WO2021215405A1 - Immunostimulant and composition for treatment or prevention - Google Patents

Immunostimulant and composition for treatment or prevention Download PDF

Info

Publication number
WO2021215405A1
WO2021215405A1 PCT/JP2021/015904 JP2021015904W WO2021215405A1 WO 2021215405 A1 WO2021215405 A1 WO 2021215405A1 JP 2021015904 W JP2021015904 W JP 2021015904W WO 2021215405 A1 WO2021215405 A1 WO 2021215405A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
tumor
lower alkyl
carbon atoms
cells
Prior art date
Application number
PCT/JP2021/015904
Other languages
French (fr)
Japanese (ja)
Inventor
幸太 岩堀
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2021215405A1 publication Critical patent/WO2021215405A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present specification discloses an immunostimulatory agent and a therapeutic or prophylactic composition.
  • Non-Patent Document 1 describes that tetracycline (for example, tetracycline, doxycycline, minocycline) chelate a zinc compound in matrix metalloproteinase (MMP). And since the survival, cell infiltration, cell-cell adhesion, and replication of coronavirus are highly dependent on the host's MMP, it is hypothesized that the zinc chelating ability of tetracycline is effective in suppressing COVID-19 infection in humans. Is shown.
  • MMP matrix metalloproteinase
  • Tetracycline compounds can also be used to treat tumors.
  • Non-Patent Documents 2 and 3 show that administration of chemically modified tetracycline to tumor cells suppresses the growth of tumor cells and causes cell damage.
  • Patent Document 1 discloses a tumor immunostimulatory agent containing at least one selected from the group consisting of tetracycline compounds and pharmaceutically acceptable salts thereof.
  • Non-Patent Document 1 The inhibitory effect of tetracycline on COVID-19 described in Non-Patent Document 1 is only a hypothesis and has not been proved in practice.
  • Conventional antiviral drugs are drugs that target the virus itself and inhibit the production and proliferation of the virus, and can be a curative treatment for chronic viral infections such as hepatitis C virus and HIV. It is an adjunctive drug for acute viral infections such as influenza virus.
  • the present invention is different from conventional antiviral agents, acid-fast bacillosis agents, antifungal agents or antitumor agents, and presents an agent that exerts a therapeutic effect by enhancing the T-cell immune response of the patient itself.
  • the challenge is to provide.
  • tetracycline compounds are effective for activating T-cell-mediated immunity from among existing drugs whose patent rights have expired. Further, it has been found that, conventionally, tetracycline compounds are used for the treatment of bacterial infectious diseases, but the volume used for the treatment of bacterial infectious diseases is lower than the volume used for the treatment of bacterial infectious diseases, and it is possible to activate T cell-mediated immunity.
  • a therapeutic or prophylactic composition or an immunostimulatory agent comprising at least one selected from the group consisting of a tetracycline antibiotic represented by the following general formula (I) and a pharmaceutically acceptable salt thereof, and tetracycline.
  • R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms), or a lower alkyl group having 1 to 3 carbon atoms: ..
  • R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom): ..
  • R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 are hydrogen atoms, hydroxyl groups or lower alkyl groups having 1 to 3 carbon atoms together or independently, or R 4 and R 5 are methylene groups in one.
  • R 6 is a hydrogen atom, a halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms): ..
  • R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, -NH-CO-CH 2- NH-C (CH 3 ) 3 or -CH 2- NH-CH 2- C (CH 3 ) 3 . be. ].
  • the therapeutic or prophylactic composition is used for the treatment or prevention of a viral infection or tumor.
  • Item 2. Item 2.
  • Item 3. Item 2.
  • the compound represented by the general formula (I) is at least one selected from the group consisting of demethylchlortetracycline, meclocycline, tetracycline, chlortetracycline, doxycycline, minocycline, and oxytetracycline.
  • a composition for treating a viral infection which comprises the immunostimulatory agent according to any one of Items 1 to 3 and an antiviral agent.
  • Item 5. A composition for treating a tumor, which comprises the immunostimulatory agent according to any one of Items 1 to 3 and a tumor immunological agent.
  • Item 6. Item 5. The composition for treating a tumor according to Item 5, wherein the tumor immunological agent is at least one selected from an immune checkpoint inhibitor, a CAR-T cell drug, a bispecific molecular drug, and a cancer vaccine.
  • Item 7. A composition for treating an acid-fast bacillus infection, which comprises the immunostimulatory agent according to any one of Items 1 to 3 and an acid-fast bacillus agent.
  • Item 8. A composition for treating a fungal infection, which comprises the immunostimulatory agent according to any one of Items 1 to 3 and an antifungal agent.
  • the tetracycline compound can activate T cell-mediated immunity.
  • FIG. 1 shows an outline of a system for evaluating the antitumor activity of T cells in vitro.
  • FIG. 2 shows the effect of the test drug on the antitumor activity of T cells in vitro.
  • "BiTE” indicates the addition of BiTE alone, and "BiTE + DMC” indicates the addition of BiTE and demethylchlortetracycline (DMC) in combination.
  • FIG. 3 shows the effect of the test drug on the tumor cytotoxic activity of CD8 + T cells in vitro.
  • “BiTE” indicates the addition of BiTE alone, and “BiTE + DMC” indicates the addition of BiTE and DMC in combination.
  • FIG. 4 shows the effect of the test drug on the abundance ratio of granzyme B-expressing CD8 + T cells in vitro.
  • FIG. 5 shows the effect of the test drug on the proliferative capacity of CD8 + T cells in vitro.
  • BiTE indicates the addition of BiTE alone, and “BiTE + DMC” indicates the addition of BiTE and DMC in combination.
  • FIG. 6 shows the effect of the test drug on the induction of CMV (cytomegalovirus) -specific cytotoxic T cells in vitro.
  • A shows the scattergram of FACS analysis on the 7th and 14th days after CMV treatment.
  • CMV Tetramer + cells are fractionated into the P7 fraction.
  • B indicates the abundance ratio of CMV Tetramer + cells 14 days after CMV treatment.
  • FIG. 7A shows the effect of the test drug on the cytotoxic activity of T cells in lung cancer tissue in vitro.
  • FIG. 7B shows the effect of the test drug on the abundance ratio of IFN ⁇ -producing CD8 + T cells in vitro.
  • FIG. 7C shows a scattergram for FACS analysis. IFN ⁇ -producing CD8 + T cells are fractionated into the P8 fraction.
  • FIG. 8A shows the administration protocol of the test drug.
  • FIG. 8B shows the change in tumor volume.
  • the broken line indicates the Vehicle group, and the solid line indicates the test drug administration group.
  • the combined effect of demethylchlortetracycline and anti-PD-L1 antibody is shown. p indicates a significant difference.
  • tetracycline compounds induce tumor cytotoxic activity and IFN ⁇ production.
  • A indicates the tumor cytotoxic activity when DMC is administered alone.
  • B shows the tumor cytotoxic activity when entinostat alone is administered.
  • C indicates tumor cytotoxic activity when olaparib alone is administered.
  • D indicates the tumor cytotoxic activity when DMC was added when PBMC and BiTE were contacted with the U251 cell line.
  • E indicates the tumor cytotoxic activity when entinostat was added when PBMC and BiTE were contacted with the U251 cell line.
  • F indicates the tumor cytotoxic activity when olaparib was added when PBMC and BiTE were contacted with the U251 cell line.
  • G indicates the IFN ⁇ concentration in the culture supernatant when DMC was added when PBMC and BiTE were contacted with the U251 cell line.
  • H indicates the IFN ⁇ concentration in the culture supernatant when entinostat was added when PBMC and BiTE were contacted with the U251 cell line.
  • I indicates the IFN ⁇ concentration in the culture supernatant when olaparib was added when PBMC and BiTE were contacted with the U251 cell line. It shows the tumor growth inhibitory effect of the tetracycline compound and the antitumor effect enhancing effect of the tetracycline compound on the immune checkpoint inhibitor.
  • immunostimulators include tetracycline compounds or pharmaceutically acceptable salts thereof as active ingredients.
  • immunity is not particularly limited, but is intended to be immunity that depends on T-cell-mediated immunity. More preferably, the immunity may include anti-viral immunity, anti-acid bacterium immunity, anti-fungal immunity, anti-tumor immunity and the like.
  • the virus is not particularly limited. It may be a DNA virus or an RNA virus.
  • the genomic polynucleotide carried by the virus may be single-stranded or double-stranded. When the genomic polynucleotide carried by the virus is single-stranded, it may be positive or negative.
  • viruses coronavirus family, adenovirus family, poxvirus family, polyomavirus family, papillomavirus family, parvovirus family, calicisvirus family, orthomixovirus family, paramixovirus family, lovedvirus family, phyllo It may include viruses of the family Virals, Arenaviruses, Togaviruses, Flaviviruses, Picornaviruses, Bunyaviruses, Leoviruses, Retroviruses, Hepedoviruses, Hepeviruses.
  • causing a disease in humans does not mean that the incidence of the disease when infected with a virus is 100%.
  • the incidence of disease when infected with a virus is greater than 0% and 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, It is 10% or less, or 5% or less.
  • Acute disease is intended to be a disease that develops with an incubation period of 1 day to less than 1 year after infection.
  • Subacute disease is intended to be a disease that develops with an incubation period of 1 year or more and less than 8 years after infection.
  • Late-onset disease is intended to be a disease that develops with an incubation period of 8 years or more after infection.
  • the disease is preferably an acute disease or a subacute disease.
  • the virus may also cause at least two diseases selected from acute, subacute, and late-onset diseases in a single infected person. In this case, at least one disease may include an acute disease or a subacute disease.
  • viruses that cause acute and subacute diseases in humans include Severe Acute Respiratory Syndrome (SARS) coronavirus 2 (SARS-CoV2), SARS coronavirus, and humans that cause COVID-19.
  • Coronavirus 229E strain human coronavirus NL63 strain, human coronavirus OC43 strain, human coronavirus HKU1 strain and other viruses belonging to the coronavirus family; cytomegalovirus, EB virus, simple herpesvirus, varicella-herpes zoster virus and other herpes Viruses belonging to the family of viruses; viruses belonging to the family Calisis virus such as norovirus; viruses belonging to the family of orthomixoviruses such as influenza virus; viruses belonging to the family paramixoviral family such as measles virus, mumps virus, parainfluenza virus, RS virus; Rabdovirus family virus that causes mad dog disease, bullous stomatitis, etc .; Phyllovirus family virus such as Ebola hemorr
  • Picornavirus family viruses such as poliovirus, enterovirus, coxsackie virus, echovirus; Bunyavirus family viruses such as huntervirus, orthobunyavirus, nylovirus, and frevovirus; Viruses; viruses of the Hepedovirus family such as hepatitis A virus; viruses of the Hepeviridae family such as hepatitis E virus can be mentioned.
  • this immunostimulatory agent is effective at a low dose, it can be administered for a long period of time. Therefore, it can be suitably used for the treatment or prevention of diseases caused by viruses of the Coronaviridae family.
  • Antiviral immunity also called antiviral immunity
  • activating antiviral immunity means enhancing the proliferation of T cells specific to the viral antigen and / or the activity against the viral antigen.
  • the type of acid-fast bacillus is not particularly limited.
  • mycobacteria include tubercle bacilli and nontuberculous mycobacteria.
  • the tubercle bacillus group may include Mycobacterium tuberculosis (Human Mycobacterium tuberculosis), Mycobacterium bovis, Mycobacterium africanum, and Mycobacterium microti.
  • the non-tuberculous mycobacteria group may include Mycobacterium kansasii, Mycobacterium marimum, Mycobacterium avium (including Mycobacterium avium complex), Mycobacterium intracellulare, Mycobacterium xenopi, Mycobacterium abscessus.
  • Counter-acid bacterium immunity is considered to be a type of antigen-specific immune response of T cells. Therefore, it can be said that activating acid-fast bacillus immunity means enhancing the proliferation of T cells specific to the acid-fast bacillus antigen and / or the activity against the acid-fast bacillus antigen.
  • the type of fungus is not particularly limited. As a fungus, it is preferably a fungus that exhibits pathogenicity. Pathogenic fungi can include, for example, Aspergillus spp., Candida spp., Cryptococcus spp., Pneumocystis spp. Aspergillus spp. May include Aspergillus fumigatus, Aspergillus flavus, Aspergillus nidulans, Aspergillus niger, Aspergillus terreus, Aspergillus ochraceus, Aspergillus, Aspergillus versicolor. Candida spp.
  • Cryptococcus neoformans may be included in the genus Cryptococcus.
  • Pneumocystis genus may include Pneumocystis carinii and Pneumocystis jirovecii.
  • Antifungal immunity is considered to be a type of antigen-specific immune response of T cells. Therefore, it can be said that activating anti-fungal immunity means enhancing the proliferation of T cells specific to the fungal antigen and / or the activity against the fungal antigen.
  • the type of tumor is not particularly limited. It may be a benign tumor or a malignant tumor. It is preferably a malignant tumor.
  • the tumor includes an epithelial tumor and a non-epithelial tumor, and is preferably an epithelial tumor. In the present invention, the most preferable tumor is an epithelial malignant tumor.
  • malignant tumors include respiratory malignant tumors originating from the trachea, bronchi, lungs, etc .; head and neck cancer; esophagus, stomach, duodenum, empty intestine, ileum, leukemia, leukemia, ascending colon, transverse colon, sigmoid colon, etc. Gastrointestinal malignant tumors originating from the rectal or anal region; liver cancer; pancreatic cancer; urinary system malignant tumors originating from the bladder, urinary tract or kidney; female reproductive system malignant tumors originating from the ovary, oviduct, uterus, etc.
  • Leukemia Prostatic cancer; Skin cancer; Endocrine malignant tumors such as hypothalamus, pituitary gland, thyroid gland, parathyroid gland, adrenal gland; Central nervous system malignant tumors; Solid tumors such as malignant tumors originating from bone and soft tissue, and bone marrow abnormalities Plastic syndrome, acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, acute myeloid monocytic leukemia, chronic myeloid monocytic leukemia, acute monocytic leukemia, chronic monocytic leukemia, acute Whole myeloid leukemia, acute macronuclear leukemia, red leukemia, eosinophil leukemia, chronic eosinophil leukemia, chronic neutrophil leukemia, adult T cell leukemia, hairy cell leukemia, plasma cell leukemia, multiple leukemia Hematopoietic malignant tumors such as myeloma and malignant lympho
  • respiratory epithelial malignant tumors such as lung cancer (flat epithelial cancer, small cell cancer, large cell cancer, adenocarcinoma), malignant pleural mesenteric tumor; head and neck cancer; esophageal cancer, gastric cancer, colon cancer (S) Gastrointestinal epithelial malignant tumors such as colon cancer, rectal cancer, etc.); liver cancer; pancreatic cancer; renal cell cancer; bladder cancer; malignant melanoma; classical Hodgkin lymphoma; ovarian cancer; breast cancer: prostate cancer; be able to.
  • lung cancer flat epithelial cancer, small cell cancer, large cell cancer, adenocarcinoma
  • malignant pleural mesenteric tumor head and neck cancer
  • esophageal cancer gastric cancer
  • colon cancer S
  • Gastrointestinal epithelial malignant tumors such as colon cancer, rectal cancer, etc.
  • liver cancer pancreatic cancer
  • renal cell cancer bladder cancer
  • malignant melanoma classical
  • Tumor immunity is considered to be a biological reaction to tumors based on the damaging activity of T cells against tumor cells. Therefore, activating tumor immunity can be said to increase the cytotoxic activity of T cells against tumor cells.
  • the tetracycline compound used in the present invention or a pharmaceutically acceptable salt thereof is intended to exert a growth inhibitory effect or a cytotoxic effect on direct tumor cells as described in Non-Patent Documents 2 and 3. It's not something to do.
  • the tetracycline compounds used in the present invention or pharmaceutically acceptable salts thereof are not intended to directly damage virus-infected cells.
  • the tetracycline compound used in the present invention or a pharmaceutically acceptable salt thereof has an action of enhancing the cytotoxic activity of T cells.
  • tetracycline compound for example, a compound represented by the following general formula (I) can be exemplified.
  • R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms), or a lower alkyl group having 1 to 3 carbon atoms: ..
  • R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom): ..
  • R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 are hydrogen atoms, hydroxyl groups or lower alkyl groups having 1 to 3 carbon atoms together or independently, or R 4 and R 5 are methylene groups in one.
  • R 6 is a hydrogen atom, a halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms): ..
  • R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, -NH-CO-CH 2- NH-C (CH 3 ) 3 or -CH 2- NH-CH 2- C (CH 3 ) 3 . be. ].
  • Examples of the lower alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group. It is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • Halogen is not particularly limited. For example, a chlorine atom, a fluorine atom, a bromine atom, an iodine atom and the like can be mentioned. It is preferably a chlorine atom.
  • the tetracycline compound is preferably at least one selected from the group consisting of the tetracycline compounds listed in Table 1 below.
  • the tetracycline-based compound is more preferably at least one selected from the group consisting of demethylchlortetracycline, mecrocycline, tetracycline, chlortetracycline, doxycycline, minocycline, and oxytetracycline.
  • Tetracycline compounds and salts thereof disclosed in the present specification are known. Therefore, methods for producing tetracycline compounds and salts thereof are also known.
  • the salt of the tetracycline compound is not limited as long as it is a pharmaceutically acceptable salt.
  • a salt can be produced by reacting a tetracycline-based compound acid salt containing an amine or other basic group with a suitable organic or inorganic acid to produce an anionic salt.
  • anionic salts are acetate, benzenesulfonate, benzoate, bicarbonate, heavy tartrate, bromide, calcium edetate, cansilate, carbonate, chloride, citrate, dihydrochloride.
  • Tetracycline compounds can generate cationic salts by reacting with suitable bases.
  • Cationic salts may be made of bases that give pharmaceutically acceptable cations, alkali metal salts (particularly sodium and potassium), alkaline earth metal salts (particularly calcium and magnesium), aluminum salts and ammonium.
  • Salts as well as trimethylamine, triethylamine, morpholine, pyridine, piperidine, picolin, dicyclohexylamine, N, N'-dibenzylethylenediamine, 2-hydroxyethylamine, bis- (2-hydroxyethyl) amine, tri- (2-hydroxyethyl) Contains salts such as amines, prokines, dibenzylpiperidin, dehydroabiethylamine, N, N'-bisdehydroabiethylamine, glucamine, N-methylglucamine, colidin, quinine, quinoline, and basic amino acids such as lysine and arginine. ..
  • the immunostimulatory agent contains a tetracycline compound or a pharmaceutically acceptable salt thereof.
  • the immunostimulatory agent may be prepared by combining a tetracycline compound or a pharmaceutically acceptable salt thereof with a suitable carrier or additive.
  • a suitable carrier or additive As the carrier and the additive used for the preparation of the immunostimulatory agent, various substances commonly used in ordinary drugs depending on the dosage form of the immunostimulatory agent, such as excipients, binders, disintegrants, and slippers, are used. Examples thereof include swamps, colorants, flavoring agents, odorants, and surfactants.
  • the dosage form is not particularly limited, but tablets, powders, granules, capsules (including hard capsules and soft capsules), liquids, pills, etc. Suspension agents, emulsions and the like can be exemplified.
  • examples thereof include injections, infusions, suppositories, nasal drops, and transpulmonary administrations.
  • the immunostimulatory agent is an oral solid composition such as tablets, powders, granules, pills, capsules, etc., as a carrier, for example, lactose, sucrose, sodium chloride, glucose, urea, starch, etc.
  • Excipients such as calcium carbonate, kaolin, crystalline cellulose, silicic acid, methyl cellulose, glycerin, sodium alginate, rubber arabic; simple syrup, pudo sugar solution, starch solution, gelatin solution, polyvinyl alcohol, polyvinyl ether, polyvinyl pyrrolidone, carboxymethyl cellulose , Celac, methylcellulose, ethylcellulose, water, ethanol, potassium phosphate, etc .; dried starch, sodium alginate, canten powder, laminaran powder, sodium hydrogen carbonate, calcium carbonate, polyoxyethylene sorbitan fatty acid esters, sodium lauryl sulfate, Disintegrants such as stearic acid monoglyceride, starch, lactose; disintegrators such as sucrose, stearic acid, cacao butter, hydrogenated oil; absorption promoters such as sodium lauryl sulfate; moisturizers such as glycerin, starch; starch, lactose
  • the tablet may be a tablet coated with a normal skin, for example, a sugar-coated tablet, a gelatin-encapsulated tablet, an enteric-coated tablet, a film-coated tablet, a double tablet, a multi-layer tablet, or the like.
  • the above immunostimulatory agent is an oral solid composition of pills
  • a carrier for example, excipients such as glucose, lactose, starch, cocoa butter, hardened vegetable oil, kaolin, talc; gum arabic.
  • excipients such as glucose, lactose, starch, cocoa butter, hardened vegetable oil, kaolin, talc; gum arabic.
  • Binders such as powder, tragant powder, gelatin; disintegrants such as laminarin and canten can be used.
  • the capsule is prepared by mixing the active ingredient with various carriers exemplified above and filling the capsule into a hard capsule, a soft capsule, or the like. Is prepared.
  • the above-mentioned preparation is a liquid preparation, it may be an aqueous or oily suspension, a solution, a syrup, or an elixir preparation, and is prepared according to a conventional method using ordinary additives.
  • the carrier may be, for example, water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, polyoxyethylene sorbitan fatty acid esters, or the like.
  • Diluting agent such as sodium citrate, sodium acetate, sodium phosphate; buffer such as dipotassium phosphate, trisodium phosphate, sodium hydrogen phosphate, sodium citrate; sodium pyrosulfate, EDTA, thioglycol Stabilizers such as acids and thiolactic acids; saccharides such as mannitol, inositol, maltose, sucrose and lactose can be used as molding agents when freeze-dried.
  • a sufficient amount of glucose or glycerin to prepare an isotonic solution may be contained in the agent, or a usual solubilizing agent, pain-relieving agent, local anesthetic, etc. may be added. good.
  • These carriers can be added to produce subcutaneous, intramuscular, and intravenous injections by conventional methods.
  • the above-mentioned preparation is an intravenous drip, it can be prepared by dissolving the administered compound in an isotonic electrolyte infusion preparation based on physiological saline, Ringer's solution, or the like.
  • the immunostimulatory agent in the present invention may be either an oral composition or a parenteral composition, but is preferably an oral composition.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof contained in the immunostimulatory agent may be one kind or a plurality of kinds. That is, the immunostimulatory agent may contain at least one selected from the group consisting of tetracycline compounds and pharmaceutically acceptable salts thereof.
  • the dose of the tetracycline compound or its pharmaceutically acceptable salt used as the immunostimulatory agent is preferably less than the prescribed dose used for the treatment of bacterial infectious diseases.
  • the dose of the tetracycline compound or its pharmaceutically acceptable salt used in the present embodiment is converted into a daily dose from 1/10 of the prescribed dose used for the treatment of bacterial infectious diseases. It is about 1/2.
  • the lower limit of the dose in this embodiment can be selected from 1/10, 1/8, and 1/6 of the specified dose.
  • the upper limit of the dose in this embodiment can be selected from 1/2, 1/3, and 1/4 of the specified dose.
  • examples of prescribed doses of tetracycline compounds or pharmaceutically acceptable salts thereof used in the treatment of bacterial infections are as follows.
  • the prescribed dose of tetracycline hydrochloride is 1 g per day for adults and 30 mg / kg for children, which are taken in 4 divided doses.
  • the prescribed dose of demethylchlortetracycline hydrochloride is 450 mg to 600 mg per day for adults, and these are taken in 2 to 4 divided doses.
  • the prescribed dose for the initial dose of doxycycline hydrochloride hydrate is 200 mg per day for adults, and it may be taken in a single dose or in two divided doses.
  • the prescribed dose for the second and subsequent doses of doxycycline hydrochloride hydrate is 100 mg per day for adults.
  • the prescribed dose of the initial dose of doxycycline hydrochloride hydrate is 4.4 mg / kg per day for children weighing 45 kg or less, and is taken in two divided doses.
  • the prescribed dose for the initial dose of doxycycline hydrochloride hydrate is 200 mg / kg per day for children weighing over 45 kg and is taken in two divided doses.
  • the prescribed dose for the second and subsequent doses of doxycycline hydrochloride hydrate is 2.2 mg / kg to 4.4 mg / kg per day for children weighing 45 kg or less and should be taken once daily or 2 Take in divided doses.
  • the prescribed dose for the second and subsequent doses of doxycycline hydrochloride hydrate is 100 mg to 200 mg per day for children weighing over 45 kg and may be taken once daily or in two divided doses.
  • the prescribed dose for the initial dose of minocycline hydrochloride is 100 mg to 200 mg per day for adults, which is taken orally or intravenously infused.
  • the prescribed dose for the second and subsequent doses of minocycline hydrochloride is 100 mg every 12 or 24 hours for adults and is taken orally or intravenously infused.
  • the prescribed dose of administration of minocycline hydrochloride is 2 mg / kg to 4 mg / kg per day for children and is taken orally.
  • the prescribed dose for the first dose of tigecycline is 100 mg for adults, which is given by intravenous drip infusion over 30 to 60 minutes.
  • the prescribed dose for the second dose of tigecycline is 50 mg, which is given by intravenous drip infusion over 30 to 60 minutes every 12 hours.
  • the dose can be appropriately adjusted according to the age, symptoms, tumor size, administration status of other drugs, and the like.
  • the total amount of the tetracycline compounds or pharmaceutically acceptable salts thereof is used for the treatment of the above-mentioned bacterial infectious disease. It is preferable not to exceed 1/2 of the total prescribed dose.
  • the administration period of the immunostimulatory agent can be from the time when the immunostimulatory agent is prescribed until the symptoms associated with the disease are relieved or cured. It is preferable to continue for 3 days or more, 5 days or more, 8 days or more, 10 days or more, 14 days or more, 21 days or more, 30 days or more, and 60 days or more.
  • the upper limit of the administration period varies depending on the virus, acid-fast bacillus, and fungus, and is, for example, 90 days, 60 days, 48 days, 40 days, 36 days, 30 days, 28 days, 21 days, or 14 days.
  • it is preferably administered for 14 to 28 days for patients suffering from a coronaviridae infection, especially COVID-19.
  • the immunostimulatory agent can be administered every day during the administration period. For example, when it is administered for 14 days or more, 21 days or more, 1 month or more and 2 months or more, it is administered every 2 days or 3 days. be able to.
  • the immunostimulatory agent is administered daily for the first 8 days, 10 days, or 14 days after the administration of the immunostimulatory agent, and then every 2 days and every 3 days. You may change it. Further, it may be administered every 11 to 12 hours, for example, within the range not exceeding the daily dose.
  • the subjects to whom the immunostimulatory agent is administered for viral infections are those who have developed viral infections, those who are suspected of having close contact with patients who have developed viral infections, and those who have no symptoms of viral infections.
  • a person who has a positive reaction in the virus test may be the subject of administration.
  • the virus test include a virus antigen test, a virus antibody test, a PCR test, and a sequencing test using a next-generation sequencer.
  • the subjects to whom the immunostimulatory agent for acid-fast bacillus infection is administered are those who have developed acid-fast bacillus infection, those who are suspected of having close contact with patients who have developed acid-fast bacillus infection, and acid-fast bacillus infection.
  • a person who has no symptoms of the disease but who shows a positive reaction in various acid-fast bacillus tests may be the subject of administration.
  • the acid-fast bacillus test include a tuberculin test, an X-ray test, a Tyrnersen staining test of a sample collected from a tissue suspected of being infected or a related site thereof, a PCR test, and a sequencing test using a next-generation sequencer.
  • the recipients of the immunostimulatory agent for fungal infections may be patients who have developed fungal infections or those who have no symptoms of fungal infections but who have a positive reaction in various fungal tests. ..
  • Examples of the fungal test include an X-ray test, a histopathological test of a sample collected from a tissue suspected of being infected or a related site thereof, a cytological test, a PCR test, and a sequencing test using a next-generation sequencer.
  • Tetracycline compounds or pharmaceutically acceptable salts thereof may be used in combination with other drugs.
  • Other agents that can be used in combination are not particularly limited, but are preferably antiviral agents, antimycobacterial agents, antifungal agents, or antitumor agents.
  • Antiviral drugs include, for example, antiviral drugs (oseltamivir, baroxavir, zanamivir, peramivir, raninamidir, fabipiravir), anticytomegalovirus drugs (gancyclovir, balgancyclovir, hoscalnet), antiherpesvirus drugs (acyclovir, baracyclovir, generally).
  • Cyclovir Amenamevir
  • antiviral drugs didobudin, ramibdin, abacavir, tenofovir, emtricitabine, nevirapin, efavirentz, etrabirin, lylpivirin, nerfinavir, ritonavir, lopinavir, atazanavir, hosamprenavir, daclatasvir, daclatasvir, daclatasvir, daclatasvir, daclatasvir, daclatasvir, daclatasvir
  • Anti-hepatitis virus drugs teraprevir, simeprevir, vaniprevir, daclatasvir, asnaprevir, sophosbuvir, ribavirin, regipasvir, ombitasvir, paritaprevir, ritonavir, elvasville, glazoprevir, daclatasvir, asunaprevir,
  • the antiviral drug can be administered according to a known method.
  • the mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an antiviral drug is not particularly limited as long as it is a mode of use that exerts the effect of the present invention.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the antiviral drug, and prior to the administration of the antiviral drug or after the administration of the antiviral drug is started.
  • Tetracycline compounds or pharmaceutically acceptable salts thereof may be administered.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof and the antiviral drug may be alternately administered.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered during the administration of the antiviral drug, depending on the degree of improvement of symptoms and the like, and vice versa.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered, and then an antiviral drug may be co-administered in the middle of the administration.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antiviral drug.
  • an antiviral drug for example, in the case of administering the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof prior to the administration of the antiviral drug, from 7 days or 3 days before the start of administration of the antiviral drug.
  • An example can be given of a method of administering once a day every day for about 14 to 21 days.
  • a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antiviral drug.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt is prepared as a pharmaceutical composition in various forms (dosage forms) according to its administration route (administration method), and is a subject in combination with an antiviral drug. It is administered to patients with viral infections.
  • anti-antioxidant agents for example, rifampicin, isoniazid (hydrazide), streptomycin, etambutol, pyrazinamide, which can be used for infection of tuberculosis flora, and combinations thereof; , Rifampicin, streptomycin, canamycin, and combinations of these; isoniazid, rifampicin, etambitol, which can be used for Mycobacterium kansasii infection, and combinations thereof; , And combinations thereof.
  • Administration of the antimycobacterial drug can be performed according to a known method.
  • the mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an acid-fast bacillus drug is not particularly limited as long as it is a mode of use that exerts the effect of the present invention.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the acid-fast bacillus drug, or prior to the administration of the acid-fast bacillus drug, or the anti-acid-fast acid.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered after the start of administration of the mycobacterial drug.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof and the antimycobacterial drug may be administered alternately.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered from the middle of the administration of the acid-fast bacillus drug according to the degree of improvement of symptoms and the like.
  • an antimycobacterial drug may be administered in combination in the middle of the administration.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antimycobacterial drug. ..
  • an antimycobacterial drug for example, from 7 days before the start of administration of the antimycobacterial drug.
  • a method of administering the drug once a day from 3 days before for 14 to 21 days can be exemplified.
  • a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antimycobacterial drug.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt is prepared as a pharmaceutical composition in various forms (dosage forms) according to the route of administration (administration method) thereof, and is combined with an acid-fast bacillus drug. , Administered to target mycobacterial infection patients.
  • antifungal agents examples include itraconazole, diflucan, prodif, buifend, neyrin, krenafin, nizoral, astat, lamicile, and luricon.
  • the antifungal drug can be administered according to a known method.
  • the mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an antifungal agent is not particularly limited as long as it is a mode of use that exerts the effect of the present invention.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the antifungal drug, and prior to the administration of the antifungal drug or after the administration of the antifungal drug is started.
  • Tetracycline compounds or pharmaceutically acceptable salts thereof may be administered.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof and the antifungal drug may be alternately administered.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered during the administration of the antifungal drug, or vice versa, depending on the degree of improvement of symptoms and the like.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered, and then an antifungal drug may be administered in combination.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antifungal drug.
  • an antifungal drug for example, in the case where the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof is administered prior to the administration of the antifungal drug, for example, from 7 days or 3 days before the start of administration of the antifungal drug.
  • An example can be exemplified of a method of administering once a day every day for about 14 to 21 days.
  • a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antifungal drug.
  • tetracycline antibiotics or pharmaceutically acceptable salts of the present invention are prepared as pharmaceutical compositions in various forms (dosage forms) according to the route of administration (administration method), and are subject to combination with antifungal agents. It is administered to patients with fungal infections.
  • antitumor agents include those generally used as anticancer agents, such as alkylating agents, metabolic antagonists, antitumor antibiotics, microvascular inhibitors, hormones or hormone-like agents, platinum preparations, etc. Topoisomerase inhibitors, cytokines, antibody drugs, tumor immunological drugs (radioimmunotherapy drugs, non-specific immunoactive drugs, immune checkpoint inhibitors, CAR-T cell drugs, BiTE drugs, cancer vaccines, etc.), molecular target drugs, And other anti-tumor agents can be appropriately selected according to the target tumor.
  • alkylating agents include cyclophosphamide, iphosphamide, busulfan, melfaran, bendamstin hydrochloride, nimustin hydrochloride, lanimustin, dagalvazine, procarbazine hydrochloride temozolomid, etc .; as metabolic antagonists.
