WO2021215271A1 - Aerial image projection device - Google Patents

Aerial image projection device Download PDF

Info

Publication number
WO2021215271A1
WO2021215271A1 PCT/JP2021/015058 JP2021015058W WO2021215271A1 WO 2021215271 A1 WO2021215271 A1 WO 2021215271A1 JP 2021015058 W JP2021015058 W JP 2021015058W WO 2021215271 A1 WO2021215271 A1 WO 2021215271A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
projection device
aerial image
image projection
reflecting element
Prior art date
Application number
PCT/JP2021/015058
Other languages
French (fr)
Japanese (ja)
Inventor
主揮 下瀬
宏悦 河西
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2021215271A1 publication Critical patent/WO2021215271A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • This disclosure relates to an aerial image projection device.
  • Patent Document 1 An example of the prior art is described in Patent Document 1.
  • the aerial image projection device includes a first reflecting element, a second reflecting element, and a first optical element.
  • the first reflecting element is configured to transmit a part of the first light incident from the first direction in the second direction and reflect a part of the second light incident from the second direction in the third direction. Will be done.
  • the second reflecting element is configured to retroreflect the first light as the second light.
  • the first optical element is located between the first reflecting element and the second reflecting element. The first optical element is configured to condense the first light and condense the second light.
  • FIG. 1 is a diagram schematically showing an example of an aerial image projection device.
  • FIG. 2 is a diagram schematically showing another example of the aerial image projection device.
  • FIG. 3 is a diagram schematically showing another example of the aerial image projection device.
  • FIG. 4 is a diagram schematically showing another example of the aerial image projection device.
  • FIG. 5 is a diagram schematically showing another example of the aerial image projection device.
  • FIG. 6 is a diagram schematically showing another example of the aerial image projection device.
  • FIG. 7 is a diagram schematically showing an example of a moving body equipped with an aerial image projection device.
  • the aerial image projection device of the present disclosure there is known a device that forms an image of light emitted by a display as an aerial image using an optical element having a polarizing filter and a retroreflective member.
  • the aerial image projection device 1 includes a first reflecting element 2, a second reflecting element 3, and a first optical element 5.
  • the aerial image projection device 1 may include a display device 8.
  • the display device 8 may be a transmissive display device or a self-luminous display device.
  • a transmissive display device for example, a liquid crystal display device can be used.
  • the self-luminous display device include a light emitting diode (LED) element, an organic electroluminescence (OEL) element, an organic light emitting diode (OLED) element, and a semiconductor laser (Laser).
  • a display device including a self-luminous element such as a Diode; LD) element can be used.
  • the first reflecting element 2 is configured to transmit at least a part of the first image light (hereinafter, also referred to as the first light) L1 incident from the first direction D1 in the second direction D2.
  • the first reflecting element 2 may be configured to reflect the rest of the first light L1.
  • the first reflecting element 2 is configured to reflect a part of the second image light (hereinafter, also referred to as the second light) L2 incident from the second direction D2 in the third direction D3.
  • the first reflecting element 2 may be configured to transmit the rest of the second light L2.
  • the first light L1 and the second light L2 may be image lights indicating an image.
  • the first light L1 may be image light emitted from the display device 8.
  • the first light L1 may be parallel light propagating in the first direction D1 or light propagating in a direction substantially parallel to the first direction D1. It can be said that the first light L1 is light whose main propagation direction is the first direction D1.
  • the second light L2 may be parallel light propagating in the second direction D2, or may be light propagating in a direction substantially parallel to the second direction D2. It can be said that the second light L2 is light whose main propagation direction is the second direction D2.
  • the first reflecting element 2 may reflect a part of the second light L2 as parallel light propagating in the third direction D3, or propagate a part of the second light L2 in a direction substantially parallel to the third direction D3. It may be reflected as light.
  • the first reflecting element 2 reflects a part of the second light L2 as light whose main propagation direction is along the third direction D3.
  • the propagation direction of light in the present specification it means a substantial propagation direction of light.
  • the main propagation direction of light is referred to.
  • FIG. 1 shows an example in which the first light L1 emitted from the display device 8 propagates in the first direction D1 and is incident on the first reflecting element 2.
  • a propagation path also referred to as an optical path
  • FIG. 1 shows a propagation path of light emitted from one pixel included in the display device 8.
  • the first reflecting element 2 may be, for example, a half mirror, a wire grid polarizer, a reflective polarizing plate, a beam splitter, or the like.
  • the transmitted first light L1 is linearly polarized light whose polarization direction is along the transmission axis of the first reflecting element 2 or slightly elliptically polarized light.
  • the first reflecting element 2 may be a wire grid polarizer composed of a light transmitting base material and a plurality of fine metal wires formed on the surface of the light transmitting base material.
  • the light-transmitting substrate may be, for example, a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a cycloolefin polymer (COP) film, or the like.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • the plurality of thin metal wires may be formed of a metal material such as aluminum, chromium, or titanium oxide.
  • the second reflecting element 3 is configured to retroreflect the first light L1 transmitted through the first reflecting element 2 as the second light L2.
  • the second light L2 is the reflected light in which the first light L1 transmitted through the first reflecting element 2 is reflected by the second reflecting element 3.
  • the second reflecting element 3 may be located at a distance from the first reflecting element 2 in the second direction D2.
  • the second reflective element 3 may be a retroreflective element, which is also called a retroreflector.
  • the second reflective element 3 may be, for example, a corner cube type retroreflective element or a microbead type retroreflective element.
  • the first optical element 5 is located between the first reflecting element 2 and the second reflecting element 3, as shown in FIG. 1, for example.
  • the first optical element 5 may be located in the propagation path of the first light L1 and the second light L2 between the first reflecting element 2 and the second reflecting element 3.
  • the first optical element 5 has a light collecting function.
  • the first optical element 5 is configured to collect the first light L1 that has passed through the first reflecting element 2.
  • the first optical element 5 is configured to collect the second light L2 retroreflected by the second reflecting element 3.
  • the first optical element 5 may be configured to include, for example, one or more lenses, or may be configured to include one or more mirrors.
  • the first optical element 5 may be a biconvex lens, for example, as shown in FIG.
  • the lens surface of the biconvex lens may include at least a spherical shape or at least a part aspherical shape.
  • the lens surface of the biconvex lens may include a free curved surface shape at least in part.
  • the first optical element 5 may be a Fresnel lens. Thereby, the thickness of the first optical element 5 can be reduced. As a result, the aerial image projection device 1 can be miniaturized.
  • Each refracting portion of the Fresnel lens may include a spherical shape at least in part, or may include an aspherical shape in at least a part.
  • Each refracting portion of the Fresnel lens may include a free curved surface shape at least in part.
  • the first optical element 5 may be configured by, for example, arranging two plano-convex lenses in the second direction D2.
  • the two plano-convex lenses may be arranged so that the convex lens surfaces face each other, or the flat lens surfaces may be arranged so as to face each other.
  • the convex lens surface of the plano-convex lens may include at least a spherical shape or at least a part aspherical shape.
  • the convex lens surface of the plano-convex lens may include a free curved surface shape at least in part.
  • the number of lenses constituting the first optical element 5 is not limited to one or two, and may be three or four or more.
  • the first optical element 5 has an AR (Anti-Reflection) coating layer formed on a part or all of the lens surface to reduce reflection of at least one of the first light L1 and the second light L2 on the lens surface. good. As a result, the light utilization efficiency of the aerial image projection device 1 can be improved.
  • AR Anti-Reflection
  • the imaging of an aerial image by the aerial image projection device 1 will be described.
  • the first light L1 emitted from the display device 8 propagates in the first direction D1 and reaches the first reflecting element 2.
  • a part of the first light L1 that has reached the first reflecting element 2 passes through the first reflecting element 2 and propagates in the second direction D2.
  • the first light L1 transmitted through the first reflecting element 2 is focused by the first optical element 5 and reaches the second reflecting element 3.
  • the first light L1 that has reached the second reflecting element 3 is retroreflected by the second reflecting element 3 to become the second light L2.
  • the second light L2 is focused by the first optical element 5 and reaches the first reflecting element 2.
  • a part of the second light L2 that has reached the first reflecting element 2 is reflected by the first reflecting element 2 in the third direction D3.
  • the second light L2 reflected by the first reflecting element 2 is imaged in the air and visually recognized by the user as an aerial image.
  • the light to be retroreflected by the retroreflective element When the light to be retroreflected by the retroreflective element is incident on a wide range on the reflecting surface of the retroreflective element, the light is affected by the size of the prisms constituting the retroreflective element and the diffraction effect on the prism. There is a risk. As a result, the retroreflected light is diffused, and the aerial image may become a blurred image. The effect of diffraction on the prisms that make up the retroreflective element becomes more pronounced as the distance between the display device and the retroreflective element increases.
  • a first optical element 5 having a condensing function is provided between the display device 8 and the second reflecting element 3.
  • the light collected by the first optical element 5 is incident on a relatively narrow range on the reflecting surface of the second reflecting element 3.
  • the diffusion of the second light L2 retroreflected by the second reflecting element 3 can be reduced.
  • the resolution of the aerial image can be increased.
  • the second light L2 is further focused by the first optical element 5 and incident on the first reflection element 2.
  • the diffusion of the second light L2 can be further reduced, so that the resolution of the aerial image can be increased.
  • the first optical element 5 may be a microlens array 51, for example, as shown in FIG.
  • the microlens array 51 is an optical element configured by arranging a plurality of microlenses 51a on a substrate.
  • the shape of the plurality of microlenses 51a may be circular, rectangular, or polygonal when viewed from a direction orthogonal to the main surface of the substrate.
  • the plurality of microlenses 51a may be arranged regularly (that is, in a matrix) or irregularly.
  • the lens surface of each microlens 51a may include at least a spherical shape or at least a part aspherical shape.
  • the lens surface of each microlens 51a may include a free curved surface shape at least in part.
  • the precise light distribution of the first light L1 and the second light L2 is performed by adjusting the arrangement of the plurality of microlenses 51a and the shape and size of each microlens 51. Control can be performed. As a result, the resolution of the aerial image can be increased.
  • the first optical element 5 may be a concave mirror 52, for example, as shown in FIG.
  • the reflective surface of the concave mirror 52 may include at least a spherical shape or at least a part aspherical shape.
  • the reflective surface of the concave mirror 52 may include a free curved surface shape at least in part.
  • the second reflecting element 3 may be located near the focusing point of the first optical element 5. As a result, the first light L1 focused by the first optical element 5 is incident on a narrow range on the reflecting surface of the second reflecting element 3. As a result, the diffusion of the second light L2 can be reduced, so that the resolution of the aerial image can be increased.
  • the aerial image projection device 1 may include a second optical element 6, for example, as shown in FIG.
  • the second optical element 6 may be located between the second reflecting element 3 and the first optical element 5.
