WO2021217286A1 - 复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法 - Google Patents

复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法 Download PDF

Info

Publication number
WO2021217286A1
WO2021217286A1 PCT/CN2020/086907 CN2020086907W WO2021217286A1 WO 2021217286 A1 WO2021217286 A1 WO 2021217286A1 CN 2020086907 W CN2020086907 W CN 2020086907W WO 2021217286 A1 WO2021217286 A1 WO 2021217286A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex pore
model
visualized
complex
pore model
Prior art date
Application number
PCT/CN2020/086907
Other languages
English (en)
French (fr)
Inventor
鞠杨
郑江韬
常巍
席朝东
Original Assignee
中国矿业大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学(北京) filed Critical 中国矿业大学(北京)
Priority to US17/296,998 priority Critical patent/US11307131B2/en
Priority to PCT/CN2020/086907 priority patent/WO2021217286A1/zh
Publication of WO2021217286A1 publication Critical patent/WO2021217286A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0846Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/405Imaging mapping of a material property
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/41Imaging imaging specifically internal structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/649Specific applications or type of materials porosity

Definitions

  • the invention relates to the technical field of experimental research on percolation of complex pore structures, in particular to a visualized system and method for the percolation experiment of multiphase fluid with large viscosity difference in a complex pore structure.
  • the existing experimental research method of seepage is the process of injecting fluid into the pore model using an injection device.
  • Commonly used pore models include: sand-filled models, real core and glass bead models, etc.
  • the sand-filled model squeezes the sandstone into a fixed-shaped mold through a constant pressure, and controls the squeezing pressure to adjust the porosity of the model; the real core experiment completely retains its internal pore structure; the glass bead model adjusts the glass bead’s
  • the size, proportion, and different arrangement positions are used to control the porosity and permeability of the model and realize the visualization of the seepage process through the image acquisition device.
  • the sand-filled model meets the experimental requirements on important parameters such as porosity, it cannot meet the consistency of the pore structure compared with the real core and the visualization of the experimental process; the real core model cannot meet the repeatability due to the uniqueness of its structure.
  • the glass bead model can realize the visualization of the seepage process, but cannot meet the authenticity of the pore structure of the model.
  • the pore structure of the 3D printing model is relatively simple, that is, the permeability of the pore structure of the 3D printing model is single.
  • the complex pore structure of the rock cannot be truly restored, which leads to the existence of the simulation experiment and the real environment. Large differences cause the experimental data to fail to guide actual mining work.
  • the invention patent with publication number 105973783A discloses the "3D printing-based parallel fracture seepage experimental system and experimental method".
  • the 3D printing model structure is too simple and cannot truly restore the complex pore structure of the rock formation.
  • the existing displacement experiment system cannot realize the simulation of the displacement oil production environment of the heterogeneous structure reservoir.
  • the invention provides a visualization system for displacing percolation experiments of multiphase fluids with large viscosity differences in a complex pore structure.
  • the experimental visualization system includes: an injection pump assembly, a visualized complex pore model, a vacuum pressure pump and an image acquisition device; wherein,
  • the visual complex pore model includes an inlet and an outlet, and the interior includes at least two parts of a complex pore structure, and the permeability of each part of the complex pore structure is different;
  • the injection pump assembly includes at least two injection pumps, the outlet of each injection pump can be connected to the inlet of the visualized complex pore model; each injection pump is used for injecting fluid media with different viscosities;
  • the vacuum pressure device is used to provide a vacuum environment so that the displaced fluid medium fills the complex pore structure of the visualized complex pore model;
  • the image acquisition device is used for real-time capture of experimental images inside the visualized complex pore model during the seepage process.
  • a digital model of a complex pore structure model with at least two permeability is formed by scanning the experimental samples with different permeability, and then a visualized complex pore model is printed by a 3D printing device, and a vacuum pressure device is first used in the experiment.
  • the injection pump is used to inject the displaced fluid medium into the complex pore structure of the visualized complex pore model.
  • different injection pumps are used to inject displacement fluid media of different viscosities into the visualized complex pore model.
  • the percolation in the complex pore structure with different permeability can be studied by controlling the viscosity difference, displacement rate and pressure difference of each driving fluid medium to realize the percolation experiment under different conditions.
  • the flow path of the fluid in the complex structure during the above experiment can be observed from the outside, or collected by an image acquisition device, and the information collected by the image acquisition device can be used for later theoretical research.
  • the system can accurately, quickly, economically and intuitively realize the seepage experiment of a variety of fluids with different viscosities in pore models with large permeability differences.
  • the visualized complex pore model is formed by the following method:
  • the CT scan images corresponding to different penetration rates are respectively intercepted according to a predetermined ratio to form a grayscale image of the overall structure model;
  • the binary image is three-dimensionally reconstructed by a three-dimensional modeling software to obtain a digital model of the complex pore structure, and the visual complex pore model is printed and molded using a transparent material according to the digital model of the complex pore structure.
  • the first permeable zone, the second permeable zone,... And the Nth permeable zone are respectively intercepted from the CT scan image, and the N permeable zones are spliced along a direction perpendicular to the flow of the medium to form an overall structure model and the permeability is successively reduced.
  • the visualized complex pore model is a rectangular parallelepiped with a rectangular cross section, and the inlet and outlet of the visualized complex pore model are sealed with a first cone joint and a second cone joint, respectively, and each of the injection
  • the outlet of the pump communicates with the inlet of the first conical joint, and the outlet of the second conical joint communicates with an external liquid containing part, and the liquid containing part is used to contain the liquid flowing out from the inside of the visualized complex pore model.
  • the outer end of the first tapered joint includes an interface corresponding to each of the injection pumps one-to-one, and the inside includes a channel corresponding to the corresponding interface one-to-one, and the channels are isolated from each other,
  • the inner ends of each of the channels are connected to the inlet of the visualized complex pore model, and one of the injection pumps is connected to one of the ports through an independently arranged pipeline.
  • the inlet pipe section of the visualized complex pore model is inserted into the first conical joint and the two are circumferentially sealed; the outlet pipe section of the visualized complex pore model is inserted into the second conical joint and both Circumferential sealing.
  • the two ends of the outer peripheral surface of the visualized complex pore model are also formed with mounting bosses, and the mounting bosses are formed with bolt mounting holes for mounting with the first cone joint or the second cone. Bolts for joint locking.
  • the present invention also provides an experimental method for displacing seepage flow by a multiphase fluid with a large viscosity difference in a complex pore structure.
  • the method specifically includes:
  • a 3D printing device to print a visualized complex pore model, where the visualized complex pore model includes an inlet and an outlet, and the interior includes at least two parts of complex pore structure, and the permeability of each part of the complex pore structure is different;