  • Metotrexate Pemetrexed Sodium, Fluorouracil, Doxyflulysin, Capecitabin, Tegafur, Citarabin, Citarabin ocphosphate hydrate, Enocitabin, Gemcitabine hydrochloride, Mercaptoprin hydrate, Fludarabin phosphate ester, Nerarabin, Pentostatin , Holinate calcium, hydroxycarbamide, L-asparaginase, azacitidine, etc .;
  • antitumor antibiotics include doxorubicin hydrochloride, daunorbisin hydrochloride, pirarubicin, epirubicin hydrochloride, idalbisin hydrochloride, acralbisin hydrochloride, amurubicin hydrochloride, mitoxane.
  • Tron hydrochloride mitomycin C, actinomycin D, bleomycin, pepromycin sulfate, dinostatin styramer, etc .
  • microvascular inhibitors include vincrystin sulfate, vinblastin sulfate, bindesin sulfate, binorelbin tartrate, paclitaxel, docetaxel water.
  • the bispecific molecule is an antigen-binding region that binds to at least one surface antigen present in tumor cells and an antigen-binding region that binds to at least one surface antigen present in T cells within one molecule.
  • the number of antigen-binding regions that bind to at least one of the surface antigens may be one or two or more for one antigen.
  • the antigen-binding region that binds to at least one of the surface antigens is a combination of the same type of Fab region, a combination of the same type of variable region, a combination of the same type of sc-Fv, and a heavy chain Fab region derived from one type of antibody.
  • Combination of Chain Fab Regions A combination of a heavy chain variable region and a light chain variable region derived from one type of antibody may be used, and a combination of heavy chain sc-Fv derived from one type of antibody may be used.
  • the surface antigen of a T cell is not limited as long as it exists on the surface of the T cell and at least one antigen-binding region contained in the bispecific molecule or trispecific molecule can bind to it.
  • the surface antigen of T cells preferably, the surface antigen of cytotoxic T cells can be mentioned.
  • T cell surface antigens include CD3, CD8, TCR, CTLA-4, PD1, Tim3, CD27, CD28, CD40, CD134 (OX40), CD137 (4-1BB), CD278 (ICOS). .. It is preferably CD3.
  • the surface antigen of a tumor cell is present on the surface of the tumor cell and is not limited as long as at least one antigen-binding region contained in the bispecific molecule can bind.
  • EphA1 ephrin type-A receptor 1
  • EphA2, FolR1 forate receptor 1
  • EpCAM EpCAM
  • CD19 Erbb2 : ErbB1
  • Her2, CD20 EGFR (Epidermal Growth Factor Receptor)
  • CCR4 CC chemokine receptor type 4
  • CEA Carcinomebryonic, G2G3G3G3DIG3, (Mucin1)
  • PSCA Prostate stem cell antigen
  • PSMA Prostate-specific memory antigen
  • HLA-A1 + NY-ESO1 HLA-A1 restricted NY-ESO1
  • HLA-A2 HLA-A3 + NY-ESO1
  • HLA-A3 antigened NY-ESO1
  • Bispecific molecules include BiTE TM, bispecific antibodies and the like. Examples of BiTE TM include bispecific molecules targeting CD19 and CD3, and bispecific molecules targeting EphA2 and CD3. Examples of bispecific antibodies include
  • tumor immunotherapeutic agents can be preferably mentioned as antitumor agents, and more preferably immune checkpoint inhibitors, CAR-T cell agents, bispecific molecular agents, and the like. At least one selected from the cancer vaccine can be mentioned.
  • the most preferred of the tumor immunological agents are immune checkpoint inhibitors (atezolizumab, nivolumab, pembrolizumab, ipilimumab, durvalumab, avelumab, tremelimumab, etc.).
  • Example 1 The intensity of tumor cell injury activity of T cells of peripheral blood mononuclear cells was evaluated for each patient according to the method for measuring tumor cell injury activity using peripheral blood mononuclear cells, and the dose was adjusted according to this intensity. May be determined.
  • the mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an antitumor drug is not particularly limited as long as it is a mode of use that exerts the effect of the present invention.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the antitumor drug, or tetracycline may be administered prior to the administration of the antitumor drug or after the administration of the antitumor drug.
  • Tetracyclines or pharmaceutically acceptable salts thereof may be administered.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof and the antitumor drug may be alternately administered.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered from the middle of the administration of the antitumor drug according to the degree of shrinkage of the tumor tissue, and vice versa.
  • an antitumor drug may be co-administered in the middle of the administration.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antitumor drug.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof is administered prior to the administration of the antitumor drug, for example, from 7 days or 3 days before the start of administration of the antitumor drug.
  • An example can be exemplified of a method of administering once a day every day for about 14 to 21 days.
  • a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antitumor drug.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt is prepared as a pharmaceutical composition in various forms (dosage forms) according to its administration route (administration method), and is a subject in combination with an antitumor drug. It is administered to tumor patients.
  • Patients to whom the immunostimulatory agent is administered in the treatment of tumors are not limited as long as the tumor immunotherapy can be applied.
  • a patient a patient who has any of the above-mentioned tumors and has not been treated, a patient who has already received some tumor treatment, a patient who is being treated for the tumor, or a tumor that has recurred or metastasized. Patients can be mentioned.
  • the treatment of the tumor preferably includes surgical tumor resection, chemotherapy, radiotherapy and the like.
  • compositions The tetracycline compounds or pharmaceutically acceptable salts thereof described in the above, or immunostimulatory agents can be used as therapeutic or prophylactic compositions. Above 1. The description of the tetracycline compounds or pharmaceutically acceptable salts thereof described in the above is incorporated herein by reference.
  • the composition as a composition for treatment or prevention, the dose, the administration period, the administration method, and the administration subject are as described in 1. above. Since it is the same as the immunostimulatory agent described in 1. above. The explanation of is used here.
  • Therapeutic or prophylactic compositions can be used for the treatment and / or prevention of viral infections, or tumors. Treatment may include ameliorating or curing the disease. Prevention may include preventing the onset or recurrence of the disease and suppressing the exacerbation of the disease.
  • composition for infectious disease treatment is described in 1. above. Includes the immunostimulatory agents described in 1 and antiviral agents, antimycobacterial agents, or antifungal agents.
  • the antiviral drug, antimycobacterial drug, and antifungal drug are described in 2. above. The explanation of is used here.
  • antiviral drugs, acid-fast bacillus drugs, and antifungal drugs are collectively referred to as "anti-infectious disease drugs”.
  • Infectious disease therapeutic compositions comprising an immunostimulatory agent and an anti-infective agent include: (I) When the immunostimulatory agent and the anti-infectious disease drug are contained in the same preparation in a mixed manner (combination drug).
  • An immunostimulatory agent alone or a preparation containing an immunostimulatory agent and an anti-infectious disease drug alone or a preparation containing an anti-infectious disease drug are packaged as separate preparations, and both are combined.
  • kit A pharmaceutical product containing an immunostimulatory agent alone or an immunostimulatory agent and a pharmaceutical product containing an anti-infectious disease drug alone or an anti-infectious disease drug are individual pharmaceutical products, and these are combined into one package.
  • the immunostimulatory agent alone or the preparation containing the immunostimulatory agent and the anti-infectious disease drug alone or the preparation containing the anti-infectious disease drug are packaged as separate preparations.
  • Infectious disease therapeutic compositions containing antiviral agents are used as viral infectious disease therapeutic compositions.
  • a composition for treating an infectious disease containing an acid-fast bacillus drug is used as a composition for treating an acid-fast bacillus infection.
  • Infectious disease therapeutic compositions containing antifungal agents are used as fungal infectious disease therapeutic compositions.
  • Treatment method for viral infections This disclosure describes the above 1.
  • the composition described and the above 3. Includes methods of treating infectious diseases using the compositions for treating infectious diseases described in.
  • the administration method and administration target of the immunostimulatory agent and the composition for treating infectious diseases are as described in 1. above.
  • the explanation described in is incorporated here.
  • Tumor therapeutic composition The tumor therapeutic composition is described in 1. above. Includes the immunostimulatory agent described in 1 and an antitumor agent.
  • the antitumor agent is a tumor immunology agent, and more preferably, the tumor immunology agent is at least one selected from an immune checkpoint inhibitor, a CAR-T cell drug, a bispecific molecular drug, and a cancer vaccine. be.
  • the dose is as described in 1. above. The explanation described in is incorporated here.
  • Tumor therapeutic compositions comprising an immunostimulatory agent and an antitumor agent include: (I) When the immunostimulatory agent and the antitumor drug are contained in the same preparation in a mixed manner (combination drug). (Ii) An immunostimulatory agent alone or a preparation containing an immunostimulatory agent and an antitumor drug alone or a preparation containing an antitumor drug are packaged as separate preparations, and both are combined (kit). ) When sold as (Iii) The individual product of the immunostimulatory agent or the preparation containing the immunostimulatory agent and the individual product of the antitumor drug or the preparation containing the antitumor drug are individual preparations, and these are combined and sold as one package.
  • the immunostimulatory agent alone or the preparation containing the immunostimulatory agent and the antitumor drug alone or the preparation containing the antitumor drug are packaged as separate preparations.
  • Tumor Treatment Methods The present disclosure includes tumor treatment methods using the immunostimulatory agents described above and tumor therapeutic compositions.
  • the administration method and administration target of the immunostimulatory agent and the composition for treating tumors are as described in 1. above. The explanation described in is incorporated here.
  • PBMC peripheral blood mononuclear cells
  • tumor cells By measuring how much tumor cells were damaged by PBMC (tumor cell-damaging activity) after contacting and culturing through an engager such as BiTE®, antitumor of T cells in PBMC The activity was evaluated.
  • the U251 cell line was cultured in RPMI1640 medium supplemented with 10% FBS (RPMI1640 medium supplemented with 10% FBS), then peeled off with trypsin, and the RPMI1640 medium supplemented with 10% FBS so as to be 1 ⁇ 10 5 cells / mL.
  • a cell suspension was prepared by suspending in. The cell suspension was seeded on a 96-well plate to 100 ⁇ L / well and incubated at 37 ° C. for 18 hours in a wet incubator in the presence of 5% carbon dioxide.
  • Peripheral blood (heparin blood sampling) was collected from healthy subjects , and PBMC was recovered using Lymphoprep TM (Alere Technologies AS) according to the attached protocol. Specifically, the peripheral blood collected in Lymphoprep TM placed in a tube was slowly layered, centrifuged at 400 g for 50 minutes, and then the lymphocyte layer was collected. RPMI1640 medium containing 10% FBS was added to the recovered solution and centrifuged, and then the supernatant was removed. Cell pellets were suspended in RPMI 1640 medium supplemented with 10% FBS to adjust to 1 ⁇ 10 6 / mL. The recovery of PBMC was performed immediately before the step (3) described later.
  • EphA2-CD3 BiTE® which has an antigen-binding site for EphA2 and an antigen-binding site for CD3 in one molecule, was prepared at 400 ng / mL in RPMI1640 medium supplemented with 10% FBS (“BiTE solution”). "). In addition, each test drug was adjusted to 10 ⁇ M in the BiTE solution. To the 96-well plate after incubation in (1), 50 ⁇ L of PBMC cell suspension and 50 ⁇ L of BiTE solution containing each test drug were added per well. The final concentration of BiTE was 100 ng / mL, and the final concentration of each test drug was 2.5 ⁇ M.
  • PBMC cell suspension and 50 ⁇ L of BiTE solution containing no test drug are added into a 96-well plate that has been incubated in (1), and a 96-well plate that has been incubated in (1).
  • a well was prepared to which 50 ⁇ L of PBMC cell suspension and 50 ⁇ L of RPMI1640 medium supplemented with 10% FBS were added.
  • the amount of RPMI medium with 10% FBS per well was finally adjusted to a total volume of 200 ⁇ L.
  • a 96-well plate after the addition of PBMC and EphA2-CD3 BiTE® or after the addition of PBMC and EphA2-CD3 BiTE® and the study drug was incubated at 37 ° C. for 48 hours.
  • the medium of each well was collected together with PBMC. Further, 200 ⁇ L of RPMI medium containing 10% FBS was added to each well to wash the inside of the well, and the medium used for washing was collected. This operation was repeated 3 times and the inside of the well was washed 3 times. At this time, the medium collected first and the medium collected at the time of washing were put together in one tube for each well. After washing, 100 ⁇ L of 10% FBS-added RPMI medium and 20 ⁇ L of CellTiter 96 (registered trademark) AQueous One Solution Reagent (MTS reagent) were added to each well from which the medium and PBMC had been removed. Then, the 96-well microplate was incubated at 37 ° C. for about 30 minutes to 1 hour in a wet incubator in which 5% carbon dioxide gas was present.
  • MTS reagent CellTiter 96
  • Granzyme B staining Above 1. The medium collected in (4) was centrifuged at 400 g for 5 minutes, the supernatant was removed, and PBMC pellets were left. Each antibody (CD3, CD4, CD8, CD45RA) is diluted 100-fold with 2% FBS and 10 mM HEPES-added HBSS medium (hereinafter referred to as "HBSS + 2% FBS + 10 mM HEPES" medium), and these antibody diluents are used. Was added to the pellet from which the supernatant had been removed at 30 ⁇ L / tube each, and incubated at 4 ° C. for 30 minutes.
  • HBSS + 2% FBS + 10 mM HEPES medium was added at 200 ⁇ L / tube each and centrifuged at 400 g for 5 minutes, and then the supernatant was removed to leave pellets. After adding 100 ⁇ L / tube of Fix buffer to suspend the remaining PBMC, it was incubated at 4 ° C. for 30 minutes.
  • the tube after incubation was centrifuged at 400 g for 5 minutes to remove the supernatant, leaving PBMC pellets.
  • the pellets were centrifuged at 400 g for 5 minutes to remove the supernatant, leaving the pellets of PBMC.
  • the anti-Granzyme B antibody was diluted 100-fold with Wash buffer, and the remaining PBMC was suspended in 30 ⁇ L / tube of this antibody diluent and incubated at 4 ° C. for 30 minutes. 200 ⁇ L / tube of Wash buffer was added, and the mixture was centrifuged at 400 g for 5 minutes to remove the supernatant, leaving pellets of PBMC.
  • the remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
  • PBMC peripheral blood of a healthy person according to the method (1).
  • a solution of CytoTell red mixed with HBSS + 2% FBS + 10 mM HEPES medium was added to the recovered PBMC pellets, and the mixture was incubated at 37 ° C. for 30 minutes. After the incubation was completed, the mixture was centrifuged at 400 g for 5 minutes, the supernatant was removed, and pellets of PBMC were left.
  • RPMI medium supplemented with 10% FBS was added to suspend the remaining PBMC, and a 1 ⁇ 10 6 / mL PBMC cell suspension was prepared.
  • the culture supernatant was collected, and the medium was further washed with RPMI1640 medium containing 10% FBS three times, and the medium was also collected. At this time, the medium collected first and the medium collected at the time of washing were put together in one tube for each well.
  • the collected medium was centrifuged at 400 g for 5 minutes to remove the supernatant, leaving PBMC pellets.
  • Each antibody (CD3, CD4, CD8, CD45RA) was diluted 100-fold in HBSS + 2% FBS + 10 mM HEPES medium, these antibody solutions were added to pellets at 30 ⁇ L / tube, and the remaining PBMC was suspended at 4 ° C. Incubated for 30 minutes.
  • HBSS + 2% FBS + 10 mM HEPES medium was added to each tube after incubation at 200 ⁇ L / tube and centrifuged at 400 g for 5 minutes, the supernatant was removed, and PBMC pellets were left. The remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
  • CMV-specific CTL induction (Mixed CMV peptide / Lymphocytes culture) CMV peptide adjusted to 10 ⁇ g / mL in RPMI medium with 10% FBS was added to PBMC of healthy subjects with HLA type of 24:02, and cultured on a 96-well plate for 3 days. The medium was replaced with RPMI medium containing 10 ⁇ g / mL CMV peptide + 20 U / mL IL-2 ⁇ 2.5 ⁇ M demethylchlortetracycline (DMC) and cultured for another 4 days (7-day culture).
  • DMC demethylchlortetracycline
  • the medium of each well containing PBMC was transferred to a 24-well plate and scaled up, and then cultured in RPMI medium containing 10 ⁇ g / mL peptide + 20 U / mL IL-2 ⁇ 2.5 ⁇ M DMC for another 3 days.
  • the medium was replaced with RPMI medium containing 10 ⁇ g / mL peptide + 20 U / mL IL-2 ⁇ 2.5 ⁇ M DMC and cultured for another 4 days (14-day culture).
  • PBMC pellets After completion of the culture, centrifuge at 400 g for 5 minutes to remove the supernatant to leave PBMC pellets, and dilute each antibody (CD3, CD4, CD8) 100-fold in HBSS + 2% FBS + 10 mM HEPES medium and CMV Tetramer. Was diluted 10-fold) and added to PBMC pellets at 30 ⁇ L / tube to suspend PBMC and incubated at 4 ° C for 30 minutes.
  • HBSS + 2% FBS + 10 mM HEPES medium was added at a rate of 200 ⁇ L / tube and centrifuged at 400 g for 5 minutes, and the supernatant was removed to leave PBMC pellets.
  • the remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
  • T cells in lung cancer tissue were recovered from lung cancer tissue according to the following method. Tumor cytotoxic activity was measured as the activity of the cell population.
  • tissue stirring solution HBSS + 2% FBS + 10 mM HEPES with Tumor Dissociation Kit (Miltenyi Biotec) added
  • MACS TM Dissociator Miltenyi Biotec
  • the tissue residue was removed by passing a stirring solution containing cells through a 70 ⁇ m mesh, and the filtrate was centrifuged at 600 xg for 10 minutes to collect the precipitate.
  • BD Pharm lyse (BD Biosciences) was added to the cell-containing precipitate and allowed to stand for 2 minutes.
  • HBSS Buffer was added to the lysate containing the cells after standing, and the mixture was centrifuged at 600 xg for 10 minutes, and the precipitate was collected again. A 30% Percoll solution was added to the recovered precipitate, and the mixture was centrifuged at 12000 xg for 30 seconds, and the precipitate was recovered again. The recovered precipitate was washed with HBSS Buffer and centrifuged at 12000 xg for 30 seconds to collect cells in the tissue.
  • the tumor cytotoxic activity of the recovered cells is described in the above-mentioned I. 1. 1.
  • the measurement was carried out in the same manner as in (1) to (5). Since a BiTE that binds to CD3 is used, the tumor cytotoxic activity of the cells recovered from the lung cancer tissue is considered to be the tumor cytotoxic activity of T cells in the lung cancer tissue.
  • IFN ⁇ production assay Above 5. In the above 1. The IFN ⁇ -producing ability of all the cells in the medium collected according to (4) was measured using the IFN- ⁇ Secretation Assay Kit (Miltenyi Biotec).
  • the medium collected in (4) was centrifuged at 400 g for 5 minutes to remove the supernatant.
  • IFN ⁇ Catch Reagent diluted 100-fold with 10% human serum-added AIM medium was added at 100 ⁇ L / tube each, the PBMC was suspended, and then incubated at 4 ° C. for 10 minutes.
  • Each antibody (CD3, CD4, CD8, CD45RA) was diluted 100-fold and anti-i-IFN ⁇ antibody was diluted 10-fold in HBSS + 2% FBS + 10 mM HEPES medium, and 30 ⁇ L / L of these antibody dilutions was added to the remaining PBMC.
  • PBMC was suspended by adding tubes at a time and incubated at 4 ° C. for 30 minutes.
  • CT26WT cells were thawed 5 days before inoculation and cultured in DMEM + 10% FBS + 1% penicillin / streptomycin medium. CT26WT cells were trypsinized and passaged 2 days prior to tumor cell inoculation.
  • CT26WT cells were intradermally inoculated at 2 ⁇ 10 5 cells / animal.
  • the test drug was dissolved in physiological saline to adjust the dose to 3.0 mg / mL, and 200 ⁇ L / animal was intraperitoneally administered at 30 mg / kg / day.
  • 200 ⁇ L / animal of saline alone was intraperitoneally administered.
  • Administration of the test drug or saline was performed daily for 10 days (Fig. 8A). Tumor diameter was measured 10 days, 13 days, and 16 days after administration of tumor cells.
  • Example 1 Verification of the activating effect of the tetracycline compound on T cell antitumor activity.
  • DMC demethylchlortetracycline
  • MC meclocycline
  • TC tetracycline
  • CTC chlortetracycline
  • MI minocycline
  • the antitumor activity of T cells was enhanced in all of DMC, MC, TC, CTC and MINO compared with the case of adding BiTE alone (DMC, MC and CTC: p). ⁇ 0.01, TC and MINO: p ⁇ 0.05). From this, it was clarified that the tetracycline compound has an action of activating T cell antitumor activity.
  • Example 2 Verification of the effect of a tetracycline compound on enhancing the tumor cytotoxic activity of CD8 + T cells.
  • 1. Tumors of CD8-positive T cells (CD8 + T cells) in each PBMC collected from 3 healthy subjects using demeclocycline (DMC: final concentration 2.5 ⁇ M) as the test drug according to the method described in The effect of tetracycline compounds on cytotoxic activity was examined.
  • DMC demethylchlortetracycline
  • Example 4 Verification of enhancement of CD8 + T cell proliferation by tetracycline compounds
  • DMC demethylchlortetracycline
  • Example 5 Verification of the effect of tetracycline compounds on enhancing the induction of CMV-specific cytotoxic T cells. 4. The effect of tetracycline compounds on inducing CMV-specific cytotoxic T cells by stimulating PBMC with CMV antigen was examined according to the method described in. Demethylchlortetracycline (DMC: final concentration 2.5 ⁇ M) was used as the test drug. PMBC was collected from one healthy person. CMV-specific cytotoxic T cells were identified by FACS analysis. As shown in FIG. 6A, the induction of CMV-specific cytotoxic T cells (fractionated into compartment P7 in FIG. 6A) is still 7 days after stimulation of CMV-specific cytotoxic T cells with an inducing antigen.
  • DMC final concentration 2.5 ⁇ M
  • DMC + was significantly more CMV-specific cytotoxic T cells (CMV Tetramer + CD8 + T cells) than DMC-. ) Increased (Fig. 6B; p ⁇ 0.05). This suggests that tetracycline compounds enhance the proliferative capacity of antigen-specific T cells. It was also shown that it can induce the proliferation of T cells that recognize viral antigens as well as tumor antigens.
  • Example 6 Verification of the effect of the tetracycline compound on enhancing the tumor cytotoxic activity of T cells in lung cancer tissue. 5. T cells in the tumor tissue of a lung cancer patient were collected according to the method described in the above, and the tumor cell-damaging activity was measured using the cells to verify the effect of the tetracycline compound. In addition, the above I. 5. T cells in the tumor tissue of a lung cancer patient were collected according to the method described in the above I.I. 6. The abundance ratio of IFN ⁇ -producing CD8 + T cells was measured according to the method described in the above, and the effect of the tetracycline compound was verified.
  • DMC Demethylchlortetracycline
  • Example 7 Effect of tetracycline compound in vivo 7.
  • the inhibitory effect of tetracycline compounds on tumor growth in vivo was verified according to the method described in. Compared with the Vehicle group, the test drug-administered group tended to suppress the increase in tumor diameter (Fig. 8B).
  • Example 8 Verification of the combined effect of the tetracycline compound and the anti-PD-L1 antibody in vivo It was verified that the tetracycline compound can enhance the antitumor effect of the immune checkpoint inhibitor in vivo.
  • CT26WT cells were thawed 6 days before inoculation and cultured in DMEM medium supplemented with 10% FBS and 1% penicillin / streptomycin. Two days prior to administration to the tumor, CT26WT cells were trypsinized and passaged. The hair on the right dorsal side of Balb / c 6-week-old mice was trimmed and then inoculated into the skin at the trimmed site of 3 ⁇ 10 5 cells / 50 ⁇ L / animal (Day 0). On Day 6, the body weight and tumor diameter of the mice were measured, and 9 mice were divided into 5 groups so that they were uniform. BioXCell's InVivoMAb anti-mouse PD-L1 was used as the anti-PD-L1 antibody.
  • each group is as follows. Group to administer control IgG and water (control IgG + H2O group) Group to administer anti-PD-L1 antibody and water (aPD-L1 + H2O group) Group receiving anti-PD-L1 antibody and DMC (300 mg / kg) (aPD-L1 + DMC (300 mg / kg) group) Group receiving anti-PD-L1 antibody and DMC (100 mg / kg) (aPD-L1 + DMC) (100 mg / kg) group) Anti-PD-L1 antibody and DMC (30 mg / kg) administration group (aPD-L1 + DMC (30 mg / kg) group)
  • DMC administration was started on Day 7. After dissolving DMC in physiological saline, 200 ⁇ l / animal was orally administered using an oral sonde. In the DMC non-administered group, 200 ⁇ L / animal of distilled water was orally administered. DMC was administered once daily from Day 7 to Day 12.
  • anti-PD-L1 antibody or control IgG was intraperitoneally administered at 200 ⁇ g / 200 ⁇ L / animal.
  • Tumor diameter was measured on Day 10 and Day 13.
  • the tumor volume was calculated by the formula (minor axis 2 x major axis) / 2.
  • Results Fig. 9 shows the measurement results.
  • the tumor volume increased from about 40 mm 3 at the start of DMC administration to about 160 mm 3.
  • the tumor volume of the aPD-L1 + H2O group was only about 90 mm 3.
  • the increase in tumor volume was suppressed more than in the aPD-L1 + H2O group.
  • the aPD-L1 + DMC (30 mg / kg) group the effect of suppressing the increase in tumor volume was observed. From this, it was shown that the administration of tetracycline compounds enhances the antitumor effect of immune checkpoint inhibitors.
  • Example 9 Verification that the enhancing effect of the anti-PD-L1 antibody on the antitumor effect of the tetracycline-based compound in vivo depends on CD8 + T cells.
  • the immune checkpoint inhibitor exhibited by the tetracycline-based compound in vivo.
  • tetracycline compounds are used as immune checkpoint inhibitors in the presence and absence of CD8 + T cells. The effect of T cell on antitumor effect was investigated.
  • Method CT26WT cells were cultured in the same manner as in Example 8 and inoculated subcutaneously into Balb / c 6-week-old mice (Day 0). On Day 6, the body weight and tumor diameter of the mice were measured, and 9 mice were divided into 6 groups so that they would be uniform.
  • Group to administer control IgG and water Group to administer anti-PD-L1 antibody and water (aPD-L1 + H2O group) Group to administer anti-PD-L1 antibody, water and anti-CD8 antibody (aPD-L1 + H2O + CD 8 depletion group) Group to administer anti-PD-L1 antibody, DMC (30 mg / kg) and anti-CD8 antibody (aPD-L1 + DMC + CD8 depletion group) Group to administer control IgG and DMC (30 mg / kg) (IgG + DMC group) Group to administer anti-PD-L1 antibody and DMC (30 mg / kg) (aPD-L1 + DMC group)
  • DMC administration was started on Day 7. After dissolving DMC in physiological saline, 200 ⁇ L / animal was orally administered using an oral sonde. In the DMC non-administered group, 200 ⁇ L / animal of distilled water was orally administered. DMC was administered once daily from Day 7 to Day 12.
  • anti-PD-L1 antibody or control IgG was intraperitoneally administered at 200 ⁇ g / 200 ⁇ L / animal.
  • Tumor diameter was measured on Day 10 and Day 13.
  • the tumor volume was calculated in the same manner as in Example 8.
  • Results Figure 10 shows the results.
  • the tumor volume on Day 13 was about 150 mm 3.
  • the tumor volume of the aPD-L1 + H2O group on Day 13 was about 120 mm 3.
  • the increase in tumor volume was suppressed in the IgG + DMC group compared to the aPD-L1 + H2O group, and the tumor volume on Day 13 was about 100 mm 3.
  • the tumor volume on Day 13 was about 80 mm 3.
  • the tumor volume increased faster than in the IgG + H2O group, and in the aPD-L1 + H2O + CD 8 depletion group and aPD-L1 + DMC + CD8 depletion group, the tumor volume increased on Day 10 compared to the IgG + H2O group.
  • the tumor volume was around 300 mm 3 in both the aPD-L1 + H2O + CD 8 depletion group and the aPD-L1 + DMC + CD8 depletion group, even if anti-PD-L1 antibody or anti-PD-L1 antibody and demethylchlortetracycline were present.
  • the increase in tumor volume was accelerating.
  • the aPD-L1 + DMC group showed a significant decrease in tumor volume compared to the aPD-L1 + H2O group, whereas the aPD-L1 + DMC + CD 8 depletion group and the aPD-L1 + H2O + CD8 depletion group showed a significant difference in tumor volume. There wasn't.
  • Example 10 Verification of effect of tetracycline-based compound on cancer antigen-specific CD8 + T cells in vivo Due to the antitumor effect-enhancing effect of tetracycline-based compound on immune checkpoint inhibitors, cancer antigen-specific CD8 in vivo It was verified whether or not + T cells increased.
  • HBSS + 2% FBS + 10 mM HEPES HBSS + 2% FBS + 10 mM HEPES
  • Gp70 Tetramer [T-Select H-2Ld MuLV gp70 Tetramer-SPSYVYHQF-PE, MBL] was added to the tube containing the sediment and reacted at 4 ° C. for 30 minutes.
  • ⁇ -galactosidase Tetramer [T-Select H-2Ld ⁇ -galactosidase Tetramer-TPHPARIGL-PE, MBL] was added to a tube containing sediment and reacted at 4 ° C. for 30 minutes.
  • HBSS + 2% FBS + 10 mM HEPES was added to the tube after completion of the reaction and mixed. The tube was centrifuged again and the supernatant was removed.
  • Anti-CD8 antibody was added into the tube, and after staining, the cells were washed and subjected to FACS measurement, and cells positive for gp70 Tetramer and CD8 were counted.
  • Example 11 Evaluation of Tumor Cell Injury Activity of Tetracycline Compound
  • Tumor tetracycline compound
  • the direct tumor cytotoxic activity of each test drug was evaluated by measuring the cytotoxic activity).
  • DMC was used as a tetracycline compound.
  • the antitumor agents entinostat and olaparib were used as positive controls for compounds having tumor cytotoxic activity.
  • Method (1) After culturing the U251 cell line in RPMI1640 medium supplemented with 10% FBS (RPMI1640 medium supplemented with 10% FBS), peel off with trypsin, and RPMI1640 added with 10% FBS so as to be 1 ⁇ 10 5 cells / mL. A cell suspension was prepared by suspending in a medium. The cell suspension was seeded on a 96-well plate to 100 ⁇ L / well and incubated at 37 ° C. for 18 hours in a wet incubator in the presence of 5% carbon dioxide.
  • test drug was prepared to have a final concentration of 5 ⁇ M, 2.5 ⁇ M, 1 ⁇ M, 0.1 ⁇ M, 0.01 ⁇ M, 0.001 ⁇ M.
  • a well to which only the medium was added was prepared in a 96-well plate after incubation in (1).
  • the amount of RPMI medium with 10% FBS per well was finally adjusted to a total volume of 200 ⁇ L.
  • the 96-well plate after adding the test drug was incubated at 37 ° C. for 48 hours.
  • FIGS. 12A to 12C Results The results are shown in FIGS. 12A to 12C.
  • DMC the tumor cytotoxic activity was slightly increased by the addition of 1 ⁇ M and 0.1 ⁇ M, but it was about several percent (Fig. 12A).
  • the positive subject, entinostat (Fig. 12B) showed tumor cytotoxic activity with the addition of 5 ⁇ M and 2.5 ⁇ M.
  • Olaparib Fig. 12C
  • Fig. 12C had a slight increase in tumor cytotoxic activity with the addition of 5 ⁇ M.
  • peripheral blood mononuclear cells PBMC
  • tumor cells peripheral blood mononuclear cells
  • BiTE® tumor cell injury activity
  • the antitumor activity of T cells in PBMC was evaluated by measuring how much the tumor cells were damaged by PBMC (tumor cell injury activity) after contacting and culturing through an engager such as).
  • the U251 cell line was cultured in RPMI1640 medium supplemented with 10% FBS (RPMI1640 medium supplemented with 10% FBS), then peeled off with trypsin, and the RPMI1640 medium supplemented with 10% FBS so as to be 1 ⁇ 10 5 cells / mL.
  • a cell suspension was prepared by suspending in. The cell suspension was seeded on a 96-well plate to 100 ⁇ L / well and incubated at 37 ° C. for 18 hours in a wet incubator in the presence of 5% carbon dioxide.
  • Peripheral blood (heparin blood sampling) was collected from healthy subjects, and PBMC was recovered using Lymphoprep TM (Alere Technologies AS) according to the attached protocol. Specifically, the peripheral blood collected in Lymphoprep TM placed in a tube was slowly layered, centrifuged at 400 g for 50 minutes, and then the lymphocyte layer was collected. RPMI1640 medium containing 10% FBS was added to the recovered solution and centrifuged, and then the supernatant was removed. Cell pellets were suspended in RPMI 1640 medium supplemented with 10% FBS to adjust to 1 ⁇ 10 6 / mL. The recovery of PBMC was performed immediately before the step (3) described later.
  • EphA2-CD3 BiTE® which has an antigen-binding site for EphA2 and an antigen-binding site for CD3 in one molecule, was prepared at 400 ng / mL in RPMI1640 medium supplemented with 10% FBS (“BiTE solution”). ").
  • the stock solution of each test drug (DMC, entinostat, olaparib) was prepared with the BiTE solution so as to be 20 ⁇ M, 10 ⁇ M, 4 ⁇ M, 0.4 ⁇ M, 0.04 ⁇ M, 0.004 ⁇ M.
  • 50 ⁇ L of PBMC cell suspension and 50 ⁇ L of BiTE solution containing each test drug were added per well.
  • BiTE final concentrations were 100 ng / mL, and the final concentrations of each test drug were added to the wells at 5 ⁇ M, 2.5 ⁇ M, 1 ⁇ M, 0.1 ⁇ M, 0.01 ⁇ M, and 0.001 ⁇ M.
  • 50 ⁇ L of PBMC cell suspension and 50 ⁇ L of BiTE solution containing no test drug are added into a 96-well plate that has been incubated in (1), and a 96-well plate that has been incubated in (1).
  • a well was prepared to which 50 ⁇ L of PBMC cell suspension and 50 ⁇ L of RPMI1640 medium supplemented with 10% FBS were added.
  • the amount of RPMI medium with 10% FBS per well was finally adjusted to a total volume of 200 ⁇ L.
  • a 96-well plate after the addition of PBMC and EphA2-CD3 BiTE® or after the addition of PBMC and EphA2-CD3 BiTE® and the study drug was incubated at 37 ° C. for 48 hours.
  • the IFN ⁇ concentration of the medium stored at -20 ° C in (4) was measured using Human IFN-gamma Quantikine ELISA Kit (R & D systems).
  • FIGS. 12 D to F Results Tumor cytotoxic activity is shown in FIGS. 12 D to F. Although DMC did not show cytotoxic activity by itself, tumor cytotoxic activity was observed at the addition of 0.1 ⁇ M or more by adding PBMC and BiTE at the time of contact with the U251 cell line. Concentration-dependent increases in tumor cytotoxic activity were observed with the addition of 0.1 ⁇ M to 0.001 ⁇ M DMC, and these increases in tumor cytotoxic activity were simply due to contact between PBMC and BiTE. It is considered that the phenomenon occurred depending on the action of DMC rather than the reaction. In addition, entinostat (FIG.
  • the IFN ⁇ concentration in the culture supernatant is shown in G to I in FIG.
  • DMC The IFN ⁇ concentration in the culture supernatant was shown in G to I in FIG.
  • the production of IFN ⁇ concentration was observed when the addition was 1 ⁇ M or more, but the production of IFN ⁇ concentration was not observed when the addition was 0.1 ⁇ M or less.
  • tetracycline compounds can induce activation of T-cell-mediated immunity even at a low concentration of 0.1 ⁇ M.
  • Example 12 Effect of long-term administration of tetracycline compound
  • the tetracycline compound was administered for a longer period than in Example 8 and the effect of the tetracycline compound was observed.
  • 1. Method Six days before inoculation, EMT6 cells, which are breast cancer culture cell lines, were thawed and cultured in DMEM + 10% FBS + 1% + penicillin / streptomycin medium. EMT6 cells were trypsinized and passaged 2 days prior to tumor cell inoculation.
  • DMC-administered group DMC was dissolved in physiological saline to adjust to 3.0 mg / mL, and 200 ⁇ L / animal was orally administered using an oral sonde so as to be 30 mg / kg / day.
  • water-administered group only water was orally administered at 200 ⁇ L / animal using an oral sonde.
  • Administration of DMC or saline was performed daily from 7 days to 28 days after tumor inoculation.
  • the DMC-administered group and the physiological saline-administered group were further divided into two groups, and PD-L1 administration or IgG administration was performed.
  • tumor diameter was measured every 3 days from Day 10 (Day10, Day13, Day16, Day19, Day22, Day25, and Day28). The tumor volume was calculated in the same manner as in Example 8.
  • Results Figure 13 shows the results.
  • the tumor volume on Day 28 was about 1300 mm 3.
  • the tumor volume of the aPD-L1 + H2O group on Day 13 was about 350 mm 3.
  • the increase in tumor volume in the IgG + DMC group was similar to that in the aPD-L1 + H2O group.
  • the tumor volume on Day 28 was about 100 mm 3.
  • no side effects were observed due to long-term administration of DMC.
  • the tumor growth inhibitory effect of the tetracycline compound and the antitumor effect enhancing effect of the tetracycline compound on the immune checkpoint inhibitor are effective for a long period of time.
  • the tetracycline compound alone had an inhibitory effect on tumor growth, it was shown that it is highly likely that the effect will be exhibited even in the case of viral infection.

