WO2021215600A1 - Portable ultrasonic visualization device equipped with thermographic camera - Google Patents

Portable ultrasonic visualization device equipped with thermographic camera Download PDF

Info

Publication number
WO2021215600A1
WO2021215600A1 PCT/KR2020/014485 KR2020014485W WO2021215600A1 WO 2021215600 A1 WO2021215600 A1 WO 2021215600A1 KR 2020014485 W KR2020014485 W KR 2020014485W WO 2021215600 A1 WO2021215600 A1 WO 2021215600A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
main board
board
sensor array
thermal imaging
Prior art date
Application number
PCT/KR2020/014485
Other languages
French (fr)
Korean (ko)
Inventor
김영기
김인권
이광현
안병호
Original Assignee
(주)에스엠인스트루먼트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스엠인스트루먼트 filed Critical (주)에스엠인스트루먼트
Publication of WO2021215600A1 publication Critical patent/WO2021215600A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency

Definitions

  • the present invention relates to a portable ultrasound visualization device equipped with a thermal imaging camera capable of overlaying an ultrasound image, an optical image, and a thermal image measured through a thermal imaging camera) on a single screen by superimposing 2-3 types.
  • a portable ultrasound visualization device equipped with a thermal imaging camera capable of overlaying an ultrasound image, an optical image, and a thermal image measured through a thermal imaging camera) on a single screen by superimposing 2-3 types.
  • it instead of analyzing echo-reflected ultrasonic waves by providing ultrasonic waves with a projectile and an ultrasonic receiver, it shows the location of ultrasonic waves that are naturally radiated (not echo signals) from mechanical equipment or gas pipes as image images, and also generates ultrasonic waves.
  • a portable ultrasound visualization device equipped with a thermal imaging camera used for diagnosing equipment failures by showing a location image and a thermal image on one screen.
  • a high voltage panel, a low pressure panel, a distribution panel, and a motor control panel equipped with an ultrasound-based arc and corona discharge monitoring and diagnosis system are based on ultrasound to diagnose the arc or corona discharge state of a housing containing a high voltage panel inside.
  • the high-pressure panel equipped with the arc and corona discharge monitoring and diagnosis system of ; And, based on the ultrasonic signal detected by the sensor unit, detects arc or corona discharge generated in the facility, and configures an abnormality determination unit for controlling the internal state of the housing according to the detected arc or corona discharge information
  • a high-voltage panel a low-pressure panel, a distribution panel, and a motor control panel equipped with an ultrasound-based arc and corona discharge monitoring and diagnosis system including a monitoring device.
  • An object of the present invention is to provide a portable ultrasound equipment failure diagnosis apparatus capable of overlaying an ultrasound image, an optical image, and a thermal image measured by a thermal imager on a single screen by superimposing 2-3 types.
  • a medical ultrasound diagnostic device that visualizes an internal shape by a reflected wave after an ultrasonic wave is emitted by a conventional ultrasound device, an ultrasonic sound source that is naturally radiated by interaction between components in a pipe leakage, defective power equipment, and broken mechanical equipment (devices)
  • the present invention can implement the sound of the ultrasonic region more efficiently than the vibration sound that can diagnose the initial failure in machinery failure diagnosis, failure prediction, and monitoring, and the ultrasonic sensor, the processing device, the battery, the display device (display), etc. are one It is provided in the body case and enables the user to perform ultrasound visualization while easily moving the measurement point, and to display the result in real time with a thermal image as a visual display device or to recognize it through an auditory display device. to provide the device.
  • the present invention optimizes and minimizes the data processing amount (processing step) for radiation ultrasound visualization without losing the location size information of the ultrasound sound source in the ultrasound region where the data processing capacity is inevitably large, thereby providing proper performance and computational processing capability.
  • a program and electronic means that form an arithmetic processing step so as to be executable by electronic means having a
  • the present invention visually shows the thermal images taken with a thermal imaging camera together with the ultrasonic visualization results in real time so that not only the visualization of ultrasound but also the heat dissipation phenomenon can be visualized together with the results of ultrasound visualization, pipe leakage, faulty power equipment and
  • An object of the present invention is to provide a portable ultrasonic visualization device equipped with a thermal imaging camera that increases the accuracy of detecting malfunctions in mechanical equipment (device).
  • the apparatus for diagnosing a mobile ultrasound imaging facility of the present invention is an apparatus for diagnosing equipment failure using radiated ultrasonic sensing, and includes a plurality of (N) ultrasonic sensors and a sound wave sensor array that senses ultrasonic signals radiated from the equipment while oriented toward the radiated sound source.
  • N the number of ultrasonic sensors
  • S sound wave sensor array
  • a data acquisition board having an electronic circuit mounted on a substrate for acquiring ultrasonic signals (x n ) at a sampling frequency (f s) of ultrasonic signals detected by the ultrasonic sensor array;
  • a main board having an arithmetic processing device for processing the ultrasonic signal received from the data acquisition beam mounted on a substrate, and transmitting the processed ultrasonic sound source information to the display device;
  • a data storage medium for storing data processed by the arithmetic processing unit of the main board
  • a display device for visually displaying the data processed by the arithmetic processing device of the main board; an optical camera that captures an image in a direction in which the sound wave sensor array is directed and delivers it to the main board 30; It characterized in that it comprises a; thermal imaging camera for taking a thermal image (Thermal Image) in the direction the optical camera is directed.
  • Thermal Imaging camera for taking a thermal image (Thermal Image) in the direction the optical camera is directed.
  • the portable ultrasound imaging equipment diagnosis apparatus of the present invention further includes a case-built rechargeable battery or an external portable battery for supplying power to the data acquisition board, the main board, and the display device, the sound wave sensor array) and the data acquisition board
  • the main board and data storage medium are mounted and fixed in a hard plastic body case,
  • the main board expresses at least two or three selected from the ultrasonic sound source information, the optical image in the direction the sensor array imaged by the optical camera is facing, and the thermal image photographed by the thermal imaging camera by matching the position coordinates. It is preferable to display it by overlaying it on the device together.
  • an ultrasound image, an optical image, and a portable ultrasound equipment failure diagnosis device capable of overlaying two or three types of thermal images (thermal images, infared images) measured through a thermal imaging camera by superimposing them on one screen is provided
  • a portable ultrasound equipment failure diagnosis apparatus that visualizes an ultrasound sound source image naturally radiated by a thermal image or an optical image.
  • the present invention it is possible to implement the sound of the ultrasonic region more efficiently than the vibration sound that can diagnose the initial failure in the diagnosis of machinery failure or failure prediction and monitoring, and the ultrasonic sensor, processing device, battery, display device (display), etc.
  • a portable ultrasonic wave provided in this single body case that enables the user to perform ultrasound visualization while easily moving the measurement point, and to display the result in real time with a thermal image as a visual display device or to recognize it through an auditory display device
  • a device for diagnosing equipment failure is provided.
  • the data processing amount (processing step) for radiation ultrasound visualization is reduced as much as possible without losing the ultrasonic sound source position size information, so that proper performance and calculation processing are performed.
  • a program and electronic means that form an arithmetic processing step so as to be executable by electronic means having the capability,
  • thermo images taken with a thermal imaging camera are visually displayed together with the ultrasonic visualization results in real time to visualize the heat dissipation phenomenon as well as the visualization of ultrasonic waves.
  • a portable ultrasonic visualization apparatus equipped with a thermal imaging camera having increased accuracy of anomaly detection is provided.
  • FIG. 1 is a conceptual diagram showing the coordinates of the radiation ultrasound visualization sensor and the virtual plane coordinates of the present invention.
  • Figure 2 is a conceptual diagram of the time delay summation of the radiation ultrasound visualization of the present invention.
  • FIG. 3 is a block diagram of a mobile ultrasound equipment failure diagnosis apparatus according to the present invention.
  • Figure 6 is a state diagram showing the ultrasonic sound source generated from the side of the laptop and the high and low of the temperature with a color gradient.
  • the apparatus for diagnosing a mobile ultrasound imaging facility of the present invention is an apparatus for diagnosing equipment failure using radiated ultrasonic sensing, and includes a plurality of (N) ultrasonic sensors and a sound wave sensor array that senses ultrasonic signals radiated from the equipment while oriented toward the radiated sound source.
  • N the number of ultrasonic sensors
  • S sound wave sensor array
  • a data acquisition board having an electronic circuit mounted on a substrate for acquiring ultrasonic signals (x n ) at a sampling frequency (f s) of ultrasonic signals detected by the ultrasonic sensor array;
  • a main board having an arithmetic processing device for processing the ultrasonic signal received from the data acquisition beam mounted on a substrate, and transmitting the processed ultrasonic sound source information to the display device;
  • a data storage medium for storing data processed by the arithmetic processing unit of the main board
  • a display device for visually displaying the data processed by the arithmetic processing device of the main board; an optical camera that captures an image in a direction in which the sound wave sensor array is directed and delivers it to the main board 30; It characterized in that it comprises a; thermal imaging camera for taking a thermal image (Thermal Image) in the direction the optical camera is directed.
  • Thermal Imaging camera for taking a thermal image (Thermal Image) in the direction the optical camera is directed.
  • the portable ultrasound imaging equipment diagnosis apparatus of the present invention further includes a case-built rechargeable battery or an external portable battery for supplying power to the data acquisition board, the main board, and the display device, the sound wave sensor array) and the data acquisition board
  • the main board and data storage medium are mounted and fixed in a hard plastic body case,
  • the main board expresses at least two or three selected from the ultrasonic sound source information, the optical image in the direction the sensor array imaged by the optical camera is facing, and the thermal image photographed by the thermal imaging camera by matching the position coordinates. It is preferable to display it by overlaying it on the device together.
  • FIG. 1 is a conceptual diagram of the radiation ultrasound visualization sensor coordinates and virtual plane coordinates of the present invention
  • FIG. 2 is a conceptual diagram of the radiation ultrasound visualization time delay summation of the present invention
  • FIG. It is a configuration diagram of the apparatus