  • the first injection pump is used to inject the displaced fluid medium into the visualized complex pore model.
  • the displaced fluid medium fills the exit position of the visualized complex pore model, stop filling the displaced fluid medium and change
  • the complete system including the visualized complex pore model and the syringe pump is moved to the inside of the vacuum pressure device for vacuuming. During the vacuuming process, when the bubbles inside the visualized complex pore model move outside the complex pore structure , Stop vacuuming;
  • the first driving fluid is injected into the visualized complex pore model through the second injection pump until the first driving fluid flows out from the outlet of the visualized complex pore model; wherein the viscosity of the first driving fluid is less than that of the displaced The viscosity of the fluid medium;
  • the image acquisition device is used to capture the experimental images inside the visualized complex pore model in real time during the seepage process. experiment analysis.
  • the visual complex pore model is formed by the following methods:
  • the CT scan images corresponding to different penetration rates are respectively intercepted according to a predetermined ratio to form a grayscale image of the overall structure model;
  • the binary image is three-dimensionally reconstructed by a three-dimensional modeling software to obtain a digital model of the complex pore structure, and the visual complex pore model is printed and molded using a transparent material according to the digital model.
  • a tightness test can also be performed: the first injection pump is used to compare the deionized water with The high pressure difference is gradually injected into the visualized complex pore model, and real-time observation of whether there is leakage at each joint connection part in the system; if there is no leakage, disconnect from the injection pump outlet and the inlet of the liquid containing component downstream of the visualized complex pore model outlet In the pipeline, the visual complex pore model with the pipeline connected to the inlet and the outlet is placed in the solid desiccant for a predetermined time to remove the deionized water remaining in the pore channel during the tightness test.
  • the viscosity difference between the first driving fluid and the second driving fluid ranges from 1 to 15000 cp.
  • the method of the present invention for displacing seepage flow by multiphase fluid with large viscosity difference in a complex pore structure is based on the above-mentioned visualization system for displacing seepage flow by multiphase fluid with large viscosity difference in the complex pore structure. Therefore, the complex pore structure has many
  • the experimental method of displacing percolation by fluid with relatively large viscosity difference also has the beneficial effects of the above-mentioned experimental visualization system.
  • Fig. 1 is a block diagram of some parts of a visualization system for a multi-phase high viscosity difference fluid displacement percolation experiment in a complex pore structure according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a visualization system for a multiphase fluid displacement percolation experiment in a complex pore structure in an embodiment of the present invention
  • Figure 3 is a schematic diagram of a visualized complex pore model structure in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the first tapered joint in an embodiment of the present invention.
  • Figure 5 is a partial enlarged view of the first tapered joint shown in Figure 4.
  • Fig. 6 is a schematic structural diagram of a second tapered joint in an embodiment of the present invention.
  • Fig. 7 is a flowchart of an experimental method for displacing percolation by a multiphase fluid with a large viscosity difference in a complex pore structure in a specific embodiment of the present invention.
  • 1-Visual complex pore model 2-First mounting boss, 2'-Second mounting boss, 3-First first sealing part, 3'-Second sealing part, 4-Threaded fixing part, 5-No.
  • a tapered connector 51-first port, 52-second port, 53-third port, 54-first channel, 55-second channel, 56-third channel, 57-screw hole, 61-connector, 62-screw hole, 63-channel, 6-second conical connector, 7-first injection pump, 8-second injection pump, 9-third injection pump, 10-liquid holding part; 11-image acquisition device; 12-Syringe pump assembly.
  • Figure 1 is a block diagram of some parts of the visualization system for a multi-phase high viscosity difference fluid displacement percolation experiment in a complex pore structure in an embodiment of the present invention
  • Figure 2 is an embodiment of the present invention
  • Figure 3 is a schematic diagram of the visualized complex pore model structure in an embodiment of the present invention
  • Figure 4 is an embodiment of the present invention
  • Fig. 5 is a partial enlarged view of the first conical joint shown in Fig. 4
  • Fig. 6 is a schematic structural diagram of the second conical joint in an embodiment of the present invention.
  • the present invention provides a visualization system for displacing seepage experiment of multiphase fluid with large viscosity difference in a complex pore structure, which includes: an injection pump assembly 12, a visualized complex pore model 1, a vacuum pressure pump, and an image acquisition device 11.
  • the vacuum pressure pump is not shown in FIG. 1, but this does not prevent those skilled in the art from understanding and implementing the following technical solutions herein.
  • the visual complex pore model 1 includes an inlet and an outlet, and the interior includes at least two parts of a complex pore structure, and the permeability of each part of the complex pore structure is different.
  • the visual complex pore model 1 is printed and formed by a transparent material, and its main purpose is to be able to observe or collect the flow information of the fluid medium inside the complex pore structure from the outside.
  • the transparent material may be a transparent polyester material.
  • the visual complex pore model 1 can be printed and prepared by a high-precision 3D printer, and the minimum pore size of the complex pore structure can reach 50um.
  • the visualized complex pore model 1 in the present invention has at least two parts of complex pore structure with different permeability.
  • the formation of the above-mentioned complex pore structure can be achieved by scanning the imaging of rock samples with different permeability, and then intercepting different parts of the rock sample imaging to form a new Image, through the new image three-dimensional modeling and printing to visualize the complex pore model1.
  • the visualized complex pore model 1 is formed by the following method:
  • the first step is to scan experimental samples with different permeability through a laboratory micron-level CT scanning system to obtain CT scan images of complex pore structures with different permeability.
  • the CT scan images corresponding to different permeability are respectively intercepted according to a predetermined ratio to form a grayscale image of the overall structure model by stitching.
  • the gray scale image of the overall structure model formed by such splicing includes at least two images of complex permeability pore structures.
  • the first penetration zone, the second penetration zone,... and the Nth penetration zone are respectively intercepted from N CT scan images.
  • the N penetration zones are spliced perpendicular to the flow direction of the medium to form a grayscale image of the overall structure and the permeability of the three Decrease sequentially.
  • the first infiltration zone, the second infiltration zone, and the third infiltration zone are respectively intercepted from three CT scan images, and the three are spliced along the direction perpendicular to the flow of the medium to form a grayscale image of the overall structure.
  • the permeability decreases successively.
  • the first penetration zone, the second penetration zone and the third penetration zone are intercepted and spliced according to 2:6:2 to form a grayscale image of the overall structure model.
  • the third step is to perform image binarization processing on the grayscale image of the overall structure model formed by stitching to obtain a binarized image constituting the part of the complex pore structure.
  • the fourth step is to perform three-dimensional reconstruction of the above-mentioned binary image through three-dimensional modeling software to obtain a digital model of complex pore structure.
  • the digital model of complex pore structure use transparent material to print and visualize the complex pore model 1.