Abstract

Provided is a compound capable of treating or preventing a virus disease and tumors. The compound is a compound for treatment or prevention, including at least one selected from the group consisting of a tetracycline compound and a pharmaceutically permissible salt thereof, wherein said compound for treatment or prevention is for administration for eight days or more, at a dose of from 1/10 to 1/2 of a defined dose for use in treatment of a bacterial infection, of the tetracycline compound or the pharmaceutically permissible salt thereof.

Description

免疫賦活化剤、及び治療又は予防用組成物Immunostimulators and therapeutic or prophylactic compositions
 本明細書には、免疫賦活化剤、及び治療又は予防用組成物が開示される。 The present specification discloses an immunostimulatory agent and a therapeutic or prophylactic composition.
 2019年の終わりから、新たなコロナウイルスの世界的な感染拡大が起こり、様々な国で人的、経済的な損失が起こっており、coronavirus disease 2019(COVID-2019)の治療方法の開発は、世界的な課題となっている。 Since the end of 2019, the worldwide spread of coronavirus has caused human and economic losses in various countries, and the development of a treatment method for coronavirus disease 2019 (COVID-2019) has been carried out. It has become a global issue.
 非特許文献1には、テトラサイクリン(例えば、テトラサイクリン、ドキシサイクリン、ミノサイクリン)が、マトリックスメタロプロテイナーゼ(MMP)内の亜鉛化合物をキレート化することが記載されている。そして、コロナウイルスの、生存、細胞浸潤、細胞間接着、複製が宿主のMMPに大きく依存していることから、テトラサイクリンの亜鉛キレート能が、ヒトにおけるCOVID-19感染の抑制に効果を示すという仮説を示している。 Non-Patent Document 1 describes that tetracycline (for example, tetracycline, doxycycline, minocycline) chelate a zinc compound in matrix metalloproteinase (MMP). And since the survival, cell infiltration, cell-cell adhesion, and replication of coronavirus are highly dependent on the host's MMP, it is hypothesized that the zinc chelating ability of tetracycline is effective in suppressing COVID-19 infection in humans. Is shown.
 テトラサイクリン系化合物は、腫瘍の治療にも使用され得る。非特許文献2及び3には化学修飾型テトラサイクリンを腫瘍細胞に投与することで、腫瘍細胞の増殖が抑制され、細胞傷害が起こることが示されている。特許文献1には、テトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含む、腫瘍免疫賦活化剤が開示されている。 Tetracycline compounds can also be used to treat tumors. Non-Patent Documents 2 and 3 show that administration of chemically modified tetracycline to tumor cells suppresses the growth of tumor cells and causes cell damage. Patent Document 1 discloses a tumor immunostimulatory agent containing at least one selected from the group consisting of tetracycline compounds and pharmaceutically acceptable salts thereof.
国際公開第2019/177011号International Publication No. 2019/177011
 非特許文献1において述べられている、テトラサイクリンのCOVID-19に対する抑制効果はあくまでも仮説であり、実際には立証されていない。 The inhibitory effect of tetracycline on COVID-19 described in Non-Patent Document 1 is only a hypothesis and has not been proved in practice.
 従来の抗ウイルス薬は、ウイルス自体を標的としてウイルスの産生、増殖などを阻害する薬剤であり、C型肝炎ウイルスやHIVのような慢性ウイルス感染症に対しては根治的治療薬となりうるが、インフルエンザウイルスのような急性ウイルス感染症に対しては、補助療法的な位置づけの薬剤となっている。 Conventional antiviral drugs are drugs that target the virus itself and inhibit the production and proliferation of the virus, and can be a curative treatment for chronic viral infections such as hepatitis C virus and HIV. It is an adjunctive drug for acute viral infections such as influenza virus.
 本発明は、これまでの抗ウイルス薬、抗抗酸菌症薬、抗真菌症薬又は抗腫瘍薬とは異なり、患者自身のT細胞性免疫応答を高めることにより、治療効果を発揮する薬剤を提供することを課題とする。 The present invention is different from conventional antiviral agents, acid-fast bacillosis agents, antifungal agents or antitumor agents, and presents an agent that exerts a therapeutic effect by enhancing the T-cell immune response of the patient itself. The challenge is to provide.
 本発明者らは、特許権の存続期間が満了した既存薬の中から、T細胞性免疫の賦活化に、テトラサイクリン系化合物が有効であることを見出した。また、従来、テトラサイクリン系化合物は細菌感染症の治療のために用いられるが、細菌感染症の治療に用いる容量よりも低容量で、T細胞性免疫の活性化が可能であることを見出した。 The present inventors have found that tetracycline compounds are effective for activating T-cell-mediated immunity from among existing drugs whose patent rights have expired. Further, it has been found that, conventionally, tetracycline compounds are used for the treatment of bacterial infectious diseases, but the volume used for the treatment of bacterial infectious diseases is lower than the volume used for the treatment of bacterial infectious diseases, and it is possible to activate T cell-mediated immunity.
 本明細書に開示される発明は、当該知見に基づいて完成されたものであり、以下の態様を含む。
項1.下記一般式(I)で示されるテトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含む、治療又は予防用組成物、又は免疫賦活化剤であって、テトラサイクリン系化合物及びその薬学的に許容される塩を、細菌感染症の治療に用いられる規定用量の1/10から1/2の用量で、8日以上投与するための、治療又は予防用組成物又は免疫賦活化剤:
Figure JPOXMLDOC01-appb-C000009
[式中、
は、下記一般式(II)で示される基(Rは水素原子又は炭素数1~3の低級アルキル基)、又は炭素数1~3の低級アルキル基である:
Figure JPOXMLDOC01-appb-C000010

は、下記一般式(III)で示される基(Rは炭素数1~3の低級アルキル基又は水素原子)である:
Figure JPOXMLDOC01-appb-C000011

は、水素原子、水酸基、又は炭素数1~3の低級アルキル基である。
及びRは、共に又は独立して水素原子、水酸基又は炭素数1~3の低級アルキル基であるか、R及びRは、1つになってメチレン基である。
は、水素原子、ハロゲン又は下記一般式(IV)で表される基(R10は水素原子、又は炭素数1~3の低級アルキル基)である:
Figure JPOXMLDOC01-appb-C000012

は、水素原子、炭素数1~3の低級アルキル基、-NH-CO-CH-NH-C(CH又は-CH-NH-CH-C(CHである。]。好ましくは、前記治療又は予防用組成物は、ウイルス感染症又は腫瘍の治療又は予防のために使用される。
項2.前記炭素数1~3の低級アルキル基がメチル基である、項1に記載の治療又は予防用組成物、又は免疫賦活化剤。
項3.前記一般式(I)で示される化合物が、デメチルクロルテトラサイクリン、メクロサイクリン、テトラサイクリン、クロルテトラサイクリン、ドキシサイクリン、ミノサイクリン、及びオキシテトラサイクリンよりなる群から選択される少なくとも一種である、項1に記載の治療又は予防用組成物、又は免疫賦活化剤。
項4.項1から3のいずれか一項に記載の免疫賦活化剤と、抗ウイルス薬とを含む、ウイルス感染症治療用組成物。
項5.項1~3のいずれか一項に記載の免疫賦活化剤と、腫瘍免疫薬とを含む、腫瘍治療用組成物。
項6.前記腫瘍免疫薬が、免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、がんワクチンから選択される少なくとも一種である、項5に記載の腫瘍治療用組成物。
項7.項1から3のいずれか一項に記載の免疫賦活化剤と、抗抗酸菌薬とを含む、抗酸菌感染症治療用組成物。
項8.項1から3のいずれか一項に記載の免疫賦活化剤と、抗真菌薬とを含む、真菌感染症治療用組成物。
The invention disclosed in the present specification has been completed based on the findings, and includes the following aspects.
Item 1. A therapeutic or prophylactic composition or an immunostimulatory agent comprising at least one selected from the group consisting of a tetracycline antibiotic represented by the following general formula (I) and a pharmaceutically acceptable salt thereof, and tetracycline. A therapeutic or prophylactic composition or a therapeutic or prophylactic composition for administering the tetracycline and its pharmaceutically acceptable salt at a dose of 1/10 to 1/2 of the prescribed dose used for the treatment of bacterial infections for 8 days or longer. Immunostimulator:
Figure JPOXMLDOC01-appb-C000009
[During the ceremony,
R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms), or a lower alkyl group having 1 to 3 carbon atoms:
Figure JPOXMLDOC01-appb-C000010
..
R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom):
Figure JPOXMLDOC01-appb-C000011
..
R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
R 4 and R 5 are hydrogen atoms, hydroxyl groups or lower alkyl groups having 1 to 3 carbon atoms together or independently, or R 4 and R 5 are methylene groups in one.
R 6 is a hydrogen atom, a halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms):
Figure JPOXMLDOC01-appb-C000012
..
R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, -NH-CO-CH 2- NH-C (CH 3 ) 3 or -CH 2- NH-CH 2- C (CH 3 ) 3 . be. ]. Preferably, the therapeutic or prophylactic composition is used for the treatment or prevention of a viral infection or tumor.
Item 2. Item 2. The therapeutic or preventive composition according to Item 1, or an immunostimulatory agent, wherein the lower alkyl group having 1 to 3 carbon atoms is a methyl group.
Item 3. Item 2. The compound represented by the general formula (I) is at least one selected from the group consisting of demethylchlortetracycline, meclocycline, tetracycline, chlortetracycline, doxycycline, minocycline, and oxytetracycline. A therapeutic or prophylactic composition, or an immunostimulatory agent.
Item 4. A composition for treating a viral infection, which comprises the immunostimulatory agent according to any one of Items 1 to 3 and an antiviral agent.
Item 5. A composition for treating a tumor, which comprises the immunostimulatory agent according to any one of Items 1 to 3 and a tumor immunological agent.
Item 6. Item 5. The composition for treating a tumor according to Item 5, wherein the tumor immunological agent is at least one selected from an immune checkpoint inhibitor, a CAR-T cell drug, a bispecific molecular drug, and a cancer vaccine.
Item 7. A composition for treating an acid-fast bacillus infection, which comprises the immunostimulatory agent according to any one of Items 1 to 3 and an acid-fast bacillus agent.
Item 8. A composition for treating a fungal infection, which comprises the immunostimulatory agent according to any one of Items 1 to 3 and an antifungal agent.
 テトラサイクリン系化合物により、T細胞性免疫を賦活化することができる。 The tetracycline compound can activate T cell-mediated immunity.
図1は、in vitroにおいてT細胞の抗腫瘍活性を評価するシステムの概要を示す。FIG. 1 shows an outline of a system for evaluating the antitumor activity of T cells in vitro. 図2は、被験薬のin vitroにおけるT細胞の抗腫瘍活性に対する効果を示す。“BiTE”は、BiTEの単独添加を、“BiTE+DMC”は、BiTEとデメチルクロルテトラサイクリン(DMC)とを併用添加を示す。FIG. 2 shows the effect of the test drug on the antitumor activity of T cells in vitro. "BiTE" indicates the addition of BiTE alone, and "BiTE + DMC" indicates the addition of BiTE and demethylchlortetracycline (DMC) in combination. 図3は、被験薬のin vitroにおけるCD8T細胞の腫瘍細胞傷害活性に対する効果を示す。“BiTE”は、BiTEの単独添加を、“BiTE+DMC”は、BiTEとDMCとを併用添加を示す。FIG. 3 shows the effect of the test drug on the tumor cytotoxic activity of CD8 + T cells in vitro. “BiTE” indicates the addition of BiTE alone, and “BiTE + DMC” indicates the addition of BiTE and DMC in combination. 図4は、被験薬のin vitroにおけるグランザイムB発現CD8T細胞の存在比率に対する効果を示す。“BiTE”は、BiTEの単独添加を、“BiTE+DMC”は、BiTEとDMCとを併用添加を示す。FIG. 4 shows the effect of the test drug on the abundance ratio of granzyme B-expressing CD8 + T cells in vitro. “BiTE” indicates the addition of BiTE alone, and “BiTE + DMC” indicates the addition of BiTE and DMC in combination. 図5は、被験薬のin vitroにおけるCD8T細胞の増殖能に対する効果を示す。“BiTE”は、BiTEの単独添加を、“BiTE+DMC”は、BiTEとDMCとを併用添加を示す。FIG. 5 shows the effect of the test drug on the proliferative capacity of CD8 + T cells in vitro. “BiTE” indicates the addition of BiTE alone, and “BiTE + DMC” indicates the addition of BiTE and DMC in combination. 図6は、被験薬のin vitroにおけるCMV(サイトメガロウイルス)特異的細胞傷害性T細胞の誘導に対する効果を示す。Aは、CMV処理後7日目及び14日目のFACS解析のスキャッタグラムを示す。P7分画にCMV Tetramer細胞が分画される。Bは、CMV処理後14日目のCMV Tetramer細胞の存在比率を示す。FIG. 6 shows the effect of the test drug on the induction of CMV (cytomegalovirus) -specific cytotoxic T cells in vitro. A shows the scattergram of FACS analysis on the 7th and 14th days after CMV treatment. CMV Tetramer + cells are fractionated into the P7 fraction. B indicates the abundance ratio of CMV Tetramer + cells 14 days after CMV treatment. 図7Aは、被験薬のin vitroにおける肺癌組織内T細胞の細胞傷害活性に対する効果を示す。図7Bは、被験薬のin vitroにおけるIFNγ産生CD8+T細胞の存在比率に対する効果を示す。図7Cは、FACS解析のスキャッタグラムを示す。P8分画にIFNγ産生CD8+T細胞が分画される。FIG. 7A shows the effect of the test drug on the cytotoxic activity of T cells in lung cancer tissue in vitro. FIG. 7B shows the effect of the test drug on the abundance ratio of IFNγ-producing CD8 + T cells in vitro. FIG. 7C shows a scattergram for FACS analysis. IFNγ-producing CD8 + T cells are fractionated into the P8 fraction. 図8Aは、被験薬の投与プロトコールを示す。図8Bは、腫瘍体積の変化を示す。図8Bにおいて、破線はVehicle群を、実線は被験薬投与群を示す。FIG. 8A shows the administration protocol of the test drug. FIG. 8B shows the change in tumor volume. In FIG. 8B, the broken line indicates the Vehicle group, and the solid line indicates the test drug administration group. デメチルクロルテトラサイクリンと抗PD-L1抗体の併用効果を示す。pは有意差を示す。The combined effect of demethylchlortetracycline and anti-PD-L1 antibody is shown. p indicates a significant difference. デメチルクロルテトラサイクリンの免疫チェックポイント阻害剤の抗腫瘍作用の増強効果が、CD8+T細胞に依存していることを示す。pは有意差を示す。It is shown that the enhancing effect of the immune checkpoint inhibitor of demethylchlortetracycline on the antitumor effect depends on CD8 + T cells. p indicates a significant difference. マウス末梢血中のがん抗原特異的CD8陽性T細胞の存在比率に対するデメチルクロルテトラサイクリンの効果を示す。pは有意差を示す。The effect of demethylchlortetracycline on the abundance ratio of cancer antigen-specific CD8-positive T cells in the peripheral blood of mice is shown. p indicates a significant difference. テトラサイクリン系化合物が腫瘍細胞傷害活性とIFNγ産生を誘導することを示す。Aは、DMC単独投与時の腫瘍細胞傷害活性を示す。Bは、エンチノスタット単独投与時の腫瘍細胞傷害活性を示す。Cは、オラパリブ単独投与時の腫瘍細胞傷害活性を示す。Dは、DMCをPBMCとBiTEとをU251細胞株と接触させる際に添加した時の腫瘍細胞傷害活性を示す。Eは、エンチノスタットをPBMCとBiTEとをU251細胞株と接触させる際に添加した時の腫瘍細胞傷害活性を示す。Fは、オラパリブをPBMCとBiTEとをU251細胞株と接触させる際に添加した時の腫瘍細胞傷害活性を示す。Gは、DMCをPBMCとBiTEとをU251細胞株と接触させる際に添加した時の培養上清中のIFNγ濃度を示す。Hは、エンチノスタットをPBMCとBiTEとをU251細胞株と接触させる際に添加した時の培養上清中のIFNγ濃度を示す。Iは、オラパリブをPBMCとBiTEとをU251細胞株と接触させる際に添加した時の培養上清中のIFNγ濃度を示す。We show that tetracycline compounds induce tumor cytotoxic activity and IFNγ production. A indicates the tumor cytotoxic activity when DMC is administered alone. B shows the tumor cytotoxic activity when entinostat alone is administered. C indicates tumor cytotoxic activity when olaparib alone is administered. D indicates the tumor cytotoxic activity when DMC was added when PBMC and BiTE were contacted with the U251 cell line. E indicates the tumor cytotoxic activity when entinostat was added when PBMC and BiTE were contacted with the U251 cell line. F indicates the tumor cytotoxic activity when olaparib was added when PBMC and BiTE were contacted with the U251 cell line. G indicates the IFNγ concentration in the culture supernatant when DMC was added when PBMC and BiTE were contacted with the U251 cell line. H indicates the IFNγ concentration in the culture supernatant when entinostat was added when PBMC and BiTE were contacted with the U251 cell line. I indicates the IFNγ concentration in the culture supernatant when olaparib was added when PBMC and BiTE were contacted with the U251 cell line. テトラサイクリン系化合物の腫瘍増殖抑制効果、及び免疫チェックポイント阻害薬に対するテトラサイクリン系化合物の抗腫瘍作用増強効果を示す。It shows the tumor growth inhibitory effect of the tetracycline compound and the antitumor effect enhancing effect of the tetracycline compound on the immune checkpoint inhibitor.
1.免疫賦活化剤
 本明細書において、免疫賦活化剤は、テトラサイクリン系化合物又はその薬学的に許容される塩を有効成分として含む。
1. 1. Immunostimulators As used herein, immunostimulators include tetracycline compounds or pharmaceutically acceptable salts thereof as active ingredients.
 本明細書において、「免疫」は、特に制限されないが、T細胞性免疫に依存する免疫を意図する。より好ましくは、免疫には、対ウイルス免疫、対抗酸菌免疫、対真菌免疫、対腫瘍免疫等を含み得る。 In the present specification, "immunity" is not particularly limited, but is intended to be immunity that depends on T-cell-mediated immunity. More preferably, the immunity may include anti-viral immunity, anti-acid bacterium immunity, anti-fungal immunity, anti-tumor immunity and the like.
 ウイルスは、特に制限されない。DNAウイルスであっても、RNAウイルスであってもよい。また、ウイルスが保有するゲノムポリヌクレオチドは、一本鎖であっても、二本鎖であってもよい。ウイルスが保有するゲノムポリヌクレオチドが一本鎖の場合、プラス鎖であってもマイナス鎖であってもよい。 The virus is not particularly limited. It may be a DNA virus or an RNA virus. In addition, the genomic polynucleotide carried by the virus may be single-stranded or double-stranded. When the genomic polynucleotide carried by the virus is single-stranded, it may be positive or negative.
 例えば、ウイルスとして、コロナウイルス科、アデノウイルス科、ポックスウイルス科、ポリオーマウイルス科、パピローマウイルス科、パルボウイルス科、カリシスウイルス科、オルトミクソウイルス科、パラミクソウイルス科、ラブドウイルス科、フィロウイルス科、アレナウイルス科、トガウイルス科、フラビウイルス科、ピコルナウイルス科、ブニヤウイルス科、レオウイルス科、レトロウイルス科、へペドウイルス科、へペウイルス科のウイルスを含み得る。 For example, as viruses, coronavirus family, adenovirus family, poxvirus family, polyomavirus family, papillomavirus family, parvovirus family, calicisvirus family, orthomixovirus family, paramixovirus family, lovedvirus family, phyllo It may include viruses of the family Virals, Arenaviruses, Togaviruses, Flaviviruses, Picornaviruses, Bunyaviruses, Leoviruses, Retroviruses, Hepedoviruses, Hepeviruses.
 ウイルスは、ヒトに感染した際に、その感染に起因してヒトに疾患を引き起こすことが好ましい。ここで、ヒトに疾患を引き起こすとは、ウイルスの感染した場合の疾患の発症率が100%であることを意図するものではない。ウイルスの感染した場合の疾患の発症率は、0%より大きく、かつ90%以下、80%以下、70%以下、60%以下、50%以下、40%以下、30%以下、20%以下、10%以下、又は5%以下である。 When a virus infects a human, it is preferable that the virus causes a disease in the human due to the infection. Here, causing a disease in humans does not mean that the incidence of the disease when infected with a virus is 100%. The incidence of disease when infected with a virus is greater than 0% and 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, It is 10% or less, or 5% or less.
 疾患は、潜伏期間に応じて急性疾患、亜急性疾患、遅発性疾患に分類することができる。急性疾患とは、感染から1日から1年未満の潜伏期間をもって発症する疾患を意図する。亜急性疾患とは感染から1年以上、8年未満の潜伏期間をもって発症する疾患を意図する。遅発性疾患とは、感染から8年以上の潜伏期間をもって発症する疾患を意図する。疾患は、急性疾患、亜急性疾患であることが好ましい。また、ウイルスは、感染した1人のヒトに対して、急性疾患、亜急性疾患、及び遅発性疾患から選択される少なくとも2つの疾患を併発することがある。この場合、少なくとも1つの疾患に急性疾患、又は亜急性疾患が含まれていればよい。 Diseases can be classified into acute diseases, subacute diseases, and late-onset diseases according to the incubation period. Acute disease is intended to be a disease that develops with an incubation period of 1 day to less than 1 year after infection. Subacute disease is intended to be a disease that develops with an incubation period of 1 year or more and less than 8 years after infection. Late-onset disease is intended to be a disease that develops with an incubation period of 8 years or more after infection. The disease is preferably an acute disease or a subacute disease. The virus may also cause at least two diseases selected from acute, subacute, and late-onset diseases in a single infected person. In this case, at least one disease may include an acute disease or a subacute disease.
 急性疾患、亜急性疾患をヒトに疾患を引き起こすウイルスとしては、例えば、COVID-19を引き起こす重症急性呼吸器症候群(SARS:severe acute respiratory syndrome)コロナウイルス2(SARS-CoV2)、SARSコロナウイルス、ヒトコロナウイルス229E株、ヒトコロナウイルスNL63株、ヒトコロナウイルスOC43株、ヒトコロナウイルスHKU1株等のコロナウイルス科に属するウイルス;サイトメガロウイルス、EBウイルス、単純ヘルペスウイルス、水痘-帯状疱疹ウイルス等のヘルペスウイルス科に属するウイルス;ノロウイルス等のカリシスウイルス科に属するウイルス;インフルエンザウイルス等のオルトミクソウイルス科に属するウイルス;麻疹ウイルス、ムンプスウイルス、パラインフルエンザウイルス、RSウイルス等のパラミクソウイルス科のウイルス;狂犬病、水疱性口内炎等を引き起こすラブドウイルス科のウイルス;エボラ出血熱ウイルス等のフィロウイルス科のウイルス;ラッサ熱等を引き起こすアレナウイルス科のウイルス;日本脳炎等の脳炎、黄熱病、デング熱等を引き起こすフラビウイルス科のウイルス;ポリオウイルス、エンテロウイルス、コクサッキーウイルス、エコーウイルス等のピコルナウイルス科のウイルス;ハンタウイルス、オルトブニヤウイルス、ナイロウイルス、フレボウイルス等のブニヤウイルス科のウイルス;ロタウイルス等のレオウイルス科のウイルス;A型肝炎ウイルス等のへペドウイルス科のウイルス;E型肝炎ウイルス等のへペウイルス科のウイルスを挙げることができる。 Examples of viruses that cause acute and subacute diseases in humans include Severe Acute Respiratory Syndrome (SARS) coronavirus 2 (SARS-CoV2), SARS coronavirus, and humans that cause COVID-19. Coronavirus 229E strain, human coronavirus NL63 strain, human coronavirus OC43 strain, human coronavirus HKU1 strain and other viruses belonging to the coronavirus family; cytomegalovirus, EB virus, simple herpesvirus, varicella-herpes zoster virus and other herpes Viruses belonging to the family of viruses; viruses belonging to the family Calisis virus such as norovirus; viruses belonging to the family of orthomixoviruses such as influenza virus; viruses belonging to the family paramixoviral family such as measles virus, mumps virus, parainfluenza virus, RS virus; Rabdovirus family virus that causes mad dog disease, bullous stomatitis, etc .; Phyllovirus family virus such as Ebola hemorrhagic fever virus; Arenavirus family virus that causes Lassa fever, etc .; Flavivirus that causes encephalitis, yellow fever, dengue fever, etc. Family viruses; Picornavirus family viruses such as poliovirus, enterovirus, coxsackie virus, echovirus; Bunyavirus family viruses such as huntervirus, orthobunyavirus, nylovirus, and frevovirus; Viruses; viruses of the Hepedovirus family such as hepatitis A virus; viruses of the Hepeviridae family such as hepatitis E virus can be mentioned.
 本免疫賦活化剤は、低容量で効果を発揮するため、長期間投与が可能である。したがって、コロナウイルス科のウイルスに起因する疾患の治療又は予防に好適に用いることができる。 Since this immunostimulatory agent is effective at a low dose, it can be administered for a long period of time. Therefore, it can be suitably used for the treatment or prevention of diseases caused by viruses of the Coronaviridae family.
 対ウイルス免疫(抗ウイルス免疫とも呼ぶ)は、T細胞の抗原特定的な免疫応答の一種と考えられている。したがって、抗ウイルス免疫を賦活化するとは、ウイルス抗原に特異的なT細胞の増殖、及び/又はウイルス抗原に対する活性を高めることであるともいえる。 Antiviral immunity (also called antiviral immunity) is considered to be a type of antigen-specific immune response of T cells. Therefore, it can be said that activating antiviral immunity means enhancing the proliferation of T cells specific to the viral antigen and / or the activity against the viral antigen.
 抗酸菌の種類は、特に制限されない。抗酸菌として、結核菌群、非結核性抗酸菌群を挙げることができる。結核菌群は、結核菌(ヒト型結核菌: Mycobacterium tuberculosis)、ウシ型結核菌(Mycobacterium bovis)、アフリカ型結核菌(Mycobacterium africanum)、ネズミ型結核菌(Mycobacterium microti)を含み得る。非結核性抗酸菌群は、Mycobacterium kansasii 、Mycobacterium marimum 、Mycobacterium avium(Mycobacterium avium complexを含む) 、Mycobacterium intracellulare 、Mycobacterium xenopi、Mycobacterium abscessusを含み得る。 The type of acid-fast bacillus is not particularly limited. Examples of mycobacteria include tubercle bacilli and nontuberculous mycobacteria. The tubercle bacillus group may include Mycobacterium tuberculosis (Human Mycobacterium tuberculosis), Mycobacterium bovis, Mycobacterium africanum, and Mycobacterium microti. The non-tuberculous mycobacteria group may include Mycobacterium kansasii, Mycobacterium marimum, Mycobacterium avium (including Mycobacterium avium complex), Mycobacterium intracellulare, Mycobacterium xenopi, Mycobacterium abscessus.
 対抗酸菌免疫は、T細胞の抗原特定的な免疫応答の一種と考えられている。したがって、対抗酸菌免疫を賦活化するとは抗酸菌抗原に特異的なT細胞の増殖、及び/又は抗酸菌抗原に対する活性を高めることであるともいえる。 Counter-acid bacterium immunity is considered to be a type of antigen-specific immune response of T cells. Therefore, it can be said that activating acid-fast bacillus immunity means enhancing the proliferation of T cells specific to the acid-fast bacillus antigen and / or the activity against the acid-fast bacillus antigen.
 真菌の種類は、特に制限されない。真菌として、好ましくは病原性を示す真菌である。病原性を示す真菌は、例えば、アスペルギルス属菌、カンジダ属菌、クリプトコッカス属菌、ニューモシスチス属菌を含み得る。アスペルギルス属菌には、Aspergillus fumigatus、Aspergillus flavus、Aspergillus nidulans、Aspergillus niger、Aspergillus terreus、Aspergillus ochraceus、Aspergillus、Aspergillus versicolorを含み得る。カンジダ属菌には、Candida albicans、Candida glabrata、Candida tropicalis、Candida parapsilosis、Candida krusei、Candida parapsilosis、Candida guilliermondii、Candida lusitaniaeを含み得る。クリプトコッカス属菌には、Cryptococcus neoformansを含み得る。ニューモシスチス属菌にはPneumocystis carinii、Pneumocystis jiroveciiを含み得る。 The type of fungus is not particularly limited. As a fungus, it is preferably a fungus that exhibits pathogenicity. Pathogenic fungi can include, for example, Aspergillus spp., Candida spp., Cryptococcus spp., Pneumocystis spp. Aspergillus spp. May include Aspergillus fumigatus, Aspergillus flavus, Aspergillus nidulans, Aspergillus niger, Aspergillus terreus, Aspergillus ochraceus, Aspergillus, Aspergillus versicolor. Candida spp. May include Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, Candida krusei, Candida parapsilosis, Candida guilliermondii, Candida lusitaniae. Cryptococcus neoformans may be included in the genus Cryptococcus. Pneumocystis genus may include Pneumocystis carinii and Pneumocystis jirovecii.
 対真菌免疫は、T細胞の抗原特定的な免疫応答の一種と考えられている。したがって、対真菌免疫を賦活化するとは真菌抗原に特異的なT細胞の増殖、及び/又は真菌抗原に対する活性を高めることであるともいえる。 Antifungal immunity is considered to be a type of antigen-specific immune response of T cells. Therefore, it can be said that activating anti-fungal immunity means enhancing the proliferation of T cells specific to the fungal antigen and / or the activity against the fungal antigen.
 腫瘍の種類は、特に制限されない。良性腫瘍であっても悪性腫瘍であってもよい。好ましくは悪性腫瘍である。また、腫瘍には、上皮性腫瘍及び非上皮性腫瘍が含まれるが、好ましくは上皮性腫瘍である。本発明において、腫瘍として最も好ましくは、上皮性悪性腫瘍である。 The type of tumor is not particularly limited. It may be a benign tumor or a malignant tumor. It is preferably a malignant tumor. In addition, the tumor includes an epithelial tumor and a non-epithelial tumor, and is preferably an epithelial tumor. In the present invention, the most preferable tumor is an epithelial malignant tumor.
 悪性腫瘍としては、例えば、気管、気管支又は肺等から発生する呼吸器系悪性腫瘍;頭頸部癌;食道、胃、十二指腸、空腸、回腸、盲腸、虫垂、上行結腸、横行結腸、S状結腸、直腸又は肛門部等から発生する消化管系悪性腫瘍;肝臓癌;膵臓癌;膀胱、尿管又は腎臓から発生する泌尿器系悪性腫瘍;卵巣、卵管及び子宮等のから発生する女性生殖器系悪性腫瘍;乳癌:前立腺癌;皮膚癌;視床下部、下垂体、甲状腺、副甲状腺、副腎等の内分泌系悪性腫瘍;中枢神経系悪性腫瘍;骨軟部組織から発生する悪性腫瘍等の固形腫瘍、及び骨髄異形成症候群、急性リンパ性白血病、急性骨髄性白血病、慢性リンパ性白血病、慢性骨髄性白血病、急性骨髄単球性白血病、慢性骨髄単球性白血病、急性単球性白血病、慢性単球性白血病、急性全骨髄性白血病、急性巨核球性白血病、赤白血病、好酸球性白血病、慢性好酸球性白血病、慢性好中球性白血病、成人T細胞白血病、ヘアリー細胞白血病、形質細胞性白血病、多発性骨髄腫、悪性リンパ腫等の造血系悪性腫瘍;リンパ系悪性腫瘍等の造血器腫瘍が挙げられる。より好ましくは、肺癌(扁平上皮癌、小細胞癌、大細胞癌、腺癌)等の呼吸器系上皮性悪性腫瘍、悪性胸膜中皮腫;頭頸部癌;食道癌、胃癌、大腸癌(S状結腸癌、直腸癌等)等の消化管系上皮性悪性腫瘍;肝臓癌;膵臓癌;腎細胞癌;膀胱癌;悪性黒色腫;古典的ホジキンリンパ腫;卵巣癌;乳癌:前立腺癌;を挙げることができる。最も好ましくは、肺癌である。 Examples of malignant tumors include respiratory malignant tumors originating from the trachea, bronchi, lungs, etc .; head and neck cancer; esophagus, stomach, duodenum, empty intestine, ileum, leukemia, leukemia, ascending colon, transverse colon, sigmoid colon, etc. Gastrointestinal malignant tumors originating from the rectal or anal region; liver cancer; pancreatic cancer; urinary system malignant tumors originating from the bladder, urinary tract or kidney; female reproductive system malignant tumors originating from the ovary, oviduct, uterus, etc. Leukemia: Prostatic cancer; Skin cancer; Endocrine malignant tumors such as hypothalamus, pituitary gland, thyroid gland, parathyroid gland, adrenal gland; Central nervous system malignant tumors; Solid tumors such as malignant tumors originating from bone and soft tissue, and bone marrow abnormalities Plastic syndrome, acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, acute myeloid monocytic leukemia, chronic myeloid monocytic leukemia, acute monocytic leukemia, chronic monocytic leukemia, acute Whole myeloid leukemia, acute macronuclear leukemia, red leukemia, eosinophil leukemia, chronic eosinophil leukemia, chronic neutrophil leukemia, adult T cell leukemia, hairy cell leukemia, plasma cell leukemia, multiple leukemia Hematopoietic malignant tumors such as myeloma and malignant lymphoma; Hematopoietic tumors such as lymphoid malignant tumors can be mentioned. More preferably, respiratory epithelial malignant tumors such as lung cancer (flat epithelial cancer, small cell cancer, large cell cancer, adenocarcinoma), malignant pleural mesenteric tumor; head and neck cancer; esophageal cancer, gastric cancer, colon cancer (S) Gastrointestinal epithelial malignant tumors such as colon cancer, rectal cancer, etc.); liver cancer; pancreatic cancer; renal cell cancer; bladder cancer; malignant melanoma; classical Hodgkin lymphoma; ovarian cancer; breast cancer: prostate cancer; be able to. Most preferably, lung cancer.
 腫瘍免疫は、T細胞の腫瘍細胞に対する傷害活性に基づく生体の対腫瘍反応であると考えられている。したがって、腫瘍免疫を賦活化するとは、T細胞の腫瘍細胞に対する細胞傷害活性を高めることであるともいえる。 Tumor immunity is considered to be a biological reaction to tumors based on the damaging activity of T cells against tumor cells. Therefore, activating tumor immunity can be said to increase the cytotoxic activity of T cells against tumor cells.
 本発明で使用するテトラサイクリン系化合物又はその薬学的に許容される塩は、非特許文献2及び3に記載されているような直接腫瘍細胞に対して増殖抑制作用や細胞傷害作用を示すことを意図するものではない。また、本発明で使用するテトラサイクリン系化合物又はその薬学的に許容される塩は、ウイルス感染細胞を直接傷害することを意図するものではない。後述する実施例に示すように、本発明で使用するテトラサイクリン系化合物又はその薬学的に許容される塩は、T細胞の細胞傷害活性を増強する作用を有するものである。 The tetracycline compound used in the present invention or a pharmaceutically acceptable salt thereof is intended to exert a growth inhibitory effect or a cytotoxic effect on direct tumor cells as described in Non-Patent Documents 2 and 3. It's not something to do. In addition, the tetracycline compounds used in the present invention or pharmaceutically acceptable salts thereof are not intended to directly damage virus-infected cells. As shown in Examples described later, the tetracycline compound used in the present invention or a pharmaceutically acceptable salt thereof has an action of enhancing the cytotoxic activity of T cells.
 テトラサイクリン系化合物は、例えば下記一般式(I)で表される化合物を例示することができる。 As the tetracycline compound, for example, a compound represented by the following general formula (I) can be exemplified.
Figure JPOXMLDOC01-appb-C000013
[式中、
 Rは、下記一般式(II)で示される基(Rは水素原子又は炭素数1~3の低級アルキル基)、又は炭素数1~3の低級アルキル基である:
Figure JPOXMLDOC01-appb-C000014

