  • HMV Human immunodeficiency virus
  • HTLV-1 human T cell lymphotropic virus type 1
  • NGS next generation sequencing
  • metatranscriptomics sequencing target enrichment sequencing
  • PCR amplicon sequencing [12] .
  • these approaches cannot provide accurate information on interaction dynamics between viruses and the host cells.
  • meta-transcriptomics sequencing has been widely used for virus identification and virus–host interactions analysis [13] . Based on the sequence of the virus, it is possible to analyze the characteristics and evolutionary relationship of the virus, so as to know its pathogenic mechanism. For example, high throughput meta-transcriptomic sequencing can be used to obtain complete viral genome sequence of COVID-19 [14] . It has been proved COVID-19 was approximately 79%similar to SARS-CoV at the nucleotide level based on sequence alignment [15] . Given these close evolutionary relationships, it has been found that COVID-19 uses the SARS-CoV receptor ACE2 for entry [16] .
  • analyses at the cell population level may average and minimize individual cellular differences, potentially masking rare cells or cell subsets with a significant specific phenotype [17] .
  • This can be found in cancer, where heterogeneity in intra-tumor cells at genetic, epigenetic and phenotypic level can lead to resistance in cancer therapies, as well as in infectious diseases where cell heterogeneity can reveal differential susceptibility to infections or different immunological responses [18-19] .
  • bulk sequencing methods do not take into consideration that it is likely that only a small percentage of cells in a host tissue is infected by virus.
  • the present disclosure provides a novel method for detection of expressed viral genes and host genes simultaneously at single cell resolution.
  • probe binding to virus sequence combined with oligo-dT to capture and reverse transcribe expressed viral genes and host mRNA, respectively.
  • the probe and oligo-dT contain the same PCR handle sequence, so that cDNA of virus sequence and host mRNA can be amplified at the same time.
  • the probe and oligo-dT can be combined with a oligonucleotide sequence that can act as cell barcode to distinguish single cells from each other, so that thousands or more of single cells can be analyzed in parallel.
  • This method can also be used in combination with a microfluidic system where each cell in a sample can be partitioned to individual micro-chambers. Single cells can be lysed in the micro-chambers; mRNA and virus sequences can be captured at the same time.
  • FIG. 1 Schematic diagram of the present disclosure.
  • Figure 2 Schematic diagram of the embodiment of the present disclosure where cell barcoding capture magnetic bead is used to capture host mRNA and Viral RNA.
  • Figure 3 shows sequence of synthetic SARS-COV-2 RNA
  • Figure 4 shows the proption of sequence read assign host gene and viral genome.
  • Figure 5 shows the cell number contain different rate of viral read.
  • Figure 6 shows the cell sorted by the expression of COVID-19.
  • probe binding to virus sequence combine with oligo-dT to capture both host mRNA and virus nucleotide.
  • the probe and oligo-dT contain the same PCR handle sequence, which can act as priming site for RT reactions and PCR amplification reactions.
  • One embodiment of the present disclosure is to add probe binding to virus sequence and oligo-dT to the Magnetic capture beads. This way one can capture and reverse transcribe both mRNA and virus sequence. With unique cell barcodes in conjunction with the oligo-dT and probe sequence, cDNA molecules from the same single cell can be labeled and a group of single cells can be processed in parallel.
  • the disclosure provides an approach to sequence and quantify the whole transcriptome of single cells together with the viral RNA from the same cell. By correlating gene expression with virus level in the same cell, we can identify several cellular functions involved in virus replication.
  • GEXSCOPE Single Cell RNAseq Library Construction kit (Singleron Biotechnologies) was used to demonstrate the technical feasibility and the utility of the present disclosure in massively parallel single cell virus-RNA sequencing. The experiment was conducted according to manufacturer’s instructions with modifications described below.
  • the primers on all beads comprise a common sequence used for PCR amplification, a bead-specific cell barcode, a unique 8 molecular identifier (UMI) , a oligo-dT sequence for capturing polyadenylated mRNAs and probe sequence annealing to COVID-19 sequence for capturing COVID-19 RNA.
  • UMI unique 8 molecular identifier
  • the sequence of the Probe is as follows:
  • RNA of part of COVID-19 viral genome sequence with in vitro transcription method.
  • Figure 3 Single cell suspension of PC9 was first loaded onto the microchip to partition single cells into individual wells on the chip. Cell barcoding magnetic beads were then loaded to the microchip and washed. Only one bead can fall into each well on the microchip based on the diameters of the beads and well (about 25um and 40um, respectively) .
  • 100ul cell lysis buffer which contains 10ng COVID-19 RNA into the chip and let incubate at room temperature for 20 minutes to lyse cells and capture RNAs.
  • RNAseq library was sequenced on Illumina NovaSeq with PE150 mode and analyzed with scopeTools bioinformatics workflow (Singleron Biotechnologies) .
  • Figure 3 shows that the present disclosure can detect PC9 gene and COVID-19 gene at the same time. We also can sort cells based on the expression of COVID-19. ( Figure 5; Figure 6) .