  • the surface of the visualized complex pore model 1 forms a fluid channel, and the complex pore structure is formed inside the channel.
  • the injection pump assembly of the experimental visualization system provided by the present invention includes at least two injection pumps, and the outlet of each injection pump can be connected to the inlet of the visualized complex pore model 1; each injection pump is used to inject fluid media of different viscosities; , The injection pump provided in this article can inject fluid media of different viscosities into the visualized complex pore model 1.
  • Operating parameters such as injection pressure, injection flow rate, and injection fluid speed of the injection pump can be controlled to change the fluid injection mode according to the experimental plan to meet the experimental requirements.
  • the vacuum pressure device in this article is mainly used to provide a vacuum environment so that the displaced fluid medium fills the complex pore structure of the visualized complex pore model 1.
  • the vacuum pressure device can be a vacuum pump, and of course it can also be other equipment capable of realizing the above-mentioned functions.
  • the image acquisition device in the present invention is used to capture real-time experimental images of the inside of the visually complex pore model 1 in the seepage process.
  • the image acquisition device is a high-resolution DV (English full name is Digital Video, Chinese is digital video), which can continuously observe the seepage displacement process inside the entire visible complex pore structure model in real time. Realize image visualization and characterization analysis.
  • the image acquisition device can also be a high-frequency camera, which can observe and analyze the entire seepage displacement process through the photos taken by it.
  • FIG. 6 is a flowchart of an experimental method for displacing seepage flow by a multiphase fluid with a large viscosity difference in a complex pore structure in a specific embodiment of the present invention.
  • the present invention also provides an experimental method for displacing seepage flow by multiphase fluid with large viscosity difference in a complex pore structure.
  • the method specifically includes the following steps:
  • the maximum temperature of the ultrasonic cleaning machine can be set according to the specific model. In a specific embodiment, the maximum temperature of the ultrasonic cleaning machine is set to 40°C. When the temperature reaches the maximum temperature, the ultrasonic cleaning and vibration are stopped.
  • the first injection pump 7 is used to visualize the complex pore model 1Inject the displaced fluid medium inside.
  • the displaced fluid medium fills the exit position of the visualized complex pore model 1, stop filling the displaced fluid medium and move the entire system including the visualized complex pore model 1 and the injection pump to Vacuum the inside of the vacuum pressure device.
  • the bubbles in the visualized complex pore model 1 move outside the complex pore structure, stop the vacuuming;
  • the viscosity difference between the first driving fluid and the second driving fluid may range from 1 to 15000 cp.
  • an image acquisition device is used to capture the experimental images of the visualized complex pore model 1 in real time during the seepage process For experimental analysis.
  • step S3 after each injection pump is connected with the components such as the visualized complex pore model 1 to form an overall system, the sealing performance of the system can be checked before the driven fluid medium is filled to ensure that the system has good sealing performance.
  • the first injection pump 7 can be used to gradually inject deionized water into the visualized complex pore model 1 at a higher pressure difference, and the image acquisition device can observe in real time whether there is leakage at each joint connection part of the system.
  • the predetermined time is set to 24 hours.
  • the predetermined time is not limited to the description herein, as long as the deionized water inside the pore channel can be removed.
  • a digital model of a complex pore structure model with at least two permeability is formed by scanning the experimental samples with different permeability, and then a visualized complex pore model 1 is printed by 3D printing equipment, and the vacuum pressure is first passed during the experiment.
  • the device cooperates with the injection pump to inject the displaced fluid medium into the complex pore structure, which is a complex pore model.
  • the visualized complex pore model 1 may be a rectangular parallelepiped structure, and its cross-section is a rectangular structure, that is, the visualized complex pore model 1 includes a rectangular channel with openings at both ends, and the complex pore structure is formed inside the rectangular channel .
  • the inlet and outlet of the visual complex pore model 1 are sealed and installed with a first conical joint 5 and a second conical joint 6 respectively.
  • the outlet of each injection pump is connected to the inlet of the first conical joint 5 and the outlet of the second conical joint 6
  • a liquid containing part connected to the outside, and the liquid containing part is used to contain the liquid flowing out from the inside of the visualized complex pore model 1.
  • each injection pump is connected to the inside of the visualized complex pore model 1 through a pipeline and a first tapered joint 5.
  • the inside of the visualized complex pore model 1 is connected to external equipment through the second tapered joint 6.
  • Conical joints can achieve uniform fluid flow.
  • the first conical joint 5 and the inlet of the visualized complex pore model 1, and the second conical joint 6 and the outlet of the visualized complex pore model 1 can be provided with a sealing component.
  • the sealing component can be a rubber ring, or a polymer plastic gasket or Waterstop and other components.
  • the outer end of the first tapered joint 5 includes an interface corresponding to each injection pump one-to-one, and the inside of the first tapered joint 5 includes a channel corresponding to the interface one-to-one. They are isolated from each other, the inner ends of each channel are connected to the inlet of the visualized complex pore model 1, and an injection pump is connected to an interface through an independently set pipeline.
  • the first conical joint 5 includes a first port 51, a second port 52, and a third port 53, and the inside of the first conical joint 5 includes a first channel 54 and a second channel 55. And the third channel 56; wherein the first port 51 is connected to the first channel 54, the first injection pump 7 is connected to the first port 51 through a pipeline; the second port 52 is connected to the second channel 55, and the second injection pump 8 is connected through a tube
  • the third port 53 is connected to the third channel 56, and the third injection pump 9 is connected to the third port 53 through a pipeline.
  • the inlet pipe section of the visualized complex pore model 1 is inserted into the first conical joint 5 and the two are circumferentially sealed; the outlet pipe section of the visualized complex pore model 1 is inserted into the second conical joint 6 and the two are circumferentially sealed seal.
  • the two ends of the outer peripheral surface of the visualized complex pore model 1 are also formed with mounting bosses, which are the first mounting boss 2 and the second mounting boss 2'respectively. Both mounting bosses are formed with threaded holes 57 for mounting the threaded fixing member 4 that is locked to the first tapered joint 5 or the second tapered joint 6.
  • the threaded fixing member 4 may be a screw rod or a bolt.
  • the mounting boss and bolt mounting holes are all integrally formed in the 3D printing process of the visually complex pore model.
  • the size of the bolt mounting holes may be about 1.6 mm, and the bolt mounting holes may be uniformly distributed along the axial direction, and the number is not limited.
  • the first mounting boss 2 and the second mounting boss 2' are respectively provided with a first sealing part 3 and a second sealing part 3'to increase the sealing performance with the connected parts.
  • the visual complex pore model 1 is connected and fixed with the conical joint by bolts, which increases the reliability and sealing of the connection between the two.
  • the second conical joint 6 includes an internal channel 63 and a joint 61 connected to the external pipeline.
  • the second conical joint 6 is also provided with a screw hole 62 for installation in the visualized complex pore model 1 to cooperate and fix Threaded fasteners.
  • the steps of the method or algorithm described in combination with the embodiments disclosed herein can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)