 Rは、下記一般式(III)で示される基(Rは炭素数1~3の低級アルキル基又は水素原子)である:
Figure JPOXMLDOC01-appb-C000015

 Rは、水素原子、水酸基、又は炭素数1~3の低級アルキル基である。
 R及びRは、共に又は独立して水素原子、水酸基又は炭素数1~3の低級アルキル基であるか、R及びRは、1つになってメチレン基である。
 Rは、水素原子、ハロゲン又は下記一般式(IV)で表される基(R10は水素原子、又は炭素数1~3の低級アルキル基)である:
Figure JPOXMLDOC01-appb-C000016

 Rは、水素原子、炭素数1~3の低級アルキル基、-NH-CO-CH-NH-C(CH又は-CH-NH-CH-C(CHである。]。
Figure JPOXMLDOC01-appb-C000013
[During the ceremony,
R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms), or a lower alkyl group having 1 to 3 carbon atoms:
Figure JPOXMLDOC01-appb-C000014
..
R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom):
Figure JPOXMLDOC01-appb-C000015
..
R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
R 4 and R 5 are hydrogen atoms, hydroxyl groups or lower alkyl groups having 1 to 3 carbon atoms together or independently, or R 4 and R 5 are methylene groups in one.
R 6 is a hydrogen atom, a halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms):
Figure JPOXMLDOC01-appb-C000016
..
R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, -NH-CO-CH 2- NH-C (CH 3 ) 3 or -CH 2- NH-CH 2- C (CH 3 ) 3 . be. ].
 炭素数1~3の低級アルキル基としては、メチル基、エチル基、プロピル基、及びイソプロピル基を例示することができる。好ましくはメチル基、又はエチル基であり、より好ましくはメチル基である。
 ハロゲンは、特に制限されない。例えば、塩素原子、フッ素原子、臭素原子、及びヨウ素原子等を挙げることができる。好ましくは、塩素原子である。
 テトラサイクリン系化合物として、好ましくは下記表1に記載されたテトラサイクリン系化合物よりなる群から選択される少なくとも一種である。
Examples of the lower alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group. It is preferably a methyl group or an ethyl group, and more preferably a methyl group.
Halogen is not particularly limited. For example, a chlorine atom, a fluorine atom, a bromine atom, an iodine atom and the like can be mentioned. It is preferably a chlorine atom.
The tetracycline compound is preferably at least one selected from the group consisting of the tetracycline compounds listed in Table 1 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 テトラサイクリン系化合物として、より好ましくはデメチルクロルテトラサイクリン、メクロサイクリン、テトラサイクリン、クロルテトラサイクリン、ドキシサイクリン、ミノサイクリン、及びオキシテトラサイクリンよりなる群から選択される少なくとも一種である。 The tetracycline-based compound is more preferably at least one selected from the group consisting of demethylchlortetracycline, mecrocycline, tetracycline, chlortetracycline, doxycycline, minocycline, and oxytetracycline.
 本明細書に開示されるテトラサイクリン系化合物及びその塩は、公知である。したがって、テトラサイクリン系化合物及びその塩の製造方法も、公知である。 Tetracycline compounds and salts thereof disclosed in the present specification are known. Therefore, methods for producing tetracycline compounds and salts thereof are also known.
 テトラサイクリン系化合物の塩は、薬学的に許容される塩である限り制限されない。例えば、塩は、アミン又は他の塩基性基を含むテトラサイクリン系化合物の酸塩は、テトラサイクリン系化合物を好適な有機又は無機酸と反応させ陰イオン塩を生じさせることにより製造することができる。陰イオン塩の例として、酢酸塩、ベンゼンスルホン酸塩、安息香酸塩、重炭酸塩、重酒石酸塩、臭化物、エデト酸カルシウム、カンシル酸塩、炭酸塩、塩化物、クエン酸塩、二塩酸塩、エデト酸塩、エジシル酸塩、エストル酸塩(estolate)、エシル酸塩(esylate)、フマル酸塩、グルセプト酸塩、グルコン酸塩、グルタミン酸塩、グリコリルアルサニル酸塩(glycollylarsanilate)、ヘキシルレゾルシン酸塩、臭化水素酸塩、塩酸塩、ヒドロキシナフトエ酸塩、ヨウ化物、イセチオン酸塩、乳酸塩、ラクトビオン酸塩、リンゴ酸塩、マレイン酸塩、マンデル酸塩、メシル酸塩、硫酸メチル、ムチン酸塩(mucate)、ナプシル酸塩(napsylate)、硝酸塩、パモ酸塩、パントテン酸塩、リン酸塩/二リン酸塩、ポリガラクツロン酸塩、サリチル酸塩、ステアリン酸塩、塩基性酢酸塩、コハク酸塩、硫酸塩、タンニン酸塩、酒石酸塩、テオクル酸塩、トシル酸塩、及びトリエチオジド(triethiodide)塩等が含まれる。塩として好ましくは、塩酸塩又は二塩酸塩である。 The salt of the tetracycline compound is not limited as long as it is a pharmaceutically acceptable salt. For example, a salt can be produced by reacting a tetracycline-based compound acid salt containing an amine or other basic group with a suitable organic or inorganic acid to produce an anionic salt. Examples of anionic salts are acetate, benzenesulfonate, benzoate, bicarbonate, heavy tartrate, bromide, calcium edetate, cansilate, carbonate, chloride, citrate, dihydrochloride. , Edetate, edicylate, estlate, esilate, fumarate, gluceptate, gluconate, glutamate, glycolyllylarsanylate, hexylresorcin Acid salt, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, ISEthionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methyl sulfate, Mutate, napsylate, nitrate, pamoate, pantothenate, phosphate / diphosphate, polygalacturonate, salicylate, stearate, basic acetate, Includes succinates, sulfates, tannates, tartrates, theocrates, tosylates, triethiodide salts and the like. The salt is preferably hydrochloride or dihydrochloride.
 テトラサイクリン系化合物は、好適な塩基と反応させることによって陽イオン塩を生じさせることができる。陽イオン塩は、薬学的に許容できる陽イオンを与える塩基で作製されてもよく、アルカリ金属塩(特に、ナトリウムおよびカリウム)、アルカリ土類金属塩(特に、カルシウムおよびマグネシウム)、アルミニウム塩及びアンモニウム塩、並びにトリメチルアミン、トリエチルアミン、モルホリン、ピリジン、ピペリジン、ピコリン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン、2-ヒドロキシエチルアミン、ビス-(2-ヒドロキシエチル)アミン、トリ-(2-ヒドロキシエチル)アミン、プロカイン、ジベンジルピペリジン、デヒドロアビエチルアミン、N,N’-ビスデヒドロアビエチルアミン、グルカミン、N-メチルグルカミン、コリジン、キニーネ、キノリン、並びにリジン及びアルギニンなどの塩基性アミノ酸などの塩を含む。 Tetracycline compounds can generate cationic salts by reacting with suitable bases. Cationic salts may be made of bases that give pharmaceutically acceptable cations, alkali metal salts (particularly sodium and potassium), alkaline earth metal salts (particularly calcium and magnesium), aluminum salts and ammonium. Salts, as well as trimethylamine, triethylamine, morpholine, pyridine, piperidine, picolin, dicyclohexylamine, N, N'-dibenzylethylenediamine, 2-hydroxyethylamine, bis- (2-hydroxyethyl) amine, tri- (2-hydroxyethyl) Contains salts such as amines, prokines, dibenzylpiperidin, dehydroabiethylamine, N, N'-bisdehydroabiethylamine, glucamine, N-methylglucamine, colidin, quinine, quinoline, and basic amino acids such as lysine and arginine. ..
 免疫賦活化剤は、テトラサイクリン系化合物又はその薬学的に許容される塩を含む。免疫賦活化剤は、テトラサイクリン系化合物又はその薬学的に許容される塩と適当な担体又は添加剤とを組み合わせて調製してもよい。当該免疫賦活化剤の調製に用いられる担体や添加剤としては、免疫賦活化剤の剤形に応じて通常の薬剤に汎用される各種のもの、例えば賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味剤、矯臭剤、界面活性剤等を例示できる。 The immunostimulatory agent contains a tetracycline compound or a pharmaceutically acceptable salt thereof. The immunostimulatory agent may be prepared by combining a tetracycline compound or a pharmaceutically acceptable salt thereof with a suitable carrier or additive. As the carrier and the additive used for the preparation of the immunostimulatory agent, various substances commonly used in ordinary drugs depending on the dosage form of the immunostimulatory agent, such as excipients, binders, disintegrants, and slippers, are used. Examples thereof include swamps, colorants, flavoring agents, odorants, and surfactants.
 上記免疫賦活化剤が経口投与されるものである場合の剤形は、特に制限されないが、錠剤、散剤、顆粒剤、カプセル剤(硬質カプセル剤及び軟質カプセル剤を含む)、液剤、丸剤、懸濁剤、及び乳剤等を例示できる。また上記免疫賦活化剤が、非経口投与されるものである場合には、注射剤、点滴剤、坐剤、点鼻剤、及び経肺投与剤等を例示できる。 When the above immunostimulatory agent is orally administered, the dosage form is not particularly limited, but tablets, powders, granules, capsules (including hard capsules and soft capsules), liquids, pills, etc. Suspension agents, emulsions and the like can be exemplified. When the immunostimulatory agent is administered parenterally, examples thereof include injections, infusions, suppositories, nasal drops, and transpulmonary administrations.
 上記免疫賦活化剤が、錠剤、散剤、顆粒剤、丸剤、カプセル剤等の経口用固形組成物である場合の調製に際しては、担体として例えば乳糖、白糖、塩化ナトリウム、ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸、メチルセルロース、グリセリン、アルギン酸ナトリウム、アラビアゴム等の賦形剤;単シロップ、プドウ糖液、デンプン液、ゼラチン溶液、ポリビニルアルコール、ポリビニルエーテル、ポリビニルピロリドン、カルボキシメチルセルロース、セラック、メチルセルロース、エチルセルロース、水、エタノール、リン酸カリウム等の結合剤;乾燥デンプン、アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル類、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、デンプン、乳糖等の崩壊剤;白糖、ステアリン酸、カカオバター、水素添加油等の崩壊抑制剤;ラウリル硫酸ナトリウム等の吸収促進剤;グリセリン、デンプン等の保湿剤;デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤;精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリコール等の滑沢剤等を使用できる。更に錠剤は必要に応じ通常の剤皮を施した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フイルムコーティング錠、二重錠、多層錠等とすることができる。 When the immunostimulatory agent is an oral solid composition such as tablets, powders, granules, pills, capsules, etc., as a carrier, for example, lactose, sucrose, sodium chloride, glucose, urea, starch, etc. Excipients such as calcium carbonate, kaolin, crystalline cellulose, silicic acid, methyl cellulose, glycerin, sodium alginate, rubber arabic; simple syrup, pudo sugar solution, starch solution, gelatin solution, polyvinyl alcohol, polyvinyl ether, polyvinyl pyrrolidone, carboxymethyl cellulose , Celac, methylcellulose, ethylcellulose, water, ethanol, potassium phosphate, etc .; dried starch, sodium alginate, canten powder, laminaran powder, sodium hydrogen carbonate, calcium carbonate, polyoxyethylene sorbitan fatty acid esters, sodium lauryl sulfate, Disintegrants such as stearic acid monoglyceride, starch, lactose; disintegrators such as sucrose, stearic acid, cacao butter, hydrogenated oil; absorption promoters such as sodium lauryl sulfate; moisturizers such as glycerin, starch; starch, lactose, Excipients such as kaolin, bentonite and colloidal silicic acid; and lubricants such as purified talc, stearate, boric acid powder and polyethylene glycol can be used. Further, the tablet may be a tablet coated with a normal skin, for example, a sugar-coated tablet, a gelatin-encapsulated tablet, an enteric-coated tablet, a film-coated tablet, a double tablet, a multi-layer tablet, or the like.
 上記免疫賦活化剤が、丸剤の経口用固形組成物である場合の調製に際しては、担体として、例えばブドウ糖、乳糖、デンプン、カカオ脂、硬化植物油、カオリン、タルク等の賦形剤;アラビアゴム末、トラガント末、ゼラチン等の結合剤;ラミナラン、カンテン等の崩壊剤等を使用できる。 When the above immunostimulatory agent is an oral solid composition of pills, as a carrier, for example, excipients such as glucose, lactose, starch, cocoa butter, hardened vegetable oil, kaolin, talc; gum arabic. Binders such as powder, tragant powder, gelatin; disintegrants such as laminarin and canten can be used.
 上記免疫賦活化剤が、カプセル剤の経口用固形組成物である場合の調製に際しては、カプセル剤は有効成分を上記で例示した各種の担体と混合し、硬質カプセル、又は軟質カプセル等に充填して調製される。
 上記製剤が液剤の場合には、水性又は油性の懸濁液、溶液、シロップ、エリキシル剤であってもよく、通常の添加剤を用いて常法に従い、調製される。
When the immunostimulatory agent is an oral solid composition of a capsule, the capsule is prepared by mixing the active ingredient with various carriers exemplified above and filling the capsule into a hard capsule, a soft capsule, or the like. Is prepared.
When the above-mentioned preparation is a liquid preparation, it may be an aqueous or oily suspension, a solution, a syrup, or an elixir preparation, and is prepared according to a conventional method using ordinary additives.
 上記免疫賦活化剤が注射剤の場合の調製に際しては、担体として例えば水、エチルアルコール、マクロゴール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類等の希釈剤;クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等のpH調整剤;リン酸二カリウム、リン酸三ナトリウム、リン酸水素ナトリウム、クエン酸ナトリウム等の緩衝剤;ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸等の安定化剤;凍結乾燥した際の成形剤として例えばマンニトール、イノシトール、マルトース、シュクロース、ラクトース等の糖類を使用できる。なお、この場合等張性の溶液を調整するに十分な量のブドウ糖或いはグリセリンを剤中に含有せしめてもよく、また通常の溶解補助剤、無痛化剤、局所麻酔剤等を添加しても良い。これらの担体を添加して、常法により皮下、筋肉内、静脈内用注射剤を製造することができる。 When the immunostimulatory agent is an injection, the carrier may be, for example, water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, polyoxyethylene sorbitan fatty acid esters, or the like. Diluting agent; pH adjuster such as sodium citrate, sodium acetate, sodium phosphate; buffer such as dipotassium phosphate, trisodium phosphate, sodium hydrogen phosphate, sodium citrate; sodium pyrosulfate, EDTA, thioglycol Stabilizers such as acids and thiolactic acids; saccharides such as mannitol, inositol, maltose, sucrose and lactose can be used as molding agents when freeze-dried. In this case, a sufficient amount of glucose or glycerin to prepare an isotonic solution may be contained in the agent, or a usual solubilizing agent, pain-relieving agent, local anesthetic, etc. may be added. good. These carriers can be added to produce subcutaneous, intramuscular, and intravenous injections by conventional methods.
 上記製剤が点滴剤の場合には、投与化合物を生理食塩水、リンゲル液等を基本とした等張電解質輸液製剤に溶解して調製することができる。 When the above-mentioned preparation is an intravenous drip, it can be prepared by dissolving the administered compound in an isotonic electrolyte infusion preparation based on physiological saline, Ringer's solution, or the like.
 本発明における免疫賦活化剤は、経口用組成物及び非経口用組成物のいずれであってもよいが、好ましくは経口用組成物である。 The immunostimulatory agent in the present invention may be either an oral composition or a parenteral composition, but is preferably an oral composition.
 免疫賦活化剤に含まれる、テトラサイクリン系化合物又はその薬学的に許容される塩は一種であっても複数種であってもよい。すなわち、免疫賦活化剤は、テトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含んでいればよい。 The tetracycline compound or a pharmaceutically acceptable salt thereof contained in the immunostimulatory agent may be one kind or a plurality of kinds. That is, the immunostimulatory agent may contain at least one selected from the group consisting of tetracycline compounds and pharmaceutically acceptable salts thereof.
 免疫賦活化剤として用いる、テトラサイクリン系化合物又はその薬学的に許容される塩の投与量は、細菌感染症の治療に用いられる規定用量よりも少ないことが好ましい。例えば、本実施形態で用いるテトラサイクリン系化合物又はその薬学的に許容される塩の投与量は、1日あたりの投与量に換算して、細菌感染症の治療に用いられる規定用量の1/10から1/2程度である。好ましくは、本実施形態における投与量の下限値は、規定用量の1/10、1/8、及び1/6から選択できる。本実施形態における投与量の上限値は、規定用量の1/2、1/3、及び1/4から選択できる。例えば、細菌感染症の治療に用いられるテトラサイクリン系化合物又はその薬学的に許容される塩の規定用量の例は次の通りである。テトラサイクリン塩酸塩の規定用量は、成人で1日あたり1g、小児で30mg/kgであり、これらは4回に分けて服用される。デメチルクロルテトラサイクリン塩酸塩の規定用量は、成人で1日あたり450mgから600mgであり、これらは2回から4回に分けて服用される。ドキシサイクリン塩酸塩水和物の初回投与の規定用量は、成人で1日あたり200mgであり、1回で服用されるか、2回に分けて服用される。ドキシサイクリン塩酸塩水和物の2回目以降の投与の規定用量は、成人で1日あたり100mgである。ドキシサイクリン塩酸塩水和物の初回投与の規定用量は、体重が45kg以下の小児で1日あたり4.4mg/kgであり、2回に分けて服用される。ドキシサイクリン塩酸塩水和物の初回投与の規定用量は、体重が45kg超えの小児で1日あたり200mg/kgであり、2回に分けて服用される。ドキシサイクリン塩酸塩水和物の2回目以降の投与の規定用量は、体重が45kg以下の小児で1日あたり2.2mg/kgから4.4mg/kgであり、1日1回服用されるか、2回に分けて服用される。ドキシサイクリン塩酸塩水和物の2回目以降の投与の規定用量は、体重が45kg超えの小児で1日あたり100mgから200mgであり、1日1回服用されるか、2回に分けて服用される。ミノサイクリン塩酸塩の初回投与の規定用量は、成人で1日あたり100mgから200mgであり、内服されるか点滴静注される。ミノサイクリン塩酸塩の2回目以降の投与の規定用量は、成人で12時間又は24時間ごとに100mgであり内服されるか点滴静注される。ミノサイクリン塩酸塩の投与の規定用量は、小児で1日あたり2mg/kgから4mg/kgであり、内服される。チゲサイクリンの初回投与の規定用量は、成人で100mgであり、30分から60分かけて点滴静注される。チゲサイクリンの2回目投与の規定用量は、50mgであり、12時間後ごとに30分から60分かけて点滴静注される。投与量は、年齢、症状、腫瘍の大きさ、他の薬剤の投与状況等に応じて適宜調整できる。テトラサイクリン系化合物及びその薬学的に許容される塩の二種以上を組み合わせて投与する場合には、テトラサイクリン系化合物又はその薬学的に許容される塩の合計量が上記細菌感染症の治療に用いられる規定用量の合計の1/2を超えないことが好ましい。テトラサイクリン系化合物では、細菌感染症の治療に用いられる規定容量の投与において、腹痛、悪心、食欲不振、 胃腸障害等の消化器症状、又はめまい感等の副作用が報告されている。また、細菌感染症の治療に用いられる規定容量の投与の場合、菌交代現象を引き起こすことがある。しかし、本実施形態によれば、規定用量よりも少ない用量で効果を発揮するため、副作用や菌交代現象を引き起こすことなく、長期投与が可能となる。 The dose of the tetracycline compound or its pharmaceutically acceptable salt used as the immunostimulatory agent is preferably less than the prescribed dose used for the treatment of bacterial infectious diseases. For example, the dose of the tetracycline compound or its pharmaceutically acceptable salt used in the present embodiment is converted into a daily dose from 1/10 of the prescribed dose used for the treatment of bacterial infectious diseases. It is about 1/2. Preferably, the lower limit of the dose in this embodiment can be selected from 1/10, 1/8, and 1/6 of the specified dose. The upper limit of the dose in this embodiment can be selected from 1/2, 1/3, and 1/4 of the specified dose. For example, examples of prescribed doses of tetracycline compounds or pharmaceutically acceptable salts thereof used in the treatment of bacterial infections are as follows. The prescribed dose of tetracycline hydrochloride is 1 g per day for adults and 30 mg / kg for children, which are taken in 4 divided doses. The prescribed dose of demethylchlortetracycline hydrochloride is 450 mg to 600 mg per day for adults, and these are taken in 2 to 4 divided doses. The prescribed dose for the initial dose of doxycycline hydrochloride hydrate is 200 mg per day for adults, and it may be taken in a single dose or in two divided doses. The prescribed dose for the second and subsequent doses of doxycycline hydrochloride hydrate is 100 mg per day for adults. The prescribed dose of the initial dose of doxycycline hydrochloride hydrate is 4.4 mg / kg per day for children weighing 45 kg or less, and is taken in two divided doses. The prescribed dose for the initial dose of doxycycline hydrochloride hydrate is 200 mg / kg per day for children weighing over 45 kg and is taken in two divided doses. The prescribed dose for the second and subsequent doses of doxycycline hydrochloride hydrate is 2.2 mg / kg to 4.4 mg / kg per day for children weighing 45 kg or less and should be taken once daily or 2 Take in divided doses. The prescribed dose for the second and subsequent doses of doxycycline hydrochloride hydrate is 100 mg to 200 mg per day for children weighing over 45 kg and may be taken once daily or in two divided doses. The prescribed dose for the initial dose of minocycline hydrochloride is 100 mg to 200 mg per day for adults, which is taken orally or intravenously infused. The prescribed dose for the second and subsequent doses of minocycline hydrochloride is 100 mg every 12 or 24 hours for adults and is taken orally or intravenously infused. The prescribed dose of administration of minocycline hydrochloride is 2 mg / kg to 4 mg / kg per day for children and is taken orally. The prescribed dose for the first dose of tigecycline is 100 mg for adults, which is given by intravenous drip infusion over 30 to 60 minutes. The prescribed dose for the second dose of tigecycline is 50 mg, which is given by intravenous drip infusion over 30 to 60 minutes every 12 hours. The dose can be appropriately adjusted according to the age, symptoms, tumor size, administration status of other drugs, and the like. When two or more tetracycline compounds and pharmaceutically acceptable salts thereof are administered in combination, the total amount of the tetracycline compounds or pharmaceutically acceptable salts thereof is used for the treatment of the above-mentioned bacterial infectious disease. It is preferable not to exceed 1/2 of the total prescribed dose. For tetracycline antibiotics, side effects such as abdominal pain, nausea, loss of appetite, gastrointestinal disorders and other gastrointestinal symptoms, or dizziness have been reported when administered at a prescribed dose used for the treatment of bacterial infections. In addition, administration of a prescribed dose used for the treatment of bacterial infections may cause a bacterial alternation phenomenon. However, according to the present embodiment, since the effect is exhibited at a dose smaller than the specified dose, long-term administration is possible without causing side effects or bacterial change phenomenon.
 また、免疫賦活化剤の投与期間は、免疫賦活化剤が処方されてから、疾患に伴う症状が寛解、又は治癒するまでとすることができる。好ましくは、3日以上、5日以上、8日以上、10日以上、14日以上、21日以上、30日以上、60日以上継続することが好ましい。投与期間の上限は、ウイルス、抗酸菌、及び真菌によっても異なるが、例えば90日、60日、48日、40日、36日、30日、28日、21日、又は14日である。例えばコロナウイルス科の感染症、特にCOVID-19に罹患した患者には14日間から28日間投与することが好ましい。免疫賦活化剤の投与は、投与期間中毎日行うことができるが、例えば14日以上、21日以上、1ヶ月以上、2ヶ月以上投与する場合には、2日おき、又は3日おきに行うことができる。別の投与形態として、免疫賦活化剤の投与をはじめてから前半の8日間、10日間、又は14日間は毎日免疫賦活化剤の投与を行い、その後は2日おき、3日おきに投与間隔を変更してもよい。また、上記1日の投与量を超えない範囲で、例えば、11時間から12時間ごとに投与してもよい。 In addition, the administration period of the immunostimulatory agent can be from the time when the immunostimulatory agent is prescribed until the symptoms associated with the disease are relieved or cured. It is preferable to continue for 3 days or more, 5 days or more, 8 days or more, 10 days or more, 14 days or more, 21 days or more, 30 days or more, and 60 days or more. The upper limit of the administration period varies depending on the virus, acid-fast bacillus, and fungus, and is, for example, 90 days, 60 days, 48 days, 40 days, 36 days, 30 days, 28 days, 21 days, or 14 days. For example, it is preferably administered for 14 to 28 days for patients suffering from a coronaviridae infection, especially COVID-19. The immunostimulatory agent can be administered every day during the administration period. For example, when it is administered for 14 days or more, 21 days or more, 1 month or more and 2 months or more, it is administered every 2 days or 3 days. be able to. As another administration form, the immunostimulatory agent is administered daily for the first 8 days, 10 days, or 14 days after the administration of the immunostimulatory agent, and then every 2 days and every 3 days. You may change it. Further, it may be administered every 11 to 12 hours, for example, within the range not exceeding the daily dose.
 ウイルス感染症における免疫賦活化剤の投与対象者は、ウイルス感染症を発症した患者の他、ウイルス感染症を発症した患者との濃厚接触が疑われる者、ウイルス感染症の症状はないものの、各種ウイルス検査で陽性反応が現れた者を投与対象者としてもよい。ウイルス検査として、ウイルス抗原検査、ウイルス抗体検査、PCR検査、次世代シーケンサーによるシーケンシング検査を挙げることができる。 The subjects to whom the immunostimulatory agent is administered for viral infections are those who have developed viral infections, those who are suspected of having close contact with patients who have developed viral infections, and those who have no symptoms of viral infections. A person who has a positive reaction in the virus test may be the subject of administration. Examples of the virus test include a virus antigen test, a virus antibody test, a PCR test, and a sequencing test using a next-generation sequencer.
 抗酸菌感染症における免疫賦活化剤の投与対象者は、抗酸菌感染症を発症した患者の他、抗酸菌感染症を発症した患者との濃厚接触が疑われる者、抗酸菌感染症の症状はないものの、各種抗酸菌検査で陽性反応が現れた者を投与対象者としてもよい。抗酸菌検査として、ツベルクリン検査、X線検査、感染を疑う組織又はその関連箇所から採取された検体のチールネルゼン染色検査、PCR検査、次世代シーケンサーによるシーケンシング検査を挙げることができる。 The subjects to whom the immunostimulatory agent for acid-fast bacillus infection is administered are those who have developed acid-fast bacillus infection, those who are suspected of having close contact with patients who have developed acid-fast bacillus infection, and acid-fast bacillus infection. A person who has no symptoms of the disease but who shows a positive reaction in various acid-fast bacillus tests may be the subject of administration. Examples of the acid-fast bacillus test include a tuberculin test, an X-ray test, a Tyrnersen staining test of a sample collected from a tissue suspected of being infected or a related site thereof, a PCR test, and a sequencing test using a next-generation sequencer.
 真菌感染症における免疫賦活化剤の投与対象者は、真菌感染症を発症した患者の他、真菌感染症の症状はないものの、各種真菌検査で陽性反応が現れた者を投与対象者としてもよい。真菌検査として、X線検査、感染を疑う組織又はその関連箇所から採取された検体の病理組織検査、細胞診検査、PCR検査、次世代シーケンサーによるシーケンシング検査を挙げることができる。 The recipients of the immunostimulatory agent for fungal infections may be patients who have developed fungal infections or those who have no symptoms of fungal infections but who have a positive reaction in various fungal tests. .. Examples of the fungal test include an X-ray test, a histopathological test of a sample collected from a tissue suspected of being infected or a related site thereof, a cytological test, a PCR test, and a sequencing test using a next-generation sequencer.
 テトラサイクリン系化合物又はその薬学的に許容される塩は、他の薬剤と併用してもよい。併用されうる他の薬剤は、特に制限されないが、好ましくは抗ウイルス薬、抗抗酸菌薬、抗真菌薬、又は抗腫瘍薬である。 Tetracycline compounds or pharmaceutically acceptable salts thereof may be used in combination with other drugs. Other agents that can be used in combination are not particularly limited, but are preferably antiviral agents, antimycobacterial agents, antifungal agents, or antitumor agents.
 抗ウイルス薬として、例えば、抗インフルエンザ薬(オセルタミビル、バロキサビル、ザナミビル、ペラミビル、ラニナミビル、ファビピラビル)、抗サイトメガロウイルス薬(ガンシクロビル、バルガンシクロビル、ホスカルネット)、抗ヘルペスウイルス薬(アシクロビル、バラシクロビル、ファムシクロビル、アメナメビル)、抗HIV薬(ジドブジン、ラミブジン、アバカビル、テノホビル、エムトリシタビン、ネビラピン、エファビレンツ、エトラビリン、リルピビリン、ネルフィナビル、リトナビル、ロピナビル、アタザナビル、ホスアンプレナビル、ダルナビル、ラルテグラビル、ドルテグラビル、マラビロク)、抗C型肝炎ウイルス薬(テラプレビル、シメプレビル、バニプレビル、ダクラタスビル、アスナプレビル、ソホスブビル、リバビリン、レジパスビル、オムビタスビル、パリタプレビル、リトナビル、エルバスビル、グラゾプレビル、ダクラタスビル、アスナプレビル、ベクラブビル、グレカプレビル、ピブレンタスビル、ソホスブビル、ベルパタスビル)、抗B型肝炎ウイルス薬(ラミブジン、アデホビル、エンテカビル、テノホビル)、抗エボラウイルス薬(レムデシビル)等を挙げることができる。 Antiviral drugs include, for example, antiviral drugs (oseltamivir, baroxavir, zanamivir, peramivir, raninamidir, fabipiravir), anticytomegalovirus drugs (gancyclovir, balgancyclovir, hoscalnet), antiherpesvirus drugs (acyclovir, baracyclovir, femme). Cyclovir, Amenamevir), antiviral drugs (didobudin, ramibdin, abacavir, tenofovir, emtricitabine, nevirapin, efavirentz, etrabirin, lylpivirin, nerfinavir, ritonavir, lopinavir, atazanavir, hosamprenavir, daclatasvir, daclatasvir, daclatasvir, daclatasvir, daclatasvir, daclatasvir Anti-hepatitis virus drugs (teraprevir, simeprevir, vaniprevir, daclatasvir, asnaprevir, sophosbuvir, ribavirin, regipasvir, ombitasvir, paritaprevir, ritonavir, elvasville, glazoprevir, daclatasvir, asunaprevir, beclabvir, grecaprevir, pibrentasvir Examples thereof include hepatitis virus drugs (ramibdin, adehovir, entecavir, tenofovir), antievolavirus drugs (remdecibir) and the like.
 抗ウイルス薬の投与は、公知の方法にしたがって行うことができる。 The antiviral drug can be administered according to a known method.
 本発明のテトラサイクリン系化合物又はその薬学的に許容される塩と抗ウイルス薬との併用(組み合わせ)の態様は、本発明の効果を奏する使用の態様であればよく、特に制限されない。例えば、抗ウイルス薬の投与と同時にテトラサイクリン系化合物又はその薬学的に許容される塩を並行して投与してもよいし、また抗ウイルス薬の投与に先立って、又は抗ウイルス薬の投与開始後にテトラサイクリン系化合物又はその薬学的に許容される塩を投与してもよい。この場合、テトラサイクリン系化合物又はその薬学的に許容される塩と抗ウイルス薬の投与を交互に行ってもよい。さらに、抗ウイルス薬投与開始後、症状の改善度合い等に併せて、抗ウイルス薬投与の途中から、テトラサイクリン系化合物又はその薬学的に許容される塩を併用投与してもよいし、また逆に、テトラサイクリン系化合物又はその薬学的に許容される塩を投与後、その途中から抗ウイルス薬を併用投与してもよい。 The mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an antiviral drug is not particularly limited as long as it is a mode of use that exerts the effect of the present invention. For example, a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the antiviral drug, and prior to the administration of the antiviral drug or after the administration of the antiviral drug is started. Tetracycline compounds or pharmaceutically acceptable salts thereof may be administered. In this case, the tetracycline compound or a pharmaceutically acceptable salt thereof and the antiviral drug may be alternately administered. Further, after the start of administration of the antiviral drug, a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered during the administration of the antiviral drug, depending on the degree of improvement of symptoms and the like, and vice versa. , A tetracycline compound or a pharmaceutically acceptable salt thereof may be administered, and then an antiviral drug may be co-administered in the middle of the administration.
 また、本発明のテトラサイクリン系化合物又はその薬学的に許容される塩は、抗ウイルス薬と併用する態様であれば、単回投与、連続投与、また間歇的投与のいずれであってもよい。例えば、抗ウイルス薬の投与に先立って本発明のテトラサイクリン系化合物又はその薬学的に許容される塩を投与する場合を例にすれば、抗ウイルス薬の投与開始の7日前から、又は3日前から、1日1回連日、14日間から21日間程度、投与する方法を例示することができる。また、テトラサイクリン系化合物又は薬学的に許容される塩を抗ウイルス薬の投与クール中連日投与してもよい。 Further, the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antiviral drug. For example, in the case of administering the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof prior to the administration of the antiviral drug, from 7 days or 3 days before the start of administration of the antiviral drug. An example can be given of a method of administering once a day every day for about 14 to 21 days. In addition, a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antiviral drug.
 本発明のテトラサイクリン系化合物又は薬学的に許容される塩は、その投与経路(投与方法)に応じて、種々の形態(剤型)の医薬組成物として調製され、抗ウイルス薬と組み合わせて、対象とするウイルス感染症患者に投与される。 The tetracycline compound of the present invention or a pharmaceutically acceptable salt is prepared as a pharmaceutical composition in various forms (dosage forms) according to its administration route (administration method), and is a subject in combination with an antiviral drug. It is administered to patients with viral infections.
 抗抗酸菌薬として、例えば、結核菌群の感染に使用される得るリファンピシン、イソニアジド(ヒドラジド)、ストレプトマイシン、エタンブトール、ピラジナミド、及びこれらの組み合わせ;Mycobacterium avium complex感染に使用され得るクラリスロマイシン、エタンブトール、リファンピシン、ストレプトマイシン、カナマイシン、及びこられの組み合わせ;Mycobacterium kansasii感染に使用され得るイソニアジド、リファンピシン、エタンブトール、及びこれらの組み合わせ;Mycobacterium abscessus感染に使用され得るアミカシン、イミペネム、クラリスロマイシン、シタフロキサシンや、ファロペネム、及びこれらの組み合わせ等を挙げることができる。 As anti-antioxidant agents, for example, rifampicin, isoniazid (hydrazide), streptomycin, etambutol, pyrazinamide, which can be used for infection of tuberculosis flora, and combinations thereof; , Rifampicin, streptomycin, canamycin, and combinations of these; isoniazid, rifampicin, etambitol, which can be used for Mycobacterium kansasii infection, and combinations thereof; , And combinations thereof.
 抗抗酸菌薬の投与は、公知の方法にしたがって行うことができる。 Administration of the antimycobacterial drug can be performed according to a known method.
