WO2021215621A1 - Coaxial spectral imaging ellipsometer - Google Patents

Coaxial spectral imaging ellipsometer Download PDF

Info

Publication number
WO2021215621A1
WO2021215621A1 PCT/KR2020/019478 KR2020019478W WO2021215621A1 WO 2021215621 A1 WO2021215621 A1 WO 2021215621A1 KR 2020019478 W KR2020019478 W KR 2020019478W WO 2021215621 A1 WO2021215621 A1 WO 2021215621A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
objective lens
spectral
coaxial
Prior art date
Application number
PCT/KR2020/019478
Other languages
French (fr)
Korean (ko)
Inventor
박희재
이승우
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2021215621A1 publication Critical patent/WO2021215621A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the present invention relates to a coaxial spectral imaging ellipsometer, and by using the properties of the back focal plane of an objective lens, a small number of light incident and reflected on a sample at a specific angle of incidence in a hardware structure composed of a coaxial optical system It relates to a coaxial spectral imaging ellipsometer, which enables accurate and simple acquisition of physical properties of a sample by acquiring a spectral ellipsometry image through a measurement sequence of
  • ellipsometry which measures the thickness of a sample based on the polarization change characteristic of the sample
  • the ellipsometer has an inclined incident reflection structure as shown in FIG. 1, and the polarization state generator (PSG), which is the incident stage, creates various polarizations and irradiates the sample, and the polarization state analyzer (PSA) By interpreting the reflected polarization, the change in polarization in the sample is measured.
  • PSG polarization state generator
  • PSA polarization state analyzer
  • the complex reflectance characteristic of the sample is measured, and the measured complex reflectivity is compared with the theoretical complex reflectivity ( ⁇ , ⁇ ) calculated by changing the thickness and refractive index of the sample, and the theoretical thickness with the smallest error And the refractive index is calculated.
  • the polarization characteristic of the thin film sample is a function of the incident angle and wavelength, and since the ellipsometer calculates the thickness by comparing the measurement signal and the theoretical signal, the greater the change in the measurement signal, the greater the sensitivity of the thickness measurement. Consequently, acquiring the spectral signal is advantageous for ellipsometer analysis.
  • polarization modulation driving there is minimal polarization modulation driving.
  • a polarizer or a phase retarder is mechanically rotated, or a polarization modulated for each measurement sequence is created using an electrically operated phase retarder.
  • a beam drifting error that changes the optical path occurs due to minute misalignment of optical components. This causes a phase error.
  • the present invention intends to propose an ellipsometry capable of solving all of these issues.
  • the present invention has been devised to improve the above-described problems, and by using the property of the back focal plane of the objective lens to acquire a spectral image of the light entering the sample at a specific angle of incidence, the physical properties of the sample are accurately and conveniently acquired It is an object of the present invention to provide a coaxial spectral imaging ellipsometer that can do this.
  • the present invention uses a coaxial optical system, does not require a mechanical device for separately driving an optical modulator, and has an object to obtain a spectral image according to an incident angle to determine the physical properties of a sample.
  • a coaxial spectroscopic ellipsometer includes: a light source; a light modulator for polarizing and retarding the light from the light source; an objective lens irradiating the light modulated by the light modulator to the sample; an incident angle adjustment unit provided between the light source and the objective lens to irradiate the light to a specific position of the rear focal plane of the objective lens; a beam splitter for guiding the reflected beam reflected on the sample to change a path after passing through the objective lens; a polarization analyzer that analyzes the polarization of the reflected beam; a spectral image acquisition unit for acquiring a spectral image from the reflected beam; and a signal processing unit for signal processing the image acquired by the spectral image acquisition unit to extract physical information of the sample.
  • the light modulator includes a polarization generator for polarizing the light from the light source, and a phase delayer for delaying the phase of the light polarized by the polarization generator, wherein the phase delayer is a multi-order phase delayer. Retarder) is preferred.
  • the spectral image acquisition unit consists of an imaging interferometer, the imaging interferometer, a light splitter for splitting the reflected beam; a first mirror for reflecting the beam of one side split from the splitter; It includes a second mirror that reflects the beam of the other side split from the splitter, and moves the first mirror or the second mirror to create an interference image due to path difference, and includes a camera for acquiring the interference image It is preferable to do
  • the spectral image acquisition unit includes a wavelength modulation filter and a camera provided with a plurality of individual filters for filtering a predetermined central wavelength, a hyperspectral camera, or a diffraction grating and a camera.
  • the coaxial spectroscopic ellipsometer according to another aspect of the present invention, a light source; a light modulator for polarizing and retarding the light from the light source; an objective lens irradiating the light modulated by the light modulator to the sample; a beam splitter for guiding the reflected beam reflected on the sample to change a path after passing through the objective lens; a polarization analyzer that analyzes the polarization of the reflected beam; a light selection unit for selecting light at a specific position on the back focal plane; a spectral image acquisition unit for acquiring a spectral image from the light selected by the light selection unit; and a signal processing unit for signal processing the image acquired by the spectral image acquisition unit to extract physical information of the sample.
  • the light modulator includes a polarization generator for polarizing the light from the light source, and a phase delayer for delaying the phase of the light polarized by the polarization generator, wherein the phase delayer is a multi-order phase delayer. Retarder) is preferred.
  • the light selector selects light at a specific position on the retreated rear focal plane.
  • the light selector be an diaphragm for passing light at a specific point of the retracted back focal plane, or an optical fiber for transmitting light at the specific point.
  • the light selector is an aperture provided on the rear focal plane of the objective lens to inject light at a specific position into the sample and pass the reflected beam reflected from the sample.
  • the spectral image acquisition unit comprises an imaging interferometer
  • the imaging interferometer includes: a light splitter for splitting the reflected beam; a first mirror for reflecting the beam of one side split from the splitter; It includes a second mirror that reflects the beam of the other side split from the splitter, and moves the first mirror or the second mirror to create an interference image due to path difference, and includes a camera for acquiring the interference image It is preferable to do
  • the spectral image acquisition unit comprises a wavelength modulation filter and a camera provided with a plurality of individual filters for filtering a predetermined central wavelength, a hyperspectral camera, or a diffraction grating and a camera.
  • the coaxial spectral image ellipsometer acquires a spectral image with respect to the light that enters the sample at a specific angle of incidence by using the property of the back focal plane of the objective lens to accurately, simply and quickly acquire the physical properties of the sample. make it possible
  • the present invention uses a coaxial optical system, does not require a mechanical device for separately driving the light modulator, and provides an effect of quickly and accurately acquiring the physical properties of a sample by acquiring a spectral image according to an incident angle.
  • FIG. 1 is a conceptual diagram of a conventional ellipsometer
  • FIG. 2 is a view showing an ellipsometer according to an aspect of the present invention.
  • Figure 3 is a view showing another embodiment of Figure 2;
  • FIG. 5 is a view showing an ellipsometer according to another aspect of the present invention.
  • Figure 6 is a view showing another example of the lens system in Figure 5;
  • FIG. 7 is a view showing another example of the light selection unit in FIG. 6;
  • Fig. 8 shows an example of an diaphragm disposed on the rear focal plane of the objective lens.
  • Embodiments of the present disclosure are exemplified for the purpose of explaining the technical spirit of the present disclosure.
  • the scope of the rights according to the present disclosure is not limited to the embodiments presented below or specific descriptions of these embodiments.
  • FIG. 2 is a view showing an ellipsometer according to an aspect of the present invention
  • FIG. 3 is a view showing another embodiment of FIG. 4 is a view showing the action of the rear focal plane of the objective lens
  • 5 is a view showing an ellipsometer according to another aspect of the present invention
  • FIG. 6 is a view showing another example of the lens system in FIG. 5
  • FIG. 7 is another example of the optical selector in FIG. It is a drawing.
  • the coaxial spectral imaging ellipsometer includes a light source 10, a light modulator 20, an objective lens 30, an incident angle control unit 40, and a beam splitter. 50 , a polarization analyzer 60 , a spectral image acquisition unit 70 , and a signal processing unit 80 .
  • the light source 10 is provided to emit light.
  • the light source 10 is a white light source 10 is used.
  • a broad-band spectrum light source is used as the light source 10 .
  • the light source 10 of a single wavelength may be used.
  • various sources such as a tungsten-halogen lamp and a Xe lamp may be used.
  • the light modulator 20 is provided to polarize and phase retard the light from the light source 10 .
  • the light modulator 20 includes a polarization generator 21 that polarizes light from the light source 10 and a phase retarder 22 that delays the phase of light by the polarization generator 21 . ) is included.
  • the polarization generator 21 polarizes the light source 10 into light having a specific component before passing through the phase retarder 22 provided at the rear end of the polarization generator 21 .
  • the light source 10 is linearly polarized by the polarization generator 21 .
  • the light source 10 is polarized by the polarization generator 21 because polarized light is required to modulate a component of the light to a high frequency using a phase delay.
  • the phase retarder 22 is provided to delay the phase of the light polarized by the polarization generator 21 .
  • the phase retarder 22 is a multi-order retarder.
  • the multi-order retarder is a phase retarder 22 in which the p-wave and the s-wave create a phase delay of one wavelength or more with respect to each other.
  • the light modulator 20 having the polarization generator 21 and the phase delay unit 22 polarizes light without a separate driving device for light modulation, and generates a phase delay of 1 wavelength or more, thereby generating a sample according to a wavelength.
  • a signal related to ⁇ (amplitude ratio of P wave and S wave) and ⁇ (phase difference between P wave and S wave) of (100) plays a role of being modulated into a high frequency signal in the wavelength domain.
  • the objective lens 30 irradiates the light modulated by the light modulator 20 to the sample 100 . After passing through the objective lens 30 , the light irradiated to the sample 100 is reflected from the sample 100 and passes through the objective lens 30 again.
  • the incident angle control unit 40 is provided between the light source 10 and the objective lens 30 to irradiate the light to a specific position of the rear focal plane BP of the objective lens 30 .
  • the incident angle adjusting unit 40 is implemented using a collimated beam and a lens so that the light source 10 is irradiated only to a specific position selected on the back focal plane BP, or a spatial light modulator (SLM, beam projector, etc.) ) may be used to irradiate light to a specific position of the back focal plane BP.
  • SLM spatial light modulator
  • the incident angle adjusting unit 40 irradiates light to the sample 100 at a specific angle of incidence by allowing the light to be irradiated to a specific position of the back focal plane BP of the objective lens 30 .
  • the incident angle adjusting unit 40 is provided between the light modulating unit 20 and the beam splitter 50 .
  • the incident angle adjusting unit 40 may be provided between the light source 10 and the light modulating unit 20 .
  • the beam splitter 50 induces the reflected beam reflected by the sample 100 to change a path after passing through the objective lens 30 .
  • the beam splitter 50 is provided at the front end of the objective lens 30 .
  • the light source 10 is incident on the sample 100 through the beam splitter 50 and the objective lens 30, and the reflected beam reflected from the sample 100 is the objective lens 30 and the beam splitter. It proceeds to the spectral image acquisition unit 70 through (50).
  • the polarization analyzer 60 is provided to analyze the polarization of the reflected beam passing through the back focal plane BP. According to this embodiment, the reflected beam enters the polarization analyzer 60 after passing through the beam splitter 50 .
  • the polarization analyzer 60 can use substantially the same polarizer as the polarization generator 21, and in terms of its function, the polarization generator 21 functions to generate polarized light, and the polarization analyzer 60 converts the polarized light. interprets it.
  • the spectral image acquisition unit 70 is provided to acquire a spectral image from the reflected beam.
  • the reflected beam passes through the polarization analyzer 60 and then proceeds to the spectral easy acquisition unit 70 .
  • the spectral image acquisition unit 70 may be implemented in a form in which the functions of the polarization analyzer 60 are integrated.
  • the spectral image acquisition unit 70 may be implemented to analyze a different polarization state for each pixel of the camera using a polarization camera.
  • the light irradiated to a specific position of the back focal plane BP travels to the sample 100 at the same incident angle, is reflected from the sample 100, and is again collected on the back focal plane BP.
  • the spectral image acquisition unit 70 acquires data on the incident angle for each wavelength by imaging the back focal plane BP.
  • a lens is provided at the front or rear end of the polarization analyzer 60 at the front end of the spectral image obtaining unit 70 so that the spectral image obtaining unit 70 can see the image of the rear focal plane BP.
  • the spectral image acquisition unit 70 is composed of an imaging interferometer.
  • the imaging interferometer includes a light splitter 71 , a first mirror 72 , a second mirror 73 , and a camera 74 .
  • the light splitter 71 splits the reflected beam.
  • the first mirror 72 reflects one side of the beam split from the light splitter 71 .
  • the second mirror 73 reflects the other side of the beam split from the light splitter 71 .
  • a path difference of the beam split through the light splitter 71 is generated.
  • the beams reflected by the first mirror 72 and the second mirror 73 go back to the light splitter 71 to form an interference image.
  • the camera 74 acquires the interference image.
  • an interferometer when an interferometer is used, there is an effect that the calculation steps required for measurement can be reduced due to the Fourier relationship between the reflected light signal and the interfering light signal.
  • the spectral image acquisition unit 70 has moved the imaging interferometer, but it can be implemented using a plurality of wavelength modulation filters or an acousto-optic tunable filter (AOTF) and a mono camera. .
  • AOTF acousto-optic tunable filter
  • a plurality of individual filters for filtering a predetermined central wavelength band are provided in the circumferential direction, and are rotated to transmit light of a wavelength corresponding to the filter among multi-wavelength light.
  • the spectral image acquisition unit 70 may be implemented as a camera that acquires images of the plurality of wavelength modulation filters and light passing therethrough.
  • the plurality of wavelength modulation filters may be disposed between the light source 10 and the beam splitter 50 or disposed at a rear end of the beam splitter 50 based on an optical path.
  • the acousto-optic modulation filter uses a wavelength modulator capable of wavelength modulation, such as a variable filter or a linear variable filter through an acoustic or electrical signal, to filter the light corresponding to the filter among multi-wavelength light.
  • the spectral image acquisition unit 70 may be implemented as a camera that acquires an image of the acousto-optic modulation filter and the light passing therethrough.
  • the acousto-optic modulation filter may be disposed between the light source 10 and the beam splitter 50 or disposed at a rear end of the beam splitter 50 based on an optical path.
  • the spectral image acquisition unit 70 may be implemented through an imaging spectrometer using a diffraction grating, or a hyperspectral camera or a multi-channel spectral camera may be used.
  • the spectral image acquisition unit 70 may be implemented as a transmission-type diffraction grating and a camera, or a spray-type diffraction grating and a camera.
  • the hyperspectral camera unlike a general mono camera or RGB color camera, since the image pixels constituting one pixel can receive various wavelengths by dividing, the spectral easy support acquisition unit 70 is implemented by the hyperspectral camera can be
  • the signal processing unit 80 extracts the physical information of the sample 100 by signal processing the image acquired by the spectral image acquisition unit 70 .
  • the signal for each pixel of the image of the sample 100 obtained by the spectral image acquisition unit 70 is obtained by performing Fourier transform by the signal processing unit 80 to separate the low-frequency signal and the high-frequency signal, , by performing an inverse Fourier transform on each of the low-frequency signal and the high-frequency signal, it is possible to extract physical signals for the amount of incident light and reflectivity of the sample 100 in real time.
  • the light from the light source 10 is polarized while passing through the polarization generator 21 of the light modulator 20 , and the P wave and S wave passing through the phase delay unit 22 .
  • a phase delay occurs.
  • the modulated light is irradiated to a specific position of the rear focal plane BP of the objective lens 30 by the incident angle adjusting unit 40 . Since the light incident on the sample 100 at a specific position of the back focal plane BP is incident at a specific angle of incidence, the reflected beam reflected from the sample 100 is the sample 100 when the wavelength is incident at a specific angle of incidence. Physical properties are reflected.
  • the reflected beam enters the spectral image acquisition unit 70 through the beam splitter 50 and the polarization analyzer 60 .
  • the spectral image acquisition unit 70 acquires an image containing physical information of the sample 100 according to a specific incident angle with respect to the wavelength, and the signal processing unit 80 includes the spectral image acquisition unit 70 loaded on the acquired image.
  • the signal processing unit 80 includes the spectral image acquisition unit 70 loaded on the acquired image.
  • the reflected light I( ⁇ ) with respect to the amount of light I 0 ( ⁇ ) is expressed by the grinding equation of the Mueller matrix and the Stokes vector, and it is summarized as follows.
  • I( ⁇ ) ⁇ I 0 ( ⁇ )/4 ⁇ 1- cos(2 ⁇ )cos( ⁇ ( ⁇ )) + sin(2 ⁇ )sin( ⁇ )sin( ⁇ ( ⁇ )) ⁇
  • is the amplitude ratio of the P wave and the S wave
  • is the phase difference between the P wave and the S wave
  • ⁇ ( ⁇ ) 2 ⁇ n d
  • d is the thickness of the birefringence retarder 22
  • ⁇ n is the birefringence of the retarder 22 .
  • Equation 1 can be simply expressed as Equation 2 as follows.
  • I( ⁇ ) a 0 + a 1 cos( ⁇ ( ⁇ )) + b 1 sin( ⁇ ( ⁇ ))
  • the signal processing unit 80 after the Fourier transform of the reflected light I( ⁇ ), includes the DC component A 0 (h), the real part of the signal shifted by L (A 1 (hL)), and the imaginary number.
  • a signal can be obtained by separating each part (B 1 (hL)), and through the inverse Fourier transform for each , information on the incident light I 0 ( ⁇ ), cos(2 ⁇ ) and sin(2 ⁇ )sin( ⁇ ) ), it is possible to calculate physical information (thickness, refractive index, etc.) about the sample 100 .
  • the coaxial spectral imaging ellipsometer irradiates light to a specific position of the back focal plane BP of the objective lens 30 to be incident on the sample 100 at a specific angle of incidence
  • the optical system may have a coaxial optical system, and for this reason, the spatial resolution may be improved by using the high magnification objective lens 30 having a short working distance.
  • a multi-order retarder is used as the phase delay 22 to modulate the ⁇ , ⁇ signal according to the wavelength of the sample 100 into a high frequency signal in the wavelength domain, so that a separate mechanical or Overcoming the disadvantage of generating a phase delay by electrical drive.
  • phase delay element 22 when the phase delay element 22 is mechanically rotated to perform polarization modulation, an error may occur due to a change in the optical path due to minute misalignment of the optical component.
  • the optical component when the optical component is accompanied by a mechanical movement, a considerable time is required for driving or stabilizing the measuring device, and the present invention can shorten the mechanical driving or stabilization time to speed up the measurement.
  • an anchoring layer is formed for the restoring force of liquid crystal, and an error occurs in the actual polarization phase delay amount, which results in a change in the optical path to reduce the amount of light, or the intended amount.
  • the phase delay may not occur as much as that.
  • Embodiments of the present invention do not suffer from the disadvantages of electrical polarization modulation.
  • the spectral image acquisition unit 70 since the pattern of the sample 100 of a large area can be imaged by the spectral image acquisition unit 70, the measurement time is shortened and the convenience is improved. Recently, since the sample 100 in the semiconductor field is highly integrated and the patterns are becoming more complex, the spatial resolution is increased by the imaging method to provide the effect that a signal can be analyzed for each pixel.
  • the image acquired by the spectral image acquisition unit 70 is processed and analyzed by the signal processing unit 80 .
  • the signal processing unit 80 can analyze the multi-wavelength light source 10 , the accuracy and precision of the physical information of the sample 100 can be improved.
  • the ellipsometer compares the measured polarization signal ( ⁇ m , ⁇ m ) with the theoretical signal ( ⁇ t , ⁇ t ) calculated through the reflectance theory fitted to the sample (100) properties and uses a nonlinear fitting to compare the sample desired physical information (thickness of the thin film, refractive index, shape of the sample 100, etc.) is calculated.
  • the coaxial spectral imaging ellipsometer is a multi-wavelength light source ( 10) to enable the analysis.
  • the coaxial spectral imaging ellipsometer includes a light source 10, a light modulator 20 for polarizing and phase delaying light from the light source 10, An objective lens 30 irradiating the light modulated by the light modulator 20 to the sample 100, provided between the light modulator 20 and the objective lens 30, to the sample 100
  • a beam splitter 50 that guides the reflected reflected beam to change the path after passing through the objective lens 30, and a polarization analyzer 60 that analyzes the polarization of the reflected beam passing through the beam splitter 50
  • a lens system 90 for retreating the rear focal plane of the objective lens 30 with respect to the reflected beam passing through the beam splitter 50, and a light for selecting light at a specific position on the retreated rear focal plane
  • the same reference numerals are given to components performing the same operations as those of Fig. 5, and detailed descriptions thereof are omitted.
  • the light source 10 the light modulator 20, the objective lens 30, the beam splitter 50, the polarization analyzer 60, the spectral image acquisition unit 70, and the signal processing unit
  • Reference numeral 80 is substantially the same in terms of construction and operation according to the embodiment of Fig. 2 .
  • the light modulator 20 includes a polarization generator 21 for polarizing the light from the light source 10 and a phase retarder 22 for delaying the phase of the light polarized by the polarization generator 21 .
  • the phase retarder 22 is a multi-order retarder 22, which is the same as in FIG. 2 .
  • the light selection unit 110 is included.
  • the back focal point by the light selector 110 Physical information of the sample 100 is calculated by selecting the light that has passed a specific position on the surface, imaging, and signal processing.
  • the embodiment of Fig. 2 is a method of irradiating light to a specific position of the back focal plane
  • the embodiment of Fig. 5 irradiates the multi-wavelength light source 10 to the sample 100
  • the lens system 90 and the light selection This is a method of selecting a reflected beam at a specific position of the back focal plane BP by using the unit 110 .
  • a lens system 90 is included.
  • the lens system 90 retreats the rear focal plane BP of the objective lens 30 with respect to the reflected beam passing through the beam splitter 50 .
  • the lens system 90 retracts the rear focal plane of the objective lens 30 using a 4f lens system using a plurality of lenses to form a secondary rear focal plane, or
  • the second back focal plane may be formed by retreating the back focal plane using the relay lens system.
  • the lens system 90 is not limited to the above, and an optical system capable of retracting the rear focal plane of the objective lens 30 is sufficient.
  • the light selection unit 110 is provided to select light at a specific position on the retracted rear focal plane.
  • the light selection unit 110 selects the light entering the sample 100 at a specific incident angle by selecting the light at a specific position of the retracted back focal plane.
  • the light selected by the optical selection unit 110 is provided to the polarization analyzer 60 , the spectral image acquisition unit 70 , and the signal processing unit 80 provided at the rear end of the optical selection unit 110 .
  • the process in which the spectral image acquisition unit 70 and the signal processing unit 80 extracts physical information about the sample 100 is as described above.
  • the light selection unit 110 may be an diaphragm 110 that allows light to pass through a specific point of the retracted rear focal plane.
  • the light selection unit 110 may be an optical fiber 110 ′ that transmits light at a specific point.
  • the light selector 110 is provided on the back focal plane BP of the objective lens 30 to inject light at a specific position into the sample 100 , and It may be implemented as an aperture 120 that passes the reflected beam reflected from the sample. 8 shows an example of the diaphragm 120 .
  • Light at a characteristic position through the incident unit 121 of the stop 120 is incident on the sample 100 through the objective lens 30 , and the reflected beam reflected by the sample 100 passes through the transmission unit 122 . , it is possible to select light entering at a specific angle of incidence.
  • this method selects a reflected beam at a specific position of the back focal plane BP of the objective lens 30 , there is a similarity in terms of selecting light for a specific incident angle.
  • the light thus selected is provided to the polarization analyzer 60 , the spectral image acquisition unit 70 , and the signal processing unit 80 .
  • the present embodiment light is selected at a specific position from the reflected beam that enters and is reflected at a specific angle of incidence with respect to the sample 100. Compared with the embodiment of FIG. 2 , information on the reflected beam at a specific angle of incidence is selected. There is a similar aspect in terms of securing In this embodiment, the configuration and operation of the light modulator 20 , the spectral image acquisition unit 70 , and the signal processing unit 80 are the same as those of the embodiment of FIG. 2 . Accordingly, the present embodiment can provide the same effects as those of the embodiment of FIG. 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a coaxial spectral imaging ellipsometer. More particularly, a coaxial spectral imaging ellipsometer according to one embodiment of the present invention comprises: a light source; a light modulation unit for polarizing light from the light source and phase-delaying same; an objective lens for emitting, at a sample, the light modulated by the light modulation unit; an incident angle adjustment unit provided between the light source and the objective lens so as to emit the light at a specific position of the rear focal plane of the objective lens; a beam splitter for guiding the reflected beam reflected by the sample so that same changes path after passing through the objective lens; a polarization analyzer for analyzing the polarization of the reflected beam; a spectral image acquisition unit for acquiring a spectral image from the reflected beam; and a signal processing unit for extracting physical information about the sample by signal-processing the image acquired by the spectral image acquisition unit.