  • the second optical element 6 may be located close to the reflecting surface of the second reflecting element 3.
  • the second optical element 6 may be configured to collect the scattered light contained in the second light L2. As a result, the diffusion of the second light L2 retroreflected by the second reflecting element 3 can be reduced. As a result, the resolution of the aerial image can be increased.
  • the second optical element 6 may be, for example, a lens such as a plano-convex lens, a biconvex lens, a meniscus lens, or a Fresnel lens.
  • the second optical element 6 may be configured to include one or more lenses.
  • the second optical element 6 may be, for example, a microlens array.
  • the display device 8 may be located at a distance from the first reflecting element 2 in the first direction D1.
  • the display device 8 may be configured to emit the first light L1 from the display surface 8a.
  • the first light L1 emitted by the display device 8 may be an image light indicating a moving image or an image light indicating a still image.
  • the display device 8 may be a liquid crystal display device 8 including a backlight 81 and a liquid crystal panel 82.
  • the backlight 81 may include a plurality of light sources arranged two-dimensionally on the back side of the display surface 8a so as to face the display surface 8a.
  • the light source may be, for example, an LED, a cold cathode fluorescent lamp, a halogen lamp, or a xenon lamp.
  • the backlight 81 having a plurality of light sources arranged on the back side of the display surface 8a so as to face the display surface 8a can be called a direct type backlight.
  • the backlight 81 includes a plurality of light sources arranged on the outer peripheral portion of the liquid crystal panel 82, and the light may be guided to the entire back surface of the display surface 8a by the light guide plate.
  • the backlight 81 having a plurality of light sources arranged on the outer peripheral portion of the liquid crystal panel 82 can be called an edge light type backlight.
  • the backlight 81 may include a lens array, a light guide plate, a diffuser plate, and the like in order to uniformly irradiate the display surface 8a with the light emitted from the light source.
  • the liquid crystal panel 82 may have a known liquid crystal panel configuration.
  • various liquid crystal panels such as IPS (In-Plane Switching) method, FFS (Fringe Field Switching) method, VA (Vertical Alignment) method, and ECB (Electrically Controlled Birefringence) method can be adopted. ..
  • the liquid crystal panel 82 may include a first polarizing plate, a color filter substrate, a liquid crystal layer, an array substrate, and a second polarizing plate.
  • the first polarizing plate may be located on the display surface 8a side of the liquid crystal display device 8.
  • the polarization state of the first light L1 emitted by the liquid crystal display device 8 may be linearly polarized light along the polarization direction of the first polarizing plate.
  • the first reflecting element 2 is a reflective polarizing plate and the first light L1 is polarized along the transmission axis of the first reflecting element 2, the first light L1 is reflected by the first reflecting element 2. Can be reduced.
  • the polarization direction of the first polarizing plate is along the transmission axis of the first reflecting element 2.
  • the aerial image projection device 1 may include a retardation plate 7 as shown in FIG. 5, for example.
  • the retardation plate 7 may be located between the second reflecting element 3 and the first optical element 5.
  • the retardation plate 7 may be configured to rotate the polarization direction of the transmitted light.
  • the first light L1 transmitted through the first reflecting element 2 is linearly polarized light whose polarization direction is along the transmission axis of the first reflecting element 2 or slightly elliptically polarized light.
  • the polarization state of the second light L2 whose polarized light is retroreflected by the second reflecting element 3 may be linearly polarized light along the polarization direction of the first reflecting element 2 or slightly elliptically polarized light.
  • the polarization direction of the second light L2 is aligned with the transmission axis of the first reflecting element 2, and the first reflecting element
  • the proportion of the second light L2 transmitted through 2 can be increased.
  • the retardation plate 7 may be, for example, a 1/4 wavelength plate.
  • first light L1 which is linearly polarized light along the transmission axis of the first reflecting element 2 or slightly elliptically polarized light
  • the retardation plate 7 may be, for example, a 1/4 wavelength plate.
  • the second light L2 is linearly polarized light along the reflection axis of the first reflection element 2. Reflection of the second light L2 by the first reflecting element 2 by using the retardation plate 7 to change the polarization state of the second light L2 to linearly polarized light along the direction intersecting with the first light L1 or slightly elliptically polarized light.
  • the rate can be increased.
  • the aerial image can be made high in resolution and high in brightness.
  • the use of the polarizing plate 7 is not limited to the case where the first reflecting element 2 is a polarizer.
  • the polarizing plate 7 by making the second light L2 incident on the first reflecting element 2 with s polarized light by the polarizing plate 7, high reflectance in the vicinity of Brewster's angle can be utilized.
  • the polarization direction of the first light L1 emitted by the liquid crystal display device 8 may be along the polarization direction of the first reflection element 2.
  • the transmittance of the first light L1 in the first reflecting element 2 can be increased.
  • the light utilization rate of the aerial image projection device 1 can be increased. Therefore, it is possible to increase the resolution and the brightness of the aerial image. Alternatively, it is possible to reduce the amount of light of the backlight 81 and reduce the power consumption of the aerial image projection device 1 while increasing the resolution of the aerial image.
  • the display device 8 is not limited to the liquid crystal display device 8, and may be an LED display device, an OEL display device, an OLED display device, or the like.
  • the first optical element 5 is located between the display device 8 and the second reflecting element 3.
  • the aerial image projection device 1 may be configured such that the display device 8 is located near the focal point of the first optical element 5 and the second reflecting element 3 is located near the focusing point of the first optical element 5. .. That is, the aerial image projection device 1 may be configured such that the display device 8 and the second reflecting element 3 are optically conjugated. This makes it possible to project a high-resolution aerial image at various places in the air simply by translating or rotating the first reflecting element 5.
  • the aerial image projection device 1 may include a camera 9, for example, as shown in FIG.
  • the camera 9 may be configured to image the third direction D3 via the first reflecting element 2.
  • the camera 9 may be a visible light camera or an infrared camera.
  • the infrared camera may be a far infrared camera.
  • the camera 9 may capture a visible light image and an infrared light image.
  • the camera 9 may be a monocular camera or a stereo camera.
  • the camera 9 may include, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the camera 9 may be configured to image the user.
  • the camera 9 may take an image of the user's face.
  • the camera 9 may image the user's eyes.
  • the aerial image projection device 1 may be configured to detect the position of the user's eye from the captured image.
  • the aerial image projection device 1 may be configured to adjust the position and brightness of the aerial image based on the detected position of the user's eyes. This makes it possible for users located in various places to visually recognize a high-resolution aerial image.
  • the camera 9 does not image the user's eyes, but may image the feature points included in the user's face that make it possible to identify the position of the user's eyes.
  • the feature points may include the user's eyebrows, nose, lips and the like.
  • the camera 9 may be configured to capture an image of the user reflected by a reflecting member such as a mirror via the first reflecting element 2. Thereby, the degree of freedom of the place where the camera 9 is arranged can be increased.
  • the aerial image projection device 1 does not include the camera 9, and may be connected to an external camera outside the device.
  • the aerial image projection device 1 may include an input terminal for inputting a signal from an external camera.
  • the external camera may be directly connected to the input terminal.
  • the external camera may be indirectly connected to the input terminal via a shared network.
  • the aerial image projection device 1 may include a third reflecting element 4, for example, as shown in FIG.
  • the third reflecting element 4 may be configured to reflect the second light L2 reflected by the first reflecting element 2 toward the user. As a result, the user can visually recognize the aerial image from various directions.
  • the third reflecting element 4 may be a mirror, or may be configured to include, for example, glass, a light reflecting resin, or the like.
  • the windshield may also serve as a third reflecting element 4.
  • the camera 9 may be configured to capture an image of the user reflected by the third reflecting element 4 via the first reflecting element 2. This makes it possible to take an image of the user while increasing the degree of freedom in the place where the camera 9 is arranged.
  • the aerial image projection device 1 may be mounted on the moving body 10.
  • the "moving body" in the present disclosure may include, for example, a vehicle, a ship, an aircraft, and the like.
  • Vehicles may include, for example, automobiles, industrial vehicles, railroad vehicles, living vehicles, fixed-wing aircraft traveling on runways, and the like.
  • Automobiles may include, for example, passenger cars, trucks, buses, motorcycles, trolley buses and the like.
  • Industrial vehicles may include, for example, industrial vehicles for agriculture and construction.
  • Industrial vehicles may include, for example, forklifts, golf carts, and the like.
  • Industrial vehicles for agriculture may include, for example, tractors, cultivators, porting machines, binders, combines, lawnmowers and the like.
  • Industrial vehicles for construction may include, for example, bulldozers, scrapers, excavators, crane trucks, dump trucks, road rollers and the like.
  • the vehicle may include a vehicle that travels manually.
  • the classification of vehicles is not limited to the above examples.
  • an automobile may include an industrial vehicle that can travel on the road.
  • the same vehicle may be included in multiple categories.
  • Vessels may include, for example, marine jets, boats, tankers and the like.
  • Aircraft may include, for example, fixed-wing aircraft, rotorcraft, and the like.
  • the position of the aerial image projection device 1 is arbitrary inside and outside the moving body 10.
  • the aerial image projection device 1 may be located, for example, in the dashboard of the moving body 10.
  • the aerial image projection device 1 is configured so that the second light L2 reflected by the first reflecting element 2 is reflected by the windshield 11 as the third reflecting element 4 and incident on the eyes 12a of the user 12. You can. As a result, the user 12 can visually recognize the aerial image.
  • the moving body 10 equipped with the aerial image projection device 1 can make the user 12 visually recognize a high-resolution aerial image.
  • the descriptions such as “first” and “second” are identifiers for distinguishing the configuration.
  • the configurations distinguished by the descriptions such as “first” and “second” in the present disclosure can exchange numbers in the configurations.
  • the first reflecting element can exchange the identifiers “first” and “second” with the second reflecting element.
  • the exchange of identifiers takes place at the same time.
  • the configuration is distinguished.
  • the identifier may be deleted.
  • the configuration with the identifier removed is distinguished by a code. Based solely on the description of identifiers such as “first” and “second” in the present disclosure, it shall not be used as a basis for interpreting the order of the configurations and for the existence of identifiers with smaller numbers.
  • the aerial image projection device includes a first reflecting element, a second reflecting element, and a first optical element.
  • the first reflecting element is configured to transmit a part of the first light incident from the first direction in the second direction and reflect a part of the second light incident from the second direction in the third direction. Will be done.
  • the second reflecting element is configured to retroreflect the first light as the second light.
  • the first optical element is located between the first reflecting element and the second reflecting element. The first optical element is configured to condense the first light and condense the second light.
  • the aerial image projection device of one embodiment of the present disclosure it is possible to increase the resolution of the aerial image visually recognized by the user.
  • Aerial image projection device 2 1st reflecting element 3 2nd reflecting element 4 3rd reflecting element 5 1st optical element 51
  • Microlens array 51a Microlens 52 Concave mirror 6 2nd optical element 7
  • Phase difference plate 8 Display device (liquid crystal display) Device) 81
  • Backlight 82 LCD panel 9 Camera 10 Mobile 11 Windshield 12 User 12a Eyes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