  • FIGS. 4 and 5 are explanatory diagrams of the radiation ultrasound visualization process of the present invention.
  • the present invention does not analyze echo-reflected ultrasonic waves by providing ultrasonic waves with a projectile and an ultrasonic receiver, but shows the location of ultrasonic waves that are naturally radiated (not echo signals) from mechanical equipment or gas pipes as image images, and also generates ultrasonic waves.
  • the present invention relates to a portable ultrasound imaging equipment diagnosis apparatus used to diagnose equipment failures by displaying a location image and a thermal image on one screen.
  • An apparatus for diagnosing a portable equipment failure provided with an electronic means for radiation ultrasound visualization and a computer program includes an ultrasonic sensor array (10, Array), a data acquisition board (DAQ board, 20), and a main board (30). ), a data storage medium 40 , a battery 50 , a plastic body case 60 , a display device 70 , an optical camera 80 , and a thermal imaging camera 90 .
  • the ultrasonic sensor array 10 is composed of a plurality of (N) ultrasonic sensors 11 and senses ultrasonic signals radiated from the facility while directing the radiation sound source.
  • the ultrasonic sensor array 10 may be a type in which a plurality of MEMS microphones, ultrasonic transducers, and ultrasonic sensors are mounted on a flat printed circuit board (PCB) or a curved (three-dimensional) flexible printed circuit board (Flexible PCB).
  • the data acquisition board (DAQ board, 20) has an electronic circuit for acquiring the ultrasonic signals (x n ) at a sampling frequency (Sampling Frequency, f s ) of the ultrasonic signals detected by the ultrasonic sensor array (10, Array) on the board. is mounted
  • the data acquisition board (DAQ board) 20 may be in charge of sampling and may have a built-in signal amplification circuit.
  • the main board 30 has an arithmetic processing unit 31 that processes digital (or analog) ultrasonic signals received from the data acquisition board (DAQ board, 20) mounted on the board, and displays the processed ultrasonic sound source information ( 70).
  • the data storage medium 40 stores data processed by the arithmetic processing unit 31 of the main board 30 .
  • the battery 50 supplies power to the data acquisition board 20 and the main board 30 , and it is preferable that it is provided in a removable and rechargeable manner inside the plastic body case 60 , but on the outside of the plastic body case 60 . It may be a separate portable rechargeable battery that is located and supplies power to the data acquisition board 20 and the main board 30 and the display device 70 with wires. Alternatively, both an internal battery and an external auxiliary battery may be provided and used.
  • the plastic body case 60 is made of a hard material for fixing the ultrasonic sensor array 10 , the data acquisition board 20 , the main board 30 , and the data storage medium 40 .
  • the plastic body case 60 supports an array 10 composed of a plurality of ultrasonic sensors 11 electrically connected to each other, or an ultrasonic sensor array PCB on a flat or curved plate on which the ultrasonic sensors 11 are mounted. It is preferable to support the ultrasonic sensor array (10, Array) by supporting and fixing the substrate.
  • a hollow chamber is formed inside the plastic body case 60 , and the data acquisition board 20 and the main board 30 having arithmetic processing capability are fixedly installed in the hollow chamber.
  • the display device 70 visually expresses the data processed by the arithmetic processing device 31 of the main board 30 and is integrally installed in the plastic body case 60 .
  • the expression device 70 is integrally fixed to the plastic body case 60 so as to be exposed to the outside of the plastic body case 60 .
  • the optical camera 80 captures an image in a direction in which the ultrasonic sensor array 10 is oriented and transmits it to the main board 30 .
  • the lens of the optical camera 80 when the sensor array 10 (Array) has a flat plate shape, the optical lens is exposed toward the direction it is directed.
  • the front of the plastic body case 60 has a hole for exposing the lens of the optical camera 80 .
  • the thermal imaging camera 90 photographing takes a thermal image in the direction the optical camera 80 is oriented and transmits it to the main board 30 having an arithmetic processing unit.
  • the main board 30 is displayed by overlaying the ultrasonic sound source information and the optical image in the direction in which the sensor array 10 captured by the optical camera 70 is facing on the display device 70 (Over Lay).
  • the thermal imaging camera 90 may be replaced by a thermal imaging camera having a different thermal imaging principle.
  • the thermal imaging camera takes an infrared image in the direction the user is pointing, and transmits the high and low temperature to the display device as a color gradient.
  • 5 is a flow chart of the radiation ultrasound visualization method of the present invention. 1 to 5 , in the delay distance calculation step S10 , the distances between the sensors 11 and the virtual plane points are calculated using the sensor coordinates and the virtual plane coordinates.
  • 1 is a diagram showing the relationship between sensor coordinates and virtual plane coordinates. As shown, the distance d k between the sensor coordinates (Xs, Ys) and the virtual plane coordinates (Xg, Yg) is calculated as follows. When the distance L is 1 m, the operation of +L 2 is expressed as +1 operation.
  • the ultrasonic sensor array (10, Array) consisting of a plurality of (N) ultrasonic sensors 11 and directing the radiation source detects ultrasonic signals.
  • the data acquisition board (DAQ board, 20) acquires the ultrasonic signals (x n ) by sampling the ultrasonic signals detected by the ultrasonic sensor array (10, Array) at a sampling frequency (Sampling Frequency, f s ) do.
  • a detailed equation for the ultrasound signal (x n ) is as follows.
  • S Sample Number.
  • f s Sampling Rate (frequency).
  • the main board 30 having the arithmetic processing unit is preset to the ultrasonic signals (x n ) acquired in the step (S30) in the ultrasonic frequency band (f 1 to f 2 ) band
  • a step S40 of applying a band pass filter is performed.
  • x nf [s] 1 ⁇ nf ⁇ N.
  • FIG. 2 is a conceptual diagram illustrating the time delay summation of radiation ultrasound visualization according to the present invention.
  • step (S50) time delay correction is applied to each of the ultrasound signals (x n ) using the delay distances of the step (S10), and by summing them, the sound source values of M virtual plane points ( r nk ) are computed.
  • the number of delayed samples is calculated.
  • the time delay is calculated using the distance between the sensor and the virtual plane and the speed of sound, and the number of delay samples is calculated using the calculated time delay. Details are as follows.
  • C d is the time delay coefficient
  • c is the speed of sound
  • N k is the number of delayed samples.
  • the sum is performed after compensating for the time delay using the number of delayed samples. At this time, a correction coefficient for each sensor is applied.
  • M is the number of all elements in the row and column in the imaginary plane coordinates.
  • a beam power level calculation step (S60) of calculating the beam power levels (z, Beam Power Levels) of the sound source values (r nk ) generated in step S40 is performed.
  • the beam power levels (z) calculated in the step (S50) are overlaid on the display device 70 together with the optical image of the direction in which the sensor array 10 (Array) is facing. ) to express
  • the ultrasonic sensor array 10 may be configured in such a way that a plurality of ultrasonic sensors 11 are mounted on a printed circuit board forming a single plane.
  • the ultrasonic sensor array (10, Array) is exposed to the front of the device and positioned so as to face the front (one direction).
  • a plurality of ultrasonic sensors 11 may be arranged at regular intervals on a sphere, a substantially ball-shaped polyhedron, a hemisphere, or a rear open convex curved body.
  • the ultrasonic sensor array 10 may be in a form in which a MEMS microphone, an ultrasonic transducer, or a plurality of ultrasonic sensors are mounted on a flexible printed circuit board (Flexible PCB) on a curved (three-dimensional) surface.
  • a MEMS microphone an ultrasonic transducer
  • a plurality of ultrasonic sensors are mounted on a flexible printed circuit board (Flexible PCB) on a curved (three-dimensional) surface.
  • sampling Frequency is in the range of 20KHz (40KHz) to 200KHz
  • the lower limit (f 1 ) and the upper limit (f 2 ) of the ultrasonic frequency band of the band pass filter are 10 KHz It is preferable that one range exists between (20KHz) and 100KHz.
  • the apparatus for diagnosing a portable equipment failure provided with an electronic means for visualizing radiation ultrasound and a computer program according to an embodiment of the present invention further includes an audio output means (80, speaker) for listening.
  • the main board 30 converts some or all of the generated sound source values (r nk ) by heterodyne conversion to convert an audible sound signal of a sound wave band (100Hz to 20KHz), and the main board 30 transmits the audible sound signal to the audio output means 90 for listening, so that the user can perceive the radiated ultrasound by hearing.
  • the portable ultrasound imaging equipment diagnosis apparatus includes an input window for a user interface electrically and electronically connected to the main board 30 so as to be exposed to the plastic body case 60, and includes a band pass filter. It is preferable that the lower limit (f 1 ) and the upper limit (f 2 ) of the ultrasonic frequency band of can be input by the user through an input window for a user interface. That is, before the ultrasonic sensing step ( S20 ), the step of inputting the lower limit ( f 1 ) and the upper limit ( f 2 ) of the ultrasonic frequency band of the band pass filter through the input window is performed. It may be entered through a user input window or a method may be performed in which the user selects from among a plurality of ranges previously input by the designer.
  • FIG. 6 is a state diagram showing the ultrasonic sound source generated from the side of the notebook computer and the high and low temperature in a color gradient.
  • the detection of the anomaly can be more perfect, and it was found that it is more effective than when only the noise visualization was applied to the detection of the anomaly.
  • thermo images taken with a thermal imaging camera are visually displayed together with the ultrasonic visualization results in real time to visualize the heat dissipation phenomenon as well as the visualization of ultrasonic waves.
  • a portable ultrasonic visualization apparatus equipped with a thermal imaging camera having increased accuracy of anomaly detection is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

The present invention relates to a facility malfunction diagnosis device using emitted ultrasonic wave detection. More particularly, the present invention relates to a mobile ultrasonic-image facility diagnosis device comprising an electronic means for visualizing emitted ultrasonic waves, the device comprising: an ultrasonic sensor array (10) which comprises multiple (N) ultrasonic sensors (11) and which is configured to detect ultrasonic signals emitted from a facility while aiming at an emitted sound source; a data acquisition board (DAQ board, 20) having an electronic circuit mounted on the substrate thereof to acquire ultrasonic signals (xn) at a sampling frequency fs) from ultrasonic signals detected by the ultrasonic sensor array (10); a main board (30) having a computing/processing device (31) mounted on the substrate thereof so as to process ultrasonic signals received from the DAQ board (20), the main board (30) transferring processed ultrasonic sound source information to a display device (70); a data storage medium (40) for storing data processed by the computing/processing device (31) of the main board (30); a display device (70) for visually displaying data processed by the computing/processing device (31) of the main board (30); an optical camera (80) for capturing images in the direction aimed by the ultrasonic sensor array (10) and transferring same to the main board (30); and a thermographic camera (90) for capturing thermal images in the direction aimed by the optical camera (80).