Description

동축 분광 이미징 엘립소미터Coaxial Spectral Imaging Ellipsometer
본 발명은 동축 분광 이미징 엘립소미터에 관한 것으로, 대물렌즈의 후초점면(Back Focal Plane)의 성질을 이용하여 동축 광학계로 구성된 하드웨어 구조에서 특정 입사각으로 샘플에 입,반사한 광에 대하여 적은 수의 측정 시퀀스를 통해 분광 엘립소메트리 이미지를 획득하여 샘플의 물리적 특성을 정확하고 간편하게 획득할 수 있도록 한 동축 분광 이미징 엘립소미터에 관한 것이다.The present invention relates to a coaxial spectral imaging ellipsometer, and by using the properties of the back focal plane of an objective lens, a small number of light incident and reflected on a sample at a specific angle of incidence in a hardware structure composed of a coaxial optical system It relates to a coaxial spectral imaging ellipsometer, which enables accurate and simple acquisition of physical properties of a sample by acquiring a spectral ellipsometry image through a measurement sequence of
광학을 이용한 박막 두께 측정 방법 중, 샘플에서의 편광 변화 특성을 토대로, 샘플의 두께를 측정하는 엘립소메트리(Ellipsometry)가 가장 정확하고 정밀한 두께 측정 방법으로 알려져 있다. 엘립소미터는 도1과 같이 경사 입반사 구조로 되어 있으며, 입사단인 편광 생성단(Polarization State Generator, PSG)에서 다양한 편광을 만들어 샘플에 조사하고, 편광 해석단 (Polarization State Analyzer, PSA)에서 반사된 편광을 해석함으로 써, 샘플에서의 편광 변화를 측정하게 된다. 이 과정을 통해, 샘플의 특징인 복소 반사도를 측정하게 되며, 측정된 복소 반사도를 샘플의 두께 및 굴절율을 변화시키며 계산한 이론 복소 반사도(Δ,Ψ)와 비교하여, 오차가 최소가 되는 이론 두께 및 굴절율을 계산하게 된다.Among the thin film thickness measurement methods using optics, ellipsometry, which measures the thickness of a sample based on the polarization change characteristic of the sample, is known as the most accurate and precise thickness measurement method. The ellipsometer has an inclined incident reflection structure as shown in FIG. 1, and the polarization state generator (PSG), which is the incident stage, creates various polarizations and irradiates the sample, and the polarization state analyzer (PSA) By interpreting the reflected polarization, the change in polarization in the sample is measured. Through this process, the complex reflectance characteristic of the sample is measured, and the measured complex reflectivity is compared with the theoretical complex reflectivity (Δ, Ψ) calculated by changing the thickness and refractive index of the sample, and the theoretical thickness with the smallest error And the refractive index is calculated.
이러한 엘립소메트리를 산업 현장에 적용하는데 있어서, 다음 네가지 이슈를 해결해야만 한다. 먼저, 고배율 광학계를 통한 작은 Spot Size 및 대면적 측정 기술이 요구된다. 디스플레이 산업은 꾸준히 고해상도, 대화면을 목표로 발전하고 있으며, 이러한 트렌드에 의해 디스플레이 패턴의 크기는 점점 작아지고 있고, 이에 따라 미세 패턴의 측정 수요도 증가하고 있다. 이러한 측정 요구를 충족시키기 위해서는 기존보다 고배율 광학계를 이용하여 Spot Size 를 줄이면서도, 대면적 측정이 가능한 기술이 필요하다. In applying such ellipsometry to industrial sites, the following four issues must be addressed. First, a small spot size and large area measurement technology through a high magnification optical system are required. The display industry is steadily developing with the goal of high resolution and large screen, and the size of the display pattern is getting smaller due to this trend, and accordingly, the demand for measurement of the fine pattern is also increasing. In order to meet these measurement requirements, a technology capable of measuring a large area while reducing the spot size by using a higher magnification optical system than before is required.
다음으로 고배율 적용을 위한 동축 광학계 구성의 필요성이다. 엘립소메트리의 경사 입반사 구조는 고배율 랜즈가 갖는 짧은 작동거리(Working Distance)와 큰 개구수(Numerical Aperture)로 인해 입사각의 제한, 샘플과 랜즈간의 충돌 위험 등의 문제가 발생하게 된다. 대물렌즈의 배율이 커질수록 Working Distance는 짧아지고 Numerical Aperture는 커지게 되므로, 경사 입반사 구조에서는 10배 이상의 배율을 적용하기에는 어려움이 있으며, 결과적으로 경사 광학계가 아닌, 동축 광학계 구성에서 랜즈의 Numerical Aperture 를 이용하여 빛의 입사각을 만들 수 있는 방법이 필요하다. Next is the necessity of coaxial optical system configuration for high magnification application. Due to the short working distance and large numerical aperture of the high magnification lens, the oblique incident reflection structure of ellipsometry causes problems such as limited incidence angle and the risk of collision between the sample and the lens. As the magnification of the objective lens increases, the working distance becomes shorter and the numerical aperture increases, so it is difficult to apply a magnification of 10 times or more in an inclined incident reflection structure. We need a way to create the angle of incidence of light using
다음으로 분광 신호의 필요성이다. 박막 샘플의 편광 특성은 입사각과 파장에 따른 함수가 되며, 엘립소미터가 측정신호와 이론신호의 비교를 통해 두께를 계산하기 때문에, 측정신호의 변화가 클수록, 두께 측정의 민감도가 커지게 된다. 결국, 분광 신호를 획득하는 것이 엘립소미터 해석에 유리해진다. 마지막으로 최소한의 편광 변조 구동이다. 편광 생성단에서는 기계적으로 편광자(Polarizer)나 위상 지연자(Retarder)를 회전시키거나, 전기적으로 동작하는 위상지연자를 이용하여 측정 시퀀스 마다 변조된 편광을 만들게 된다. 기계적으로 편광변조를 하는 경우, 광학 부품의 미세한 오정렬(Misalign)로 인해 광경로가 달라지는 Beam Drifting 오차가 발생하게 되며, 전기적으로 동작하는 편광변조기의 경우 전도층(Anchoring layer)나 이력현상(Hysterisys) 등으로 인해 위상 오차가 발생하게 된다. 결과적으로, 이를 피하기 위해서는, 최소한의 편광 변조 구동을 통해 이러한 오차를 줄여야 한다. 본 발명은 이러한 이슈를 모두 해결할 수 있는 엘립소메트리를 제안하고자 한다. Next is the need for a spectral signal. The polarization characteristic of the thin film sample is a function of the incident angle and wavelength, and since the ellipsometer calculates the thickness by comparing the measurement signal and the theoretical signal, the greater the change in the measurement signal, the greater the sensitivity of the thickness measurement. Consequently, acquiring the spectral signal is advantageous for ellipsometer analysis. Finally, there is minimal polarization modulation driving. At the polarization generating stage, a polarizer or a phase retarder is mechanically rotated, or a polarization modulated for each measurement sequence is created using an electrically operated phase retarder. In the case of mechanical polarization modulation, a beam drifting error that changes the optical path occurs due to minute misalignment of optical components. This causes a phase error. As a result, in order to avoid this, it is necessary to reduce this error through minimal polarization modulation driving. The present invention intends to propose an ellipsometry capable of solving all of these issues.
본 발명은 상술한 바와 같은 문제점을 개선하기 위해 안출된 것으로, 대물렌즈의 후초점면의 성질을 이용하여 특정 입사각으로 샘플에 들어온 광에 대하여 분광이미지를 획득하여 샘플의 물리적 특성을 정확하고 간편하게 획득할 수 있도록 한 동축 분광 이미징 엘립소미터를 제공함을 그 목적으로 한다. The present invention has been devised to improve the above-described problems, and by using the property of the back focal plane of the objective lens to acquire a spectral image of the light entering the sample at a specific angle of incidence, the physical properties of the sample are accurately and conveniently acquired It is an object of the present invention to provide a coaxial spectral imaging ellipsometer that can do this.
본 발명은 동축 광학계를 이용하고, 광변조부를 별도로 구동시키는 기계적 장치를 구비할 필요가 없으며, 입사각에 따른 분광이미지를 획득하여 샘플의 물리적 특성을 판단할 수 있도록 한데 목적이 있다. The present invention uses a coaxial optical system, does not require a mechanical device for separately driving an optical modulator, and has an object to obtain a spectral image according to an incident angle to determine the physical properties of a sample.
본 발명의 일 측면에 따른 동축 분광 엘립소미터는, 광원; 상기 광원으로부의 광을 편광 및 위상 지연시키는 광변조부; 상기 광변조부에 의해 변조된 광을 샘플에 조사하는 대물렌즈; 상기 광원과 상기 대물렌즈의 사이에 마련되어 상기 광을 상기 대물렌즈의 후초점면의 특정 위치에 조사하도록 하는 입사각조절부; 상기 샘플에 반사된 반사빔이 상기 대물렌즈를 통과한 후 경로를 변경하도록 하는 유도하는 빔스플리터; 상기 반사빔의 편광을 해석하는 편광해석기; 상기 반사빔으로부터 분광이미지를 획득하는 분광이미지획득부; 및 상기 분광이미지획득부에 의해 획득된 이미지를 신호 처리하여 상기 샘플의 물리적 정보를 추출하는 신호처리부;를 포함하는 것을 특징으로 한다. A coaxial spectroscopic ellipsometer according to an aspect of the present invention includes: a light source; a light modulator for polarizing and retarding the light from the light source; an objective lens irradiating the light modulated by the light modulator to the sample; an incident angle adjustment unit provided between the light source and the objective lens to irradiate the light to a specific position of the rear focal plane of the objective lens; a beam splitter for guiding the reflected beam reflected on the sample to change a path after passing through the objective lens; a polarization analyzer that analyzes the polarization of the reflected beam; a spectral image acquisition unit for acquiring a spectral image from the reflected beam; and a signal processing unit for signal processing the image acquired by the spectral image acquisition unit to extract physical information of the sample.
또한, 상기 광변조부는, 상기 광원으로부터의 광을 편광시키는 편광생성기와, 상기 편광생성기에 의해 편광된 광의 위상을 지연시키는 위상지연자를 포함하며, 상기 위상지연자는 멀티 오더 위상지연자(Multi-order Retarder)인 것이 바람직하다. In addition, the light modulator includes a polarization generator for polarizing the light from the light source, and a phase delayer for delaying the phase of the light polarized by the polarization generator, wherein the phase delayer is a multi-order phase delayer. Retarder) is preferred.
또한, 상기 분광이미지획득부는 이미징 간섭계로 이루어지며, 상기 이미징 간섭계는, 상기 반사빔을 분할하는 광분할기; 상기 광분할기로부터 분할되어 나온 일측의 빔을 반사시키는 제1 거울; 상기 광분할기로부터 분할되는 타측의 빔을 반사시키는 제2 거울;을 포함하고, 상기 제1 거울 또는 제2 거울을 이동시켜 경로차이에 의한 간섭이미지를 만들어내며, 상기 간섭이미지를 획득하는 카메라를 포함하는 것이 바람직하다. In addition, the spectral image acquisition unit consists of an imaging interferometer, the imaging interferometer, a light splitter for splitting the reflected beam; a first mirror for reflecting the beam of one side split from the splitter; It includes a second mirror that reflects the beam of the other side split from the splitter, and moves the first mirror or the second mirror to create an interference image due to path difference, and includes a camera for acquiring the interference image It is preferable to do
또한, 상기 분광이미지획득부는, 소정의 중심 파장을 필터링하는 개별필터가 다수 마련된 파장변조필터와 카메라로 이루어지거나, 초분광 카메라로 이루어지거나, 또는 회절격자와 카메라로 이루어지는 것이 바람직하다. In addition, it is preferable that the spectral image acquisition unit includes a wavelength modulation filter and a camera provided with a plurality of individual filters for filtering a predetermined central wavelength, a hyperspectral camera, or a diffraction grating and a camera.
한편, 본 발명의 다른 측면에 따른 동축 분광 엘립소미터는, 광원; 상기 광원으로부의 광을 편광 및 위상 지연시키는 광변조부; 상기 광변조부에 의해 변조된 광을 샘플에 조사하는 대물렌즈; 상기 샘플에 반사된 반사빔이 상기 대물렌즈를 통과한 후 경로를 변경하도록 하는 유도하는 빔스플리터; 상기 반사빔의 편광을 해석하는 편광해석기; 상기 후초점면의 특정 위치의 광을 선별하는 광선택부; 상기 광선택부로부터 선별된 광으로부터 분광이미지를 획득하는 분광이미지획득부; 및 상기 분광이미지획득부에 의해 획득된 이미지를 신호 처리하여 상기 샘플의 물리적 정보를 추출하는 신호처리부;를 포함하는 것을 특징으로 한다. On the other hand, the coaxial spectroscopic ellipsometer according to another aspect of the present invention, a light source; a light modulator for polarizing and retarding the light from the light source; an objective lens irradiating the light modulated by the light modulator to the sample; a beam splitter for guiding the reflected beam reflected on the sample to change a path after passing through the objective lens; a polarization analyzer that analyzes the polarization of the reflected beam; a light selection unit for selecting light at a specific position on the back focal plane; a spectral image acquisition unit for acquiring a spectral image from the light selected by the light selection unit; and a signal processing unit for signal processing the image acquired by the spectral image acquisition unit to extract physical information of the sample.
