WO2021215560A1 - Plasma processing system - Google Patents

Plasma processing system Download PDF

Info

Publication number
WO2021215560A1
WO2021215560A1 PCT/KR2020/005352 KR2020005352W WO2021215560A1 WO 2021215560 A1 WO2021215560 A1 WO 2021215560A1 KR 2020005352 W KR2020005352 W KR 2020005352W WO 2021215560 A1 WO2021215560 A1 WO 2021215560A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
unit
control unit
power supply
processing system
Prior art date
Application number
PCT/KR2020/005352
Other languages
French (fr)
Korean (ko)
Inventor
박종민
정경민
최인욱
Original Assignee
주식회사 이디티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이디티 filed Critical 주식회사 이디티
Publication of WO2021215560A1 publication Critical patent/WO2021215560A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0025Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by using photoelectric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Definitions

  • the present invention relates to a plasma processing system, and more particularly, to a plasma processing system capable of confirming whether normal cleaning and surface treatment operations are performed by monitoring a specific wavelength band of plasma emitted through an electrode torch.
  • Plasma is said to be the fourth state of matter after solid, liquid, and gas, and is attracting attention as a more competitive base technology in high-tech industries that require high cleanliness and high efficiency.
  • many studies are being actively conducted around the world in relation to low-temperature (room temperature to 150° C.) and atmospheric pressure plasma.
  • the process temperature using plasma has reached hundreds of degrees (400-600°C), but by lowering the surface treatment temperature of the existing coating technology and developing a plasma treatment system that does not use an expensive and complicated vacuum system, it is applied to various industrial fields. have.
  • An object of the present invention is to provide a plasma processing system capable of immediately recognizing a plasma processing state change by continuously measuring and monitoring plasma emitted through an electrode torch.
  • a plasma load comprising an electrode torch jet unit generating plasma and emitting plasma to an outlet and an optical sensor unit measuring plasma emitted from the electrode torch jet unit wealth; an optical analysis unit that analyzes the light transmitted through an optical cable connected to the optical sensor unit; a flow rate supply unit for supplying air to the plasma load unit; a power supply unit for supplying power to the electrode torch jet unit; and a plasma processing system including an integrated control unit including a plasma control unit for receiving plasma discharge data through communication with the optical analysis unit, monitoring the plasma discharge state, and controlling the plasma emission to be kept constant.
  • the flow rate supply unit may include an air compressor unit that injects and supplies compressed air, and a mass flow controller that measures the flow of the injected air and controls the flow rate according to a set value.
  • the power supply unit may transmit a flow control signal to the mass flow control unit through a connected analog signal cable.
  • the integrated control unit includes a flow control unit for monitoring and controlling the air flow rate of the mass flow control unit through communication with the power supply unit, and a power control unit for monitoring the state of power supplied to the plasma load unit through communication and controlling the output of the power supply unit may further include.
  • the plasma control unit may detect whether the plasma discharge is abnormal by monitoring the peak value of the amount of light of a wavelength in a preset range.
  • the power supply unit includes a transformer, both ends of the transformer are directly connected to the electrode torch unit, and a separate ground cable from the body of the electrode torch jet unit may be directly connected to the ground.
  • the transformer of the power supply unit may be an insulated multi-winding transformer.
  • the plasma processing system of the present invention there is an effect of continuously measuring and monitoring the plasma emitted through the electrode torch to immediately recognize the change in the plasma discharge state.
  • FIG. 1 is a block diagram conceptually illustrating a plasma processing system according to an embodiment of the present invention.
  • Plasma When energy is applied to a gaseous substance, electrons are separated from atoms or molecules to form a plasma state in which electrons and ions exist.
  • Plasma is chemically reactive and can be classified into low-temperature plasma or thermal plasma according to an excited method.
  • Plasma technology has been applied in various fields such as surface coating, gas treatment, and waste removal.
  • an operation called plasma discharge or plasma treatment is easily generated at a pressure lower than atmospheric pressure, so that plasma is discharged in a vacuum vessel.
  • a method of generating plasma at atmospheric pressure is being studied according to many constraints, and the plasma system of the present invention uses plasma generated at atmospheric pressure, that is, atmospheric plasma, to treat the surface of a metal material (removal of organic matter, etc.) carry out
  • FIG. 1 is a block diagram conceptually illustrating a plasma processing system according to an embodiment of the present invention.
  • the plasma processing system shown in FIG. 1 includes a plasma load unit 100 for emitting plasma, a power supply unit 300 for supplying high voltage AC power to the plasma load unit 100 , and an optical analysis unit for analyzing plasma light. And, a flow rate supply unit 400 for supplying air to the plasma load unit 100, and an integrated control unit 500 for monitoring the plasma discharge state and controlling the discharge intensity to measure and continuously monitor the plasma to monitor the plasma discharge state Anomalies can be recognized immediately.
  • the plasma processing system includes a plasma load unit 100 , an optical analysis unit 200 , a flow rate supply unit 400 , a power supply unit 300 , and an integrated control unit 500 .
  • the plasma load unit 100 includes an electrode torch jet unit 110 and an optical sensor unit 130 .
  • the electrode torch jet unit 110 includes a cathode unit from which electrons are emitted, that is, a discharge tip, an air injection unit into which air is injected, and a discharge port through which plasma is emitted, that is, a nozzle, and a high voltage direct current from the power supply unit 300 . It receives power and generates and emits low-temperature plasma.
  • the electrode torch jet unit 110 ionizes and discharges the injected air.