Abstract

The purpose of the present disclosure is to provide methods and reagents for high-throughput detection of the viral sequence at single cell level. We use probe binding to virus sequence combined with oligo-dT to capture host mRNA and virus nucleotide in a single cell. The probe sequence is subsequently used to capture said RNA and prime reverse transcription of the RNA to cDNA. The resulting cDNA can be amplified and analyzed. The disclosure provides an approach to sequence and quantify the whole transcriptome of single cells together with the viral RNA from the same single cell.

Description

METHODS AND REAGENTS FOR HIGH-THROUGHPUT DETECTION OF VIRAL SEQUENCES IN SINGLE CELLS Technical field
The present disclosure involves methods and reagents for high-throughput detection of expressed viral sequences in host cells at single cell level
Background
There are hundreds of virus species that are known to be able to infect humans and at least three to four new species emerge every year. Many viruses transmitted in human have mammalian or avian animal origins. Indeed, a substantial proportion of mammalian viruses may be capable of crossing the species barrier into humans, although only around half of these are capable of being transmitted by humans and around half again of transmitting well enough to cause major outbreaks [1] . Recently, the 2019 novel coronavirus (2019-nCoV; or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ) has spread rapidly since its recent identification in patients with severe pneumonia in Wuhan, China. As of 10 February 2020, SARS-CoV2 has been reported in 25 countries across 4 continents and >40, 000 cases have been confirmed, with an estimated mortality risk of ~2% [2] . Flaviviruses, which include dengue (DENV) and Zika (ZIKV) viruses, infect several hundred million people annually and are associated with severe morbidity and mortality [3-5] .
Virus infection causes approximately 12 %of cancers in the world [3] , Human papilloma virus (HPV) , Epstein-Barr virus (EBV) , hepatitis B virus (HBV) , Kaposi’s sarcoma-associated herpes virus (KSHV) , Merkel cell polyomavirus (MCPyV) , hepatitis C virus (HCV) , Human immunodeficiency virus (HIV) and human T cell lymphotropic virus type 1 (HTLV-1) are associated with multiple forms of malignancies [4-11] .
High-throughput sequencing next generation sequencing (NGS) has become more common in virus discovery applications. Three main methods based on HTS are currently used for viral RNA sequencing: metatranscriptomics sequencing, target enrichment sequencing and PCR amplicon sequencing [12] . However, these approaches cannot provide accurate information on interaction dynamics between viruses and the host cells.
In the prior art, meta-transcriptomics sequencing has been widely used for virus identification and virus–host interactions analysis [13] . Based on the sequence of the virus, it is possible to analyze the characteristics and evolutionary relationship of the virus, so as to know its pathogenic mechanism. For example, high throughput meta-transcriptomic sequencing can be used to obtain complete viral genome sequence of COVID-19 [14] . It has been proved COVID-19 was approximately 79%similar to SARS-CoV at the nucleotide level based on sequence alignment [15] . Given these close evolutionary relationships, it has been found that COVID-19 uses the SARS-CoV receptor ACE2 for entry [16] .
However, analyses at the cell population level may average and minimize individual cellular differences, potentially masking rare cells or cell subsets with a significant specific phenotype [17] . This can be found in cancer, where heterogeneity in intra-tumor cells at genetic, epigenetic and phenotypic level can lead to resistance in cancer therapies, as well as in infectious diseases where cell heterogeneity can reveal differential susceptibility to infections or different immunological responses [18-19] . Furthermore, such bulk sequencing methods do not take into consideration that it is likely that only a small percentage of cells in a host tissue is infected by virus.
The characterization of cellular heterogeneity due to the activation of different host pathways by viral infection and the progression of viral infection is of great interest. Since viruses usurp the cellular machinery at every stage of their life cycle, a therapeutic strategy is to target host factors essential for viral replication [20] . To this end it is critical to understand the interaction dynamics between viruses and the infected host cells, to identify pro-and antiviral host factors and to monitor their dynamics in the course of viral infection.
Summary
The present disclosure provides a novel method for detection of expressed viral genes and host genes simultaneously at single cell resolution. First, we use probe binding to virus sequence combined with oligo-dT to capture and reverse transcribe expressed viral genes and host mRNA, respectively. The probe and oligo-dT contain the same PCR handle sequence, so that cDNA of virus sequence and host mRNA can be amplified at the same time. Optionally, the probe and oligo-dT can be combined with a oligonucleotide sequence that can act as cell barcode to distinguish single cells  from each other, so that thousands or more of single cells can be analyzed in parallel. This method can also be used in combination with a microfluidic system where each cell in a sample can be partitioned to individual micro-chambers. Single cells can be lysed in the micro-chambers; mRNA and virus sequences can be captured at the same time.
Brief description of drawings
Figure 1 Schematic diagram of the present disclosure.
Figure 2 Schematic diagram of the embodiment of the present disclosure where cell barcoding capture magnetic bead is used to capture host mRNA and Viral RNA.
Figure 3 shows sequence of synthetic SARS-COV-2 RNA
Figure 4 shows the proption of sequence read assign host gene and viral genome.
Figure 5 shows the cell number contain different rate of viral read.
Figure 6 shows the cell sorted by the expression of COVID-19.
Detailed description