Description

열화상 카메라를 탑재한 휴대용 초음파 가시화 장치Portable ultrasonic visualization device with thermal imaging camera
본 발명은 초음파 영상, 광학 영상, 및 열화상 카메라를 통해 측정된 열상 Thermal Image)을 하나의 화면에 2~ 3가지를 중첩하여 오버레이 할 수 있는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치에 관한 것이며, 또한, 초음파를 발사체와 초음파 수신체를 구비하여 에코 반사 초음파를 분석하는 것이 아니라, 기계 설비나 가스관 등에서 자연 방사되는(에코 신호가 아닌) 초음파 발생위치를 이미지 영상으로 보여주고, 또한, 초음파 발생위치를 이미지 영상과 열상(Thermal Image)을 하나의 화면에 보여줌으로써 설비 고장 진단을 하는데 사용되는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치에 관한 것이다.The present invention relates to a portable ultrasound visualization device equipped with a thermal imaging camera capable of overlaying an ultrasound image, an optical image, and a thermal image measured through a thermal imaging camera) on a single screen by superimposing 2-3 types. , In addition, instead of analyzing echo-reflected ultrasonic waves by providing ultrasonic waves with a projectile and an ultrasonic receiver, it shows the location of ultrasonic waves that are naturally radiated (not echo signals) from mechanical equipment or gas pipes as image images, and also generates ultrasonic waves. It relates to a portable ultrasound visualization device equipped with a thermal imaging camera used for diagnosing equipment failures by showing a location image and a thermal image on one screen.
등록특허 10-1477755 : 초음파 기반의 아크 및 코로나 방전 감시진단 시스템이 탑재된 고압반, 저압반, 분전반, 모터 제어반은 고압반을 내부에 포함하는 하우징의 아크 또는 코로나의 방전 상태를 진단하는 초음파 기반의 아크 및 코로나방전 감시진단 시스템이 탑재된 고압반에 있어서, 상기 하우징 내부에 구비된 설비에 접촉 또는 근접 설치되어, 아크나 코로나 방전에 의해 발생하는 초음파를 검출하는 다수의 초음파 센서로 구성된 센서부; 및, 상기 센서부에서 검출된 초음파 신호를 기초하여, 상기 설비에서 발생하는 아크나 코로나 방전을 감지하고, 감지된 상기 아크나 코로나 방전 정보에 따라 상기 하우징의 내부 상태를 제어하는 이상유무 판단부를 구성하는 감시장치를 포함하는 초음파 기반의 아크 및 코로나 방전 감시진단 시스템이 탑재된 고압반, 저압반, 분전반, 모터 제어반을 제공한다.Registered Patent 10-1477755: A high voltage panel, a low pressure panel, a distribution panel, and a motor control panel equipped with an ultrasound-based arc and corona discharge monitoring and diagnosis system are based on ultrasound to diagnose the arc or corona discharge state of a housing containing a high voltage panel inside. In the high-pressure panel equipped with the arc and corona discharge monitoring and diagnosis system of ; And, based on the ultrasonic signal detected by the sensor unit, detects arc or corona discharge generated in the facility, and configures an abnormality determination unit for controlling the internal state of the housing according to the detected arc or corona discharge information To provide a high-voltage panel, a low-pressure panel, a distribution panel, and a motor control panel equipped with an ultrasound-based arc and corona discharge monitoring and diagnosis system including a monitoring device.
본 발명은 초음파 영상, 광학 영상, 및 열화상 카메라를 통해 측정된 열상( Thermal Image)를 하나의 화면에 2~ 3가지를 중첩하여 오버레이 할 수 있는 이동식 초음파 설비 고장 진단 장치를 재공하기 위한 것이다. 종래의 초음파 장치에 의한 초음파 발사 후 반사파에 의해 내부 형상을 가시화하는 의료용 초음파 진단 장치와 달리, 배관 누설, 불량 전력 설비 및 고장 기계 설비(장치) 등에서 구성 요소간의 상호 동작에 의해 자연 방사되는 초음파 음원 발생위치 영상을 열상(Thermal Image) 또는 화상(Optical Image)과 함께 가시화하는 이동식 초음파 설비 고장 진단 장치를 제공하기 위함이다.An object of the present invention is to provide a portable ultrasound equipment failure diagnosis apparatus capable of overlaying an ultrasound image, an optical image, and a thermal image measured by a thermal imager on a single screen by superimposing 2-3 types. Unlike a medical ultrasound diagnostic device that visualizes an internal shape by a reflected wave after an ultrasonic wave is emitted by a conventional ultrasound device, an ultrasonic sound source that is naturally radiated by interaction between components in a pipe leakage, defective power equipment, and broken mechanical equipment (devices) It is to provide a portable ultrasound equipment failure diagnosis device that visualizes the occurrence location image together with a thermal image or an optical image.
또한, 본 발명은 기계류 고장 진단 또는 고장 예진, 감시에서 초기 고장 진단이 가능한 진동 음향보다 효율적이 초음파 영역의 음향을 구현할 수 있으며, 초음파 센서와 처리장치, 배터리, 표출장치(디스플레이) 등이 하나의 몸체 케이스에 구비되어 사용자가 용이하게 측정지점을 옮기면서 초음파 가시화를 수행하고 그 결과를 실시간으로 열상 화상과 함께 시각적 표출장치로 표출하거나, 청각적 표출장치를 통하여 인식할 수 있게 하는 이동식 초음파 설비 고장 진단 장치를 제공하기 위함이다.In addition, the present invention can implement the sound of the ultrasonic region more efficiently than the vibration sound that can diagnose the initial failure in machinery failure diagnosis, failure prediction, and monitoring, and the ultrasonic sensor, the processing device, the battery, the display device (display), etc. are one It is provided in the body case and enables the user to perform ultrasound visualization while easily moving the measurement point, and to display the result in real time with a thermal image as a visual display device or to recognize it through an auditory display device. to provide the device.
또한, 본 발명은 데이터 처리 용량이 많을 수 밖에 없는 초음파 영역에서, 초음파 음원 위치 크기 정보를 소실하지 않으면서 방사 초음파 가시화를 위한 데이터 처리량(처리 단계)을 최적화, 최소화 함으로써, 적정한 성능 및 연산 처리 능력을 갖는 전자적 수단으로 수행가능하도록 연산 처리 단계를 형성한 프로그램 및 전자적 수단을 구비하여,In addition, the present invention optimizes and minimizes the data processing amount (processing step) for radiation ultrasound visualization without losing the location size information of the ultrasound sound source in the ultrasound region where the data processing capacity is inevitably large, thereby providing proper performance and computational processing capability. Provided with a program and electronic means that form an arithmetic processing step so as to be executable by electronic means having a
본 발명은 이상 검출의 효율성을 향상하기 위해 초음파의 가시화 뿐 아니라 방열 현상을 함께 가시화 할 수 있게 열화상 카메라로 촬영한 열상을 실시간으로 초음파 가시화 결과와 함께 시각적으로보여 주어 배관 누설, 불량 전력 설비 및 고장 기계 설비(장치) 이상 검출의 정확도를 증대시킨 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치를 제공하기 위함이다.In order to improve the efficiency of detecting anomalies, the present invention visually shows the thermal images taken with a thermal imaging camera together with the ultrasonic visualization results in real time so that not only the visualization of ultrasound but also the heat dissipation phenomenon can be visualized together with the results of ultrasound visualization, pipe leakage, faulty power equipment and An object of the present invention is to provide a portable ultrasonic visualization device equipped with a thermal imaging camera that increases the accuracy of detecting malfunctions in mechanical equipment (device).
본 발명의 이동식 초음파 영상 설비 진단 장치는, 방사 초음파 감지를 이용한 설비 고장 진단 장치에 있어서, 복수개(N)의 초음파 센서로 구성되고 방사 음원을 지향하면서 설비에서 방사되는 초음파 신호들을 감지하는 음파 센서 어레이와;The apparatus for diagnosing a mobile ultrasound imaging facility of the present invention is an apparatus for diagnosing equipment failure using radiated ultrasonic sensing, and includes a plurality of (N) ultrasonic sensors and a sound wave sensor array that senses ultrasonic signals radiated from the equipment while oriented toward the radiated sound source. Wow;
초음파 센서 어레이에서 감지된 초음파 신호들을 샘플링 주파수(Sampling Frequency, fs)로 초음파 신호(xn)들을 취득하기 위한 전자회로가 기판상에 실장된 데이터 습득 보드와;a data acquisition board having an electronic circuit mounted on a substrate for acquiring ultrasonic signals (x n ) at a sampling frequency (f s) of ultrasonic signals detected by the ultrasonic sensor array;
상기 데이터 습득 보에서 수신되는 초음파 신호를 처리하는 연산처리장치가 기판상에 실장되고, 처리된 초음파 음원 정보를 표출장치에 전달하는 메인 보드와;a main board having an arithmetic processing device for processing the ultrasonic signal received from the data acquisition beam mounted on a substrate, and transmitting the processed ultrasonic sound source information to the display device;
상기 메인 보드의 연산처리장치에서 처리된 데이터를 저장하는 데이터 저장 매체와; a data storage medium for storing data processed by the arithmetic processing unit of the main board;
상기 메인 보드의 연산처리장치에서 처리된 데이터를 시각적으로 표출하는 표출장치와; 상기 음파 센서 어레이가 지향하는 방향의 영상을 촬상하여 메인 보드(30)에 전달하는 광학 카메라와; 상기 광학 카메라가 지향하는 방향의 열상(Thermal Image)을 촬영하는 열화상 카메라;를 포함하여 구성되는 것을 특징으로 한다.a display device for visually displaying the data processed by the arithmetic processing device of the main board; an optical camera that captures an image in a direction in which the sound wave sensor array is directed and delivers it to the main board 30; It characterized in that it comprises a; thermal imaging camera for taking a thermal image (Thermal Image) in the direction the optical camera is directed.
또한 본 발명의 이동식 초음파 영상 설비 진단 장치는, 상기 데이터 습득 보드와 메인 보드 및 표출장치에 전력을 공급하는 케이스 내장 충전 배터리 또는 외장 휴대용 배터리를 더 포함하고, 상기 음파 센서 어레이)와 데이터 습득 보드와 메인 보드와 데이터 저장 매체는 하드한 재질의 플라스틱 몸체 케이스에 탑재, 고정되고,In addition, the portable ultrasound imaging equipment diagnosis apparatus of the present invention further includes a case-built rechargeable battery or an external portable battery for supplying power to the data acquisition board, the main board, and the display device, the sound wave sensor array) and the data acquisition board The main board and data storage medium are mounted and fixed in a hard plastic body case,
상기 메인 보드는 초음파 음원 정보, 상기 광학 카메라에 의해 촬상된 센서 어레이가 향하고 있는 방향의 광학 이미지, 및 상기 열화상 카메라에 의해 촬영된 열상 이미지 중에서 선택된 적어도 2~3가지를 위치 좌표를 일치시켜서 표출장치 상에 함께 오버레이(Over Lay)하여 표출하는 것이 바람직하다.The main board expresses at least two or three selected from the ultrasonic sound source information, the optical image in the direction the sensor array imaged by the optical camera is facing, and the thermal image photographed by the thermal imaging camera by matching the position coordinates. It is preferable to display it by overlaying it on the device together.