This aerial image projection device includes a first reflective element, a second reflective element, and a first optical element. The first reflective element is configured to transmit, in a second direction, part of first image light incident from a first direction and showing an image, and reflect, in a third direction, part of second image light incident from the second direction. The second reflective element is configured to retroreflect, as the second image light, the first image light transmitted through the first reflective element. The first optical element is located between the first reflective element and the second reflective element, and configured to collect the first image light and collect the second image light.

Description

空中像投影装置Aerial image projection device
 本開示は、空中像投影装置に関する。 This disclosure relates to an aerial image projection device.
 従来技術の一例は、特許文献1に記載されている。 An example of the prior art is described in Patent Document 1.
特開2011-253128号公報Japanese Unexamined Patent Publication No. 2011-253128
 本開示の一実施形態に係る空中像投影装置は、第1反射素子と、第2反射素子と、第1光学素子とを含む。前記第1反射素子は、第1方向から入射する第1光の一部を第2方向に透過し、前記第2方向から入射する第2光の一部を第3方向に反射するように構成される。前記第2反射素子は、前記第1光を前記第2光として再帰反射するように構成される。前記第1光学素子は、前記第1反射素子と前記第2反射素子との間に位置する。前記第1光学素子は、前記第1光を集光し、前記第2光を集光するように構成される。 The aerial image projection device according to the embodiment of the present disclosure includes a first reflecting element, a second reflecting element, and a first optical element. The first reflecting element is configured to transmit a part of the first light incident from the first direction in the second direction and reflect a part of the second light incident from the second direction in the third direction. Will be done. The second reflecting element is configured to retroreflect the first light as the second light. The first optical element is located between the first reflecting element and the second reflecting element. The first optical element is configured to condense the first light and condense the second light.
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。 The purposes, features, and advantages of this disclosure will become clearer from the detailed description and drawings below.
図1は、空中像投影装置の一例を概略的に示す図である。FIG. 1 is a diagram schematically showing an example of an aerial image projection device. 図2は、空中像投影装置の他の例を概略的に示す図である。FIG. 2 is a diagram schematically showing another example of the aerial image projection device. 図3は、空中像投影装置の他の例を概略的に示す図である。FIG. 3 is a diagram schematically showing another example of the aerial image projection device. 図4は、空中像投影装置の他の例を概略的に示す図である。FIG. 4 is a diagram schematically showing another example of the aerial image projection device. 図5は、空中像投影装置の他の例を概略的に示す図である。FIG. 5 is a diagram schematically showing another example of the aerial image projection device. 図6は、空中像投影装置の他の例を概略的に示す図である。FIG. 6 is a diagram schematically showing another example of the aerial image projection device. 図7は、空中像投影装置が搭載された移動体の一例を概略的に示す図である。FIG. 7 is a diagram schematically showing an example of a moving body equipped with an aerial image projection device.
 本開示の空中像投影装置の基礎となる構成として、ディスプレイが出射する光を、偏光フィルタおよび再帰反射部材を有する光学素子を用いて、空中像として結像させる装置が知られている。 As a basic configuration of the aerial image projection device of the present disclosure, there is known a device that forms an image of light emitted by a display as an aerial image using an optical element having a polarizing filter and a retroreflective member.
 以下、本開示の実施形態について、図面を参照しながら説明がされる。なお、以下の説明で用いられる図は模式的なものである。図面上の寸法比率等は現実のものとは必ずしも一致していない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The figures used in the following description are schematic. The dimensional ratios on the drawings do not always match the actual ones.
 空中像投影装置1は、第1反射素子2と、第2反射素子3と、第1光学素子5とを備える。空中像投影装置1は、表示装置8を備えてよい。 The aerial image projection device 1 includes a first reflecting element 2, a second reflecting element 3, and a first optical element 5. The aerial image projection device 1 may include a display device 8.
 表示装置8は、透過型の表示装置であってよいし、自発光型の表示装置であってよい。透過型の表示装置としては、例えば液晶表示装置を使用しうる。自発光型の表示装置としては、例えば発光ダイオード(Light Emitting Diode;LED)素子、有機エレクトロルミネッセンス(Organic Electro Luminescence;OEL)素子、有機発光ダイオード(Organic Light Emitting Diode;OLED)素子、半導体レーザ(Laser Diode;LD)素子等の自発光素子を含む表示装置を使用しうる。 The display device 8 may be a transmissive display device or a self-luminous display device. As the transmissive display device, for example, a liquid crystal display device can be used. Examples of the self-luminous display device include a light emitting diode (LED) element, an organic electroluminescence (OEL) element, an organic light emitting diode (OLED) element, and a semiconductor laser (Laser). A display device including a self-luminous element such as a Diode; LD) element can be used.
 第1反射素子2は、第1方向D1から入射する第1画像光(以下、第1光ともいう)L1の少なくとも一部を第2方向D2に透過するように構成される。第1反射素子2は、第1光L1の残部を反射するように構成されうる。第1反射素子2は、第2方向D2から入射する第2画像光(以下、第2光ともいう)L2の一部を第3方向D3に反射するように構成される。第1反射素子2は、第2光L2の残部を透過するように構成されうる。第1光L1および第2光L2は、画像を示す画像光であってよい。第1光L1は、表示装置8から発せられる画像光であってよい。 The first reflecting element 2 is configured to transmit at least a part of the first image light (hereinafter, also referred to as the first light) L1 incident from the first direction D1 in the second direction D2. The first reflecting element 2 may be configured to reflect the rest of the first light L1. The first reflecting element 2 is configured to reflect a part of the second image light (hereinafter, also referred to as the second light) L2 incident from the second direction D2 in the third direction D3. The first reflecting element 2 may be configured to transmit the rest of the second light L2. The first light L1 and the second light L2 may be image lights indicating an image. The first light L1 may be image light emitted from the display device 8.
 第1光L1は、第1方向D1に伝播する平行光であってよいし、第1方向D1と略平行な方向に伝播する光であってよい。第1光L1は、主伝播方向が第1方向D1である光であるともいえる。第2光L2は、第2方向D2に伝播する平行光であってよいし、第2方向D2と略平行な方向に伝播する光であってよい。第2光L2は、主伝播方向が第2方向D2である光であるともいえる。第1反射素子2は、第2光L2の一部を第3方向D3に伝播する平行光として反射してよいし、第2光L2の一部を第3方向D3と略平行な方向に伝播する光として反射してよい。第1反射素子2は、第2光L2の一部を、主伝播方向が第3方向D3に沿っている光として反射するともいえる。本明細書において光の伝播方向について言及する場合、光の実質的な伝播方向を意味している。本明細書において光の伝播方向について言及する場合、光の主伝播方向について言及しているともいえる。 The first light L1 may be parallel light propagating in the first direction D1 or light propagating in a direction substantially parallel to the first direction D1. It can be said that the first light L1 is light whose main propagation direction is the first direction D1. The second light L2 may be parallel light propagating in the second direction D2, or may be light propagating in a direction substantially parallel to the second direction D2. It can be said that the second light L2 is light whose main propagation direction is the second direction D2. The first reflecting element 2 may reflect a part of the second light L2 as parallel light propagating in the third direction D3, or propagate a part of the second light L2 in a direction substantially parallel to the third direction D3. It may be reflected as light. It can be said that the first reflecting element 2 reflects a part of the second light L2 as light whose main propagation direction is along the third direction D3. When referring to the propagation direction of light in the present specification, it means a substantial propagation direction of light. When referring to the propagation direction of light in the present specification, it can be said that the main propagation direction of light is referred to.
 図1では、表示装置8から射出された第1光L1が第1方向D1に伝播し、第1反射素子2に入射する例が示されている。図1では、図解を容易にするために、表示装置8に含まれる1つの画素から射出された光の伝播経路(光路ともいう)が示されている。 FIG. 1 shows an example in which the first light L1 emitted from the display device 8 propagates in the first direction D1 and is incident on the first reflecting element 2. In FIG. 1, in order to facilitate the illustration, a propagation path (also referred to as an optical path) of light emitted from one pixel included in the display device 8 is shown.
 第1反射素子2は、例えばハーフミラー、ワイヤグリッド偏光子、反射型偏光板、またはビームスプリッタ等であってよい。第1反射素子2が偏光板である場合、透過した第1光L1は、偏光方向が第1反射素子2の透過軸に沿っている直線偏光、またはわずかな楕円偏光となる。第1反射素子2は、光透過性基材と、光透過性基材の表面上に形成された複数の金属細線とを含んで構成されるワイヤグリッド偏光子であってよい。光透過性基材は、例えばトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、またはシクロオレフィンポリマー(COP)フィルム等であってよい。複数の金属細線は、例えばアルミニウム、クロム、酸化チタン等の金属材料によって形成されてよい。 The first reflecting element 2 may be, for example, a half mirror, a wire grid polarizer, a reflective polarizing plate, a beam splitter, or the like. When the first reflecting element 2 is a polarizing plate, the transmitted first light L1 is linearly polarized light whose polarization direction is along the transmission axis of the first reflecting element 2 or slightly elliptically polarized light. The first reflecting element 2 may be a wire grid polarizer composed of a light transmitting base material and a plurality of fine metal wires formed on the surface of the light transmitting base material. The light-transmitting substrate may be, for example, a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a cycloolefin polymer (COP) film, or the like. The plurality of thin metal wires may be formed of a metal material such as aluminum, chromium, or titanium oxide.
 第2反射素子3は、第1反射素子2を透過した第1光L1を第2光L2として再帰反射するように構成される。第2光L2は、第1反射素子2を透過した第1光L1が第2反射素子3によって反射された反射光である。第2反射素子3は、第1反射素子2から第2方向D2に離隔して位置してよい。 The second reflecting element 3 is configured to retroreflect the first light L1 transmitted through the first reflecting element 2 as the second light L2. The second light L2 is the reflected light in which the first light L1 transmitted through the first reflecting element 2 is reflected by the second reflecting element 3. The second reflecting element 3 may be located at a distance from the first reflecting element 2 in the second direction D2.
 第2反射素子3は、リトロリフレクタとも称される再帰反射素子であってよい。第2反射素子3は、例えばコーナーキューブ型再帰反射素子またはマイクロビーズ型再帰反射素子であってよい。 The second reflective element 3 may be a retroreflective element, which is also called a retroreflector. The second reflective element 3 may be, for example, a corner cube type retroreflective element or a microbead type retroreflective element.