  • the injected air is based on oxygen.
  • the photosensor unit 130 is positioned in front of the discharge port of the electrode torch jet unit 110 to sense and measure plasma emitted through the discharge port, and transmit it to the light analysis unit 200 .
  • the optical analysis unit 200 is connected to the optical sensor unit 130 by an optical cable, and collects and analyzes the light transmitted through the connected optical cable.
  • the optical analysis unit 200 transmits the analyzed peak value data and/or optical density data for each wavelength band to the integrated control unit 500 .
  • the optical analysis by the optical analysis unit 200 is more specifically, to collect the light received through the optical sensor unit 130, output the intensity of light in each wavelength region as data and transmit it to the integrated control unit 500 .
  • the flow rate supply unit 400 supplies air to be ionized to the plasma load unit 100 , and the power supply unit 300 supplies high voltage power to the electrode torch jet unit 110 .
  • the flow rate supply unit 400 may also receive power from the power supply unit 300 .
  • the integrated control unit 500 includes a plasma control unit 530 , and the plasma control unit 530 receives plasma discharge data through communication with the optical analysis unit 200 using a connected serial line, analyzes the received data, and performs plasma processing. By monitoring the discharge state, the parameters are appropriately controlled so that the plasma emission can be kept constant.
  • the integrated control unit 500 classifies the wavelength region of the light requested by the user from the data received from the optical analyzer and monitors in real time.
  • the integrated control unit 500 is configured to include a computing device having a processor and a display.
  • the integrated control unit 500 displays a GUI for operating the plasma processing system through the display, and the operator can monitor the plasma discharge state and set and control the system using the GUI.
  • the flow rate supply unit 400 may include an air compressor unit 410 and a mass flow controller 430 (mass flow controller, MFC).
  • the air compressor unit 410 is a device that compresses air and injects and supplies the compressed air.
  • the air compressor unit 410 is classified into a piston type compressor, a diaphragm type compressor, a screw type compressor, a vent type compressor, etc. according to a compression method and structure, and the method and structure used in the plasma processing system are not limited.
  • the mass flow controller 430 controls the flow by precisely measuring the mass flow rate of gas, that is, air.
  • the mass flow control unit 430 may generally include a flow sensor, a flow control valve, a control circuit, and the like.
  • the mass flow controller 430 may measure the flow of air injected from the air compressor and control the flow rate according to a set value.
  • the air flow rate requested by the user is applied before plasma discharge in the integrated control unit 500 of the plasma processing system and automatically measured whether the output flow rate is normal, and an air abnormality alarm is issued when the air flow rate is abnormal. can occur
  • the integrated control unit 500 transmits a flow control signal to the mass flow control unit 430 through an analog signal cable connected to the power supply unit and receives a flow rate output signal.
  • the flow control signal/flow output signal may be input as an analog signal with a value between 0 and 5V.
  • the integrated control unit 500 may further include a flow rate control unit 550 and a power control unit 510 .
  • the flow control unit 550 may be connected to the power supply unit 300 by a serial cable to receive, monitor, and control the air flow data of the mass flow control unit 430 through serial communication.
  • the power control unit 510 may monitor the state of power supplied to the plasma load unit 100 through serial communication with the power unit and control the output of the power supply unit.
  • the plasma control unit 530 of the plasma processing system may detect whether the plasma discharge is abnormal by monitoring the peak value of the light intensity of a wavelength in a preset range.
  • the operator of the plasma processing system can set the wavelength range of the plasma discharge in a steady state as the measurement range through the GUI of the system and check the peak value of the light amount of the range displayed on the display numerically and/or graphically.
  • the operator can set the range and peak value of the wavelength band to be measured through the system's GUI.
  • the plasma processing system may generate an alarm through the GUI of the system when the measured plasma light quantity does not reach or exceeds a set peak value.
  • the transformer of the power supply unit 300 of the plasma processing system uses an insulated lottery transformer.
  • the plasma system applies a very high voltage and a frequency of 20 kHz or more to the electrodes of the electrode torch jet unit 110 .
  • the power consumed varies according to the abrasion degree and state of the electrode of the electrode torch jet unit 110 , and as the state of the electrode is poor, the peak value of the current consumed by the electrode increases. Due to this, the input current peak also increases. If the capacity of the facility is not sufficient, the circuit breaker may operate or the fuse may be blown.
  • the plasma system can eliminate the input peak current through PFC control and block and limit excessive output through real-time monitoring and filtering of the power supply output peak current according to electrode consumption.

Abstract

According to an exemplary embodiment of the present invention, provided is a plasma processing system comprising: an electrode torch jet unit which generates plasma and emits same through an outlet; a plasma load unit comprising an optical sensor unit which measures plasma emitted from the electrode torch jet unit; an optical analysis unit which analyzes light transmitted through an optical cable connected to the optical sensor unit; a flow supply unit which supplies air to the plasma load unit; a power supply unit which supplies power to the electrode torch jet unit; and a plasma control unit which receives plasma discharge data through communication with the optical analysis unit to monitor the discharge state of plasma, and controls the emission of plasma to be kept constant. According to the present invention, there are the effects of immediately recognizing changes in the discharge state of plasma by continuously measuring and monitoring plasma emitted through an electrode torch, and appropriately controlling variables so that the emission of plasma can be kept constant.