본 발명에 따르는 경우, 초음파 영상, 광학 영상, 및 열화상 카메라를 통해 측정된 열상(Thermal Image, Infared Image)을 하나의 화면에 2~ 3가지를 중첩하여 오버레이 할 수 있는 이동식 초음파 설비 고장 진단 장치가 제공된다.According to the present invention, an ultrasound image, an optical image, and a portable ultrasound equipment failure diagnosis device capable of overlaying two or three types of thermal images (thermal images, infared images) measured through a thermal imaging camera by superimposing them on one screen is provided
본 발명에 따르는 경우, 종래의 초음파 장치에 의한 초음파 발사 후 반사파에 의해 내부 형상을 가시화하는 의료용 초음파 진단 장치와 달리, 배관 누설, 불량 전력 설비 및 고장 기계 설비(장치) 등에서 구성 요소간의 상호 동작에 의해 자연 방사되는 초음파 음원 영상을 열상 또는 화상(Optical Image)과 함께 가시화하는 이동식 초음파 설비 고장 진단 장치가 제공된다.According to the present invention, unlike the medical ultrasonic diagnostic device that visualizes the internal shape by the reflected wave after the ultrasonic wave is emitted by the conventional ultrasonic device, the interaction between the components in the pipe leakage, faulty power equipment, and malfunctioning mechanical equipment (device), etc. Provided is a portable ultrasound equipment failure diagnosis apparatus that visualizes an ultrasound sound source image naturally radiated by a thermal image or an optical image.
또한, 본 발명에 따르는 경우, 기계류 고장 진단 또는 고장 예진, 감시에서 초기 고장 진단이 가능한 진동 음향보다 효율적이 초음파 영역의 음향을 구현할 수 있으며, 초음파 센서와 처리장치, 배터리, 표출장치(디스플레이) 등이 하나의 몸체 케이스에 구비되어 사용자가 용이하게 측정지점을 옮기면서 초음파 가시화를 수행하고 그 결과를 실시간으로 열상 화상과 함께 시각적 표출장치로 표출하거나, 청각적 표출장치를 통하여 인식할 수 있게 하는 이동식 초음파 설비 고장 진단 장치가 제공된다.In addition, according to the present invention, it is possible to implement the sound of the ultrasonic region more efficiently than the vibration sound that can diagnose the initial failure in the diagnosis of machinery failure or failure prediction and monitoring, and the ultrasonic sensor, processing device, battery, display device (display), etc. A portable ultrasonic wave provided in this single body case that enables the user to perform ultrasound visualization while easily moving the measurement point, and to display the result in real time with a thermal image as a visual display device or to recognize it through an auditory display device A device for diagnosing equipment failure is provided.
또한, 본 발명에 따르는 경우, 데이터 처리 용량이 많을 수 밖에 없는 초음파 영역에서, 초음파 음원 위치 크기 정보를 소실하지 않으면서 방사 초음파 가시화를 위한 데이터 처리량(처리 단계)을 최대한 줄여서, 적정한 성능 및 연산 처리 능력을 갖는 전자적 수단으로 수행가능하도록 연산 처리 단계를 형성한 프로그램 및 전자적 수단을 구비하여,In addition, according to the present invention, in the ultrasonic region where the data processing capacity is inevitably large, the data processing amount (processing step) for radiation ultrasound visualization is reduced as much as possible without losing the ultrasonic sound source position size information, so that proper performance and calculation processing are performed. Provided with a program and electronic means that form an arithmetic processing step so as to be executable by electronic means having the capability,
이상 검출의 효율성을 향상하기 위해 초음파의 가시화 뿐 아니라 방열 현상을 함께 가시화 할 수 있게 열화상 카메라로 촬영한 열상을 실시간으로 초음파 가시화 결과와 함께 시각적으로보여 주어 배관 누설, 불량 전력 설비 및 고장 기계 설비(장치) 이상 검출의 정확도를 증대시킨 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치가 제공된다.In order to improve the efficiency of detecting anomalies, the thermal images taken with a thermal imaging camera are visually displayed together with the ultrasonic visualization results in real time to visualize the heat dissipation phenomenon as well as the visualization of ultrasonic waves. (Apparatus) A portable ultrasonic visualization apparatus equipped with a thermal imaging camera having increased accuracy of anomaly detection is provided.
도 1은 본 발명의 방사 초음파 가시화 센서 좌표와 가상평면 좌표 개념도.1 is a conceptual diagram showing the coordinates of the radiation ultrasound visualization sensor and the virtual plane coordinates of the present invention.
도 2는 본 발명의 방사 초음파 가시화 시간 지연 합산 개념도.Figure 2 is a conceptual diagram of the time delay summation of the radiation ultrasound visualization of the present invention.
도 3은 본 발명의 이동식 초음파 설비 고장 진단 장치 구성도.3 is a block diagram of a mobile ultrasound equipment failure diagnosis apparatus according to the present invention.
도 4, 도 5는 본 발명의 방사 초음파 가시화 과정 설명도.4 and 5 are explanatory views of the radiation ultrasound visualization process of the present invention.
도 6은 노트북 측면 부에서 발생하는 초음파 음원과 온도의 높낮음을 색상구배로 나타내는 사용상태도.Figure 6 is a state diagram showing the ultrasonic sound source generated from the side of the laptop and the high and low of the temperature with a color gradient.
본 발명의 이동식 초음파 영상 설비 진단 장치는, 방사 초음파 감지를 이용한 설비 고장 진단 장치에 있어서, 복수개(N)의 초음파 센서로 구성되고 방사 음원을 지향하면서 설비에서 방사되는 초음파 신호들을 감지하는 음파 센서 어레이와;The apparatus for diagnosing a mobile ultrasound imaging facility of the present invention is an apparatus for diagnosing equipment failure using radiated ultrasonic sensing, and includes a plurality of (N) ultrasonic sensors and a sound wave sensor array that senses ultrasonic signals radiated from the equipment while oriented toward the radiated sound source. Wow;
초음파 센서 어레이에서 감지된 초음파 신호들을 샘플링 주파수(Sampling Frequency, fs)로 초음파 신호(xn)들을 취득하기 위한 전자회로가 기판상에 실장된 데이터 습득 보드와;a data acquisition board having an electronic circuit mounted on a substrate for acquiring ultrasonic signals (x n ) at a sampling frequency (f s) of ultrasonic signals detected by the ultrasonic sensor array;
상기 데이터 습득 보에서 수신되는 초음파 신호를 처리하는 연산처리장치가 기판상에 실장되고, 처리된 초음파 음원 정보를 표출장치에 전달하는 메인 보드와;a main board having an arithmetic processing device for processing the ultrasonic signal received from the data acquisition beam mounted on a substrate, and transmitting the processed ultrasonic sound source information to the display device;
상기 메인 보드의 연산처리장치에서 처리된 데이터를 저장하는 데이터 저장 매체와; a data storage medium for storing data processed by the arithmetic processing unit of the main board;
상기 메인 보드의 연산처리장치에서 처리된 데이터를 시각적으로 표출하는 표출장치와; 상기 음파 센서 어레이가 지향하는 방향의 영상을 촬상하여 메인 보드(30)에 전달하는 광학 카메라와; 상기 광학 카메라가 지향하는 방향의 열상(Thermal Image)을 촬영하는 열화상 카메라;를 포함하여 구성되는 것을 특징으로 한다.a display device for visually displaying the data processed by the arithmetic processing device of the main board; an optical camera that captures an image in a direction in which the sound wave sensor array is directed and delivers it to the main board 30; It characterized in that it comprises a; thermal imaging camera for taking a thermal image (Thermal Image) in the direction the optical camera is directed.
또한 본 발명의 이동식 초음파 영상 설비 진단 장치는, 상기 데이터 습득 보드와 메인 보드 및 표출장치에 전력을 공급하는 케이스 내장 충전 배터리 또는 외장 휴대용 배터리를 더 포함하고, 상기 음파 센서 어레이)와 데이터 습득 보드와 메인 보드와 데이터 저장 매체는 하드한 재질의 플라스틱 몸체 케이스에 탑재, 고정되고,In addition, the portable ultrasound imaging equipment diagnosis apparatus of the present invention further includes a case-built rechargeable battery or an external portable battery for supplying power to the data acquisition board, the main board, and the display device, the sound wave sensor array) and the data acquisition board The main board and data storage medium are mounted and fixed in a hard plastic body case,
상기 메인 보드는 초음파 음원 정보, 상기 광학 카메라에 의해 촬상된 센서 어레이가 향하고 있는 방향의 광학 이미지, 및 상기 열화상 카메라에 의해 촬영된 열상 이미지 중에서 선택된 적어도 2~3가지를 위치 좌표를 일치시켜서 표출장치 상에 함께 오버레이(Over Lay)하여 표출하는 것이 바람직하다.The main board expresses at least two or three selected from the ultrasonic sound source information, the optical image in the direction the sensor array imaged by the optical camera is facing, and the thermal image photographed by the thermal imaging camera by matching the position coordinates. It is preferable to display it by overlaying it on the device together.
이하에서 본 발명의 일실시예에 따른 방사 초음파 가시화용 전자적 수단 및 컴퓨터 프로그램이 구비된 휴대용 설비 고장 진단 장치에 대하여 첨부된 도면을 참조하여 상세하게 설명한다. 도 1은 본 발명의 방사 초음파 가시화 센서 좌표와 가상평면 좌표 개념도, 도 2는 본 발명의 방사 초음파 가시화 시간 지연 합산 개념도, 도 3은 본 발명의 방사 초음파 가시화용 전자적 수단이 구비된 휴대용 설비 고장 진단 장치 구성도이고, 도 4, 도 5는 본 발명의 방사 초음파 가시화 과정 설명도이다.Hereinafter, an apparatus for diagnosing a portable equipment failure equipped with an electronic means for radiation ultrasound visualization and a computer program according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 1 is a conceptual diagram of the radiation ultrasound visualization sensor coordinates and virtual plane coordinates of the present invention, FIG. 2 is a conceptual diagram of the radiation ultrasound visualization time delay summation of the present invention, and FIG. It is a configuration diagram of the apparatus, and FIGS. 4 and 5 are explanatory diagrams of the radiation ultrasound visualization process of the present invention.
본 발명은 초음파를 발사체와 초음파 수신체를 구비하여 에코 반사 초음파를 분석하는 것이 아니라, 기계 설비나 가스관 등에서 자연 방사되는(에코 신호가 아닌) 초음파 발생위치를 이미지 영상으로 보여주고, 또한, 초음파 발생위치를 이미지 영상과 열상(Thermal Image)을 하나의 화면에 보여줌으로써 설비 고장 진단을 하는데 사용되는 이동식 초음파 영상 설비 진단 장치에 관한 것이다.The present invention does not analyze echo-reflected ultrasonic waves by providing ultrasonic waves with a projectile and an ultrasonic receiver, but shows the location of ultrasonic waves that are naturally radiated (not echo signals) from mechanical equipment or gas pipes as image images, and also generates ultrasonic waves. The present invention relates to a portable ultrasound imaging equipment diagnosis apparatus used to diagnose equipment failures by displaying a location image and a thermal image on one screen.