 本発明のテトラサイクリン系化合物又はその薬学的に許容される塩と抗抗酸菌薬との併用(組み合わせ)の態様は、本発明の効果を奏する使用の態様であればよく、特に制限されない。例えば、抗抗酸菌薬の投与と同時にテトラサイクリン系化合物又はその薬学的に許容される塩を並行して投与してもよいし、また抗抗酸菌薬の投与に先立って、又は抗抗酸菌薬の投与開始後にテトラサイクリン系化合物又はその薬学的に許容される塩を投与してもよい。この場合、テトラサイクリン系化合物又はその薬学的に許容される塩と抗抗酸菌薬の投与を交互に行ってもよい。さらに、抗抗酸菌薬投与開始後、症状の改善度合い等に併せて、抗抗酸菌薬投与の途中から、テトラサイクリン系化合物又はその薬学的に許容される塩を併用投与してもよいし、また逆に、テトラサイクリン系化合物又はその薬学的に許容される塩を投与後、その途中から抗抗酸菌薬を併用投与してもよい。 The mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an acid-fast bacillus drug is not particularly limited as long as it is a mode of use that exerts the effect of the present invention. For example, a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the acid-fast bacillus drug, or prior to the administration of the acid-fast bacillus drug, or the anti-acid-fast acid. A tetracycline compound or a pharmaceutically acceptable salt thereof may be administered after the start of administration of the mycobacterial drug. In this case, the tetracycline compound or a pharmaceutically acceptable salt thereof and the antimycobacterial drug may be administered alternately. Further, after the start of administration of the acid-fast bacillus drug, a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered from the middle of the administration of the acid-fast bacillus drug according to the degree of improvement of symptoms and the like. On the contrary, after the tetracycline compound or a pharmaceutically acceptable salt thereof is administered, an antimycobacterial drug may be administered in combination in the middle of the administration.
 また、本発明のテトラサイクリン系化合物又はその薬学的に許容される塩は、抗抗酸菌薬と併用する態様であれば、単回投与、連続投与、また間歇的投与のいずれであってもよい。例えば、抗抗酸菌薬の投与に先立って本発明のテトラサイクリン系化合物又はその薬学的に許容される塩を投与する場合を例にすれば、抗抗酸菌薬の投与開始の7日前から、又は3日前から、1日1回連日、14日間から21日間程度、投与する方法を例示することができる。また、テトラサイクリン系化合物又は薬学的に許容される塩を抗抗酸菌薬の投与クール中連日投与してもよい。 In addition, the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antimycobacterial drug. .. For example, in the case of administering the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof prior to the administration of the antimycobacterial drug, for example, from 7 days before the start of administration of the antimycobacterial drug. Alternatively, a method of administering the drug once a day from 3 days before for 14 to 21 days can be exemplified. In addition, a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antimycobacterial drug.
 本発明のテトラサイクリン系化合物又は薬学的に許容される塩は、その投与経路(投与方法)に応じて、種々の形態(剤型)の医薬組成物として調製され、抗抗酸菌薬と組み合わせて、対象とする抗酸菌感染症患者に投与される。 The tetracycline compound of the present invention or a pharmaceutically acceptable salt is prepared as a pharmaceutical composition in various forms (dosage forms) according to the route of administration (administration method) thereof, and is combined with an acid-fast bacillus drug. , Administered to target mycobacterial infection patients.
 抗真菌薬として、例えば、イトリゾール、ジフルカン、プロジフ、ブイフェンド、ネイリン、クレナフィン、ニゾラール、アスタット、ラミシール、ルリコン等を挙げることができる。 Examples of antifungal agents include itraconazole, diflucan, prodif, buifend, neyrin, krenafin, nizoral, astat, lamicile, and luricon.
 抗真菌薬の投与は、公知の方法にしたがって行うことができる。 The antifungal drug can be administered according to a known method.
 本発明のテトラサイクリン系化合物又はその薬学的に許容される塩と抗真菌薬との併用(組み合わせ)の態様は、本発明の効果を奏する使用の態様であればよく、特に制限されない。例えば、抗真菌薬の投与と同時にテトラサイクリン系化合物又はその薬学的に許容される塩を並行して投与してもよいし、また抗真菌薬の投与に先立って、又は抗真菌薬の投与開始後にテトラサイクリン系化合物又はその薬学的に許容される塩を投与してもよい。この場合、テトラサイクリン系化合物又はその薬学的に許容される塩と抗真菌薬の投与を交互に行ってもよい。さらに、抗真菌薬投与開始後、症状の改善度合い等に併せて、抗真菌薬投与の途中から、テトラサイクリン系化合物又はその薬学的に許容される塩を併用投与してもよいし、また逆に、テトラサイクリン系化合物又はその薬学的に許容される塩を投与後、その途中から抗真菌薬を併用投与してもよい。 The mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an antifungal agent is not particularly limited as long as it is a mode of use that exerts the effect of the present invention. For example, a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the antifungal drug, and prior to the administration of the antifungal drug or after the administration of the antifungal drug is started. Tetracycline compounds or pharmaceutically acceptable salts thereof may be administered. In this case, the tetracycline compound or a pharmaceutically acceptable salt thereof and the antifungal drug may be alternately administered. Further, after the start of administration of the antifungal drug, a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered during the administration of the antifungal drug, or vice versa, depending on the degree of improvement of symptoms and the like. , A tetracycline compound or a pharmaceutically acceptable salt thereof may be administered, and then an antifungal drug may be administered in combination.
 また、本発明のテトラサイクリン系化合物又はその薬学的に許容される塩は、抗真菌薬と併用する態様であれば、単回投与、連続投与、また間歇的投与のいずれであってもよい。例えば、抗真菌薬の投与に先立って本発明のテトラサイクリン系化合物又はその薬学的に許容される塩を投与する場合を例にすれば、抗真菌薬の投与開始の7日前から、又は3日前から、1日1回連日、14日間から21日間程度、投与する方法を例示することができる。また、テトラサイクリン系化合物又は薬学的に許容される塩を抗真菌薬の投与クール中連日投与してもよい。 Further, the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antifungal drug. For example, in the case where the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof is administered prior to the administration of the antifungal drug, for example, from 7 days or 3 days before the start of administration of the antifungal drug. An example can be exemplified of a method of administering once a day every day for about 14 to 21 days. In addition, a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antifungal drug.
 本発明のテトラサイクリン系化合物又は薬学的に許容される塩は、その投与経路(投与方法)に応じて、種々の形態(剤型)の医薬組成物として調製され、抗真菌薬と組み合わせて、対象とする真菌感染症患者に投与される。 The tetracycline antibiotics or pharmaceutically acceptable salts of the present invention are prepared as pharmaceutical compositions in various forms (dosage forms) according to the route of administration (administration method), and are subject to combination with antifungal agents. It is administered to patients with fungal infections.
 抗腫瘍薬として、例えば一般に抗がん剤として使用されるものを挙げることができ、アルキル化薬、代謝拮抗薬、抗腫瘍性抗生物質、微小血管阻害薬、ホルモン又はホルモン類似薬、白金製剤、トポイソメラーゼ阻害薬、サイトカイン、抗体薬、腫瘍免疫薬(放射免疫療法薬、非特異的免疫活薬、免疫チェックポイント阻害薬、CAR-T細胞薬、BiTE薬、がんワクチン等)、分子標的薬、及びその他の抗腫瘍薬の中から、対象とする腫瘍に応じて適宜選択することができる。 Examples of antitumor agents include those generally used as anticancer agents, such as alkylating agents, metabolic antagonists, antitumor antibiotics, microvascular inhibitors, hormones or hormone-like agents, platinum preparations, etc. Topoisomerase inhibitors, cytokines, antibody drugs, tumor immunological drugs (radioimmunotherapy drugs, non-specific immunoactive drugs, immune checkpoint inhibitors, CAR-T cell drugs, BiTE drugs, cancer vaccines, etc.), molecular target drugs, And other anti-tumor agents can be appropriately selected according to the target tumor.
 ここで制限はされないものの、アルキル化薬としては、例えば、シクロホスファミド、イホスファミド、ブスルファン、メルファラン、ベンダムスチン塩酸塩、ニムスチン塩酸塩、ラニムスチン、ダガルバジン、プロカルバジン塩酸塩テモゾロミド等;代謝拮抗薬としては、メトトレキサート、ペメトレキセドナトリウム、フルオロウラシル、ドキシフルリジン、カペシタビン、テガフール、シタラビン、シタラビンオクホスファート水和物、エノシタビン、ゲムシタビン塩酸塩、メルカプトプリン水和物、フルダラビンリン酸エステル、ネララビン、ペントスタチン、クラドリビン、レボホリナートカルシウム、ホリナートカルシウム、ヒドロキシカルバミド、L-アスパラギナーゼ、アザシチジン等;抗腫瘍性抗生物質としては、ドキソルビシン塩酸塩、ダウノルビシン塩酸塩、ピラルビシン、エピルビシン塩酸塩、イダルビシン塩酸塩、アクラルビシン塩酸塩、アムルビシン塩酸塩、ミトキサントロン塩酸塩、マイトマイシンC、アクチノマイシンD、ブレオマイシン、ペプロマイシン硫酸塩、ジノスタチンスチラマー等;微小血管阻害薬としては、ビンクリスチン硫酸塩、ビンブラスチン硫酸塩、ビンデシン硫酸塩、ビノレルビン酒石酸塩、パクリタキセル、ドセタキセル水和物、エリブリンメシル酸塩等;ホルモン又はホルモン類似薬(ホルモン剤)としては、アナストロゾール、エキセメスタン、レトロゾール、タモキシフェンクエン酸塩、トレミフェンクエン酸塩、フルベストラント、フルタミド、ビカルタミド、メドロキシプロゲステロン酢酸エステル、エストラムスチンリン酸エステルナトリウム水和物、ゴセレリン酢酸塩、リュープロレリン酢酸塩等;白金製剤としては、シスプラチン、ミリプラチン水和物、カルボプラチン、ネダプラチン、オキサリプラチン等;トポイソメラーゼ阻害薬としては、イリノテカン塩酸塩水和物、及びノギテカン塩酸塩等のトポイソメラーゼI阻害薬、並びにエトポシド、及びソブゾキサン等のトポイソメラーゼII阻害薬;サイトカインとしては、インターフェロンガンマ-1a、テセロイキン、セルモロイキン等;抗体薬としては、トラスツズマブ、リツキシマブ、ゲムツズマブオゾガマイシン、ベバシズマブ、セツキシマブ、パニツムマブ、アレムツズマブ等;放射免疫療法薬としては、イブリツモマブ、チウキセタン配合剤等;分子標的薬としては、ゲフィチニブ、イマチニブメシル酸塩、ボルテゾミブ、エルロチニブ塩酸塩、ソラフェニブトシル酸塩、スニチニブリンゴ酸塩、サリドマイド、ニロチニブ塩酸塩水和物、ダサチニブ水和物、ラパチニブトシル酸塩水和物、エベロリムス、レナリドミド水和物、デキサメタゾン、テムシロリムス、ボリノスタット、トレチノイン、及びタミバロテン等;非特異的免疫活薬としては、OK-432、乾燥BCG、かわらたけ多糖体製剤、レンチナン、ウベニメクス等;免疫チェックポイント阻害薬としては、アテゾリズマブ、ニボルマブ、ペンブロリズマブ、イピリムマブ、デュルバルマブ、アベルマブ、トレメリムマブ等;CAR-T細胞薬としては、Tisagenlecleucel等;二重特異性分子薬としては、ブリナツモマブ等のBiTE(商標)薬;がんワクチンとしては、シプリューセ-T等;その他、アセグラトン、ポルフィマーナトリウム、タラポルフィンナトリウム、エタノール、三酸化ヒ素等を例示することができる。ここで、二重特異性分子とは、一分子内に、腫瘍細胞に存在する少なくとも一種の表面抗原と結合する抗原結合領域と、T細胞に存在する表面抗原の少なくとも一種と結合する抗原結合領域とを有する分子を意図する。表面抗原の少なくとも一種と結合する抗原結合領域は、1つの抗原に対して、1つであっても2以上であってもよい。例えば、表面抗原の少なくとも一種と結合する抗原結合領域は、同種のFab領域の組み合わせ、同種の可変領域の組み合わせ、同種のsc-Fvの組み合わせ、1種の抗体に由来する重鎖Fab領域と軽鎖Fab領域の組み合わせ1種の抗体に由来する重鎖可変領域と軽鎖可変領域の組み合わせ、1種の抗体に由来する重鎖sc-Fvの組み合わせであってもよい。T細胞の表面抗原は、T細胞の表面に存在し、二重特異性分子又は三重特異性分子に含まれる少なくとも一つの抗原結合領域が結合できる限り制限されない。T細胞の表面抗原として、好ましくは細胞障害性T細胞の表面抗原を挙げることができる。例えば、T細胞の表面抗原は、CD3、CD8、TCR、CTLA-4、PD1、Tim3、CD27、CD28、CD40、CD134(OX40)、CD137(4-1BB)、CD278(ICOS)を挙げることができる。好ましくはCD3である。腫瘍細胞の表面抗原は、腫瘍細胞の表面に存在し、二重特異性分子に含まれる少なくとも一つの抗原結合領域が結合できる限り制限されない。腫瘍細胞の表面抗原としては、EphA1(ephrin type-A receptor 1)、EphA2、FolR1(folate receptor 1)、EpCAM(Epithelial cell adhesion molecule)、CD19、Her1 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 1: ErbB1)、Her2、CD20、EGFR(Epidermal Growth Factor Receptor)、CCR4(C-C chemokine receptor type 4)、CEA(Carcinoembryonic antigen)、GD2、GD3,CD22、CD30、CD33、CD70、CD123、EGFRvIII、MUC1(Mucin1)、PSCA(Prostate stem cell antigen)、PSMA(Prostate-specific membrane antigen)、HLA-A1+NY-ESO1(HLA-A1 restricted NY-ESO1)、HLA-A2+NY-ESO1(HLA-A2 restricted NY-ESO1)、HLA-A3+NY-ESO1(HLA-A3 restricted NY-ESO1)等を挙げることができる。二重特異性分子には、BiTE(商標)、二重特異性抗体等が含まれる。BiTE(商標)としては、CD19とCD3を標的とする二重特異性分子、EphA2とCD3を標的とする二重特異性分子を挙げることができる。また二重特異性抗体としては、EpCAMとCD3を標的とする抗体を挙げることができる。 Although not limited here, examples of alkylating agents include cyclophosphamide, iphosphamide, busulfan, melfaran, bendamstin hydrochloride, nimustin hydrochloride, lanimustin, dagalvazine, procarbazine hydrochloride temozolomid, etc .; as metabolic antagonists. , Metotrexate, Pemetrexed Sodium, Fluorouracil, Doxyflulysin, Capecitabin, Tegafur, Citarabin, Citarabin ocphosphate hydrate, Enocitabin, Gemcitabine hydrochloride, Mercaptoprin hydrate, Fludarabin phosphate ester, Nerarabin, Pentostatin , Holinate calcium, hydroxycarbamide, L-asparaginase, azacitidine, etc .; Examples of antitumor antibiotics include doxorubicin hydrochloride, daunorbisin hydrochloride, pirarubicin, epirubicin hydrochloride, idalbisin hydrochloride, acralbisin hydrochloride, amurubicin hydrochloride, mitoxane. Tron hydrochloride, mitomycin C, actinomycin D, bleomycin, pepromycin sulfate, dinostatin styramer, etc .; Examples of microvascular inhibitors include vincrystin sulfate, vinblastin sulfate, bindesin sulfate, binorelbin tartrate, paclitaxel, docetaxel water. Japanese products, elibrin mesylate, etc .; as hormones or hormone-like drugs (hormone agents), anastrozole, exemethan, retrozol, tamoxyphen citrate, tremiphen citrate, flubestland, flutamide, bicartamide, medroxy Progesterone acetate, estramustin phosphate sodium hydrate, goselelin acetate, leuprorelin acetate, etc .; as platinum preparations, cisplatin, milliplatin hydrate, carboplatin, nedaplatin, oxaliplatin, etc.; as topoisomerase inhibitors Is a topoisomerase I inhibitor such as irinotecan hydrochloride hydrate and nogitecan hydrochloride, and a topoisomerase II inhibitor such as etoposide and sobzoxane; , Trustuzumab, rituximab, gemtuzumab ozogamicin, bebashizumab, setuximab, panitumumab, alemtuzumab, etc .; Tinib, imatinib mesylate, voltezomib, erlotinib hydrochloride, sorafenib tosylate, sunitinib malate, salidamide, nivolumab hydrochloride hydrate, dasatinib hydrate, lapatinib tosilate hydrate, everolimus, renaridamide hydrate, Dexametazone, temsirolimus, bolinostat, tretinoin, tamibarotene, etc .; non-specific immunoactive agents include OK-432, dried BCG, Kawatake polysaccharides, lentinan, ubenimex, etc.; immune checkpoint inhibitors include atezolizumab, nivolumab. , Pembrolizumab, ipilimumab, durvalumab, avelumab, tretinolimus, etc .; as CAR-T cell drugs, Sisagenlecleucel, etc .; as bispecific molecular drugs, BiTE ™ drugs such as brinatsumomab; Etc .; In addition, acegraton, porphimer sodium, taraporfin sodium, ethanol, arsenic trioxide and the like can be exemplified. Here, the bispecific molecule is an antigen-binding region that binds to at least one surface antigen present in tumor cells and an antigen-binding region that binds to at least one surface antigen present in T cells within one molecule. Intended for molecules with and. The number of antigen-binding regions that bind to at least one of the surface antigens may be one or two or more for one antigen. For example, the antigen-binding region that binds to at least one of the surface antigens is a combination of the same type of Fab region, a combination of the same type of variable region, a combination of the same type of sc-Fv, and a heavy chain Fab region derived from one type of antibody. Combination of Chain Fab Regions A combination of a heavy chain variable region and a light chain variable region derived from one type of antibody may be used, and a combination of heavy chain sc-Fv derived from one type of antibody may be used. The surface antigen of a T cell is not limited as long as it exists on the surface of the T cell and at least one antigen-binding region contained in the bispecific molecule or trispecific molecule can bind to it. As the surface antigen of T cells, preferably, the surface antigen of cytotoxic T cells can be mentioned. For example, T cell surface antigens include CD3, CD8, TCR, CTLA-4, PD1, Tim3, CD27, CD28, CD40, CD134 (OX40), CD137 (4-1BB), CD278 (ICOS). .. It is preferably CD3. The surface antigen of a tumor cell is present on the surface of the tumor cell and is not limited as long as at least one antigen-binding region contained in the bispecific molecule can bind. As surface antigens of tumor cells, EphA1 (ephrin type-A receptor 1), EphA2, FolR1 (forate receptor 1), EpCAM (Epidermal growth factor receptor 1), CD19, Erbb2 : ErbB1), Her2, CD20, EGFR (Epidermal Growth Factor Receptor), CCR4 (CC chemokine receptor type 4), CEA (Carcinomebryonic, G2G3G3G3DIG3, (Mucin1), PSCA (Prostate stem cell antigen), PSMA (Prostate-specific memory antigen), HLA-A1 + NY-ESO1 (HLA-A1 restricted NY-ESO1), HLA-A2 , HLA-A3 + NY-ESO1 (HLA-A3 antigened NY-ESO1) and the like. Bispecific molecules include BiTE ™, bispecific antibodies and the like. Examples of BiTE ™ include bispecific molecules targeting CD19 and CD3, and bispecific molecules targeting EphA2 and CD3. Examples of bispecific antibodies include antibodies that target EpCAM and CD3.
 テトラサイクリン系化合物の作用効果の点から、抗腫瘍薬として好ましくは腫瘍免疫療法薬を挙げることができ、より好ましくは免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、及びがんワクチンから選択される少なくとも一種を挙げることができる。腫瘍免疫薬のうち最も好ましくは、免疫チェックポイント阻害薬(アテゾリズマブ、ニボルマブ、ペンブロリズマブ、イピリムマブ、デュルバルマブ、アベルマブ、トレメリムマブ等)である。 From the viewpoint of the action and effect of tetracycline compounds, tumor immunotherapeutic agents can be preferably mentioned as antitumor agents, and more preferably immune checkpoint inhibitors, CAR-T cell agents, bispecific molecular agents, and the like. At least one selected from the cancer vaccine can be mentioned. The most preferred of the tumor immunological agents are immune checkpoint inhibitors (atezolizumab, nivolumab, pembrolizumab, ipilimumab, durvalumab, avelumab, tremelimumab, etc.).
 抗腫瘍薬の投与は、公知の方法にしたがって行うことができる。また、抗腫瘍薬の投与量を決定するにあたり、後述する実施例1.末梢血単核細胞を用いた腫瘍細胞傷害活性の測定方法にしたがって、各患者について末梢血単核細胞のT細胞の腫瘍細胞傷害活性の強さを評価して、この強さに応じて投与量を決定してもよい。 Administration of antitumor drug can be performed according to a known method. In addition, in determining the dose of the antitumor drug, Example 1. The intensity of tumor cell injury activity of T cells of peripheral blood mononuclear cells was evaluated for each patient according to the method for measuring tumor cell injury activity using peripheral blood mononuclear cells, and the dose was adjusted according to this intensity. May be determined.
 本発明のテトラサイクリン系化合物又はその薬学的に許容される塩と抗腫瘍薬との併用(組み合わせ)の態様は、本発明の効果を奏する使用の態様であればよく、特に制限されない。例えば、抗腫瘍薬の投与と同時にテトラサイクリン系化合物又はその薬学的に許容される塩を並行して投与してもよいし、また抗腫瘍薬の投与に先立って、又は抗腫瘍薬の投与後にテトラサイクリン系化合物又はその薬学的に許容される塩を投与してもよい。この場合、テトラサイクリン系化合物又はその薬学的に許容される塩と抗腫瘍薬の投与を交互に行ってもよい。さらに、抗腫瘍薬投与後、腫瘍の組織の縮小度合い等に併せて、抗腫瘍薬投与の途中から、テトラサイクリン系化合物又はその薬学的に許容される塩を併用投与してもよいし、また逆に、テトラサイクリン系化合物又はその薬学的に許容される塩を投与後、その途中から抗腫瘍薬を併用投与してもよい。 The mode of combination (combination) of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof with an antitumor drug is not particularly limited as long as it is a mode of use that exerts the effect of the present invention. For example, a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in parallel with the administration of the antitumor drug, or tetracycline may be administered prior to the administration of the antitumor drug or after the administration of the antitumor drug. Tetracyclines or pharmaceutically acceptable salts thereof may be administered. In this case, the tetracycline compound or a pharmaceutically acceptable salt thereof and the antitumor drug may be alternately administered. Further, after the administration of the antitumor drug, a tetracycline compound or a pharmaceutically acceptable salt thereof may be co-administered from the middle of the administration of the antitumor drug according to the degree of shrinkage of the tumor tissue, and vice versa. After administration of a tetracycline compound or a pharmaceutically acceptable salt thereof, an antitumor drug may be co-administered in the middle of the administration.
 また、本発明のテトラサイクリン系化合物又はその薬学的に許容される塩は、抗腫瘍薬と併用する態様であれば、単回投与、連続投与、また間歇的投与のいずれであってもよい。例えば、抗腫瘍薬の投与に先立って本発明のテトラサイクリン系化合物又はその薬学的に許容される塩を投与する場合を例にすれば、抗腫瘍薬の投与開始の7日前から、又は3日前から、1日1回連日、14日間から21日間程度、投与する方法を例示することができる。また、テトラサイクリン系化合物又は薬学的に許容される塩を抗腫瘍薬の投与クール中連日投与してもよい。 Further, the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be administered once, continuously, or intermittently as long as it is used in combination with an antitumor drug. For example, in the case where the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof is administered prior to the administration of the antitumor drug, for example, from 7 days or 3 days before the start of administration of the antitumor drug. An example can be exemplified of a method of administering once a day every day for about 14 to 21 days. In addition, a tetracycline compound or a pharmaceutically acceptable salt may be administered every day during the administration of the antitumor drug.
 本発明のテトラサイクリン系化合物又は薬学的に許容される塩は、その投与経路(投与方法)に応じて、種々の形態(剤型)の医薬組成物として調製され、抗腫瘍薬と組み合わせて、対象とする腫瘍患者に投与される。 The tetracycline compound of the present invention or a pharmaceutically acceptable salt is prepared as a pharmaceutical composition in various forms (dosage forms) according to its administration route (administration method), and is a subject in combination with an antitumor drug. It is administered to tumor patients.
 腫瘍の治療における免疫賦活化剤の投与対象患者は、腫瘍免疫療法が適用されうる者である限り制限されない。例えば、患者としては、上記に記載のいずれかの腫瘍を有し、かつ未治療である患者、又は既に何らかの腫瘍治療を受けた患者、腫瘍の治療中の患者、腫瘍が再発又は転移している患者を挙げることができる。前記、腫瘍の治療には、好ましくは、外科的腫瘍切除、化学療法、放射療法等を含む。 Patients to whom the immunostimulatory agent is administered in the treatment of tumors are not limited as long as the tumor immunotherapy can be applied. For example, as a patient, a patient who has any of the above-mentioned tumors and has not been treated, a patient who has already received some tumor treatment, a patient who is being treated for the tumor, or a tumor that has recurred or metastasized. Patients can be mentioned. The treatment of the tumor preferably includes surgical tumor resection, chemotherapy, radiotherapy and the like.
2.治療又は予防用組成物
 上記1.において述べたテトラサイクリン系化合物又はその薬学的に許容される塩、あるいは免疫賦活化剤は、治療又は予防用組成物として使用することができる。上記1.で述べたテトラサイクリン系化合物又はその薬学的に許容される塩の説明はここに援用する。また治療又は予防用の組成物としての組成、投与量、投与期間、投与方法、投与対象者は上記1.で述べた免疫賦活化剤と同様であるから、上記1.の説明をここに援用する。治療又は予防用組成物は、ウイルス感染症、又は腫瘍の治療、及び/又は予防のために使用され得る。治療には、疾患を改善すること、治癒することが含まれ得る。予防には、疾患の発症又は再発を予防すること、疾患の悪化を抑制することが含まれ得る。
2. Therapeutic or preventive composition 1. The tetracycline compounds or pharmaceutically acceptable salts thereof described in the above, or immunostimulatory agents can be used as therapeutic or prophylactic compositions. Above 1. The description of the tetracycline compounds or pharmaceutically acceptable salts thereof described in the above is incorporated herein by reference. In addition, the composition as a composition for treatment or prevention, the dose, the administration period, the administration method, and the administration subject are as described in 1. above. Since it is the same as the immunostimulatory agent described in 1. above. The explanation of is used here. Therapeutic or prophylactic compositions can be used for the treatment and / or prevention of viral infections, or tumors. Treatment may include ameliorating or curing the disease. Prevention may include preventing the onset or recurrence of the disease and suppressing the exacerbation of the disease.
3.感染症治療用組成物
 感染症治療用組成物は、上記1.に記載の免疫賦活化剤と、抗ウイルス薬、抗抗酸菌薬、又は抗真菌薬を含む。抗ウイルス薬、抗抗酸菌薬、及び抗真菌薬は、上記2。の説明をここに援用する。以下、抗ウイルス薬、抗抗酸菌薬、及び抗真菌薬を「抗感染症薬」と総称する。
 免疫賦活化剤と、抗感染症薬とを含む感染症治療用組成物には下記態様が含まれる:
 (i)免疫賦活化剤と抗感染症薬とが同一製剤中に混合された態様で含まれている状態(配合剤)である場合、
 (ii)免疫賦活化剤単体若しくは免疫賦活化剤を含有する製剤と、抗感染症薬単体若しくは抗感染症薬を含有する製剤とが、おのおの別個の製剤として包装されており、両者が組み合わせ物(キット)として販売される場合、
 (iii)免疫賦活化剤単体若しくは免疫賦活化剤を含有する製剤と、抗感染症薬単体若しくは抗感染症薬を含有する製剤とがおのおの個別の製剤であり、これらが組み合わせて一つの包装物として販売される場合、又は
 (iv)免疫賦活化剤単体若しくは免疫賦活化剤を含有する製剤と、抗感染症薬単体若しくは抗感染症薬を含有する製剤とが、おのおの別個の製剤として包装されており、また両者は別個の流通経路で市場に存在し、使用時に組み合わせて使用される場合。
 抗ウイルス薬を含む感染症治療用組成物はウイルス感染症治療用組成物として使用する。抗抗酸菌薬を含む感染症治療用組成物は抗酸菌感染症治療用組成物として使用する。抗真菌薬を含む感染症治療用組成物は真菌感染症治療用組成物として使用する。
3. 3. Composition for Infectious Disease Treatment The composition for infectious disease treatment is described in 1. above. Includes the immunostimulatory agents described in 1 and antiviral agents, antimycobacterial agents, or antifungal agents. The antiviral drug, antimycobacterial drug, and antifungal drug are described in 2. above. The explanation of is used here. Hereinafter, antiviral drugs, acid-fast bacillus drugs, and antifungal drugs are collectively referred to as "anti-infectious disease drugs".
Infectious disease therapeutic compositions comprising an immunostimulatory agent and an anti-infective agent include:
(I) When the immunostimulatory agent and the anti-infectious disease drug are contained in the same preparation in a mixed manner (combination drug).
(Ii) An immunostimulatory agent alone or a preparation containing an immunostimulatory agent and an anti-infectious disease drug alone or a preparation containing an anti-infectious disease drug are packaged as separate preparations, and both are combined. When sold as (kit)
(Iii) A pharmaceutical product containing an immunostimulatory agent alone or an immunostimulatory agent and a pharmaceutical product containing an anti-infectious disease drug alone or an anti-infectious disease drug are individual pharmaceutical products, and these are combined into one package. Or (iv) the immunostimulatory agent alone or the preparation containing the immunostimulatory agent and the anti-infectious disease drug alone or the preparation containing the anti-infectious disease drug are packaged as separate preparations. If both exist in the market through separate distribution channels and are used in combination at the time of use.
Infectious disease therapeutic compositions containing antiviral agents are used as viral infectious disease therapeutic compositions. A composition for treating an infectious disease containing an acid-fast bacillus drug is used as a composition for treating an acid-fast bacillus infection. Infectious disease therapeutic compositions containing antifungal agents are used as fungal infectious disease therapeutic compositions.
4.ウイルス感染症の治療方法
 本開示は、上記1.述べた免疫賦活化剤、上記2.述べた組成物、及び上記3.で述べた感染症治療用組成物を使用した感染症の治療方法を含む。免疫賦活化剤、及び感染症治療用組成物の投与方法及び投与対象は、上記1.に記載の説明をここに援用する。
4. Treatment method for viral infections This disclosure describes the above 1. The immunostimulatory agent described above, 2. The composition described and the above 3. Includes methods of treating infectious diseases using the compositions for treating infectious diseases described in. The administration method and administration target of the immunostimulatory agent and the composition for treating infectious diseases are as described in 1. above. The explanation described in is incorporated here.
5.腫瘍治療用組成物
 腫瘍治療用組成物は、上記1.に記載の免疫賦活化剤と、抗腫瘍薬を含む。好ましくは抗腫瘍薬は、腫瘍免疫薬であり、より好ましくは腫瘍免疫薬は、免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、がんワクチンから選択される少なくとも一種である。投与量は、上記1.に記載の説明をここに援用する。
5. Tumor therapeutic composition The tumor therapeutic composition is described in 1. above. Includes the immunostimulatory agent described in 1 and an antitumor agent. Preferably, the antitumor agent is a tumor immunology agent, and more preferably, the tumor immunology agent is at least one selected from an immune checkpoint inhibitor, a CAR-T cell drug, a bispecific molecular drug, and a cancer vaccine. be. The dose is as described in 1. above. The explanation described in is incorporated here.
 免疫賦活化剤と、抗腫瘍薬とを含む腫瘍治療用組成物には下記態様が含まれる:
 (i)免疫賦活化剤と抗腫瘍薬とが同一製剤中に混合された態様で含まれている状態(配合剤)である場合、
 (ii)免疫賦活化剤単体若しくは免疫賦活化剤を含有する製剤と、抗腫瘍薬単体若しくは抗腫瘍薬を含有する製剤とが、おのおの別個の製剤として包装されており、両者が組み合わせ物(キット)として販売される場合、
 (iii)免疫賦活化剤単体若しくは免疫賦活化剤を含有する製剤と、抗腫瘍薬単体若しくは抗腫瘍薬を含有する製剤とがおのおの個別の製剤であり、これらが組み合わせて一つの包装物として販売される場合、又は
 (iv)免疫賦活化剤単体若しくは免疫賦活化剤を含有する製剤と、抗腫瘍薬単体若しくは抗腫瘍薬を含有する製剤とが、おのおの別個の製剤として包装されており、また両者は別個の流通経路で市場に存在し、使用時に組み合わせて使用される場合。
Tumor therapeutic compositions comprising an immunostimulatory agent and an antitumor agent include:
(I) When the immunostimulatory agent and the antitumor drug are contained in the same preparation in a mixed manner (combination drug).
(Ii) An immunostimulatory agent alone or a preparation containing an immunostimulatory agent and an antitumor drug alone or a preparation containing an antitumor drug are packaged as separate preparations, and both are combined (kit). ) When sold as
(Iii) The individual product of the immunostimulatory agent or the preparation containing the immunostimulatory agent and the individual product of the antitumor drug or the preparation containing the antitumor drug are individual preparations, and these are combined and sold as one package. When, or (iv) the immunostimulatory agent alone or the preparation containing the immunostimulatory agent and the antitumor drug alone or the preparation containing the antitumor drug are packaged as separate preparations. When both exist in the market through separate distribution channels and are used in combination at the time of use.
6.腫瘍の治療方法
 本開示は、上述した免疫賦活化剤、及び腫瘍治療用組成物を使用した腫瘍の治療方法を含む。免疫賦活化剤、及び腫瘍治療用組成物の投与方法及び投与対象は、上記1.に記載の説明をここに援用する。
6. Tumor Treatment Methods The present disclosure includes tumor treatment methods using the immunostimulatory agents described above and tumor therapeutic compositions. The administration method and administration target of the immunostimulatory agent and the composition for treating tumors are as described in 1. above. The explanation described in is incorporated here.
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定し解釈されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not construed as being limited to Examples.
I.各実験プロトコール
1.末梢血単核細胞を用いた腫瘍細胞傷害活性の測定と各被験薬の評価
 図1に示すように、in vitroにおいて、末梢血単核細胞群(Peripheral Blood Mononuclear Cells:PBMC)と、腫瘍細胞とを、BiTE(登録商標)等のエンゲージャーを介して接触させて培養した後に、PBMCによって腫瘍細胞がどのくらい傷害されたか(腫瘍細胞傷害活性)を測定することにより、PBMC中のT細胞の抗腫瘍活性を評価した。
I. Each experimental protocol 1. Measurement of tumor cell injury activity using peripheral blood mononuclear cells and evaluation of each test drug As shown in Fig. 1, in vitro, peripheral blood mononuclear cells (PBMC) and tumor cells By measuring how much tumor cells were damaged by PBMC (tumor cell-damaging activity) after contacting and culturing through an engager such as BiTE®, antitumor of T cells in PBMC The activity was evaluated.
(1)U251細胞株を、10%FBSを添加したRPMI1640培地(10%FBS加RPMI1640培地)で培養した後、トリプシンで剥がし、1×105個/mLとなるように10%FBS加RPMI1640培地に懸濁し細胞懸濁液を調製した。前記細胞懸濁液を100μL/ウェルとなるように96ウェルプレートに播種し、5%炭酸ガスが存在する湿式インキュベータ内で、37℃で18時間インキュベーションした。 (1) The U251 cell line was cultured in RPMI1640 medium supplemented with 10% FBS (RPMI1640 medium supplemented with 10% FBS), then peeled off with trypsin, and the RPMI1640 medium supplemented with 10% FBS so as to be 1 × 10 5 cells / mL. A cell suspension was prepared by suspending in. The cell suspension was seeded on a 96-well plate to 100 μL / well and incubated at 37 ° C. for 18 hours in a wet incubator in the presence of 5% carbon dioxide.