여기서, 상기 광변조부는, 상기 광원으로부터의 광을 편광시키는 편광생성기와, 상기 편광생성기에 의해 편광된 광의 위상을 지연시키는 위상지연자를 포함하며, 상기 위상지연자는 멀티 오더 위상지연자(Multi-order Retarder)인 것이 바람직하다. Here, the light modulator includes a polarization generator for polarizing the light from the light source, and a phase delayer for delaying the phase of the light polarized by the polarization generator, wherein the phase delayer is a multi-order phase delayer. Retarder) is preferred.
여기서, 상기 빔스플리터를 경유한 상기 반사빔에 대하여 상기 대물렌즈의 후초점면을 후퇴시키는 렌즈시스템을 포함하고, 상기 광선택부는 상기 후퇴된 후초점면의 특정 위치의 광을 선별하는 것이 바람직하다. Here, it is preferable to include a lens system for retreating the rear focal plane of the objective lens with respect to the reflected beam passing through the beam splitter, and the light selector selects light at a specific position on the retreated rear focal plane. .
여기서, 상기 광선택부는, 상기 후퇴된 후초점면의 특정 지점에서 광을 통과시키는 조리개, 또는 상기 특정 지점의 광을 전달하는 광파이버인 것이 바람직하다. Here, it is preferable that the light selector be an diaphragm for passing light at a specific point of the retracted back focal plane, or an optical fiber for transmitting light at the specific point.
여기서, 상기 광선택부는, 상기 대물렌즈의 후초점면에 마련되어 특정 위치의 광을 상기 샘플로 입사시키고, 상기 샘플로부터 반사된 반사빔을 통과시키는 조리개인 것이 바람직하다. Here, it is preferable that the light selector is an aperture provided on the rear focal plane of the objective lens to inject light at a specific position into the sample and pass the reflected beam reflected from the sample.
여기서, 상기 분광이미지획득부는 이미징 간섭계로 이루어지며, 상기 이미징 간섭계는, 상기 반사빔을 분할하는 광분할기; 상기 광분할기로부터 분할되어 나온 일측의 빔을 반사시키는 제1 거울; 상기 광분할기로부터 분할되는 타측의 빔을 반사시키는 제2 거울;을 포함하고, 상기 제1 거울 또는 제2 거울을 이동시켜 경로차이에 의한 간섭이미지를 만들어내며, 상기 간섭이미지를 획득하는 카메라를 포함하는 것이 바람직하다. Here, the spectral image acquisition unit comprises an imaging interferometer, and the imaging interferometer includes: a light splitter for splitting the reflected beam; a first mirror for reflecting the beam of one side split from the splitter; It includes a second mirror that reflects the beam of the other side split from the splitter, and moves the first mirror or the second mirror to create an interference image due to path difference, and includes a camera for acquiring the interference image It is preferable to do
여기서, 상기 분광이미지획득부는, 소정의 중심 파장을 필터링하는 개별필터가 다수 마련된 파장변조필터와 카메라로 이루어지거나, 초분광 카메라로 이루어지거나, 또는 회절격자와 카메라로 이루어지는 것이 바람직하다. Here, it is preferable that the spectral image acquisition unit comprises a wavelength modulation filter and a camera provided with a plurality of individual filters for filtering a predetermined central wavelength, a hyperspectral camera, or a diffraction grating and a camera.
본 발명에 따른 동축 분광 이미지 엘립소미터는, 대물렌즈의 후초점면의 성질을 이용하여 특정 입사각으로 샘플에 들어온 광에 대하여 분광이미지를 획득하여 샘플의 물리적 특성을 정확하고 간편하며 신속하게 획득할 수 있도록 한다. 특히, 본 발명은 동축 광학계를 이용하고, 광변조부를 별도로 구동시키는 기계적 장치를 구비할 필요가 없으며, 입사각에 따른 분광이미지를 획득하여 샘플의 물리적 특성을 신속 정확하게 획득하는 효과를 제공한다. The coaxial spectral image ellipsometer according to the present invention acquires a spectral image with respect to the light that enters the sample at a specific angle of incidence by using the property of the back focal plane of the objective lens to accurately, simply and quickly acquire the physical properties of the sample. make it possible In particular, the present invention uses a coaxial optical system, does not require a mechanical device for separately driving the light modulator, and provides an effect of quickly and accurately acquiring the physical properties of a sample by acquiring a spectral image according to an incident angle.
도1은 종래 엘립소미터의 개념도, 1 is a conceptual diagram of a conventional ellipsometer;
도2는 본 발명의 일 측면에 따른 엘립소미터를 도시한 도면, 2 is a view showing an ellipsometer according to an aspect of the present invention;
도3은 도2의 다른 실시예를 도시한 도면, Figure 3 is a view showing another embodiment of Figure 2;
도4는 대물렌즈의 후초점면의 작용을 보여주는 도면, 4 is a view showing the action of the rear focal plane of the objective lens;
도5은 본 발명에 다른 측면에 따른 엘립소미터를 도시한 도면,5 is a view showing an ellipsometer according to another aspect of the present invention;
도6은 도5에서 렌즈시스템의 다른 예를 도시한 도면,Figure 6 is a view showing another example of the lens system in Figure 5;
도7은 도6에서 광선택부의 다른 예를 도시한 도면, 7 is a view showing another example of the light selection unit in FIG. 6;
도8은 대물렌즈의 후초점면에 배치되는 조리개의 일례를 도시한 것이다.Fig. 8 shows an example of an diaphragm disposed on the rear focal plane of the objective lens.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.Embodiments of the present disclosure are exemplified for the purpose of explaining the technical spirit of the present disclosure. The scope of the rights according to the present disclosure is not limited to the embodiments presented below or specific descriptions of these embodiments.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.All technical and scientific terms used in this disclosure have the meanings commonly understood by one of ordinary skill in the art to which this disclosure belongs, unless otherwise defined. All terms used in the present disclosure are selected for the purpose of more clearly describing the present disclosure and not to limit the scope of the present disclosure.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.As used in this disclosure, expressions such as "comprising", "including", "having", etc. are open-ended terms connoting the possibility of including other embodiments, unless otherwise stated in the phrase or sentence in which the expression is included. (open-ended terms).
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.Expressions in the singular described in this disclosure may include plural meanings unless otherwise stated, and the same applies to expressions in the singular in the claims.
이하, 첨부한 도면들을 참조하여, 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.Hereinafter, embodiments will be described with reference to the accompanying drawings. In the accompanying drawings, identical or corresponding components are assigned the same reference numerals. In addition, in the description of the embodiments below, overlapping description of the same or corresponding components may be omitted. However, even if descriptions regarding components are omitted, it is not intended that such components are not included in any embodiment.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도2는 본 발명의 일 측면에 따른 엘립소미터를 도시한 도면이고, 도3은 도2의 다른 실시예를 도시한 도면이다. 도4는 대물렌즈의 후초점면의 작용을 보여주는 도면이다. 도5은 본 발명에 다른 측면에 따른 엘립소미터를 도시한 도면이고, 도6은 도5에서 렌즈시스템의 다른 예를 도시한 도면이며, 도7은 도6에서 광선택부의 다른 예를 도시한 도면이다. FIG. 2 is a view showing an ellipsometer according to an aspect of the present invention, and FIG. 3 is a view showing another embodiment of FIG. 4 is a view showing the action of the rear focal plane of the objective lens. 5 is a view showing an ellipsometer according to another aspect of the present invention, FIG. 6 is a view showing another example of the lens system in FIG. 5, and FIG. 7 is another example of the optical selector in FIG. It is a drawing.
도2에 도시된 바와 같이, 본 발명의 일 실시예 따른 동축 분광 이미징 엘립소미터는, 광원(10), 광변조부(20), 대물렌즈(30), 입사각조절부(40), 빔스플리터(50), 편광해석기(60), 분광이미지획득부(70), 및 신호처리부(80)를 포함한다. As shown in FIG. 2, the coaxial spectral imaging ellipsometer according to an embodiment of the present invention includes a light source 10, a light modulator 20, an objective lens 30, an incident angle control unit 40, and a beam splitter. 50 , a polarization analyzer 60 , a spectral image acquisition unit 70 , and a signal processing unit 80 .
상기 광원(10)은 광을 방출하기 위해 마련된다. 상기 광원(10)은 백색광원(10)이 사용된다. 본 실시예에 있어서, 상기 광원(10)으로는 다수 파장 범위(Broad-band spectrum light source)를 사용한다. 물론, 단일 파장의 광원(10)이 사용될 수도 있다. 상기 광원(10)으로는 텡스텐-할로겐 램프, Xe 램프 등 다양한 소스가 사용될 수 있다. The light source 10 is provided to emit light. The light source 10 is a white light source 10 is used. In this embodiment, a broad-band spectrum light source is used as the light source 10 . Of course, the light source 10 of a single wavelength may be used. As the light source 10 , various sources such as a tungsten-halogen lamp and a Xe lamp may be used.
상기 광변조부(20)는, 상기 광원(10)으로부터의 광을 편광 및 위상 지연시키기 위해서 마련된다. 본 실시예에 따르면, 상기 광변조부(20)는, 상기 광원(10)으로부터 광을 편광시키는 편광생성기(21)와, 상기 편광생성기(21)에 의해 광의 위상을 지연시키는 위상지연자(22)를 포함한다.The light modulator 20 is provided to polarize and phase retard the light from the light source 10 . According to the present embodiment, the light modulator 20 includes a polarization generator 21 that polarizes light from the light source 10 and a phase retarder 22 that delays the phase of light by the polarization generator 21 . ) is included.
상기 편광생성기(21)는, 상기 광원(10)이 상기 편광생성기(21)의 후단에 마련되는 위상지연자(22)를 통과하기 전에 특정 성분을 갖는 광으로 편광시킨다. 상기 광원(10)은 상기 편광생성기(21)에 의해 선형 편광된다. 위상 지연을 이용하여 광의 성분을 고주파로 변조하기 위해서 편광된 광이 필요하므로, 상기 편광생성기(21)에 의해 상기 광원(10)을 편광시킨다. The polarization generator 21 polarizes the light source 10 into light having a specific component before passing through the phase retarder 22 provided at the rear end of the polarization generator 21 . The light source 10 is linearly polarized by the polarization generator 21 . The light source 10 is polarized by the polarization generator 21 because polarized light is required to modulate a component of the light to a high frequency using a phase delay.
상기 위상지연자(22)는, 상기 편광생성기(21)에 의해 편광된 광의 위상을 지연시키기 위해서 마련된다. 본 실시예에 따르면, 상기 위상지연자(22)는 멀티 오더 리타더(Multi-order retarder)이다. 상기 멀티 오더 리타더는 p파와 s파가 서로에 대하여 한 파장 이상의 위상 지연을 만들어내는 위상지연자(22)이다. The phase retarder 22 is provided to delay the phase of the light polarized by the polarization generator 21 . According to this embodiment, the phase retarder 22 is a multi-order retarder. The multi-order retarder is a phase retarder 22 in which the p-wave and the s-wave create a phase delay of one wavelength or more with respect to each other.