본 발명의 일실시예에 따른 방사 초음파 가시화용 전자적 수단 및 컴퓨터 프로그램이 구비된 휴대용 설비 고장 진단 장치는, 초음파 센서 어레이(10, Array)와 데이터 습득 보드(DAQ 보드, 20)와 메인 보드(30)와 데이터 저장 매체(40)와 배터리(50)와 플라스틱 몸체 케이스(60)와 표출장치(70)와 광학 카메라(80)와 열화상 카메라(90)를 포함한다.An apparatus for diagnosing a portable equipment failure provided with an electronic means for radiation ultrasound visualization and a computer program according to an embodiment of the present invention includes an ultrasonic sensor array (10, Array), a data acquisition board (DAQ board, 20), and a main board (30). ), a data storage medium 40 , a battery 50 , a plastic body case 60 , a display device 70 , an optical camera 80 , and a thermal imaging camera 90 .
도 3에 도시된 바와 같이, 초음파 센서 어레이(10, Array)는 복수개(N)의 초음파 센서(11)로 구성되고 방사 음원을 지향하면서 설비에서 방사되는 초음파 신호들을 감지한다. 초음파 센서 어레이(10, Array)는 평면 상의 인쇄회로 기판(PCB) 또는 곡면(입체) 상의 유연성 인쇄회로 기판(Flexible PCB)에 MEMS 마이크로폰 또는 초음파 트랜스듀서, 초음파 센서들이 복수개 탑재된 형태일 수 있다. As shown in FIG. 3 , the ultrasonic sensor array 10 ( Array) is composed of a plurality of (N) ultrasonic sensors 11 and senses ultrasonic signals radiated from the facility while directing the radiation sound source. The ultrasonic sensor array 10 may be a type in which a plurality of MEMS microphones, ultrasonic transducers, and ultrasonic sensors are mounted on a flat printed circuit board (PCB) or a curved (three-dimensional) flexible printed circuit board (Flexible PCB).
데이터 습득 보드(DAQ 보드, 20)는 초음파 센서 어레이(10, Array)에서 감지된 초음파 신호들을 샘플링 주파수(Sampling Frequency, fs)로 초음파 신호(xn)들을 취득하기 위한 전자회로가 기판상에 실장된다. 데이터 습득 보드(DAQ 보드, 20)는 샘플링을 관장하고, 신호 증폭 회로를 내장할 수 있다. The data acquisition board (DAQ board, 20) has an electronic circuit for acquiring the ultrasonic signals (x n ) at a sampling frequency (Sampling Frequency, f s ) of the ultrasonic signals detected by the ultrasonic sensor array (10, Array) on the board. is mounted The data acquisition board (DAQ board) 20 may be in charge of sampling and may have a built-in signal amplification circuit.
메인 보드(30)는 데이터 습득 보드(DAQ 보드, 20)에서 수신되는 디지탈(또는 아날로그) 초음파 신호를 처리하는 연산처리장치(31)가 기판상에 실장되고, 처리된 초음파 음원 정보를 표출장치(70)에 전달한다. 데이터 저장 매체(40)는 메인 보드(30)의 연산처리장치(31)에서 처리된 데이터를 저장한다.The main board 30 has an arithmetic processing unit 31 that processes digital (or analog) ultrasonic signals received from the data acquisition board (DAQ board, 20) mounted on the board, and displays the processed ultrasonic sound source information ( 70). The data storage medium 40 stores data processed by the arithmetic processing unit 31 of the main board 30 .
배터리(50)는 데이터 습득 보드(20)와 메인 보드(30)에 전력을 공급하는데, 플라스틱 몸체 케이스(60)의 내부에 착탈 충전식으로 구비된 것이 바람직하지만, 플라스틱 몸체 케이스(60)의 외부에 위치하여 전선으로 데이터 습득 보드(20)와 메인 보드(30) 및 표출장치(70)에 전력을 공급하는 별도의 휴대식 충전 배터리일 수 있다. 또는 내부 배터리와 외장 보조 배터리를 모두 구비, 사용할 수도 있다.The battery 50 supplies power to the data acquisition board 20 and the main board 30 , and it is preferable that it is provided in a removable and rechargeable manner inside the plastic body case 60 , but on the outside of the plastic body case 60 . It may be a separate portable rechargeable battery that is located and supplies power to the data acquisition board 20 and the main board 30 and the display device 70 with wires. Alternatively, both an internal battery and an external auxiliary battery may be provided and used.
플라스틱 몸체 케이스(60)는 초음파 센서 어레이(10, Array)와 데이터 습득 보드(20)와 메인 보드(30)와 데이터 저장 매체(40)를 고정하는 하드한 재질로 구성된다. The plastic body case 60 is made of a hard material for fixing the ultrasonic sensor array 10 , the data acquisition board 20 , the main board 30 , and the data storage medium 40 .
플라스틱 몸체 케이스(60)는 전기적으로 서로 연결된 복수개의 초음파 센서들(11)로 구성된 어레이(10, Array)를 지지하거나, 또는 초음파 센서들(11)들이 실장된 평판 또는 곡면판 상의 초음파 센서 어레이 PCB 기판을 지지, 고정함으로써 초음파 센서 어레이(10, Array)를 지지하는 것이 바람직하다. 플라스틱 몸체 케이스(60)의 내부는 중공실이 형성되며 중공실에 데이터 습득 보드(20) 및 연산처리 능력을 구비한 메인 보드(30)가 고정 설치된다. The plastic body case 60 supports an array 10 composed of a plurality of ultrasonic sensors 11 electrically connected to each other, or an ultrasonic sensor array PCB on a flat or curved plate on which the ultrasonic sensors 11 are mounted. It is preferable to support the ultrasonic sensor array (10, Array) by supporting and fixing the substrate. A hollow chamber is formed inside the plastic body case 60 , and the data acquisition board 20 and the main board 30 having arithmetic processing capability are fixedly installed in the hollow chamber.
표출장치(70)는 메인 보드(30)의 연산처리장치(31)에서 처리된 데이터를 시각적으로 표출하여 주고 상기 플라스틱 몸체 케이스(60)에 일체로 설치된다. 또한, 표출장치(70)는 플라스틱 몸체 케이스(60)의 외부로 노출되도록 플라스틱 몸체 케이스(60)에 일체로 고정설치된다. The display device 70 visually expresses the data processed by the arithmetic processing device 31 of the main board 30 and is integrally installed in the plastic body case 60 . In addition, the expression device 70 is integrally fixed to the plastic body case 60 so as to be exposed to the outside of the plastic body case 60 .
광학 카메라(80)는 초음파 센서 어레이(10, Array)가 지향하는 방향의 영상을 촬상하여 메인 보드(30)에 전달한다. 광학 카메라(80)의 렌즈는 센서 어레이(10, Array)가 평판 형상인 경우 그것이 지향하는 방향을 향하여 광학 렌즈가 노출된다. 플라스틱 몸체 케이스(60)의 전면은 광학 카메라(80)의 렌즈를 노출시키기 위한 구멍(Hole)을 갖는다.The optical camera 80 captures an image in a direction in which the ultrasonic sensor array 10 is oriented and transmits it to the main board 30 . As for the lens of the optical camera 80, when the sensor array 10 (Array) has a flat plate shape, the optical lens is exposed toward the direction it is directed. The front of the plastic body case 60 has a hole for exposing the lens of the optical camera 80 .
촬영하는 열화상 카메라(90)는 광학 카메라(80)가 지향하는 방향의 열상(Thermal Image)을 촬영하여 연산처리 장치를 구비한 메인 보드(30)로 전송한다. 메인 보드(30)는 초음파 음원 정보와 상기 광학 카메라(70)에 의해 촬상된 센서 어레이(10, Array)가 향하고 있는 방향의 광학 이미지와 함께 표출장치(70) 상에 오버레이(Over Lay)하여 표출하게 된다. 열화상 카메라(90)는 다른 열 촬상 원리를 갖는 열상 촬영 카메라로 대체될 수 있다. 열화상 카메라는 사용자가 지향하는 방향에서의 열상(Infrared Image)을 촬영하며, 온도의 높낮음을 색상의 구배로 표출장치에 전송한다. The thermal imaging camera 90 photographing takes a thermal image in the direction the optical camera 80 is oriented and transmits it to the main board 30 having an arithmetic processing unit. The main board 30 is displayed by overlaying the ultrasonic sound source information and the optical image in the direction in which the sensor array 10 captured by the optical camera 70 is facing on the display device 70 (Over Lay). will do The thermal imaging camera 90 may be replaced by a thermal imaging camera having a different thermal imaging principle. The thermal imaging camera takes an infrared image in the direction the user is pointing, and transmits the high and low temperature to the display device as a color gradient.
<메인 보드 기능> <Main board function>
도 5는 본 발명의 방사 초음파 가시화 방법 흐름도이다. 도 1 내지 도 5에 도시된 바와 같이, 먼저 지연 거리 연산 단계(S10)에서, 센서 좌표와 가상평면 좌표를 이용하여 센서(11)들과 가상평면 지점간 거리들을 연산한다.5 is a flow chart of the radiation ultrasound visualization method of the present invention. 1 to 5 , in the delay distance calculation step S10 , the distances between the sensors 11 and the virtual plane points are calculated using the sensor coordinates and the virtual plane coordinates.
도 1은 센서 좌표와 가상평면 좌표 간의 관계를 보이는 그림이다. 도시된 바와 같이, 센서 좌표(Xs, Ys)와 가상 평면 좌표(Xg, Yg) 사이의 거리 dk는 다음과 같이 계산된다. 거리 L이 1m인 경우 +L2의 연산은 +1 연산으로 표시된다.1 is a diagram showing the relationship between sensor coordinates and virtual plane coordinates. As shown, the distance d k between the sensor coordinates (Xs, Ys) and the virtual plane coordinates (Xg, Yg) is calculated as follows. When the distance L is 1 m, the operation of +L 2 is expressed as +1 operation.
Figure PCTKR2020014485-appb-I000001
Figure PCTKR2020014485-appb-I000001
다음으로, 초음파 감지 단계(S20)에서, 복수개(N)의 초음파 센서(11)로 구성되고 방사 음원을 지향하는 초음파 센서 어레이(10, Array)가 초음파 신호들을 감지한다.Next, in the ultrasonic sensing step (S20), the ultrasonic sensor array (10, Array) consisting of a plurality of (N) ultrasonic sensors 11 and directing the radiation source detects ultrasonic signals.
데이터 습득 단계(S30)에서, 데이터 습득 보드(DAQ 보드, 20)가 초음파 센서 어레이(10, Array)에서 감지된 초음파 신호들을 샘플링 주파수(Sampling Frequency, fs)로 초음파 신호(xn)들을 취득한다. 초음파 신호(xn)에 관한 상세 식은 다음과 같다. In the data acquisition step (S30), the data acquisition board (DAQ board, 20) acquires the ultrasonic signals (x n ) by sampling the ultrasonic signals detected by the ultrasonic sensor array (10, Array) at a sampling frequency (Sampling Frequency, f s ) do. A detailed equation for the ultrasound signal (x n ) is as follows.
Figure PCTKR2020014485-appb-I000002
Figure PCTKR2020014485-appb-I000002
여기서, S : Sample Number. fs : Sampling Rate(frequency)이다.Here, S: Sample Number. f s : Sampling Rate (frequency).
데이터 습득 단계(S30) 이후에, 연산처리장치를 구비한 메인 보드(30)가 단계(S30)에서 취득된 초음파 신호(xn)들에 미리 설정된 초음파 주파수 대역(f1~f2)의 밴드 패스 필터(band pass filter)가 적용되는 단계(S40)가 진행된다. 필터링 데이터 xnf[s]에서, 1 ≤ nf ≤ N 이다.After the data acquisition step (S30), the main board 30 having the arithmetic processing unit is preset to the ultrasonic signals (x n ) acquired in the step (S30) in the ultrasonic frequency band (f 1 to f 2 ) band A step S40 of applying a band pass filter is performed. In the filtered data x nf [s], 1 ≤ nf ≤ N.
Figure PCTKR2020014485-appb-I000003
Figure PCTKR2020014485-appb-I000003
