WO2021215270A1 - Film formation mehtod - Google Patents

Film formation mehtod Download PDF

Info

Publication number
WO2021215270A1
WO2021215270A1 PCT/JP2021/015018 JP2021015018W WO2021215270A1 WO 2021215270 A1 WO2021215270 A1 WO 2021215270A1 JP 2021015018 W JP2021015018 W JP 2021015018W WO 2021215270 A1 WO2021215270 A1 WO 2021215270A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing container
supplied
film
purging
Prior art date
Application number
PCT/JP2021/015018
Other languages
French (fr)
Japanese (ja)
Inventor
裕 布重
敦史 田中
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021215270A1 publication Critical patent/WO2021215270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices

Definitions

  • This disclosure relates to a film forming method.
  • a technique is known in which a TiCl 4 supply, a purge, an NH 3 supply, a purge, an O 2 supply, and a purge are set as one cycle, and a titanium oxynitride film having a predetermined film thickness is formed on a wafer by using the ALD method.
  • a TiCl 4 supply, a purge, an NH 3 supply, a purge, an O 2 supply, and a purge are set as one cycle, and a titanium oxynitride film having a predetermined film thickness is formed on a wafer by using the ALD method.
  • Patent Document 1 A technique is known in which a TiCl 4 supply, a purge, an NH 3 supply, a purge, an O 2 supply, and a purge are set as one cycle, and a titanium oxynitride film having a predetermined film thickness is formed on a wafer by using the ALD method.
  • the present disclosure provides a technique capable of both improving productivity and improving the uniformity of element concentration in the film thickness direction.
  • the film forming method is a film forming method of a film containing at least three elements, which comprises a step of supplying a first reaction gas containing the first element into a processing container and the first reaction gas. A step of purging the reaction gas, a step of supplying a second reaction gas containing a second element that reacts with the first reaction gas into the processing container, and a step of purging the second reaction gas. And, in at least one of the step of purging the first reaction gas and the step of purging the second reaction gas, a third reaction gas containing the third element is supplied into the processing container. do.
  • both improvement in productivity and improvement in uniformity of element concentration in the film thickness direction can be achieved at the same time.
  • FIG. 1 Schematic diagram showing an example of the film forming apparatus of the embodiment
  • the figure which shows an example of the gas supply sequence of the film formation method of embodiment The figure which shows another example of the gas supply sequence of the film formation method of embodiment
  • the figure which shows still another example of the gas supply sequence of the film formation method of embodiment The figure which shows still another example of the gas supply sequence of the film formation method of embodiment
  • the figure which shows the relationship between the number of cycles and the film thickness The figure which shows the relationship between the oxygen supply time and the oxygen concentration in a membrane
  • the figure which shows the relationship between the oxygen flow rate and the oxygen concentration in a membrane when the substrate temperature is constant.
  • FIG. 1 is a flowchart showing an example of the film forming method of the embodiment.
  • the substrate is housed in the processing container, the inside of the processing container is kept in a reduced pressure (vacuum) state, and the substrate is adjusted to a predetermined temperature.
  • the substrate may be a semiconductor wafer such as a silicon wafer.
  • TiCl 4 gas which is a Ti-containing gas
  • TiCl 4 gas is used as the Ti-containing gas, but for example, tetrakis dimethylamino titanium (TDMAT) gas or tetrakis ethyl methyl amino titanium (TEMAT) gas may be used.
  • TDMAT tetrakis dimethylamino titanium
  • TEMAT tetrakis ethyl methyl amino titanium
  • the TiCl 4 gas remaining in the processing container is purged by supplying nitrogen (N 2 ) gas, which is an inert gas, into the processing container (step S2).
  • nitrogen (N 2 ) gas which is an inert gas
  • oxygen (O 2 ) gas which is an oxygen-containing gas
  • N 2 gas nitrogen
  • O 2 gas oxygen-containing gas
  • the O 2 gas may be supplied into the processing container during the entire period of step S2, or may be supplied into the processing container during a part of the period of step S2.
  • the oxygen concentration in the film-formed TiON film can be controlled.
  • N 2 gas is used as the inert gas, but for example, argon (Ar) gas may be used.
  • Ar argon
  • O 2 gas is used as the oxygen-containing gas, for example, ozone (O 3 ) gas may be used.
  • step S3 by supplying ammonia (NH 3 ) gas, which is a nitrogen-containing gas, into the processing container, the TiCl 4 gas adsorbed on the substrate is nitrided (step S3).
  • NH 3 gas is used as the nitrogen-containing gas in this embodiment, for example, hydrazine (N 2 H 4 ) gas or monomethylhydrazine (MMH) gas may be used.
  • the NH 3 gas remaining in the processing container is purged by supplying the N 2 gas, which is an inert gas, into the processing container (step S4).
  • N 2 gas which is an inert gas
  • O 2 gas which is an oxygen-containing gas
  • the O 2 gas may be supplied into the processing container during the entire period of step S4, or may be supplied into the processing container during a part of the period of step S4.
  • N 2 gas is used as the inert gas, but Ar gas may be used, for example.
  • O 2 gas is used as the oxygen-containing gas, for example, O 3 gas may be used.
  • step S5 it is determined whether or not the number of executions of steps S1 to S4 has reached a predetermined number of times X (X is an integer of 1 or more) (step S5).
  • step S5 if the number of executions of steps S1 to S4 has not reached the number X, the process returns to step S1 and steps S1 to S4 are executed again.
  • step S5 when the number of executions of steps S1 to S4 reaches the number X, the process ends. By repeating steps S1 to S4 in this way until the number of times X is reached, a TiON film having a predetermined film thickness is formed on the substrate.
  • O 2 gas may be supplied into the processing container. That is, the O 2 gas may be supplied into the processing container in step S2, and the O 2 gas may not be supplied into the processing container in step S4. Further, the O 2 gas may be supplied into the processing container in step S4, and the O 2 gas may not be supplied into the processing container in step S2.
  • TiON is supplied by supplying O 2 gas into the processing container in at least one of step S2 for purging the TiCl 4 gas and step S4 for purging the NH 3 gas.
  • a film is formed.
  • the number of steps can be reduced as compared with the case of forming the TiON film by performing the step of supplying the O 2 gas separately from the steps S1 to S4, and the time equivalent to the case of forming the TiN film can be reduced.
  • a TiON film can be formed.
  • the uniformity of the oxygen concentration in the film thickness direction is improved. That is, both the improvement of productivity and the improvement of the uniformity of oxygen concentration in the film thickness direction can be achieved at the same time.
  • FIG. 2 is a schematic view showing an example of the film forming apparatus of the embodiment.
  • the film forming apparatus includes a processing container 1, a mounting table 2, a shower head 3, an exhaust unit 4, a gas supply unit 5, and a control unit 6.
  • the processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape.
  • the processing container 1 accommodates a semiconductor wafer (hereinafter referred to as “wafer W”), which is an example of a substrate.
  • a carry-in outlet 11 for carrying in or out the wafer W is formed on the side wall of the processing container 1.
  • the carry-in outlet 11 is opened and closed by the gate valve 12.
  • An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1.
  • a slit 13a is formed in the exhaust duct 13 along the inner peripheral surface.
  • An exhaust port 13b is formed on the outer wall of the exhaust duct 13.
  • a top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1.
  • the exhaust duct 13 and the top wall 14 are hermetically sealed with a seal ring 15.
  • the mounting table 2 horizontally supports the wafer W in the processing container 1.
  • the mounting table 2 has a disk shape larger than that of the wafer W, and is made of a ceramic material such as aluminum nitride (AlN) or a metal material such as aluminum or nickel alloy.
  • a heater 21 for heating the wafer W is embedded in the mounting table 2.
  • the heater 21 is supplied with power from a heater power source (not shown) to generate heat.
  • the wafer W is controlled to a predetermined temperature by controlling the output of the heater 21 by a temperature signal of a thermocouple (not shown) provided near the upper surface of the mounting table 2.
  • the mounting table 2 is provided with a cover member 22 formed of ceramics such as alumina so as to cover the outer peripheral region of the upper surface and the side surface.
  • the mounting table 2 is supported by the support member 23.
  • the support member 23 extends from the center of the bottom surface of the mounting table 2 to the lower side of the processing container 1 through a hole formed in the bottom wall of the processing container 1, and the lower end thereof is connected to the elevating mechanism 24.
  • the mounting table 2 is moved up and down by the elevating mechanism 24 between the processing position shown in FIG. 1 and the transfer position where the wafer W can be conveyed, which is indicated by the alternate long and short dash line below the processing position.
  • a collar portion 25 is attached below the processing container 1 of the support member 23.
  • a bellows 26 is provided between the bottom surface of the processing container 1 and the collar portion 25. The bellows 26 separates the atmosphere inside the processing container 1 from the outside air, and expands and contracts as the mounting table 2 moves up and down.
  • three wafer support pins 27 are provided so as to project upward from the elevating plate 27a.
  • the wafer support pin 27 is moved up and down via the lifting plate 27a by the lifting mechanism 28 provided below the processing container 1.
  • the wafer support pin 27 is inserted into a through hole 2a provided in the mounting table 2 at the transport position so that the wafer support pin 27 can be recessed with respect to the upper surface of the mounting table 2.
  • the wafer W is transferred between the transfer robot (not shown) and the mounting table 2.
  • the shower head 3 supplies the processing gas into the processing container 1 in the form of a shower.
  • the shower head 3 is made of, for example, a metal material and is arranged so as to face the mounting table 2.
  • the shower head 3 has substantially the same diameter as the mounting table 2.
  • the shower head 3 includes a main body 31 and a shower plate 32.
  • the main body 31 is fixed to the lower surface of the top wall 14.
  • the shower plate 32 is connected under the main body 31.
  • a gas diffusion space 33 is formed between the main body 31 and the shower plate 32.
  • the gas diffusion space 33 is provided with gas introduction holes 36 and 37 so as to penetrate the center of the top wall 14 and the main body 31.
  • An annular protrusion 34 projecting downward is formed on the peripheral edge of the shower plate 32.
  • a large number of gas discharge holes 35 are formed on the flat surface inside the annular protrusion 34 of the shower plate 32.
  • a processing space 38 is formed between the mounting table 2 and the shower plate 32, and the upper surface of the cover member 22 and the annular protrusion 34 are close to each other to form an annular gap 39. Will be done.
  • the exhaust unit 4 exhausts the inside of the processing container 1.
  • the exhaust unit 4 includes an exhaust pipe 41 and an exhaust mechanism 42.
  • the exhaust pipe 41 is connected to the exhaust port 13b.
  • the exhaust mechanism 42 is connected to the exhaust pipe 41 and includes a vacuum pump, a pressure control valve, and the like.
  • the exhaust mechanism 42 exhausts the gas in the processing container 1 through the exhaust duct 13 and the exhaust pipe 41.
  • the gas supply unit 5 supplies various gases to the shower head 3.
  • the gas supply unit 5 includes a TiCl 4 supply source 51a, an NH 3 supply source 52a, an N 2 supply source 53a, an N 2 supply source 54a, an O 2 supply source 55a, an NH 3 supply source 56a, an N 2 supply source 57a and an N 2 It has a source 58a.
  • the TiCl 4 supply source 51a supplies the TiCl 4 gas, which is an example of the Ti-containing gas, into the processing container 1 via the gas supply line 51b.
  • a flow rate controller 51c, a storage tank 51d, and a valve 51e are interposed in the gas supply line 51b from the upstream side.
  • the downstream side of the valve 51e of the gas supply line 51b is connected to the gas introduction hole 37.
  • TiCl 4 TiCl 4 gas supplied from the supply source 51a is temporarily stored in the storage tank 51d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 51d, into the processing vessel 1 Be supplied.
  • the supply and stop of the TiCl 4 gas from the storage tank 51d to the processing container 1 is performed by the valve 51e.
  • the NH 3 supply source 52a supplies NH 3 gas, which is an example of nitrogen-containing gas, into the processing container 1 via the gas supply line 52b.
  • a flow rate controller 52c, a storage tank 52d, and a valve 52e are interposed in the gas supply line 52b from the upstream side.
  • the downstream side of the valve 52e of the gas supply line 52b is connected to the gas supply line 51b.
  • NH 3 gas supplied from the NH 3 supply source 52a is temporarily stored in the storage tank 52d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 52d, into the processing vessel 1 Be supplied.
  • Supply and stop of the NH 3 gas from the storage tank 52d to the processing chamber 1 is performed by the valve 52e.
  • the N 2 supply source 53a supplies N 2 gas, which is an example of purge gas, into the processing container 1 via the gas supply line 53b.
  • a flow rate controller 53c, a storage tank 53d, and a valve 53e are interposed in the gas supply line 53b from the upstream side.
  • the downstream side of the valve 53e of the gas supply line 53b is connected to the gas supply line 51b.
  • N 2 gas supplied from the N 2 supply source 53a is temporarily stored in the storage tank 53d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 53d, into the processing vessel 1 Be supplied. Supply and stop of the N 2 gas from the storage tank 53d to the processing chamber 1 is performed by the valve 53e.
  • the N 2 gas can be stably supplied into the processing container 1 at a relatively large flow rate.
  • the N 2 supply source 54a supplies the N 2 gas, which is an example of the carrier gas, into the processing container 1 via the gas supply line 54b.
  • a flow rate controller 54c, a valve 54e, and an orifice 54f are interposed in the gas supply line 54b from the upstream side.
  • the downstream side of the orifice 54f of the gas supply line 54b is connected to the gas supply line 51b.
  • N 2 gas supplied from the N 2 supply source 54a is supplied into the processing vessel 1 continuously during deposition of the wafer W.
  • the supply and stop of the N 2 gas from the N 2 supply source 54a to the processing container 1 is performed by the valve 54e.
  • Orifice 54f inhibits storage tank 51d, 52 d, gas supply line 51b by 53d, 52 b, that a relatively large flow rate of gas supplied to 53b from flowing back to the N 2 gas supply line 54b.
  • the O 2 supply source 55a supplies the O 2 gas, which is an example of the oxygen-containing gas, into the processing container 1 via the gas supply line 55b.
  • a flow rate controller 55c, a storage tank 55d, and a valve 55e are interposed in the gas supply line 55b from the upstream side.
  • the downstream side of the valve 55e of the gas supply line 55b is connected to the gas introduction hole 36.
  • O 2 O 2 gas supplied from the supply source 55a is temporarily stored in the storage tank 55d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 55d, into the processing vessel 1 Be supplied.
  • the supply and stop of the O 2 gas from the storage tank 55d to the processing container 1 is performed by the valve 55e.
  • the NH 3 supply source 56a supplies NH 3 gas, which is an example of nitrogen-containing gas, into the processing container 1 via the gas supply line 56b.
  • a flow rate controller 56c, a storage tank 56d, and a valve 56e are interposed in the gas supply line 56b from the upstream side.
  • the downstream side of the valve 56e of the gas supply line 56b is connected to the gas supply line 55b.
  • NH 3 gas supplied from the NH 3 supply source 56a is temporarily stored in the storage tank 56d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 56d, into the processing vessel 1 Be supplied.
  • Supply and stop of the NH 3 gas from the storage tank 56d to the processing chamber 1 is performed by the valve 56e.
  • the N 2 supply source 57a supplies N 2 gas, which is an example of purge gas, into the processing container 1 via the gas supply line 57b.
  • a flow rate controller 57c, a storage tank 57d, and a valve 57e are interposed in the gas supply line 57b from the upstream side.
  • the downstream side of the valve 57e of the gas supply line 57b is connected to the gas supply line 55b.
  • N 2 gas supplied from the N 2 supply source 57a is temporarily stored in the storage tank 57d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 57d, into the processing vessel 1 Be supplied.
  • Supply and stop of the N 2 gas from the storage tank 57d to the processing chamber 1 is performed by the valve 57e.
  • the N 2 supply source 58a supplies N 2 gas, which is an example of carrier gas, into the processing container 1 via the gas supply line 58b.
  • a flow rate controller 58c, a valve 58e, and an orifice 58f are interposed in the gas supply line 58b from the upstream side.
  • the downstream side of the orifice 58f of the gas supply line 58b is connected to the gas supply line 55b.
  • N 2 gas supplied from the N 2 supply source 58a is supplied into the processing vessel 1 continuously during deposition of the wafer W.
  • the supply and stop of the N 2 gas from the N 2 supply source 58a to the processing container 1 is performed by the valve 58e.
  • the orifice 58f suppresses the backflow of a relatively large flow rate of gas supplied to the gas supply lines 55b, 56b, 57b by the storage tanks 55d, 56d, 57d to the gas supply line 58b.
  • the control unit 6 is, for example, a computer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like.
  • the CPU operates based on a program stored in the ROM or the auxiliary storage device, and controls the operation of the film forming apparatus.
  • the control unit 6 may be provided inside the film forming apparatus or may be provided outside. When the control unit 6 is provided outside the film forming apparatus, the control unit 6 can control the film forming apparatus by a communication network such as wired or wireless.
  • FIGS. 2 and 3 are diagram showing an example of a gas supply sequence of the film-forming method of the embodiment, by supplying O 2 gas into the processing vessel 1 at step S2, the supply of O 2 gas into the processing chamber 1 in the step S4 The gas supply sequence when not is shown.
  • the gate valve 12 is opened, the wafer W is conveyed into the processing container 1 by a transfer robot (not shown), and the wafer W is placed on the mounting table 2 at the transfer position. .. After retracting the transfer robot from the processing container 1, the gate valve 12 is closed.
  • the wafer W is heated to a predetermined temperature (for example, 300 ° C. to 700 ° C.) by the heater 21 of the mounting table 2, and the mounting table 2 is raised to the processing position to form the processing space 38.
  • the pressure control valve of the exhaust mechanism 42 adjusts the inside of the processing container 1 to a predetermined pressure (for example, 200 Pa to 1200 Pa).
  • valves 54e and 58e are opened to supply a predetermined flow rate (for example, 300 sccm to 10000 sccm) of carrier gas (N 2 gas) from the N 2 supply sources 54a and 58a to the gas supply lines 54b and 58b, respectively.
  • a predetermined flow rate for example, 300 sccm to 10000 sccm
  • carrier gas N 2 gas
  • TiCl 4 source 51a, NH 3 source 52a, O 2 supply source 55a and the NH 3 supply source 56a respectively from TiCl 4 gas, NH 3 gas, O 2 gas and NH 3 gas of the gas supply line 51b, 52 b, It is supplied to 55b and 56b.
  • the valves 51e, 52e, 55e, and 56e are closed, the TiCl 4 gas, NH 3 gas, O 2 gas, and NH 3 gas are stored in the storage tanks 51d, 52d, 55d, and 56d, respectively, and stored.
  • the pressure inside the tanks 51d, 52d, 55d, and 56d is increased.
  • the valve 51e is opened, and the TiCl 4 gas stored in the storage tank 51d is supplied into the processing container 1 and adsorbed on the wafer W (step S1). Further, in parallel with the supply of the TiCl 4 gas into the processing container 1, the purge gas (N 2 gas) is supplied from the N 2 supply sources 53a and 57a to the gas supply lines 53b and 57b, respectively. At this time, since the valves 53e and 57e are closed, the purge gas is stored in the storage tanks 53d and 57d, and the pressure inside the 53d and 57d is increased.
  • Step S2 After a predetermined time (for example, 0.03 to 3.0 seconds) has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e, 57e, 55e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1 ( Step S2). At this time, since the gas is supplied from the storage tanks 53d and 57d in the state where the pressure is increased, the purge gas is supplied into the processing container 1 at a relatively large flow rate, for example, a flow rate larger than the flow rate of the carrier gas.
  • a predetermined time for example, 0.03 to 3.0 seconds
  • the TiCl 4 gas remaining in the processing container 1 is quickly discharged to the exhaust pipe 41, and the inside of the processing container 1 is replaced with the N 2 gas atmosphere from the TiCl 4 gas atmosphere in a short time. Further, since the O 2 gas is supplied into the processing container 1, a part of the TiCl 4 gas adsorbed on the wafer W is oxidized. On the other hand, the valve 51e is closed, TiCl 4 gas supplied from TiCl 4 supply source 51a to the gas supply line 51b is stored in the storage tank 51d, boosts the storage tank 51d is.
  • valves 53e, 57e, 55e After a predetermined time (for example, 0.03 to 3.0 seconds) has elapsed from opening the valves 53e, 57e, 55e, the valves 53e, 57e, 55e are closed and the valves 52e, 56e are opened. As a result, the supply of the purge gas and the O 2 gas into the processing container 1 is stopped, the NH 3 gas stored in the storage tanks 52d and 56d is supplied into the processing container 1, and the TiCl 4 adsorbed on the wafer W is supplied. The gas is nitrided (step S3).
  • a predetermined time for example, 0.03 to 3.0 seconds
  • valve 53e by 57e is closed, N 2 supply source 53a, gas supply line 53b from 57a, the purge gas are respectively supplied to 57b stored storage tank 53d, the 57d, the reservoir tank 53d, the 57d Boosts. Further, since the valve 55e is closed, O 2 gas from the O 2 supply source 55a is supplied to the gas supply line 55b is stored in the storage tank 55d, the storage tank 55d is boosted.
  • valves 52e and 56e After a predetermined time (for example, 0.03 to 3.0 seconds) has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e and 57e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1 (step S4). At this time, since the gas is supplied from the storage tanks 53d and 57d in the state where the pressure is increased, the purge gas is supplied into the processing container 1 at a relatively large flow rate, for example, a flow rate larger than the flow rate of the carrier gas.
  • a relatively large flow rate for example, a flow rate larger than the flow rate of the carrier gas.
  • the NH 3 gas remaining in the processing container 1 is quickly discharged to the exhaust pipe 41, and the inside of the processing container 1 is replaced with the N 2 gas atmosphere from the NH 3 gas atmosphere in a short time.
  • the valve 52e, by 56e is closed, NH 3 gas supplied NH 3 supply source 52a, from 56a the gas supply line 52 b, and 56b are stored storage tank 52 d, the 56d, the reservoir tank 52 d, the 56d Boosts.
  • a TiON unit film in which oxygen (O) is added to TiN is formed on the wafer W. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
  • the wafer W is carried out from the processing container 1 in the reverse procedure of the loading into the processing container 1.
  • step S2 and step S4 the storage tank 53d, it has been described a case in which purge supply to the processing chamber 1 into the processing chamber 1 the reservoir purge gas (N 2 gas) to 57d , Not limited to this.
  • storage tank 53d without supplying stored purge gas (N 2 gas) into the processing chamber 1 to 57d, N 2 supply source 54a, a carrier gas supplied into the processing container 1 from 58a (N 2 gas ) May be purged in the processing container 1.
  • Figure 4 is a diagram showing another example of a gas supply sequence of the film-forming method of the embodiment, by supplying O 2 gas into the processing vessel 1 at step S4, O 2 gas into the processing chamber 1 in step S2 The gas supply sequence when is not supplied is shown.
  • step S2 after a predetermined time has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e and 57e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1.
  • step S4 after a predetermined time has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e, 57e and 55e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1. Note that steps S1 and S3 may be the same as the example shown in FIG.
  • the TiON unit in which oxygen (O) is added to TiN on the wafer W by carrying out one cycle of steps S1 to S4. Form a film. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
  • FIG. 5 is a diagram showing still another example of the gas supply sequence of the film forming method of the embodiment, and shows the gas supply sequence when O 2 gas is supplied into the processing container 1 in steps S2 and S4.
  • step S2 after a predetermined time has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e, 57e, 55e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1.
  • step S4 after a predetermined time has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e, 57e and 55e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1. Note that steps S1 and S3 may be the same as the example shown in FIG.
  • the TiON unit in which oxygen (O) is added to TiN on the wafer W by carrying out one cycle of steps S1 to S4. Form a film. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
  • FIG. 6 is a diagram showing still another example of the gas supply sequence of the film forming method of the embodiment, and shows a gas supply sequence when O 2 gas is supplied into the processing container 1 during a part of the period of step S2. show.
  • step S2 after a predetermined time has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e and 57e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1. Further, after a predetermined time has elapsed from opening the valves 53e and 57e, the valves 55e are opened. As a result, the O 2 gas stored in the storage tank 55d is supplied into the processing container 1 from the middle of the period of step S2. Further, in step S2, the valves 53e and 57e are closed after a predetermined time has elapsed since the valve 55e was closed.
  • step S4 after a predetermined time has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e and 57e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1. Note that steps S1 and S3 may be the same as the example shown in FIG.
  • the TiON unit in which oxygen (O) is added to TiN on the wafer W by carrying out one cycle of steps S1 to S4. Form a film. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
  • O 2 gas may be supplied into the processing container 1 during a part of the period of step S4.
  • the O 2 gas may be supplied into the processing container 1 during at least a part of the period of step S2 and step S4.
  • FIG. 7 is a diagram showing the relationship between the number of cycles and the film thickness.
  • the horizontal axis indicates the number of cycles [times]
  • the vertical axis indicates the film thickness [ ⁇ ].
  • Example 1 The plot indicated by the black circle ( ⁇ ) in FIG. 7 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above (hereinafter referred to as “Example 1”). .. That is, the results when the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the O 2 gas is not supplied in the step S4 for purging the NH 3 gas are shown.
  • Example 2 The plot indicated by the white circle ( ⁇ ) in FIG. 7 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 4 described above (hereinafter referred to as “Example 2”). .. That is, the results when the O 2 gas is supplied in the step S4 for purging the NH 3 gas and the O 2 gas is not supplied in the step S2 for purging the TiCl 4 gas are shown.
  • the plot indicated by the diamond ( ⁇ ) in FIG. 7 has a TiCl 4 supply, a purge, an NH 3 supply, a purge, an O 2 supply, and a purge as one cycle, and this cycle is repeated to form a TiON film on the substrate.
  • This case hereinafter referred to as "Comparative Example 2" is shown.
  • the film was formed by setting the substrate temperature to 300 ° C.
  • the film thickness of the TiON film is proportional to the number of cycles in any of the film forming methods. That is, it can be said that even if the supply of O 2 gas in the step S4 of purging steps S2 and NH 3 gas to purge the TiCl 4 gas, the same film thickness controllability and if not supplying O 2 gas is obtained.
  • Example 1 Example 2, and Comparative Example 2
  • the film thicknesses of the TiON films at a plurality of locations in the plane of the substrate were measured, and 1 ⁇ % (standard deviation ⁇ was divided by the average value) based on the measured film thickness. The value displayed as a percentage) was calculated.
  • the values of 1 ⁇ % in Example 1, Example 2, and Comparative Example 2 were 1.09, 1.37, and 1.07, respectively. According to this result, even if the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the step S4 for purging the NH 3 gas, the step of supplying the O 2 gas is performed separately from the step of purging. It can be said that the same in-plane uniformity can be obtained.
  • a TiON film was formed on a bare silicon wafer, which is an example of a substrate, by the film forming methods shown in FIGS. 3 and 4 using the above-mentioned film forming apparatus. Subsequently, the number of particles having a particle size of 0.032 ⁇ m or more adhering to the surface of the TiON film was measured, and it was confirmed whether the number of particles was equal to or less than the reference value (10 particles). In the particle evaluation, the film forming methods shown in FIGS. 3 and 4 were performed 5 times each, and the number of particles was measured for each.
  • the number of particles was 0, 4, 0, 1, and 9, which were below the reference value for all five times. That is, even if the O 2 gas was added in step S2 for purging the TiCl 4 gas, no adverse effect on the particle performance was confirmed.
  • the number of particles was 0, 2, 1, 0, and 5, which were below the reference value for all five times. That is, even if the O 2 gas was added in step S4 for purging the NH 3 gas, no adverse effect on the particle performance was confirmed.
  • FIG. 8 is a diagram showing the relationship between the oxygen supply time and the oxygen concentration in the membrane.
  • the horizontal axis represents the oxygen supply time [seconds]
  • the vertical axis represents the oxygen concentration [%] in the membrane.
  • the plot indicated by the black circle ( ⁇ ) in FIG. 8 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above. That is, the results when the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the O 2 gas is not supplied in the step S4 for purging the NH 3 gas are shown.
  • the plot indicated by the white circle ( ⁇ ) in FIG. 8 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 4 described above. That is, the results when the O 2 gas is supplied in the step S4 for purging the NH 3 gas and the O 2 gas is not supplied in the step S2 for purging the TiCl 4 gas are shown.
  • the O 2 gas is supplied in step S2 of purging TiCl 4 gas, if not supplying O 2 gas in the step S4 of purging NH 3 gas, lengthening the supply time of the O 2 gas. It can be seen that the higher the oxygen concentration in the membrane, the higher the oxygen concentration in the membrane. That is, it can be said that the oxygen concentration in the membrane can be adjusted by changing the supply time of the O 2 gas in step S2 for purging the TiCl 4 gas.
  • the O 2 gas is supplied in the step S4 of purging NH 3 gas, if not supplying O 2 gas in step S2 of purging TiCl 4 gas, film oxygen concentration by changing the supply time of the O 2 gas It turns out that is almost constant.
  • FIG. 9 is a diagram showing the relationship between the oxygen flow rate and the oxygen concentration in the membrane when the substrate temperature is constant.
  • the horizontal axis shows the oxygen flow rate [sccm]
  • the vertical axis shows the oxygen concentration in the membrane [%].
  • the plot indicated by the black circle ( ⁇ ) in FIG. 9 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above. That is, the results when the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the O 2 gas is not supplied in the step S4 for purging the NH 3 gas are shown.
  • the plot indicated by the white circle ( ⁇ ) in FIG. 9 shows the result when the TiON film is formed on the substrate by the film forming method shown in FIG. 4 described above. That is, the results when the O 2 gas is supplied in the step S4 for purging the NH 3 gas and the O 2 gas is not supplied in the step S2 for purging the TiCl 4 gas are shown.
  • the O 2 gas is supplied in step S2 of purging TiCl 4 gas, if not supplying O 2 gas in the step S4 of purging NH 3 gas, film oxygen higher the oxygen flow rate It can be seen that the concentration increases. That is, it can be said that the oxygen concentration in the membrane can be adjusted by changing the oxygen flow rate in step S2 for purging the TiCl 4 gas.
  • the O 2 gas is supplied in the step S4 of purging NH 3 gas, a TiCl 4 gas when not supplying O 2 gas in step S2 of purging, film oxygen concentration by changing the oxygen flow rate at a substantially constant It turns out that there is.
  • FIG. 10 is a diagram showing the relationship between the oxygen flow rate and the oxygen concentration in the membrane when the substrate temperature is changed.
  • the horizontal axis represents the oxygen flow rate [sccm]
  • the vertical axis represents the oxygen concentration [%] in the membrane.
  • the substrate temperature is set to 300 ° C., 350 ° C., 375 ° C., and 400 ° C., respectively.
  • the result when the TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above is shown.
  • the oxygen concentration in the membrane increases as the oxygen flow rate in step S2 for purging the TiCl 4 gas increases at any temperature in the substrate temperature range of 300 ° C. to 400 ° C. That is, at any temperature in the range substrate temperature of 300 ° C. ⁇ 400 ° C., by changing the oxygen flow rate in the step S2 of purging the TiCl 4 gas, it said to be adjusted the oxygen concentration in the film. Further, it can be said that a TiON film having a low oxygen concentration in the film (for example, 25 to 40%) can be formed by reducing the time and flow rate of supplying the oxygen gas in step S2 for purging the TiCl 4 gas.
  • the conditions of the film forming method shown in FIG. 3 in the evaluation of the oxygen concentration in the film are as follows.
  • titanium (Ti) is an example of the first element
  • TiCl 4 gas is an example of the first reaction gas
  • nitrogen (N) is an example of a second element
  • NH 3 gas is an example of a second reaction gas
  • Oxygen (O) is an example of a third element
  • O 2 gas is an example of a third reaction gas.
  • a TiON film as an example of the film forming method has been described as an example, but the present disclosure is not limited to this, and can be applied to the case of forming a film containing at least three elements. ..
  • a film containing three elements is, for example, a TiSiN film.
  • a silicon-containing gas such as monosilane (SiH 4 ) gas or dichlorosilane (DCS) gas may be used instead of the oxygen-containing gas.