상기 편광생성기(21)와 위상지연자(22)를 갖는 상기 광변조부(20)는, 광의 변조를 위해서 별도의 구동장치 없이 광을 편광시키고, 1 파장 이상의 위상 지연을 만들어냄으로써 파장에 따른 샘플(100)의 Ψ(P파와 S파의 진폭비) 및 Δ(P파와 S파의 위상차)와 관련된 신호가 파장 도메인에서 고주파 신호로 변조되는 역할을 수행한다. The light modulator 20 having the polarization generator 21 and the phase delay unit 22 polarizes light without a separate driving device for light modulation, and generates a phase delay of 1 wavelength or more, thereby generating a sample according to a wavelength. A signal related to Ψ (amplitude ratio of P wave and S wave) and Δ (phase difference between P wave and S wave) of (100) plays a role of being modulated into a high frequency signal in the wavelength domain.
상기 대물렌즈(30)는 상기 광변조부(20)에 의해 변조된 광을 샘플(100)에 조사한다. 상기 대물렌즈(30)를 거친 후 상기 샘플(100)에 조사된 광은, 상기 샘플(100)로부터 반사되어 다시 대물렌즈(30)를 거친다. The objective lens 30 irradiates the light modulated by the light modulator 20 to the sample 100 . After passing through the objective lens 30 , the light irradiated to the sample 100 is reflected from the sample 100 and passes through the objective lens 30 again.
상기 입사각조절부(40)는 상기 광원(10)과 상기 대물렌즈(30)의 사이에 마련되어 상기 광을 대물렌즈(30)의 후초점면(BP)의 특정 위치에 조사한다. 상기 입사각조절부(40)는 상기 후초점면(BP)에서 선별된 특정 위치에만 광원(10)이 조사되도록 시준(collimated beam)과 렌즈를 사용하여 구현되거나, 공간 광 변조기(SLM, 빔프로젝터 등)을 사용하여 상기 후초점면(BP)의 특정 위치에 광을 조사하도록 할 수 있다. The incident angle control unit 40 is provided between the light source 10 and the objective lens 30 to irradiate the light to a specific position of the rear focal plane BP of the objective lens 30 . The incident angle adjusting unit 40 is implemented using a collimated beam and a lens so that the light source 10 is irradiated only to a specific position selected on the back focal plane BP, or a spatial light modulator (SLM, beam projector, etc.) ) may be used to irradiate light to a specific position of the back focal plane BP.
도4에 도시된 바와 같이, 상기 후초점면(BP)의 특정 위치에 조사된 광은 대물렌즈(30)를 거쳐서 상기 샘플(100)에 대하여 동일한 입사각으로 진입한다. 따라서, 상기 입사각조절부(40)는, 대물렌즈(30)의 후초점면(BP)의 특정 위치에 광이 조사되도록 함으로써 샘플(100)에 특정한 입사각으로 광을 조사하는 작용을 한다. 도2에 도시된 바와 같이, 상기 입사각조절부(40)는 광변조부(20)와 빔스플리터(50) 사이에 마련된다. 또한, 상기 입사각조절부(40)는, 도3에 도시된 바와 같이, 광원(10)과 광변조부(20)의 사이에 마련될 수 있다. As shown in FIG. 4 , the light irradiated to a specific position of the back focal plane BP passes through the objective lens 30 and enters the sample 100 at the same incident angle. Accordingly, the incident angle adjusting unit 40 irradiates light to the sample 100 at a specific angle of incidence by allowing the light to be irradiated to a specific position of the back focal plane BP of the objective lens 30 . As shown in FIG. 2 , the incident angle adjusting unit 40 is provided between the light modulating unit 20 and the beam splitter 50 . In addition, as shown in FIG. 3 , the incident angle adjusting unit 40 may be provided between the light source 10 and the light modulating unit 20 .
상기 빔스플리터(50)는 상기 샘플(100)에 반사된 반사빔이 상기 대물렌즈(30)를 통과한 후 경로를 변경하도록 유도한다. 본 실시예에 따르면, 상기 빔스플리터(50)는 상기 대물렌즈(30)의 전단에 마련된다. 상기 광원(10)은 상기 빔스플리터(50)와 상기 대물렌즈(30)를 경유하여 샘플(100)로 입사하고, 상기 샘플(100)로부터 반사된 반사빔은 대물렌즈(30) 및 상기 빔스플리터(50)를 거쳐 분광이미지획득부(70) 측으로 진행한다. The beam splitter 50 induces the reflected beam reflected by the sample 100 to change a path after passing through the objective lens 30 . According to this embodiment, the beam splitter 50 is provided at the front end of the objective lens 30 . The light source 10 is incident on the sample 100 through the beam splitter 50 and the objective lens 30, and the reflected beam reflected from the sample 100 is the objective lens 30 and the beam splitter. It proceeds to the spectral image acquisition unit 70 through (50).
상기 편광해석기(60)는, 상기 후초점면(BP)을 통과한 반사빔의 편광을 해석하기 위해서 마련된다. 본 실시예에 따르면, 상기 반사빔은 상기 빔스플리터(50)를 통과한 후 편광해석기(60)로 들어간다. 상기 편광해석기(60)는 실질적으로 편광생성기(21)와 동일한 편광기를 사용할 수 있으며, 그 기능면에서 상기 편광생성기(21)는 편광을 만들어내는 작용을 하고, 상기 편광해석기(60)는 편광을 해석하는 작용을 한다. The polarization analyzer 60 is provided to analyze the polarization of the reflected beam passing through the back focal plane BP. According to this embodiment, the reflected beam enters the polarization analyzer 60 after passing through the beam splitter 50 . The polarization analyzer 60 can use substantially the same polarizer as the polarization generator 21, and in terms of its function, the polarization generator 21 functions to generate polarized light, and the polarization analyzer 60 converts the polarized light. interprets it.
상기 분광이미지획득부(70)는, 상기 반사빔으로부터 분광이미지를 획득하기 위해서 마련된다. 본 실시예에 따르면, 상기 반사빔은 상기 편광해석기(60)를 통과한 후 분광이지획득부(70)로 나아간다. 물론, 상기 분광이미지획득부(70)는 상기 편광해석기(60)의 기능이 통합된 형태로 구현될 수 있다. 예컨대, 상기 분광이미지획득부(70)는 편광카메라(Polarization Camera)를 이용하여 카메라 각 픽셀마다 다른 편광 상태를 해석할 수 있도록 구현될 수 있다. The spectral image acquisition unit 70 is provided to acquire a spectral image from the reflected beam. According to this embodiment, the reflected beam passes through the polarization analyzer 60 and then proceeds to the spectral easy acquisition unit 70 . Of course, the spectral image acquisition unit 70 may be implemented in a form in which the functions of the polarization analyzer 60 are integrated. For example, the spectral image acquisition unit 70 may be implemented to analyze a different polarization state for each pixel of the camera using a polarization camera.
상기 후초점면(BP)의 특정 위치로 조사된 광은 동일한 입사각으로 샘플(100)로 진행하고, 샘플(100)로부터 반사되어 다시 후초점면(BP)에 모이게 된다. 상기 분광이미지획득부(70)는, 상기 후초점면(BP)을 이미징하여 파장별 입사각에 대한 데이터를 획득한다. 상기 분광이미지획득부(70)의 전단에는 상기 편광해석기(60)의 전단 또는 후단측에 렌즈가 마련되어 상기 분광이미지획득부(70)가 상기 후초점면(BP)의 이미지를 볼 수 있도록 한다. The light irradiated to a specific position of the back focal plane BP travels to the sample 100 at the same incident angle, is reflected from the sample 100, and is again collected on the back focal plane BP. The spectral image acquisition unit 70 acquires data on the incident angle for each wavelength by imaging the back focal plane BP. A lens is provided at the front or rear end of the polarization analyzer 60 at the front end of the spectral image obtaining unit 70 so that the spectral image obtaining unit 70 can see the image of the rear focal plane BP.
본 실시예에 따르면, 상기 분광이미지획득부(70)는, 이미징 간섭계로 이루어진다. 구체적으로, 상기 이미징 간섭계는, 광분할기(71), 제1 거울(72), 제2 거울(73), 및 카메라(74)를 포함한다. According to the present embodiment, the spectral image acquisition unit 70 is composed of an imaging interferometer. Specifically, the imaging interferometer includes a light splitter 71 , a first mirror 72 , a second mirror 73 , and a camera 74 .
상기 광분할기(71)는 반사빔을 분할한다. 상기 제1 거울(72)은 상기 광분할기(71)로부터 분할되어 나온 일측의 빔을 반사시킨다. 상기 제2 거울(73)은 상기 광분할기(71)로부터 분할되어 나온 타측의 타측의 빔을 반사시킨다. 상기 제1 거울(72) 또는 상기 제2 거울(73)을 이동시켜서 상기 광분할기(71)를 통하여 분할된 빔의 경로차이를 발생시킨다. 상기 제1 거울(72) 및 제2 거울(73)에 반사된 빔은 다시 광분할기(71)로 나아가 간섭이미지를 형성한다. 상기 카메라(74)는 상기 간섭이미지를 획득한다. 본 실시예와 같이, 간섭계를 이용하는 경우, 반사광 신호와 간섭광 신호 간의 푸리에 관계에 의해 측정에 필요한 연산 단계를 줄일 수 있는 효과가 있다. The light splitter 71 splits the reflected beam. The first mirror 72 reflects one side of the beam split from the light splitter 71 . The second mirror 73 reflects the other side of the beam split from the light splitter 71 . By moving the first mirror 72 or the second mirror 73, a path difference of the beam split through the light splitter 71 is generated. The beams reflected by the first mirror 72 and the second mirror 73 go back to the light splitter 71 to form an interference image. The camera 74 acquires the interference image. As in the present embodiment, when an interferometer is used, there is an effect that the calculation steps required for measurement can be reduced due to the Fourier relationship between the reflected light signal and the interfering light signal.
본 실시예에 따르면, 상기 분광이미지획득부(70)는 이미징 간섭계를 이동하였으나, 다수의 파장변조필터 또는 음향광학변조필터(AOTF:Acousto-optic tunable filter)와 모노카메라를 이용하여 구현될 수 있다. 이러한 경우, 하드웨어 구성에 있어서 편의성이 있으며, 간단한 구동으로 분광 이미지를 획득할 수 있다. According to this embodiment, the spectral image acquisition unit 70 has moved the imaging interferometer, but it can be implemented using a plurality of wavelength modulation filters or an acousto-optic tunable filter (AOTF) and a mono camera. . In this case, there is convenience in hardware configuration, and a spectral image can be acquired by simple driving.
상기 다수의 파장변조필터는, 소정의 중심 파장 대역을 필터링하는 개별 필터가 다수개 원주 방향으로 마련된 것으로, 회전 이동하여 다파장 광 중에서 해당 필터에 해당하는 파장의 광을 투과하기 위한 것이다. 상기 분광이미지획득부(70)는 상기 다수의 파장변조필터와 이를 통과한 광의 이미지를 획득하는 카메라로 구현될 수 있다. 상기 다수의 파장변조필터는, 상기 광원(10)과 상기 빔스플리터(50) 사이에 배치되거나, 광경로를 기준으로 상기 빔스플리터(50)의 후단에 배치될 수 있다. In the plurality of wavelength modulation filters, a plurality of individual filters for filtering a predetermined central wavelength band are provided in the circumferential direction, and are rotated to transmit light of a wavelength corresponding to the filter among multi-wavelength light. The spectral image acquisition unit 70 may be implemented as a camera that acquires images of the plurality of wavelength modulation filters and light passing therethrough. The plurality of wavelength modulation filters may be disposed between the light source 10 and the beam splitter 50 or disposed at a rear end of the beam splitter 50 based on an optical path.
상기 음향광학변조필터는, 음향 또는 전기 신호를 통한 가변필터나 선형가변필터(Linear variable filter)와 같이 파장 변조가 가능한 파장변조기를 사용하여 다파장 광 중 해당 필터에 해당하는 광을 필터링한다. 상기 분광이미지획득부(70)는, 상기 음향광학변조필터와 이를 통과한 광의 이미지를 획득하는 카메라로 구현될 수 있다. 상기 음향광학변조필터는, 상기 광원(10)과 상기 빔스플리터(50) 사이에 배치되거나, 광경로를 기준으로 상기 빔스플리터(50)의 후단에 배치될 수 있다. The acousto-optic modulation filter uses a wavelength modulator capable of wavelength modulation, such as a variable filter or a linear variable filter through an acoustic or electrical signal, to filter the light corresponding to the filter among multi-wavelength light. The spectral image acquisition unit 70 may be implemented as a camera that acquires an image of the acousto-optic modulation filter and the light passing therethrough. The acousto-optic modulation filter may be disposed between the light source 10 and the beam splitter 50 or disposed at a rear end of the beam splitter 50 based on an optical path.
또한, 상기 분광이미지획득부(70)는 회절 격자(Difrraction Grating)을 이용한 이미징 분광계를 통해 구현되거나, 초분광카메라(Hyper Spectral Camera or Multi-Channel Spetral Camera)를 사용할 수 있다. In addition, the spectral image acquisition unit 70 may be implemented through an imaging spectrometer using a diffraction grating, or a hyperspectral camera or a multi-channel spectral camera may be used.
상기 회절 격자는, 상기 반사빔이 투과(투과형 회절격자)하거나 반사(반사형 회절격자)하면서 상이 파장마다 나뉘게 되며, 이 성질을 이용하여 상기 회절 격자에서 투과되거나 반사된 광을 카메라로 획득하여 분광 이미지를 획득할 수 있다. 따라서, 상기 분광이미지획득부(70)는 투과형 회절격자와 카메라, 또는 분사형 회절격자와 카메라로 구현될 수 있다. In the diffraction grating, a phase is divided for each wavelength while the reflected beam is transmitted (transmissive diffraction grating) or reflected (reflective grating). image can be obtained. Accordingly, the spectral image acquisition unit 70 may be implemented as a transmission-type diffraction grating and a camera, or a spray-type diffraction grating and a camera.