Description

플라즈마 처리 시스템plasma processing system
본 발명은 플라즈마 처리 시스템에 관한 것으로서, 더욱 상세하게는 전극 토치를 통해 방출되는 플라즈마의 특정 파장대를 모니터링하여 정상적인 세정 및 표면처리 작업이 수행되는지 확인할 수 있는 플라즈마 처리 시스템에 관한 것이다.The present invention relates to a plasma processing system, and more particularly, to a plasma processing system capable of confirming whether normal cleaning and surface treatment operations are performed by monitoring a specific wavelength band of plasma emitted through an electrode torch.
플라즈마는 고체, 액체, 기체에 이어 물질의 제 4 상태라고 하며 고청정 및 고효율을 요구하는 첨단산업분야에 보다 경쟁력 있는 기반기술로 주목받고 있다. 특히 저온 (상온∼150℃) 및 상압 (atmospheric pressure) 플라즈마와 관련하여 많은 연구가 전세계적으로 활발히 진행되고 있다. 기존에는 플라즈마를 활용하는 공정온도가 수백도(400-600℃)에 이르렀으나 기존 코팅기술의 표면처리 온도를 낮추고 고가의 복잡한 진공 시스템을 사용하지 않는 플라즈마 처리시스템을 개발하여 다양한 산업분야에 적용하고 있다.Plasma is said to be the fourth state of matter after solid, liquid, and gas, and is attracting attention as a more competitive base technology in high-tech industries that require high cleanliness and high efficiency. In particular, many studies are being actively conducted around the world in relation to low-temperature (room temperature to 150° C.) and atmospheric pressure plasma. In the past, the process temperature using plasma has reached hundreds of degrees (400-600℃), but by lowering the surface treatment temperature of the existing coating technology and developing a plasma treatment system that does not use an expensive and complicated vacuum system, it is applied to various industrial fields. have.
플라즈마 처리시스템은 플라즈마 처리에 사용되는 방전팁이 마모되는 경우 플라즈마 방전의 세기가 변동되어 세정작업의 정밀도가 감소하게 되나 세정 중에는 플라즈마 처리상태를 알 수 없어 대량으로 불량품을 생산할 수 있는 문제가 발생할 수 있다.In the plasma processing system, when the discharge tip used for plasma processing is worn, the intensity of plasma discharge fluctuates and the precision of cleaning operation decreases. have.
본 발명은 전극 토치를 통해 방출되는 플라즈마를 지속적으로 측정하고 모니터링하여 플라즈마 처리상태 변화를 즉시 인식할 수 있는 플라즈마 처리시스템을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a plasma processing system capable of immediately recognizing a plasma processing state change by continuously measuring and monitoring plasma emitted through an electrode torch.
상기한 바와 같은 목적을 달성하기 위해, 발명의 일 실시예 예에 따르면, 플라즈마를 발생시켜 토출구로 방출하는 전극 토치 제트부와 전극 토치 제트부에서 방출되는 플라즈마를 측정하는 광센서부를 포함하는 플라즈마 부하부; 광센서부와 연결된 광 케이블로 전달된 광을 분석하는 광분석부; 플라즈마 부하부로 에어를 공급하는 유량 공급부; 전극 토치 제트부에 전원을 공급하는 전원공급부; 및 광분석부와 통신을 통해 플라즈마 방전 데이터를 수신하여 플라즈마 방전 상태를 모니터링하고 플라즈마 방출이 일정하게 유지 될 수 있도록 제어하는 플라즈마 제어부를 포함하는 통합 제어부를 포함하는 플라즈마 처리시스템이 제공된다.In order to achieve the object as described above, according to an embodiment of the present invention, a plasma load comprising an electrode torch jet unit generating plasma and emitting plasma to an outlet and an optical sensor unit measuring plasma emitted from the electrode torch jet unit wealth; an optical analysis unit that analyzes the light transmitted through an optical cable connected to the optical sensor unit; a flow rate supply unit for supplying air to the plasma load unit; a power supply unit for supplying power to the electrode torch jet unit; and a plasma processing system including an integrated control unit including a plasma control unit for receiving plasma discharge data through communication with the optical analysis unit, monitoring the plasma discharge state, and controlling the plasma emission to be kept constant.
상기 유량 공급부는 압축된 에어를 분사하여 공급하는 에어 컴프레셔부와 분사된 에어의 흐름을 측정하여 설정된 값에 따라 유량을 제어하는 질량 흐름 제어부(Mass flow controller)를 포함할 수 있다.The flow rate supply unit may include an air compressor unit that injects and supplies compressed air, and a mass flow controller that measures the flow of the injected air and controls the flow rate according to a set value.
또한, 상기 전원 공급부는 연결된 아날로그 신호 케이블을 통해 질량 흐름 제어부에 유량 제어신호를 전송할 수 있다.In addition, the power supply unit may transmit a flow control signal to the mass flow control unit through a connected analog signal cable.
그리고, 상기 통합 제어부는 전원공급부와 통신을 통해 질량 흐름 제어부의 에어 유량을 모니터링하고 제어하는 유량 제어부와, 통신을 통해 플라즈마 부하부에 공급되는 전원상태를 모니터링하고 전원 공급부의 출력을 제어하는 전원 제어부를 더 포함할 수 있다.In addition, the integrated control unit includes a flow control unit for monitoring and controlling the air flow rate of the mass flow control unit through communication with the power supply unit, and a power control unit for monitoring the state of power supplied to the plasma load unit through communication and controlling the output of the power supply unit may further include.
상기 플라즈마 제어부는 미리 설정된 범위의 파장의 광량 피크치를 모니터링하여 플라즈마 방전의 이상 여부를 감지할 수 있다.The plasma control unit may detect whether the plasma discharge is abnormal by monitoring the peak value of the amount of light of a wavelength in a preset range.
상기 전원공급부는 변압기를 포함하며, 상기 변압기 양단이 전극 토치부와 직접 연결되며 전극 토치 제트부의 몸체에서 별도의 접지케이블이 접지에 직접 연결될 수 있다.The power supply unit includes a transformer, both ends of the transformer are directly connected to the electrode torch unit, and a separate ground cable from the body of the electrode torch jet unit may be directly connected to the ground.