Abstract

A film formation method according to an embodiment of the present disclosure forms a film including at least three elements, the method having a step for supplying a first reaction gas including a first element into a processing container, a step for purging the first reaction gas, a step for supplying a second reaction gas including a second element that reacts with the first reaction gas into the processing container, and a step for purging the second reaction gas, a third reaction gas including a third element being supplied into the reaction container in at least one of the step for purging the first reaction gas and the step for purging the second reaction gas.

Description

成膜方法Film formation method
 本開示は、成膜方法に関する。 This disclosure relates to a film forming method.
 TiCl供給、パージ、NH供給、パージ、O供給、パージを1サイクルとし、ウエハの上にALD法を用いて所定膜厚の酸窒化チタン膜を成膜する技術が知られている(例えば、特許文献1参照)。 A technique is known in which a TiCl 4 supply, a purge, an NH 3 supply, a purge, an O 2 supply, and a purge are set as one cycle, and a titanium oxynitride film having a predetermined film thickness is formed on a wafer by using the ALD method. For example, see Patent Document 1).
特開2012-172171号公報Japanese Unexamined Patent Publication No. 2012-172171
 本開示は、生産性の改善と膜厚方向の元素濃度の均一性の向上を両立できる技術を提供する。 The present disclosure provides a technique capable of both improving productivity and improving the uniformity of element concentration in the film thickness direction.
 本開示の一態様による成膜方法は、少なくとも3つの元素を含む膜の成膜方法であって、処理容器内に第1の元素を含む第1の反応ガスを供給するステップと、前記第1の反応ガスをパージするステップと、前記処理容器内に前記第1の反応ガスと反応する第2の元素を含む第2の反応ガスを供給するステップと、前記第2の反応ガスをパージするステップと、を有し、前記第1の反応ガスをパージするステップ及び前記第2の反応ガスをパージするステップの少なくとも一方において、前記処理容器内に第3の元素を含む第3の反応ガスを供給する。 The film forming method according to one aspect of the present disclosure is a film forming method of a film containing at least three elements, which comprises a step of supplying a first reaction gas containing the first element into a processing container and the first reaction gas. A step of purging the reaction gas, a step of supplying a second reaction gas containing a second element that reacts with the first reaction gas into the processing container, and a step of purging the second reaction gas. And, in at least one of the step of purging the first reaction gas and the step of purging the second reaction gas, a third reaction gas containing the third element is supplied into the processing container. do.
 本開示によれば、生産性の改善と膜厚方向の元素濃度の均一性の向上を両立できる。 According to the present disclosure, both improvement in productivity and improvement in uniformity of element concentration in the film thickness direction can be achieved at the same time.
実施形態の成膜方法の一例を示すフローチャートFlow chart showing an example of the film forming method of the embodiment 実施形態の成膜装置の一例を示す概略図Schematic diagram showing an example of the film forming apparatus of the embodiment 実施形態の成膜方法のガス供給シーケンスの一例を示す図The figure which shows an example of the gas supply sequence of the film formation method of embodiment 実施形態の成膜方法のガス供給シーケンスの別の一例を示す図The figure which shows another example of the gas supply sequence of the film formation method of embodiment 実施形態の成膜方法のガス供給シーケンスの更に別の一例を示す図The figure which shows still another example of the gas supply sequence of the film formation method of embodiment 実施形態の成膜方法のガス供給シーケンスの更に別の一例を示す図The figure which shows still another example of the gas supply sequence of the film formation method of embodiment サイクル数と膜厚との関係を示す図The figure which shows the relationship between the number of cycles and the film thickness 酸素供給時間と膜中酸素濃度との関係を示す図The figure which shows the relationship between the oxygen supply time and the oxygen concentration in a membrane 基板温度が一定であるときの酸素流量と膜中酸素濃度との関係を示す図The figure which shows the relationship between the oxygen flow rate and the oxygen concentration in a membrane when the substrate temperature is constant. 基板温度を変化させたときの酸素流量と膜中酸素濃度との関係を示す図The figure which shows the relationship between the oxygen flow rate and the oxygen concentration in a membrane when the substrate temperature is changed.
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Hereinafter, non-limiting exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings. In all the attached drawings, the same or corresponding members or parts are designated by the same or corresponding reference numerals, and duplicate description is omitted.
 〔成膜方法〕
 図1を参照し、実施形態の成膜方法について、原子層堆積(ALD:Atomic Layer Deposition)法により、基板の上に酸窒化チタン(TiON)膜を成膜する場合を例に挙げて説明する。図1は、実施形態の成膜方法の一例を示すフローチャートである。
[Film film method]
With reference to FIG. 1, the film forming method of the embodiment will be described by taking as an example a case where a titanium oxynitride (TiON) film is formed on a substrate by an atomic layer deposition (ALD) method. .. FIG. 1 is a flowchart showing an example of the film forming method of the embodiment.
 まず、処理容器内に基板を収容すると共に、処理容器内を減圧(真空)状態に保持し、基板を所定の温度に調整する。基板は、例えばシリコンウエハ等の半導体ウエハであってよい。 First, the substrate is housed in the processing container, the inside of the processing container is kept in a reduced pressure (vacuum) state, and the substrate is adjusted to a predetermined temperature. The substrate may be a semiconductor wafer such as a silicon wafer.
 続いて、基板が収容された処理容器内にTi含有ガスである四塩化チタン(TiCl)ガスを供給することにより、基板の上にTiClガスを吸着させる(ステップS1)。なお、本実施形態において、Ti含有ガスとしてTiClガスを用いているが、例えばテトラキスジメチルアミノチタン(TDMAT)ガス、テトラキスエチルメチルアミノチタン(TEMAT)ガスを用いてもよい。 Subsequently, by supplying titanium tetrachloride (TiCl 4 ) gas, which is a Ti-containing gas, into the processing container in which the substrate is housed , the TiCl 4 gas is adsorbed on the substrate (step S1). In this embodiment, TiCl 4 gas is used as the Ti-containing gas, but for example, tetrakis dimethylamino titanium (TDMAT) gas or tetrakis ethyl methyl amino titanium (TEMAT) gas may be used.
 続いて、処理容器内に不活性ガスである窒素(N)ガスを供給することにより、処理容器内に残存するTiClガスをパージする(ステップS2)。このとき、Nガスと共に酸素含有ガスである酸素(O)ガスを供給する。これにより、基板の上に吸着したTiClガスの一部が酸化される。Oガスは、ステップS2の全期間において処理容器内に供給してもよく、ステップS2の一部の期間において処理容器内に供給してもよい。Oガスを供給する期間やOガスの流量を調整することにより、TiClガスを酸化させる量を制御できる。言い換えると、成膜されるTiON膜の膜中酸素濃度を制御できる。なお、本実施形態において、不活性ガスとしてNガスを用いているが、例えばアルゴン(Ar)ガスを用いてもよい。また、酸素含有ガスとしてOガスを用いているが、例えばオゾン(O)ガスを用いてもよい。 Subsequently, the TiCl 4 gas remaining in the processing container is purged by supplying nitrogen (N 2 ) gas, which is an inert gas, into the processing container (step S2). At this time, oxygen (O 2 ) gas, which is an oxygen-containing gas, is supplied together with N 2 gas. As a result, a part of the TiCl 4 gas adsorbed on the substrate is oxidized. The O 2 gas may be supplied into the processing container during the entire period of step S2, or may be supplied into the processing container during a part of the period of step S2. By O 2 to adjust the flow rate of the period and the O 2 gas supplied to the gas, it is possible to control the amount of oxidizing TiCl 4 gas. In other words, the oxygen concentration in the film-formed TiON film can be controlled. In the present embodiment, N 2 gas is used as the inert gas, but for example, argon (Ar) gas may be used. Further, although O 2 gas is used as the oxygen-containing gas, for example, ozone (O 3 ) gas may be used.
 続いて、処理容器内に窒素含有ガスであるアンモニア(NH)ガスを供給することにより、基板の上に吸着したTiClガスを窒化させる(ステップS3)。なお、本実施形態において、窒素含有ガスとしてNHガスを用いているが、例えばヒドラジン(N)ガス、モノメチルヒドラジン(MMH)ガスを用いてもよい。 Subsequently, by supplying ammonia (NH 3 ) gas, which is a nitrogen-containing gas, into the processing container, the TiCl 4 gas adsorbed on the substrate is nitrided (step S3). Although NH 3 gas is used as the nitrogen-containing gas in this embodiment, for example, hydrazine (N 2 H 4 ) gas or monomethylhydrazine (MMH) gas may be used.
 続いて、処理容器内に不活性ガスであるNガスを供給することにより、処理容器内に残存するNHガスをパージする(ステップS4)。このとき、Nガスと共に酸素含有ガスであるOガスを供給する。これにより、基板の上に吸着したTiClガスの一部が酸化される。Oガスは、ステップS4の全期間において処理容器内に供給してもよく、ステップS4の一部の期間において処理容器内に供給してもよい。なお、本実施形態において、不活性ガスとしてNガスを用いているが、例えばArガスを用いてもよい。また、酸素含有ガスとしてOガスを用いているが、例えばOガスを用いてもよい。 Subsequently, the NH 3 gas remaining in the processing container is purged by supplying the N 2 gas, which is an inert gas, into the processing container (step S4). At this time, O 2 gas, which is an oxygen-containing gas, is supplied together with N 2 gas. As a result, a part of the TiCl 4 gas adsorbed on the substrate is oxidized. The O 2 gas may be supplied into the processing container during the entire period of step S4, or may be supplied into the processing container during a part of the period of step S4. In the present embodiment, N 2 gas is used as the inert gas, but Ar gas may be used, for example. Further, although O 2 gas is used as the oxygen-containing gas, for example, O 3 gas may be used.
 続いて、ステップS1~S4の実行回数が、予め定められた回数X(Xは1以上の整数)に達したか否かを判定する(ステップS5)。ステップS5において、ステップS1~S4の実行回数が回数Xに到達していない場合、ステップS1に戻り、再びステップS1~S4を実行する。ステップS5において、ステップS1~S4の実行回数が回数Xに達した場合、処理を終了する。このようにステップS1~S4を回数Xに達するまで繰り返すことにより、基板の上に予め定められた膜厚を有するTiON膜が形成される。 Subsequently, it is determined whether or not the number of executions of steps S1 to S4 has reached a predetermined number of times X (X is an integer of 1 or more) (step S5). In step S5, if the number of executions of steps S1 to S4 has not reached the number X, the process returns to step S1 and steps S1 to S4 are executed again. In step S5, when the number of executions of steps S1 to S4 reaches the number X, the process ends. By repeating steps S1 to S4 in this way until the number of times X is reached, a TiON film having a predetermined film thickness is formed on the substrate.
 なお、図1に示される例では、ステップS2及びステップS4において処理容器内にOガスを供給する場合を説明したが、本開示はこれに限定されず、ステップS2とステップS4のいずれかにおいて処理容器内にOガスを供給すればよい。すなわち、ステップS2において処理容器内にOガスを供給し、ステップS4において処理容器内にOガスを供給しないようにしてもよい。また、ステップS4において処理容器内にOガスを供給し、ステップS2において処理容器内にOガスを供給しないようにしてもよい。 In the example shown in FIG. 1, the case where the O 2 gas is supplied into the processing container in steps S2 and S4 has been described, but the present disclosure is not limited to this, and in either step S2 or step S4. O 2 gas may be supplied into the processing container. That is, the O 2 gas may be supplied into the processing container in step S2, and the O 2 gas may not be supplied into the processing container in step S4. Further, the O 2 gas may be supplied into the processing container in step S4, and the O 2 gas may not be supplied into the processing container in step S2.
 以上に説明した実施形態の成膜方法によれば、TiClガスをパージするステップS2及びNHガスをパージするステップS4の少なくとも一方において、処理容器内にOガスを供給することにより、TiON膜を成膜する。これにより、ステップS1~S4とは別にOガスを供給するステップを行うことでTiON膜を成膜する場合と比較してステップ数を削減でき、TiN膜を成膜する場合と同等の時間でTiON膜を成膜できる。また、すべてのサイクルにおいてOガスが供給されるので、膜厚方向の酸素濃度の均一性が向上する。すなわち、生産性の改善と膜厚方向の酸素濃度の均一性の向上を両立できる。 According to the film forming method of the embodiment described above, TiON is supplied by supplying O 2 gas into the processing container in at least one of step S2 for purging the TiCl 4 gas and step S4 for purging the NH 3 gas. A film is formed. As a result, the number of steps can be reduced as compared with the case of forming the TiON film by performing the step of supplying the O 2 gas separately from the steps S1 to S4, and the time equivalent to the case of forming the TiN film can be reduced. A TiON film can be formed. Further, since the O 2 gas is supplied in all the cycles, the uniformity of the oxygen concentration in the film thickness direction is improved. That is, both the improvement of productivity and the improvement of the uniformity of oxygen concentration in the film thickness direction can be achieved at the same time.
 これに対し、TiCl供給、パージ、NH供給、パージ、O供給、パージを1サイクルとし、基板の上にALD法を用いて所定膜厚のTiON膜を成膜する場合、O供給及びパージの分だけステップ数が多くなるため、成膜時間が長くなる。また、TiCl供給、パージ、NH供給、パージのサイクルを複数回繰り返すごとにO供給を行うことによりTiON膜を成膜する場合、膜厚方向の酸素濃度に分布が生じやすく、また膜厚方向の酸素濃度の調整が困難である。 On the other hand, when a TiCl 4 supply, a purge, an NH 3 supply, a purge, an O 2 supply, and a purge are set as one cycle and a TiON film having a predetermined film thickness is formed on the substrate by the ALD method, the O 2 supply is performed. And since the number of steps is increased by the amount of purging, the film forming time becomes long. Further, when a TiON film is formed by supplying O 2 every time the cycle of TiCl 4 supply, purge, NH 3 supply, and purge is repeated a plurality of times, the oxygen concentration in the film thickness direction tends to be distributed, and the film is likely to be distributed. It is difficult to adjust the oxygen concentration in the thick direction.
 〔成膜装置〕
 図2を参照し、前述のTiON膜の成膜方法を実施するための成膜装置の一例について説明する。図2は、実施形態の成膜装置の一例を示す概略図である。
[Film formation device]
An example of a film forming apparatus for carrying out the above-mentioned film forming method for a TiON film will be described with reference to FIG. FIG. 2 is a schematic view showing an example of the film forming apparatus of the embodiment.