Abstract

一种复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及实验方法,该实验可视化系统包括:注射泵组件(12)、可视化复杂孔隙模型(1)、真空压力泵和图像采集装置(11);该系统及方法通过3D打印设备打印形成具有至少两种渗透率的可视化复杂孔隙模型(1),实验时分别通过不同的注射泵(7,8,9)向可视化复杂孔隙模型(1)内部注入不同粘度的驱替流体介质,这样不仅能够观察同一粘度流体在不同渗透率的复杂孔隙结构中的渗透情况,并且可以实现不同粘度先后通入不同渗透率的复杂孔隙结构中的驱替封堵作用,通过控制各驱动流体介质的粘度差实现不同条件下的渗流实验研究。上述实验过程中的流体在复杂结构中的流动路径可以自外侧观察,并且通过图像采集装置(11)实时捕捉渗流过程中可视化复杂孔隙模型(1)内部的实验图像。该系统能够准确、快速、经济、直观的实现多种粘度不同流体在渗透率差异较大的孔隙模型中的渗流实验。

Description

复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法 技术领域
本发明涉及复杂孔隙结构渗流实验研究技术领域,尤其涉及一种复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法。
背景技术
现有的渗流实验研究方法,即利用注射装置将流体注入到孔隙模型的过程。通常所使用的孔隙模型包括:填砂类模型,真实岩心以及玻璃珠模型等。其中填砂类模型通过一个恒定的压力将砂岩挤压到固定形状模具中,控制挤入压力来调节模型孔隙度;真实岩心实验则完整保留了其内部孔隙结构;玻璃珠模型通过调节玻璃珠的大小、比例、不同排列位置来控制模型孔隙度和渗透率并通过图像采集装置实现渗流过程可视化。
其中,填砂类模型虽然在孔隙度等重要参数上达到实验要求,但无法满足孔隙结构上与真实岩心对比的一致性和实验过程的可视化;真实岩心模型由于其结构的唯一性,无法满足重复性实验要求;此外,玻璃珠模型能够实现渗流过程的可视化,但无法满足模型孔隙结构的真实性,这些缺陷造成了大部分孔隙模型缺乏对多孔介质材料微观孔隙结构的真实模拟,这影响了对实验结果的分析和判断,最终导致结论不准确。
为了提高油田采收率,人们把目光投向存在于低渗透带储层内的大量油藏,这些油藏无法通过传统的注水采油方式驱替开采,于是具有大粘度差异特性的不同聚合物凝胶类堵剂进入了人们的视野,不同流体粘度上的巨大差异可以实现储层内高渗透带通道的封堵,这样粘度较小的聚合物类驱替液通过多次注入时在储层中的渗流转向,迫使这类粘度较小的驱替液进入到低渗透带储层,实现低渗透带通道内油藏的驱替开发,多相大粘度差流体驱替渗流实验对于提高油田开采效率具有重要意义。
目前,通过物理实验手段探究多相大粘度差异流体驱替油田开发过程存在诸多难点:真实储层复杂孔隙结构模型的还原构建、多相大粘度差流体的分流注入以及实验过程可视化等问题。
近年来,随着3D打印技术的兴起和广泛应用,越来越多的人选择运 用3D打印技术制作微观渗流孔隙模型,其采用透明聚酯材料高精度打印还原多孔介质内部复杂孔隙结构的特点,满足了制作真实孔隙结构模型的需要。
而目前受尺寸及实验环境的限制,3D打印模型的孔隙结构比较单一,即3D打印模型孔隙结构的渗透率是单一的,一方面无法真实还原岩层复杂孔隙结构,导致模拟实验与真实环境是存在较大差异的,导致实验数据不能指导实际开采工作。例如:公布号为105973783A的发明专利公开了“基于3D打印的平行裂隙渗流实验系统及实验方法”,其3D打印模型结构过于单一,且无法真实还原岩层复杂孔隙结构。
尤其地,对于非均质结构储层内油藏的开采,这些油藏无法通过传统的注水采油方式驱替开采,通常需要不同流体粘度的巨大差异实现储层内高渗透带通道的封堵,而单一的3D打印模型孔隙结构的渗透率是无法模拟出具有大差异流体粘度在真实非均质储层中的驱替行为。
也就是说,现有的驱替实验系统是无法实现非均质结构储层驱替采油环境的模拟的。
因此,如何实现多相大粘度差流体驱替采油环境中复杂孔隙结构模拟,并且提高其模拟可靠性,是本领域内技术人员亟待解决的技术问题。
发明内容
本发明提供一种复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,该实验可视化系统包括:注射泵组件、可视化复杂孔隙模型、真空压力泵和图像采集装置;其中,
所述可视化复杂孔隙模型包括具有进口和出口,其内部包括至少两部分复杂孔隙结构,各部分复杂孔隙结构的渗透率不相同;
所述注射泵组件至少包括两个注射泵,各注射泵的出口均能够连通所述可视化复杂孔隙模型的进口;各注射泵用于注射不同粘度的流体介质;
所述真空压力装置,用于提供真空环境以使被驱替流体介质充满所述可视化复杂孔隙模型的复杂孔隙结构内部;
所述图像采集装置用于实时捕捉渗流过程中所述可视化复杂孔隙模型内部的实验图像。
本发明中通过对不同渗透率实验样品的扫描,拼接形成具有至少两种渗透率的复杂孔隙结构模型的数字模型,进而通过3D打印设备打印形成可视化复杂孔隙模型,在实验时先通过真空压力装置配合注射泵向可视化复杂孔隙模型的复杂孔隙结构内部充注被驱替流体介质。然后在分别通过不同的注射泵向可视化复杂孔隙模型内部注入不同粘度的驱替流体介质,这样不仅能够实现同一粘度在不同渗透率的复杂孔隙结构中的渗透情况,并且可以实现不同粘度先后通入不同渗透率的复杂孔隙结构中的渗流情况,通过控制各驱动流体介质的粘度差、驱替速率和压差来实现不同条件下的渗流实验研究。上述实验过程中的流体在复杂结构中的流动路径可以自外侧观察,也可以通过图像采集装置进行采集,图像采集装置所采集的信息用于后期理论研究。该系统能够准确、快速、经济、直观的实现多种粘度不同流体在渗透率差异较大的孔隙模型中的渗流实验。
可选的,所述可视化复杂孔隙模型通过以下方法成型:
通过实验室微米级别CT扫描系统对不同渗透率的实验样品扫描,以得到不同渗透率复杂孔隙结构的CT扫描图像;
按照预定比例分别截取不同渗透率所对应的CT扫描图像,以拼接形成整体结构模型灰度图;
对所述拼接形成的整体结构模型灰度图进行图像二值化处理,得到构成所述复杂孔隙结构部分的二值化图像;
通过三维建模软件对所述二值化图像进行三维重构进而得到所述复杂孔隙结构的数字模型,根据所述复杂孔隙结构的数字模型利用透明材料打印成型所述可视化复杂孔隙模型。
可选的,从CT扫描图像中分别截取第一渗透带、第二渗透带、……和第N渗透带,N个渗透带沿垂直于介质流向拼接形成整体结构模型并且渗透率依次降低。
可选的,所述可视化复杂孔隙模型为长方体,其横截面为矩形结构,所述可视化复杂孔隙模型的进口和出口分别密封安装有第一锥形接头和第二锥形接头,各所述注射泵的出口连通所述第一锥形接头的入口,所述第二锥形接头的出口连通外部的液体容纳部件,所述液体容纳部件用于容纳由所述可视化复杂孔隙模型内部流出的液体。
可选的,所述第一锥形接头的外端部包括与各所述注射泵一一对应的接口,并且其内部包括与相应所述接口一一对应的通道,各通道之间彼此隔离,各所述通道的内端部均连通所述可视化复杂孔隙模型的进口,一个所述注射泵通过独立设置的管路连通一个所述接口。
可选的,所述可视化复杂孔隙模型的进口管段插入所述第一锥形接头内部且二者周向密封;所述可视化复杂孔隙模型的出口管段插入所述第二锥形接头内部且二者周向密封。
可选的,所述可视化复杂孔隙模型外周表面两端还成型有安装凸台,所述安装凸台成型有螺栓安装孔,用于安装与所述第一锥形接头或所述第二锥形接头锁紧的螺栓。
此外,本发明还提供了一种复杂孔隙结构中多相大粘度差流体驱替渗流实验方法,该方法具体包括:
利用3D打印设备打印可视化复杂孔隙模型,其中所述可视化复杂孔隙模型包括进口和出口,其内部包括至少两部分复杂孔隙结构,各部分复杂孔隙结构的渗透率不相同;
将打印好的所述可视化复杂孔隙模型整体放入超声波清洗机中震动清洗;