또한, 상기 전원공급부의 변압기는 절연형 복권 변압기일 수 있다.In addition, the transformer of the power supply unit may be an insulated multi-winding transformer.
본 발명의 플라즈마 처리시스템에 의하면 전극 토치를 통해 방출되는 플라즈마를 지속적으로 측정하고 모니터링하여 플라즈마 방전상태 변화를 즉시 인식할 수 있는 효과가 발생된다.According to the plasma processing system of the present invention, there is an effect of continuously measuring and monitoring the plasma emitted through the electrode torch to immediately recognize the change in the plasma discharge state.
도 1은 본 발명의 일 실시예에 따르는 플라즈마 처리시스템을 개념적으로 도시한 블록도이다.1 is a block diagram conceptually illustrating a plasma processing system according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 세정 공정을 수행하며 방출되는 플라즈마를 측정 및 모니터링하는 본 발명의 플라즈마 시스템의 바람직한 실시 예를 상세히 설명한다.Hereinafter, a preferred embodiment of the plasma system of the present invention for measuring and monitoring plasma emitted while performing a cleaning process with reference to the accompanying drawings will be described in detail.
각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다. 또한 본 발명의 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는 것이 바람직하다.Like reference numerals in each figure indicate like elements. In addition, specific structural or functional descriptions for the embodiments of the present invention are only exemplified for the purpose of describing the embodiments according to the present invention, and unless otherwise defined, all terms used herein, including technical or scientific terms They have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention pertains. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present specification. It is preferable not to
기체 상태의 물질에 에너지를 가해주면 원자나 분자에서 전자가 분리되어 전자와 이온들이 존재하는 플라즈마 상태가 된다. 플라즈마는 화학적으로 반응성이 커 여기되는 방법에 따라 저온 플라즈마 또는 열 플라즈마로 구분될 수 있다. 플라즈마 기술은 표면 코팅, 가스 처리, 폐기물 제거 등의 다양한 분야에서 응용되고 있다.When energy is applied to a gaseous substance, electrons are separated from atoms or molecules to form a plasma state in which electrons and ions exist. Plasma is chemically reactive and can be classified into low-temperature plasma or thermal plasma according to an excited method. Plasma technology has been applied in various fields such as surface coating, gas treatment, and waste removal.
일반적으로 플라즈마 방전 또는 플라즈마 처리라고 불리우는 작업은 대기압보다 낮은 압력에서 발생시키는 것이 용이하여 진공 용기 내에서 플라즈마를 방전시키고 있다. 진공을 유지하기 위해 많은 제약 조건이 따라 대기압에서 플라즈마를 발생시키는 방법이 연구되고 있으며 본 발명의 플라즈마 시스템은 대기압 상태에서 발생된 플라즈마, 즉 상압 플라즈마를 이용하여 금속 물질의 표면 처리(유기물 제거 등)를 수행한다.In general, an operation called plasma discharge or plasma treatment is easily generated at a pressure lower than atmospheric pressure, so that plasma is discharged in a vacuum vessel. In order to maintain a vacuum, a method of generating plasma at atmospheric pressure is being studied according to many constraints, and the plasma system of the present invention uses plasma generated at atmospheric pressure, that is, atmospheric plasma, to treat the surface of a metal material (removal of organic matter, etc.) carry out
도 1은 본 발명의 일 실시예에 따르는 플라즈마 처리시스템을 개념적으로 도시한 블록도이다. 도 1에 도시된 플라즈마 처리시스템은 플라즈마를 방출하는 플라즈마 부하부(100)와, 플라즈마 부하부(100)에 고전압의 교류 전원을 공급하는 전원공급부(300)와, 플라즈마 광을 분석하는 광 분석부와, 플라즈마 부하부(100)에 에어를 공급하는 유량공급부(400)와, 플라즈마 방전 상태를 모니터링하고 방전 세기를 제어하는 통합 제어부(500)를 포함하여 플라즈마를 측정하고 지속적으로 모니터링하여 플라즈마 방전 상태 이상을 즉각 인식할 수 있다.1 is a block diagram conceptually illustrating a plasma processing system according to an embodiment of the present invention. The plasma processing system shown in FIG. 1 includes a plasma load unit 100 for emitting plasma, a power supply unit 300 for supplying high voltage AC power to the plasma load unit 100 , and an optical analysis unit for analyzing plasma light. And, a flow rate supply unit 400 for supplying air to the plasma load unit 100, and an integrated control unit 500 for monitoring the plasma discharge state and controlling the discharge intensity to measure and continuously monitor the plasma to monitor the plasma discharge state Anomalies can be recognized immediately.
본 발명의 일 양상에 따르는 플라즈마 처리시스템은 플라즈마 부하부(100)와, 광분석부(200)와, 유량공급부(400)와, 전원공급부(300)와, 통합 제어부(500)를 포함한다.The plasma processing system according to an aspect of the present invention includes a plasma load unit 100 , an optical analysis unit 200 , a flow rate supply unit 400 , a power supply unit 300 , and an integrated control unit 500 .
플라즈마 부하부(100)는 전극 토치 제트부(110)와, 광센서부(130)를 포함한다.The plasma load unit 100 includes an electrode torch jet unit 110 and an optical sensor unit 130 .
전극 토치 제트부(110)는 전자가 방출되는 음극(cathode)부 즉, 방전팁과 에어가 주입되는 에어 주입부와 플라즈마가 방출되는 토출구 즉, 노즐을 포함하여 전원공급부(300)로부터 고전압의 직류 전원을 공급받아 저온의 플라즈마를 발생시켜 방출한다. 전극 토치 제트부(110)는 주입된 에어를 이온화하여 방출한다. 주입되는 에어는 산소를 기반으로 한다.The electrode torch jet unit 110 includes a cathode unit from which electrons are emitted, that is, a discharge tip, an air injection unit into which air is injected, and a discharge port through which plasma is emitted, that is, a nozzle, and a high voltage direct current from the power supply unit 300 . It receives power and generates and emits low-temperature plasma. The electrode torch jet unit 110 ionizes and discharges the injected air. The injected air is based on oxygen.