상기 초분광카메라는, 일반적인 모노카메라 또는 RGB 칼라카메라와 달리, 하나의 화소를 구성하는 이미지 픽셀이 다양한 파장을 나눠서 받을 수 있으므로, 상기 분광이지지획득부(70)는 상기 초분광카메라에 의해 구현될 수 있다. In the hyperspectral camera, unlike a general mono camera or RGB color camera, since the image pixels constituting one pixel can receive various wavelengths by dividing, the spectral easy support acquisition unit 70 is implemented by the hyperspectral camera can be
상기 신호처리부(80)는, 상기 분광이미지획득부(70)에 의해 획득된 이미지를 신호 처리하여 상기 샘플(100)의 물리적 정보를 추출한다. 구체적으로, 상기 분광이미지획득부(70)에 의해 획득된 샘플(100)의 이미지에 대한 각 픽셀 별 신호는, 상기 신호처리부(80)에 의해 푸리에 변환하여 저주파 신호와 고주파 신호를 분리하여 획득되고, 상기 저주파 신호 및 고주파 신호 각각에 대한 역 푸리에 변환을 수행하여, 입사 광량과 샘플(100)의 반사도 등에 대한 물리적 신호를 실시간으로 추출할 수 있다. The signal processing unit 80 extracts the physical information of the sample 100 by signal processing the image acquired by the spectral image acquisition unit 70 . Specifically, the signal for each pixel of the image of the sample 100 obtained by the spectral image acquisition unit 70 is obtained by performing Fourier transform by the signal processing unit 80 to separate the low-frequency signal and the high-frequency signal, , by performing an inverse Fourier transform on each of the low-frequency signal and the high-frequency signal, it is possible to extract physical signals for the amount of incident light and reflectivity of the sample 100 in real time.
이하, 상기 구성에 따른 동축 분광 이미징 엘립소미터의 작용 내지 효과를 구체적으로 설명한다. Hereinafter, the operation or effect of the coaxial spectroscopic imaging ellipsometer according to the above configuration will be described in detail.
도2에 도시된 바와 같이, 상기 광원(10)에서 출발한 빛은 광변조부(20)의 편광생성기(21)를 거치면서 편광되고, 위상지연자(22)를 거치면서 P파와 S파의 위상 지연이 발생한다. 상기 변조된 광은 상기 입사각조절부(40)에 의해 대물렌즈(30)의 후초점면(BP)의 특정 위치로 조사된다. 상기 후초점면(BP)의 특정 위치에서 샘플(100)로 입사하는 광은 특정한 입사각으로 입사하게 되므로, 샘플(100)에서 반사되는 반사빔은 특정 입사각으로 파장이 입사할 때 샘플(100)의 물리적 특성이 반영된 상태가 된다. 상기 반사빔은 빔스플리터(50)와 편광해석기(60)를 거쳐 분광이미지획득부(70)로 들어간다. As shown in FIG. 2 , the light from the light source 10 is polarized while passing through the polarization generator 21 of the light modulator 20 , and the P wave and S wave passing through the phase delay unit 22 . A phase delay occurs. The modulated light is irradiated to a specific position of the rear focal plane BP of the objective lens 30 by the incident angle adjusting unit 40 . Since the light incident on the sample 100 at a specific position of the back focal plane BP is incident at a specific angle of incidence, the reflected beam reflected from the sample 100 is the sample 100 when the wavelength is incident at a specific angle of incidence. Physical properties are reflected. The reflected beam enters the spectral image acquisition unit 70 through the beam splitter 50 and the polarization analyzer 60 .
상기 분광이미지획득부(70)는 파장에 대한 특정 입사각에 따른 샘플(100)의 물리적 정보가 담긴 이미지를 획득하고, 신호처리부(80)는 상기 분광이미지획득부(70)가 획득된 이미지에 실린 신호에 대하여 푸리에 변환하여 반사빔에 대한 저주파 및 고주파 신호를 분리하여 획득하고, 이들 각각에 대하여 역 푸리에 변환하여 입사각에 대한 정보 및 샘플(100)의 물리적 정보를 측정할 수 있도록 한다. The spectral image acquisition unit 70 acquires an image containing physical information of the sample 100 according to a specific incident angle with respect to the wavelength, and the signal processing unit 80 includes the spectral image acquisition unit 70 loaded on the acquired image. By performing Fourier transform on the signal, the low frequency and high frequency signals for the reflected beam are separated and obtained, and the inverse Fourier transform is performed on each of these to measure information about the incident angle and physical information of the sample 100 .
예를 들어, 광변조부(20)의 편광생성기(21)를 0°로 정렬하고, 위상지연자(22)를 45°로 배치한 경우, 입사한 파장(σ=1/λ)에 따른 입사광량 I0(σ)에 대한 반사광 I(σ)는 뮬러 행렬과 스토크스 벡터의 연삭식으로 표현되며, 이를 정리해서 표현하면 다음과 같다. For example, when the polarization generator 21 of the light modulator 20 is aligned at 0° and the phase retarder 22 is disposed at 45°, incident according to the incident wavelength (σ=1/λ) The reflected light I(σ) with respect to the amount of light I 0 (σ) is expressed by the grinding equation of the Mueller matrix and the Stokes vector, and it is summarized as follows.
[수학식1][Equation 1]
I(σ)= {I0(σ)/4}{1- cos(2Ψ)cos(Φ(σ)) + sin(2Ψ)sin(Δ)sin(Φ(σ))}I(σ)= {I 0 (σ)/4}{1- cos(2Ψ)cos(Φ(σ)) + sin(2Ψ)sin(Δ)sin(Φ(σ))}
여기서, Ψ는 P파와 S파의 진폭비, Δ는 P파와 S파의 위상차를 나타내고, Here, Ψ is the amplitude ratio of the P wave and the S wave, Δ is the phase difference between the P wave and the S wave,
Φ(σ) = 2πσΔn d 이고, d는 복굴절 위상지연자(22)(Birefringence Retarder)의 두께이며, Δn은 위상지연자(22)의 복굴절률이다. Φ(σ) = 2πσΔn d , d is the thickness of the birefringence retarder 22 , and Δn is the birefringence of the retarder 22 .
상기 수학식1은 다음과 같이 간단히 수학식 2로 나타낼 수 있다. Equation 1 can be simply expressed as Equation 2 as follows.
[수학식2][Equation 2]
I(σ) = a0 + a1 cos(Φ(σ)) + b1 sin(Φ(σ))I(σ) = a 0 + a 1 cos(Φ(σ)) + b 1 sin(Φ(σ))
멀티 오더 리타더의 리타던스(retardance)를Multi-order retarder retardance
Figure PCTKR2020019478-appb-I000001
과 같이 표현하고, 상기 수학식 2의 I(σ)를 푸리에 변환(
Figure PCTKR2020019478-appb-I000002
)하면 다음과 같이 표현된다.
Figure PCTKR2020019478-appb-I000001
Expressed as, I(σ) of Equation 2 is Fourier transform (
Figure PCTKR2020019478-appb-I000002
) is expressed as:
Figure PCTKR2020019478-appb-I000003
Figure PCTKR2020019478-appb-I000003
결과적으로, 신호처리부(80)는, 반사광 I(σ)의 푸리에 변환 후, DC 성분인 A0(h)와, L 만큼 이동된(shift) 신호의 실수부(A1(h-L))과 허수부(B1(h-L))를 각각 분리하여 신호를 획득할 수 있으며, 이 각각에 대한 역 푸리에 변환을 통해 입사광 I0(σ)에 정보와, cos(2Ψ)과 sin(2Ψ)sin(Δ)의 값으로부터 샘플(100)에 대한 물리적 정보(두께, 굴절률 등)를 산출할 수 있게 된다. As a result, the signal processing unit 80, after the Fourier transform of the reflected light I(σ), includes the DC component A 0 (h), the real part of the signal shifted by L (A 1 (hL)), and the imaginary number. A signal can be obtained by separating each part (B 1 (hL)), and through the inverse Fourier transform for each , information on the incident light I 0 (σ), cos(2Ψ) and sin(2Ψ)sin(Δ) ), it is possible to calculate physical information (thickness, refractive index, etc.) about the sample 100 .
이처럼, 본 발명 실시예에 따른 동축 분광 이미징 엘립소미터는, 대물렌즈(30)의 후초점면(BP)의 특정 위치에 광을 조사하여 특정한 입사각으로 샘플(100)에 입사할 수 있도록 함으로써, 광학계의 구조를 동축 광학계로 구성할 수 있으며, 이러한 인하여 작동 거리가 짧은 고배율의 대물렌즈(30)를 이용하여 공간 분해능을 향상시킬 수 있다.As such, the coaxial spectral imaging ellipsometer according to the embodiment of the present invention irradiates light to a specific position of the back focal plane BP of the objective lens 30 to be incident on the sample 100 at a specific angle of incidence, The optical system may have a coaxial optical system, and for this reason, the spatial resolution may be improved by using the high magnification objective lens 30 having a short working distance.
또한, 본 발명 실시예에 따르면, 위상지연자(22)로서 멀티 오더 리타더를 사용하여 샘플(100)의 파장에 따른 Ψ,Δ 신호를 파장 도메인에서 고주파 신호로 변조하도록 하므로, 별도의 기계적 또는 전기적 구동에 의해 위상 지연을 발생시킬 때의 단점을 극복한다. In addition, according to the embodiment of the present invention, a multi-order retarder is used as the phase delay 22 to modulate the Ψ, Δ signal according to the wavelength of the sample 100 into a high frequency signal in the wavelength domain, so that a separate mechanical or Overcoming the disadvantage of generating a phase delay by electrical drive.
구체적으로, 위상지연자(22)를 기계적으로 회전시켜서 편광 변조를 수행하는 경우, 광학 부품의 미세한 오정렬(misalign)으로 인하여 광 경로가 달라져 오차가 발행할 수 있다. 또한, 광학 부품에 기계적 움직임을 수반하는 경우, 측정 장비의 구동 내지 안정화를 위해서 상당한 시간이 소요되는데, 본 발명은 기계적 구동 내지 안정화 시간을 단축하여 측정의 신속화를 도모할 수 있다. Specifically, when the phase delay element 22 is mechanically rotated to perform polarization modulation, an error may occur due to a change in the optical path due to minute misalignment of the optical component. In addition, when the optical component is accompanied by a mechanical movement, a considerable time is required for driving or stabilizing the measuring device, and the present invention can shorten the mechanical driving or stabilization time to speed up the measurement.
전기적인 편광 변조의 경우, 액정(Liquid Crystal)의 복원력을 위한 전도층(Anchoring Layer)이 형성되어 실제 편광 위상 지연 양에 오차가 발생하고, 이로 인해 광 경로가 바뀌어 광량이 감소하거나, 의도된 양 만큼의 위상 지연이 발생되지 않을 수 있다. 본 발명 실시예는 전기적 편광 변조의 단점을 수반하지 않는다. In the case of electrical polarization modulation, an anchoring layer is formed for the restoring force of liquid crystal, and an error occurs in the actual polarization phase delay amount, which results in a change in the optical path to reduce the amount of light, or the intended amount. The phase delay may not occur as much as that. Embodiments of the present invention do not suffer from the disadvantages of electrical polarization modulation.
또한, 본 발명 실시예에 따르면, 분광이미지획득부(70)에 의해 대면적의 샘플(100) 패턴을 이미징할 수 있으므로 측정시간을 단축하고, 편의성이 향상된다. 최근 반도체 분야에서의 샘플(100)은 고집적화되고 패턴이 더욱 복합해지고 있으므로, 이미징 방식에 의해 공간 분해능을 높여 각 픽셀별로 신호 해석이 가능한 효과를 제공한다. In addition, according to the embodiment of the present invention, since the pattern of the sample 100 of a large area can be imaged by the spectral image acquisition unit 70, the measurement time is shortened and the convenience is improved. Recently, since the sample 100 in the semiconductor field is highly integrated and the patterns are becoming more complex, the spatial resolution is increased by the imaging method to provide the effect that a signal can be analyzed for each pixel.
또한, 본 발명 실시예에 따르면, 상기 분광이미지획득부(70)가 획득한 이미징은 상기 신호처리부(80)에 의해 처리되어 분석된다. 특히 상기 신호처리부(80)는, 다파장 광원(10)을 분석할 수 있으므로 샘플(100)의 물리적 정보에 대하여 정확성 및 정밀성을 향상시킬 수 있다. 좀 더 구체적으로, 엘립소미터는 측정 편광 신호(Ψm, Δm)를 샘플(100) 특성에 맞는 반사도 이론을 통해 계산된 이론 신호(Ψt, Δt)와 비교하여 비선형 피팅을 통해 시료에서 원하는 물리적 정보(박막의 두께, 굴절율, 샘플(100)의 형상 등)을 계산하게 된다. 상기 측정 편광 신호는 빛의 파장, 입사각 등의 함수이기 때문에, 비선형 피팅 과정에서 다파장 광원(10)을 분석하는 것이 더욱 효과적이며, 본 실시예에 따른 동축 분광 이미징 엘립소미터는 다파장 광원(10)의 분석을 가능하게 한다.In addition, according to the embodiment of the present invention, the image acquired by the spectral image acquisition unit 70 is processed and analyzed by the signal processing unit 80 . In particular, since the signal processing unit 80 can analyze the multi-wavelength light source 10 , the accuracy and precision of the physical information of the sample 100 can be improved. More specifically, the ellipsometer compares the measured polarization signal (Ψ m , Δ m ) with the theoretical signal ( Ψ t , Δ t ) calculated through the reflectance theory fitted to the sample (100) properties and uses a nonlinear fitting to compare the sample desired physical information (thickness of the thin film, refractive index, shape of the sample 100, etc.) is calculated. Since the measured polarization signal is a function of the wavelength of light, the angle of incidence, etc., it is more effective to analyze the multi-wavelength light source 10 in the nonlinear fitting process, and the coaxial spectral imaging ellipsometer according to this embodiment is a multi-wavelength light source ( 10) to enable the analysis.