도 2는 본 발명의 방사 초음파 가시화 시간 지연 합산 개념도이다. 다음 진행되는 음원값 연산 단계(S50)에서, 단계(S10)의 지연 거리들을 이용하여 초음파 신호(xn)들에 각각 시간 지연 보정을 적용하고, 이들을 합산하여 M 개의 가상 평면 지점들의 음원값(rnk)들을 연산한다. 2 is a conceptual diagram illustrating the time delay summation of radiation ultrasound visualization according to the present invention. In the next sound source value calculation step (S50), time delay correction is applied to each of the ultrasound signals (x n ) using the delay distances of the step (S10), and by summing them, the sound source values of M virtual plane points ( r nk ) are computed.
먼저 지연 샘플수를 계산한다. 센서와 가상평면 거리, 및 음속을 이용하여 시간지연을 계산하고, 이렇게 계산된 시간 지연으로 지연 샘플수를 계산한다. 상세 사항은 다음과 같다.First, the number of delayed samples is calculated. The time delay is calculated using the distance between the sensor and the virtual plane and the speed of sound, and the number of delay samples is calculated using the calculated time delay. Details are as follows.
Figure PCTKR2020014485-appb-I000004
(시간지연),
Figure PCTKR2020014485-appb-I000004
(time delay),
Figure PCTKR2020014485-appb-I000005
Figure PCTKR2020014485-appb-I000005
여기서, Cd: 시간 지연 계수이고, c는 음속이다. Nk는 지연 샘플수이다.where C d is the time delay coefficient, and c is the speed of sound. N k is the number of delayed samples.
다음으로, 지연 샘플수를 이용하여 시간 지연을 보상한 후 합을 시행한다. 이때, 센서별 보정 계수가 적용된다. Next, the sum is performed after compensating for the time delay using the number of delayed samples. At this time, a correction coefficient for each sensor is applied.
Figure PCTKR2020014485-appb-I000006
Figure PCTKR2020014485-appb-I000006
여기서, 1 ≤ nk≤ M이다. M은 가상평면 좌표 상의 행과 열에 있는 모든 요소(element)의 수이다.Here, 1 ≤ nk ≤ M. M is the number of all elements in the row and column in the imaginary plane coordinates.
다음으로, 단계(S40)에서 생성된 음원값(rnk)들의 빔 파워 레벨(z, Beam Power Level)들을 연산하는 빔 파워 레벨 연산 단계(S60)가 수행된다.Next, a beam power level calculation step (S60) of calculating the beam power levels (z, Beam Power Levels) of the sound source values (r nk ) generated in step S40 is performed.
Figure PCTKR2020014485-appb-I000007
Figure PCTKR2020014485-appb-I000007
시각적 표출 단계(S70)에서, 단계(S50)에서 연산된 빔 파워 레벨(z)들을 상기 센서 어레이(10, Array)가 향하고 있는 방향의 광학 이미지와 함께 표출장치(70)상에 오버레이(Over Lay)하여 표출한다.In the visual expression step (S70), the beam power levels (z) calculated in the step (S50) are overlaid on the display device 70 together with the optical image of the direction in which the sensor array 10 (Array) is facing. ) to express
<센서 어레이, 샘플링 주파수><sensor array, sampling frequency>
도 3에 도시된 바와 같이, 초음파 센서 어레이(10, Array)는 복수개의 초음파 센서(11)들이 하나의 평면을 이루는 인쇄회로 기판에 실장되는 방식으로 구성될 수 있다. 초음파 센서 어레이(10, Array)는 장치의 전방에 노출되어 전방(일방향)을 지향하도록 위치 배열된다. 또는, 구체(Sphere), 대략 볼(ball) 형상의 다면체, 반구체, 후방 개방 볼록형 곡면체 상에 복수개의 초음파 센서(11)들이 규칙적인 간격으로 배열되는 형상일 수도 있다. 초음파 센서 어레이(10, Array)는 곡면(입체) 상의 유연성 인쇄회로 기판(Flexible PCB)에 MEMS 마이크로폰, 초음파 트랜스듀서, 또는 초음파 센서들이 복수개 탑재된 형태일 수 있다. As shown in FIG. 3 , the ultrasonic sensor array 10 may be configured in such a way that a plurality of ultrasonic sensors 11 are mounted on a printed circuit board forming a single plane. The ultrasonic sensor array (10, Array) is exposed to the front of the device and positioned so as to face the front (one direction). Alternatively, a plurality of ultrasonic sensors 11 may be arranged at regular intervals on a sphere, a substantially ball-shaped polyhedron, a hemisphere, or a rear open convex curved body. The ultrasonic sensor array 10 may be in a form in which a MEMS microphone, an ultrasonic transducer, or a plurality of ultrasonic sensors are mounted on a flexible printed circuit board (Flexible PCB) on a curved (three-dimensional) surface.
여기서, 샘플링 주파수(Sampling Frequency, fs)는, 20KHz(40KHz) ~ 200KHz 범위이고, 밴드 패스 필터(band pass filter)의 초음파 주파수 대역의 하한계(f1)와 상한계(f2)는 10KHz(20KHz) ~ 100KHz 사이에 존재하는 하나의 범위인 것이 바람직하다.Here, the sampling frequency (Sampling Frequency, f s ) is in the range of 20KHz (40KHz) to 200KHz, and the lower limit (f 1 ) and the upper limit (f 2 ) of the ultrasonic frequency band of the band pass filter are 10 KHz It is preferable that one range exists between (20KHz) and 100KHz.
테스트 결과 이 영역에서 현재 출시된 초음파 센서 감지 성능 및 기계류 고장, 회전 기계류 고장, 가스관 가스 누설, 전력 설비 진단 감시에 효과적이고 필요한 초음파 음원 위치 정보를 얻을수 있고 또한, 이 영역에서 데이터 처리량을 적합하게 감소시킬 수 있음을 테스트 결과 알 수 있었다. 샘플링 주파수가 너무 큰 경우 필요 이상의 데이터 처리가 필요하며 너무 작은 경우 초음파 영역 음원 정보를 상실하게 된다.As a result of the test, it is possible to obtain the ultrasonic sound source location information that is effective and necessary for the detection performance of the currently released ultrasonic sensors in this area and the diagnosis and monitoring of machinery failure, rotating machinery failure, gas pipe gas leak, and power equipment, and also reduces the data throughput in this area appropriately The test results showed that it could be done. If the sampling frequency is too large, more data processing is required, and if the sampling frequency is too small, the ultrasonic sound source information is lost.
<밴드 패스, 헤테로 가청 변환><Band pass, hetero-audible conversion>
본 발명의 일실시예에 따른 방사 초음파 가시화용 전자적 수단 및 컴퓨터 프로그램이 구비된 휴대용 설비 고장 진단 장치는, 청음용 음성 출력 수단(80, 스피커)을 더 포함하여 구성되는 것이 바람직하다. 여기서, 메인 보드(30)는, 생성된 음원값(rnk)들 중 일부 또는 전부를 헤테로다인(Heterodyne) 변환하여 음파 대역(100Hz ~ 20KHz)의 가청 음향 신호를 변환하고, 메인 보드(30)는 상기 가청 음향 신호를 청음용 음성 출력 수단(90)으로 전송하여, 방사 초음파를 사용자가 청각으로 인지할 수 있도록 한다. It is preferable that the apparatus for diagnosing a portable equipment failure provided with an electronic means for visualizing radiation ultrasound and a computer program according to an embodiment of the present invention further includes an audio output means (80, speaker) for listening. Here, the main board 30 converts some or all of the generated sound source values (r nk ) by heterodyne conversion to convert an audible sound signal of a sound wave band (100Hz to 20KHz), and the main board 30 transmits the audible sound signal to the audio output means 90 for listening, so that the user can perceive the radiated ultrasound by hearing.
또한, 휴대용(Portable) 초음파 영상 설비 진단 장치는, 플라스틱 몸체 케이스(60)에 노출되도록 상기 메인 보드(30)와 전기전자적으로 연결된 사용자 인터페이스용 입력창을 구비하며, 밴드 패스 필터(band pass filter)의 초음파 주파수 대역의 하한계(f1)와 상한계(f2)가 사용자 인터페이스용 입력창을 통하여 사용자에 의해 입력될 수 있도록 하는 것이 바람직하다. 즉, 초음파 감지 단계(S20) 전에, 입력창을 통하여 밴드 패스 필터(band pass filter)의 초음파 주파수 대역의 하한계(f1)와 상한계(f2)가 입력되는 단계가 진행된다. 사용자 입력창을 통하여 입력하거나 설계자가 미리 입력한 여러개의 범위 중에서 사용자가 선택하는 방법으로 진행될 수 있다.In addition, the portable ultrasound imaging equipment diagnosis apparatus includes an input window for a user interface electrically and electronically connected to the main board 30 so as to be exposed to the plastic body case 60, and includes a band pass filter. It is preferable that the lower limit (f 1 ) and the upper limit (f 2 ) of the ultrasonic frequency band of can be input by the user through an input window for a user interface. That is, before the ultrasonic sensing step ( S20 ), the step of inputting the lower limit ( f 1 ) and the upper limit ( f 2 ) of the ultrasonic frequency band of the band pass filter through the input window is performed. It may be entered through a user input window or a method may be performed in which the user selects from among a plurality of ranges previously input by the designer.
도 6은 노트북 측면 부에서 발생하는 초음파 음원과 온도의 높낮음을 색상구배로 나타내는 사용상태도이다. 이상 발생지점에서 소음 발생이 심하고 온도가 높은 경우 이상 검출에 좀더 완벽을 기할 수 있어 이상 검출에 소음 가시화만을 적용했을 때보다 효과적임을 알수 있었다.6 is a state diagram showing the ultrasonic sound source generated from the side of the notebook computer and the high and low temperature in a color gradient. In the case where the noise is severe and the temperature is high at the point of occurrence of the anomaly, the detection of the anomaly can be more perfect, and it was found that it is more effective than when only the noise visualization was applied to the detection of the anomaly.
본 발명은 상기에서 언급한 바람직한 실시예와 관련하여 설명됐지만, 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니며, 본 발명의 범위는 이하의 특허청구범위에 의하여 정하여지는 것으로 본 발명과 균등 범위에 속하는 다양한 수정 및 변형을 포함할 것이다.Although the present invention has been described in relation to the above-mentioned preferred embodiments, the scope of the present invention is not limited to these embodiments, and the scope of the present invention is defined by the following claims and is equivalent to the present invention various modifications and variations pertaining to
아래의 특허청구범위에 기재된 도면부호는 단순히 발명의 이해를 보조하기 위한 것으로 권리범위의 해석에 영향을 미치지 아니함을 밝히며 기재된 도면부호에 의해 권리범위가 좁게 해석되어서는 안될 것이다.The reference numerals described in the claims below are merely intended to aid the understanding of the invention and do not affect the interpretation of the scope of rights.
이상 검출의 효율성을 향상하기 위해 초음파의 가시화 뿐 아니라 방열 현상을 함께 가시화 할 수 있게 열화상 카메라로 촬영한 열상을 실시간으로 초음파 가시화 결과와 함께 시각적으로보여 주어 배관 누설, 불량 전력 설비 및 고장 기계 설비(장치) 이상 검출의 정확도를 증대시킨 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치가 제공된다.In order to improve the efficiency of detecting anomalies, the thermal images taken with a thermal imaging camera are visually displayed together with the ultrasonic visualization results in real time to visualize the heat dissipation phenomenon as well as the visualization of ultrasonic waves. (Apparatus) A portable ultrasonic visualization apparatus equipped with a thermal imaging camera having increased accuracy of anomaly detection is provided.