To overcome the drawbacks of the current virus–host interactions analysis methods, we use probe binding to virus sequence combine with oligo-dT to capture both host mRNA and virus nucleotide. The probe and oligo-dT contain the same PCR handle sequence, which can act as priming site for RT reactions and PCR amplification reactions.
One embodiment of the present disclosure is to add probe binding to virus sequence and oligo-dT to the Magnetic capture beads. This way one can capture and reverse transcribe both mRNA and virus sequence. With unique cell barcodes in conjunction with the oligo-dT and probe sequence, cDNA molecules from the same single cell can be labeled and a group of single cells can be processed in parallel. The disclosure provides an approach to sequence and quantify the whole transcriptome of single cells together with the viral RNA from the same cell. By correlating gene expression with virus level in the same cell, we can identify several cellular functions involved in virus replication.
GEXSCOPE Single Cell RNAseq Library Construction kit (Singleron Biotechnologies) was used to demonstrate the technical feasibility and the utility of the present disclosure in massively parallel single cell virus-RNA sequencing. The  experiment was conducted according to manufacturer’s instructions with modifications described below.
Cell barcoding Magnetic bead synthesis:
The primers on all beads comprise a common sequence used for PCR amplification, a bead-specific cell barcode, a unique 8 molecular identifier (UMI) , a oligo-dT sequence for capturing polyadenylated mRNAs and probe sequence annealing to COVID-19 sequence for capturing COVID-19 RNA.
The sequence of the Probe is as follows:
Round3-nCov1:
Figure PCTCN2020087525-appb-000001
Round3-nCov2:
Figure PCTCN2020087525-appb-000002
Round3-nCov3:
Figure PCTCN2020087525-appb-000003
Round3-nCov4:
Figure PCTCN2020087525-appb-000004
Round3-nCov5:
Figure PCTCN2020087525-appb-000005
Briefly, we synthesized RNA of part of COVID-19 viral genome sequence with in vitro transcription method. (Figure 3) Single cell suspension of PC9 was first loaded onto the microchip to partition single cells into individual wells on the chip. Cell barcoding magnetic beads were then loaded to the microchip and washed. Only one bead can fall into each well on the microchip based on the diameters of the beads and well (about 25um and 40um, respectively) . We then loaded 100ul cell lysis buffer which contains 10ng COVID-19 RNA into the chip and let incubate at room temperature for 20 minutes to lyse cells and capture RNAs. After 20 minutes, the magnetic beads, together with captured RNAs, were taken out of the microchip and subject to RT, template switching, cDNA amplification, and a part of cDNA was used to construct gene expression library using reagents from the GEXSCOPE kit and following manufacturer’s instructions. The resulting single cell RNAseq library was sequenced on Illumina NovaSeq with PE150 mode and analyzed with scopeTools bioinformatics workflow (Singleron Biotechnologies) .
Figure 3 shows that the present disclosure can detect PC9 gene and COVID-19 gene at the same time. We also can sort cells based on the expression of  COVID-19. (Figure 5; Figure 6) .
The basic principles, main features and advantages of the present disclosure are verified and described above. All technical solutions obtained by this principle fall within the protection scope of the present disclosure.
Reference
[1] Mark W., et al. Human viruses: discovery and emergence. Philos Trans R Soc Lond B Biol Sci. 2012, 367 (1604) : 2864–2871.
[2] Guangdi Li., Erik De Clercq. Therapeutic options for the 2019 novel coronavirus (2019-nCoV) . Nat. Rev. Drug Discov. 2020.
[3] S Bhatt., et al. The global distribution and burden of dengue. Nature. 2013, 496: 504–507.
[4] Rasmussen., et al. Zika Virus and Birth Defects -Reviewing the Evidence for Causality [J] . New England Journal of Medicine, 2016, NEJMsr1604338.
[5] María G Guzman, Gustavo Kouri. Dengue and dengue hemorrhagic fever in the Americas: Lessons and challenges [J] . Journal of Clinical Virology, 2003, 27 (1) : 1-13.
[3]Bouvard V., et al. A review of human carcinogens–part B: biological agents. Lancet Oncol. 2009, 10 (4) : 321–2.
[4] Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014, 15 (3) : 266–82.
[5] Hourdequin KC., et al. Merkel cell polyomavirus and extrapulmonary small cell carcinoma. Oncol Lett. 2013, 6 (4) : 1049–52. doi: 10.3892/ol. 2013.1483.
[6] Schuster V, Pukrop T. Epstein-Barr virus and nasopharyngeal cancer. N Engl J Med. 1996, 334 (2) : 122–3.
[7] Yip KW., et al. Prognostic significance of the Epstein-Barr virus, p53, Bcl-2, and survivin in nasopharyngeal cancer. Clin Cancer Res. 2006, 12 (19) : 5726–32.
[8] Banks L, Pim D, Thomas M. Human tumour viruses and the deregulation of cell polarity in cancer. Nat Rev Cancer. 2012, 12 (12) : 877–86. doi: 10.1038/nrc3400.
[9] da Silva SR, de Oliveira DE. HIV, EBV and KSHV: viral cooperation in the pathogenesis of human malignancies. Cancer Lett. 2011, 305 (2) : 175–85.
[10] Mueller N. Overview: viral agents and cancer. Environ Health Perspect. 1995, 103 Suppl 8: 259–61.
[11] Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006, 45 (4) : 529–38.
[12] Houldcroft., et al. Clinical and biological insights from viral genome sequencing [J] . Nature Reviews Microbiology. 2017, 15 (3) : 183-192.
[13] Zanardo L G , De Souza G B , Alves M S . Transcriptomics of plant–virus interactions: a review [J] . Theoretical and Experimental Plant Physiology, 2019.
[14] Yong-Zhen Zhang, Edward C. Holmes. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell. 2020, Volume 181, issue 2, P223-227.
[15] Lu R., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020, 395: 565-574
[16] Markus Hoffmann., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020, volume 181, issue 2, P271-280.
[17] Cristinelli S, Ciuffi A . The use of single-cell RNA-Seq to understand virus–host interactions [J] . current opinion in virology, 2018, 29: 39-50.
[18] Sun, Xiao-xiao, Yu, Qiang. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment [J] . Acta Pharmacologica Sinica, 2015.
[19] Dagogo-Jack I, Shaw A T. Tumour heterogeneity and resistance to cancer therapies [J] . Nature Reviews Clinical Oncology, 2017.
[20] Elena B, Shirit E. Infectious disease. Combating emerging viral threats [J] . science, 2015, 348 (6232) : 282.