 第1光学素子5は、例えば図1に示されるように、第1反射素子2と第2反射素子3との間に位置する。第1光学素子5は、第1反射素子2と第2反射素子3との間における第1光L1および第2光L2の伝播経路に位置しうる。 The first optical element 5 is located between the first reflecting element 2 and the second reflecting element 3, as shown in FIG. 1, for example. The first optical element 5 may be located in the propagation path of the first light L1 and the second light L2 between the first reflecting element 2 and the second reflecting element 3.
 第1光学素子5は、集光機能を有している。第1光学素子5は、第1反射素子2を透過した第1光L1を集光するように構成される。第1光学素子5は、第2反射素子3によって再帰反射された第2光L2を集光するように構成される。第1光学素子5は、例えば、1つまたは複数のレンズを含んで構成されてよいし、1つまたは複数のミラーを含んで構成されてよい。 The first optical element 5 has a light collecting function. The first optical element 5 is configured to collect the first light L1 that has passed through the first reflecting element 2. The first optical element 5 is configured to collect the second light L2 retroreflected by the second reflecting element 3. The first optical element 5 may be configured to include, for example, one or more lenses, or may be configured to include one or more mirrors.
 第1光学素子5は、例えば図1に示されるように、両凸レンズであってよい。両凸レンズのレンズ面は、少なくとも一部に球面形状を含んでよいし、少なくとも一部に非球面形状を含んでよい。両凸レンズのレンズ面は、少なくとも一部に自由曲面形状を含んでよい。 The first optical element 5 may be a biconvex lens, for example, as shown in FIG. The lens surface of the biconvex lens may include at least a spherical shape or at least a part aspherical shape. The lens surface of the biconvex lens may include a free curved surface shape at least in part.
 第1光学素子5は、フレネルレンズであってよい。これにより、第1光学素子5の厚みを低減できる。その結果、空中像投影装置1を小型化することができる。フレネルレンズの各屈折部は、少なくとも一部に球面形状を含んでよいし、少なくとも一部に非球面形状を含んでよい。フレネルレンズの各屈折部は、少なくとも一部に自由曲面形状を含んでよい。 The first optical element 5 may be a Fresnel lens. Thereby, the thickness of the first optical element 5 can be reduced. As a result, the aerial image projection device 1 can be miniaturized. Each refracting portion of the Fresnel lens may include a spherical shape at least in part, or may include an aspherical shape in at least a part. Each refracting portion of the Fresnel lens may include a free curved surface shape at least in part.
 第1光学素子5は、例えば、2つの平凸レンズを第2方向D2に並べることによって構成されてよい。2つの平凸レンズは、凸状のレンズ面同士が対向するように配置されてよいし、平坦なレンズ面同士が対向するように配置されてよい。平凸レンズの凸状のレンズ面は、少なくとも一部に球面形状を含んでよいし、少なくとも一部に非球面形状を含んでよい。平凸レンズの凸状のレンズ面は、少なくとも一部に自由曲面形状を含んでよい。第1光学素子5を構成するレンズの数は、1つまたは2つに限られず、3つであってよいし、4つ以上であってよい。 The first optical element 5 may be configured by, for example, arranging two plano-convex lenses in the second direction D2. The two plano-convex lenses may be arranged so that the convex lens surfaces face each other, or the flat lens surfaces may be arranged so as to face each other. The convex lens surface of the plano-convex lens may include at least a spherical shape or at least a part aspherical shape. The convex lens surface of the plano-convex lens may include a free curved surface shape at least in part. The number of lenses constituting the first optical element 5 is not limited to one or two, and may be three or four or more.
 第1光学素子5は、レンズ面の一部または全部に、該レンズ面における第1光L1および第2光L2の少なくとも一方の反射を低減するAR(Anti-Reflection)コート層が形成されていてよい。これにより、空中像投影装置1の光利用効率を高めることができる。 The first optical element 5 has an AR (Anti-Reflection) coating layer formed on a part or all of the lens surface to reduce reflection of at least one of the first light L1 and the second light L2 on the lens surface. good. As a result, the light utilization efficiency of the aerial image projection device 1 can be improved.
 空中像投影装置1による空中像の結像について説明する。表示装置8から発せられた第1光L1は、第1方向D1に伝播し、第1反射素子2に到達する。第1反射素子2に到達した第1光L1の一部は、第1反射素子2を透過し、第2方向D2に伝播する。第1反射素子2を透過した第1光L1は、第1光学素子5によって集光されて、第2反射素子3に到達する。第2反射素子3に到達した第1光L1は、第2反射素子3によって再帰反射され、第2光L2となる。第2光L2は、第1光学素子5によって集光されて、第1反射素子2に到達する。第1反射素子2に到達した第2光L2の一部は、第1反射素子2によって第3方向D3に反射される。第1反射素子2によって反射された第2光L2は、空中において結像され、空中像として利用者に視認される。 The imaging of an aerial image by the aerial image projection device 1 will be described. The first light L1 emitted from the display device 8 propagates in the first direction D1 and reaches the first reflecting element 2. A part of the first light L1 that has reached the first reflecting element 2 passes through the first reflecting element 2 and propagates in the second direction D2. The first light L1 transmitted through the first reflecting element 2 is focused by the first optical element 5 and reaches the second reflecting element 3. The first light L1 that has reached the second reflecting element 3 is retroreflected by the second reflecting element 3 to become the second light L2. The second light L2 is focused by the first optical element 5 and reaches the first reflecting element 2. A part of the second light L2 that has reached the first reflecting element 2 is reflected by the first reflecting element 2 in the third direction D3. The second light L2 reflected by the first reflecting element 2 is imaged in the air and visually recognized by the user as an aerial image.
 再帰反射素子によって再帰反射されるべき光が、再帰反射素子の反射面における広い範囲に入射する場合、該光は、再帰反射素子を構成するプリズムのサイズの影響および該プリズムにおける回折の影響を受ける虞がある。その結果、再帰反射された光が拡散してしまい、空中像がぼやけた画像となる虞がある。再帰反射素子を構成するプリズムにおける回折の影響は、表示装置と再帰反射素子との距離が長くなればなるほど顕著になる。本実施形態の空中像投影装置1では、表示装置8と第2反射素子3との間に集光機能を有する第1光学素子5が設けられている。これにより、第1光学素子5によって集光された光が、第2反射素子3の反射面における比較的狭い範囲に入射する。これにより、第2反射素子3によって再帰反射された第2光L2の拡散を低減できる。その結果、空中像を高解像度化することができる。 When the light to be retroreflected by the retroreflective element is incident on a wide range on the reflecting surface of the retroreflective element, the light is affected by the size of the prisms constituting the retroreflective element and the diffraction effect on the prism. There is a risk. As a result, the retroreflected light is diffused, and the aerial image may become a blurred image. The effect of diffraction on the prisms that make up the retroreflective element becomes more pronounced as the distance between the display device and the retroreflective element increases. In the aerial image projection device 1 of the present embodiment, a first optical element 5 having a condensing function is provided between the display device 8 and the second reflecting element 3. As a result, the light collected by the first optical element 5 is incident on a relatively narrow range on the reflecting surface of the second reflecting element 3. As a result, the diffusion of the second light L2 retroreflected by the second reflecting element 3 can be reduced. As a result, the resolution of the aerial image can be increased.
 本実施形態の空中像投影装置1では、第2光L2を、第1光学素子5によってさらに集光し、第1反射素子2に入射させている。これにより、第2光L2の拡散をさらに低減できるため、空中像を高解像度化することができる。 In the aerial image projection device 1 of the present embodiment, the second light L2 is further focused by the first optical element 5 and incident on the first reflection element 2. As a result, the diffusion of the second light L2 can be further reduced, so that the resolution of the aerial image can be increased.
 第1光学素子5は、例えば図2に示されるように、マイクロレンズアレイ51であってよい。マイクロレンズアレイ51は、複数のマイクロレンズ51aを基板上に配列して構成された光学素子である。複数のマイクロレンズ51aは、基板の主面に直交する方向から見たときに、その形状が、円形状であってよいし、矩形状であってよいし、多角形状であってよい。複数のマイクロレンズ51aは、規則的に(すなわち、行列状に)配列されてよいし、不規則的に配列されてよい。各マイクロレンズ51aのレンズ面は、少なくとも一部に球面形状を含んでよいし、少なくとも一部に非球面形状を含んでよい。各マイクロレンズ51aのレンズ面は、少なくとも一部に自由曲面形状を含んでよい。第1光学素子5がマイクロレンズアレイ51である場合、複数のマイクロレンズ51aの配列ならびに各マイクロレンズ51の形状およびサイズを調整することによって、第1光L1および第2光L2の精緻な配光制御を行うことができる。その結果、空中像を高解像度化することができる。 The first optical element 5 may be a microlens array 51, for example, as shown in FIG. The microlens array 51 is an optical element configured by arranging a plurality of microlenses 51a on a substrate. The shape of the plurality of microlenses 51a may be circular, rectangular, or polygonal when viewed from a direction orthogonal to the main surface of the substrate. The plurality of microlenses 51a may be arranged regularly (that is, in a matrix) or irregularly. The lens surface of each microlens 51a may include at least a spherical shape or at least a part aspherical shape. The lens surface of each microlens 51a may include a free curved surface shape at least in part. When the first optical element 5 is a microlens array 51, the precise light distribution of the first light L1 and the second light L2 is performed by adjusting the arrangement of the plurality of microlenses 51a and the shape and size of each microlens 51. Control can be performed. As a result, the resolution of the aerial image can be increased.
 第1光学素子5は、例えば図3に示されるように、凹面ミラー52であってよい。凹面ミラー52の反射面は、少なくとも一部に球面形状を含んでよいし、少なくとも一部に非球面形状を含んでよい。凹面ミラー52の反射面は、少なくとも一部に自由曲面形状を含んでよい。第1光学素子5が凹面ミラー52である場合、簡易な構成の空中像投影装置1を用いて、空中像を高解像度化することができる。 The first optical element 5 may be a concave mirror 52, for example, as shown in FIG. The reflective surface of the concave mirror 52 may include at least a spherical shape or at least a part aspherical shape. The reflective surface of the concave mirror 52 may include a free curved surface shape at least in part. When the first optical element 5 is a concave mirror 52, the resolution of the aerial image can be increased by using the aerial image projection device 1 having a simple structure.
 第2反射素子3は、第1光学素子5の集光点近傍に位置してよい。これにより、第1光学素子5によって集光された第1光L1は、第2反射素子3の反射面における狭い範囲に入射する。その結果、第2光L2の拡散を低減できるため、空中像を高解像度化することができる。 The second reflecting element 3 may be located near the focusing point of the first optical element 5. As a result, the first light L1 focused by the first optical element 5 is incident on a narrow range on the reflecting surface of the second reflecting element 3. As a result, the diffusion of the second light L2 can be reduced, so that the resolution of the aerial image can be increased.
 空中像投影装置1は、例えば図4に示されるように、第2光学素子6を備えてよい。第2光学素子6は、第2反射素子3と第1光学素子5との間に位置してよい。第2光学素子6は、第2反射素子3の反射面に近接して位置しうる。第2光学素子6は、第2光L2に含まれる散乱光を集光するように構成されてよい。これにより、第2反射素子3によって再帰反射された第2光L2の拡散を低減できる。その結果、空中像を高解像度化することができる。 The aerial image projection device 1 may include a second optical element 6, for example, as shown in FIG. The second optical element 6 may be located between the second reflecting element 3 and the first optical element 5. The second optical element 6 may be located close to the reflecting surface of the second reflecting element 3. The second optical element 6 may be configured to collect the scattered light contained in the second light L2. As a result, the diffusion of the second light L2 retroreflected by the second reflecting element 3 can be reduced. As a result, the resolution of the aerial image can be increased.