 成膜装置は、処理容器1、載置台2、シャワーヘッド3、排気部4、ガス供給部5及び制御部6を有する。 The film forming apparatus includes a processing container 1, a mounting table 2, a shower head 3, an exhaust unit 4, a gas supply unit 5, and a control unit 6.
 処理容器1は、アルミニウム等の金属により構成され、略円筒状を有する。処理容器1は、基板の一例である半導体ウエハ(以下「ウエハW」という。)を収容する。処理容器1の側壁には、ウエハWを搬入又は搬出するための搬入出口11が形成されている。搬入出口11は、ゲートバルブ12により開閉される。処理容器1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット13aが形成されている。排気ダクト13の外壁には、排気口13bが形成されている。排気ダクト13の上面には、処理容器1の上部開口を塞ぐように天壁14が設けられている。排気ダクト13と天壁14との間は、シールリング15で気密に封止されている。 The processing container 1 is made of a metal such as aluminum and has a substantially cylindrical shape. The processing container 1 accommodates a semiconductor wafer (hereinafter referred to as “wafer W”), which is an example of a substrate. A carry-in outlet 11 for carrying in or out the wafer W is formed on the side wall of the processing container 1. The carry-in outlet 11 is opened and closed by the gate valve 12. An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the processing container 1. A slit 13a is formed in the exhaust duct 13 along the inner peripheral surface. An exhaust port 13b is formed on the outer wall of the exhaust duct 13. A top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the processing container 1. The exhaust duct 13 and the top wall 14 are hermetically sealed with a seal ring 15.
 載置台2は、処理容器1内でウエハWを水平に支持する。載置台2は、ウエハWよりも大きい円板状を有し、窒化アルミニウム(AlN)等のセラミックス材料や、アルミニウムやニッケル合金等の金属材料で構成されている。載置台2の内部には、ウエハWを加熱するためのヒータ21が埋め込まれている。ヒータ21は、ヒータ電源(図示せず)から給電されて発熱する。そして、載置台2の上面の近傍に設けられた熱電対(図示せず)の温度信号によりヒータ21の出力を制御することにより、ウエハWが所定の温度に制御される。載置台2には、上面の外周領域及び側面を覆うようにアルミナ等のセラミックスにより形成されたカバー部材22が設けられている。 The mounting table 2 horizontally supports the wafer W in the processing container 1. The mounting table 2 has a disk shape larger than that of the wafer W, and is made of a ceramic material such as aluminum nitride (AlN) or a metal material such as aluminum or nickel alloy. A heater 21 for heating the wafer W is embedded in the mounting table 2. The heater 21 is supplied with power from a heater power source (not shown) to generate heat. Then, the wafer W is controlled to a predetermined temperature by controlling the output of the heater 21 by a temperature signal of a thermocouple (not shown) provided near the upper surface of the mounting table 2. The mounting table 2 is provided with a cover member 22 formed of ceramics such as alumina so as to cover the outer peripheral region of the upper surface and the side surface.
 載置台2は、支持部材23に支持されている。支持部材23は、載置台2の底面中央から処理容器1の底壁に形成された孔部を貫通して処理容器1の下方に延び、その下端が昇降機構24に接続されている。載置台2は、昇降機構24により、図1で示す処理位置と、その下方の二点鎖線で示すウエハWの搬送が可能な搬送位置との間で昇降する。支持部材23の処理容器1の下方には、鍔部25が取り付けられている。処理容器1の底面と鍔部25との間には、ベローズ26が設けられている。ベローズ26は、処理容器1内の雰囲気を外気と区画し、載置台2の昇降動作にともなって伸縮する。 The mounting table 2 is supported by the support member 23. The support member 23 extends from the center of the bottom surface of the mounting table 2 to the lower side of the processing container 1 through a hole formed in the bottom wall of the processing container 1, and the lower end thereof is connected to the elevating mechanism 24. The mounting table 2 is moved up and down by the elevating mechanism 24 between the processing position shown in FIG. 1 and the transfer position where the wafer W can be conveyed, which is indicated by the alternate long and short dash line below the processing position. A collar portion 25 is attached below the processing container 1 of the support member 23. A bellows 26 is provided between the bottom surface of the processing container 1 and the collar portion 25. The bellows 26 separates the atmosphere inside the processing container 1 from the outside air, and expands and contracts as the mounting table 2 moves up and down.
 処理容器1の底面近傍には、昇降板27aから上方に突出するように3本(2本のみ図示)のウエハ支持ピン27が設けられている。ウエハ支持ピン27は、処理容器1の下方に設けられた昇降機構28により昇降板27aを介して昇降する。ウエハ支持ピン27は、搬送位置にある載置台2に設けられた貫通孔2aに挿通されて載置台2の上面に対して突没可能となっている。ウエハ支持ピン27を昇降させることにより、搬送ロボット(図示せず)と載置台2との間でウエハWの受け渡しが行われる。 Near the bottom surface of the processing container 1, three wafer support pins 27 (only two are shown) are provided so as to project upward from the elevating plate 27a. The wafer support pin 27 is moved up and down via the lifting plate 27a by the lifting mechanism 28 provided below the processing container 1. The wafer support pin 27 is inserted into a through hole 2a provided in the mounting table 2 at the transport position so that the wafer support pin 27 can be recessed with respect to the upper surface of the mounting table 2. By raising and lowering the wafer support pin 27, the wafer W is transferred between the transfer robot (not shown) and the mounting table 2.
 シャワーヘッド3は、処理容器1内に処理ガスをシャワー状に供給する。シャワーヘッド3は、例えば金属材料により形成され、載置台2に対向して配置されている。シャワーヘッド3は、載置台2とほぼ同じ直径を有する。シャワーヘッド3は、本体部31及びシャワープレート32を含む。本体部31は、天壁14の下面に固定されている。シャワープレート32は、本体部31の下に接続されている。本体部31とシャワープレート32との間には、ガス拡散空間33が形成されている。ガス拡散空間33には、天壁14及び本体部31の中央を貫通するようにガス導入孔36,37が設けられている。シャワープレート32の周縁部には、下方に突出する環状突起部34が形成されている。シャワープレート32における環状突起部34の内側の平坦面には、多数のガス吐出孔35が形成されている。 The shower head 3 supplies the processing gas into the processing container 1 in the form of a shower. The shower head 3 is made of, for example, a metal material and is arranged so as to face the mounting table 2. The shower head 3 has substantially the same diameter as the mounting table 2. The shower head 3 includes a main body 31 and a shower plate 32. The main body 31 is fixed to the lower surface of the top wall 14. The shower plate 32 is connected under the main body 31. A gas diffusion space 33 is formed between the main body 31 and the shower plate 32. The gas diffusion space 33 is provided with gas introduction holes 36 and 37 so as to penetrate the center of the top wall 14 and the main body 31. An annular protrusion 34 projecting downward is formed on the peripheral edge of the shower plate 32. A large number of gas discharge holes 35 are formed on the flat surface inside the annular protrusion 34 of the shower plate 32.
 載置台2が処理位置に存在した状態では、載置台2とシャワープレート32との間に処理空間38が形成され、カバー部材22の上面と環状突起部34とが近接して環状隙間39が形成される。 When the mounting table 2 is present at the processing position, a processing space 38 is formed between the mounting table 2 and the shower plate 32, and the upper surface of the cover member 22 and the annular protrusion 34 are close to each other to form an annular gap 39. Will be done.
 排気部4は、処理容器1の内部を排気する。排気部4は、排気配管41及び排気機構42を含む。排気配管41は、排気口13bに接続されている。排気機構42は、排気配管41に接続されており、真空ポンプ、圧力制御バルブ等を含む。排気機構42は、排気ダクト13及び排気配管41を介して、処理容器1内のガスを排気する。 The exhaust unit 4 exhausts the inside of the processing container 1. The exhaust unit 4 includes an exhaust pipe 41 and an exhaust mechanism 42. The exhaust pipe 41 is connected to the exhaust port 13b. The exhaust mechanism 42 is connected to the exhaust pipe 41 and includes a vacuum pump, a pressure control valve, and the like. The exhaust mechanism 42 exhausts the gas in the processing container 1 through the exhaust duct 13 and the exhaust pipe 41.
 ガス供給部5は、シャワーヘッド3に各種のガスを供給する。ガス供給部5は、TiCl供給源51a、NH供給源52a、N供給源53a、N供給源54a、O供給源55a、NH供給源56a、N供給源57a及びN供給源58aを有する。 The gas supply unit 5 supplies various gases to the shower head 3. The gas supply unit 5 includes a TiCl 4 supply source 51a, an NH 3 supply source 52a, an N 2 supply source 53a, an N 2 supply source 54a, an O 2 supply source 55a, an NH 3 supply source 56a, an N 2 supply source 57a and an N 2 It has a source 58a.
 TiCl供給源51aは、ガス供給ライン51bを介してTi含有ガスの一例であるTiClガスを処理容器1内に供給する。ガス供給ライン51bには、上流側から流量制御器51c、貯留タンク51d及びバルブ51eが介設されている。ガス供給ライン51bのバルブ51eの下流側は、ガス導入孔37に接続されている。TiCl供給源51aから供給されるTiClガスは処理容器1内に供給される前に貯留タンク51dで一旦貯留され、貯留タンク51d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク51dから処理容器1へのTiClガスの供給及び停止は、バルブ51eにより行われる。このように貯留タンク51dへTiClガスを一旦貯留することで、TiClガスを比較的大きい流量で安定して処理容器1内に供給できる。 The TiCl 4 supply source 51a supplies the TiCl 4 gas, which is an example of the Ti-containing gas, into the processing container 1 via the gas supply line 51b. A flow rate controller 51c, a storage tank 51d, and a valve 51e are interposed in the gas supply line 51b from the upstream side. The downstream side of the valve 51e of the gas supply line 51b is connected to the gas introduction hole 37. TiCl 4 TiCl 4 gas supplied from the supply source 51a is temporarily stored in the storage tank 51d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 51d, into the processing vessel 1 Be supplied. The supply and stop of the TiCl 4 gas from the storage tank 51d to the processing container 1 is performed by the valve 51e. By temporarily storing the TiCl 4 gas in the storage tank 51d in this way , the TiCl 4 gas can be stably supplied into the processing container 1 at a relatively large flow rate.
 NH供給源52aは、ガス供給ライン52bを介して窒素含有ガスの一例であるNHガスを処理容器1内に供給する。ガス供給ライン52bには、上流側から流量制御器52c、貯留タンク52d及びバルブ52eが介設されている。ガス供給ライン52bのバルブ52eの下流側は、ガス供給ライン51bに接続されている。NH供給源52aから供給されるNHガスは処理容器1内に供給される前に貯留タンク52dで一旦貯留され、貯留タンク52d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク52dから処理容器1へのNHガスの供給及び停止は、バルブ52eにより行われる。このように貯留タンク52dへNHガスを一旦貯留することで、NHガスを比較的大きい流量で安定して処理容器1内に供給できる。 The NH 3 supply source 52a supplies NH 3 gas, which is an example of nitrogen-containing gas, into the processing container 1 via the gas supply line 52b. A flow rate controller 52c, a storage tank 52d, and a valve 52e are interposed in the gas supply line 52b from the upstream side. The downstream side of the valve 52e of the gas supply line 52b is connected to the gas supply line 51b. NH 3 gas supplied from the NH 3 supply source 52a is temporarily stored in the storage tank 52d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 52d, into the processing vessel 1 Be supplied. Supply and stop of the NH 3 gas from the storage tank 52d to the processing chamber 1 is performed by the valve 52e. By temporarily storing the NH 3 gas in the storage tank 52d in this way , the NH 3 gas can be stably supplied into the processing container 1 at a relatively large flow rate.
 N供給源53aは、ガス供給ライン53bを介してパージガスの一例であるNガスを処理容器1内に供給する。ガス供給ライン53bには、上流側から流量制御器53c、貯留タンク53d及びバルブ53eが介設されている。ガス供給ライン53bのバルブ53eの下流側は、ガス供給ライン51bに接続されている。N供給源53aから供給されるNガスは処理容器1内に供給される前に貯留タンク53dで一旦貯留され、貯留タンク53d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク53dから処理容器1へのNガスの供給及び停止は、バルブ53eにより行われる。このように貯留タンク53dへNガスを一旦貯留することで、Nガスを比較的大きい流量で安定して処理容器1内に供給できる。 The N 2 supply source 53a supplies N 2 gas, which is an example of purge gas, into the processing container 1 via the gas supply line 53b. A flow rate controller 53c, a storage tank 53d, and a valve 53e are interposed in the gas supply line 53b from the upstream side. The downstream side of the valve 53e of the gas supply line 53b is connected to the gas supply line 51b. N 2 gas supplied from the N 2 supply source 53a is temporarily stored in the storage tank 53d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 53d, into the processing vessel 1 Be supplied. Supply and stop of the N 2 gas from the storage tank 53d to the processing chamber 1 is performed by the valve 53e. By temporarily storing the N 2 gas in the storage tank 53d in this way , the N 2 gas can be stably supplied into the processing container 1 at a relatively large flow rate.
 N供給源54aは、ガス供給ライン54bを介してキャリアガスの一例であるNガスを処理容器1内に供給する。ガス供給ライン54bには、上流側から流量制御器54c、バルブ54e及びオリフィス54fが介設されている。ガス供給ライン54bのオリフィス54fの下流側は、ガス供給ライン51bに接続されている。N供給源54aから供給されるNガスはウエハWの成膜中に連続して処理容器1内に供給される。N供給源54aから処理容器1へのNガスの供給及び停止は、バルブ54eにより行われる。オリフィス54fは、貯留タンク51d,52d,53dによってガス供給ライン51b,52b,53bに供給される比較的大きい流量のガスがNガス供給ライン54bに逆流することを抑制する。 The N 2 supply source 54a supplies the N 2 gas, which is an example of the carrier gas, into the processing container 1 via the gas supply line 54b. A flow rate controller 54c, a valve 54e, and an orifice 54f are interposed in the gas supply line 54b from the upstream side. The downstream side of the orifice 54f of the gas supply line 54b is connected to the gas supply line 51b. N 2 gas supplied from the N 2 supply source 54a is supplied into the processing vessel 1 continuously during deposition of the wafer W. The supply and stop of the N 2 gas from the N 2 supply source 54a to the processing container 1 is performed by the valve 54e. Orifice 54f inhibits storage tank 51d, 52 d, gas supply line 51b by 53d, 52 b, that a relatively large flow rate of gas supplied to 53b from flowing back to the N 2 gas supply line 54b.