한편, 도5에 도시된 바와 같이 본 발명의 다른 측면에 따른 동축 분광 이미징 엘립소미터는, 광원(10), 상기 광원(10)으로부의 광을 편광 및 위상 지연시키는 광변조부(20), 상기 광변조부(20)에 의해 변조된 광을 샘플(100)에 조사하는 대물렌즈(30), 상기 광변조부(20)와 상기 대물렌즈(30) 사이에 마련되어, 상기 샘플(100)에 반사된 반사빔이 상기 대물렌즈(30)를 통과한 후 경로를 변경하도록 하는 유도하는 빔스플리터(50), 상기 빔스플리터(50)를 경유한 상기 반사빔의 편광을 해석하는 편광해석기(60), 상기 빔스플리터(50)를 경유한 상기 반사빔에 대하여, 상기 대물렌즈(30)의 후초점면을 후퇴시키는 렌즈시스템(90), 상기 후퇴된 후초점면에 특정 위치의 광을 선별하는 광선택부(110), 상기 광선택부(110)로부터 선별된 광으로부터 분광이미지를 획득하는 분광이미지획득부(70), 및 상기 분광이미지획득부(70)에 의해 획득된 이미지를 신호 처리하여 상기 샘플(100)의 물리적 정보를 추출하는 신호처리부(80);를 포함한다. On the other hand, as shown in FIG. 5, the coaxial spectral imaging ellipsometer according to another aspect of the present invention includes a light source 10, a light modulator 20 for polarizing and phase delaying light from the light source 10, An objective lens 30 irradiating the light modulated by the light modulator 20 to the sample 100, provided between the light modulator 20 and the objective lens 30, to the sample 100 A beam splitter 50 that guides the reflected reflected beam to change the path after passing through the objective lens 30, and a polarization analyzer 60 that analyzes the polarization of the reflected beam passing through the beam splitter 50 , a lens system 90 for retreating the rear focal plane of the objective lens 30 with respect to the reflected beam passing through the beam splitter 50, and a light for selecting light at a specific position on the retreated rear focal plane A selection unit 110, a spectral image acquisition unit 70 for acquiring a spectral image from the light selected by the light selection unit 110, and signal processing the image acquired by the spectral image acquisition unit 70, and a signal processing unit 80 for extracting physical information of the sample 100 .
도5에 따른 실시예에 있어서, 도5와 동일한 작용을 수행하는 구성에 대하여는 동일한 참조번호를 부여하며, 그 구체적인 설명은 생략한다. 도5의 실시예에 따르면, 상기 광원(10), 광변조부(20), 대물렌즈(30), 빔스플리터(50), 편광해석기(60), 분광이미지획득부(70), 및 신호처리부(80)는, 도2의 실시예에 따른 구성과 작용적 측면에서 실질적으로 동일하다. In the embodiment according to Fig. 5, the same reference numerals are given to components performing the same operations as those of Fig. 5, and detailed descriptions thereof are omitted. 5, the light source 10, the light modulator 20, the objective lens 30, the beam splitter 50, the polarization analyzer 60, the spectral image acquisition unit 70, and the signal processing unit Reference numeral 80 is substantially the same in terms of construction and operation according to the embodiment of Fig. 2 .
상기 광변조부(20)는, 상기 광원(10)으로부터의 광을 편광시키는 편광생성기(21)와, 상기 편광생성기(21)에 의해 편광된 광의 위상을 지연시키는 위상지연자(22)를 포함하며, 상기 위상지연자(22)는 멀티 오더 위상지연자(22)(Multi-order Retarder)인 것 또한, 도2와 동일하다. The light modulator 20 includes a polarization generator 21 for polarizing the light from the light source 10 and a phase retarder 22 for delaying the phase of the light polarized by the polarization generator 21 . Also, the phase retarder 22 is a multi-order retarder 22, which is the same as in FIG. 2 .
본 실시예에 따르면, 도2의 실시예와는 달리, 광선택부(110)를 포함한다. 본 실시예는, 상기 대물렌즈(30)의 후초점면의 특정 위치에서 출발한 모든 광선이 동일한 입사각으로 샘플(100)에 입사되어 반사될 때, 상기 광선택부(110)에 의해 상기 후초점면의 특정 위치를 지난 광을 선별하여 이미징 및 신호처리하여 샘플(100)의 물리적 정보를 산출한다. According to this embodiment, unlike the embodiment of FIG. 2 , the light selection unit 110 is included. In this embodiment, when all light rays originating from a specific position on the back focal plane of the objective lens 30 are incident on the sample 100 at the same angle of incidence and reflected, the back focal point by the light selector 110 Physical information of the sample 100 is calculated by selecting the light that has passed a specific position on the surface, imaging, and signal processing.
따라서, 도2의 실시예가 후초점면의 특정 위치에 광을 조사하는 방식이라면, 도5의 실시예는 다파장 광원(10)을 샘플(100)에 조사하고, 렌즈시스템(90) 및 광선택부(110)를 이용하여 후초점면(BP)의 특정 위치에서의 반사빔을 선택하는 방식이다. Therefore, if the embodiment of Fig. 2 is a method of irradiating light to a specific position of the back focal plane, the embodiment of Fig. 5 irradiates the multi-wavelength light source 10 to the sample 100, and the lens system 90 and the light selection This is a method of selecting a reflected beam at a specific position of the back focal plane BP by using the unit 110 .
본 실시예에 따르면, 렌즈시스템(90)을 포함한다. 상기 렌즈시스템(90)은, 상기 빔스플리터(50)를 경유한 반사빔에 대하여 상기 대물렌즈(30)의 후초점면(BP)을 후퇴시킨다. 도5에 도시된 바와 같이, 상기 렌즈시스템(90)은 복수의 렌즈를 이용한 4f 렌즈 시스템을 이용하여 대물렌즈(30)의 후초점면을 후퇴시켜 2차 후초점면을 형성하거나, 도6에 도시된 바와 같이 릴레이 렌즈 시스템을 이용하여 후초점면을 후퇴시켜 2차 후초점면을 형성할 수 있다. 물론, 상기 렌즈시스템(90)은, 상기와 한 바로 한정되지 않으며, 상기 대물렌즈(30)의 후초점면을 후퇴시킬 수 있는 광학계이면 족하다. According to this embodiment, a lens system 90 is included. The lens system 90 retreats the rear focal plane BP of the objective lens 30 with respect to the reflected beam passing through the beam splitter 50 . As shown in FIG. 5, the lens system 90 retracts the rear focal plane of the objective lens 30 using a 4f lens system using a plurality of lenses to form a secondary rear focal plane, or As shown, the second back focal plane may be formed by retreating the back focal plane using the relay lens system. Of course, the lens system 90 is not limited to the above, and an optical system capable of retracting the rear focal plane of the objective lens 30 is sufficient.
상기 광선택부(110)는, 상기 후퇴된 후초점면에 특정 위치의 광을 선별하기 위해서 마련된다. 상기 광선택부(110)는 상기 후퇴된 후초점면의 특정 위치에서의 광을 선택함으로써 샘플(100)에서 특정 입사각으로 들어온 광을 선택하게 된다. 상기 광선택부(110)에 의해 선택된 광은, 상기 광선택부(110)의 후단에 마련되는 편광해석기(60), 분광이미지획득부(70) 및 신호처리부(80)에 제공된다. 상기 분광이미지획득부(70) 및 신호처리부(80)가 샘플(100)에 대한 물리적 정보를 추출하는 과정은 상술한 바와 같다. The light selection unit 110 is provided to select light at a specific position on the retracted rear focal plane. The light selection unit 110 selects the light entering the sample 100 at a specific incident angle by selecting the light at a specific position of the retracted back focal plane. The light selected by the optical selection unit 110 is provided to the polarization analyzer 60 , the spectral image acquisition unit 70 , and the signal processing unit 80 provided at the rear end of the optical selection unit 110 . The process in which the spectral image acquisition unit 70 and the signal processing unit 80 extracts physical information about the sample 100 is as described above.
상기 광선택부(110)는, 도5 또는 도6에 도시된 바와 같이, 상기 후퇴된 후초점면의 특정 지점에 광을 통과시키는 조리개(110)일 수 있다. 또한, 상기 광선택부(110)는, 도7에 도시된 바와 같이, 특정 지점의 광을 전달하는 광파이버(110')일 수 있다. As shown in FIG. 5 or 6 , the light selection unit 110 may be an diaphragm 110 that allows light to pass through a specific point of the retracted rear focal plane. In addition, as shown in FIG. 7 , the light selection unit 110 may be an optical fiber 110 ′ that transmits light at a specific point.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 광선택부(110)는 상기 대물렌즈(30)의 후초점면(BP)에 마련되어 특정 위치의 광을 상기 샘플(100)로 입사시키고, 상기 샘플로부터 반사된 반사빔을 통과시키는 조리개(120)로 구현될 수 있다. 도8은 상기 조리개(120)의 예시를 도시한 것이다. 조리개(120)의 입사부(121)를 통하여 특성 위치의 광이 대물렌즈(30)를 거쳐 샘플(100)로 입사되고, 샘플(100)에 반사된 반사빔은 투과부(122)를 통과하게 되어, 특정한 입사각으로 들어온 광을 선택할 수 있다. In addition, according to another embodiment of the present invention, the light selector 110 is provided on the back focal plane BP of the objective lens 30 to inject light at a specific position into the sample 100 , and It may be implemented as an aperture 120 that passes the reflected beam reflected from the sample. 8 shows an example of the diaphragm 120 . Light at a characteristic position through the incident unit 121 of the stop 120 is incident on the sample 100 through the objective lens 30 , and the reflected beam reflected by the sample 100 passes through the transmission unit 122 . , it is possible to select light entering at a specific angle of incidence.
이와 같은 방식은, 상기 대물렌즈(30)의 후초점면(BP)의 특정 위치에서의 반사빔을 선택하므로, 특정 입사각에 대한 광을 선택하는 측면에서 유사성이 있다. 이와 같이 선택된 광은 상기 편광해석기(60), 분광이미지획득부(70) 및 신호처리부(80)에 제공된다. Since this method selects a reflected beam at a specific position of the back focal plane BP of the objective lens 30 , there is a similarity in terms of selecting light for a specific incident angle. The light thus selected is provided to the polarization analyzer 60 , the spectral image acquisition unit 70 , and the signal processing unit 80 .
이와 같이, 본 실시예에 따르면, 샘플(100)에 대하여 특정 입사각으로 들어와서 반사되는 반사빔으로부터 특정 위치에서 광을 선별하는 것으로, 도2의 실시예와 비교하여 특정 입사각의 반사빔에 대한 정보를 확보한다는 측면에서 유사한 측면이 있다. 본 실시예에 있어서, 광변조부(20), 분광이미지획득부(70), 및 신호처리부(80)의 구성 내지 작용은, 도2의 실시예와 동일한다. 따라서 본 실시예는, 도2의 실시예에 따른 효과를 동일하게 제공할 수 있다. As described above, according to the present embodiment, light is selected at a specific position from the reflected beam that enters and is reflected at a specific angle of incidence with respect to the sample 100. Compared with the embodiment of FIG. 2 , information on the reflected beam at a specific angle of incidence is selected. There is a similar aspect in terms of securing In this embodiment, the configuration and operation of the light modulator 20 , the spectral image acquisition unit 70 , and the signal processing unit 80 are the same as those of the embodiment of FIG. 2 . Accordingly, the present embodiment can provide the same effects as those of the embodiment of FIG. 2 .
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications may be provided without departing from the scope of the present invention.
[부호의 설명][Explanation of code]
10... 광원 20... 광변조부10... Light source 20... Light modulator
21... 편광생성기 22... 위상지연자21... Polarization generator 22... Phase delay
30... 대물렌즈 40... 입사각조절부30... Objective lens 40... Incident angle control unit
50... 빔스플리터 60... 편광해석기50... Beam splitter 60... Polarization analyzer
70... 분광이미지획득부 71... 광분할기70... Spectral image acquisition unit 71... Optical splitter
72... 제1 거울 72... 제2 거울72... first mirror 72... second mirror
73... 카메라 80... 신호처리부73... Camera 80... Signal processing unit
90... 렌즈시스템 100... 샘플90... lens system 100... sample
110, 110'... 광선택부 120... 조리개110, 110'... Optical selector 120... Aperture
121... 입사부 122... 투과부121... Incident 122... Transmissive