以预定压力向震动清洗后的所述可视化复杂孔隙模型中注入清洗液,反复数次,直至所述可视化复杂孔隙模型中的支撑材料被彻底清除;
将第一注射泵、第二注射泵和第三注射泵三者的出口通过独立管路密封连接于所述可视化复杂孔隙模型的进口;
通过所述第一注射泵向所述可视化复杂孔隙模型内部注射被驱替流体介质,当被驱替流体介质充满所述可视化复杂孔隙模型的出口位置时,停止充注被驱替流体介质并将包括所述可视化复杂孔隙模型和所述注射泵的整套系统移动至真空压力装置内部进行抽真空,在抽真空过程中当所述可视化复杂孔隙模型内部的气泡移动至所述复杂孔隙结构之外时,停止抽真空;
将整套系统自真空压力装置中取出,开启第一注射泵继续对所述可视化复杂孔隙模型内部进行充注被驱替流体介质,利用重力条件和使用被驱替流体介质与空气之间的密度差异控制可视化复杂孔隙模型的放置方向使 气泡从出口端排出;
通过第二注射泵将第一驱动流体注入所述可视化复杂孔隙模型,直到有所述第一驱动流体从所述可视化复杂孔隙模型的出口流出;其中第一驱动流体的粘度小于所述被驱替流体介质的粘度;
通过第三注射泵向所述可视化复杂孔隙模型内部注入第二驱动流体,直至所述第二驱动流体从所述可视化复杂孔隙模型的出口流出;其中第二驱动流体的粘度大于所述被驱替流体介质的粘度;
并且在第一注射泵、第二注射泵及第三注射泵向所述可视化复杂孔隙模型内部充注液体时,利用图像采集装置实时捕捉渗流过程中所述可视化复杂孔隙模型内部的实验图像以供实验分析。
可选的,可视化复杂孔隙模型通过以下方法成型:
通过实验室微米级别CT扫描系统对不同渗透率的实验样品扫描,以得到不同渗透率复杂孔隙结构的CT扫描图像;
按照预定比例分别截取不同渗透率所对应的CT扫描图像,以拼接形成整体结构模型灰度图;
对所述拼接形成的整体结构模型灰度图进行图像二值化处理,得到构成所述复杂孔隙结构部分的二值化图像;
通过三维建模软件对所述二值化图像进行三维重构进而得到所述复杂孔隙结构的数字模型,根据所述数字模型利用透明材料打印成型所述可视化复杂孔隙模型。
可选的,在将各注射泵与所述可视化复杂孔隙模型等部件连接形成整体系统后,充注被驱动流体介质之前,还可以进行密闭性测试:通过第一注射泵将去离子水以较高压差逐渐注入所述可视化复杂孔隙模型,并实时观测系统中各接头连接部位是否出现渗漏;如无渗漏,自注射泵出口和可视化复杂孔隙模型出口下游的液体容纳部件进口处断开连接管路,将进口和出口均连接有管路的所述可视化复杂孔隙模型置于固体干燥剂内预订时间,以去除密闭性测试过程中孔隙通道内部残留去离子水。
可选的,所述第一驱动流体和所述第二驱动流体的粘度差范围为1-15000cp。
本发明中的复杂孔隙结构中多相大粘度差流体驱替渗流实验方法是以 上述复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统为实施基础的,故该复杂孔隙结构中多相大粘度差流体驱替渗流实验方法也具有上述实验可视化系统的有益效果。
附图说明
图1为本发明一种实施例中复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统部分零部件的框图;
图2为本发明一种实施例中复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统的结构示意图;
图3为本发明一种实施例中可视化复杂孔隙模型结构示意图;
图4为本发明一种实施例中第一锥形接头的结构示意图;
图5为图4所示第一锥形接头的局部放大图;
图6为本发明一种实施例中第二锥形接头的结构示意图;
图7为本发明一种具体实施例中复杂孔隙结构中多相大粘度差流体驱替渗流实验方法的流程图。
其中,图1至图5中:
1-可视化复杂孔隙模型,2-第一安装凸台,2’-第二安装凸台,3-第一第一密封部件,3’-第二密封部件,4-螺纹固定件,5-第一锥形接头,51-第一接口,52-第二接口,53-第三接口,54-第一通道,55-第二通道,56-第三通道,57-螺孔,61-接头,62-螺孔,63-通道,6-第二锥形接头,7-第一注射泵,8-第二注射泵,9-第三注射泵,10-液体容纳部件;11-图像采集装置;12-注射泵组件。
具体实施方式
针对低渗透带储层内油藏的开采进行了大量研究,研究发现不同流体粘度上的巨大差异可以实现储层内高渗透带通道的封堵,这样粘度较小的聚合物类驱替液通过多次注入时在储层中的渗流转向,迫使这类粘度较小的驱替液进入到低渗透带储层,实现低渗透带通道内油藏开发。
在上述研究发现的基础上,本领域内技术人员提出了一种能够实现对低渗透采油环境中复杂孔隙结构模拟的实验可视化系统,并且其模拟可靠 性比较高。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合实验方法、实验可视化系统、附图和具体实施例对本发明作进一步的详细说明。
请参考图1至图6,图1为本发明一种实施例中复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统部分零部件的框图;图2为本发明一种实施例中复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统部分零部件的结构示意图;图3为本发明一种实施例中可视化复杂孔隙模型结构示意图;图4为本发明一种实施例中第一锥形接头的结构示意图;图5为图4所示第一锥形接头的局部放大图;图6为本发明一种实施例中第二锥形接头的结构示意图。
本发明提供了一种复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其包括:注射泵组件12、可视化复杂孔隙模型1、真空压力泵和图像采集装置11。图1中未示出真空压力泵,但是这并不妨碍本领域内技术人员对本文下述技术方案的理解和实施。
可视化复杂孔隙模型1包括具有进口和出口,其内部包括至少两部分复杂孔隙结构,各部分复杂孔隙结构的渗透率不相同。可视化复杂孔隙模型1通过透明材料打印成型,其主要目的是自外部能够观察或者采集到到流体介质在复杂孔隙结构内部的流动信息。透明材料可以为透明聚酯材料。可视化复杂孔隙模型1可以通过高精度3D打印机打印制备,复杂孔隙结构的孔隙最小可达50um。
本发明中的可视化复杂孔隙模型1至少具有两部分渗透率不同的复杂孔隙结构,上述复杂孔隙结构的形成可以通过扫描不同渗透率的岩石样品的成像,然后截取岩石样品成像的不同部分拼接形成新图像,通过新图像三维建模打印可视化复杂孔隙模型1。
具体地,可视化复杂孔隙模型1通过以下方法成型:
第一步,通过实验室微米级别CT扫描系统对不同渗透率的实验样品扫描,以得到不同渗透率复杂孔隙结构的CT扫描图像。
第二步,按照预定比例分别截取不同渗透率所对应的CT扫描图像,以拼接形成整体结构模型灰度图。
即截取不同渗透带拼接形成整体结构模型灰度图,当然在拼接位置可以进行适应性调整以使相邻拼接边界满足要求。这样拼接形成的整体结构模型灰度图中包括至少两种渗透率复杂孔隙结构的图像。例如从N个CT扫描图像中分别截取第一渗透带、第二渗透带、……和第N渗透带,N个渗透带沿垂直于介质流向拼接形成整体结构灰度图并且三者的渗透率依次降低。本文后续以截取三种渗透带拼接形成整体结构模型灰度图为例,继续介绍技术方案和技术效果。
在一种具体实施例中,从三个CT扫描图像中分别截取第一渗透带、第二渗透带和第三渗透带,三者沿垂直于介质流向拼接形成整体结构灰度图并且三者的渗透率依次降低。
具体地沿垂直于介质流向(图中竖直方向),第一渗透带、第二渗透带和第三渗透带按照2:6:2截取并拼接形成整体结构模型灰度图。
第三步,对拼接形成的整体结构模型灰度图进行图像二值化处理,得到构成所述复杂孔隙结构部分的二值化图像。
本文关于图像二值化处理的具体方法不做详细描述,本领域内技术人员通过本文所记载的内容能够理解和实施本文技术方案。