광센서부(130)는 전극 토치 제트부(110)의 토출구 앞에 위치하여 토출구를 통해 방출되는 플라즈마를 감지하고 측정하여 이를 광분석부(200)로 전달한다.The photosensor unit 130 is positioned in front of the discharge port of the electrode torch jet unit 110 to sense and measure plasma emitted through the discharge port, and transmit it to the light analysis unit 200 .
광분석부(200)는 광센서부(130)와 광 케이블로 연결되어 있으며, 연결된 광 케이블로 전달된 광을 수집하고 분석한다. 광분석부(200)는 분석된 파장대별 피크치 데이터 및/또는 광 밀도 데이터를 통합제어부(500)로 전달한다.The optical analysis unit 200 is connected to the optical sensor unit 130 by an optical cable, and collects and analyzes the light transmitted through the connected optical cable. The optical analysis unit 200 transmits the analyzed peak value data and/or optical density data for each wavelength band to the integrated control unit 500 .
광분석부(200)에서의 광 분석은 보다 상세하게는 광센서부(130)를 통해 받은 빛을 수집하여 각 파장영역의 빛의 세기를 데이터로 출력하여 통합제어부(500)로 전달하는 것이다.The optical analysis by the optical analysis unit 200 is more specifically, to collect the light received through the optical sensor unit 130, output the intensity of light in each wavelength region as data and transmit it to the integrated control unit 500 .
유량공급부(400)는 플라즈마 부하부(100)로 이온화될 에어를 공급하고 전원공급부(300)는 전극 토치 제트부(110)에 고전압의 전원을 공급한다. 유량공급부(400) 또한 전원공급부(300)로부터 전원을 공급받을 수 있다.The flow rate supply unit 400 supplies air to be ionized to the plasma load unit 100 , and the power supply unit 300 supplies high voltage power to the electrode torch jet unit 110 . The flow rate supply unit 400 may also receive power from the power supply unit 300 .
통합 제어부(500)는 플라즈마 제어부(530)를 포함하고, 플라즈마 제어부(530)는 연결된 시리얼 라인을 이용하여 광분석부(200)와 통신을 통해 플라즈마 방전 데이터를 수신하고, 수신된 데이터를 분석하고 플라즈마 방전 상태를 모니터링하여 플라즈마 방출이 일정하게 유지 될 수 있도록 변수들을 적절하게 제어한다.The integrated control unit 500 includes a plasma control unit 530 , and the plasma control unit 530 receives plasma discharge data through communication with the optical analysis unit 200 using a connected serial line, analyzes the received data, and performs plasma processing. By monitoring the discharge state, the parameters are appropriately controlled so that the plasma emission can be kept constant.
또한, 통합제어부(500)는 광분석기로부터 전달받은 데이터에서 사용자가 요구하는 빛의 파장영역을 분류하고 실시간 모니터링 한다.In addition, the integrated control unit 500 classifies the wavelength region of the light requested by the user from the data received from the optical analyzer and monitors in real time.
이때 광분석부(200)와 플라즈마 제어부(530)는 USB로 연결될 수 있다. 다만, 이에 한정되는 것은 아니며 다른 방식으로 연결될 수도 있다. 통합 제어부(500)는 프로세서와 디스플레이를 구비한 컴퓨팅 장치를 포함하여 구성된다. 통합 제어부(500)는 디스플레이를 통해 플라즈마 처리시스템을 운영하는 GUI를 표시하며 운영자는 해당 GUI를 이용하여 플라즈마 방전상태를 모니터링하고 시스템을 설정 및 제어할 수 있다.In this case, the optical analysis unit 200 and the plasma control unit 530 may be connected via USB. However, the present invention is not limited thereto and may be connected in other ways. The integrated control unit 500 is configured to include a computing device having a processor and a display. The integrated control unit 500 displays a GUI for operating the plasma processing system through the display, and the operator can monitor the plasma discharge state and set and control the system using the GUI.
본 발명의 또 다른 양상에 따르는 플라즈마 처리시스템은 유량공급부(400)가 에어 컴프레셔부(410)와, 질량 흐름 제어부(430, Mass flow controller, MFC)를 포함할 수 있다.In a plasma processing system according to another aspect of the present invention, the flow rate supply unit 400 may include an air compressor unit 410 and a mass flow controller 430 (mass flow controller, MFC).
에어 컴프레셔부(410)는 에어를 압축하고 압축된 에어를 분사하여 공급하는 장치이다. 에어 컴프레셔부(410)는 압축 방식 및 구조에 따라 피스톤식 컴프레셔, 다이아프램식 컴프레셔, 스크류식 컴프레셔, 벤식 컴프레셔 등으로 분류되며 플라즈마 처리시스템에 사용되는 방식 및 구조는 제한이 없다.The air compressor unit 410 is a device that compresses air and injects and supplies the compressed air. The air compressor unit 410 is classified into a piston type compressor, a diaphragm type compressor, a screw type compressor, a vent type compressor, etc. according to a compression method and structure, and the method and structure used in the plasma processing system are not limited.
질량 흐름 제어부(430, MFC)는 가스 즉, 에어의 질량 유량을 정밀하게 측정하여 흐름을 제어한다. 질량 흐름 제어부(430)는 일반적으로 유량 센서, 유량 제어 밸브, 제어 회로 등으로 구성될 수 있다. 질량 흐름 제어부(430)는 에어 컴프레션부에서 분사된 에어의 흐름을 측정하여 설정된 값에 따라 유량을 제어할 수 있다.The mass flow controller 430 (MFC) controls the flow by precisely measuring the mass flow rate of gas, that is, air. The mass flow control unit 430 may generally include a flow sensor, a flow control valve, a control circuit, and the like. The mass flow controller 430 may measure the flow of air injected from the air compressor and control the flow rate according to a set value.
본 발명의 또 다른 실시예에 따르면 플라즈마 처리시스템의 통합제어부(500)에서 사용자가 요구하는 Air 유량을 플라즈마 방전 전에 인가하고 출력되는 유량의 정상여부를 자동으로 측정하여 Air 유량 이상 시 Air 이상 알람을 발생할 수 있다.According to another embodiment of the present invention, the air flow rate requested by the user is applied before plasma discharge in the integrated control unit 500 of the plasma processing system and automatically measured whether the output flow rate is normal, and an air abnormality alarm is issued when the air flow rate is abnormal. can occur