Claims (9)

  1. 방사 초음파 감지를 이용한 설비 고장 진단 장치에 있어서,In the equipment failure diagnosis apparatus using radiation ultrasonic detection,
    복수개(N)의 초음파 센서(11)로 구성되고 방사 음원을 지향하면서 설비에서 방사되는 초음파 신호들을 감지하는 음파 센서 어레이(10, Array)와;a sound wave sensor array (10, Array) comprising a plurality of (N) ultrasonic sensors 11 and sensing ultrasonic signals radiated from the facility while oriented toward the radiated sound source;
    초음파 센서 어레이(10, Array)에서 감지된 초음파 신호들을 샘플링 주파수(Sampling Frequency, fs)로 초음파 신호(xn)들을 취득하기 위한 전자회로가 기판상에 실장된 데이터 습득 보드(DAQ 보드, 20)와;A data acquisition board (DAQ board, 20) on which an electronic circuit for acquiring ultrasonic signals (x n ) for ultrasonic signals detected by the ultrasonic sensor array (10, Array) at a sampling frequency (Sampling Frequency, f s) is mounted on a substrate )Wow;
    상기 데이터 습득 보드(DAQ 보드, 20)에서 수신되는 초음파 신호를 처리하는 연산처리장치(31)가 기판상에 실장되고, 처리된 초음파 음원 정보를 표출장치(70)에 전달하는 메인 보드(30)와;The data acquisition board (DAQ board, 20), the arithmetic processing device 31 for processing the ultrasonic signal received from the board is mounted on the main board 30, which transmits the processed ultrasonic sound source information to the display device (70) Wow;
    상기 메인 보드(30)의 연산처리장치(31)에서 처리된 데이터를 저장하는 데이터 저장 매체(40)와; a data storage medium 40 for storing data processed by the arithmetic processing unit 31 of the main board 30;
    상기 메인 보드(30)의 연산처리장치(31)에서 처리된 데이터를 시각적으로 표출하는 표출장치(70)와;a display device 70 for visually displaying the data processed by the arithmetic processing device 31 of the main board 30;
    상기 음파 센서 어레이(10, Array)가 지향하는 방향의 영상을 촬상하여 메인 보드(30)에 전달하는 광학 카메라(80)와;an optical camera 80 that captures an image in the direction the sound wave sensor array 10 is directed and delivers to the main board 30;
    상기 광학 카메라(80)가 지향하는 방향의 열상(Thermal Image)을 촬영하는 열화상 카메라(90),Thermal imaging camera 90 for taking a thermal image in the direction the optical camera 80 is directed,
    를 포함하여 구성되는 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.A portable ultrasound visualization device equipped with a thermal imaging camera, characterized in that it comprises a.
  2. 제1항에 있어서,According to claim 1,
    상기 데이터 습득 보드(20)와 메인 보드(30) 및 표출장치(70)에 전력을 공급하는 케이스 내장 충전 배터리(110) 또는 외장 휴대용 배터리를 더 포함하고,Further comprising a case-built rechargeable battery 110 or an external portable battery for supplying power to the data acquisition board 20 and the main board 30 and the display device 70,
    상기 음파 센서 어레이(10, Array)와 데이터 습득 보드(20)와 메인 보드(30)와 데이터 저장 매체(40)는 하드한 재질의 플라스틱 몸체 케이스(60)에 탑재, 고정되고,The sound wave sensor array (10, Array), the data acquisition board 20, the main board 30, and the data storage medium 40 are mounted and fixed to the hard plastic body case 60,
    상기 메인 보드(30)는 초음파 음원 정보, 상기 광학 카메라(70)에 의해 촬상된 센서 어레이(10, Array)가 향하고 있는 방향의 광학 이미지, 및 상기 열화상 카메라(90)에 의해 촬영된 열상 이미지 중에서 선택된 적어도 2~3가지를 위치 좌표를 일치시켜서 표출장치(70) 상에 함께 오버레이(Over Lay)하여 표출하는 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.The main board 30 includes ultrasonic sound source information, an optical image in a direction in which the sensor array 10 captured by the optical camera 70 is facing, and a thermal image captured by the thermal imaging camera 90 . A portable ultrasound visualization device equipped with a thermal imaging camera, characterized in that at least two or three selected from among the position coordinates are matched and overlaid together on the display device 70 to display.
  3. 제1항에 있어서,According to claim 1,
    상기 메인 보드(30)는,The main board 30,
    센서 좌표와 가상평면 좌표를 이용하여 센서(11)들과 가상평면 지점간 거리들을 연산하는 지연 거리 연산하고,Calculating the delay distance for calculating the distances between the sensors 11 and the virtual plane point using the sensor coordinates and the virtual plane coordinates,
    상기 지연 거리들을 이용하여 상기 초음파 신호(xn)들에 각각 시간 지연 보정을 적용하고 이들을 합산하여 가상 평면 지점들의 음원값(rnk)들을 생성하고,Using the delay distances, time delay correction is applied to each of the ultrasound signals (x n ) and summed to generate sound source values (r nk ) of virtual plane points,
    상기 생성된 음원값(rnk)들의 빔 파워 레벨(z, Beam Power Level)들을 연산하여 생성하는,Generated by calculating the beam power levels (z, Beam Power Levels) of the generated sound source values (r nk ),
    컴퓨터 프로그램을 내장하여 실행하는 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.A portable ultrasound visualization device equipped with a thermal imaging camera, characterized in that it embeds and executes a computer program.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 메인 보드(30)는,The main board 30,
    상기 빔 파워 레벨(z)들을 상기 센서 어레이(10, Array)가 향하고 있는 방향의 광학 이미지와 함께 표출장치(70)에 오버레이(Over Lay)하여 시각적으로 표출하는 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.A thermal imaging camera characterized in that the beam power level (z) is visually expressed by overlaying the beam power level (z) on the display device 70 together with the optical image in the direction the sensor array (10, Array) is facing. A portable ultrasound visualization device.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 메인 보드(30)는, The main board 30,
    데이터 습득시 취득된 초음파 신호(xn)들에 미리 설정된 초음파 주파수 대역(f1~f2)의 밴드 패스 필터(band pass filter)가 적용하고, A band pass filter of a preset ultrasonic frequency band (f 1 ~ f 2 ) is applied to the ultrasonic signals (x n) acquired during data acquisition,
    상기 밴드 패스 필터가 적용된 신호를 이용하여 음원값(rnk)을 연산하는 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.A portable ultrasound visualization apparatus equipped with a thermal imaging camera, characterized in that the sound source value (r nk ) is calculated using the signal to which the band pass filter is applied.
  6. 제1항에 있어서,According to claim 1,
    상기 초음파 센서 어레이(10, Array)는 하나의 평면 상에 복수개의 초음파 센서(11)들이 전방을 지향하도록 위치 배열되거나, The ultrasonic sensor array (10, Array) is positioned so that a plurality of ultrasonic sensors 11 on one plane to face forward, or
    구(Sphere) 상에 복수개의 초음파 센서(11)들이 규칙적인 간격으로 배열되는 형상인 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.A portable ultrasound visualization device equipped with a thermal imaging camera, characterized in that a plurality of ultrasound sensors 11 are arranged at regular intervals on a sphere.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 샘플링 주파수(Sampling Frequency, fs)는, 20KHz ~ 200KHz 범위이고,The sampling frequency (Sampling Frequency, f s ) is in the range of 20KHz ~ 200KHz,
    상기 밴드 패스(band pass filter)의 초음파 주파수 대역의 하한계(f1)와 상한계(f2)는 10KHz ~ 100KHz 사이에 존재하는 하나의 범위인 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치. The lower limit (f 1 ) and the upper limit (f 2 ) of the ultrasonic frequency band of the band pass filter are portable ultrasonic waves equipped with a thermal imaging camera, characterized in that one range exists between 10KHz and 100KHz. visualization device.
  8. 제3항에 있어서,4. The method of claim 3,
    청음용 음성 출력 수단(90, 스피커)을 더 포함하여 구성되고,It is configured to further include an audio output means (90, speaker) for listening,
    상기 메인 보드(30)는, The main board 30,
    생성된 음원값(rnk)들 중 일부 또는 전부를 헤테로다인(Heterodyne) 변환하여 음파 대역(100Hz ~ 20KHz)의 가청 음향 신호를 변환하고,Some or all of the generated sound source values (r nk ) are heterodyne-converted to convert an audible sound signal of a sound wave band (100Hz ~ 20KHz),
    상기 메인 보드(30)는 상기 가청 음향 신호를 청음용 음성 출력 수단(110)으로 전송하여, 방사 초음파를 사용자가 청각으로 인지할 수 있도록 하는 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.The main board 30 transmits the audible sound signal to the audio output means 110 for hearing, so that the user can perceive the radiated ultrasound by hearing. .
  9. 제5항에 있어서,6. The method of claim 5,
    밴드 패스 필터(band pass filter)의 초음파 주파수 대역의 하한계(f1)와 상한계(f2)가 입력되는 사용자 인터페이스용 입력창을 더 구비하는 것을 특징으로 하는 열화상 카메라를 탑재한 휴대용 초음파 가시화 장치.Portable ultrasound equipped with a thermal imaging camera, characterized in that it further comprises an input window for a user interface in which the lower limit (f 1 ) and the upper limit (f 2 ) of the ultrasonic frequency band of the band pass filter are input visualization device.
PCT/KR2020/014485 2020-04-21 2020-10-22 Portable ultrasonic visualization device equipped with thermographic camera WO2021215600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200048054 2020-04-21
KR10-2020-0048054 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021215600A1 true WO2021215600A1 (en) 2021-10-28