第四步,通过三维建模软件对上述二值化图像进行三维重构进而得到复杂孔隙结构的数字模型,根据复杂孔隙结构的数字模型利用透明材料打印成型可视化复杂孔隙模型1。可视化复杂孔隙模型1的表面形成流体通道,复杂孔隙结构成型于通道内部。
本发明所提供的实验可视化系统的注射泵组件至少包括两个注射泵,各注射泵的出口均能够连通可视化复杂孔隙模型1的进口;各注射泵用于注射不同粘度的流体介质;也就是说,通过本文所提供的注射泵可以向可视化复杂孔隙模型1内部充注不同粘度的流体介质。
注射泵的注射压力、注射流量和注射流体的速度等工况参数均可以控制,以根据实验方案改变流体的注入模式,进而满足实验要求。
本文中的真空压力装置主要用于提供真空环境以使被驱替流体介质充满可视化复杂孔隙模型1的复杂孔隙结构内部。真空压力装置可以为真空泵,当然也可以为其他能够实现上述功能的设备。
本发明中的图像采集装置用于实时捕捉渗流过程中可视化复杂孔隙 模型1内部的实验图像。在一种具体实施例中,图像采集装置为高分辨率的DV(英文全称为Digital Video,中文为数字视频),可以连续对整个可视复杂孔隙结构模型内部的渗流驱替过程进行实时观测,实现图像可视化表征分析。当然图像采集装置也可以为高频照相机,通过其所拍摄的照片对整个渗流驱替过程进行观测及分析。
请参考图6,图6为本发明一种具体实施例中复杂孔隙结构中多相大粘度差流体驱替渗流实验方法的流程图。
在上述实验可视化系统的基础上,本发明还提供了一种复杂孔隙结构中多相大粘度差流体驱替渗流实验方法,该方法具体包括以下步骤:
S1、利用3D打印设备打印可视化复杂孔隙模型1,其中可视化复杂孔隙模型1为上述的可视化复杂孔隙模型1;
S2、将打印好的可视化复杂孔隙模型1整体放入超声波清洗机中震动清洗;并且以预定压力向震动清洗后的可视化复杂孔隙模型1中注入清洗液,反复数次,直至可视化复杂孔隙模型1中的支撑材料被彻底清除;
其中超声波清洗机的最高温度的设定可以根据具体模型而定,在一种具体实施例中超声波清洗机的最高温度设定为40℃,当温度到达最高温度后停止超声波清洗及震动。
S3、将第一注射泵7、第二注射泵8和第三注射泵9三者的出口通过独立管路密封连接于可视化复杂孔隙模型1的进口;通过第一注射泵7向可视化复杂孔隙模型1内部注射被驱替流体介质,当被驱替流体介质充满可视化复杂孔隙模型1的出口位置时,停止充注被驱替流体介质并将包括可视化复杂孔隙模型1和注射泵的整套系统移动至真空压力装置内部进行抽真空,在抽真空过程中当可视化复杂孔隙模型1内部的气泡移动至复杂孔隙结构之外时,停止抽真空;
S4、将整套系统自真空压力装置中取出,开启第一注射泵7继续对可视化复杂孔隙模型1内部进行充注被驱替流体介质,利用重力条件和使用被驱替流体介质与空气之间的密度差异控制可视化复杂孔隙模型1的放置方向使气泡从出口端排出;
S5、通过第二注射泵8将第一驱动流体注入可视化复杂孔隙模型1,直到有第一驱动流体从可视化复杂孔隙模型1的出口流出;其中第一驱动 流体的粘度小于被驱替流体介质的粘度;
S6、通过第三注射泵9向可视化复杂孔隙模型1内部注入第二驱动流体,直至第二驱动流体从可视化复杂孔隙模型1的出口流出;其中第二驱动流体的粘度大于被驱替流体介质的粘度;
其中第一驱动流体与第二驱动流体之间的粘度差范围可以为1-15000cp。
其中,在第一注射泵7、第二注射泵8及第三注射泵9向可视化复杂孔隙模型1内部充注液体时,利用图像采集装置实时捕捉渗流过程中可视化复杂孔隙模型1内部的实验图像以供实验分析。
上述步骤S3中将各注射泵与可视化复杂孔隙模型1等部件连接形成整体系统后,在充注被驱动流体介质之前还可以进行检验系统的密封性步骤,以确保系统具有良好的密封性。具体地,可以通过第一注射泵7将去离子水以较高压差逐渐注入可视化复杂孔隙模型1,并由图像采集装置实时观测系统中各接头连接部位是否出现渗漏情况。如有渗漏,采用螺丝进一步加固或更换接头位置的密封部件等措施;若无渗漏,自注射泵出口、可视化复杂孔隙模型1出口下游的液体容纳部件10进口处断开连接管路,将进口和出口均连接有管路的可视化复杂孔隙模型1置于固体干燥剂内预定时间,去除密闭性测试过程中孔隙通道内部残留去离子水。在一种具体实施例中,预定时间设为24小时,当然预定时间不局限于本文描述,只要能够实现孔隙通道内部去离子水的去除即可。
本发明中通过对不同渗透率实验样品的扫描,拼接形成具有至少两种渗透率的复杂孔隙结构模型的数字模型,进而通过3D打印设备打印形成可视化复杂孔隙模型1,在实验时先通过真空压力装置配合注射泵向可是复杂孔隙模型的复杂孔隙结构内部充注被驱替流体介质。然后在分别通过不同的注射泵向可视化复杂孔隙模型1内部注入不同粘度的驱替流体介质,这样不仅能够实现同一粘度在不同渗透率的复杂孔隙结构中的渗透情况,并且可以实现不同粘度先后通入不同渗透率的复杂孔隙结构中的渗流情况,通过控制各驱动流体介质的粘度差实现不同条件下的渗流实验研究。上述实验过程中的流体在复杂结构中的流动路径可以自外侧观察,也可以通过图像采集装置进行采集,图像采集装置所采集的信息用于后期理论研究。 该系统能够准确、快速、经济、直观的实现多种粘度不同流体在渗透率差异较大的孔隙模型中的渗流实验。
一种具体实施方式中,可视化复杂孔隙模型1可以为长方体结构,其横截面为矩形结构,也就是说,可视化复杂孔隙模型1包括形成两端开口的矩形通道,复杂孔隙结构成型于矩形通道内部。可视化复杂孔隙模型1的进口和出口分别密封安装有第一锥形接头5和第二锥形接头6,各注射泵的出口连通第一锥形接头5的入口,第二锥形接头6的出口连通外部的液体容纳部件,液体容纳部件用于容纳由可视化复杂孔隙模型1内部流出的液体。
各注射泵的出口通过管路、第一锥形接头5连通可视化复杂孔隙模型1内部。可视化复杂孔隙模型1的内部通过第二锥形接头6连通外部设备。锥形接头可以实现流体的均速流动。
第一锥形接头5与可视化复杂孔隙模型1进口、第二锥形接头6与可视化复杂孔隙模型1出口之间均可以设置密封部件,密封部件可以为橡胶环、或者高分子塑料材料垫片或者止水带等部件。
为了避免各注射泵泵送的不同粘度的流体介质在进入复杂孔隙结构之前混相,本文还进行了以下设置。
在一种具体的实施方式中,第一锥形接头5的外端部包括与各注射泵一一对应的接口,并且第一锥形接头5内部包括与接口一一对应的通道,各通道之间彼此隔离,各通道的内端部均连通可视化复杂孔隙模型1的进口,一个注射泵通过独立设置的管路连通一个接口。
以上述设置三个注射泵为例,第一锥形接头5包括第一接口51、第二接口52和第三接口53,第一锥形接头5的内部包括第一通道54、第二通道55和第三通道56;其中第一接口51与第一通道54连通,第一注射泵7通过管路连通第一接口51;第二接口52与第二通道55连通,第二注射泵8通过管路连通第二接口52;第三接口53与第三通道56连通,第三注射泵9通过管路连通第三接口53。
为了增加系统密封性,可视化复杂孔隙模型1的进口管段插入第一锥形接头5内部且二者周向密封;可视化复杂孔隙模型1的出口管段插入第二锥形接头6内部且二者周向密封。
当然,可视化复杂孔隙模型1外周表面两端还成型有安装凸台,分别为第一安装凸台2和第二安装凸台2’。两安装凸台均成型有螺孔57,用于安装与第一锥形接头5或所述第二锥形接头6锁紧的螺纹固定件4,螺纹固定件4可以为螺杆或者螺栓等。安装凸台、螺栓安装孔均是在可视化复杂孔隙模型3D打印工艺中一体成型。在一种具体实施方式中螺栓安装孔的尺寸可以为1.6mm左右,螺栓安装孔可以沿轴向均布,数量不限。
第一安装凸台2和第二安装凸台2’分别设置有第一密封部件3和第二密封部件3’,以增加与相连接部件的密封性。
通过螺栓将可视化复杂孔隙模型1与锥形接头连接固定,增加了二者连接的可靠性及密封性。
同理,第二锥形接头6包括内部通道63,以及与外部管路连接的接头61,第二锥形接头6上也设置有螺孔62,用于安装于可视化复杂孔隙模型1配合固定的螺纹固定件。
本领域内技术人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。

Claims (11)

  1. 一种复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其特征在于,该实验可视化系统包括:注射泵组件(12)、可视化复杂孔隙模型(1)、真空压力泵和图像采集装置(11);其中,
    所述可视化复杂孔隙模型(1)包括具有进口和出口,其内部包括至少两部分复杂孔隙结构,各部分复杂孔隙结构的渗透率不相同;
    所述注射泵组件至少包括两个注射泵,各注射泵的出口均能够连通所述可视化复杂孔隙模型(1)的进口;各注射泵用于注射不同粘度的流体介质;
    所述真空压力装置(12),用于提供真空环境以使被驱替流体介质充满所述可视化复杂孔隙模型(1)的复杂孔隙结构内部;
    所述图像采集装置(11),用于实时捕捉渗流过程中所述可视化复杂孔隙模型(1)内部的实验图像。
  2. 如权利要求1所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其特征在于,所述可视化复杂孔隙模型(1)通过以下方法成型:
    通过实验室微米级别CT扫描系统对不同渗透率的实验样品扫描,以得到不同渗透率复杂孔隙结构的CT扫描图像;
    按照预定比例分别截取不同渗透率所对应的CT扫描图像,以拼接形成整体结构模型灰度图;
    对所述拼接形成的整体结构模型灰度图进行图像二值化处理,得到构成所述复杂孔隙结构的二值化图像;
    通过三维建模软件对所述二值化图像进行三维重构进而得到所述复杂孔隙结构的数字模型,根据所述复杂孔隙结构的数字模型利用透明材料打印成型所述可视化复杂孔隙模型(1)。
  3. 如权利要求2所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其特征在于,从N个CT扫描图像中分别截取第一渗透带、第二渗透带、….和第N渗透带,N个渗透带依次沿垂直于介质流向拼接形成整体结构灰度图并且渗透率依次降低。
  4. 如权利要求2所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其特征在于,所述可视化复杂孔隙模型(1)为长方体,其横截面为矩形结构,所述可视化复杂孔隙模型(1)的进口和出口分别密封安装有第一锥形接头(5)和第二锥形接头(6),各所述注射泵的出口连通所述第一锥形接头(5)的入口,所述第二锥形接头(6)的出口连通外部的液体容纳部件(10),所述液体容纳部件(10)用于容纳由所述可视化复杂孔隙模型(1)内部流出的液体。
  5. 如权利要求4所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其特征在于,所述第一锥形接头(5)的外端部包括与各所述注射泵一一对应的接口,并且其内部包括与相应所述接口一一对应的通道,各通道之间彼此隔离,各所述通道的内端部均连通所述可视化复杂孔隙模型(1)的进口,一个所述注射泵通过独立设置的管路连通一个所述接口。
  6. 如权利要求4所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其特征在于,所述可视化复杂孔隙模型(1)的进口管段插入所述第一锥形接头(5)内部且二者周向密封;所述可视化复杂孔隙模型(1)的出口管段插入所述第二锥形接头(6)内部且二者周向密封。
  7. 如权利要求4所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统,其特征在于,所述可视化复杂孔隙模型(1)外周表面两端还成型有安装凸台,所述安装凸台成型有螺栓安装孔,用于安装与所述第一锥形接头(5)或所述第二锥形接头(6)锁紧的螺栓。
  8. 一种复杂孔隙结构中多相大粘度差流体驱替渗流实验方法,其特征在于,该方法具体包括:
    利用3D打印设备打印可视化复杂孔隙模型(1),其中所述可视化复杂孔隙模型(1)包括进口和出口,其内部包括至少两部分复杂孔隙结构,各部分复杂孔隙结构的渗透率不相同;
    将打印好的所述可视化复杂孔隙模型(1)整体放入超声波清洗机中震动清洗;
    以预定压力向震动清洗后的所述可视化复杂孔隙模型(1)中注入清洗液,反复数次,直至所述可视化复杂孔隙模型(1)中的支撑材料被彻底清 除;
    将第一注射泵(7)、第二注射泵(8)和第三注射泵(9)三者的出口通过独立管路密封连接于所述可视化复杂孔隙模型(1)的进口;
    通过所述第一注射泵(7)向所述可视化复杂孔隙模型(1)内部注射被驱替流体介质,当被驱替流体介质充满所述可视化复杂孔隙模型(1)的出口位置时,停止充注被驱替流体介质并将包括所述可视化复杂孔隙模型(1)和所述注射泵的整套系统移动至真空压力装置内部进行抽真空,在抽真空过程中当所述可视化复杂孔隙模型(1)内部的气泡移动至所述复杂孔隙结构之外时,停止抽真空;
    将整套系统自真空压力装置中取出,开启第一注射泵(7)继续对所述可视化复杂孔隙模型(1)内部进行充注被驱替流体介质,利用重力条件和使用被驱替流体介质与空气之间的密度差异控制可视化复杂孔隙模型(1)的放置方向使气泡从出口端排出;
    通过第二注射泵(8)将第一驱动流体注入所述可视化复杂孔隙模型(1),直到有所述第一驱动流体从所述可视化复杂孔隙模型(1)的出口流出;其中第一驱动流体的粘度小于所述被驱替流体介质的粘度;
    通过第三注射泵(9)向所述可视化复杂孔隙模型(1)内部注入第二驱动流体,直至所述第二驱动流体从所述可视化复杂孔隙模型(1)的出口流出;其中第二驱动流体的粘度大于所述被驱替流体介质的粘度;
    并且在第一注射泵(7)、第二注射泵(8)及第三注射泵(9)向所述可视化复杂孔隙模型(1)内部充注液体时,利用图像采集装置实时捕捉渗流过程中所述可视化复杂孔隙模型(1)内部的实验图像以供实验分析。
  9. 如权利要求8所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验方法,其特征在于,可视化复杂孔隙模型(1)通过以下方法成型:
    通过实验室微米级别CT扫描系统对不同渗透率的实验样品扫描,以得到不同渗透率复杂孔隙结构的CT扫描图像;
    按照预定比例分别截取不同渗透率所对应的CT扫描图像,以拼接形成整体结构模型灰度图;
    对所述拼接形成的整体结构模型灰度图进行图像二值化处理,得到构成所述复杂孔隙结构部分的二值化图像;
    通过三维建模软件对所述二值化图像进行三维重构进而得到所述复杂孔隙结构的数字模型,根据所述数字模型利用透明材料打印成型所述可视化复杂孔隙模型(1)。
  10. 如权利要求8所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验方法,其特征在于,在将各注射泵与所述可视化复杂孔隙模型(1)等部件连接形成整体系统后,充注被驱动流体介质之前,还可以进行密闭性测试:通过第一注射泵(7)将去离子水以较高压差逐渐注入所述可视化复杂孔隙模型(1),并实时观测系统中各接头连接部位是否出现渗漏;如无渗漏,自注射泵出口和可视化复杂孔隙模型(1)出口下游的液体容纳部件(10)进口处断开连接管路,将进口和出口均连接有管路的所述可视化复杂孔隙模型(1)置于固体干燥剂内预订时间,以去除密闭性测试过程中孔隙通道内部残留去离子水。
  11. 如权利要求8所述的复杂孔隙结构中多相大粘度差流体驱替渗流实验方法,其特征在于,所述第一驱动流体和所述第二驱动流体的粘度差范围为1-15000cp。
PCT/CN2020/086907 2020-04-26 2020-04-26 复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法 WO2021217286A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/296,998 US11307131B2 (en) 2020-04-26 2020-04-26 Visualization system and method for multiphase fluids displacement experiment with large viscosity difference in complex pore structure
PCT/CN2020/086907 WO2021217286A1 (zh) 2020-04-26 2020-04-26 复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086907 WO2021217286A1 (zh) 2020-04-26 2020-04-26 复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法