 第2光学素子6は、例えば平凸レンズ、両凸レンズ、メニスカスレンズ、またはフレネルレンズ等のレンズであってよい。第2光学素子6は、1つまたは複数のレンズを含んで構成されてよい。第2光学素子6は、例えばマイクロレンズアレイであってよい。 The second optical element 6 may be, for example, a lens such as a plano-convex lens, a biconvex lens, a meniscus lens, or a Fresnel lens. The second optical element 6 may be configured to include one or more lenses. The second optical element 6 may be, for example, a microlens array.
 表示装置8は、第1反射素子2から第1方向D1に離隔して位置してよい。表示装置8は、表示面8aから第1光L1を発するように構成されてよい。表示装置8が発する第1光L1は、動画像を示す画像光であってよいし、静止画像を示す画像光であってよい。 The display device 8 may be located at a distance from the first reflecting element 2 in the first direction D1. The display device 8 may be configured to emit the first light L1 from the display surface 8a. The first light L1 emitted by the display device 8 may be an image light indicating a moving image or an image light indicating a still image.
 表示装置8は、バックライト81と液晶パネル82とを含む液晶表示装置8であってよい。バックライト81は、表示面8aの背面側に表示面8aに対向して2次元的に配列された複数の光源を含みうる。光源は、例えばLED、冷陰極蛍光ランプ、ハロゲンランプ、またはキセノンランプであってよい。表示面8aの背面側に表示面8aに対向して配置された複数の光源を有するバックライト81は、直下型方式のバックライトと呼ぶことができる。バックライト81は、液晶パネル82の外周部に配列された複数の光源を含み、導光板により光を表示面8aの背面全体に導光してよい。液晶パネル82の外周部に配置された複数の光源を有するバックライト81は、エッジライト方式のバックライトと呼ぶことができる。バックライト81は、光源から発せられた光を表示面8aに均一化して照射するために、レンズアレイ、導光板、及び拡散板等を含んで構成されてよい。 The display device 8 may be a liquid crystal display device 8 including a backlight 81 and a liquid crystal panel 82. The backlight 81 may include a plurality of light sources arranged two-dimensionally on the back side of the display surface 8a so as to face the display surface 8a. The light source may be, for example, an LED, a cold cathode fluorescent lamp, a halogen lamp, or a xenon lamp. The backlight 81 having a plurality of light sources arranged on the back side of the display surface 8a so as to face the display surface 8a can be called a direct type backlight. The backlight 81 includes a plurality of light sources arranged on the outer peripheral portion of the liquid crystal panel 82, and the light may be guided to the entire back surface of the display surface 8a by the light guide plate. The backlight 81 having a plurality of light sources arranged on the outer peripheral portion of the liquid crystal panel 82 can be called an edge light type backlight. The backlight 81 may include a lens array, a light guide plate, a diffuser plate, and the like in order to uniformly irradiate the display surface 8a with the light emitted from the light source.
 液晶パネル82は、公知の液晶パネルの構成を有してよい。公知の液晶パネルとしては、IPS(In-Plane Switching)方式、FFS(Fringe Field Switching)方式、VA(Vertical Alignment)方式、および、ECB(Electrically Controlled Birefringence)方式等の種々の液晶パネルを採用しうる。液晶パネル82は、第1偏光板、カラーフィルタ基板、液晶層、アレイ基板および第2偏光板を含んで構成されてよい。第1偏光板は、液晶表示装置8の表示面8a側に位置してよい。 The liquid crystal panel 82 may have a known liquid crystal panel configuration. As known liquid crystal panels, various liquid crystal panels such as IPS (In-Plane Switching) method, FFS (Fringe Field Switching) method, VA (Vertical Alignment) method, and ECB (Electrically Controlled Birefringence) method can be adopted. .. The liquid crystal panel 82 may include a first polarizing plate, a color filter substrate, a liquid crystal layer, an array substrate, and a second polarizing plate. The first polarizing plate may be located on the display surface 8a side of the liquid crystal display device 8.
 液晶表示装置8が発する第1光L1の偏光状態は、第1偏光板の偏光方向に沿った直線偏光であってよい。第1反射素子2が反射型偏光板である場合、第1反射素子2の透過軸に沿って第1光L1が偏光していると、第1光L1は、当該第1反射素子2による反射を低減できる。例えば、第1偏光板の偏光方向は、第1反射素子2の透過軸に沿っている。 The polarization state of the first light L1 emitted by the liquid crystal display device 8 may be linearly polarized light along the polarization direction of the first polarizing plate. When the first reflecting element 2 is a reflective polarizing plate and the first light L1 is polarized along the transmission axis of the first reflecting element 2, the first light L1 is reflected by the first reflecting element 2. Can be reduced. For example, the polarization direction of the first polarizing plate is along the transmission axis of the first reflecting element 2.
 空中像投影装置1は、例えば図5に示されるように、位相差板7を備えてよい。位相差板7は、第2反射素子3と第1光学素子5との間に位置してよい。位相差板7は、透過する光の偏光方向を回転させるように構成されてよい。 The aerial image projection device 1 may include a retardation plate 7 as shown in FIG. 5, for example. The retardation plate 7 may be located between the second reflecting element 3 and the first optical element 5. The retardation plate 7 may be configured to rotate the polarization direction of the transmitted light.
 第1反射素子2が偏光子である場合、第1反射素子2を透過した第1光L1は、偏光方向が第1反射素子2の透過軸に沿っている直線偏光、またはわずかな楕円偏光である。当該偏光が第2反射素子3によって再帰反射された第2光L2の偏光状態は、第1反射素子2の偏光方向に沿う直線偏光、またはわずかな楕円偏光でありうる。したがって、第2光L2がそのままの偏光子を介さずに第1反射素子2に入射する場合、第1反射素子2の透過軸に第2光L2の偏光方向が沿ってしまい、第1反射素子2を透過する第2光L2の割合が多くなりうる。 When the first reflecting element 2 is a polarizer, the first light L1 transmitted through the first reflecting element 2 is linearly polarized light whose polarization direction is along the transmission axis of the first reflecting element 2 or slightly elliptically polarized light. be. The polarization state of the second light L2 whose polarized light is retroreflected by the second reflecting element 3 may be linearly polarized light along the polarization direction of the first reflecting element 2 or slightly elliptically polarized light. Therefore, when the second light L2 is incident on the first reflecting element 2 without passing through the polarizer as it is, the polarization direction of the second light L2 is aligned with the transmission axis of the first reflecting element 2, and the first reflecting element The proportion of the second light L2 transmitted through 2 can be increased.
 位相差板7は、例えば1/4波長板であってよい。第1反射素子2の透過軸に沿っている直線偏光、またはわずかな楕円偏光である第1光L1が1/4波長板を通過すると、第1回転方向に回転する円偏光となる。この円偏光は、第2反射素子3で再帰反射すると、第1回転方向と逆向きの第2方向に回転する円偏光の第2光L2となる。この円偏光の第2光L2が1/4位相差板を通過すると、第2光L2は、第1反射素子2の透過軸に交わる方向に沿った直線偏光となる。つまり、第2光L2は、第1反射素子2の反射軸に沿った直線偏光となる。位相差板7を用いて第2光L2の偏光状態を第1光L1と交わる方向に沿った直線偏光、またはわずかな楕円偏光とすることにより、第1反射素子2における第2光L2の反射率を高めることができる。その結果、空中像を高解像度化および高輝度化することができる。 The retardation plate 7 may be, for example, a 1/4 wavelength plate. When the first light L1, which is linearly polarized light along the transmission axis of the first reflecting element 2 or slightly elliptically polarized light, passes through the 1/4 wave plate, it becomes circularly polarized light that rotates in the first rotation direction. When this circularly polarized light is retroreflected by the second reflecting element 3, it becomes the second light L2 of circularly polarized light that rotates in the second direction opposite to the first rotation direction. When the circularly polarized second light L2 passes through the 1/4 retardation plate, the second light L2 becomes linearly polarized light along the direction intersecting the transmission axis of the first reflecting element 2. That is, the second light L2 is linearly polarized light along the reflection axis of the first reflection element 2. Reflection of the second light L2 by the first reflecting element 2 by using the retardation plate 7 to change the polarization state of the second light L2 to linearly polarized light along the direction intersecting with the first light L1 or slightly elliptically polarized light. The rate can be increased. As a result, the aerial image can be made high in resolution and high in brightness.
 偏光板7の利用は、第1反射素子2が偏光子である場合に限られない。例えば、偏光板7によって、第1反射素子2に対してs偏光で第2光L2を入射させることによって、ブリュースター角近傍での高い反射率を利用することができる。 The use of the polarizing plate 7 is not limited to the case where the first reflecting element 2 is a polarizer. For example, by making the second light L2 incident on the first reflecting element 2 with s polarized light by the polarizing plate 7, high reflectance in the vicinity of Brewster's angle can be utilized.
 空中像投影装置1は、液晶表示装置8が発する第1光L1の偏光方向が、第1反射素子2の偏光方向に沿っていてよい。これにより、第1反射素子2における第1光L1の透過率を高めることができる。その結果、空中像投影装置1の光利用率を高めることができる。したがって、空中像を高解像度化および高輝度化することができる。あるいは、空中像を高解像度化しつつ、バックライト81の光量を減らし、空中像投影装置1を低消費電力化することができる。 In the aerial image projection device 1, the polarization direction of the first light L1 emitted by the liquid crystal display device 8 may be along the polarization direction of the first reflection element 2. As a result, the transmittance of the first light L1 in the first reflecting element 2 can be increased. As a result, the light utilization rate of the aerial image projection device 1 can be increased. Therefore, it is possible to increase the resolution and the brightness of the aerial image. Alternatively, it is possible to reduce the amount of light of the backlight 81 and reduce the power consumption of the aerial image projection device 1 while increasing the resolution of the aerial image.
 表示装置8は、液晶表示装置8に限られず、LED表示装置、OEL表示装置またはOLED表示装置等であってよい。 The display device 8 is not limited to the liquid crystal display device 8, and may be an LED display device, an OEL display device, an OLED display device, or the like.
 第1光学素子5は、表示装置8と第2反射素子3との間に位置している。空中像投影装置1は、表示装置8が第1光学素子5の焦点近傍に位置し、かつ、第2反射素子3が第1光学素子5の集光点近傍に位置するように構成されてよい。すなわち、空中像投影装置1は、表示装置8と第2反射素子3とが光学的に共役となるように構成されてよい。これにより、第1反射素子5を平行移動または回転させるだけで、空中の様々な場所に高解像度の空中像を投影することが可能になる。 The first optical element 5 is located between the display device 8 and the second reflecting element 3. The aerial image projection device 1 may be configured such that the display device 8 is located near the focal point of the first optical element 5 and the second reflecting element 3 is located near the focusing point of the first optical element 5. .. That is, the aerial image projection device 1 may be configured such that the display device 8 and the second reflecting element 3 are optically conjugated. This makes it possible to project a high-resolution aerial image at various places in the air simply by translating or rotating the first reflecting element 5.
 空中像投影装置1は、例えば図6に示されるように、カメラ9を備えてよい。カメラ9は、第1反射素子2を介して第3方向D3を撮像するように構成されてよい。 The aerial image projection device 1 may include a camera 9, for example, as shown in FIG. The camera 9 may be configured to image the third direction D3 via the first reflecting element 2.