(2)健常人から末梢血(ヘパリン採血)を採取し、LymphoprepTM (Alere Technologies AS)を使って、添付のプロトコールにしたがって、PBMCを回収した。具体的には、チューブに入れたLymphoprepTMに採取した末梢血をゆっくりと重層し、50分間400 gで遠心した後、リンパ球層を回収した。回収した溶液に10%FBS加RPMI1640培地を加えて遠心した後、上清を除去した。細胞のペレットを10%FBS加RPMI1640培地で懸濁して1×106/mLに調整した。前記PBMCの回収は、後述する(3)の工程の直前に行った。 (2) Peripheral blood (heparin blood sampling) was collected from healthy subjects , and PBMC was recovered using Lymphoprep TM (Alere Technologies AS) according to the attached protocol. Specifically, the peripheral blood collected in Lymphoprep TM placed in a tube was slowly layered, centrifuged at 400 g for 50 minutes, and then the lymphocyte layer was collected. RPMI1640 medium containing 10% FBS was added to the recovered solution and centrifuged, and then the supernatant was removed. Cell pellets were suspended in RPMI 1640 medium supplemented with 10% FBS to adjust to 1 × 10 6 / mL. The recovery of PBMC was performed immediately before the step (3) described later.
(3)1分子内にEphA2に対する抗原結合部位とCD3に対する抗原結合部位を有するEphA2-CD3 BiTE(登録商標)を10%FBS加RPMI1640培地で400 ng/mLとなるように調製した(「BiTE溶液」という)。また、各被験薬は、前記BiTE溶液で10μMとなるように調整した。(1)でインキュベーションが終わった96ウェルプレートに、1ウェルあたり、PBMC細胞懸濁液50μLと、各被験薬を含むBiTE溶液50μLとを添加した。BiTE終濃度は100ng/mL、各被験薬の終濃度は2.5μMとなるようにした。コントロールとして、(1)でインキュベーションが終わった96ウェルプレート内にPBMC細胞懸濁液50μLと、被験薬を含まないBiTE溶液50μLとを添加するウェルと、(1)でインキュベーションが終わった96ウェルプレート内にPBMC細胞懸濁液50μLと、10%FBS加RPMI1640培地50μLとを添加するウェルを準備した。1ウェルあたりの10%FBS加RPMI培地の量は、最終的に総量が200μLとなるようにした。PBMCとEphA2-CD3 BiTE(登録商標)とを添加した後、又はPBMCとEphA2-CD3 BiTE(登録商標)と被験薬とを添加した後の96ウェルプレートを、37℃で48時間インキュベーションした。 (3) EphA2-CD3 BiTE®, which has an antigen-binding site for EphA2 and an antigen-binding site for CD3 in one molecule, was prepared at 400 ng / mL in RPMI1640 medium supplemented with 10% FBS (“BiTE solution”). "). In addition, each test drug was adjusted to 10 μM in the BiTE solution. To the 96-well plate after incubation in (1), 50 μL of PBMC cell suspension and 50 μL of BiTE solution containing each test drug were added per well. The final concentration of BiTE was 100 ng / mL, and the final concentration of each test drug was 2.5 μM. As controls, 50 μL of PBMC cell suspension and 50 μL of BiTE solution containing no test drug are added into a 96-well plate that has been incubated in (1), and a 96-well plate that has been incubated in (1). A well was prepared to which 50 μL of PBMC cell suspension and 50 μL of RPMI1640 medium supplemented with 10% FBS were added. The amount of RPMI medium with 10% FBS per well was finally adjusted to a total volume of 200 μL. A 96-well plate after the addition of PBMC and EphA2-CD3 BiTE® or after the addition of PBMC and EphA2-CD3 BiTE® and the study drug was incubated at 37 ° C. for 48 hours.
(4)インキュベーション終了後、各ウェルの培地をPBMCとともに回収した。さらに各ウェルに10%FBS加RPMI培地を200μL加えウェル内を洗浄し、洗浄に使用した培地を回収した。この操作を3回繰り返しウェル内を3回洗浄した。この時、最初に回収した培地と洗浄の際に回収した培地はウェルごとに1つのチューブにまとめた。洗浄後培地とPBMCが除去された各ウェルに、100μLの10%FBS加RPMI培地と20μLのCellTiter 96(登録商標) AQueous One Solution Reagent (MTS reagent:プロメガ)を添加した。その後、96ウェルマイクロプレートを5%炭酸ガスが存在する湿式インキュベータ内で、30分~1時間程度、37℃でインキュベーションした。 (4) After completion of the incubation, the medium of each well was collected together with PBMC. Further, 200 μL of RPMI medium containing 10% FBS was added to each well to wash the inside of the well, and the medium used for washing was collected. This operation was repeated 3 times and the inside of the well was washed 3 times. At this time, the medium collected first and the medium collected at the time of washing were put together in one tube for each well. After washing, 100 μL of 10% FBS-added RPMI medium and 20 μL of CellTiter 96 (registered trademark) AQueous One Solution Reagent (MTS reagent) were added to each well from which the medium and PBMC had been removed. Then, the 96-well microplate was incubated at 37 ° C. for about 30 minutes to 1 hour in a wet incubator in which 5% carbon dioxide gas was present.
(5)(4)でインキュベーションが終了した96ウェルマイクロプレートについて、マイクロプレートリーダを使って各ウェルの492 nmにおける吸光度を測定した。続いて、下式にしたがって、腫瘍細胞傷害活性を算出した。 (5) For the 96-well microplates that had been incubated in (4), the absorbance of each well at 492 nm was measured using a microplate reader. Subsequently, the tumor cytotoxic activity was calculated according to the following formula.
  U251細胞株とPBMCのみを含むウェルの吸光度=A
  U251細胞株とPBMCとEphA2-CD3 BiTE(登録商標)とを含むウェル、又はU251細胞株とPBMCとEphA2-CD3 BiTE(登録商標)と被験薬とを含むウェルの吸光度=B  腫瘍細胞傷害活性 (%)=[(A-B)/A]×100 
Absorbance of wells containing only U251 cell line and PBMC = A
Absorbance of wells containing U251 cell line, PBMC and EphA2-CD3 BiTE®, or well containing U251 cell line, PBMC, EphA2-CD3 BiTE® and test drug = B tumor cytotoxic activity ( %) = [(AB) / A] x 100
2. Granzyme B染色
 上記1.(4)において回収した培地を400 gで5分間遠心し、上清を除去しPBMCのペレットを残した。2%FBSおよび10mM HEPES加HBSS培地(以下、「HBSS+2%FBS+10mM HEPES」培地とする)でそれぞれの抗体(CD3、CD4、CD8、CD45RA)を100倍希釈し、これらの抗体希釈液を上清が除去されたペレットへ30μL/tubeずつ加えて4℃で30分間インキュベーションした。HBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400 gで5分間遠心した後、上清を除去しペレットを残した。Fix bufferを100μL/tubeずつ加えて残ったPBMCを懸濁した後、4℃で30分間インキュベーションした。
2. Granzyme B staining Above 1. The medium collected in (4) was centrifuged at 400 g for 5 minutes, the supernatant was removed, and PBMC pellets were left. Each antibody (CD3, CD4, CD8, CD45RA) is diluted 100-fold with 2% FBS and 10 mM HEPES-added HBSS medium (hereinafter referred to as "HBSS + 2% FBS + 10 mM HEPES" medium), and these antibody diluents are used. Was added to the pellet from which the supernatant had been removed at 30 μL / tube each, and incubated at 4 ° C. for 30 minutes. HBSS + 2% FBS + 10 mM HEPES medium was added at 200 μL / tube each and centrifuged at 400 g for 5 minutes, and then the supernatant was removed to leave pellets. After adding 100 μL / tube of Fix buffer to suspend the remaining PBMC, it was incubated at 4 ° C. for 30 minutes.
 インキュベーションが終わったチューブを400 gで5分間遠心して上清を除去し、PBMCのペレットを残した。Wash bufferを200μL/tubeずつ加えてペレットを懸濁した後、400 gで5分間遠心して上清を除去し、PBMCのペレットを残した。Wash bufferで抗Granzyme B抗体を100倍希釈し、この抗体希釈液30μL/tubeで残ったPBMCを懸濁して4℃で30分間インキュベーションした。Wash bufferを200μL/tubeずつ加えて、400 gで5分間遠心し上清を除去し、PBMCのペレットを残した。HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。 The tube after incubation was centrifuged at 400 g for 5 minutes to remove the supernatant, leaving PBMC pellets. After adding 200 μL / tube of Wash buffer to suspend the pellets, the pellets were centrifuged at 400 g for 5 minutes to remove the supernatant, leaving the pellets of PBMC. The anti-Granzyme B antibody was diluted 100-fold with Wash buffer, and the remaining PBMC was suspended in 30 μL / tube of this antibody diluent and incubated at 4 ° C. for 30 minutes. 200 μL / tube of Wash buffer was added, and the mixture was centrifuged at 400 g for 5 minutes to remove the supernatant, leaving pellets of PBMC. The remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
3.CytoTellアッセイ
 上記1.(1)の方法にしたがって、健常人末梢血からPBMCを回収した。回収したPBMCのペレットに、HBSS+2%FBS+10mM HEPES培地にCytoTell redを混合した溶液を加えて、37℃で30分間インキュベーションした。インキュベーション終了後、400 gで5分間遠心し、上清を除去しPBMCのペレットを残した。10%FBS加RPMI培地を加えて残ったPBMCを懸濁し、1×106/mLのPBMC細胞懸濁液を調整した。
3. 3. CytoTell Assay Above 1. PBMC was collected from the peripheral blood of a healthy person according to the method (1). A solution of CytoTell red mixed with HBSS + 2% FBS + 10 mM HEPES medium was added to the recovered PBMC pellets, and the mixture was incubated at 37 ° C. for 30 minutes. After the incubation was completed, the mixture was centrifuged at 400 g for 5 minutes, the supernatant was removed, and pellets of PBMC were left. RPMI medium supplemented with 10% FBS was added to suspend the remaining PBMC, and a 1 × 10 6 / mL PBMC cell suspension was prepared.
 上記1.(3)と同様にU251細胞株とPBMCとBiTE、又はU251細胞株とPBMCとBiTEと被験薬とを接触させ、37℃で96時間培養した。 Above 1. In the same manner as in (3), the U251 cell line, PBMC and BiTE, or the U251 cell line, PBMC, BiTE and the test drug were brought into contact with each other and cultured at 37 ° C. for 96 hours.
 培養終了後、培養上清を回収し、さらに10%FBS加RPMI1640培地で3回洗浄した、その培地も回収した。この時、最初に回収した培地と洗浄の際に回収した培地はウェルごとに1つのチューブにまとめた。 After the culture was completed, the culture supernatant was collected, and the medium was further washed with RPMI1640 medium containing 10% FBS three times, and the medium was also collected. At this time, the medium collected first and the medium collected at the time of washing were put together in one tube for each well.
 回収した培地を400 gで5分間遠心し上清を除去し、PBMCのペレットを残した。HBSS+2%FBS+10mM HEPES培地でそれぞれの抗体(CD3、CD4、CD8、CD45RA)を100倍希釈し、これらの抗体液をペレットに30μL/tubeで添加し残ったPBMCを懸濁し、4℃で30分間インキュベーションした。 The collected medium was centrifuged at 400 g for 5 minutes to remove the supernatant, leaving PBMC pellets. Each antibody (CD3, CD4, CD8, CD45RA) was diluted 100-fold in HBSS + 2% FBS + 10 mM HEPES medium, these antibody solutions were added to pellets at 30 μL / tube, and the remaining PBMC was suspended at 4 ° C. Incubated for 30 minutes.
 インキュベーションが終わったチューブに、HBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400 gで5分間遠心した後、上清を除去し、PBMCのペレットを残した。HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。 HBSS + 2% FBS + 10 mM HEPES medium was added to each tube after incubation at 200 μL / tube and centrifuged at 400 g for 5 minutes, the supernatant was removed, and PBMC pellets were left. The remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
4.CMV特異的CTL誘導(Mixed CMV peptide/Lymphocytes culture)
 HLAタイプが24:02の健常人のPBMCに10%FBS加RPMI培地で10μg/mLに調整したCMV peptideを加えて96 well plateで3日間培養した。10μg/mL CMV peptide + 20U/mL IL-2±2.5μM デメチルクロルテトラサイクリン(DMC)を含む10%FBS加RPMI培地に培地を交換し、さらに4日間培養した(7日間培養)。PBMCを含む各wellの培地を24 well plateに移してscale upした後、10μg/mL peptide+20U/mL IL-2±2.5μM DMCを含む10%FBS加RPMI培地でさらに3日間培養した。10μg/mL peptide+20U/mL IL-2±2.5μM DMCを含む10%FBS加RPMI培地に培地を交換し、さらに4日間培養した(14日間培養)。
4. CMV-specific CTL induction (Mixed CMV peptide / Lymphocytes culture)
CMV peptide adjusted to 10 μg / mL in RPMI medium with 10% FBS was added to PBMC of healthy subjects with HLA type of 24:02, and cultured on a 96-well plate for 3 days. The medium was replaced with RPMI medium containing 10 μg / mL CMV peptide + 20 U / mL IL-2 ± 2.5 μM demethylchlortetracycline (DMC) and cultured for another 4 days (7-day culture). The medium of each well containing PBMC was transferred to a 24-well plate and scaled up, and then cultured in RPMI medium containing 10 μg / mL peptide + 20 U / mL IL-2 ± 2.5 μM DMC for another 3 days. The medium was replaced with RPMI medium containing 10 μg / mL peptide + 20 U / mL IL-2 ± 2.5 μM DMC and cultured for another 4 days (14-day culture).
 培養終了後、400 gで5分間遠心して上清を除去してPBMCのペレットを残し、HBSS+2%FBS+10mM HEPES培地でそれぞれの抗体(CD3、CD4、CD8)を100倍希釈 及びCMV Tetramerを10倍希釈)してPBMCのペレットペレットに30μL/tubeで加えPBMCを懸濁し、4℃で30分間インキュベーションした。HBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400 gで5分間遠心し、上清を除去しPBMCのペレットを残した。 After completion of the culture, centrifuge at 400 g for 5 minutes to remove the supernatant to leave PBMC pellets, and dilute each antibody (CD3, CD4, CD8) 100-fold in HBSS + 2% FBS + 10 mM HEPES medium and CMV Tetramer. Was diluted 10-fold) and added to PBMC pellets at 30 μL / tube to suspend PBMC and incubated at 4 ° C for 30 minutes. HBSS + 2% FBS + 10 mM HEPES medium was added at a rate of 200 μL / tube and centrifuged at 400 g for 5 minutes, and the supernatant was removed to leave PBMC pellets.
 HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。 The remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
5.肺癌組織内T細胞の採取
 肺癌組織内のT細胞の腫瘍細胞傷害活性は、以下の方法にしたがって肺癌組織から細胞を回収した。腫瘍細胞傷害活性は、その細胞群の活性として測定した。
5. Collection of T cells in lung cancer tissue For the tumor cytotoxic activity of T cells in lung cancer tissue, cells were recovered from lung cancer tissue according to the following method. Tumor cytotoxic activity was measured as the activity of the cell population.
 癌組織を6 cm Dishに移して細断した後、組織攪拌溶液(HBSS + 2% FBS + 10mM HEPESにTumor Dissociation Kit (Miltenyi Biotec)を添加)に入れてgentleMACSTM Dissociator (Miltenyi Biotec)で攪拌後、37℃で維持したインキュベータ内で30分回転させながらインキュベーションした。その後、細胞を含む攪拌液を70 μmメッシュを通して、組織残渣を取り除き、濾液を600xg、10分遠心して沈殿物を回収した。細胞を含む沈殿物にBD Pharm lyse (BD Biosciences)を添加して2分間静置した。静置後の細胞を含む溶解液にHBSS Bufferを加えて600xg、10分遠心し、再度沈殿物を回収した。再回収された沈殿物に30% パーコール液を加えて12000xg、30秒遠心し、再度沈殿物を回収した。再回収された沈殿物をHBSS Bufferで洗浄し、12000xg、30秒遠心して組織内の細胞を回収した。回収された細胞の腫瘍細胞傷害活性は、上記I.1.(1)~(5)と同様の方法で測定した。BiTEとしてCD3に結合するものを使用していることから、この肺癌組織内から回収された細胞の腫瘍細胞傷害活性は、肺癌組織内T細胞の腫瘍細胞傷害活性であると考えられる。 After transferring the cancer tissue to a 6 cm Dish and shredding it, put it in a tissue stirring solution (HBSS + 2% FBS + 10 mM HEPES with Tumor Dissociation Kit (Miltenyi Biotec) added) and stir with gentleMACS TM Dissociator (Miltenyi Biotec). Incubated with rotation for 30 minutes in an incubator maintained at 37 ° C. Then, the tissue residue was removed by passing a stirring solution containing cells through a 70 μm mesh, and the filtrate was centrifuged at 600 xg for 10 minutes to collect the precipitate. BD Pharm lyse (BD Biosciences) was added to the cell-containing precipitate and allowed to stand for 2 minutes. HBSS Buffer was added to the lysate containing the cells after standing, and the mixture was centrifuged at 600 xg for 10 minutes, and the precipitate was collected again. A 30% Percoll solution was added to the recovered precipitate, and the mixture was centrifuged at 12000 xg for 30 seconds, and the precipitate was recovered again. The recovered precipitate was washed with HBSS Buffer and centrifuged at 12000 xg for 30 seconds to collect cells in the tissue. The tumor cytotoxic activity of the recovered cells is described in the above-mentioned I. 1. 1. The measurement was carried out in the same manner as in (1) to (5). Since a BiTE that binds to CD3 is used, the tumor cytotoxic activity of the cells recovered from the lung cancer tissue is considered to be the tumor cytotoxic activity of T cells in the lung cancer tissue.
6.IFNγ産生アッセイ
 上記5.において上記1.(4)に準じて回収した全ての培地内の細胞について、IFNγ産生能を、IFN-γSecretion Assayキット(Miltenyi Biotec)を用いて測定した。
6. IFNγ production assay Above 5. In the above 1. The IFNγ-producing ability of all the cells in the medium collected according to (4) was measured using the IFN-γ Secretation Assay Kit (Miltenyi Biotec).
 上記1.(4)において回収した培地を400 gで5分間遠心し、上清を除去した。残ったPBMCのペレットに、10%ヒト血清加AIM培地で100倍希釈したIFNγ Catch Reagentを100μL/tubeずつ添加し、PBMCを懸濁した後4℃で10分間インキュベーションした。 Above 1. The medium collected in (4) was centrifuged at 400 g for 5 minutes to remove the supernatant. To the remaining PBMC pellets, IFNγ Catch Reagent diluted 100-fold with 10% human serum-added AIM medium was added at 100 μL / tube each, the PBMC was suspended, and then incubated at 4 ° C. for 10 minutes.
 インキュベーションが終わったチューブに、37℃に温めた10%ヒト血清加AIM培地を1mL/tubeずつ分注し、チューブを攪拌しながら37℃下で45分間インキュベーションした。インキュベーション終了後、再度氷上で冷却した後、400×g、5分遠心して上清を除去しPBMCのペレットを残した。 1 mL / tube of 10% human serum-added AIM medium warmed to 37 ° C was dispensed into the tube after incubation, and the tube was incubated at 37 ° C for 45 minutes while stirring. After completion of the incubation, the cells were cooled again on ice and then centrifuged at 400 × g for 5 minutes to remove the supernatant, leaving pellets of PBMC.
 HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、各サンプルを2つに分けた(片方はisotype染色用)後、再度400 gで5分間遠心して上清を除去しペレットを残した。 Suspend the remaining PBMC in HBSS + 2% FBS + 10 mM HEPES medium, divide each sample into two (one for isotype staining), and centrifuge again at 400 g for 5 minutes to remove the supernatant and leave pellets. rice field.
 HBSS+2%FBS+10mM HEPES培地でそれぞれの抗体(CD3、CD4、CD8、CD45RA)を100倍希釈及び抗i-IFNγ抗体を10倍希釈し、これらの抗体希釈液を残ったPBMCへ30μL/tubeずつ加えてPBMCを懸濁し、4℃で30分間インキュベーションした。 Each antibody (CD3, CD4, CD8, CD45RA) was diluted 100-fold and anti-i-IFNγ antibody was diluted 10-fold in HBSS + 2% FBS + 10 mM HEPES medium, and 30 μL / L of these antibody dilutions was added to the remaining PBMC. PBMC was suspended by adding tubes at a time and incubated at 4 ° C. for 30 minutes.
 インキュベーションが終わったチューブにHBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400gで5分間遠心した後、上清を除去し、再度HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。 Add 200 μL / tube of HBSS + 2% FBS + 10 mM HEPES medium to the tube after incubation, centrifuge at 400 g for 5 minutes, remove the supernatant, and remove the supernatant again, and PBMC remaining in HBSS + 2% FBS + 10 mM HEPES medium. Was suspended and the suspension was subjected to FACS analysis.
7.in vivoにおける腫瘍細胞増殖抑制作用の検証
 接種の5日前にCT26WT細胞を解凍し、DMEM+10%FBS+1% penicillin/streptomycin培地で培養した。腫瘍細胞接種2日前にCT26WT細胞をトリプシン処理し継代した。
7. Verification of tumor cell proliferation inhibitory effect in vivo CT26WT cells were thawed 5 days before inoculation and cultured in DMEM + 10% FBS + 1% penicillin / streptomycin medium. CT26WT cells were trypsinized and passaged 2 days prior to tumor cell inoculation.
 BALB/cマウスの右背側の毛をトリミングした後、CT26WT細胞を2×105cells/匹ずつ皮内接種した。腫瘍細胞接種後6日目にマウスの体重及び腫瘍径を測定し、それらが均一になるように被験薬投与群とVehicle群(各n=9)とに群分けした。被験薬投与群には、被験薬を生理食塩水で溶解し3.0 mg/mLに調整し、200μL/匹ずつ30mg/kg/dayとなるように腹腔内へ投与した。Vehicle群は生理食塩水のみを200μL/匹ずつ腹腔内へ投与した。被験薬又は生理食塩水の投与は10日間連日行った(図8A)。 腫瘍細胞投与後10日、13日、16日に腫瘍径を測定した。 After trimming the hair on the right dorsal side of BALB / c mice, CT26WT cells were intradermally inoculated at 2 × 10 5 cells / animal. On the 6th day after inoculation of tumor cells, the body weight and tumor diameter of the mice were measured, and the mice were divided into a test drug-administered group and a Vehicle group (n = 9 each) so as to be uniform. In the test drug administration group, the test drug was dissolved in physiological saline to adjust the dose to 3.0 mg / mL, and 200 μL / animal was intraperitoneally administered at 30 mg / kg / day. In the Vehicle group, 200 μL / animal of saline alone was intraperitoneally administered. Administration of the test drug or saline was performed daily for 10 days (Fig. 8A). Tumor diameter was measured 10 days, 13 days, and 16 days after administration of tumor cells.
II.実施例1:テトラサイクリン系化合物のT細胞抗腫瘍活性の賦活化作用の検証
 上記I.1.で述べた方法にしたがって、被験薬として、デメチルクロルテトラサイクリン(DMC)、メクロサイクリン(MC)、テトラサイクリン(TC)、及びクロルテトラサイクリン(CTC)、ミノサイクリン(MINO)を用い、T細胞抗腫瘍活性の賦活化作用を検証した。nはそれぞれ3(独立した健常人)として、BiTE単独添加群とBiTEと被験薬併用群の差をt検定により算出した。その結果を図2に示す。
II. Example 1: Verification of the activating effect of the tetracycline compound on T cell antitumor activity. 1. 1. T cell antitumor activity using demethylchlortetracycline (DMC), meclocycline (MC), tetracycline (TC), chlortetracycline (CTC), minocycline (MINO) as test agents according to the method described in The activation effect of The difference between the BiTE single addition group and the BiTE and the test drug combination group was calculated by t-test, where n was 3 (independent healthy person). The result is shown in FIG.
 BiTEと被験薬併用群では、DMC、MC、TC、CTC及びMINO全てにおいて、BiTEを単独で添加した場合と比較してT細胞の抗腫瘍活性が増強していた(DMC、MC及びCTC:p<0.01、TC及びMINO:p<0.05)。このことから、テトラサイクリン系化合物には、T細胞抗腫瘍活性を賦活化する作用があることが明らかとなった。 In the BiTE and test drug combination group, the antitumor activity of T cells was enhanced in all of DMC, MC, TC, CTC and MINO compared with the case of adding BiTE alone (DMC, MC and CTC: p). <0.01, TC and MINO: p <0.05). From this, it was clarified that the tetracycline compound has an action of activating T cell antitumor activity.
III.実施例2:テトラサイクリン系化合物によるCD8T細胞の腫瘍細胞傷害活性の増強作用の検証
 上記I.1.で述べた方法にしたがって、被験薬として、デメクロサイクリン(DMC:終濃度2.5μM)を用い、3名の健常人から採取したそれぞれのPBMC中のCD8陽性T細胞(CD8+T細胞)の腫瘍細胞傷害活性に対するテトラサイクリン系化合物の効果を検証した。CD8+T細胞はCD8+T cell Isolation Kit (Miltenyi Biotec) でネガティブセレクションした。図3に示すように、BiTEを単独で添加したCD8T細胞と比較してBiTEと被験薬とを併用添加したCD8T細胞では、腫瘍細胞傷害活性が高くなっていた(p=0.05)。このことからテトラサイクリン系化合物には、CD8T細胞の腫瘍細胞傷害活性を増強する作用があることが示唆された。
III. Example 2: Verification of the effect of a tetracycline compound on enhancing the tumor cytotoxic activity of CD8 + T cells. 1. 1. Tumors of CD8-positive T cells (CD8 + T cells) in each PBMC collected from 3 healthy subjects using demeclocycline (DMC: final concentration 2.5 μM) as the test drug according to the method described in The effect of tetracycline compounds on cytotoxic activity was examined. CD8 + T cells were negatively selected with the CD8 + T cell Isolation Kit (Miltenyi Biotec). As shown in Fig. 3, the tumor cytotoxic activity was higher in CD8 + T cells supplemented with BiTE and the test drug than in CD8 + T cells supplemented with BiTE alone (p = 0.05). .. This suggests that tetracycline compounds have the effect of enhancing the tumor cytotoxic activity of CD8 + T cells.
IV.実施例3:テトラサイクリン系化合物によるグランザイムB発現CD8T細胞の存在比率の増加の検証
 上記I.2.で述べた方法にしたがって、被験薬として、デメチルクロルテトラサイクリン(DMC:終濃度2.5μM)を用い、4名の健常人から採取したそれぞれのPBMC中のグランザイムB発現CD8T細胞の存在比率に対するテトラサイクリン系化合物の効果を検証した。図4に示すように、BiTEを単独で添加したPBMCと比較してBiTEと被験薬との両方を添加したPBMCでは、グランザイムB発現CD8T細胞の存在比率が高くなっていた(p=0.01)。このことからテトラサイクリン系化合物は、グランザイムB発現CD8T細胞を増やすことが示唆された。
IV. Example 3: Verification of increase in the abundance ratio of granzyme B-expressing CD8 + T cells by tetracycline compounds I. 2. Using demethylchlortetracycline (DMC: final concentration 2.5 μM) as a test drug according to the method described in the above section, the abundance ratio of granzyme B-expressing CD8 + T cells in each PBMC collected from 4 healthy subjects. The effects of tetracycline compounds were verified. As shown in FIG. 4, the abundance ratio of granzyme B-expressing CD8 + T cells was higher in PBMC supplemented with both BiTE and the test drug than in PBMC supplemented with BiTE alone (p = 0.01). ). This suggests that tetracycline compounds increase granzyme B-expressing CD8 + T cells.
V.実施例4: テトラサイクリン系化合物によるCD8T細胞の増殖能亢進の検証
 上記I.3.で述べた方法にしたがって、被験薬として、デメチルクロルテトラサイクリン(DMC:終濃度2.5μM)を用い、5名の健常人から採取したそれぞれのPBMC中のCD8T細胞の増殖能に対するに対するテトラサイクリン系化合物の効果を検証した。図5に示すように、BiTEを単独で添加したPBMCと比較してBiTEと被験薬とを併用添加したPBMCでは、CD8T細胞の増殖能が高くなっていた(p=0.007)。このことからテトラサイクリン系化合物は、腫瘍細胞傷害活性を示すCD8T細胞の増殖能を高めることが示唆された。
V. Example 4: Verification of enhancement of CD8 + T cell proliferation by tetracycline compounds I. 3. 3. Tetracycline system for the proliferative capacity of CD8 + T cells in each PBMC collected from 5 healthy subjects using demethylchlortetracycline (DMC: final concentration 2.5 μM) as a test drug according to the method described in The effect of the compound was verified. As shown in FIG. 5, the proliferative capacity of CD8 + T cells was higher in PBMC to which BiTE and the test drug were added in combination than in PBMC to which BiTE was added alone (p = 0.007). This suggests that tetracycline compounds enhance the proliferative capacity of CD8 + T cells, which exhibit tumor cytotoxic activity.
VI.実施例5:テトラサイクリン系化合物によるCMV特異的細胞傷害性T細胞の誘導亢進効果の検証
 上記I.4.で述べた方法にしたがって、PBMCをCMV抗原で刺激してCMV特異的細胞傷害性T細胞を誘導する際の、テトラサイクリン系化合物の効果を検証した。被験薬として、デメチルクロルテトラサイクリン(DMC:終濃度2.5μM)を用いた。PMBCは、1名の健常人から採取した。CMV特異的細胞傷害性T細胞はFACS解析で同定した。図6Aに示すように、CMV特異的細胞傷害性T細胞を誘導抗原で刺激後7日目ではまだCMV特異的細胞傷害性T細胞(図6A中の区画P7に分画される)の誘導は認められないが、14日目では、CMV特異的細胞傷害性T細胞の誘導が認められた。DMCを添加しなかった群(DMC-)とDMCを添加した群(DMC+)を比較すると、DMC+では、DMC-と比較して有意にCMV特異的細胞傷害性T細胞(CMV Tetramer+ CD8+T cells)の存在比率が高くなった(図6B;p<0.05)。このことからテトラサイクリン系化合物は、抗原特異的T細胞の増殖能を高めることが示唆された。また、腫瘍抗原だけでなく、ウイルス抗原を認識するT細胞の増殖も誘導できることが示された。
VI. Example 5: Verification of the effect of tetracycline compounds on enhancing the induction of CMV-specific cytotoxic T cells. 4. The effect of tetracycline compounds on inducing CMV-specific cytotoxic T cells by stimulating PBMC with CMV antigen was examined according to the method described in. Demethylchlortetracycline (DMC: final concentration 2.5 μM) was used as the test drug. PMBC was collected from one healthy person. CMV-specific cytotoxic T cells were identified by FACS analysis. As shown in FIG. 6A, the induction of CMV-specific cytotoxic T cells (fractionated into compartment P7 in FIG. 6A) is still 7 days after stimulation of CMV-specific cytotoxic T cells with an inducing antigen. Although not observed, induction of CMV-specific cytotoxic T cells was observed on day 14. Comparing the group without DMC (DMC-) and the group with DMC (DMC +), DMC + was significantly more CMV-specific cytotoxic T cells (CMV Tetramer + CD8 + T cells) than DMC-. ) Increased (Fig. 6B; p <0.05). This suggests that tetracycline compounds enhance the proliferative capacity of antigen-specific T cells. It was also shown that it can induce the proliferation of T cells that recognize viral antigens as well as tumor antigens.
VII.実施例6:テトラサイクリン系化合物による肺癌組織内T細胞の腫瘍細胞傷害活性の増強効果の検証
 上記I.5.で述べた方法にしたがって、肺癌患者の腫瘍組織内のT細胞を採取し、その細胞を用いて、腫瘍細胞傷害活性を測定し、テトラサイクリン系化合物の効果を検証した。また、上記I.5.で述べた方法にしたがって、肺癌患者の腫瘍組織内のT細胞を採取し、上記I.6.で述べた方法にしたがって、IFNγ産生CD8+T細胞の存在比率を測定し、テトラサイクリン系化合物の効果を検証した。
VII. Example 6: Verification of the effect of the tetracycline compound on enhancing the tumor cytotoxic activity of T cells in lung cancer tissue. 5. T cells in the tumor tissue of a lung cancer patient were collected according to the method described in the above, and the tumor cell-damaging activity was measured using the cells to verify the effect of the tetracycline compound. In addition, the above I. 5. T cells in the tumor tissue of a lung cancer patient were collected according to the method described in the above I.I. 6. The abundance ratio of IFNγ-producing CD8 + T cells was measured according to the method described in the above, and the effect of the tetracycline compound was verified.
 被験薬として、デメチルクロルテトラサイクリン(DMC)を用い、nは、細胞傷害活性測定は5(独立した患者)、IFNγ産生CD8+T細胞の存在比率測定は3(独立した患者)とした。 Demethylchlortetracycline (DMC) was used as a test drug, and the cytotoxic activity measurement of n was 5 (independent patients), and the abundance ratio measurement of IFNγ-producing CD8 + T cells was 3 (independent patients).
 BiTEと被験薬併用群では、BiTEを単独で添加した場合と比較してT細胞の抗腫瘍活性が増強していた(図7A)。 In the BiTE and test drug combination group, the antitumor activity of T cells was enhanced as compared with the case where BiTE was added alone (Fig. 7A).
 BiTEと被験薬併用群では、BiTEを単独で添加した場合と比較してIFNγ産生CD8+T細胞の存在比率が高くなった(図7B、C)。このことからテトラサイクリン系化合物は、IFNγ産生CD8+T細胞を増やすことが示唆された。 In the BiTE and test drug combination group, the abundance ratio of IFNγ-producing CD8 + T cells was higher than when BiTE was added alone (Fig. 7B, C). This suggests that tetracycline compounds increase IFNγ-producing CD8 + T cells.
VIII.実施例7:in vivoにおけるテトラサイクリン系化合物の効果
 上記7.で述べた方法にしたがって、テトラサイクリン系化合物のin vivoにおける腫瘍増殖の抑制効果を検証した。Vehicle群と比較して、被検薬投与群では、腫瘍径の増加が抑制される傾向にあった(図8B)。
VIII. Example 7: Effect of tetracycline compound in vivo 7. The inhibitory effect of tetracycline compounds on tumor growth in vivo was verified according to the method described in. Compared with the Vehicle group, the test drug-administered group tended to suppress the increase in tumor diameter (Fig. 8B).
 以上の結果から、テトラサイクリン系化合物には、T細胞の抗腫瘍作用を賦活化する効果があることが示された。 From the above results, it was shown that tetracycline compounds have the effect of activating the antitumor effect of T cells.
IX.実施例8:in vivoにおけるテトラサイクリン系化合物と抗PD-L1抗体の併用効果の検証
 in vivoにおいてテトラサイクリン系化合物が免疫チェックポイント阻害薬の抗腫瘍効果を増強できることを検証した。
IX. Example 8: Verification of the combined effect of the tetracycline compound and the anti-PD-L1 antibody in vivo It was verified that the tetracycline compound can enhance the antitumor effect of the immune checkpoint inhibitor in vivo.
1.方法
 接種する6日前にCT26WT細胞を解凍し、10%FBS及び1% penicillin/streptomycin を添加したDMEM培地で培養した。腫瘍に投与2日前にCT26WT細胞をトリプシン処理して継代した。
 Balb/c 6週齢 マウスの右背側の毛をトリミングした後、3×105 cells/50μL/匹ずつトリミングした箇所の皮内に接種した(Day 0)。Day 6にマウスの体重及び腫瘍径を測定し、それらが均一になるように9匹ずつ5群に分けた。抗PD-L1抗体として、BioXCell社のInVivoMAb anti-mouse PD-L1を使用した。
1. 1. Method CT26WT cells were thawed 6 days before inoculation and cultured in DMEM medium supplemented with 10% FBS and 1% penicillin / streptomycin. Two days prior to administration to the tumor, CT26WT cells were trypsinized and passaged.
The hair on the right dorsal side of Balb / c 6-week-old mice was trimmed and then inoculated into the skin at the trimmed site of 3 × 10 5 cells / 50 μL / animal (Day 0). On Day 6, the body weight and tumor diameter of the mice were measured, and 9 mice were divided into 5 groups so that they were uniform. BioXCell's InVivoMAb anti-mouse PD-L1 was used as the anti-PD-L1 antibody.