정상인 경우 플라즈마 출력을 인가하고 출력되는 Air의 유량 출력신호를 실시간 모니터링 한다. 출력 중 Air 이상 발생 시 출력되는 전원을 차단하고 시스템 알람을 발생시킨다. 통합제어부(500)는 전원 공급부에 연결된 아날로그 신호 케이블을 통해 질량 흐름 제어부(430)에 유량 제어신호를 전송, 유량 출력신호를 수신한다. If it is normal, the plasma output is applied and the output air flow rate output signal is monitored in real time. When an air error occurs during output, the output power is cut off and a system alarm is generated. The integrated control unit 500 transmits a flow control signal to the mass flow control unit 430 through an analog signal cable connected to the power supply unit and receives a flow rate output signal.
유량 제어신호/ 유량 출력신호는 아날로그 신호로 0~5V 사이의 값으로 입력될 수 있다.The flow control signal/flow output signal may be input as an analog signal with a value between 0 and 5V.
본 발명의 또 다른 양상에 따르는 플라즈마 처리시스템은 통합 제어부(500)가 유량 제어부(550)와, 전원 제어부(510)를 더 포함할 수 있다.In the plasma processing system according to another aspect of the present invention, the integrated control unit 500 may further include a flow rate control unit 550 and a power control unit 510 .
유량 제어부(550)는 전원공급부(300)와 시리얼 케이블로 연결되어 시리얼 통신을 통해 질량 흐름 제어부(430)의 에어 유량 데이터를 수신하여 모니터링하고 제어할 수 있다.The flow control unit 550 may be connected to the power supply unit 300 by a serial cable to receive, monitor, and control the air flow data of the mass flow control unit 430 through serial communication.
전원 제어부(510)는 전원공부와 시리얼 통신을 통해 플라즈마 부하부(100)에 공급되는 전원상태를 모니터링하고 전원 공급부의 출력을 제어할 수 있다.The power control unit 510 may monitor the state of power supplied to the plasma load unit 100 through serial communication with the power unit and control the output of the power supply unit.
본 발명의 또 다른 양상에 따르는 플라즈마 처리시스템의 플라즈마 제어부(530)는 미리 설정된 범위의 파장의 광량 피크치를 모니터링하여 플라즈마 방전의 이상 여부를 감지할 수 있다. 플라즈마 처리시스템을 운영하는 운영자는 시스템의 GUI를 통해 정상 상태의 플라즈마 방전의 파장 범위를 측정 범위로 설정하고 디스플레이에 표시되는 해당 범위의 광량 피크치를 수치 및/또는 그래프로 확인할 수 있다. 운영자는 시스템의 GUI를 통해 측정할 파장대의 범위와 피크치를 설정할 수 있다. 플라즈마 처리시스템은 측정된 플라즈마 광량이 설정된 피크치에 도달하지 못하거나 넘어서는 경우에 시스템의 GUI를 통해 알람을 발생시킬 수 있다.The plasma control unit 530 of the plasma processing system according to another aspect of the present invention may detect whether the plasma discharge is abnormal by monitoring the peak value of the light intensity of a wavelength in a preset range. The operator of the plasma processing system can set the wavelength range of the plasma discharge in a steady state as the measurement range through the GUI of the system and check the peak value of the light amount of the range displayed on the display numerically and/or graphically. The operator can set the range and peak value of the wavelength band to be measured through the system's GUI. The plasma processing system may generate an alarm through the GUI of the system when the measured plasma light quantity does not reach or exceeds a set peak value.
본 발명의 또 다른 실시 예에 따르는 플라즈마 처리시스템의 전원공급부(300)의 변압기는 절연형 복권 변압기를 사용한다. 일반적으로 플라즈마 시스템은 전극 토치 제트부(110)의 전극에 매우 높은 전압과 20kHz 이상의 주파수를 인가한다. 전극 토치 제트부(110)의 전극의 마모도 및 상태에 따라 소모되는 전력이 다르며 전극의 상태가 좋지 않을수록 전극에서 소모되는 전류의 피크값이 높아지게 된다. 이로 인해 입력되는 전류 피크도 증가하는데 설비의 용량이 충분하지 않으면 차단기가 작동되거나 퓨즈가 단선될 수 있다.The transformer of the power supply unit 300 of the plasma processing system according to another embodiment of the present invention uses an insulated lottery transformer. In general, the plasma system applies a very high voltage and a frequency of 20 kHz or more to the electrodes of the electrode torch jet unit 110 . The power consumed varies according to the abrasion degree and state of the electrode of the electrode torch jet unit 110 , and as the state of the electrode is poor, the peak value of the current consumed by the electrode increases. Due to this, the input current peak also increases. If the capacity of the facility is not sufficient, the circuit breaker may operate or the fuse may be blown.
본 발명의 바람직한 일 실시예에 따른 플라즈마 시스템은 PFC 제어를 통해 입력 피크전류를 해소하고 전극 소모에 따른 전원장치 출력 피크 전류를 실시간 모니터링 및 필터링을 통하여 과도한 출력을 차단 및 제한할 수 있다. The plasma system according to a preferred embodiment of the present invention can eliminate the input peak current through PFC control and block and limit excessive output through real-time monitoring and filtering of the power supply output peak current according to electrode consumption.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대해 통상의 지식을 가진 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.The above-described embodiments of the present invention have been disclosed for the purpose of illustration, and various modifications, changes, and additions will be possible within the spirit and scope of the present invention by those skilled in the art having a general knowledge of the present invention, and such modifications, changes and additions should be regarded as belonging to the following claims.