Family

ID=78269510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014485 WO2021215600A1 (en) 2020-04-21 2020-10-22 Portable ultrasonic visualization device equipped with thermographic camera

Country Status (1)

Country Link
WO (1) WO2021215600A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522996B1 (en) * 2015-01-30 2015-05-27 (주)코어센스 Composite video signal output device for nondestructive inspection
WO2018212574A1 (en) * 2017-05-16 2018-11-22 (주)에스엠인스트루먼트 Movable ultrasonic image facility diagnosis device
KR20190052445A (en) * 2017-11-08 2019-05-16 한국전력공사 Composite sensor for sensing internal abnormal of power equipment and diagnosis apparatus using the same
KR20190122459A (en) * 2018-04-20 2019-10-30 한국전력공사 Diagnostic equipment for electrical power facilities and the method therof
CN110608804A (en) * 2019-08-16 2019-12-24 宁海县雁苍山电力建设有限公司 Intelligent detection equipment with infrared and local discharge functions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522996B1 (en) * 2015-01-30 2015-05-27 (주)코어센스 Composite video signal output device for nondestructive inspection
WO2018212574A1 (en) * 2017-05-16 2018-11-22 (주)에스엠인스트루먼트 Movable ultrasonic image facility diagnosis device
KR20190052445A (en) * 2017-11-08 2019-05-16 한국전력공사 Composite sensor for sensing internal abnormal of power equipment and diagnosis apparatus using the same
KR20190122459A (en) * 2018-04-20 2019-10-30 한국전력공사 Diagnostic equipment for electrical power facilities and the method therof
CN110608804A (en) * 2019-08-16 2019-12-24 宁海县雁苍山电力建设有限公司 Intelligent detection equipment with infrared and local discharge functions

Similar Documents

Publication Publication Date Title
WO2018212574A1 (en) Movable ultrasonic image facility diagnosis device
WO2017200300A2 (en) Method for cumulatively displaying noise source visualization data, and sound camera system
WO2018212573A1 (en) Radiating ultrasonic wave visualization method, and electronic recording medium in which program for performing radiating ultrasonic wave visualization method is recorded
KR20050058467A (en) Sound source search system
WO2020256276A2 (en) Ultrasound imaging device and method using position and posture tracking of probe of ultrasound scanner
WO2022250219A1 (en) Abnormal sound source determination method and ai sound video camera
WO2021215600A1 (en) Portable ultrasonic visualization device equipped with thermographic camera
WO2020032386A1 (en) Electronic device including structure compensating for height difference between sensor and elastic member disposed on back surface of display
KR101962198B1 (en) Acoustic Camera Display Method
KR101955956B1 (en) Ultrasonic Diagnosis Device
KR20210039312A (en) Acoustic Camera Using CCTV
WO2012086997A9 (en) Plasma particle photographing apparatus
KR101976756B1 (en) Portable ultrasonic diagnosis device
CN213875543U (en) Acoustic imaging apparatus
KR20100117793A (en) Apparatus for analyzing sound source
WO2019117448A1 (en) Complex multi-frequency ultrasonic phased array imaging device
JPS62245977A (en) Monitoring device for electric power equipment
WO2014181966A1 (en) Unit ultrasonic wave probe, ultrasonic wave probe module having same, and ultrasonic wave probe device having same
WO2020130663A1 (en) Work guide image display device and method using surround view in construction equipment
CN218885815U (en) Acoustic imaging apparatus
CN218787889U (en) Acoustic imaging apparatus
WO2020096225A1 (en) Speaker module having inclined diaphragm and electronic device including same
WO2022177197A1 (en) Apparatus for measuring thickness of glass substrate and control method therefor
WO2021230583A1 (en) Acoustic camera having expandable acoustic wave receiving structure
WO2023022418A1 (en) Acoustic camera having waterproof means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932389

Country of ref document: EP

Kind code of ref document: A1