 各群の内訳は、以下の通りである。
 コントロールIgGと水を投与する群(コントロールIgG+H2O群)
 抗PD-L1抗体と水を投与する群(aPD-L1+H2O群)
 抗PD-L1抗体とDMC(300 mg/kg)を投与する群(aPD-L1+DMC(300 mg/kg)群) 抗PD-L1抗体とDMC(100 mg/kg)を投与する群(aPD-L1+DMC(100 mg/kg)群) 抗PD-L1抗体とDMC(30 mg/kg)を投与する群(aPD-L1+DMC(30 mg/kg)群)
The breakdown of each group is as follows.
Group to administer control IgG and water (control IgG + H2O group)
Group to administer anti-PD-L1 antibody and water (aPD-L1 + H2O group)
Group receiving anti-PD-L1 antibody and DMC (300 mg / kg) (aPD-L1 + DMC (300 mg / kg) group) Group receiving anti-PD-L1 antibody and DMC (100 mg / kg) (aPD-L1 + DMC) (100 mg / kg) group) Anti-PD-L1 antibody and DMC (30 mg / kg) administration group (aPD-L1 + DMC (30 mg / kg) group)
 はじめにDay 7よりDMCの投与を開始した。DMCは生理食塩水で溶解した後、200μl/匹ずつ経口ゾンデを用いて経口投与した。DMC非投与群は蒸留水を200μL/匹ずつ経口投与した。DMCの投与は、Day 7~Day 12まで1日1回連日行った。 Introduction DMC administration was started on Day 7. After dissolving DMC in physiological saline, 200 μl / animal was orally administered using an oral sonde. In the DMC non-administered group, 200 μL / animal of distilled water was orally administered. DMC was administered once daily from Day 7 to Day 12.
 次にDay 10に、抗PD-L1抗体、又はコントロールIgGを200μg/200μL/匹で腹腔内へ投与した。
 Day 10、Day 13に腫瘍径を測定した。腫瘍体積は、(短径2×長径)/2の式により算出した。
Next, on Day 10, anti-PD-L1 antibody or control IgG was intraperitoneally administered at 200 μg / 200 μL / animal.
Tumor diameter was measured on Day 10 and Day 13. The tumor volume was calculated by the formula (minor axis 2 x major axis) / 2.
2.結果
 図9に測定結果を示す。コントロールIgG+H2O群では、DMC投与開始時に40 mm3程度であった腫瘍体積が160 mm3程度まで増加した。これに対してaPD-L1+H2O群の腫瘍体積は90 mm3程度にとどまった。さらに、DMCをあらかじめ投与した群では、いずれもaPD-L1+H2O群よりも腫瘍体積の増加の抑制が認められた。特にaPD-L1+DMC(30 mg/kg)群では、より腫瘍体積の増加の抑制効果が認められた。
 このことから、テトラサイクリン系化合物の投与は、免疫チェックポイント阻害薬の抗腫瘍効果を増強させることが示された。
2. Results Fig. 9 shows the measurement results. In the control IgG + H2O group, the tumor volume increased from about 40 mm 3 at the start of DMC administration to about 160 mm 3. On the other hand, the tumor volume of the aPD-L1 + H2O group was only about 90 mm 3. Furthermore, in the group to which DMC was pre-administered, the increase in tumor volume was suppressed more than in the aPD-L1 + H2O group. In particular, in the aPD-L1 + DMC (30 mg / kg) group, the effect of suppressing the increase in tumor volume was observed.
From this, it was shown that the administration of tetracycline compounds enhances the antitumor effect of immune checkpoint inhibitors.
X.実施例9:in vivoにおけるテトラサイクリン系化合物による抗PD-L1抗体の抗腫瘍作用の増強効果がCD8+T細胞に依存していることの検証
 in vivoにおいてテトラサイクリン系化合物が示した免疫チェックポイント阻害薬の抗腫瘍作用の増強効果が、CD8+T細胞の抗腫瘍作用に依存しているか否かを検証するため、CD8+T細胞の存在下及び非存在下でテトラサイクリン系化合物が免疫チェックポイント阻害薬の抗腫瘍作用に及ぼす影響を検討した。
X. Example 9: Verification that the enhancing effect of the anti-PD-L1 antibody on the antitumor effect of the tetracycline-based compound in vivo depends on CD8 + T cells. The immune checkpoint inhibitor exhibited by the tetracycline-based compound in vivo. To verify whether the antitumor effect of CD8 + T cells depends on the antitumor effect of CD8 + T cells, tetracycline compounds are used as immune checkpoint inhibitors in the presence and absence of CD8 + T cells. The effect of T cell on antitumor effect was investigated.
1.方法
 実施例8と同様にCT26WT細胞を培養し、Balb/c 6週齢 マウスの皮下に接種した(Day 0)。Day 6にマウスの体重及び腫瘍径を測定し、それらが均一になるように9匹ずつ6群に分けた。
 コントロールIgGと水を投与する群(IgG+H2O群)
 抗PD-L1抗体と水を投与する群(aPD-L1+H2O群)
 抗PD-L1抗体と水と抗CD8抗体を投与する群(aPD-L1+H2O+CD 8depletion群)
 抗PD-L1抗体とDMC(30  mg/kg)と抗CD8抗体を投与する群(aPD-L1+DMC+CD8 depletion群)
 コントロールIgGとDMC(30  mg/kg)を投与する群(IgG+DMC群)
 抗PD-L1抗体とDMC(30  mg/kg)を投与する群(aPD-L1+DMC群)
1. 1. Method CT26WT cells were cultured in the same manner as in Example 8 and inoculated subcutaneously into Balb / c 6-week-old mice (Day 0). On Day 6, the body weight and tumor diameter of the mice were measured, and 9 mice were divided into 6 groups so that they would be uniform.
Group to administer control IgG and water (IgG + H2O group)
Group to administer anti-PD-L1 antibody and water (aPD-L1 + H2O group)
Group to administer anti-PD-L1 antibody, water and anti-CD8 antibody (aPD-L1 + H2O + CD 8 depletion group)
Group to administer anti-PD-L1 antibody, DMC (30 mg / kg) and anti-CD8 antibody (aPD-L1 + DMC + CD8 depletion group)
Group to administer control IgG and DMC (30 mg / kg) (IgG + DMC group)
Group to administer anti-PD-L1 antibody and DMC (30 mg / kg) (aPD-L1 + DMC group)
 DMC又は水及び抗PD-L1抗体の投与に先立って、Day 6で、CD8 depletion群には抗CD8抗体(InVivoMAb anti-mouse CD8a、BioXCell社)400μg/200μL/匹を腹腔内投与した。それ以外の群にはコントロールIgG 400μg/200μL/匹を投与した。 Prior to administration of DMC or water and anti-PD-L1 antibody, 400 μg / 200 μL / animal of anti-CD8 antibody (InVivoMAb anti-mouse CD8a, BioXCell) was intraperitoneally administered to the CD8 depletion group on Day6. Control IgG 400 μg / 200 μL / animal was administered to the other groups.
 次に、Day 7よりDMCの投与を開始した。DMCは生理食塩水で溶解した後,200μL/匹ずつ経口ゾンデを用いて経口投与した。DMC非投与群は蒸留水を200μL/匹ずつ経口投与した。DMCの投与は、Day 7~Day 12まで1日1回連日行った。 Next, DMC administration was started on Day 7. After dissolving DMC in physiological saline, 200 μL / animal was orally administered using an oral sonde. In the DMC non-administered group, 200 μL / animal of distilled water was orally administered. DMC was administered once daily from Day 7 to Day 12.
 次にDay 10に、抗PD-L1抗体、又はコントロールIgGを200μg/200μL/匹で腹腔内へ投与した。
 Day 10、Day 13に腫瘍径を測定した。腫瘍体積は、実施例8と同様に算出した。
Next, on Day 10, anti-PD-L1 antibody or control IgG was intraperitoneally administered at 200 μg / 200 μL / animal.
Tumor diameter was measured on Day 10 and Day 13. The tumor volume was calculated in the same manner as in Example 8.
2.結果
 図10に結果を示す。IgG+H2O群ではDay 13における腫瘍体積は150 mm3程度であった。これに対して、Day 13におけるaPD-L1+H2O群の腫瘍体積は120 mm3程度であった。また、IgG+DMC群では腫瘍体積の増加がaPD-L1+H2O群よりも抑制され、Day 13における腫瘍体積は100 mm3程度であった。さらに、aPD-L1+DMC群ではDay 13における腫瘍体積は80 mm3程度であった。これに対して、抗CD8抗体を投与すると腫瘍体積の増加速度がIgG+H2O群よりも加速し、aPD-L1+H2O+CD 8 depletion群及びaPD-L1+DMC+CD8 depletion群では、Day 10でIgG+H2O群よりも腫瘍体積が増加していた。さらに腫瘍体積は、Day 13において、aPD-L1+H2O+CD 8 depletion群及びaPD-L1+DMC+CD8 depletion群とも300 mm3前後となり、抗PD-L1抗体又は抗PD-L1抗体及びデメチルクロルテトラサイクリンが存在していても、腫瘍体積の増加が加速していた。Day 13において、aPD-L1+DMC群ではaPD-L1+H2O群に比べ有意に腫瘍体積の減少が認められたのに対し、aPD-L1+DMC+CD 8depletion群及びaPD-L1+H2O+CD8 depletion群の腫瘍体積に有意な差は認められなかった。
2. Results Figure 10 shows the results. In the IgG + H2O group, the tumor volume on Day 13 was about 150 mm 3. In contrast, the tumor volume of the aPD-L1 + H2O group on Day 13 was about 120 mm 3. In addition, the increase in tumor volume was suppressed in the IgG + DMC group compared to the aPD-L1 + H2O group, and the tumor volume on Day 13 was about 100 mm 3. Furthermore, in the aPD-L1 + DMC group, the tumor volume on Day 13 was about 80 mm 3. On the other hand, when anti-CD8 antibody was administered, the tumor volume increased faster than in the IgG + H2O group, and in the aPD-L1 + H2O + CD 8 depletion group and aPD-L1 + DMC + CD8 depletion group, the tumor volume increased on Day 10 compared to the IgG + H2O group. Was there. Furthermore, on Day 13, the tumor volume was around 300 mm 3 in both the aPD-L1 + H2O + CD 8 depletion group and the aPD-L1 + DMC + CD8 depletion group, even if anti-PD-L1 antibody or anti-PD-L1 antibody and demethylchlortetracycline were present. , The increase in tumor volume was accelerating. On Day 13, the aPD-L1 + DMC group showed a significant decrease in tumor volume compared to the aPD-L1 + H2O group, whereas the aPD-L1 + DMC + CD 8 depletion group and the aPD-L1 + H2O + CD8 depletion group showed a significant difference in tumor volume. There wasn't.
 このことから、テトラサイクリン系化合物の免疫チェックポイント阻害薬の抗腫瘍作用の増強効果はCD8+T細胞に依存していることが示された。 From this, it was shown that the enhancing effect of the immunocheckpoint inhibitor of the tetracycline compound on the antitumor effect depends on CD8 + T cells.
XI.実施例10:in vivoにおけるテトラサイクリン系化合物によるがん抗原特異的CD8T細胞に対する効果の検証
 免疫チェックポイント阻害薬に対するテトラサイクリン系化合物の抗腫瘍作用増強効果により、in vivoにおいてがん抗原特異的CD8T細胞が増加するか否かを検証した。
XI. Example 10: Verification of effect of tetracycline-based compound on cancer antigen-specific CD8 + T cells in vivo Due to the antitumor effect-enhancing effect of tetracycline-based compound on immune checkpoint inhibitors, cancer antigen-specific CD8 in vivo It was verified whether or not + T cells increased.
1.方法
 実施例9のIgG+H2O群、aPD-L1+H2O群、aPD-L1+DMC群のマウスの眼底からDay 13に血液を採取した。採取した血液が入っているチューブにPharmlyseを1 ml加えて赤血球を溶血させ、遠心後、上清を除去した。沈渣を含むチューブに2%FBSと10mM HEPESを添加したHBSS培地(以下、「HBSS+2%FBS+10mM HEPES」という)を加えて沈渣を懸濁してから、再度遠心し上清を除去した。沈渣を含むチューブにgp70 Tetramer[T-Select H-2Ld MuLV gp70 Tetramer-SPSYVYHQF-PE、MBL社]を加え4℃で30分間反応させた。コントロールとして沈渣を含むチューブにβ-galactosidase Tetramer [T-Select H-2Ld β-galactosidase Tetramer-TPHPARIGL-PE、MBL社]を加え4℃で30分間反応させた。反応終了後のチューブにHBSS+2%FBS+10mM HEPESを加え混合した。再度チューブを遠心し、上清を除去した。チューブ内に抗CD8抗体を添加し、染色後、細胞を洗浄してFACS測定に供し、gp70 TetramerとCD8が陽性の細胞を計数した。
1. 1. Method Blood was collected from the fundus of the mice of the IgG + H2O group, aPD-L1 + H2O group, and aPD-L1 + DMC group of Example 9 on Day 13. 1 ml of Pharmalyse was added to the tube containing the collected blood to hemolyze the erythrocytes, and the supernatant was removed after centrifugation. HBSS medium containing 2% FBS and 10 mM HEPES (hereinafter referred to as “HBSS + 2% FBS + 10 mM HEPES”) was added to a tube containing the sediment to suspend the sediment, and then the mixture was centrifuged again to remove the supernatant. Gp70 Tetramer [T-Select H-2Ld MuLV gp70 Tetramer-SPSYVYHQF-PE, MBL] was added to the tube containing the sediment and reacted at 4 ° C. for 30 minutes. As a control, β-galactosidase Tetramer [T-Select H-2Ld β-galactosidase Tetramer-TPHPARIGL-PE, MBL] was added to a tube containing sediment and reacted at 4 ° C. for 30 minutes. HBSS + 2% FBS + 10 mM HEPES was added to the tube after completion of the reaction and mixed. The tube was centrifuged again and the supernatant was removed. Anti-CD8 antibody was added into the tube, and after staining, the cells were washed and subjected to FACS measurement, and cells positive for gp70 Tetramer and CD8 were counted.
2.結果
 計数結果を図11に示す。IgG+H2O群と比較して、aPD-L1+DMC群では、がん抗原特異的CD8+細胞の存在比率が増加していた。このことから、テトラサイクリン系化合物は、免疫チェックポイント阻害薬の抗腫瘍作用を増強させる際に、がん抗原特異的CD8T細胞を増加させることが明らかとなった。
2. Results Counting results are shown in FIG. Compared with the IgG + H2O group, the aPD-L1 + DMC group had an increased abundance ratio of cancer antigen-specific CD8 + cells. From this, it was clarified that tetracycline compounds increase cancer antigen-specific CD8 + T cells when enhancing the antitumor effect of immune checkpoint inhibitors.
XII.実施例11:テトラサイクリン系化合物の腫瘍細胞傷害活性の評価
 テトラサイクリン系化合物に、直接細胞を傷害する活性がないことを検証するため、in vitroにおいて、テトラサイクリン系化合物によって腫瘍細胞がどのくらい傷害されたか(腫瘍細胞傷害活性)を測定することにより、各被験薬の直接の腫瘍細胞傷害活性を評価した。テトラサイクリン系化合物としてDMCを使用した。また、抗腫瘍剤であるエンチノスタットとオラパリブを腫瘍細胞傷害活性を有する化合物の陽性対照とした。
XII. Example 11: Evaluation of Tumor Cell Injury Activity of Tetracycline Compound In order to verify that the tetracycline compound does not have the activity of directly injuring cells, how much the tumor cell was injured by the tetracycline compound (tumor). The direct tumor cytotoxic activity of each test drug was evaluated by measuring the cytotoxic activity). DMC was used as a tetracycline compound. In addition, the antitumor agents entinostat and olaparib were used as positive controls for compounds having tumor cytotoxic activity.
1.各被験薬の単独投与における腫瘍細胞傷害活性
1-1.方法
(1)U251細胞株を、10%FBSを添加したRPMI1640培地(10%FBS加RPMI1640培地)で培養した後、トリプシンで剥がし、1×10 5個/mLとなるように10%FBS加RPMI1640培地に懸濁し細胞懸濁液を調製した。前記細胞懸濁液を100μL/ウェルとなるように96ウェルプレートに播種し、5%炭酸ガスが存在する湿式インキュベータ内で、37℃で18時間インキュベーションした。
1. 1. Tumor cytotoxic activity when each test drug is administered alone 1-1. Method (1) After culturing the U251 cell line in RPMI1640 medium supplemented with 10% FBS (RPMI1640 medium supplemented with 10% FBS), peel off with trypsin, and RPMI1640 added with 10% FBS so as to be 1 × 10 5 cells / mL. A cell suspension was prepared by suspending in a medium. The cell suspension was seeded on a 96-well plate to 100 μL / well and incubated at 37 ° C. for 18 hours in a wet incubator in the presence of 5% carbon dioxide.
(2)(1)でインキュベーションが終わった96ウェルプレートに、1ウェルあたり、各被験薬を含む培地100μLとを添加した。各被験薬は、終濃度が5μM、2.5μM、1μM、0.1μM、0.01μM、0.001μMとなるように調製した。コントロールとして、(1)でインキュベーションが終わった96ウェルプレート内に培地のみを添加するウェルを準備した。1ウェルあたりの10%FBS加RPMI培地の量は、最終的に総量が200μLとなるようにした。被験薬を添加した後の96ウェルプレートを、37℃で48時間インキュベーションした。 (2) To the 96-well plate after the incubation in (1), 100 μL of the medium containing each test drug was added per well. Each test drug was prepared to have a final concentration of 5 μM, 2.5 μM, 1 μM, 0.1 μM, 0.01 μM, 0.001 μM. As a control, a well to which only the medium was added was prepared in a 96-well plate after incubation in (1). The amount of RPMI medium with 10% FBS per well was finally adjusted to a total volume of 200 μL. The 96-well plate after adding the test drug was incubated at 37 ° C. for 48 hours.
(3)インキュベーション終了後、各ウェルの培地を回収した。各ウェルに10%FBS加RPMI培地を200μL加えウェル内を洗浄し、洗浄に使用した培地を回収した。この操作を3回繰り返しウェル内を3回洗浄した。洗浄後培地が除去された各ウェルに、100μLの10%FBS加RPMI培地と20μLのCellTiter 96(登録商標) AQueous One Solution Reagent (MTS reagent:プロメガ)を添加した。その後、96ウェルマイクロプレートを5%炭酸ガスが存在する湿式インキュベータ内で、30分~1時間程度、37℃でインキュベーションした。 (3) After completion of the incubation, the medium of each well was collected. 200 μL of RPMI medium containing 10% FBS was added to each well, and the inside of the well was washed, and the medium used for washing was collected. This operation was repeated 3 times and the inside of the well was washed 3 times. To each well from which the medium was removed after washing, 100 μL of RPMI medium containing 10% FBS and 20 μL of CellTiter 96 (registered trademark) AQueous One Solution Reagent (MTS reagent: Promega) were added. Then, the 96-well microplate was incubated at 37 ° C. for about 30 minutes to 1 hour in a wet incubator in which 5% carbon dioxide gas was present.
(4)(3)でインキュベーションが終了した96ウェルマイクロプレートについて、マイクロプレートリーダを使って各ウェルの492 nmにおける吸光度を測定した。続いて、下式にしたがって、腫瘍細胞傷害活性を算出した。
  U251細胞株のみを含むウェルの吸光度=A
  U251細胞株と被験薬を含むウェルの吸光度=B  
  腫瘍細胞傷害活性 (%)=[(A-B)/A]×100 
(4) For the 96-well microplates that had been incubated in (3), the absorbance of each well at 492 nm was measured using a microplate reader. Subsequently, the tumor cytotoxic activity was calculated according to the following formula.
Absorbance of wells containing only U251 cell line = A
Absorbance of well containing U251 cell line and test drug = B
Tumor cytotoxic activity (%) = [(AB) / A] x 100
1-2.結果
 結果を図12のA~Cに示す。DMCは、1μM、0.1μMの添加でわずかに腫瘍細胞傷害活性が上昇したが、数%程度であった(図12A)。陽性対象であるエンチノスタット(図12B)は、5μM、2.5μMの添加で腫瘍細胞傷害活性を示した。オラパリブ(図12C)は、5μMの添加でわずかに腫瘍細胞傷害活性が上昇した。
1-2. Results The results are shown in FIGS. 12A to 12C. Regarding DMC, the tumor cytotoxic activity was slightly increased by the addition of 1 μM and 0.1 μM, but it was about several percent (Fig. 12A). The positive subject, entinostat (Fig. 12B), showed tumor cytotoxic activity with the addition of 5 μM and 2.5 μM. Olaparib (Fig. 12C) had a slight increase in tumor cytotoxic activity with the addition of 5 μM.
2.末梢血単核細胞を用いた腫瘍細胞傷害活性及びIFNγ産生における各被験薬の評価
 in vitroにおいて、末梢血単核細胞群(Peripheral Blood Mononuclear Cells:PBMC)と、腫瘍細胞とを、BiTE(登録商標)等のエンゲージャーを介して接触させて培養した後に、PBMCによって腫瘍細胞がどのくらい傷害されたか(腫瘍細胞傷害活性)を測定することにより、PBMC中のT細胞の抗腫瘍活性を評価した。
2. Evaluation of each test drug in tumor cell injury activity and IFNγ production using peripheral blood mononuclear cells In vitro, peripheral blood mononuclear cells (PBMC) and tumor cells were referred to as BiTE®. The antitumor activity of T cells in PBMC was evaluated by measuring how much the tumor cells were damaged by PBMC (tumor cell injury activity) after contacting and culturing through an engager such as).
2-1.方法 2-1. Method
(1)U251細胞株を、10%FBSを添加したRPMI1640培地(10%FBS加RPMI1640培地)で培養した後、トリプシンで剥がし、1×10 5個/mLとなるように10%FBS加RPMI1640培地に懸濁し細胞懸濁液を調製した。前記細胞懸濁液を100μL/ウェルとなるように96ウェルプレートに播種し、5%炭酸ガスが存在する湿式インキュベータ内で、37℃で18時間インキュベーションした。 (1) The U251 cell line was cultured in RPMI1640 medium supplemented with 10% FBS (RPMI1640 medium supplemented with 10% FBS), then peeled off with trypsin, and the RPMI1640 medium supplemented with 10% FBS so as to be 1 × 10 5 cells / mL. A cell suspension was prepared by suspending in. The cell suspension was seeded on a 96-well plate to 100 μL / well and incubated at 37 ° C. for 18 hours in a wet incubator in the presence of 5% carbon dioxide.
(2)健常人から末梢血(ヘパリン採血)を採取し、Lymphoprep TM (Alere Technologies AS)を使って、添付のプロトコールにしたがって、PBMCを回収した。具体的には、チューブに入れたLymphoprep TMに採取した末梢血をゆっくりと重層し、50分間400 gで遠心した後、リンパ球層を回収した。回収した溶液に10%FBS加RPMI1640培地を加えて遠心した後、上清を除去した。細胞のペレットを10%FBS加RPMI1640培地で懸濁して1×10 6/mLに調整した。前記PBMCの回収は、後述する(3)の工程の直前に行った。 (2) Peripheral blood (heparin blood sampling) was collected from healthy subjects, and PBMC was recovered using Lymphoprep TM (Alere Technologies AS) according to the attached protocol. Specifically, the peripheral blood collected in Lymphoprep TM placed in a tube was slowly layered, centrifuged at 400 g for 50 minutes, and then the lymphocyte layer was collected. RPMI1640 medium containing 10% FBS was added to the recovered solution and centrifuged, and then the supernatant was removed. Cell pellets were suspended in RPMI 1640 medium supplemented with 10% FBS to adjust to 1 × 10 6 / mL. The recovery of PBMC was performed immediately before the step (3) described later.
(3)1分子内にEphA2に対する抗原結合部位とCD3に対する抗原結合部位を有するEphA2-CD3 BiTE(登録商標)を10%FBS加RPMI1640培地で400 ng/mLとなるように調製した(「BiTE溶液」という)。また、各被験薬(DMC、エンチノスタット、オラパリブ)のストック液を、20μM、10μM、4μM、0.4μM、0.04μM、0.004μMとなるように前記BiTE溶液で調製した。(1)でインキュベーションが終わった96ウェルプレートに、1ウェルあたり、PBMC細胞懸濁液50μLと、各被験薬を含むBiTE溶液50μLとを添加した。BiTE終濃度は100ng/mL、各被験薬の終濃度は5μM、2.5μM、1μM、0.1μM、0.01μM、0.001μMとなるようにウェルに添加した。
 コントロールとして、(1)でインキュベーションが終わった96ウェルプレート内にPBMC細胞懸濁液50μLと、被験薬を含まないBiTE溶液50μLとを添加するウェルと、(1)でインキュベーションが終わった96ウェルプレート内にPBMC細胞懸濁液50μLと、10%FBS加RPMI1640培地50μLとを添加するウェルを準備した。1ウェルあたりの10%FBS加RPMI培地の量は、最終的に総量が200μLとなるようにした。PBMCとEphA2-CD3 BiTE(登録商標)とを添加した後、又はPBMCとEphA2-CD3 BiTE(登録商標)と被験薬とを添加した後の96ウェルプレートを、37℃で48時間インキュベーションした。
(3) EphA2-CD3 BiTE®, which has an antigen-binding site for EphA2 and an antigen-binding site for CD3 in one molecule, was prepared at 400 ng / mL in RPMI1640 medium supplemented with 10% FBS (“BiTE solution”). "). In addition, the stock solution of each test drug (DMC, entinostat, olaparib) was prepared with the BiTE solution so as to be 20 μM, 10 μM, 4 μM, 0.4 μM, 0.04 μM, 0.004 μM. To the 96-well plate after incubation in (1), 50 μL of PBMC cell suspension and 50 μL of BiTE solution containing each test drug were added per well. BiTE final concentrations were 100 ng / mL, and the final concentrations of each test drug were added to the wells at 5 μM, 2.5 μM, 1 μM, 0.1 μM, 0.01 μM, and 0.001 μM.
As controls, 50 μL of PBMC cell suspension and 50 μL of BiTE solution containing no test drug are added into a 96-well plate that has been incubated in (1), and a 96-well plate that has been incubated in (1). A well was prepared to which 50 μL of PBMC cell suspension and 50 μL of RPMI1640 medium supplemented with 10% FBS were added. The amount of RPMI medium with 10% FBS per well was finally adjusted to a total volume of 200 μL. A 96-well plate after the addition of PBMC and EphA2-CD3 BiTE® or after the addition of PBMC and EphA2-CD3 BiTE® and the study drug was incubated at 37 ° C. for 48 hours.
(4)インキュベーション終了後、各ウェルの培地のみを80μMずつ回収し、-20℃保存した。さらに残りの培地をPBMCとともに回収した。さらに各ウェルに10%FBS加RPMI培地を200μL加えウェル内を洗浄し、洗浄に使用した培地を回収した。この操作を3回繰り返しウェル内を3回洗浄した。この時、最初に回収した培地と洗浄の際に回収した培地はウェルごとに1つのチューブにまとめた。洗浄後培地とPBMCが除去された各ウェルに、100μLの10%FBS加RPMI培地と20μLのCellTiter 96(登録商標) AQueous One Solution Reagent (MTS reagent:プロメガ)を添加した。その後、96ウェルマイクロプレートを5%炭酸ガスが存在する湿式インキュベータ内で、30分~1時間程度、37℃でインキュベーションした。 (4) After completion of the incubation, 80 μM of the medium in each well was collected and stored at -20 ° C. Further, the remaining medium was collected together with PBMC. Further, 200 μL of RPMI medium containing 10% FBS was added to each well to wash the inside of the well, and the medium used for washing was collected. This operation was repeated 3 times and the inside of the well was washed 3 times. At this time, the medium collected first and the medium collected at the time of washing were put together in one tube for each well. After washing, 100 μL of 10% FBS-added RPMI medium and 20 μL of CellTiter 96 (registered trademark) AQueous One Solution Reagent (MTS reagent) were added to each well from which the medium and PBMC had been removed. Then, the 96-well microplate was incubated at 37 ° C. for about 30 minutes to 1 hour in a wet incubator in which 5% carbon dioxide gas was present.
(5)(4)でインキュベーションが終了した96ウェルマイクロプレートについて、マイクロプレートリーダを使って各ウェルの492 nmにおける吸光度を測定した。続いて、下式にしたがって、腫瘍細胞傷害活性を算出した。
  U251細胞株とPBMCのみを含むウェルの吸光度=A
  U251細胞株とPBMCとEphA2-CD3 BiTE(登録商標)とを含むウェル、又はU251細胞株とPBMCとEphA2-CD3 BiTE(登録商標)と被験薬とを含むウェルの吸光度=B  腫瘍細胞傷害活性 (%)=[(A-B)/A]×100 
(5) For the 96-well microplates that had been incubated in (4), the absorbance of each well at 492 nm was measured using a microplate reader. Subsequently, the tumor cytotoxic activity was calculated according to the following formula.
Absorbance of wells containing only U251 cell line and PBMC = A
Absorbance of wells containing U251 cell line, PBMC and EphA2-CD3 BiTE®, or well containing U251 cell line, PBMC, EphA2-CD3 BiTE® and test drug = B tumor cytotoxic activity ( %) = [(AB) / A] x 100
(6)(4)で-20℃保存した培地のIFNγ濃度をHuman IFN-gamma Quantikine ELISA Kit(R&D systems)を用いて測定した。 (6) The IFNγ concentration of the medium stored at -20 ° C in (4) was measured using Human IFN-gamma Quantikine ELISA Kit (R & D systems).
2-2.結果
 腫瘍細胞傷害活性を図12のDからFに示す。DMCは、単独では細胞傷害活性を示さなかったが、PBMCとBiTEとをU251細胞株と接触させる際に添加することにより、0.1μM以上の添加において、腫瘍細胞傷害活性が認められた。0.1μM、から0.001μMのDMCの添加では、濃度依存的な腫瘍細胞傷害活性の上昇が認められたことから、これらの腫瘍細胞傷害活性の上昇は、単にPBMCとBiTEとを接触させたことによる反応ではなく、DMCの作用に依存して起こった現象であると考えられる。また、エンチノスタット(図12E)は、図12Bに示す単独投与の場合と比較して、1μM以上の添加で濃度依存的な腫瘍細胞傷害活性の上昇を示した。オラパリブ(図12F)は、図12Cに示す単独投与の場合と比較して、2.5μM以上の添加で腫瘍細胞傷害活性が上昇した。
2-2. Results Tumor cytotoxic activity is shown in FIGS. 12 D to F. Although DMC did not show cytotoxic activity by itself, tumor cytotoxic activity was observed at the addition of 0.1 μM or more by adding PBMC and BiTE at the time of contact with the U251 cell line. Concentration-dependent increases in tumor cytotoxic activity were observed with the addition of 0.1 μM to 0.001 μM DMC, and these increases in tumor cytotoxic activity were simply due to contact between PBMC and BiTE. It is considered that the phenomenon occurred depending on the action of DMC rather than the reaction. In addition, entinostat (FIG. 12E) showed a concentration-dependent increase in tumor cytotoxic activity with an addition of 1 μM or more as compared with the case of single administration shown in FIG. 12B. Olaparib (Fig. 12F) had increased tumor cytotoxic activity with the addition of 2.5 μM or more as compared with the case of single administration shown in FIG. 12C.
 培養上清中のIFNγ濃度を図12のGからIに示す。DMCは、1μM以上の添加において、IFNγ濃度の産生が認められたが、0.1μM以下の添加ではIFNγ濃度の産生は認められなかった。 The IFNγ concentration in the culture supernatant is shown in G to I in FIG. For DMC, the production of IFNγ concentration was observed when the addition was 1 μM or more, but the production of IFNγ concentration was not observed when the addition was 0.1 μM or less.
 上記XI.1-2.の結果と合わせると、テトラサイクリン系化合物はT細胞性免疫の活性化を誘導しているものと考えられた。 Combined with the results of XI.1-2. Above, it was considered that the tetracycline compound induces the activation of T cell-mediated immunity.
 また、テトラサイクリン系化合物は0.1μMという低濃度においても、T細胞性免疫の活性化を誘導できることが示された。 It was also shown that tetracycline compounds can induce activation of T-cell-mediated immunity even at a low concentration of 0.1 μM.
XIII.実施例12:テトラサイクリン系化合物の長期投与の効果
 テトラサイクリン系化合物の長期投与による効果を検証するため、実施例8よりも長期間テトラサイクリン系化合物の投与を行い、テトラサイクリン系化合物の影響を観察した。
1.方法
 接種の6日前に乳癌培養細胞株であるEMT6細胞を解凍し、DMEM+10%FBS+1% +penicillin/streptomycin培地で培養した。腫瘍細胞接種2日前にEMT6細胞をトリプシン処理し継代した。
XIII. Example 12: Effect of long-term administration of tetracycline compound In order to verify the effect of long-term administration of the tetracycline compound, the tetracycline compound was administered for a longer period than in Example 8 and the effect of the tetracycline compound was observed.
1. 1. Method Six days before inoculation, EMT6 cells, which are breast cancer culture cell lines, were thawed and cultured in DMEM + 10% FBS + 1% + penicillin / streptomycin medium. EMT6 cells were trypsinized and passaged 2 days prior to tumor cell inoculation.
 BALB/cマウスの右背側の毛をトリミングした後、EMT6細胞を3×105 cells/50ul/匹ずつ皮内接種した(Day 0)。腫瘍細胞接種後6日目(Day 6)にマウスの体重及び腫瘍径を測定し、それらが均一になるように(各n=9ずつ)以下の4つの群に群分けした。
 コントロールIgGと水を投与する群(IgG+H2O群)
 抗PD-L1抗体と水を投与する群(aPD-L1+H2O群)
 コントロールIgGとDMC(30  mg/kg)を投与する群(IgG+DMC群)
 抗PD-L1抗体とDMC(30  mg/kg)を投与する群(aPD-L1+DMC群)
After trimming the hair on the right dorsal side of BALB / c mice, 3 × 10 5 cells / 50 ul / animal of EMT6 cells were intradermally inoculated (Day 0). On the 6th day (Day 6) after inoculation of tumor cells, the body weight and tumor diameter of the mice were measured, and the mice were divided into the following four groups so as to be uniform (n = 9 each).
Group to administer control IgG and water (IgG + H2O group)
Group to administer anti-PD-L1 antibody and water (aPD-L1 + H2O group)
Group to administer control IgG and DMC (30 mg / kg) (IgG + DMC group)
Group to administer anti-PD-L1 antibody and DMC (30 mg / kg) (aPD-L1 + DMC group)
 DMC投与群には、DMCを生理食塩水で溶解し3.0 mg/mLに調整し、200μL/匹ずつ30mg/kg/dayとなるように経口ゾンデを用いて経口投与した。水投与群は水のみを200μL/匹ずつ経口ゾンデを用いて経口投与した。DMC又は生理食塩水の投与は腫瘍接種後7日目から28日目まで連日行った。DMC投与群と生理食塩水投与群をさらに2群ずつ群に分け、PD-L1投与又はIgG投与を行った。腫瘍細胞投与後10日目(Day 6)、13日目目(Day 13)に、抗PD-L1抗体、又はコントロールIgGを200μg/200μL/匹となるように腹腔内へ投与した。 Day 10から3日間おき(Day10、Day13、Day16、Day19、Day22、Day25、及びDay28)に腫瘍径を測定した。腫瘍体積は、実施例8と同様に算出した。 In the DMC-administered group, DMC was dissolved in physiological saline to adjust to 3.0 mg / mL, and 200 μL / animal was orally administered using an oral sonde so as to be 30 mg / kg / day. In the water-administered group, only water was orally administered at 200 μL / animal using an oral sonde. Administration of DMC or saline was performed daily from 7 days to 28 days after tumor inoculation. The DMC-administered group and the physiological saline-administered group were further divided into two groups, and PD-L1 administration or IgG administration was performed. On the 10th day (Day 6) and the 13th day (Day 13) after the administration of the tumor cells, anti-PD-L1 antibody or control IgG was intraperitoneally administered so as to be 200 μg / 200 μL / animal. Tumor diameter was measured every 3 days from Day 10 (Day10, Day13, Day16, Day19, Day22, Day25, and Day28). The tumor volume was calculated in the same manner as in Example 8.
2.結果
 図13に結果を示す。IgG+H2O群ではDay 28における腫瘍体積は1300 mm3程度であった。これに対して、Day 13におけるaPD-L1+H2O群の腫瘍体積は350 mm3程度であった。また、IgG+DMC群の腫瘍体積の増加はaPD-L1+H2O群と同程度であった。さらに、aPD-L1+DMC群ではDay 28における腫瘍体積は100 mm3程度であった。また、DMCの長期投与による副作用は認められなかった。
2. Results Figure 13 shows the results. In the IgG + H2O group, the tumor volume on Day 28 was about 1300 mm 3. In contrast, the tumor volume of the aPD-L1 + H2O group on Day 13 was about 350 mm 3. The increase in tumor volume in the IgG + DMC group was similar to that in the aPD-L1 + H2O group. Furthermore, in the aPD-L1 + DMC group, the tumor volume on Day 28 was about 100 mm 3. In addition, no side effects were observed due to long-term administration of DMC.
 このことから、テトラサイクリン系化合物の腫瘍増殖抑制効果、及び免疫チェックポイント阻害薬に対するテトラサイクリン系化合物の抗腫瘍作用増強効果は、長期間有効であることが示された。また、テトラサイクリン系化合物単独で腫瘍増殖抑制効果が認められたことから、ウイルス感染症の際にも効果が発揮される可能性が高いことが示された。 From this, it was shown that the tumor growth inhibitory effect of the tetracycline compound and the antitumor effect enhancing effect of the tetracycline compound on the immune checkpoint inhibitor are effective for a long period of time. In addition, since the tetracycline compound alone had an inhibitory effect on tumor growth, it was shown that it is highly likely that the effect will be exhibited even in the case of viral infection.