 O供給源55aは、ガス供給ライン55bを介して酸素含有ガスの一例であるOガスを処理容器1内に供給する。ガス供給ライン55bには、上流側から流量制御器55c、貯留タンク55d及びバルブ55eが介設されている。ガス供給ライン55bのバルブ55eの下流側は、ガス導入孔36に接続されている。O供給源55aから供給されるOガスは処理容器1内に供給される前に貯留タンク55dで一旦貯留され、貯留タンク55d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク55dから処理容器1へのOガスの供給及び停止は、バルブ55eにより行われる。このように貯留タンク55dへOガスを一旦貯留することで、Oガスを比較的大きい流量で安定して処理容器1内に供給できる。 The O 2 supply source 55a supplies the O 2 gas, which is an example of the oxygen-containing gas, into the processing container 1 via the gas supply line 55b. A flow rate controller 55c, a storage tank 55d, and a valve 55e are interposed in the gas supply line 55b from the upstream side. The downstream side of the valve 55e of the gas supply line 55b is connected to the gas introduction hole 36. O 2 O 2 gas supplied from the supply source 55a is temporarily stored in the storage tank 55d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 55d, into the processing vessel 1 Be supplied. The supply and stop of the O 2 gas from the storage tank 55d to the processing container 1 is performed by the valve 55e. By temporarily storing the O 2 gas in the storage tank 55d in this way , the O 2 gas can be stably supplied into the processing container 1 at a relatively large flow rate.
 NH供給源56aは、ガス供給ライン56bを介して窒素含有ガスの一例であるNHガスを処理容器1内に供給する。ガス供給ライン56bには、上流側から流量制御器56c、貯留タンク56d及びバルブ56eが介設されている。ガス供給ライン56bのバルブ56eの下流側は、ガス供給ライン55bに接続されている。NH供給源56aから供給されるNHガスは処理容器1内に供給される前に貯留タンク56dで一旦貯留され、貯留タンク56d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク56dから処理容器1へのNHガスの供給及び停止は、バルブ56eにより行われる。このように貯留タンク56dへNHガスを一旦貯留することで、NHガスを比較的大きい流量で安定して処理容器1内に供給できる。 The NH 3 supply source 56a supplies NH 3 gas, which is an example of nitrogen-containing gas, into the processing container 1 via the gas supply line 56b. A flow rate controller 56c, a storage tank 56d, and a valve 56e are interposed in the gas supply line 56b from the upstream side. The downstream side of the valve 56e of the gas supply line 56b is connected to the gas supply line 55b. NH 3 gas supplied from the NH 3 supply source 56a is temporarily stored in the storage tank 56d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 56d, into the processing vessel 1 Be supplied. Supply and stop of the NH 3 gas from the storage tank 56d to the processing chamber 1 is performed by the valve 56e. By temporarily storing the NH 3 gas in the storage tank 56d in this way , the NH 3 gas can be stably supplied into the processing container 1 at a relatively large flow rate.
 N供給源57aは、ガス供給ライン57bを介してパージガスの一例であるNガスを処理容器1内に供給する。ガス供給ライン57bには、上流側から流量制御器57c、貯留タンク57d及びバルブ57eが介設されている。ガス供給ライン57bのバルブ57eの下流側は、ガス供給ライン55bに接続されている。N供給源57aから供給されるNガスは処理容器1内に供給される前に貯留タンク57dで一旦貯留され、貯留タンク57d内で所定の圧力に昇圧された後、処理容器1内に供給される。貯留タンク57dから処理容器1へのNガスの供給及び停止は、バルブ57eにより行われる。このように貯留タンク57dへNガスを一旦貯留することで、Nガスを比較的大きい流量で安定して処理容器1内に供給できる。 The N 2 supply source 57a supplies N 2 gas, which is an example of purge gas, into the processing container 1 via the gas supply line 57b. A flow rate controller 57c, a storage tank 57d, and a valve 57e are interposed in the gas supply line 57b from the upstream side. The downstream side of the valve 57e of the gas supply line 57b is connected to the gas supply line 55b. N 2 gas supplied from the N 2 supply source 57a is temporarily stored in the storage tank 57d before being supplied into the processing container 1, after being raised to a predetermined pressure in the storage tank 57d, into the processing vessel 1 Be supplied. Supply and stop of the N 2 gas from the storage tank 57d to the processing chamber 1 is performed by the valve 57e. By temporarily storing the N 2 gas in the storage tank 57d in this way , the N 2 gas can be stably supplied into the processing container 1 at a relatively large flow rate.
 N供給源58aは、ガス供給ライン58bを介してキャリアガスの一例であるNガスを処理容器1内に供給する。ガス供給ライン58bには、上流側から流量制御器58c、バルブ58e及びオリフィス58fが介設されている。ガス供給ライン58bのオリフィス58fの下流側は、ガス供給ライン55bに接続されている。N供給源58aから供給されるNガスはウエハWの成膜中に連続して処理容器1内に供給される。N供給源58aから処理容器1へのNガスの供給及び停止は、バルブ58eにより行われる。オリフィス58fは、貯留タンク55d,56d,57dによってガス供給ライン55b,56b,57bに供給される比較的大きい流量のガスがガス供給ライン58bに逆流することを抑制する。 The N 2 supply source 58a supplies N 2 gas, which is an example of carrier gas, into the processing container 1 via the gas supply line 58b. A flow rate controller 58c, a valve 58e, and an orifice 58f are interposed in the gas supply line 58b from the upstream side. The downstream side of the orifice 58f of the gas supply line 58b is connected to the gas supply line 55b. N 2 gas supplied from the N 2 supply source 58a is supplied into the processing vessel 1 continuously during deposition of the wafer W. The supply and stop of the N 2 gas from the N 2 supply source 58a to the processing container 1 is performed by the valve 58e. The orifice 58f suppresses the backflow of a relatively large flow rate of gas supplied to the gas supply lines 55b, 56b, 57b by the storage tanks 55d, 56d, 57d to the gas supply line 58b.
 制御部6は、例えばコンピュータであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置等を備える。CPUは、ROM又は補助記憶装置に格納されたプログラムに基づいて動作し、成膜装置の動作を制御する。制御部6は、成膜装置の内部に設けられていてもよく、外部に設けられていてもよい。制御部6が成膜装置の外部に設けられている場合、制御部6は、有線又は無線等の通信ネットワークによって、成膜装置を制御できる。 The control unit 6 is, for example, a computer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an auxiliary storage device, and the like. The CPU operates based on a program stored in the ROM or the auxiliary storage device, and controls the operation of the film forming apparatus. The control unit 6 may be provided inside the film forming apparatus or may be provided outside. When the control unit 6 is provided outside the film forming apparatus, the control unit 6 can control the film forming apparatus by a communication network such as wired or wireless.
 〔成膜装置の動作〕
 図2及び図3を参照し、前述の成膜装置を用いてウエハWの上にTiON膜を成膜する方法の一例について説明する。図3は、実施形態の成膜方法のガス供給シーケンスの一例を示す図であり、ステップS2において処理容器1内にOガスを供給し、ステップS4において処理容器1内にOガスを供給しない場合のガス供給シーケンスを示す。
[Operation of film forming equipment]
An example of a method of forming a TiON film on the wafer W by using the above-mentioned film forming apparatus will be described with reference to FIGS. 2 and 3. Figure 3 is a diagram showing an example of a gas supply sequence of the film-forming method of the embodiment, by supplying O 2 gas into the processing vessel 1 at step S2, the supply of O 2 gas into the processing chamber 1 in the step S4 The gas supply sequence when not is shown.
 最初に、バルブ51e~58eが閉じられた状態で、ゲートバルブ12を開いて搬送ロボット(図示せず)によりウエハWを処理容器1内に搬送し、搬送位置にある載置台2に載置する。搬送ロボットを処理容器1内から退避させた後、ゲートバルブ12を閉じる。載置台2のヒータ21によりウエハWを所定の温度(例えば300℃~700℃)に加熱すると共に載置台2を処理位置まで上昇させ、処理空間38を形成する。また、排気機構42の圧力制御バルブにより処理容器1内を所定の圧力(例えば200Pa~1200Pa)に調整する。 First, with the valves 51e to 58e closed, the gate valve 12 is opened, the wafer W is conveyed into the processing container 1 by a transfer robot (not shown), and the wafer W is placed on the mounting table 2 at the transfer position. .. After retracting the transfer robot from the processing container 1, the gate valve 12 is closed. The wafer W is heated to a predetermined temperature (for example, 300 ° C. to 700 ° C.) by the heater 21 of the mounting table 2, and the mounting table 2 is raised to the processing position to form the processing space 38. Further, the pressure control valve of the exhaust mechanism 42 adjusts the inside of the processing container 1 to a predetermined pressure (for example, 200 Pa to 1200 Pa).
 次いで、バルブ54e,58eを開き、N供給源54a,58aから夫々ガス供給ライン54b,58bに所定の流量(例えば300sccm~10000sccm)のキャリアガス(Nガス)を供給する。また、TiCl供給源51a、NH供給源52a、O供給源55a及びNH供給源56aから夫々TiClガス、NHガス、Oガス及びNHガスをガス供給ライン51b,52b,55b,56bに供給する。このとき、バルブ51e,52e,55e,56eが閉じられているので、TiClガス、NHガス、Oガス及びNHガスは、貯留タンク51d,52d,55d,56dに夫々貯留され、貯留タンク51d,52d,55d,56d内が昇圧する。 Next, the valves 54e and 58e are opened to supply a predetermined flow rate (for example, 300 sccm to 10000 sccm) of carrier gas (N 2 gas) from the N 2 supply sources 54a and 58a to the gas supply lines 54b and 58b, respectively. Further, TiCl 4 source 51a, NH 3 source 52a, O 2 supply source 55a and the NH 3 supply source 56a respectively from TiCl 4 gas, NH 3 gas, O 2 gas and NH 3 gas of the gas supply line 51b, 52 b, It is supplied to 55b and 56b. At this time, since the valves 51e, 52e, 55e, and 56e are closed, the TiCl 4 gas, NH 3 gas, O 2 gas, and NH 3 gas are stored in the storage tanks 51d, 52d, 55d, and 56d, respectively, and stored. The pressure inside the tanks 51d, 52d, 55d, and 56d is increased.
 次いで、バルブ51eを開き、貯留タンク51dに貯留されたTiClガスを処理容器1内に供給し、ウエハWの上に吸着させる(ステップS1)。また、処理容器1内へのTiClガスの供給と並行して、N供給源53a,57aからガス供給ライン53b,57bに夫々パージガス(Nガス)を供給する。このとき、バルブ53e,57eが閉じられているので、パージガスは貯留タンク53d,57dに貯留され、53d,57d内が昇圧する。 Next, the valve 51e is opened, and the TiCl 4 gas stored in the storage tank 51d is supplied into the processing container 1 and adsorbed on the wafer W (step S1). Further, in parallel with the supply of the TiCl 4 gas into the processing container 1, the purge gas (N 2 gas) is supplied from the N 2 supply sources 53a and 57a to the gas supply lines 53b and 57b, respectively. At this time, since the valves 53e and 57e are closed, the purge gas is stored in the storage tanks 53d and 57d, and the pressure inside the 53d and 57d is increased.
 バルブ51eを開いてから所定の時間(例えば0.03秒~3.0秒)が経過した後、バルブ51eを閉じると共にバルブ53e,57e,55eを開く。これにより、処理容器1内へのTiClガスの供給を停止すると共に、貯留タンク53d,57dに夫々貯留されたパージガス及び貯留タンク55dに貯留されたOガスを処理容器1内に供給する(ステップS2)。このとき、圧力が上昇した状態の貯留タンク53d,57dから供給されるので、処理容器1内には比較的大きな流量、例えばキャリアガスの流量よりも大きい流量でパージガスが供給される。そのため、処理容器1内に残留するTiClガスが速やかに排気配管41へと排出され、処理容器1内がTiClガス雰囲気からNガス雰囲気に短時間で置換される。また、処理容器1内にOガスが供給されるので、ウエハWの上に吸着したTiClガスの一部が酸化される。一方、バルブ51eが閉じられたことにより、TiCl供給源51aからガス供給ライン51bに供給されるTiClガスが貯留タンク51dに貯留され、貯留タンク51d内が昇圧する。 After a predetermined time (for example, 0.03 to 3.0 seconds) has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e, 57e, 55e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1 ( Step S2). At this time, since the gas is supplied from the storage tanks 53d and 57d in the state where the pressure is increased, the purge gas is supplied into the processing container 1 at a relatively large flow rate, for example, a flow rate larger than the flow rate of the carrier gas. Therefore, the TiCl 4 gas remaining in the processing container 1 is quickly discharged to the exhaust pipe 41, and the inside of the processing container 1 is replaced with the N 2 gas atmosphere from the TiCl 4 gas atmosphere in a short time. Further, since the O 2 gas is supplied into the processing container 1, a part of the TiCl 4 gas adsorbed on the wafer W is oxidized. On the other hand, the valve 51e is closed, TiCl 4 gas supplied from TiCl 4 supply source 51a to the gas supply line 51b is stored in the storage tank 51d, boosts the storage tank 51d is.
 バルブ53e,57e,55eを開いてから所定の時間(例えば0.03秒~3.0秒)が経過した後、バルブ53e,57e,55eを閉じると共にバルブ52e,56eを開く。これにより、処理容器1内へのパージガス及びOガスの供給を停止すると共に貯留タンク52d,56dに貯留されたNHガスを処理容器1内に供給し、ウエハWの上に吸着したTiClガスを窒化する(ステップS3)。このとき、バルブ53e,57eが閉じられたことにより、N供給源53a,57aからガス供給ライン53b,57bに夫々供給されるパージガスが貯留タンク53d,57dに貯留され、貯留タンク53d,57d内が昇圧する。また、バルブ55eが閉じられたことにより、O供給源55aからガス供給ライン55bに供給されるOガスが貯留タンク55dに貯留され、貯留タンク55d内が昇圧する。 After a predetermined time (for example, 0.03 to 3.0 seconds) has elapsed from opening the valves 53e, 57e, 55e, the valves 53e, 57e, 55e are closed and the valves 52e, 56e are opened. As a result, the supply of the purge gas and the O 2 gas into the processing container 1 is stopped, the NH 3 gas stored in the storage tanks 52d and 56d is supplied into the processing container 1, and the TiCl 4 adsorbed on the wafer W is supplied. The gas is nitrided (step S3). At this time, valve 53e, by 57e is closed, N 2 supply source 53a, gas supply line 53b from 57a, the purge gas are respectively supplied to 57b stored storage tank 53d, the 57d, the reservoir tank 53d, the 57d Boosts. Further, since the valve 55e is closed, O 2 gas from the O 2 supply source 55a is supplied to the gas supply line 55b is stored in the storage tank 55d, the storage tank 55d is boosted.
 バルブ52e,56eを開いてから所定の時間(例えば0.03秒~3.0秒)が経過した後、バルブ52e,56eを閉じると共にバルブ53e,57eを開く。これにより、処理容器1内へのNHガスの供給を停止すると共に貯留タンク53d,57dに夫々貯留されたパージガスを処理容器1内に供給する(ステップS4)。このとき、圧力が上昇した状態の貯留タンク53d,57dから供給されるので、処理容器1内には比較的大きな流量、例えばキャリアガスの流量よりも大きい流量でパージガスが供給される。そのため、処理容器1内に残留するNHガスが速やかに排気配管41へと排出され、処理容器1内がNHガス雰囲気からNガス雰囲気に短時間で置換される。一方、バルブ52e,56eが閉じられたことにより、NH供給源52a,56aからガス供給ライン52b,56bに供給されるNHガスが貯留タンク52d,56dに貯留され、貯留タンク52d,56d内が昇圧する。 After a predetermined time (for example, 0.03 to 3.0 seconds) has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e and 57e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1 (step S4). At this time, since the gas is supplied from the storage tanks 53d and 57d in the state where the pressure is increased, the purge gas is supplied into the processing container 1 at a relatively large flow rate, for example, a flow rate larger than the flow rate of the carrier gas. Therefore, the NH 3 gas remaining in the processing container 1 is quickly discharged to the exhaust pipe 41, and the inside of the processing container 1 is replaced with the N 2 gas atmosphere from the NH 3 gas atmosphere in a short time. On the other hand, the valve 52e, by 56e is closed, NH 3 gas supplied NH 3 supply source 52a, from 56a the gas supply line 52 b, and 56b are stored storage tank 52 d, the 56d, the reservoir tank 52 d, the 56d Boosts.
 上記のステップS1~S4のサイクルを1サイクル実施することにより、ウエハWの上にTiNに酸素(O)が添加されたTiON単位膜を形成する。そして、ステップS1~S4のサイクルを予め定められた回数Xだけ繰り返すことで(ステップS5)、ウエハWの上に予め定められた膜厚を有するTiON膜が形成される。 By carrying out one cycle of the above steps S1 to S4, a TiON unit film in which oxygen (O) is added to TiN is formed on the wafer W. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
 その後、処理容器1内への搬入時とは逆の手順でウエハWを処理容器1から搬出する。 After that, the wafer W is carried out from the processing container 1 in the reverse procedure of the loading into the processing container 1.
 なお、上記の例では、ステップS2及びステップS4において、貯留タンク53d,57dに貯留されたパージガス(Nガス)を処理容器1内に供給して処理容器1内をパージする場合を説明したが、これに限定されない。例えば、貯留タンク53d,57dに貯留されたパージガス(Nガス)を処理容器1内に供給することなく、N供給源54a,58aから処理容器1内に供給されるキャリアガス(Nガス)によって処理容器1内をパージしてもよい。 In the above example, in step S2 and step S4, the storage tank 53d, it has been described a case in which purge supply to the processing chamber 1 into the processing chamber 1 the reservoir purge gas (N 2 gas) to 57d , Not limited to this. For example, storage tank 53d, without supplying stored purge gas (N 2 gas) into the processing chamber 1 to 57d, N 2 supply source 54a, a carrier gas supplied into the processing container 1 from 58a (N 2 gas ) May be purged in the processing container 1.
 図2及び図4を参照し、前述の成膜装置を用いてウエハWの上にTiON膜を成膜する方法の別の一例について説明する。図4は、実施形態の成膜方法のガス供給シーケンスの別の一例を示す図であり、ステップS4において処理容器1内にOガスを供給し、ステップS2において処理容器1内にOガスを供給しない場合のガス供給シーケンスを示す。 With reference to FIGS. 2 and 4, another example of a method of forming a TiON film on the wafer W using the above-mentioned film forming apparatus will be described. Figure 4 is a diagram showing another example of a gas supply sequence of the film-forming method of the embodiment, by supplying O 2 gas into the processing vessel 1 at step S4, O 2 gas into the processing chamber 1 in step S2 The gas supply sequence when is not supplied is shown.
 図4に示される例では、ステップS2において、バルブ51eを開いてから所定の時間が経過した後、バルブ51eを閉じると共にバルブ53e,57eを開く。これにより、処理容器1内へのTiClガスの供給を停止すると共に、貯留タンク53d,57dに夫々貯留されたパージガスを処理容器1内に供給する。 In the example shown in FIG. 4, in step S2, after a predetermined time has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e and 57e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1.
 また、ステップS4において、バルブ52e,56eを開いてから所定の時間が経過した後、バルブ52e,56eを閉じると共にバルブ53e,57e,55eを開く。これにより、処理容器1内へのNHガスの供給を停止すると共に、貯留タンク53d,57dに夫々貯留されたパージガス及び貯留タンク55dに貯留されたOガスを処理容器1内に供給する。なお、ステップS1及びステップS3については図3に示される例と同様であってよい。 Further, in step S4, after a predetermined time has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e, 57e and 55e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1. Note that steps S1 and S3 may be the same as the example shown in FIG.
 図4に示される例においても、図3に示される例と同様に、ステップS1~S4のサイクルを1サイクル実施することにより、ウエハWの上にTiNに酸素(O)が添加されたTiON単位膜を形成する。そして、ステップS1~S4のサイクルを予め定められた回数Xだけ繰り返すことで(ステップS5)、ウエハWの上に予め定められた膜厚を有するTiON膜が形成される。 In the example shown in FIG. 4, similarly to the example shown in FIG. 3, the TiON unit in which oxygen (O) is added to TiN on the wafer W by carrying out one cycle of steps S1 to S4. Form a film. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
 図2及び図5を参照し、前述の成膜装置を用いてウエハWの上にTiON膜を成膜する方法の更に別の一例について説明する。図5は、実施形態の成膜方法のガス供給シーケンスの更に別の一例を示す図であり、ステップS2及びステップS4において処理容器1内にOガスを供給する場合のガス供給シーケンスを示す。 Further, another example of the method of forming a TiON film on the wafer W by using the above-mentioned film forming apparatus will be described with reference to FIGS. 2 and 5. FIG. 5 is a diagram showing still another example of the gas supply sequence of the film forming method of the embodiment, and shows the gas supply sequence when O 2 gas is supplied into the processing container 1 in steps S2 and S4.
 図5に示される例では、ステップS2において、バルブ51eを開いてから所定の時間が経過した後、バルブ51eを閉じると共にバルブ53e,57e,55eを開く。これにより、処理容器1内へのTiClガスの供給を停止すると共に、貯留タンク53d,57dに夫々貯留されたパージガス及び貯留タンク55dに貯留されたOガスを処理容器1内に供給する。 In the example shown in FIG. 5, in step S2, after a predetermined time has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e, 57e, 55e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1.
 また、ステップS4において、バルブ52e,56eを開いてから所定の時間が経過した後、バルブ52e,56eを閉じると共にバルブ53e,57e,55eを開く。これにより、処理容器1内へのNHガスの供給を停止すると共に、貯留タンク53d,57dに夫々貯留されたパージガス及び貯留タンク55dに貯留されたOガスを処理容器1内に供給する。なお、ステップS1及びステップS3については図3に示される例と同様であってよい。 Further, in step S4, after a predetermined time has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e, 57e and 55e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d and the O 2 gas stored in the storage tank 55d are supplied into the processing container 1. Note that steps S1 and S3 may be the same as the example shown in FIG.
 図5に示される例においても、図3に示される例と同様に、ステップS1~S4のサイクルを1サイクル実施することにより、ウエハWの上にTiNに酸素(O)が添加されたTiON単位膜を形成する。そして、ステップS1~S4のサイクルを予め定められた回数Xだけ繰り返すことで(ステップS5)、ウエハWの上に予め定められた膜厚を有するTiON膜が形成される。 In the example shown in FIG. 5, similarly to the example shown in FIG. 3, the TiON unit in which oxygen (O) is added to TiN on the wafer W by carrying out one cycle of steps S1 to S4. Form a film. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
 図2及び図6を参照し、前述の成膜装置を用いてウエハWの上にTiON膜を成膜する方法の更に別の一例について説明する。図6は、実施形態の成膜方法のガス供給シーケンスの更に別の一例を示す図であり、ステップS2の一部の期間において処理容器1内にOガスを供給する場合のガス供給シーケンスを示す。 With reference to FIGS. 2 and 6, still another example of a method of forming a TiON film on the wafer W using the above-mentioned film forming apparatus will be described. FIG. 6 is a diagram showing still another example of the gas supply sequence of the film forming method of the embodiment, and shows a gas supply sequence when O 2 gas is supplied into the processing container 1 during a part of the period of step S2. show.
 図6に示される例では、ステップS2において、バルブ51eを開いてから所定の時間が経過した後、バルブ51eを閉じると共にバルブ53e,57eを開く。これにより、処理容器1内へのTiClガスの供給を停止すると共に、貯留タンク53d,57dに夫々貯留されたパージガスを処理容器1内に供給する。また、バルブ53e,57eを開いてから所定の時間が経過した後、バルブ55eを開く。これにより、ステップS2の期間の途中から貯留タンク55dに貯留されたOガスを処理容器1内に供給する。また、ステップS2においては、バルブ55eを閉じてから所定の時間が経過した後、バルブ53e,57eを閉じる。 In the example shown in FIG. 6, in step S2, after a predetermined time has elapsed from opening the valve 51e, the valve 51e is closed and the valves 53e and 57e are opened. As a result, the supply of TiCl 4 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1. Further, after a predetermined time has elapsed from opening the valves 53e and 57e, the valves 55e are opened. As a result, the O 2 gas stored in the storage tank 55d is supplied into the processing container 1 from the middle of the period of step S2. Further, in step S2, the valves 53e and 57e are closed after a predetermined time has elapsed since the valve 55e was closed.
 また、ステップS4において、バルブ52e,56eを開いてから所定の時間が経過した後、バルブ52e,56eを閉じると共にバルブ53e,57eを開く。これにより、処理容器1内へのNHガスの供給を停止すると共に、貯留タンク53d,57dに夫々貯留されたパージガスを処理容器1内に供給する。なお、ステップS1及びステップS3については図3に示される例と同様であってよい。 Further, in step S4, after a predetermined time has elapsed from opening the valves 52e and 56e, the valves 52e and 56e are closed and the valves 53e and 57e are opened. As a result, the supply of NH 3 gas into the processing container 1 is stopped, and the purge gas stored in the storage tanks 53d and 57d is supplied into the processing container 1. Note that steps S1 and S3 may be the same as the example shown in FIG.
 図6に示される例においても、図3に示される例と同様に、ステップS1~S4のサイクルを1サイクル実施することにより、ウエハWの上にTiNに酸素(O)が添加されたTiON単位膜を形成する。そして、ステップS1~S4のサイクルを予め定められた回数Xだけ繰り返すことで(ステップS5)、ウエハWの上に予め定められた膜厚を有するTiON膜が形成される。 In the example shown in FIG. 6, similarly to the example shown in FIG. 3, the TiON unit in which oxygen (O) is added to TiN on the wafer W by carrying out one cycle of steps S1 to S4. Form a film. Then, by repeating the cycle of steps S1 to S4 a predetermined number of times X (step S5), a TiON film having a predetermined film thickness is formed on the wafer W.
 以上、図2~図6を参照して成膜装置を用いてウエハWの上にTiON膜を成膜する方法の例を説明したが、本開示はこれに限定されない。例えば、図4に示される例において、ステップS4の一部の期間において処理容器1内にOガスを供給するようにしてもよい。また、図5に示される例において、ステップS2及びステップS4の少なくとも一方の一部の期間において処理容器1内にOガスを供給するようにしてもよい。 Although the method of forming the TiON film on the wafer W by using the film forming apparatus has been described above with reference to FIGS. 2 to 6, the present disclosure is not limited to this. For example, in the example shown in FIG. 4, O 2 gas may be supplied into the processing container 1 during a part of the period of step S4. Further, in the example shown in FIG. 5, the O 2 gas may be supplied into the processing container 1 during at least a part of the period of step S2 and step S4.
 〔評価〕
 (成膜速度及び面内均一性)
 図7を参照し、前述の成膜装置を用いた実施形態の成膜方法により成膜されるTiON膜の成膜速度及び面内均一性について説明する。図7は、サイクル数と膜厚との関係を示す図である。図7中、横軸にサイクル数[回]を示し、縦軸に膜厚[Å]を示す。
〔evaluation〕
(Film formation speed and in-plane uniformity)
With reference to FIG. 7, the film forming speed and in-plane uniformity of the TiON film formed by the film forming method of the embodiment using the above-mentioned film forming apparatus will be described. FIG. 7 is a diagram showing the relationship between the number of cycles and the film thickness. In FIG. 7, the horizontal axis indicates the number of cycles [times], and the vertical axis indicates the film thickness [Å].
 図7の黒丸(●)印で示されるプロットは、前述の図3に示される成膜方法により基板の上にTiON膜を成膜した場合(以下「実施例1」という。)の結果を示す。すなわち、TiClガスをパージするステップS2においてOガスを供給し、NHガスをパージするステップS4においてOガスを供給しなかった場合の結果を示す。 The plot indicated by the black circle (●) in FIG. 7 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above (hereinafter referred to as “Example 1”). .. That is, the results when the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the O 2 gas is not supplied in the step S4 for purging the NH 3 gas are shown.
 図7の白丸(〇)印で示されるプロットは、前述の図4に示される成膜方法により基板の上にTiON膜を成膜した場合(以下「実施例2」という。)の結果を示す。すなわち、NHガスをパージするステップS4においてOガスを供給し、TiClガスをパージするステップS2においてOガスを供給しなかった場合の結果を示す。 The plot indicated by the white circle (◯) in FIG. 7 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 4 described above (hereinafter referred to as “Example 2”). .. That is, the results when the O 2 gas is supplied in the step S4 for purging the NH 3 gas and the O 2 gas is not supplied in the step S2 for purging the TiCl 4 gas are shown.
 図7の四角(■)印で示されるプロットは、TiCl供給、パージ、NH供給、パージを1サイクルとし、パージの際にOガスを供給することなく、このサイクルを繰り返して基板の上にTiN膜を成膜した場合(以下「比較例1」という。)の結果を示す。 In the plot indicated by the square (■) in FIG. 7, TiCl 4 supply, purge, NH 3 supply, and purge are set as one cycle, and this cycle is repeated without supplying O 2 gas at the time of purging. The result of the case where the TiN film is formed on the film (hereinafter referred to as "Comparative Example 1") is shown.
 図7の菱形(◆)印で示されるプロットは、TiCl供給、パージ、NH供給、パージ、O供給、パージを1サイクルとし、このサイクルを繰り返して基板の上にTiON膜を成膜した場合(以下「比較例2」という。)の結果を示す。 The plot indicated by the diamond (◆) in FIG. 7 has a TiCl 4 supply, a purge, an NH 3 supply, a purge, an O 2 supply, and a purge as one cycle, and this cycle is repeated to form a TiON film on the substrate. The result of this case (hereinafter referred to as "Comparative Example 2") is shown.
 なお、上記のいずれの成膜方法においても、基板温度を300℃に設定して成膜を行った。 In any of the above film forming methods, the film was formed by setting the substrate temperature to 300 ° C.
 図7に示されるように、いずれの成膜方法においても、TiON膜(TiN膜)の膜厚がサイクル数に比例することが分かる。すなわち、TiClガスをパージするステップS2及びNHガスをパージするステップS4においてOガスを供給しても、Oガスを供給しない場合と同様の膜厚制御性が得られると言える。 As shown in FIG. 7, it can be seen that the film thickness of the TiON film (TiN film) is proportional to the number of cycles in any of the film forming methods. That is, it can be said that even if the supply of O 2 gas in the step S4 of purging steps S2 and NH 3 gas to purge the TiCl 4 gas, the same film thickness controllability and if not supplying O 2 gas is obtained.
 また、実施例1、実施例2及び比較例2において、基板の面内における複数箇所のTiON膜の膜厚を測定し、測定した膜厚に基づいて1σ%(標準偏差σを平均値で割って百分率表示した値)を算出した。その結果、実施例1、実施例2及び比較例2における1σ%の値は、それぞれ1.09、1.37、1.07であった。この結果によれば、TiClガスをパージするステップS2及びNHガスをパージするステップS4においてOガスを供給しても、パージするステップとは別にOガスを供給するステップを行う場合と同等の面内均一性が得られると言える。 Further, in Example 1, Example 2, and Comparative Example 2, the film thicknesses of the TiON films at a plurality of locations in the plane of the substrate were measured, and 1σ% (standard deviation σ was divided by the average value) based on the measured film thickness. The value displayed as a percentage) was calculated. As a result, the values of 1σ% in Example 1, Example 2, and Comparative Example 2 were 1.09, 1.37, and 1.07, respectively. According to this result, even if the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the step S4 for purging the NH 3 gas, the step of supplying the O 2 gas is performed separately from the step of purging. It can be said that the same in-plane uniformity can be obtained.
 (パーティクル)
 まず、前述の成膜装置を用いて図3及び図4のそれぞれに示される成膜方法により基板の一例であるベアシリコンウエハの上にTiON膜を成膜した。続いて、該TiON膜の表面に付着した、粒径が0.032μm以上のパーティクルの数を測定し、パーティクルの数が基準値(10個)以下であるかを確認した。なお、パーティクル評価では、図3及び図4に示される成膜方法をそれぞれ5回行い、それぞれについてパーティクルの数を測定した。
(particle)
First, a TiON film was formed on a bare silicon wafer, which is an example of a substrate, by the film forming methods shown in FIGS. 3 and 4 using the above-mentioned film forming apparatus. Subsequently, the number of particles having a particle size of 0.032 μm or more adhering to the surface of the TiON film was measured, and it was confirmed whether the number of particles was equal to or less than the reference value (10 particles). In the particle evaluation, the film forming methods shown in FIGS. 3 and 4 were performed 5 times each, and the number of particles was measured for each.
 図3に示される成膜方法では、パーティクルの数は0個、4個、0個、1個、9個であり、5回とも基準値を下回る結果であった。すなわち、TiClガスをパージするステップS2においてOガスを添加してもパーティクル性能への悪影響は確認されなかった。 In the film forming method shown in FIG. 3, the number of particles was 0, 4, 0, 1, and 9, which were below the reference value for all five times. That is, even if the O 2 gas was added in step S2 for purging the TiCl 4 gas, no adverse effect on the particle performance was confirmed.
 図4に示される成膜方法では、パーティクルの数は0個、2個、1個、0個、5個であり、5回とも基準値を下回る結果であった。すなわち、NHガスをパージするステップS4においてOガスを添加してもパーティクル性能への悪影響は確認されなかった。 In the film forming method shown in FIG. 4, the number of particles was 0, 2, 1, 0, and 5, which were below the reference value for all five times. That is, even if the O 2 gas was added in step S4 for purging the NH 3 gas, no adverse effect on the particle performance was confirmed.
 なお、パーティクルの評価における図3及び図4に示される成膜方法の条件はそれぞれ以下である。 The conditions of the film forming method shown in FIGS. 3 and 4 in the evaluation of particles are as follows.
(図3に示される成膜方法の条件)
 基板温度:300℃
 TiCl(流量制御器51c):140sccm
 NH(流量制御器52c):7000sccm
 N(流量制御器53c):3600sccm
 N(流量制御器54c):4500sccm
 N(流量制御器57c):3600sccm
 N(流量制御器58c):4500sccm
 O(流量制御器55c):1130sccm
 時間:S1/S2/S3/S4=0.05/0.2(Oガス添加)/0.3/0.3秒
 Oガスの貯留タンク55dへの貯留時間:0.75秒
 Oガスの供給時間:0.1秒
 サイクル数:96回
(Conditions of the film forming method shown in FIG. 3)
Substrate temperature: 300 ° C
TiCl 4 (flow control controller 51c): 140 sccm
NH 3 (Flow controller 52c): 7000 sccm
N 2 (flow controller 53c): 3600 sccm
N 2 (flow rate controller 54c): 4500 sccm
N 2 (flow rate controller 57c): 3600 sccm
N 2 (flow rate controller 58c): 4500 sccm
O 2 (Flow controller 55c): 1130sccm
Time: S1 / S2 / S3 / S4 = 0.05 / 0.2 (O 2 gas addition) /0.3/0.3 seconds O 2 gas storage time in the storage tank 55d: 0.75 seconds O 2 Gas supply time: 0.1 seconds Number of cycles: 96 times
(図4に示される成膜方法の条件)
 基板温度:300℃
 TiCl(流量制御器51c):140sccm
 NH(流量制御器52c):7000sccm
 N(流量制御器53c):3600sccm
 N(流量制御器54c):4500sccm
 N(流量制御器57c):3600sccm
 N(流量制御器58c):4500sccm
 O(流量制御器55c):1130sccm
 時間:S1/S2/S3/S4=0.05/0.2/0.3/0.3秒(Oガス添加)
 貯留タンク55dへの貯留時間:0.75秒
 Oガスの供給時間:0.1秒
 サイクル数:107回
(Conditions of the film forming method shown in FIG. 4)
Substrate temperature: 300 ° C
TiCl 4 (flow control controller 51c): 140 sccm
NH 3 (Flow controller 52c): 7000 sccm
N 2 (flow controller 53c): 3600 sccm
N 2 (flow rate controller 54c): 4500 sccm
N 2 (flow rate controller 57c): 3600 sccm
N 2 (flow rate controller 58c): 4500 sccm
O 2 (Flow controller 55c): 1130sccm
Time: S1 / S2 / S3 / S4 = 0.05 / 0.2 / 0.3 / 0.3 seconds (O 2 gas addition)
Storage time in storage tank 55d: 0.75 seconds O 2 gas supply time: 0.1 seconds Number of cycles: 107 times
 (膜中酸素濃度)
 図8~図10を参照し、前述の成膜装置を用いた実施形態の成膜方法により成膜されるTiON膜の膜中酸素濃度の評価結果について説明する。
(Oxygen concentration in the membrane)
The evaluation result of the oxygen concentration in the TiON film formed by the film forming method of the embodiment using the above-mentioned film forming apparatus will be described with reference to FIGS. 8 to 10.
 図8は、酸素供給時間と膜中酸素濃度との関係を示す図である。図8中、横軸に酸素供給時間[秒]を示し、縦軸に膜中酸素濃度[%]を示す。 FIG. 8 is a diagram showing the relationship between the oxygen supply time and the oxygen concentration in the membrane. In FIG. 8, the horizontal axis represents the oxygen supply time [seconds], and the vertical axis represents the oxygen concentration [%] in the membrane.
 図8の黒丸(●)印で示されるプロットは、前述の図3に示される成膜方法により基板の上にTiON膜を成膜した場合の結果を示す。すなわち、TiClガスをパージするステップS2においてOガスを供給し、NHガスをパージするステップS4においてOガスを供給しなかった場合の結果を示す。 The plot indicated by the black circle (●) in FIG. 8 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above. That is, the results when the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the O 2 gas is not supplied in the step S4 for purging the NH 3 gas are shown.
 図8の白丸(〇)印で示されるプロットは、前述の図4に示される成膜方法により基板の上にTiON膜を成膜した場合の結果を示す。すなわち、NHガスをパージするステップS4においてOガスを供給し、TiClガスをパージするステップS2においてOガスを供給しなかった場合の結果を示す。 The plot indicated by the white circle (◯) in FIG. 8 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 4 described above. That is, the results when the O 2 gas is supplied in the step S4 for purging the NH 3 gas and the O 2 gas is not supplied in the step S2 for purging the TiCl 4 gas are shown.
 図8に示されるように、TiClガスをパージするステップS2においてOガスを供給し、NHガスをパージするステップS4においてOガスを供給しない場合、Oガスの供給時間を長くするほど膜中酸素濃度が高くなることが分かる。すなわち、TiClガスをパージするステップS2におけるOガスの供給時間を変更することで、膜中酸素濃度を調整できると言える。 As shown in FIG. 8, the O 2 gas is supplied in step S2 of purging TiCl 4 gas, if not supplying O 2 gas in the step S4 of purging NH 3 gas, lengthening the supply time of the O 2 gas It can be seen that the higher the oxygen concentration in the membrane, the higher the oxygen concentration in the membrane. That is, it can be said that the oxygen concentration in the membrane can be adjusted by changing the supply time of the O 2 gas in step S2 for purging the TiCl 4 gas.
 一方、NHガスをパージするステップS4においてOガスを供給し、TiClガスをパージするステップS2においてOガスを供給しない場合、Oガスの供給時間を変更しても膜中酸素濃度は略一定であることが分かる。 On the other hand, the O 2 gas is supplied in the step S4 of purging NH 3 gas, if not supplying O 2 gas in step S2 of purging TiCl 4 gas, film oxygen concentration by changing the supply time of the O 2 gas It turns out that is almost constant.
 これらの結果から、膜中酸素濃度を調整する際には、TiClガスをパージするステップS2においてOガスを供給し、Oガスの供給時間を変更することが有効であると考えられる。 From these results, it is considered effective to supply O 2 gas and change the supply time of O 2 gas in step S2 of purging the TiCl 4 gas when adjusting the oxygen concentration in the membrane.
 図9は、基板温度が一定であるときの酸素流量と膜中酸素濃度との関係を示す図である。図9中、横軸に酸素流量[sccm]を示し、縦軸に膜中酸素濃度[%]を示す。 FIG. 9 is a diagram showing the relationship between the oxygen flow rate and the oxygen concentration in the membrane when the substrate temperature is constant. In FIG. 9, the horizontal axis shows the oxygen flow rate [sccm], and the vertical axis shows the oxygen concentration in the membrane [%].
 図9の黒丸(●)印で示されるプロットは、前述の図3に示される成膜方法により基板の上にTiON膜を成膜した場合の結果を示す。すなわち、TiClガスをパージするステップS2においてOガスを供給し、NHガスをパージするステップS4においてOガスを供給しなかった場合の結果を示す。 The plot indicated by the black circle (●) in FIG. 9 shows the result when a TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above. That is, the results when the O 2 gas is supplied in the step S2 for purging the TiCl 4 gas and the O 2 gas is not supplied in the step S4 for purging the NH 3 gas are shown.
 図9の白丸(〇)印で示されるプロットは、前述の図4に示される成膜方法により基板の上にTiON膜を成膜した場合の結果を示す。すなわち、NHガスをパージするステップS4においてOガスを供給し、TiClガスをパージするステップS2においてOガスを供給しなかった場合の結果を示す。 The plot indicated by the white circle (◯) in FIG. 9 shows the result when the TiON film is formed on the substrate by the film forming method shown in FIG. 4 described above. That is, the results when the O 2 gas is supplied in the step S4 for purging the NH 3 gas and the O 2 gas is not supplied in the step S2 for purging the TiCl 4 gas are shown.
 図9に示されるように、TiClガスをパージするステップS2においてOガスを供給し、NHガスをパージするステップS4においてOガスを供給しない場合、酸素流量を大きくするほど膜中酸素濃度が高くなることが分かる。すなわち、TiClガスをパージするステップS2における酸素流量を変更することで、膜中酸素濃度を調整できると言える。 As shown in FIG. 9, the O 2 gas is supplied in step S2 of purging TiCl 4 gas, if not supplying O 2 gas in the step S4 of purging NH 3 gas, film oxygen higher the oxygen flow rate It can be seen that the concentration increases. That is, it can be said that the oxygen concentration in the membrane can be adjusted by changing the oxygen flow rate in step S2 for purging the TiCl 4 gas.
 一方、NHガスをパージするステップS4においてOガスを供給し、TiClガスをパージするステップS2においてOガスを供給しない場合、酸素流量を変更しても膜中酸素濃度は略一定であることが分かる。 On the other hand, the O 2 gas is supplied in the step S4 of purging NH 3 gas, a TiCl 4 gas when not supplying O 2 gas in step S2 of purging, film oxygen concentration by changing the oxygen flow rate at a substantially constant It turns out that there is.
 これらの結果から、膜中酸素濃度を調整する際には、TiClガスをパージするステップS2においてOガスを供給し、酸素流量を変更することが有効であると考えられる。 From these results, it is considered effective to supply O 2 gas and change the oxygen flow rate in step S2 of purging the TiCl 4 gas when adjusting the oxygen concentration in the membrane.
 図10は、基板温度を変化させたときの酸素流量と膜中酸素濃度との関係を示す図である。図10中、横軸に酸素流量[sccm]を示し、縦軸に膜中酸素濃度[%]を示す。 FIG. 10 is a diagram showing the relationship between the oxygen flow rate and the oxygen concentration in the membrane when the substrate temperature is changed. In FIG. 10, the horizontal axis represents the oxygen flow rate [sccm], and the vertical axis represents the oxygen concentration [%] in the membrane.
 図10の三角(▲)印、丸(●)印、四角(■)印及び菱形(◆)印で示されるプロットは、それぞれ基板温度を300℃、350℃、375℃及び400℃に設定し、前述の図3に示される成膜方法により基板の上にTiON膜を成膜した場合の結果を示す。 For the plots indicated by the triangle (▲) mark, circle (●) mark, square (■) mark, and diamond (◆) mark in FIG. 10, the substrate temperature is set to 300 ° C., 350 ° C., 375 ° C., and 400 ° C., respectively. The result when the TiON film is formed on the substrate by the film forming method shown in FIG. 3 described above is shown.
 図10に示されるように、基板温度が300℃~400℃の範囲におけるいずれの温度でも、TiClガスをパージするステップS2における酸素流量を大きくするほど膜中酸素濃度が高くなることが分かる。すなわち、基板温度が300℃~400℃の範囲におけるいずれの温度でも、TiClガスをパージするステップS2における酸素流量を変更することで、膜中酸素濃度を調整できると言える。また、TiClガスをパージするステップS2において酸素ガスを供給する時間及び流量を小さくすることで、膜中酸素濃度が低い(例えば25~40%)TiON膜を形成できると言える。 As shown in FIG. 10, it can be seen that the oxygen concentration in the membrane increases as the oxygen flow rate in step S2 for purging the TiCl 4 gas increases at any temperature in the substrate temperature range of 300 ° C. to 400 ° C. That is, at any temperature in the range substrate temperature of 300 ° C. ~ 400 ° C., by changing the oxygen flow rate in the step S2 of purging the TiCl 4 gas, it said to be adjusted the oxygen concentration in the film. Further, it can be said that a TiON film having a low oxygen concentration in the film (for example, 25 to 40%) can be formed by reducing the time and flow rate of supplying the oxygen gas in step S2 for purging the TiCl 4 gas.
 なお、膜中酸素濃度の評価における図3に示される成膜方法の条件はそれぞれ以下である。 The conditions of the film forming method shown in FIG. 3 in the evaluation of the oxygen concentration in the film are as follows.
(図3に示される成膜方法の条件)
 基板温度:300、350、375、400℃
 TiCl(流量制御器51c):140sccm
 NH(流量制御器52c):7000sccm
 N(流量制御器53c):3600sccm
 N(流量制御器54c):4500sccm
 N(流量制御器57c):3600sccm
 N(流量制御器58c):4500sccm
 O(流量制御器55c):15、30、50、100、300sccm
 時間:S1/S2/S3/S4=0.05/0.2(Oガス添加)/0.3/0.3秒
 Oガスの貯留タンク55dへの貯留時間:0.82秒
 Oガスの供給時間:0.03秒
 サイクル数:96回
(Conditions of the film forming method shown in FIG. 3)
Substrate temperature: 300, 350, 375, 400 ° C
TiCl 4 (flow control controller 51c): 140 sccm
NH 3 (Flow controller 52c): 7000 sccm
N 2 (flow controller 53c): 3600 sccm
N 2 (flow rate controller 54c): 4500 sccm
N 2 (flow rate controller 57c): 3600 sccm
N 2 (flow rate controller 58c): 4500 sccm
O 2 (Flow controller 55c): 15, 30, 50, 100, 300 sccm
Time: S1 / S2 / S3 / S4 = 0.05 / 0.2 (O 2 gas addition) /0.3/0.3 seconds O 2 gas storage time in the storage tank 55d: 0.82 seconds O 2 Gas supply time: 0.03 seconds Number of cycles: 96 times
 なお、上記の実施形態において、チタン(Ti)は第1の元素の一例であり、TiClガスは第1の反応ガスの一例である。また、窒素(N)は第2の元素の一例であり、NHガスは第2の反応ガスの一例である。また、酸素(O)は第3の元素の一例であり、Oガスは第3の反応ガスの一例である。 In the above embodiment, titanium (Ti) is an example of the first element, and TiCl 4 gas is an example of the first reaction gas. Also, nitrogen (N) is an example of a second element, NH 3 gas is an example of a second reaction gas. Oxygen (O) is an example of a third element, and O 2 gas is an example of a third reaction gas.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope and purpose of the appended claims.
 上記の実施形態では、成膜方法としてTiON膜を成膜する場合を例に挙げて説明したが、本開示はこれに限定されず、少なくとも3つの元素を含む膜を成膜する場合に適用できる。3つの元素を含む膜の別の例としては、例えばTiSiN膜が挙げられる。TiSiN膜を成膜する場合には、酸素含有ガスに代えて、モノシラン(SiH)ガス、ジクロロシラン(DCS)ガス等のシリコン含有ガスを用いればよい。 In the above embodiment, the case of forming a TiON film as an example of the film forming method has been described as an example, but the present disclosure is not limited to this, and can be applied to the case of forming a film containing at least three elements. .. Another example of a film containing three elements is, for example, a TiSiN film. When forming the TiSiN film, a silicon-containing gas such as monosilane (SiH 4 ) gas or dichlorosilane (DCS) gas may be used instead of the oxygen-containing gas.
 本国際出願は、2020年4月22日に出願した日本国特許出願第2020-076194号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2020-076194 filed on April 22, 2020, and the entire contents of the application will be incorporated into this international application.
 1  処理容器 1 Processing container

Claims (6)

  1.  少なくとも3つの元素を含む膜の成膜方法であって、
     処理容器内に第1の元素を含む第1の反応ガスを供給するステップと、
     前記第1の反応ガスをパージするステップと、
     前記処理容器内に前記第1の反応ガスと反応する第2の元素を含む第2の反応ガスを供給するステップと、
     前記第2の反応ガスをパージするステップと、
     を有し、
     前記第1の反応ガスをパージするステップ及び前記第2の反応ガスをパージするステップの少なくとも一方において、前記処理容器内に第3の元素を含む第3の反応ガスを供給する、
     成膜方法。
    A method for forming a film containing at least three elements.
    The step of supplying the first reaction gas containing the first element into the processing container, and
    The step of purging the first reaction gas and
    A step of supplying a second reaction gas containing a second element that reacts with the first reaction gas into the processing container,
    The step of purging the second reaction gas and
    Have,
    In at least one of the step of purging the first reaction gas and the step of purging the second reaction gas, a third reaction gas containing a third element is supplied into the processing container.
    Film formation method.
  2.  前記第1の反応ガスをパージするステップにおいて前記処理容器内に前記第3の反応ガスを供給し、
     前記第2の反応ガスをパージするステップにおいて前記処理容器内に前記第3の反応ガスを供給しない、
     請求項1に記載の成膜方法。
    In the step of purging the first reaction gas, the third reaction gas is supplied into the processing container, and the third reaction gas is supplied.
    In the step of purging the second reaction gas, the third reaction gas is not supplied into the processing container.
    The film forming method according to claim 1.
  3.  前記第1の反応ガスを供給するステップ、前記第1の反応ガスをパージするステップ、前記第2の反応ガスを供給するステップ及び前記第2の反応ガスをパージするステップを繰り返すステップを更に有する、
     請求項1又は2に記載の成膜方法。
    It further comprises a step of supplying the first reaction gas, a step of purging the first reaction gas, a step of supplying the second reaction gas, and a step of repeating the step of purging the second reaction gas.
    The film forming method according to claim 1 or 2.
  4.  前記第1の反応ガスをパージするステップ及び前記第2の反応ガスをパージするステップにおいて、前記処理容器内に不活性ガスを供給する、
     請求項1乃至3のいずれか一項に記載の成膜方法。
    In the step of purging the first reaction gas and the step of purging the second reaction gas, the inert gas is supplied into the processing container.
    The film forming method according to any one of claims 1 to 3.
  5.  前記第1の反応ガスは、金属を含むガスであり、
     前記第2の反応ガスは、窒素含有ガスであり、
     前記第3の反応ガスは、酸素含有ガス又はシリコン含有ガスである、
     請求項1乃至4のいずれか一項に記載の成膜方法。
    The first reaction gas is a gas containing a metal, and is a gas containing a metal.
    The second reaction gas is a nitrogen-containing gas, and the second reaction gas is a nitrogen-containing gas.
    The third reaction gas is an oxygen-containing gas or a silicon-containing gas.
    The film forming method according to any one of claims 1 to 4.
  6.  前記第1の反応ガスは、TiClガスであり、
     前記第2の反応ガスは、NHガスであり、
     前記第3の反応ガスは、Oガスである、
     請求項1乃至5のいずれか一項に記載の成膜方法。
    The first reaction gas is TiCl 4 gas, and the first reaction gas is TiCl 4 gas.
    The second reaction gas is NH 3 gas,
    The third reaction gas is O 2 gas.
    The film forming method according to any one of claims 1 to 5.
PCT/JP2021/015018 2020-04-22 2021-04-09 Film formation mehtod WO2021215270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-076194 2020-04-22
JP2020076194A JP2021172841A (en) 2020-04-22 2020-04-22 Film deposition method