 カメラ9は、可視光カメラまたは赤外線カメラであってよい。赤外線カメラは、遠赤外線カメラであってよい。カメラ9は、可視光画像および赤外光画像を撮像してよい。カメラ9は、単眼カメラまたはステレオカメラであってよい。カメラ9は、例えばCCD(Charge Coupled Device)撮像素子またはCMOS(Complementary Metal Oxide Semiconductor)撮像素子を含んでよい。 The camera 9 may be a visible light camera or an infrared camera. The infrared camera may be a far infrared camera. The camera 9 may capture a visible light image and an infrared light image. The camera 9 may be a monocular camera or a stereo camera. The camera 9 may include, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 カメラ9は、利用者を撮像するように構成されてよい。カメラ9は、利用者の顔を撮像してよい。カメラ9は、利用者の眼を撮像してよい。空中像投影装置1は、撮像画像から利用者の眼の位置を検出するように構成されてよい。空中像投影装置1は、検出した利用者の眼の位置に基づいて、空中像の位置および輝度等を調整するように構成されてよい。これにより、様々な場所に位置する利用者に高解像度の空中像を視認させることが可能になる。カメラ9は、利用者の眼を撮像せず、利用者の眼の位置を特定可能にする、利用者の顔に含まれる特徴点を撮像してよい。特徴点は、利用者の眉、鼻および唇等を含んでよい。 The camera 9 may be configured to image the user. The camera 9 may take an image of the user's face. The camera 9 may image the user's eyes. The aerial image projection device 1 may be configured to detect the position of the user's eye from the captured image. The aerial image projection device 1 may be configured to adjust the position and brightness of the aerial image based on the detected position of the user's eyes. This makes it possible for users located in various places to visually recognize a high-resolution aerial image. The camera 9 does not image the user's eyes, but may image the feature points included in the user's face that make it possible to identify the position of the user's eyes. The feature points may include the user's eyebrows, nose, lips and the like.
 カメラ9は、ミラー等の反射部材で反射した利用者の像を、第1反射素子2を介して撮像するように構成されてよい。これにより、カメラ9を配置する場所の自由度を高めることができる。 The camera 9 may be configured to capture an image of the user reflected by a reflecting member such as a mirror via the first reflecting element 2. Thereby, the degree of freedom of the place where the camera 9 is arranged can be increased.
 空中像投影装置1は、カメラ9を備えず、装置外の外部カメラに接続されていてよい。空中像投影装置1は、外部カメラからの信号を入力する入力端子を備えてよい。外部カメラは、入力端子に直接的に接続されてよい。外部カメラは、共有のネットワークを介して入力端子に間接的に接続されてよい。 The aerial image projection device 1 does not include the camera 9, and may be connected to an external camera outside the device. The aerial image projection device 1 may include an input terminal for inputting a signal from an external camera. The external camera may be directly connected to the input terminal. The external camera may be indirectly connected to the input terminal via a shared network.
 空中像投影装置1は、例えば図6に示されるように、第3反射素子4を備えてよい。第3反射素子4は、第1反射素子2で反射した第2光L2を利用者に向かって反射するように構成されてよい。これにより、利用者は様々な方向から空中像を視認できる。第3反射素子4は、ミラーであってよいし、例えばガラス、光反射樹脂等を含んで構成されてよい。空中像投影装置1が、ウインドシールドを備えた移動体に搭載される場合、ウインドシールドは第3反射素子4を兼ねてよい。 The aerial image projection device 1 may include a third reflecting element 4, for example, as shown in FIG. The third reflecting element 4 may be configured to reflect the second light L2 reflected by the first reflecting element 2 toward the user. As a result, the user can visually recognize the aerial image from various directions. The third reflecting element 4 may be a mirror, or may be configured to include, for example, glass, a light reflecting resin, or the like. When the aerial image projection device 1 is mounted on a moving body provided with a windshield, the windshield may also serve as a third reflecting element 4.
 カメラ9は、第3反射素子4で反射した利用者の像を、第1反射素子2を介して撮像するように構成されてよい。これにより、カメラ9を配置する場所の自由度を高めつつ、利用者を撮像することが可能になる。 The camera 9 may be configured to capture an image of the user reflected by the third reflecting element 4 via the first reflecting element 2. This makes it possible to take an image of the user while increasing the degree of freedom in the place where the camera 9 is arranged.
 例えば図7に示されるように、本開示の一実施形態に係る空中像投影装置1は、移動体10に搭載されてよい。 For example, as shown in FIG. 7, the aerial image projection device 1 according to the embodiment of the present disclosure may be mounted on the moving body 10.
 本開示における「移動体」は、例えば車両、船舶、及び航空機等を含んでよい。車両は、例えば自動車、産業車両、鉄道車両、生活車両、及び滑走路を走行する固定翼機等を含んでよい。自動車は、例えば乗用車、トラック、バス、二輪車、及びトロリーバス等を含んでよい。産業車両は、例えば農業及び建設向けの産業車両等を含んでよい。産業車両は、例えばフォークリフト及びゴルフカート等を含んでよい。農業向けの産業車両は、例えばトラクター、耕耘機、移植機、バインダー、コンバイン、及び芝刈り機等を含んでよい。建設向けの産業車両は、例えばブルドーザー、スクレーバー、ショベルカー、クレーン車、ダンプカー、及びロードローラ等を含んでよい。車両は、人力で走行するものを含んでよい。車両の分類は、上述した例に限られない。例えば、自動車は、道路を走行可能な産業車両を含んでよい。複数の分類に同じ車両が含まれてよい。船舶は、例えばマリンジェット、ボート、及びタンカー等を含んでよい。航空機は、例えば固定翼機及び回転翼機等を含んでよい。 The "moving body" in the present disclosure may include, for example, a vehicle, a ship, an aircraft, and the like. Vehicles may include, for example, automobiles, industrial vehicles, railroad vehicles, living vehicles, fixed-wing aircraft traveling on runways, and the like. Automobiles may include, for example, passenger cars, trucks, buses, motorcycles, trolley buses and the like. Industrial vehicles may include, for example, industrial vehicles for agriculture and construction. Industrial vehicles may include, for example, forklifts, golf carts, and the like. Industrial vehicles for agriculture may include, for example, tractors, cultivators, porting machines, binders, combines, lawnmowers and the like. Industrial vehicles for construction may include, for example, bulldozers, scrapers, excavators, crane trucks, dump trucks, road rollers and the like. The vehicle may include a vehicle that travels manually. The classification of vehicles is not limited to the above examples. For example, an automobile may include an industrial vehicle that can travel on the road. The same vehicle may be included in multiple categories. Vessels may include, for example, marine jets, boats, tankers and the like. Aircraft may include, for example, fixed-wing aircraft, rotorcraft, and the like.
 図7では、移動体10が乗用車である場合を例示したが、移動体10は、乗用車に限らず、上記例のいずれかであってよい。空中像投影装置1の位置は、移動体10の内部及び外部において任意である。空中像投影装置1は、例えば、移動体10のダッシュボード内に位置してよい。空中像投影装置1は、第1反射素子2によって反射された第2光L2を、第3反射素子4としてのウインドシールド11によって反射させて、利用者12の眼12aに入射させるように構成されてよい。これにより、利用者12は、空中像を視認できる。空中像投影装置1を搭載した移動体10は、利用者12に高解像度の空中像を視認させることができる。 In FIG. 7, the case where the moving body 10 is a passenger car is illustrated, but the moving body 10 is not limited to the passenger car and may be any of the above examples. The position of the aerial image projection device 1 is arbitrary inside and outside the moving body 10. The aerial image projection device 1 may be located, for example, in the dashboard of the moving body 10. The aerial image projection device 1 is configured so that the second light L2 reflected by the first reflecting element 2 is reflected by the windshield 11 as the third reflecting element 4 and incident on the eyes 12a of the user 12. You can. As a result, the user 12 can visually recognize the aerial image. The moving body 10 equipped with the aerial image projection device 1 can make the user 12 visually recognize a high-resolution aerial image.
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1反射素子は、第2反射素子と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。 In this disclosure, the descriptions such as "first" and "second" are identifiers for distinguishing the configuration. The configurations distinguished by the descriptions such as "first" and "second" in the present disclosure can exchange numbers in the configurations. For example, the first reflecting element can exchange the identifiers "first" and "second" with the second reflecting element. The exchange of identifiers takes place at the same time. Even after exchanging identifiers, the configuration is distinguished. The identifier may be deleted. The configuration with the identifier removed is distinguished by a code. Based solely on the description of identifiers such as "first" and "second" in the present disclosure, it shall not be used as a basis for interpreting the order of the configurations and for the existence of identifiers with smaller numbers.
 本開示は次の実施の形態が可能である。 The following embodiments are possible in this disclosure.
 本開示の一実施形態に係る空中像投影装置は、第1反射素子と、第2反射素子と、第1光学素子とを含む。前記第1反射素子は、第1方向から入射する第1光の一部を第2方向に透過し、前記第2方向から入射する第2光の一部を第3方向に反射するように構成される。前記第2反射素子は、前記第1光を前記第2光として再帰反射するように構成される。前記第1光学素子は、前記第1反射素子と前記第2反射素子との間に位置する。前記第1光学素子は、前記第1光を集光し、前記第2光を集光するように構成される。 The aerial image projection device according to the embodiment of the present disclosure includes a first reflecting element, a second reflecting element, and a first optical element. The first reflecting element is configured to transmit a part of the first light incident from the first direction in the second direction and reflect a part of the second light incident from the second direction in the third direction. Will be done. The second reflecting element is configured to retroreflect the first light as the second light. The first optical element is located between the first reflecting element and the second reflecting element. The first optical element is configured to condense the first light and condense the second light.
 本開示の一実施形態の空中像投影装置によれば、利用者が視認する空中像を高解像度化することができる。 According to the aerial image projection device of one embodiment of the present disclosure, it is possible to increase the resolution of the aerial image visually recognized by the user.
 以上、本開示の実施形態について詳細に説明したが、また、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。上記各実施形態をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the above-described embodiments, and various changes, improvements, etc. may be made without departing from the gist of the present disclosure. It is possible. Needless to say, all or a part of each of the above embodiments can be combined as appropriate and within a consistent range.
 1   空中像投影装置
 2   第1反射素子
 3   第2反射素子
 4   第3反射素子
 5   第1光学素子
 51  マイクロレンズアレイ
 51a マイクロレンズ
 52  凹面ミラー
 6   第2光学素子
 7   位相差板
 8   表示装置(液晶表示装置)
 81  バックライト
 82  液晶パネル
 9   カメラ
 10  移動体
 11  ウインドシールド
 12  利用者
 12a 眼
1 Aerial image projection device 2 1st reflecting element 3 2nd reflecting element 4 3rd reflecting element 5 1st optical element 51 Microlens array 51a Microlens 52 Concave mirror 6 2nd optical element 7 Phase difference plate 8 Display device (liquid crystal display) Device)
81 Backlight 82 LCD panel 9 Camera 10 Mobile 11 Windshield 12 User 12a Eyes

Claims (13)

  1.  第1方向から入射する、画像を示す第1画像光の一部を第2方向に透過し、前記第2方向から入射する第2画像光の一部を第3方向に反射するように構成される第1反射素子と、
     前記第1反射素子を透過した前記第1画像光を前記第2画像光として再帰反射するように構成される第2反射素子と、
     前記第1反射素子と前記第2反射素子との間に位置し、前記第1画像光を集光し、前記第2画像光を集光するように構成される第1光学素子とを含む、空中像投影装置。
    It is configured so that a part of the first image light indicating an image incident from the first direction is transmitted in the second direction and a part of the second image light incident from the second direction is reflected in the third direction. 1st reflective element and
    A second reflecting element configured to retroreflect the first image light transmitted through the first reflecting element as the second image light.
    A first optical element located between the first reflecting element and the second reflecting element, which is configured to collect the first image light and collect the second image light. Aerial image projection device.
  2.  請求項1に記載の空中像投影装置であって、
     前記第2反射素子は、前記第1光学素子の集光点近傍に位置する、空中像投影装置。
    The aerial image projection device according to claim 1.
    The second reflecting element is an aerial image projection device located near the focusing point of the first optical element.
  3.  請求項1または2に記載の空中像投影装置であって、
     集光機能を有する第2光学素子を、前記第2反射素子と前記第1光学素子との間に含む、空中像投影装置。
    The aerial image projection device according to claim 1 or 2.
    An aerial image projection device including a second optical element having a light collecting function between the second reflecting element and the first optical element.
  4.  請求項1から3のいずれか1項に記載の空中像投影装置であって、
     前記第1反射素子は、ワイヤグリッド偏光子である、空中像投影装置。
    The aerial image projection device according to any one of claims 1 to 3.
    The first reflecting element is an aerial image projection device that is a wire grid polarizer.
  5.  請求項3に記載の空中像投影装置であって、
     透過する光の偏光方向を回転させるように構成される位相差板を、前記第2反射素子と前記第1光学素子との間に含む、空中像投影装置。
    The aerial image projection device according to claim 3.
    An aerial image projection device including a retardation plate configured to rotate the polarization direction of transmitted light between the second reflecting element and the first optical element.
  6.  請求項1から5のいずれか1項に記載の空中像投影装置であって、
     前記第1反射素子から前記第1方向に離隔して位置し、前記第1画像光を発するように構成される表示装置を含む、空中像投影装置。
    The aerial image projection device according to any one of claims 1 to 5.
    An aerial image projection device including a display device located at a distance from the first reflecting element in the first direction and configured to emit the first image light.
  7.  請求項6に記載の空中像投影装置であって、
     前記表示装置は、液晶表示装置である、空中像投影装置。
    The aerial image projection device according to claim 6.
    The display device is an aerial image projection device which is a liquid crystal display device.
  8.  請求項6または7に記載の空中像投影装置であって、
     前記表示装置は、前記第1光学素子の焦点近傍に位置する、空中像投影装置。
    The aerial image projection device according to claim 6 or 7.
    The display device is an aerial image projection device located near the focal point of the first optical element.
  9.  請求項4に記載の空中像投影装置であって、
     前記第1反射素子から前記第1方向に離隔して位置し、前記第1画像光を発するように構成される液晶表示装置を含み、
     前記液晶表示装置の発する前記第1画像光の偏光方向は、前記第1反射素子の偏光方向に沿っている、空中像投影装置。
    The aerial image projection device according to claim 4.
    A liquid crystal display device located at a distance from the first reflecting element in the first direction and configured to emit the first image light is included.
    An aerial image projection device in which the polarization direction of the first image light emitted by the liquid crystal display device is along the polarization direction of the first reflecting element.
  10.  請求項1から9のいずれか1項に記載の空中像投影装置であって、
     前記第1光学素子は、複数のレンズを有する、空中像投影装置。
    The aerial image projection device according to any one of claims 1 to 9.
    The first optical element is an aerial image projection device having a plurality of lenses.
  11.  請求項1から10のいずれか1項に記載の空中像投影装置であって、
     前記第1反射素子を介して前記第3方向を撮像するように構成されるカメラを含む、空中像投影装置。
    The aerial image projection device according to any one of claims 1 to 10.
    An aerial image projection device including a camera configured to image the third direction via the first reflecting element.
  12.  請求項1から11のいずれか1項に記載の空中像投影装置であって、
     前記第1反射素子で反射した前記第2画像光を利用者に向かって反射するように構成される第3反射素子を含む、空中像投影装置。
    The aerial image projection device according to any one of claims 1 to 11.
    An aerial image projection device including a third reflecting element configured to reflect the second image light reflected by the first reflecting element toward a user.
  13.  請求項1から12のいずれか1項に記載の空中像投影装置を含む、移動体。 A moving body including the aerial image projection device according to any one of claims 1 to 12.
PCT/JP2021/015058 2020-04-24 2021-04-09 Aerial image projection device WO2021215271A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020077810A JP2021173873A (en) 2020-04-24 2020-04-24 Aerial image projection device
JP2020-077810 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215271A1 true WO2021215271A1 (en) 2021-10-28