Claims (10)

  1. A method for analyzing virus sequence, at single cell level, wherein said method comprising:
    a) capture the RNA from a single cell with an oligo-dT primer combined with probe sequence that binding to viral RNA sequence;
    b) reverse transcribe the RNA to cDNA with the oligo-dT primer and virus-recognizing sequence;
    c) amplify cDNA;
    d) analyze amplified cDNA.
  2. The method of Claim 1, wherein the primer sequence additionally comprises a sequence that acts as cell barcode that identifies each single cells; a sequence that can be used as PCR primer-binding sequence for amplification of the cDNA.
  3. The method of Claim 1, wherein the primer sequence comprise a unique molecular index (UMI) sequence that can be used to quantify cDNA.
  4. The method of Claim 1, wherein the probe sequence is added by using an enzyme.
  5. The method of Claim 1, wherein the probe sequence is added chemically.
  6. The method of Claim 4, wherein the enzyme is a ligase, to add specific sequence to the magnetic capture bead.
  7. The method of Claim 4, wherein the enzyme is a DNA polymerase, to add specific sequence to magnetic capture bead.
  8. The method of Claim 1, wherein the viral RNA sequence can derived from any RNA virus.
  9. The method of Claim 1, wherein the analysis method is sequencing.
  10. A product that includes reagents needed to enable the process as described in Claim 1.
PCT/CN2020/087525 2020-04-16 2020-04-28 Methods and reagents for high-throughput detection of viral sequences in single cells WO2021217426A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/087525 WO2021217426A1 (en) 2020-04-28 2020-04-28 Methods and reagents for high-throughput detection of viral sequences in single cells
PCT/CN2021/087517 WO2021209009A1 (en) 2020-04-16 2021-04-15 Methods and compositions for high-throughput target sequencing in single cells
US17/996,195 US20230193355A1 (en) 2020-04-16 2021-04-15 Methods and compositions for high-throughput target sequencing in single cells
EP21787533.5A EP4136255A1 (en) 2020-04-16 2021-04-15 Methods and compositions for high-throughput target sequencing in single cells
CN202180047351.6A CN115956115A (en) 2020-04-16 2021-04-15 Methods and compositions for single cell high throughput target sequencing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087525 WO2021217426A1 (en) 2020-04-28 2020-04-28 Methods and reagents for high-throughput detection of viral sequences in single cells