Claims (7)

  1. 플라즈마를 발생시켜 토출구로 방출하는 전극 토치 제트부와 전극 토치 제트부에서 방출되는 플라즈마를 측정하는 광센서부를 포함하는 플라즈마 부하부;a plasma load unit including an electrode torch jet unit generating plasma and emitting the plasma to a discharge port, and an optical sensor unit measuring plasma emitted from the electrode torch jet unit;
    광센서부와 연결된 광 케이블로 전달된 광을 분석하는 광분석부;an optical analysis unit that analyzes the light transmitted through an optical cable connected to the optical sensor unit;
    플라즈마 부하부로 에어를 공급하는 유량 공급부;a flow rate supply unit for supplying air to the plasma load unit;
    전극 토치 제트부에 전원을 공급하는 전원공급부; 및a power supply unit for supplying power to the electrode torch jet unit; and
    광분석부와 통신을 통해 플라즈마 방전 데이터를 수신하여 플라즈마 방전 상태를 모니터링하고 플라즈마 방출이 일정하게 유지 될 수 있도록 제어하는 플라즈마 제어부를 포함하는 통합 제어부를 포함하는 플라즈마 처리시스템.Plasma processing system comprising an integrated control unit including a plasma control unit for receiving plasma discharge data through communication with the optical analyzer to monitor the plasma discharge state and to control the plasma emission to be kept constant.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 유량 공급부는 압축된 에어를 분사하여 공급하는 에어 컴프레셔부와 분사된 에어의 흐름을 측정하여 설정된 값에 따라 유량을 제어하는 질량 흐름 제어부(Mass flow controller)를 포함하는 플라즈마 처리시스템.The flow rate supply unit includes an air compressor unit for supplying compressed air and a mass flow controller for controlling the flow rate according to a value set by measuring the flow of the injected air.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 전원 공급부는 연결된 아날로그 신호 케이블을 통해 질량 흐름 제어부에 유량 제어신호를 전송하는 플라즈마 처리시스템.The power supply unit transmits a flow rate control signal to the mass flow control unit through a connected analog signal cable.
  4. 제 3 항에 있어서, 4. The method of claim 3,
    상기 통합 제어부는 전원공급부와 통신을 통해 질량 흐름 제어부의 에어 유량을 모니터링하고 제어하는 유량 제어부와, 통신을 통해 플라즈마 부하부에 공급되는 전원상태를 모니터링하고 전원 공급부의 출력을 제어하는 전원 제어부를 더 포함하는 플라즈마 처리시스템.The integrated control unit further includes a flow control unit for monitoring and controlling the air flow rate of the mass flow control unit through communication with the power supply unit, and a power control unit for monitoring the state of power supplied to the plasma load unit through communication and controlling the output of the power supply unit. Plasma processing system comprising.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 플라즈마 제어부는 미리 설정된 범위의 파장의 광량 피크치를 모니터링하여 플라즈마 방전의 이상 여부를 감지하는 플라즈마 처리시스템.The plasma processing system is configured to detect an abnormality in plasma discharge by monitoring a peak value of a light quantity of a wavelength in a preset range.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 전원공급부는 변압기를 포함하며, 상기 변압기 양단이 전극 토치부와 직접 연결되며 전극 토치 제트부의 몸체에서 별도의 접지케이블이 접지에 직접 연결되는 플라즈마 처리시스템.The power supply unit includes a transformer, both ends of the transformer are directly connected to the electrode torch unit, and a separate ground cable from the body of the electrode torch jet unit is directly connected to the ground.
  7. 제 6 항에 있어서,7. The method of claim 6,
    상기 전원공급부의 변압기는 절연형 복권 변압기인 플라즈마 처리시스템.The transformer of the power supply is an insulated lottery transformer in a plasma processing system.
PCT/KR2020/005352 2020-04-23 2020-04-23 Plasma processing system WO2021215560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200049165A KR20210130971A (en) 2020-04-23 2020-04-23 Plasma treatment system
KR10-2020-0049165 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021215560A1 true WO2021215560A1 (en) 2021-10-28