Family

ID=78269164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015058 WO2021215271A1 (en) 2020-04-24 2021-04-09 Aerial image projection device

Country Status (2)

Country Link
JP (1) JP2021173873A (en)
WO (1) WO2021215271A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431389B1 (en) 2022-04-13 2024-02-14 京セラ株式会社 Aerial image display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081920A2 (en) * 2002-03-25 2003-10-02 Living Ad Limited Production of simulated 3-d images
JP2011070074A (en) * 2009-09-28 2011-04-07 Stanley Electric Co Ltd Head-up display
JP2011253128A (en) * 2010-06-03 2011-12-15 Nippon Seiki Co Ltd Imaging device
US20130329304A1 (en) * 2008-01-22 2013-12-12 The Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
WO2017099116A1 (en) * 2015-12-07 2017-06-15 国立大学法人宇都宮大学 Display device, and display method for aerial image
US20180188550A1 (en) * 2017-01-05 2018-07-05 Looking Glass Factory, Inc. Advanced retroreflecting aerial displays
JP2019207370A (en) * 2018-05-30 2019-12-05 日本カーバイド工業株式会社 Image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081920A2 (en) * 2002-03-25 2003-10-02 Living Ad Limited Production of simulated 3-d images
US20130329304A1 (en) * 2008-01-22 2013-12-12 The Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted projection display using reflective microdisplays
JP2011070074A (en) * 2009-09-28 2011-04-07 Stanley Electric Co Ltd Head-up display
JP2011253128A (en) * 2010-06-03 2011-12-15 Nippon Seiki Co Ltd Imaging device
WO2017099116A1 (en) * 2015-12-07 2017-06-15 国立大学法人宇都宮大学 Display device, and display method for aerial image
US20180188550A1 (en) * 2017-01-05 2018-07-05 Looking Glass Factory, Inc. Advanced retroreflecting aerial displays
JP2019207370A (en) * 2018-05-30 2019-12-05 日本カーバイド工業株式会社 Image display device

Also Published As

Publication number Publication date
JP2021173873A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP6709228B2 (en) Information display device
WO2017094248A1 (en) Free-form surface lens and head-up display
CN112946898B (en) Automobile
CN109154721B (en) Head-up display device and image projection unit
US20220155589A1 (en) Vehicle information display apparatus and information display system for vehicle
CN207148424U (en) A kind of head-up display device
CN113906328A (en) Information display system and vehicle information display system using same
US9007694B2 (en) Display apparatus
CN114127612A (en) Information display system with acute angle diffusion characteristic and image light control film used by same
WO2021215271A1 (en) Aerial image projection device
WO2022037703A1 (en) Multi-layer image display apparatus, head up display, and traffic device
WO2022181274A1 (en) Aerial image projection apparatus and mobile object
WO2021256246A1 (en) Aerial image projection apparatus and mobile body
CN211375183U (en) Head-up display device, imaging system and vehicle
CN218213623U (en) Display device, head-up display and traffic equipment
CN116413907A (en) Display device, head-up display and traffic equipment
US20240231086A9 (en) Aerial image projector and movable body
WO2018173955A1 (en) Image display device, virtual-image display device, and moving body
US20200218120A1 (en) Backlight unit and head-up display
JP2021081556A (en) Optical element and manufacturing method therefor
CN112444978A (en) Head-up display device, imaging system and vehicle
CN217561835U (en) Display device, head-up display and traffic equipment
CN112424672B (en) Display device, head-up display, and moving object
JP7423619B2 (en) Multilayer film and display system
US20220308346A1 (en) Head-up display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791877

Country of ref document: EP

Kind code of ref document: A1