Publications (1)

Publication Number Publication Date
WO2021217426A1 true WO2021217426A1 (en) 2021-11-04

Family

ID=78373254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087525 WO2021217426A1 (en) 2020-04-16 2020-04-28 Methods and reagents for high-throughput detection of viral sequences in single cells

Country Status (1)

Country Link
WO (1) WO2021217426A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361983A2 (en) * 1988-09-30 1990-04-04 Amoco Corporation RNA template end-linked probe constructs and methods for use
CN1908627A (en) * 2006-08-16 2007-02-07 南通大学附属医院 Method for HCV RNA real-time fluorescent detection with two probes
CN103146817A (en) * 2013-02-05 2013-06-12 南京大学 SNP marker based typing method for spartina alterniflora population

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361983A2 (en) * 1988-09-30 1990-04-04 Amoco Corporation RNA template end-linked probe constructs and methods for use
CN1908627A (en) * 2006-08-16 2007-02-07 南通大学附属医院 Method for HCV RNA real-time fluorescent detection with two probes
CN103146817A (en) * 2013-02-05 2013-06-12 南京大学 SNP marker based typing method for spartina alterniflora population

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEMBRUFF S L; VILLENEUVE D J; PARISSENTI A M: "The optimization of quantitative reverse transcription PCR for verification of cDNA microarray data", ANALYTICAL BIOCHEMISTRY, vol. 345, no. 2, 15 October 2005 (2005-10-15), pages 237 - 249, XP027219379, ISSN: 0003-2697, DOI: 10.1016/j.ab.2005.07.014 *

Similar Documents

Publication Publication Date Title
JP2023015159A (en) Synthetic multiplet for determining multiplet
Luk et al. Utility of metagenomic next-generation sequencing for characterization of HIV and human pegivirus diversity
Rato et al. Exploring viral infection using single-cell sequencing
KR20180052317A (en) Primer set for detection of MERS-coronavirus and uses thereof
Sun et al. Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy
CN108138244A (en) Virus group capture microarray dataset, design and construction method and application method
CN108517567A (en) Connector, primer sets, kit and the banking process in library are built for cfDNA
TW201321519A (en) Probe for detecting virus integration mode in sample and its preparation method and application
TW201321520A (en) Method and system for virus detection
US11718872B2 (en) Method for obtaining single-cell mRNA sequence
WO2021217426A1 (en) Methods and reagents for high-throughput detection of viral sequences in single cells
Parreira Laboratory methods in molecular epidemiology: viral infections
CN113481326B (en) Isothermal nucleic acid amplification reaction reagent, isothermal nucleic acid amplification method and application thereof
CN113817870A (en) Primer composition for simultaneously detecting seven respiratory tract-related viruses and application thereof
KR20220164745A (en) pathogen diagnostic test
CN106047993A (en) Molecular markers for five important pathogens and application thereof
CN107988429B (en) Reagent for detecting rabies virus and application thereof
Hsieh et al. Development of a reliable assay protocol for identification of diseases (RAPID)-bioactive amplification with probing (BAP) for detection of bovine ephemeral fever virus
CN101386892B (en) Common virus joint detection genotyping chip in exit-entry quarantine and detection method thereof
Pichon et al. Evolution of influenza genome diversity during infection in immunocompetent patients
Sahahjpal et al. COVID-19 RT-PCR diagnostic assay sensitivity and SARS-CoV-2 transmission: A missing link?
CN105713961B (en) System discovery, mark and the functional study of mycobacterium tuberculosis non-coding RNA
CN114032340B (en) Novel coronavirus nucleic acid detection kit
Li et al. CRISPR-Cas12-Based Diagnostic Applications in Infectious and Zoonotic Diseases
Lipkin et al. Diagnosis, Discovery, and Dissection of Viral Diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933748

Country of ref document: EP

Kind code of ref document: A1