Family

ID=78269343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005352 WO2021215560A1 (en) 2020-04-23 2020-04-23 Plasma processing system

Country Status (2)

Country Link
KR (1) KR20210130971A (en)
WO (1) WO2021215560A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060001963A (en) * 2005-12-20 2006-01-06 안강호 Apparatus for manufacturing ultra-fine particles using corona discharge
US20070221634A1 (en) * 2004-03-31 2007-09-27 Gbc Scientific Equipment Pty Ltd Plasma Torch Spectrometer
US20130015159A1 (en) * 2009-12-15 2013-01-17 Danmarks Tekniske Universitet Apparatus and a method and a system for treating a surface with at least one gliding arc source
US20130202479A1 (en) * 2010-10-21 2013-08-08 Takumi Tandou Plasma sterilizer, plasma sterilization system, and plasma sterilization method
KR20150051486A (en) * 2013-11-04 2015-05-13 대전대학교 산학협력단 Atmospheric pressure plasma generator to generate plasma of controlled potential

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221634A1 (en) * 2004-03-31 2007-09-27 Gbc Scientific Equipment Pty Ltd Plasma Torch Spectrometer
KR20060001963A (en) * 2005-12-20 2006-01-06 안강호 Apparatus for manufacturing ultra-fine particles using corona discharge
US20130015159A1 (en) * 2009-12-15 2013-01-17 Danmarks Tekniske Universitet Apparatus and a method and a system for treating a surface with at least one gliding arc source
US20130202479A1 (en) * 2010-10-21 2013-08-08 Takumi Tandou Plasma sterilizer, plasma sterilization system, and plasma sterilization method
KR20150051486A (en) * 2013-11-04 2015-05-13 대전대학교 산학협력단 Atmospheric pressure plasma generator to generate plasma of controlled potential

Also Published As

Publication number Publication date
KR20210130971A (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN109716481B (en) Elemental analysis device and elemental analysis method
DK164648B (en) ELECTRONIC HIGH-VOLTAGE GENERATOR FOR ELECTROSTATIC SPRAY APPLIANCES
WO2021215560A1 (en) Plasma processing system
CN102119276A (en) Vacuum pumping systems
JPWO2018185836A1 (en) Atmospheric pressure plasma equipment
US4663515A (en) Plasma-arc torch interlock with flow sensing
CN106546887A (en) A kind of SF6Decompose simulating experimental system and its emulation experiment method
US20210051791A1 (en) Plasma generator and information processing method
KR20020054479A (en) Method for observing recipe of plasma chamber
CN102081408B (en) Ion concentration monitoring system
CN208112333U (en) A kind of distribution system for LEP equipment
US20050161321A1 (en) Apparatus for the generation and supply of fluorine gas
US20160279646A1 (en) Filtering of an exhaust gas of a metallurgical plant, which exhaust gas comprises solid particles
KR20020034826A (en) Control apparatus for plasma utilizing equipment
US20200196427A1 (en) Plasma generator, light emission analysis device and mass spectrometer equipped with the plasma generator, and device status determination method
CN209798084U (en) control testing device of coating ion source
CN113834864B (en) Method for prolonging service life of electrochemical oxygen sensor for trace oxygen analyzer
KR20120110677A (en) Plasma processing apparatus
KR101020076B1 (en) System and method for detecting plasma
KR100630409B1 (en) Real time electrostatic detecting-discharging device
KR20180036717A (en) Gas treatment system
CN115763213B (en) Micro-current detection system capable of being charged online for electrospray source
CN115233143A (en) Plasma spraying control system
CN109406966A (en) High-tension switch cabinet local discharge on-line monitoring device based on gas method
CN210505580U (en) Ozone generator stable control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931841

Country of ref document: EP

Kind code of ref document: A1