Claims (11)

  1. 광원;light source;
    상기 광원으로부의 광을 편광 및 위상 지연시키는 광변조부;a light modulator for polarizing and retarding the light from the light source;
    상기 광변조부에 의해 변조된 광을 샘플에 조사하는 대물렌즈;an objective lens irradiating the light modulated by the light modulator to the sample;
    상기 광원과 상기 대물렌즈의 사이에 마련되어 상기 광을 상기 대물렌즈의 후초점면의 특정 위치에 조사하도록 하는 입사각조절부;an incident angle adjustment unit provided between the light source and the objective lens to irradiate the light to a specific position of the rear focal plane of the objective lens;
    상기 샘플에 반사된 반사빔이 상기 대물렌즈를 통과한 후 경로를 변경하도록 하는 유도하는 빔스플리터;a beam splitter for guiding the reflected beam reflected on the sample to change a path after passing through the objective lens;
    상기 반사빔의 편광을 해석하는 편광해석기;a polarization analyzer that analyzes the polarization of the reflected beam;
    상기 반사빔으로부터 분광이미지를 획득하는 분광이미지획득부; 및 a spectral image acquisition unit for acquiring a spectral image from the reflected beam; and
    상기 분광이미지획득부에 의해 획득된 이미지를 신호 처리하여 상기 샘플의 물리적 정보를 추출하는 신호처리부;를 포함하는 것을 특징으로 하는 동축 분광 이미징 엘립소미터.and a signal processing unit for signal processing the image acquired by the spectral image acquisition unit to extract physical information of the sample.
  2. 제1항에 있어서,According to claim 1,
    상기 광변조부는, 상기 광원으로부터의 광을 편광시키는 편광생성기와, 상기 편광생성기에 의해 편광된 광의 위상을 지연시키는 위상지연자를 포함하며,The light modulator comprises a polarization generator for polarizing the light from the light source, and a phase delayer for delaying the phase of the light polarized by the polarization generator,
    상기 위상지연자는 멀티 오더 위상지연자(Multi-order Retarder)인 것을 특징으로 하는 동축 분광 이미징 엘립소미터.The phase retarder is a coaxial spectral imaging ellipsometer, characterized in that the multi-order retarder (Multi-order retarder).
  3. 제1항에 있어서,According to claim 1,
    상기 분광이미지획득부는 이미징 간섭계로 이루어지며, The spectral image acquisition unit consists of an imaging interferometer,
    상기 이미징 간섭계는, The imaging interferometer,
    상기 반사빔을 분할하는 광분할기;a light splitter for splitting the reflected beam;
    상기 광분할기로부터 분할되어 나온 일측의 빔을 반사시키는 제1 거울;a first mirror for reflecting the beam of one side split from the splitter;
    상기 광분할기로부터 분할되는 타측의 빔을 반사시키는 제2 거울;을 포함하고, 상기 제1 거울 또는 제2 거울을 이동시켜 경로차이에 의한 간섭이미지를 만들어내며,Includes; a second mirror that reflects the beam of the other side split from the splitter, and moves the first mirror or the second mirror to create an interference image due to a path difference,
    상기 간섭이미지를 획득하는 카메라를 포함하는 것을 특징으로 하는 동축 분광 이미징 엘립소미터.Coaxial spectral imaging ellipsometer comprising a camera for acquiring the interference image.
  4. 제1항에 있어서,According to claim 1,
    상기 분광이미지획득부는, The spectral image acquisition unit,
    소정의 중심 파장을 필터링하는 개별필터가 다수 마련된 파장변조필터와 카메라로 이루어지거나, It consists of a wavelength modulation filter and a camera in which a plurality of individual filters for filtering a predetermined central wavelength are provided, or
    초분광 카메라로 이루어지거나, 또는 consisting of a hyperspectral camera; or
    회절격자와 카메라로 이루어지는 것을 특징으로 하는 동축 분광 이미징 엘립소미터.A coaxial spectral imaging ellipsometer comprising a diffraction grating and a camera.
  5. 광원;light source;
    상기 광원으로부의 광을 편광 및 위상 지연시키는 광변조부;a light modulator for polarizing and retarding the light from the light source;
    상기 광변조부에 의해 변조된 광을 샘플에 조사하는 대물렌즈;an objective lens irradiating the light modulated by the light modulator to the sample;
    상기 샘플에 반사된 반사빔이 상기 대물렌즈를 통과한 후 경로를 변경하도록 하는 유도하는 빔스플리터;a beam splitter for guiding the reflected beam reflected by the sample to change a path after passing through the objective lens;
    상기 반사빔의 편광을 해석하는 편광해석기;a polarization analyzer that analyzes the polarization of the reflected beam;
    상기 후초점면의 특정 위치의 광을 선별하는 광선택부; a light selection unit that selects light at a specific position on the back focal plane;
    상기 광선택부로부터 선별된 광으로부터 분광이미지를 획득하는 분광이미지획득부; 및 a spectral image acquisition unit for acquiring a spectral image from the light selected by the light selection unit; and
    상기 분광이미지획득부에 의해 획득된 이미지를 신호 처리하여 상기 샘플의 물리적 정보를 추출하는 신호처리부;를 포함하는 것을 특징으로 하는 동축 분광 이미징 엘립소미터.and a signal processing unit for signal processing the image acquired by the spectral image acquisition unit to extract physical information of the sample.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 광변조부는, 상기 광원으로부터의 광을 편광시키는 편광생성기와, 상기 편광생성기에 의해 편광된 광의 위상을 지연시키는 위상지연자를 포함하며,The light modulator comprises a polarization generator for polarizing the light from the light source, and a phase delayer for delaying the phase of the light polarized by the polarization generator,
    상기 위상지연자는 멀티 오더 위상지연자(Multi-order Retarder)인 것을 특징으로 하는 동축 분광 이미징 엘립소미터.The phase retarder is a coaxial spectral imaging ellipsometer, characterized in that the multi-order retarder (Multi-order retarder).
  7. 제5항에 있어서,6. The method of claim 5,
    상기 빔스플리터를 경유한 상기 반사빔에 대하여 상기 대물렌즈의 후초점면을 후퇴시키는 렌즈시스템을 포함하고, a lens system for retreating the rear focal plane of the objective lens with respect to the reflected beam passing through the beam splitter,
    상기 광선택부는 상기 후퇴된 후초점면의 특정 위치의 광을 선별하는 것을 특징으로 하는 동축 분광 이미징 엘립소미터. The coaxial spectral imaging ellipsometer, characterized in that the light selector selects the light at a specific position of the retracted back focal plane.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 광선택부는, The optical selector,
    상기 후퇴된 후초점면의 특정 지점에서 광을 통과시키는 조리개, 또는 상기 특정 지점의 광을 전달하는 광파이버인 것을 특징으로 하는 동축 분광 이미징 엘립소미터.A coaxial spectral imaging ellipsometer, characterized in that it is an diaphragm passing light at a specific point of the retracted back focal plane, or an optical fiber transmitting light at the specific point.
  9. 제5항에 있어서,6. The method of claim 5,
    상기 광선택부는, The optical selector,
    상기 대물렌즈의 후초점면에 마련되어 특정 위치의 광을 상기 샘플로 입사시키고, 상기 샘플로부터 반사된 반사빔을 통과시키는 조리개인 것을 특징으로 하는 동축 분광 이미징 엘립소미터. Coaxial spectral imaging ellipsometer, characterized in that provided in the back focal plane of the objective lens, the diaphragm for incident light at a specific position to the sample and passing the reflected beam reflected from the sample.
  10. 제5항에 있어서, 6. The method of claim 5,
    상기 분광이미지획득부는 이미징 간섭계로 이루어지며, The spectral image acquisition unit consists of an imaging interferometer,
    상기 이미징 간섭계는, The imaging interferometer,
    상기 반사빔을 분할하는 광분할기;a light splitter for splitting the reflected beam;
    상기 광분할기로부터 분할되어 나온 일측의 빔을 반사시키는 제1 거울;a first mirror for reflecting the beam of one side split from the splitter;
    상기 광분할기로부터 분할되는 타측의 빔을 반사시키는 제2 거울;을 포함하고, 상기 제1 거울 또는 제2 거울을 이동시켜 경로차이에 의한 간섭이미지를 만들어내며,Includes; a second mirror that reflects the beam of the other side split from the splitter, and moves the first mirror or the second mirror to create an interference image due to a path difference,
    상기 간섭이미지를 획득하는 카메라를 포함하는 것을 특징으로 하는 동축 분광 이미징 엘립소미터.Coaxial spectral imaging ellipsometer comprising a camera for acquiring the interference image.
  11. 제5항에 있어서,6. The method of claim 5,
    상기 분광이미지획득부는, The spectral image acquisition unit,
    소정의 중심 파장을 필터링하는 개별필터가 다수 마련된 파장변조필터와 카메라로 이루어지거나, It consists of a wavelength modulation filter and a camera in which a plurality of individual filters for filtering a predetermined central wavelength are provided, or
    초분광 카메라로 이루어지거나, 또는 consisting of a hyperspectral camera; or
    회절격자와 카메라로 이루어지는 것을 특징으로 하는 동축 분광 이미징 엘립소미터.A coaxial spectral imaging ellipsometer comprising a diffraction grating and a camera.
PCT/KR2020/019478 2020-04-23 2020-12-31 Coaxial spectral imaging ellipsometer WO2021215621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0049486 2020-04-23
KR1020200049486A KR102316503B1 (en) 2020-04-23 2020-04-23 Coaxial Spectroscopic Imaging Ellipsometer