Publications (1)

Publication Number Publication Date
WO2021217286A1 true WO2021217286A1 (zh) 2021-11-04

Family

ID=78373204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086907 WO2021217286A1 (zh) 2020-04-26 2020-04-26 复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法

Country Status (2)

Country Link
US (1) US11307131B2 (zh)
WO (1) WO2021217286A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116297110B (zh) * 2023-05-18 2023-07-25 西南石油大学 一种二氧化碳封存模拟系统及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869496A (zh) * 2016-06-02 2016-08-17 北京科技大学 一种可视化微观孔隙结构仿真物理模型及制作方法
CN106053168A (zh) * 2016-05-20 2016-10-26 长安大学 基于3d打印技术的混凝土细观三相结构的可视化方法
WO2018085782A1 (en) * 2016-11-04 2018-05-11 University Of Utah Research Foundation Nanofluidic devices for measuring the thermodynamic fluid and transport properties in shales
CN108195647A (zh) * 2017-12-30 2018-06-22 北京化工大学 一种模拟油藏的微型模型及用其进行石油驱替实验的方法
CN109596499A (zh) * 2018-12-26 2019-04-09 中国矿业大学(北京) 一种可视孔隙模型清洗及试验观测连接系统
CN109883924A (zh) * 2019-03-27 2019-06-14 武汉大学 用于岩石孔隙尺度多相流运动特性研究的试验装置及方法
CN110608933A (zh) * 2019-09-26 2019-12-24 长安大学 一种基于3d打印的可渗透岩体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973783B (zh) 2016-06-01 2018-12-11 四川大学 基于3d打印的平行裂隙渗流实验系统及实验方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053168A (zh) * 2016-05-20 2016-10-26 长安大学 基于3d打印技术的混凝土细观三相结构的可视化方法
CN105869496A (zh) * 2016-06-02 2016-08-17 北京科技大学 一种可视化微观孔隙结构仿真物理模型及制作方法
WO2018085782A1 (en) * 2016-11-04 2018-05-11 University Of Utah Research Foundation Nanofluidic devices for measuring the thermodynamic fluid and transport properties in shales
CN108195647A (zh) * 2017-12-30 2018-06-22 北京化工大学 一种模拟油藏的微型模型及用其进行石油驱替实验的方法
CN109596499A (zh) * 2018-12-26 2019-04-09 中国矿业大学(北京) 一种可视孔隙模型清洗及试验观测连接系统
CN109883924A (zh) * 2019-03-27 2019-06-14 武汉大学 用于岩石孔隙尺度多相流运动特性研究的试验装置及方法
CN110608933A (zh) * 2019-09-26 2019-12-24 长安大学 一种基于3d打印的可渗透岩体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JU YANG, XIE HEPING, ZHENG ZEMIN, LU JINBO, MAO LINGTAO, GAO FENG, PENG RUIDONG: "Visualization Method of the Complex Structure and Stress Field of Rock Mass Based on 3D Printing Technology", CHINESE SCIENCE BULLETIN, vol. 59, no. 32, 20 November 2014 (2014-11-20), CN, pages 3109 - 3119, XP055861430, ISSN: 1001-6538, DOI: 10.1007/s11434-014-0579-9 *

Also Published As

Publication number Publication date
US20220091013A1 (en) 2022-03-24
US11307131B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
GB2581606A (en) Porous structure three-dimensional model and forming method thereof, and rock porous structure fluid displacement stimulation testing system and transparent
CN107816342B (zh) 裂缝内支撑剂运移规律可视化实验装置及方法
WO2022148193A1 (zh) 模拟高温高压下流体驱替的微观可视化实验装置及方法
CN109030317A (zh) 一种防渗材料渗透注浆室内试验装置
CN103954639B (zh) 一种探测凝胶在微孔道中分布的方法
CN106706502A (zh) 岩体裂隙网络渗透系数方向性测试及可视化系统
CN106092856A (zh) 一种粗糙裂隙网络渗流定量可视化模拟系统及其试验方法
WO2021217286A1 (zh) 复杂孔隙结构中多相大粘度差流体驱替渗流实验可视化系统及方法
CN110967287A (zh) 一种复合暂堵转向材料组合配比的优化实验方法
CN103558041A (zh) 量测原位应力场作用下土体位移的模型试验装置和试验方法
JP6782290B2 (ja) Ct技術による海域の泥質シルト貯留層構造変化の測定装置及び測定方法
CN106802272A (zh) 岩体裂隙网络渗流各向异性测试及可视化系统
CN104406999B (zh) 一种原位标定核磁共振成像油藏渗流模拟测量装置及方法
CN104502546A (zh) 检测瓦斯抽放钻孔密封材料密封性能的实验装置及方法
CN108169462B (zh) 气窜模拟系统
CN110658225B (zh) 一种基于mri的高温高压下两相流体对流混合实验方法
CN110608978B (zh) 一种模拟含水层抽注水过程中细颗粒运移示踪试验装置
CN109596499A (zh) 一种可视孔隙模型清洗及试验观测连接系统
CN107860694A (zh) 测量预交联凝胶颗粒在岩石微观孔喉中运移规律的方法
CN108008075B (zh) 一种用于模拟疏松砂岩油藏挡砂介质堵塞的实验装置
CN110006788A (zh) 在多孔介质气水界面测定堵水剂铺展性能的装置及方法
CN112881259A (zh) 一种基于稳态法测节理网络气-水相对渗透率的可视化装置及方法
CN113533337A (zh) 一种确定油藏泡沫渗流气泡生成与破灭速度的方法和装置
CN206311603U (zh) 一种评价压裂液对石油储层伤害的实验装置
CN217542768U (zh) 一种可视化泡沫驱替实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933314

Country of ref document: EP

Kind code of ref document: A1