Publications (1)

Publication Number Publication Date
WO2021215270A1 true WO2021215270A1 (en) 2021-10-28

Family

ID=78269151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015018 WO2021215270A1 (en) 2020-04-22 2021-04-09 Film formation mehtod

Country Status (2)

Country Link
JP (1) JP2021172841A (en)
WO (1) WO2021215270A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227460A (en) * 2007-02-16 2008-09-25 Tokyo Electron Ltd Film formation method, and film formation apparatus
JP2011192875A (en) * 2010-03-16 2011-09-29 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and substrate processing apparatus
WO2012090738A1 (en) * 2010-12-27 2012-07-05 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate treatment method, and substrate treatment device
JP2014060302A (en) * 2012-09-18 2014-04-03 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, method for processing substrate, substrate processing apparatus and program
JP2015082525A (en) * 2013-10-21 2015-04-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
JP2016186992A (en) * 2015-03-27 2016-10-27 株式会社日立国際電気 Substrate processing device, method of manufacturing semiconductor device, and program
JP2017112145A (en) * 2015-12-14 2017-06-22 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, gas supply system and program
JP2017124633A (en) * 2011-07-28 2017-07-20 凸版印刷株式会社 Laminate, gas barrier film and apparatus for manufacturing laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227460A (en) * 2007-02-16 2008-09-25 Tokyo Electron Ltd Film formation method, and film formation apparatus
JP2011192875A (en) * 2010-03-16 2011-09-29 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and substrate processing apparatus
WO2012090738A1 (en) * 2010-12-27 2012-07-05 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate treatment method, and substrate treatment device
JP2017124633A (en) * 2011-07-28 2017-07-20 凸版印刷株式会社 Laminate, gas barrier film and apparatus for manufacturing laminate
JP2014060302A (en) * 2012-09-18 2014-04-03 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, method for processing substrate, substrate processing apparatus and program
JP2015082525A (en) * 2013-10-21 2015-04-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
JP2016186992A (en) * 2015-03-27 2016-10-27 株式会社日立国際電気 Substrate processing device, method of manufacturing semiconductor device, and program
JP2017112145A (en) * 2015-12-14 2017-06-22 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, gas supply system and program

Also Published As

Publication number Publication date
JP2021172841A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP4361932B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
TW201826355A (en) Film forming apparatus and film forming method
KR102202989B1 (en) Film forming method
KR102331294B1 (en) Film forming method and film forming apparatus
KR20200097646A (en) Substrate processing method and film forming system
TWI827770B (en) RuSi film formation method and film forming device
KR102219620B1 (en) Method of forming film and method of calculating film formation conditions
JP7109310B2 (en) Film forming method and film forming apparatus
KR20170110518A (en) Nitride film forming method and storage medium
WO2021215270A1 (en) Film formation mehtod
JP7138518B2 (en) Film forming method and film forming system
KR20190088420A (en) Tungsten film forming method, film forming system and film forming apparatus
JP7233188B2 (en) Film forming method and film forming apparatus
US11551933B2 (en) Substrate processing method and substrate processing apparatus
WO2020003803A1 (en) Film forming method, film forming system, and film forming device
KR102416981B1 (en) Film forming method and film forming apparatus
US11970767B2 (en) Film forming method and film forming apparatus
JPWO2019188128A1 (en) Semiconductor device manufacturing methods, substrate processing devices and programs
KR102639411B1 (en) Film formation method, film formation apparatus, and semiconductor device manufacturing method
KR102650982B1 (en) Film forming method, semiconductor device manufacturing method, film forming apparatus, and system for manufacturing semiconductor devices
JP7249930B2 (en) Film forming method and film forming apparatus
KR20200020606A (en) Film-forming method and film-forming apparatus
JP2021110030A (en) Film forming method, film forming device, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791718

Country of ref document: EP

Kind code of ref document: A1