Publications (1)

Publication Number Publication Date
WO2021215621A1 true WO2021215621A1 (en) 2021-10-28

Family

ID=78269412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019478 WO2021215621A1 (en) 2020-04-23 2020-12-31 Coaxial spectral imaging ellipsometer

Country Status (2)

Country Link
KR (1) KR102316503B1 (en)
WO (1) WO2021215621A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327557A (en) * 1995-06-02 1996-12-13 Nikon Corp Device and method for inspecting defect
KR100517296B1 (en) * 2003-03-07 2005-09-28 학교법인연세대학교 Apparatus for inspecting optical element
KR101333299B1 (en) * 2011-09-09 2013-11-27 주식회사 인스펙토 3D Shape Mesurement Mehod and Device by using Amplitude of Projection Grating
KR101812608B1 (en) * 2016-02-04 2017-12-27 전북대학교산학협력단 One-piece polarizing interferometer and snapshot spectro-polarimetry applying the same
KR20190118603A (en) * 2017-02-08 2019-10-18 이섬 리서치 디벨로프먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘 리미티드 Systems and Methods for Use in Ellipsometry with High Spatial Resolution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035254A (en) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology Back focal plane microscopic ellipsometer
US10634607B1 (en) * 2018-10-12 2020-04-28 J.A. Woollam Co., Inc. Snapshot ellipsometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327557A (en) * 1995-06-02 1996-12-13 Nikon Corp Device and method for inspecting defect
KR100517296B1 (en) * 2003-03-07 2005-09-28 학교법인연세대학교 Apparatus for inspecting optical element
KR101333299B1 (en) * 2011-09-09 2013-11-27 주식회사 인스펙토 3D Shape Mesurement Mehod and Device by using Amplitude of Projection Grating
KR101812608B1 (en) * 2016-02-04 2017-12-27 전북대학교산학협력단 One-piece polarizing interferometer and snapshot spectro-polarimetry applying the same
KR20190118603A (en) * 2017-02-08 2019-10-18 이섬 리서치 디벨로프먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘 리미티드 Systems and Methods for Use in Ellipsometry with High Spatial Resolution

Also Published As

Publication number Publication date
KR102316503B1 (en) 2021-10-22

Similar Documents

Publication Publication Date Title
US6519040B1 (en) Imaging system and method for Fourier transform spectroscopy
US6421131B1 (en) Birefringent interferometer
US6753961B1 (en) Spectroscopic ellipsometer without rotating components
WO2017135641A1 (en) Integrated polarization interferometer and snapshot spectrophotometer applying same
US10634607B1 (en) Snapshot ellipsometer
WO2021033860A1 (en) Device and method for measuring thickness of multilayer thin film using one-shot angle-resolved spectroscopic reflectometry
WO2019031667A1 (en) Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
EP0939323A1 (en) Wollaston prism and use of it in a fourier-transform spectrometer
US11264256B2 (en) Wafer inspection apparatus
US8310675B2 (en) System and process for analyzing a sample
CN111208067A (en) Spectrum-polarization imaging measurement system
WO2021172647A1 (en) Vibration-insensitive interferometer for measuring thickness and profile of multilayer thin film
US7440108B2 (en) Imaging spectrometer including a plurality of polarizing beam splitters
WO2021215621A1 (en) Coaxial spectral imaging ellipsometer
US6317259B1 (en) Interference microscope
US11346719B2 (en) Fourier-transform hyperspectral imaging system
WO2022025385A1 (en) System for measuring thickness and physical properties of thin film using spatial light modulator
WO2020032689A1 (en) Inspection apparatus and inspection method
KR100395442B1 (en) Ultra high speed spectroscopic ellipsometer
KR20180129078A (en) Ellipsometer
WO2021182732A1 (en) Micro-ellipsometer
WO2020130319A1 (en) Laser spatial modulation super resolution optical microscope
US11391666B1 (en) Snapshot ellipsometer
WO2021246602A1 (en) Device for measuring reflectance and incident light quantity
WO2023128133A1 (en) Reflective optical system having minimized polarization modulation and spectroscopic ellipsometer including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932481

Country of ref document: EP

Kind code of ref document: A1