Claims (10)

  1. 下記一般式(I)で示されるテトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含む、治療又は予防用組成物であって、テトラサイクリン系化合物及びその薬学的に許容される塩を、細菌感染症の治療に用いられる規定用量の1/10から1/2の用量で、8日以上投与するための、治療又は予防用組成物:
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    は、下記一般式(II)で示される基(Rは水素原子又は炭素数1~3の低級アルキル基)、又は炭素数1~3の低級アルキル基である:
    Figure JPOXMLDOC01-appb-C000002

    は、下記一般式(III)で示される基(Rは炭素数1~3の低級アルキル基又は水素原子)である:
    Figure JPOXMLDOC01-appb-C000003

    は、水素原子、水酸基、又は炭素数1~3の低級アルキル基である。
    及びRは、共に又は独立して水素原子、水酸基又は炭素数1~3の低級アルキル基であるか、R及びRは、1つになってメチレン基である。
    は、水素原子、ハロゲン又は下記一般式(IV)で表される基(R10は水素原子、又は炭素数1~3の低級アルキル基)である:
    Figure JPOXMLDOC01-appb-C000004

    は、水素原子、炭素数1~3の低級アルキル基、-NH-CO-CH-NH-C(CH又は-CH-NH-CH-C(CHである。]。
    A therapeutic or prophylactic composition comprising at least one selected from the group consisting of tetracyclines represented by the following general formula (I) and pharmaceutically acceptable salts thereof, the tetracyclines and their pharmaceuticals. A therapeutic or prophylactic composition for administering an acceptable salt at a dose of 1/10 to 1/2 of the prescribed dose used for the treatment of bacterial infections for 8 days or longer:
    Figure JPOXMLDOC01-appb-C000001
    [During the ceremony,
    R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms), or a lower alkyl group having 1 to 3 carbon atoms:
    Figure JPOXMLDOC01-appb-C000002
    ..
    R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom):
    Figure JPOXMLDOC01-appb-C000003
    ..
    R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
    R 4 and R 5 are hydrogen atoms, hydroxyl groups or lower alkyl groups having 1 to 3 carbon atoms together or independently, or R 4 and R 5 are methylene groups in one.
    R 6 is a hydrogen atom, a halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms):
    Figure JPOXMLDOC01-appb-C000004
    ..
    R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, -NH-CO-CH 2- NH-C (CH 3 ) 3 or -CH 2- NH-CH 2- C (CH 3 ) 3 . be. ].
  2. 前記炭素数1~3の低級アルキル基がメチル基である、請求項1に記載の治療又は予防用組成物。 The therapeutic or preventive composition according to claim 1, wherein the lower alkyl group having 1 to 3 carbon atoms is a methyl group.
  3. 前記一般式(I)で示される化合物が、デメチルクロルテトラサイクリン、メクロサイクリン、テトラサイクリン、クロルテトラサイクリン、ドキシサイクリン、ミノサイクリン、及びオキシテトラサイクリンよりなる群から選択される少なくとも一種である、請求項1に記載の治療又は予防用組成物。 The compound represented by the general formula (I) is at least one selected from the group consisting of demethylchlortetracycline, meclocycline, tetracycline, chlortetracycline, doxycycline, minocycline, and oxytetracycline, according to claim 1. Composition for treatment or prevention of.
  4. 治療又は予防用組成物は、ウイルス感染症又は腫瘍の治療又は予防のために使用される、請求項1から3のいずれか一項に記載の治療又は予防用組成物。 The therapeutic or prophylactic composition according to any one of claims 1 to 3, which is used for treating or preventing a viral infection or tumor.
  5. 下記一般式(I)で示されるテトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含む、免疫賦活化剤であって、テトラサイクリン系化合物及びその薬学的に許容される塩を、細菌感染症の治療に用いられる規定用量の1/10から1/2の用量で、8日以上投与するための、免疫賦活化剤:
    Figure JPOXMLDOC01-appb-C000005
    [式中、
    は、下記一般式(II)で示される基(Rは水素原子又は炭素数1~3の低級アルキル基)、又は炭素数1~3の低級アルキル基である:
    Figure JPOXMLDOC01-appb-C000006

    は、下記一般式(III)で示される基(Rは炭素数1~3の低級アルキル基又は水素原子)である:
    Figure JPOXMLDOC01-appb-C000007

    は、水素原子、水酸基、又は炭素数1~3の低級アルキル基である。
    及びRは、共に又は独立して水素原子、水酸基又は炭素数1~3の低級アルキル基であるか、R及びRは、1つになってメチレン基である。
    は、水素原子、ハロゲン又は下記一般式(IV)で表される基(R10は水素原子、又は炭素数1~3の低級アルキル基)である:
    Figure JPOXMLDOC01-appb-C000008

    は、水素原子、炭素数1~3の低級アルキル基、-NH-CO-CH-NH-C(CH又は-CH-NH-CH-C(CHである。]。
    An immunostimulatory agent comprising at least one selected from the group consisting of a tetracycline compound represented by the following general formula (I) and a pharmaceutically acceptable salt thereof, which is a tetracycline compound and its pharmaceutically acceptable salt. An immunostimulatory agent for administering the salt to be administered at a dose of 1/10 to 1/2 of the prescribed dose used for the treatment of bacterial infections for 8 days or more:
    Figure JPOXMLDOC01-appb-C000005
    [During the ceremony,
    R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms), or a lower alkyl group having 1 to 3 carbon atoms:
    Figure JPOXMLDOC01-appb-C000006
    ..
    R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom):
    Figure JPOXMLDOC01-appb-C000007
    ..
    R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
    R 4 and R 5 are hydrogen atoms, hydroxyl groups or lower alkyl groups having 1 to 3 carbon atoms together or independently, or R 4 and R 5 are methylene groups in one.
    R 6 is a hydrogen atom, a halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms):
    Figure JPOXMLDOC01-appb-C000008
    ..
    R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, -NH-CO-CH 2- NH-C (CH 3 ) 3 or -CH 2- NH-CH 2- C (CH 3 ) 3 . be. ].
  6. 請求項5に記載の免疫賦活化剤と、抗ウイルス薬とを含む、ウイルス感染症治療用組成物。 A composition for treating a viral infection, which comprises the immunostimulatory agent according to claim 5 and an antiviral agent.
  7. 請求項5に記載の免疫賦活化剤と、腫瘍免疫薬とを含む、腫瘍治療用組成物。 A composition for treating a tumor, which comprises the immunostimulatory agent according to claim 5 and a tumor immunological agent.
  8. 前記腫瘍免疫薬が、免疫チェックポイント阻害剤、CAR-T細胞薬、二重特異性分子薬、及びがんワクチンから選択される少なくとも一種である、請求項7に記載の腫瘍治療用組成物。 The composition for treating a tumor according to claim 7, wherein the tumor immunological agent is at least one selected from an immune checkpoint inhibitor, a CAR-T cell drug, a bispecific molecular agent, and a cancer vaccine.
  9. 請求項1から3のいずれか一項に記載の免疫賦活化剤と、抗抗酸菌薬とを含む、抗酸菌感染症治療用組成物。 A composition for treating an acid-fast bacillus infection, which comprises the immunostimulatory agent according to any one of claims 1 to 3 and an acid-fast bacillus agent.
  10. 請求項1から3のいずれか一項に記載の免疫賦活化剤と、抗真菌薬とを含む、真菌感染症治療用組成物。 A composition for treating a fungal infection, which comprises the immunostimulatory agent according to any one of claims 1 to 3 and an antifungal agent.
PCT/JP2021/015904 2020-04-20 2021-04-19 Immunostimulant and composition for treatment or prevention WO2021215405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020074620 2020-04-20
JP2020-074620 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021215405A1 true WO2021215405A1 (en) 2021-10-28

Family

ID=78269262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015904 WO2021215405A1 (en) 2020-04-20 2021-04-19 Immunostimulant and composition for treatment or prevention

Country Status (1)

Country Link
WO (1) WO2021215405A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116474A (en) * 1997-10-09 1999-04-27 Dainippon Pharmaceut Co Ltd Antimicrobial mixture
JP2004536046A (en) * 2001-04-05 2004-12-02 コッラジェネックス ファーマシューチカルス インコーポレイテッド How to treat acne
JP2005504722A (en) * 2001-03-14 2005-02-17 パラテック ファーマシューティカルズ インコーポレイテッド Substituted tetracycline compounds as synergistic antifungal agents
WO2019177011A1 (en) * 2018-03-13 2019-09-19 国立大学法人大阪大学 Tumor immunopotentiator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116474A (en) * 1997-10-09 1999-04-27 Dainippon Pharmaceut Co Ltd Antimicrobial mixture
JP2005504722A (en) * 2001-03-14 2005-02-17 パラテック ファーマシューティカルズ インコーポレイテッド Substituted tetracycline compounds as synergistic antifungal agents
JP2004536046A (en) * 2001-04-05 2004-12-02 コッラジェネックス ファーマシューチカルス インコーポレイテッド How to treat acne
WO2019177011A1 (en) * 2018-03-13 2019-09-19 国立大学法人大阪大学 Tumor immunopotentiator

Similar Documents

Publication Publication Date Title
US20220160706A1 (en) Pharmaceutical combination comprising tno155 and a pd-1 inhibitor
US11737996B2 (en) Immunomodulatory and differentiating function selective retinoid and rexinoid compounds in combination with immune modulators for cancer immunotherapy
CN111148514A (en) RAR selective agonists combined with immunomodulators for cancer immunotherapy
AU2011295845A1 (en) EBV-specific cytotoxic T-lymphocytes for the treatment of locoregional nasopharyngeal carcinoma (NPC)
JP2023036999A (en) Oxabicycloheptanes for modulating immune response
KR20220116438A (en) Harnessing the Power of Microbiota and Metabolites for Cancer Treatment
WO2021215405A1 (en) Immunostimulant and composition for treatment or prevention
KR102600728B1 (en) Compounds, compositions and uses thereof for treating cancer
JP7154634B2 (en) Tumor immunostimulant
WO2017177515A1 (en) Application of 4-hydroxy salicylanilide in preparation of anti-myeloma or anti-lymphoma drugs
CN115697317A (en) Use of EP4 receptor antagonists for the treatment of liver cancer, melanoma, lymphoma and leukemia
US20210353749A1 (en) Guanabenz as an adjuvant for immunotherapy
US20210379106A1 (en) Oxabicycloheptanes for enhancing car t cell function
US20210244814A1 (en) Combination of metformin and cyclophosphamide as an adjuvant in cancer immunotherapy
WO2020086440A1 (en) Immunomodulatory compounds
TWI835745B (en) Phosphaplatin compounds as immuno-modulatory agents and therapeutic uses thereof
JP2024008964A (en) Selection of patients for combination therapy
Anastasiou et al. Immune checkpoint inhibitors in sarcomas: a systematic review
Sinkovics et al. Will the Human Cerebral Cortex Subdue the Oncogenome?
WO2021092190A1 (en) Combination therapy for cancer
JP2023543163A (en) MDM2 inhibitors for use in the treatment or prevention of blood neoplasm recurrence after hematopoietic cell transplantation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP