WO2021215122A1 - Light control element - Google Patents

Light control element Download PDF

Info

Publication number
WO2021215122A1
WO2021215122A1 PCT/JP2021/008303 JP2021008303W WO2021215122A1 WO 2021215122 A1 WO2021215122 A1 WO 2021215122A1 JP 2021008303 W JP2021008303 W JP 2021008303W WO 2021215122 A1 WO2021215122 A1 WO 2021215122A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrode group
metal
nuclear
current
Prior art date
Application number
PCT/JP2021/008303
Other languages
French (fr)
Japanese (ja)
Inventor
小川 正太郎
小杉 直貴
崇司 鈴木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2021215122A1 publication Critical patent/WO2021215122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • This disclosure relates to a dimming element.
  • At least one of the first electrically conductive layer and the second electrically conductive layer has a pattern conductive layer having a pattern layer made of an insulating material and a layer made of a resistant material, and the first electrically conductive layer and the second electrically conductive layer.
  • An electrochromic device is disclosed in which the resistance value is changed according to the distance from each of the bus bars provided at the opposite ends of the second electrically conductive layer. This electrochromic device has the lowest resistance at the farthest position from each busbar.
  • the present disclosure has been devised in view of the above-mentioned conventional circumstances, and dimming that reduces display unevenness of the edge portion in the width direction of the electrode when driving an EC (electrochromic) element and realizes a high-quality display. It is an object of the present invention to provide an element.
  • a plurality of first electrodes having translucency and arranged in parallel, a plurality of second electrodes arranged in parallel facing each of the plurality of first electrodes, and the plurality of first electrodes.
  • a dimming element that alternately switches the polarity of a current based on a voltage to deposit or dissolve the metal on one of the plurality of first electrodes and the plurality of second electrodes.
  • the figure which shows the cross-sectional line of an EC element The figure explaining the structural example of the EC element which concerns on Embodiment 1.
  • Electric field distribution diagram of EC element in BB cross section The figure explaining the example of metal precipitation by the conventional current / voltage control method
  • the figure explaining the example of the change of the metal precipitation amount at the nuclear growth voltage: the nuclear dissolution voltage 4: 1.
  • the figure explaining the example of the change of the metal precipitation amount at the nuclear growth voltage: the nuclear dissolution voltage 3.5: 1.
  • the figure explaining the example of the change of the metal precipitation amount at the nuclear growth voltage: the nuclear dissolution voltage 2: 1.
  • At least one of the first electrically conductive layer and the second electrically conductive layer has a pattern conductive layer having a pattern layer made of an insulating material and a layer made of a resistant material, and has a first electrically conductive layer and a second electrically conductive layer.
  • An electrochromic device hereinafter, referred to as an EC element in which a resistance value is changed according to a distance from each of the bus bars provided at the opposite ends of the layers is provided. The resistance value of this EC element was minimized at the position farthest from each bus bar, and display unevenness occurring on the outer circumference of the EC element could be reduced.
  • the electric field at the edge portion in the width direction of the electrode when the EC (electrochromic) element is passively driven in a matrix is suppressed to reduce display unevenness and realize high-quality display.
  • An example of an EC element will be described.
  • FIG. 1 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment.
  • the arrow K shown in FIG. 1 indicates the direction of the line of sight of the user (for example, the user of the EC element).
  • the metal OB1 shown in FIG. 1 is in a precipitated state, and a metal thin film is formed on the surface of the first electrode group 110.
  • the EC element 100 includes a first electrode group 110, a first substrate 111, a first electrode connection portion 112, a second electrode group 210, a second substrate 211, and a second electrode connection.
  • the unit 212, the electrolytic solution EL1, the spacer 300, and the EC element drive circuit 500 are included.
  • the first electrode group 110 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide).
  • the first electrode group 110 is not limited to ITO, and may be a transparent electrode (conductive film) made of, for example, zinc oxide or tin oxide.
  • the first substrate 111 is formed by using an insulating material such as glass or resin.
  • the first substrate 111 is, for example, a rectangular plate having translucency, and is provided on the first electrode group 110 so as to face the second substrate 211.
  • the first electrode connection portion 112 connects between the first electrode group 110 and the EC element drive circuit 500.
  • the first electrode connecting portion 112 does not come into contact with the electrolytic solution EL1 and is connected to an exposed portion between the spacer 300 and each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N (see FIG. 2).
  • NS connects between the first electrode group 110 and the EC element drive circuit 500.
  • the first electrode connecting portion 112 does not come into contact with the electrolytic solution EL1 and is connected to an exposed portion between the spacer 300 and each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N (see FIG. 2).
  • NS NS.
  • the second electrode group 210 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide).
  • the second electrode group 210 is not limited to ITO, and may be a transparent conductive film made of, for example, zinc oxide or tin oxide.
  • the second substrate 211 is formed by using an insulating material such as glass or resin.
  • the second substrate 211 is, for example, a rectangular plate having translucency, and is provided on the second electrode group 210 so as to face the first substrate 111.
  • the second electrode connection portion 212 connects between the second electrode group 210 and the EC element drive circuit 500.
  • the second electrode connecting portion 212 is connected to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N that are not in contact with the electrolytic solution EL1 and are exposed to the outside between the spacer 300 (see FIG. 2). It is connected to the exposed part between.
  • the electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300.
  • the electrolytic solution EL1 is a solution containing a metal OB1 in a metal ion state and having electrical conductivity.
  • the electrolytic solution EL1 is, for example, a solution containing silver.
  • the metal OB1 contained in the electrolytic solution EL1 is deposited on either the first electrode group 110 or the second electrode group 210 depending on the electric field generated by the voltage applied to the first electrode group 110 and the second electrode group 210. do.
  • the precipitated metal OB1 forms a metal thin film on the surface of either one of the first electrode group 110 and the second electrode group 210.
  • the electrode on which the metal OB1 is deposited changes according to the polarity of the voltage applied by the EC element drive circuit 500 described later. In FIG. 1, the metal OB1 is deposited on the first electrode group 110 to form a metal thin film.
  • the metal OB1 is not limited to the silver described above.
  • the metal OB1 may be another metal containing a noble metal such as aluminum, platinum, chromium or gold.
  • the metal OB1 functions as a mirror (reflecting state) at the time of precipitation when it is a metal having a high reflectance to light, and functions as a light-shielding material (light-shielding state) when it is a non-reflecting metal.
  • the EC element 100 assumes that the user sees the first substrate 111 from the arrow K shown in FIG. Therefore, the second electrode group 210 and the second substrate 211 may be opaque.
  • the second substrate 211 may be a silicon substrate or the like.
  • the second electrode group 210 may be a metal electrode such as copper.
  • the spacer 300 is formed by applying a resin material such as a thermosetting resin in a ring shape and curing the spacer 300.
  • the spacer 300 is provided in an annular shape along the peripheral edges of the first electrode group 110 and the second electrode group 210 arranged so as to face each other.
  • the spacer 300 has an exposed portion in which one end of the first electrode group 110 can be connected to the first electrode connecting portion 112 and one end of the second electrode group 210 can be connected to the second electrode connecting portion 212. It is provided except.
  • the EC element drive circuit 500 is a power supply unit for applying a voltage to the first electrode group 110 and the second electrode group 210.
  • the EC element drive circuit 500 is connected to each of the first electrode connecting portion 112 and the second electrode connecting portion 212 via a lead wire, and applies a voltage to the first electrode group 110 and the second electrode group 210, respectively.
  • the EC element drive circuit 500 controls an electrode that deposits the metal OB1 according to the polarity of the voltage applied to each of the first electrode group 110 and the second electrode group 210.
  • the EC element drive circuit 500 controls (changes) the polarity of the current applied to each of the first electrode group 110 and the second electrode group 210 according to the applied voltage value. Specifically, the EC element drive circuit 500 applies a preset nuclear generation voltage (an example of a third voltage) for a predetermined period of time, and then applies a nuclear growth voltage (an example of a first voltage) and a nuclear dissolution voltage (an example of a first voltage). A control for switching between the second voltage (an example of the second voltage) and the second voltage is executed at each predetermined period, and the polarity of the current supplied to each of the first electrode group 110 and the second electrode group 210 is controlled (changed).
  • a preset nuclear generation voltage an example of a third voltage
  • a nuclear growth voltage an example of a first voltage
  • a nuclear dissolution voltage an example of a first voltage
  • the nucleation voltage referred to here is a voltage applied to generate (precipitate) each of the crystal nuclei of the metal OB1 in the region where each of the first electrode group 110 and the second electrode group 210 intersects, and is displayed. Different voltage values are set according to the color.
  • the nucleation voltage grows each of the crystal nuclei of the metal OB1 generated by the application of the nucleation voltage (that is, precipitates over the entire region where each of the first electrode group 110 and the second electrode group 210 intersects). Is the voltage applied for this.
  • the nucleation voltage is set to a voltage value exceeding the nucleation voltage (for example, when the nucleation voltage is 10V, the nucleation voltage is 5V).
  • the absolute value of the difference voltage between the reference voltage and the nucleation generation voltage is the difference voltage between the reference voltage and the nuclear growth voltage.
  • a voltage value exceeding the absolute value (for example, when the reference voltage is -1V and the nuclear generation voltage is -10V, the nuclear growth voltage is -5V) is set.
  • the polarity of the nucleation voltage is different from the polarity of the nucleation voltage (for example, when the reference voltage is -4V and the nucleation voltage is 1V, the nucleation voltage is -2V, the reference voltage is 3V, and the nucleation voltage is When -1V, the nuclear growth voltage may be set to 2V).
  • the nuclear dissolution voltage is a voltage applied to dissolve the metal OB1 deposited in the region where each of the first electrode group 110 and the second electrode group 210 intersects by the nucleation voltage and the nuclear growth voltage. Further, when the karyolysis voltage is applied, the currents supplied to each of the first electrode group 110 and the second electrode group 210 are opposite to the polarities of the currents when the nuclear generation voltage and the nuclear growth voltage are applied. Has polarity.
  • the optical state of the EC element 100 includes a transparent state, a reflection state, and a light-shielding state.
  • the operation method when the EC element 100 switches the optical state from the transparent state to the reflective state by precipitation and dissolution of the metal OB1 will be described.
  • an operation method in which the operation of depositing the metal OB1 on the first electrode group 110 side is set to a reflection state or a light-shielding state will be described, but the electrode on which the metal OB1 is deposited is not limited.
  • the EC element drive circuit 500 applies a nucleation voltage or a nucleation voltage to the EC element 100 so that the first electrode group 110 has a low potential and the second electrode group 210 has a high potential. At this time, the direction of the electric field generated by the applied voltage of the EC element drive circuit 500 is the direction from the second electrode group 210 to the first electrode group 110.
  • the metal OB1 contained in the electrolytic solution EL1 is, for example, silver ion in a dissolved state.
  • a nucleation voltage or a nucleation voltage is applied to the EC element 100, the metal OB1 precipitates on the surface of the first electrode group 110 (electrode on the low potential side) to form a metal thin film (for example, a silver thin film).
  • the deposited metal OB1 (for example, a silver thin film) has a high reflectance and functions as a mirror (reflection state) when viewed from the direction of arrow K.
  • the metal OB1 is formed at an extremely fast precipitation rate, it forms a metal thin film having a low density.
  • the EC element 100 on which a metal thin film having a low density is formed functions as a light-shielding material (light-shielding state) because light is incident on the gaps between the films (that is, the gaps between the precipitated metal thin films) and strays.
  • the EC element drive circuit 500 is controlled by a control signal input from the EC element drive circuit control unit 400, which will be described later.
  • the EC element drive circuit 500 switches the optical state of the EC element 100 from the transparent state to the reflection state or the light-shielding state based on the input control signal. Further, when the EC element drive circuit 500 maintains its operation in the reflected state or the light-shielded state, the nucleation voltage and the nuclear dissolution voltage are continuously applied so that the precipitation amount of the metal OB1 exceeds the dissolution amount of the metal OB1. do.
  • the EC element drive circuit 500 stops applying the nucleation voltage in order to dissolve the deposited metal OB1 again. As a result, the metal OB1 can be dissolved and returned to the ionic state.
  • the EC element drive circuit 500 When the EC element 100 is switched to the transparent state in a shorter time, the EC element drive circuit 500 is supplied with a current having the opposite polarity and applies a nuclear dissolution voltage for promoting the dissolution of the metal OB1. Specifically, the EC element drive circuit 500 applies a nuclear dissolution voltage to the EC element 100 so that the first electrode group 110 has a high potential and the second electrode group 210 has a low potential. As a result, in the EC element drive circuit 500, the metal OB1 starts to precipitate on the second electrode group 210 side, and the metal OB1 deposited on the first electrode group 110 side can be dissolved in a shorter time.
  • FIG. 2 is a diagram illustrating a structural example of the dimmer 1000 according to the first embodiment.
  • the dimmer 1000 includes an EC element 100, an EC element drive circuit control unit 400, and an EC element drive circuit 500.
  • the EC element 100 shown in FIG. 2 the arrangement of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N can be seen.
  • the first electrode connecting portion 112, the second electrode connecting portion 212, the electrolytic solution EL1 and the spacer 300 are not shown.
  • the EC element 100 includes a first electrode group 110 composed of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N, and a second electrode group 110 composed of each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N. It is composed of an electrode group 210, an electrolytic solution EL1, and a spacer 300.
  • the metal OB1 is deposited at each of the plurality of intersections (hereinafter, display pixels) of the first electrode group 110 and the second electrode group 210 according to the applied voltage to form a metal thin film.
  • Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged orthogonally to each other.
  • the plurality of first electrodes 110a, 110b, 110c, ..., 110N, and the plurality of second electrodes 210a, 210b, 210c, ..., 210N are not limited to the above-mentioned orthogonal arrangements, and are not limited to the above-mentioned orthogonal arrangements, for example, 120 °. They may be arranged at an angle.
  • the shape of the metal OB1 deposited on each of the plurality of display pixels is not limited to a square shape, and may be a quadrangle such as a rhombus.
  • the EC element drive circuit control unit 400 includes a processor (not shown) and a memory (not shown).
  • the processor is configured by using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array).
  • the processor (not shown) of the EC element drive circuit control unit 400 performs various processes and controls in cooperation with the memory. Specifically, the processor refers to the program and data stored in the memory and executes the program to realize the function of the EC element drive circuit control unit 400. For example, the processor transmits a control signal for controlling the timing of changing the voltage applied to each of the first electrode group 110 and the second electrode group 210 included in the EC element 100 by the EC element drive circuit 500, the applied voltage value, and the like. Output to the EC element drive circuit 500. The processor periodically changes the polarity of the current supplied to each of the first electrode group 110 and the second electrode group 210 included in the EC element 100 by executing the control of switching the applied voltage value.
  • the processor executes control to change the polarity of the current a plurality of times to further suppress the concentration of the electric field on each edge portion of the region where each of the first electrode group 110 and each of the second electrode group 210 intersects. While depositing the metal OB1.
  • the memory (not shown) of the EC element drive circuit control unit 400 operates, for example, a RAM (Random Access Memory) as a work memory used when processing the EC element drive circuit control unit 400 and the operation of the EC element drive circuit control unit 400. It has a ROM (Read Only Memory) for storing the specified program and data. Data or information generated or acquired by the processor is temporarily stored in the RAM. A program that defines the operation of the EC element drive circuit control unit 400 (for example, the method of driving the EC element 100 executed by the EC element drive circuit 500 according to the first embodiment) is written in the ROM.
  • ROM Read Only Memory
  • the EC element drive circuit 500 is connected to each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N via the first electrode connection unit 112 based on the control signal output from the EC element drive circuit control unit 400. A voltage is applied, and a voltage is applied to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N via the second electrode connecting portion 212.
  • FIG. 3 is a diagram showing a cross-sectional line of the EC element 100.
  • the cross-sectional view used in the description of each of the drawings shown below is a cross-sectional view taken along the line BB shown in FIG.
  • the BB cross-sectional line is a cross-sectional view of the EC element 100 with the longitudinal direction as the cut end at the center position in the width direction of the first electrode 110a.
  • the BB cross section shown by the BB cross section is equal to the cross-sectional view of the center position in the width direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110.
  • the width direction described above is the direction in which the plurality of first electrodes 110a, 110b, 110c, ..., 110N are arranged in parallel, or the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged in parallel. Yes, it is the lateral direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N formed in a rectangular shape.
  • the X direction shown in FIG. 3 indicates the longitudinal direction in the first electrode group 110 of the EC element 100 or the width direction in the second electrode group 210.
  • the Y direction shown in FIG. 3 indicates the width direction of the first electrode group 110 of the EC element 100 or the longitudinal direction of the second electrode group 210.
  • FIG. 4 is a three-dimensional perspective view of the EC element 100
  • FIG. 5 is a cross-sectional view of the EC element 100 in the BB cross section.
  • FIG. 4 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment.
  • FIG. 5 is a diagram illustrating a structural example of the EC element 100 in the BB cross section.
  • the Z direction shown in FIG. 4 indicates a direction in which the first electrode group 110 and the second electrode group 210 face each other.
  • a part of the three-dimensional perspective view of the EC element 100 will be used for easy explanation.
  • Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110 has a predetermined gap and is arranged in parallel in the Y direction.
  • the first electrode group 110 includes an exposed portion at an end portion in the ⁇ X direction.
  • the first electrode connecting portion 112 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500.
  • the first electrode connection portion 112 is omitted.
  • the first substrate 111 is integrally provided on the surface of the first electrode group 110 in the direction opposite to the surface facing the second electrode group 210 (hereinafter, Z direction) so as to cover the first electrode group 110.
  • Each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N constituting the second electrode group 210 has a predetermined gap and is arranged in parallel in the X direction facing the first electrode group 110. ..
  • the second electrode group 210 includes an exposed portion at an end portion in the Y direction.
  • the second electrode connecting portion 212 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500.
  • the second electrode connection portion 212 is omitted.
  • the second substrate 211 is integrally provided on the surface of the second electrode group 210 in the direction opposite to the direction facing the first electrode group 110 (hereinafter, -Z direction) so as to cover the second electrode group 210.
  • the spacer 300 is of the first electrode group 110 and the second electrode group 210, except for the exposed portion provided at one end of the first electrode group 110 and the exposed portion provided at one end of the second electrode group 210. It is provided in an annular shape along the peripheral edge. Note that the spacer 300 is omitted in FIG.
  • the electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300.
  • FIG. 6 is an electric field distribution diagram EM of the EC element 100 in the BB cross section.
  • FIG. 6 is a diagram showing the electric field strength between the first substrate 111 and the second substrate 211 in the BB cross section when a voltage capable of depositing the metal OB1 is applied.
  • the number of the plurality of second electrodes shown in FIG. 6 is 3, but it goes without saying that the number is not limited to this.
  • each of the points R1, R2, R3, R4, R5, R6, R7, and R8 indicates a portion where the electric field is concentrated.
  • Each of the points R1 and R2 shows an electric field concentrated at both ends in the longitudinal direction of the first electrode group 110.
  • Each of the points R3 and R4 is installed at both ends of the plurality of second electrodes 210a, ..., 210N, and both ends in the width direction of the electrodes having no adjacent electrodes (for example, the second electrodes 210a, 210N). Shows the electric field concentrated in the part.
  • Each of the points R5, R6, R7, and R8 shows an electric field concentrated between the end and the void of each of the plurality of second electrodes 210a, ..., 210N.
  • the metal OB1 is deposited beyond the region where the first electrode group 110 and the second electrode group 210 intersect, or the metal OB1 is partially formed in the region. Display unevenness occurs due to concentrated precipitation. Further, since the electric field is likely to be concentrated in the portion where the electric field strength is high shown at each of the points R1 to R8, the time until the metal OB1 is deposited or melted is short. Further, since each of these points R1 to R8 has a strong electric field strength and more metal OB1 is deposited, many metal OB1s are deposited when the EC element 100 is switched to the transparent state even when the application of the voltage is stopped. It takes time.
  • FIG. 7 is a diagram illustrating an example of precipitation of metal OB1 by a conventional current control method.
  • a nucleation voltage for forming a crystal nucleus of the metal OB1 is applied over GP0 for a predetermined period, and either the first electrode group 110 or the second electrode group 210 included in the EC element 100 is applied. Crab metal OB1 is deposited.
  • the EC element drive circuit applies a nucleation voltage over GP0 for a predetermined period of time, and then grows the formed crystal nuclei (that is, a metal over a region where the first electrode group 110 and the second electrode group 210 intersect. Continue to apply the nucleation voltage for depositing OB1).
  • the voltage value of the nucleation voltage is smaller than the voltage value of the nucleation voltage.
  • a nucleation voltage is applied from time 0 (zero) to time S1 (that is, GP0 for a predetermined period), and a nucleation voltage is applied from time S1. do.
  • the current waveform CW0 of the current supplied to the EC element 100 increases in current value during a predetermined period GP0 when the nucleation voltage is applied by the EC element drive circuit, and the current value changes from the nucleation voltage to the nucleation voltage. It has a peak at the switching timing (time S1).
  • the current supplied to the EC element 100 drops in value corresponding to the nuclear growth voltage smaller than the nucleation voltage. After the current value drops to the value corresponding to the nucleation voltage, this current value is maintained thereafter.
  • the precipitation graph PW0 shows the amount of metal OB1 deposited in the region where the first electrode group 110 and the second electrode group 210 intersect. As shown in the precipitation graph PW0, the amount of metal OB1 deposited increases with the passage of time. Note that FIG. 7 shows an example of a precipitation graph PW0 in which the amount of precipitation increases in proportion to the passage of time for the sake of simplicity, but the actual amount of precipitation has the maximum amount of precipitation that can be deposited in the region as an asymptote. It increases to draw a quadratic curve.
  • the state of precipitation of the metal OB1 in the region where the first electrode 110a and the second electrode 210N intersect each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect will be described.
  • the region CC1 at time S1 indicates the state immediately after the crystal nuclei are generated.
  • the application of the nucleation voltage is started, and the amount of metal OB1 deposited increases as compared with the region CC1.
  • the amount of metal OB1 deposited is further increased as compared with the region CC2.
  • the amount of metal OB1 deposited increases as compared with the region CC3, and the electric field strength of the edge portion CC41 (the upper side and the right side of the paper surface of the rectangular region CC4) becomes higher, causing display unevenness.
  • FIG. 8 is a diagram illustrating an example of precipitation of metal OB1 by the current / voltage control method according to the first embodiment.
  • a voltage control method by the EC element drive circuit 500 according to the first embodiment will be described.
  • a nucleation voltage is applied over GP1 for a predetermined period, and the metal OB1 is applied to either the first electrode group 110 or the second electrode group 210 included in the EC element 100. Precipitate.
  • the EC element drive circuit 500 applies a nucleation voltage over a predetermined period of GP1 and then applies a nuclear growth voltage having a voltage value smaller than the nucleation voltage over a predetermined period of PP1.
  • the EC element drive circuit 500 applies a nuclear growth voltage over a predetermined period of PP1 and then applies a nuclear dissolution voltage over a predetermined period of MP1, in a region where the first electrode group 110 and the second electrode group 210 intersect.
  • the metal OB1 precipitated over the entire surface is dissolved.
  • the voltage value of the nuclear dissolution voltage is a voltage value that reverses the polarity of the current flowing through the EC element 100 as compared with the voltage value of the nuclear growth voltage.
  • the EC element drive circuit 500 applies a nuclear dissolution voltage over a predetermined period of MP1, then switches the voltage value to a predetermined nuclear growth voltage, and applies the voltage over a predetermined period of PP1.
  • the EC element drive circuit 500 After applying the nucleation voltage once, the EC element drive circuit 500 alternately (that is, periodically) executes the application of the nucleation voltage over the predetermined period PP1 and the application of the nuclear dissolution voltage over the predetermined period MP1. do. That is, the EC element drive circuit 500 repeatedly executes the control of applying the nuclear growth voltage over the predetermined period PP1 and then applying the nuclear dissolution voltage over the predetermined period MP1 as one cycle.
  • the period of the cycle TP1 is the sum of the predetermined period PP1 and the predetermined period MP1.
  • a nuclear generation voltage is applied from time 0 (zero) to time t11, and nuclear growth occurs from time t11 to time t12.
  • a voltage is applied and a nuclear dissolution voltage is applied from time t12 to time t13.
  • the EC element drive circuit 500 reapplies the nuclear growth voltage from time t13 to time t14, reapplies the nuclear dissolution voltage from time t14 to time t15, and reapplies the nuclear growth voltage from time t15 to time t16. Is reapplied (that is, the control of alternately switching and applying the nuclear growth voltage and the nuclear dissolution voltage) is executed.
  • the control of the EC element drive circuit 500 in the subsequent time is omitted.
  • the EC element drive circuit 500 controls the voltage values applied to the first electrode group 110 and the second electrode group 210, and supplies currents having different polarities based on the applied voltage values. ..
  • the current waveform CW1 is a graph showing the time change of the current value flowing through the EC element 100 according to the first embodiment.
  • the polarity of the supplied current changes in the current supplied to the first electrode group 110 and the second electrode group 210 based on the applied nuclear growth voltage or karyolysis voltage.
  • the time change of the current value supplied to the first electrode group 110 and the second electrode group 210 according to the first embodiment will be described.
  • the current supplied to the first electrode group 110 and the second electrode group 210 is applied to the first electrode group 110 and the second electrode group 210 when the application of the nuclear generation voltage by the EC element drive circuit 500 is started.
  • the current value peaks (nuclear generation current I10) at the timing (time t10) when the voltage value to be adjusted reaches the set nuclear generation voltage.
  • the nuclear growth current I11 is reached at the timing (time t11) when the nuclear growth voltage is reached.
  • the application of the nuclear dissolution voltage by the EC element drive circuit 500 was started at time t13, the polarities of the currents were reversed, and the voltage values applied to the first electrode group 110 and the second electrode group 210 were set.
  • the nuclear dissolution current I12 is reached at the timing (time t14) when the nuclear dissolution voltage is reached.
  • the current reaches the set nuclear growth voltage with the voltage values applied to the first electrode group 110 and the second electrode group 210.
  • the nuclear growth current I11 is reached again.
  • the application of the nuclear dissolution voltage by the EC element drive circuit 500 is started at time t17, the polarity of the current is reversed, and the timing at which the voltage value applied to the EC element 100 reaches the set nuclear dissolution voltage ( At time t18), the nuclear dissolution current I12 is reached.
  • the current reaches the set nuclear growth voltage with the voltage values applied to the first electrode group 110 and the second electrode group 210.
  • the nuclear growth current I11 is reached again.
  • the application of the nuclear dissolution voltage by the EC element drive circuit 500 is started at time t21.
  • the amount of metal OB1 deposited in the region where the first electrode group 110 and the second electrode group 210 intersect increases with the passage of time from the time of nucleation as shown in the precipitation graph PW1.
  • the precipitation graph PW1 in which the precipitation amount is linearly changed will be used for explanation.
  • the state of precipitation of the metal OB1 in the region where the first electrode 110a and the second electrode 210N intersect each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect will be described.
  • the region C1 at time t10 is a state immediately after the crystal nuclei are generated at the timing when the nucleation current I10 flows (that is, the timing when the voltage value applied by the EC element drive circuit 500 reaches the set nucleation voltage). Is shown.
  • the metal OB1 is larger than the region C2. The amount of precipitation increases.
  • the nuclear dissolution current having a polarity opposite to that of the nuclear growth current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from time t13.
  • the precipitation amount of the metal OB1 is smaller than the precipitation amount of the region C2 at time t13.
  • the nuclear growth current having a polarity opposite to that of the nuclear dissolution current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from the time t15.
  • the amount of metal OB1 deposited is higher than that of C3.
  • the nuclear dissolution current having a polarity opposite to that of the nuclear growth current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from time t17.
  • the precipitation amount of the metal OB1 is smaller than the precipitation amount of the region C4 at time t17.
  • the nuclear growth current having a polarity opposite to that of the nuclear dissolution current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from the time t19.
  • the amount of metal OB1 deposited is higher than that of C5.
  • the metal OB1 is dissolved in the respective voltage values of the nuclear generation voltage and the nuclear dissolution voltage applied by the EC element drive circuit 500 according to the first embodiment and the respective current values of the nuclear generation current and the nuclear dissolution current.
  • the respective voltage values of the nuclear generation voltage and the nuclear dissolution voltage are set in consideration of the resistance value based on the component of the medium to be used, the loss based on the path length of the electric circuit in the EC element 100, and the like.
  • each of the nuclear generation current and the nuclear dissolution current supplied by the EC element drive circuit 500 according to the first embodiment will be described with an example in which the polarity of the nuclear generation voltage and the polarity of the nuclear dissolution voltage are the same.
  • the polarity of the current may be changed by applying a voltage in which the polarity of the nuclear generation voltage and the polarity of the nuclear dissolution voltage are changed.
  • the EC element drive circuit 500 alternately switches the voltage value between the nuclear growth voltage and the nuclear dissolution voltage and supplies the voltage value to the first electrode group 110 and the second electrode group 210. Change the polarity of the current.
  • the EC element 100 can suppress the concentration of the electric field strength on the edge portion and the like, and can suppress the occurrence of display unevenness due to the electric field concentration.
  • the metal OB1 is more likely to be precipitated or dissolved as the electric field strength is stronger. Therefore, the EC element 100 according to the first embodiment alternately and repeatedly switches between the nuclear growth voltage and the nuclear dissolution voltage even when the electric field strength is concentrated in a partial region such as an edge portion. The metal OB1 gradually precipitates while repeating precipitation and dissolution. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
  • FIG. 9 is a diagram showing an example of measurement results of the voltage waveform VW2 and the current waveform CW2 applied by the EC element drive circuit 500 according to the first embodiment.
  • the EC element drive circuit 500 changes the voltage value of the voltage applied to the first electrode group 110 and the second electrode group 210 in a predetermined cycle. Take control.
  • TP2 0.125 s is alternately switched and applied.
  • the voltage waveform VW2 shows the time change of the voltage applied by the EC element drive circuit 500.
  • the polarity of the current supplied to the first electrode group 110 and the second electrode group 210 is the voltage applied as shown in the current waveform CW2. It changes alternately as the value changes. Specifically, the polarity of the current alternates so that it becomes a positive electrode during the period PP2 where the nuclear growth voltage is applied and becomes a negative electrode during the period MP2 where the karyolysis voltage is applied.
  • the amount of metal OB1 deposited in the region where the first electrode group 110 and the second electrode group 210 intersect is the period during which the nuclear growth voltage is applied (that is, as shown in the precipitation graph PW1 shown in FIG. 8).
  • the metal OB1 is precipitated during the period (the period during which the nuclear growth current is supplied), and the precipitated metal OB1 is dissolved during the period during which the nuclear dissolution voltage is applied (that is, the period during which the nuclear dissolution current is supplied).
  • the EC element drive circuit 500 causes the electric field in the edge portion of the region where the first electrode group 110 and the second electrode group 210 intersect. Concentration can be suppressed more.
  • the EC element drive circuit 500 can further suppress the electric field at the edge portion of the electrode to reduce display unevenness and realize high-quality display. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
  • FIG. 10 is a diagram showing an example of experimental results regarding the occurrence of display unevenness due to changes in the supply times of the nuclear growth current and the nuclear dissolution current.
  • FIG. 10 shows the results of an experiment on the presence or absence of display unevenness when the supply time of the nuclear growth current was set to 100 ms and the supply time of the nuclear dissolution current was changed.
  • the first electrode group 110 and the second electrode group 210 intersect each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect.
  • the electric field is concentrated on the edge portions of the plurality of regions where the electrode group 110 and the second electrode group 210 intersect, and the metal OB1 is excessive on the edge portions and the like as in the conventional current / voltage control method shown in FIG. Since it is deposited on the surface, display unevenness occurs.
  • the electric field is concentrated on the edge portions of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect.
  • Metal OB1 is excessively deposited on the edge portion and the like, and display unevenness occurs.
  • the electric field is concentrated on the edge portions of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect.
  • a large amount of metal OB1 is deposited on the edge portion and the like, and slight display unevenness occurs.
  • the electric field is concentrated on the edge portions of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect. It disappears and display unevenness does not occur.
  • the difference between the dissolution amount of the metal OB1 that dissolves with the supply time of the nuclear dissolution current and the reprecipitation amount of the metal OB1 that reprecipitates with the supply time of the re-supplied nuclear growth current becomes large.
  • flicker such that the display blinks occurs.
  • the dissolution amount of the metal OB1 that dissolves with the supply time of the nuclear dissolution current and the supply time of the nuclear growth current to be supplied again As a result, the amount of reprecipitation of the metal OB1 reprecipitated becomes substantially the same, and it becomes difficult to maintain the deposited metal OB1.
  • the voltage waveform VW3 shows the time change of the voltage applied by the EC element drive circuit 500.
  • the EC element drive circuit 500 shown in FIG. 11 repeatedly executes control of applying the nuclear growth voltage V31 over a predetermined period PP3 and then applying the nuclear dissolution voltage V32 over a predetermined period MP3.
  • the precipitation graph PW3 precipitates in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V31 and the nuclear dissolution voltage V32 are applied at a ratio of application time of 5: 1.
  • the change in the precipitation amount of the metal OB1 is shown.
  • the amount of the metal OB1 deposited increases while the nuclear growth voltage V31 is applied (that is, PP3 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V32 is applied (that is, MP3 for a predetermined period).
  • the amount of precipitation decreases.
  • the amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP3) is repeated.
  • the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge portion or the like. It is possible to further suppress the concentration of the electric field strength on the surface and suppress the occurrence of display unevenness. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
  • the voltage waveform VW4 indicates the time change of the voltage applied by the EC element drive circuit 500.
  • the EC element drive circuit 500 shown in FIG. 12 repeatedly executes control of applying the nuclear growth voltage V41 over a predetermined period PP4 and then applying the nuclear dissolution voltage V42 over a predetermined period MP4.
  • the precipitation graph PW4 precipitates in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V41 and the nuclear dissolution voltage V42 are applied at a ratio of the application time of 4: 1.
  • the change in the precipitation amount of the metal OB1 is shown.
  • the amount of the metal OB1 deposited increases while the nuclear growth voltage V41 is applied (that is, PP4 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V42 is applied (that is, MP4 for a predetermined period).
  • the amount of precipitation decreases.
  • the amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP4) is repeated.
  • the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge portion or the like. It is possible to further suppress the concentration of the electric field strength on the surface and suppress the occurrence of display unevenness. Further, even when the electric field strength is concentrated in a partial region such as an edge portion, the EC element 100 is in a region where the electric field strength is concentrated by alternately switching between the nuclear growth voltage and the nuclear dissolution voltage. By repeating excessive precipitation and excessive dissolution of the metal OB1, the metal OB1 can be uniformly deposited over each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect.
  • the voltage waveform VW5 indicates the time change of the voltage applied by the EC element drive circuit 500.
  • the EC element drive circuit 500 shown in FIG. 13 repeatedly executes control of applying the nuclear growth voltage V51 over a predetermined period PP5 and then applying the nuclear dissolution voltage V52 over a predetermined period MP5.
  • the precipitation graph PW5 is shown in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V51 and the nuclear dissolution voltage V52 are applied at a ratio of application time of 3.5: 1.
  • the change in the precipitation amount of the deposited metal OB1 is shown.
  • the amount of the metal OB1 deposited increases while the nuclear growth voltage V51 is applied (that is, PP5 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V52 is applied (that is, MP5 for a predetermined period).
  • the amount of precipitation decreases.
  • the amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP5) is repeated.
  • the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge. It is possible to further suppress the concentration of the electric field strength on the portion and the like, and suppress the occurrence of display unevenness. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
  • the voltage waveform VW6 indicates the time change of the voltage applied by the EC element drive circuit 500.
  • the EC element drive circuit 500 shown in FIG. 14 repeatedly executes control of applying the nuclear growth voltage V61 over a predetermined period of PP6 and then applying the nuclear dissolution voltage V62 over a predetermined period of MP6.
  • the precipitation graph PW6 precipitates in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V61 and the nuclear dissolution voltage V62 are applied at a ratio of the application time of 2: 1.
  • the change in the precipitation amount of the metal OB1 is shown.
  • the amount of the metal OB1 deposited increases while the nuclear growth voltage V61 is applied (that is, PP6 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V62 is applied (that is, MP6 for a predetermined period).
  • the amount of precipitation decreases.
  • the amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP6) is repeated.
  • the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge portion or the like. It is possible to further suppress the concentration of the electric field strength on the surface and suppress the occurrence of display unevenness. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
  • the EC element 100 has translucency and has a plurality of first electrodes 110a, ..., 110N arranged in parallel and a plurality of first electrodes 110a, ..., 110N, respectively.
  • the electrolytic solution EL1 containing the metal OB1 and the EC element drive circuit 500 for applying a voltage to the electrolytic solution EL1 are provided.
  • the EC element drive circuit 500 alternately switches the polarity of the current based on the voltage applied to the electrolytic solution EL1, and one of a plurality of first electrodes 110a, ..., 110N and a plurality of second electrodes 210a, ..., 210N.
  • Metal OB1 is precipitated or dissolved on one side.
  • the EC element drive circuit 500 can further suppress the electric field concentration on the edge portion of the region where the first electrode group 110 and the second electrode group 210 intersect.
  • the metal OB1 can be gradually precipitated to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
  • the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
  • the EC element drive circuit 500 in the EC element 100 according to the first embodiment has a nuclear generation voltage or a nuclear growth voltage (an example of a first voltage) for precipitating the metal OB1 and a nuclear dissolution voltage for melting the metal OB1 (an example of the first voltage).
  • An example of the second voltage is switched and applied.
  • the EC element 100 according to the first embodiment has an edge portion in the region where the first electrode group 110 and the second electrode group 210 intersect during the period in which the nuclear dissolution voltage (that is, the nuclear dissolution current) is applied.
  • the electric field value concentrated on can be reduced. That is, the EC element drive circuit 500 according to the first embodiment can further suppress the electric field concentration on the edge portion of the electrode, reduce the display unevenness, and realize a high-quality display.
  • the EC element drive circuit 500 applies the nucleation voltage (an example of the third voltage) that exceeds the nucleation voltage first, and then applies the nucleation voltage and the karyolysis voltage.
  • the nucleation voltage an example of the third voltage
  • the EC element 100 after each of the crystal nuclei of the metal OB1 is first generated (precipitated) in the region where each of the first electrode group 110 and the second electrode group 210 intersects, the EC element 100 is first generated (precipitated).
  • the precipitation amount of the metal OB1 becomes more uniform.
  • the voltage control can be easily performed.
  • the absolute value of the difference from the reference voltage at which the metal OB1 starts to precipitate is the reference voltage (for example, 3V) and the nuclear growth voltage (for example, 2V).
  • a nuclear production voltage (eg, -1V) that exceeds the absolute value of the difference is first applied, and then a nuclear growth voltage and a nuclear dissolution voltage are applied.
  • the EC element 100 according to the first embodiment after each of the crystal nuclei of the metal OB1 is first generated (precipitated) in the region where each of the first electrode group 110 and the second electrode group 210 intersects, the EC element 100 is first generated (precipitated).
  • the precipitation amount of the metal OB1 becomes more uniform.
  • the voltage control can be easily performed.
  • the EC element drive circuit 500 according to the first embodiment periodically alternately switches and applies the nuclear growth voltage and the nuclear dissolution voltage.
  • the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode, and gradually applies the metal OB1 to the region where the first electrode group 110 and the second electrode group 210 intersect. It can be precipitated to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
  • the EC element drive circuit 500 alternately switches so that the ratio of the application time of the nuclear growth voltage and the application time of the nuclear dissolution voltage is 2: 1.
  • the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode and reduces display unevenness, and the precipitation time of the metal OB1 exceeds the dissolution time of the metal OB1.
  • the metal OB1 can be gradually deposited in the region where the first electrode group 110 and the second electrode group 210 intersect to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
  • the EC element drive circuit 500 alternately switches so that the ratio of the application time of the nuclear growth voltage and the application time of the nuclear dissolution voltage is 3.5: 1.
  • the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode to reduce display unevenness, and the precipitation time of the metal OB1 exceeds the dissolution time of the metal OB1.
  • the metal OB1 can be gradually deposited in the region where the 1-electrode group 110 and the 2nd electrode group 210 intersect to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
  • the EC element drive circuit 500 according to the first embodiment alternately switches so that the application time of the nuclear dissolution voltage is 1/10 or more of the application time of the nuclear growth voltage.
  • the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode and reduces display unevenness, and the precipitation time of the metal OB1 exceeds the dissolution time of the metal OB1.
  • the metal OB1 can be gradually deposited in the region where the first electrode group 110 and the second electrode group 210 intersect to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
  • the present disclosure is useful as a dimming element that reduces display unevenness of an edge portion in the width direction of an electrode when driving an EC (electrochromic) element and realizes a high-quality display.

Abstract

This light control element comprises: a plurality of first electrodes having transparency and disposed in parallel; a plurality of second electrodes disposed in parallel respectively facing the plurality of first electrodes; an electrolyte disposed between the plurality of first electrodes and the plurality of second electrodes and including a metal; and a power supply for supplying a voltage to the electrolyte, wherein the power supply alternately switches the polarity of current based on the voltage applied to the electrolyte, and causes the metal to be precipitated or melted to at least one among the plurality of first electrodes and the plurality of second electrodes.

Description

調光素子Dimming element
 本開示は、調光素子に関する。 This disclosure relates to a dimming element.
 特許文献1には、第1電気導電層および第2電気導電層の少なくとも一方は絶縁性材料から成るパターン層および抵抗性材料から成る層を有するパターン導電層を有し、第1電気導電層および第2電気導電層のそれぞれの対向端部に設けられたバスバーのそれぞれからの距離に応じて抵抗値を変化させたエレクトロクロミックデバイスが開示されている。このエレクトロクロミックデバイスは、それぞれのバスバーから最も遠い位置で抵抗値が最小となる。 In Patent Document 1, at least one of the first electrically conductive layer and the second electrically conductive layer has a pattern conductive layer having a pattern layer made of an insulating material and a layer made of a resistant material, and the first electrically conductive layer and the second electrically conductive layer. An electrochromic device is disclosed in which the resistance value is changed according to the distance from each of the bus bars provided at the opposite ends of the second electrically conductive layer. This electrochromic device has the lowest resistance at the farthest position from each busbar.
日本国特表2015-527614号公報Japan Special Table 2015-527614
 本開示は、上述した従来の事情に鑑みて案出され、EC(エレクトロクロミック)素子を駆動する際の電極の幅方向のエッジ部の表示ムラを低減し、高品位な表示を実現する調光素子を提供することを目的とする。 The present disclosure has been devised in view of the above-mentioned conventional circumstances, and dimming that reduces display unevenness of the edge portion in the width direction of the electrode when driving an EC (electrochromic) element and realizes a high-quality display. It is an object of the present invention to provide an element.
 本開示は、透光性を有し、並列に配置された複数の第1電極と、前記複数の第1電極のそれぞれと対向して並列に配置された複数の第2電極と、前記複数の第1電極と前記複数の第2電極との間に配置された、金属を含む電解液と、前記電解液に電圧を印加する電源と、を備え、前記電源は、前記電解液に印加される電圧に基づく電流の極性を交互に切り替えて、前記複数の第1電極および前記複数の第2電極のいずれか一方に前記金属を析出または溶解させる、調光素子を提供する。 In the present disclosure, a plurality of first electrodes having translucency and arranged in parallel, a plurality of second electrodes arranged in parallel facing each of the plurality of first electrodes, and the plurality of first electrodes. An electrolytic solution containing a metal and a power source for applying a voltage to the electrolytic solution, which are arranged between the first electrode and the plurality of second electrodes, are provided, and the power source is applied to the electrolytic solution. Provided is a dimming element that alternately switches the polarity of a current based on a voltage to deposit or dissolve the metal on one of the plurality of first electrodes and the plurality of second electrodes.
 本開示によれば、EC素子を駆動する際の電極の幅方向のエッジ部の表示ムラを低減し、高品位な表示を実現する。 According to the present disclosure, display unevenness of the edge portion in the width direction of the electrode when driving the EC element is reduced, and high-quality display is realized.
実施の形態1に係るEC素子の構造例を説明する図The figure explaining the structural example of the EC element which concerns on Embodiment 1. 実施の形態1に係る調光装置の構造例を説明する図The figure explaining the structural example of the dimming apparatus which concerns on Embodiment 1. EC素子の断面線を示す図The figure which shows the cross-sectional line of an EC element 実施の形態1に係るEC素子の構造例を説明する図The figure explaining the structural example of the EC element which concerns on Embodiment 1. B-B断面におけるEC素子の構造例を説明する図The figure explaining the structural example of the EC element in the BB cross section. B-B断面におけるEC素子の電界分布図Electric field distribution diagram of EC element in BB cross section 従来の電流・電圧の制御方法による金属の析出例を説明する図The figure explaining the example of metal precipitation by the conventional current / voltage control method 実施の形態1に係る電流・電圧の制御方法による金属の析出例を説明する図The figure explaining the example of metal precipitation by the current / voltage control method which concerns on Embodiment 1. 実施の形態1に係るEC素子駆動回路により印加される電圧波形および電流波形の計測結果の一例を示す図The figure which shows an example of the measurement result of the voltage waveform and the current waveform applied by the EC element drive circuit which concerns on Embodiment 1. 核成長電流および核溶解電流の供給時間の変化による表示ムラの発生に関する実験結果の一例を示す図The figure which shows an example of the experimental result about the occurrence of display unevenness by the change of the supply time of a nuclear growth current and a nuclear dissolution current. 核成長電圧:核溶解電圧=5:1における金属析出量の変化例を説明する図The figure explaining the example of the change of the metal precipitation amount at the nuclear growth voltage: the nuclear dissolution voltage = 5: 1. 核成長電圧:核溶解電圧=4:1における金属析出量の変化例を説明する図The figure explaining the example of the change of the metal precipitation amount at the nuclear growth voltage: the nuclear dissolution voltage = 4: 1. 核成長電圧:核溶解電圧=3.5:1における金属析出量の変化例を説明する図The figure explaining the example of the change of the metal precipitation amount at the nuclear growth voltage: the nuclear dissolution voltage = 3.5: 1. 核成長電圧:核溶解電圧=2:1における金属析出量の変化例を説明する図The figure explaining the example of the change of the metal precipitation amount at the nuclear growth voltage: the nuclear dissolution voltage = 2: 1.
(実施の形態1の内容に至る経緯)
 従来、第1電気導電層および第2電気導電層の少なくとも一方は絶縁性材料から成るパターン層および抵抗性材料から成る層を有するパターン導電層を有し、第1電気導電層および第2電気導電層のそれぞれの対向端部に設けられたバスバーのそれぞれからの距離に応じて抵抗値を変化させたエレクトロクロミックデバイス(以下、EC素子と表記)が提供されている。このEC素子は、それぞれのバスバーから最も遠い位置で抵抗値が最小となり、EC素子の外周に生じる表示ムラを低減することができた。しかし、このようなEC素子をパッシブマトリクス駆動する場合には、一対の電極に対して複数のEC表示画素(以下、表示画素と表記)を有するため、複数の表示画素のそれぞれのエッジ部に表示ムラが発生する可能性があった。
(Background to the contents of the first embodiment)
Conventionally, at least one of the first electrically conductive layer and the second electrically conductive layer has a pattern conductive layer having a pattern layer made of an insulating material and a layer made of a resistant material, and has a first electrically conductive layer and a second electrically conductive layer. An electrochromic device (hereinafter, referred to as an EC element) in which a resistance value is changed according to a distance from each of the bus bars provided at the opposite ends of the layers is provided. The resistance value of this EC element was minimized at the position farthest from each bus bar, and display unevenness occurring on the outer circumference of the EC element could be reduced. However, when such an EC element is driven by a passive matrix, since it has a plurality of EC display pixels (hereinafter referred to as display pixels) for a pair of electrodes, it is displayed on each edge portion of the plurality of display pixels. There was a possibility of unevenness.
 そこで、以下の実施の形態1においては、EC(エレクトロクロミック)素子をパッシブマトリクス駆動する際の電極の幅方向のエッジ部の電界を抑制して表示ムラを低減し、高品位な表示を実現するEC素子の例を説明する。 Therefore, in the following embodiment 1, the electric field at the edge portion in the width direction of the electrode when the EC (electrochromic) element is passively driven in a matrix is suppressed to reduce display unevenness and realize high-quality display. An example of an EC element will be described.
 以下、適宜図面を参照しながら、本開示に係る調光素子の構成および作用を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments in which the configuration and operation of the dimming element according to the present disclosure are specifically disclosed will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
 図1を参照して、実施の形態1に係るEC(エレクトロクロミック)素子100の構造について説明する。図1は、実施の形態1に係るEC素子100の構造例を説明する図である。図1に示す矢印Kは、ユーザ(例えば、EC素子の利用者)の視線の向きを示す。また、図1に示す金属OB1は、析出した状態であり、第1電極群110の表面に金属薄膜を形成している。
(Embodiment 1)
The structure of the EC (electrochromic) element 100 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment. The arrow K shown in FIG. 1 indicates the direction of the line of sight of the user (for example, the user of the EC element). Further, the metal OB1 shown in FIG. 1 is in a precipitated state, and a metal thin film is formed on the surface of the first electrode group 110.
 図1に示すように、EC素子100は、第1電極群110と、第1基板111と、第1電極接続部112と、第2電極群210と、第2基板211と、第2電極接続部212と、電解液EL1と、スペーサ300と、EC素子駆動回路500と、を含んで構成される。 As shown in FIG. 1, the EC element 100 includes a first electrode group 110, a first substrate 111, a first electrode connection portion 112, a second electrode group 210, a second substrate 211, and a second electrode connection. The unit 212, the electrolytic solution EL1, the spacer 300, and the EC element drive circuit 500 are included.
 第1電極群110は、透光性を有する導電膜であり、例えば、ITO(Indium Tin Oxide)などの透明電極である。なお、第1電極群110は、ITOに限らず、例えば酸化亜鉛または酸化スズ等を材料とする透明電極(導電膜)であってもよい。 The first electrode group 110 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide). The first electrode group 110 is not limited to ITO, and may be a transparent electrode (conductive film) made of, for example, zinc oxide or tin oxide.
 第1基板111は、ガラスまたは樹脂などの絶縁性を有する材料を用いて形成される。第1基板111は、例えば透光性を有する矩形状の板体であり、第1電極群110上に第2基板211と互いに対向して設けられる。 The first substrate 111 is formed by using an insulating material such as glass or resin. The first substrate 111 is, for example, a rectangular plate having translucency, and is provided on the first electrode group 110 so as to face the second substrate 211.
 第1電極接続部112は、第1電極群110とEC素子駆動回路500との間を接続する。第1電極接続部112は、電解液EL1と接触せず、かつスペーサ300と複数の第1電極110a,110b,110c,…,110Nのそれぞれ(図2参照)との間の露出部に接続される。 The first electrode connection portion 112 connects between the first electrode group 110 and the EC element drive circuit 500. The first electrode connecting portion 112 does not come into contact with the electrolytic solution EL1 and is connected to an exposed portion between the spacer 300 and each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N (see FIG. 2). NS.
 第2電極群210は、透光性を有する導電膜であり、例えば、ITO(Indium Tin Oxide)などの透明電極である。なお、第2電極群210は、ITOに限らず、例えば酸化亜鉛または酸化スズ等を材料とする透明導電膜であってもよい。 The second electrode group 210 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide). The second electrode group 210 is not limited to ITO, and may be a transparent conductive film made of, for example, zinc oxide or tin oxide.
 第2基板211は、ガラスまたは樹脂などの絶縁性を有する材料を用いて形成される。第2基板211は、例えば透光性を有する矩形状の板体であり、第2電極群210上に第1基板111と互いに対向して設けられる。 The second substrate 211 is formed by using an insulating material such as glass or resin. The second substrate 211 is, for example, a rectangular plate having translucency, and is provided on the second electrode group 210 so as to face the first substrate 111.
 第2電極接続部212は、第2電極群210とEC素子駆動回路500との間を接続する。第2電極接続部212は、電解液EL1と接触せず、かつスペーサ300との間の外部に露出した複数の第2電極210a,210b,210c,…,210Nのそれぞれ(図2参照)との間の露出部に接続される。 The second electrode connection portion 212 connects between the second electrode group 210 and the EC element drive circuit 500. The second electrode connecting portion 212 is connected to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N that are not in contact with the electrolytic solution EL1 and are exposed to the outside between the spacer 300 (see FIG. 2). It is connected to the exposed part between.
 電解液EL1は、第1電極群110、第2電極群210およびスペーサ300によって形成された空間内に備えられる。電解液EL1は、金属イオン状態にある金属OB1を含み、電気伝導性を有する溶液である。電解液EL1は、例えば銀を含む溶液である。電解液EL1に含まれる金属OB1は、第1電極群110および第2電極群210に印加された電圧によって生じる電界に応じて、第1電極群110または第2電極群210のいずれか一方に析出する。析出した金属OB1は、第1電極群110または第2電極群210のいずれかの一方の面の表面に金属薄膜を形成する。金属OB1が析出する電極は、後述するEC素子駆動回路500によって印加される電圧の極性に応じて変化する。図1において、金属OB1は、第1電極群110に析出して金属薄膜を形成している。 The electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300. The electrolytic solution EL1 is a solution containing a metal OB1 in a metal ion state and having electrical conductivity. The electrolytic solution EL1 is, for example, a solution containing silver. The metal OB1 contained in the electrolytic solution EL1 is deposited on either the first electrode group 110 or the second electrode group 210 depending on the electric field generated by the voltage applied to the first electrode group 110 and the second electrode group 210. do. The precipitated metal OB1 forms a metal thin film on the surface of either one of the first electrode group 110 and the second electrode group 210. The electrode on which the metal OB1 is deposited changes according to the polarity of the voltage applied by the EC element drive circuit 500 described later. In FIG. 1, the metal OB1 is deposited on the first electrode group 110 to form a metal thin film.
 なお、金属OB1は、上述した銀に限らない。金属OB1は、例えばアルミニウム、プラチナ、クロムあるいは金等の貴金属を含む他の金属であってよい。金属OB1は、光に対して高い反射率を有する金属である場合には析出時にミラー(反射状態)として機能し、反射しない金属である場合には遮光材(遮光状態)として機能する。 The metal OB1 is not limited to the silver described above. The metal OB1 may be another metal containing a noble metal such as aluminum, platinum, chromium or gold. The metal OB1 functions as a mirror (reflecting state) at the time of precipitation when it is a metal having a high reflectance to light, and functions as a light-shielding material (light-shielding state) when it is a non-reflecting metal.
 また、上述した本実施の形態1に係るEC素子100は、ユーザが図1に示す矢印Kから第1基板111を見ることを想定している。このため、第2電極群210および第2基板211は、不透明であってもよい。例えば、第2基板211は、シリコン基板などでもよい。また、同様に、第2電極群210は、銅などの金属電極でもよい。 Further, the EC element 100 according to the first embodiment described above assumes that the user sees the first substrate 111 from the arrow K shown in FIG. Therefore, the second electrode group 210 and the second substrate 211 may be opaque. For example, the second substrate 211 may be a silicon substrate or the like. Similarly, the second electrode group 210 may be a metal electrode such as copper.
 スペーサ300は、例えば、熱硬化性樹脂などの樹脂材料を環状に塗布して、硬化させて形成される。スペーサ300は、対向して配置される第1電極群110および第2電極群210のそれぞれの周縁に沿って、環状に設けられる。なお、スペーサ300は、第1電極群110の一方の端部が第1電極接続部112と、第2電極群210の一方の端部が第2電極接続部212とそれぞれ接続可能な露出部を除いて設けられる。 The spacer 300 is formed by applying a resin material such as a thermosetting resin in a ring shape and curing the spacer 300. The spacer 300 is provided in an annular shape along the peripheral edges of the first electrode group 110 and the second electrode group 210 arranged so as to face each other. The spacer 300 has an exposed portion in which one end of the first electrode group 110 can be connected to the first electrode connecting portion 112 and one end of the second electrode group 210 can be connected to the second electrode connecting portion 212. It is provided except.
 EC素子駆動回路500は、第1電極群110および第2電極群210に電圧を印加するための電源部である。EC素子駆動回路500は、リード線を介して、第1電極接続部112および第2電極接続部212のそれぞれに接続され、第1電極群110および第2電極群210に電圧を印加する。EC素子駆動回路500は、第1電極群110および第2電極群210のそれぞれに印加する電圧の極性に応じて金属OB1を析出させる電極を制御する。 The EC element drive circuit 500 is a power supply unit for applying a voltage to the first electrode group 110 and the second electrode group 210. The EC element drive circuit 500 is connected to each of the first electrode connecting portion 112 and the second electrode connecting portion 212 via a lead wire, and applies a voltage to the first electrode group 110 and the second electrode group 210, respectively. The EC element drive circuit 500 controls an electrode that deposits the metal OB1 according to the polarity of the voltage applied to each of the first electrode group 110 and the second electrode group 210.
 また、EC素子駆動回路500は、印加する電圧値に応じて、第1電極群110および第2電極群210のそれぞれに印加する電流の極性を制御(変更)する。具体的に、EC素子駆動回路500は、事前に設定された核生成電圧(第3の電圧の一例)を所定期間印加した後、核成長電圧(第1の電圧の一例)と核溶解電圧(第2の電圧の一例)とを各所定期間ごとに切替える制御を実行し、第1電極群110および第2電極群210のそれぞれに供給される電流の極性を制御(変更)する。 Further, the EC element drive circuit 500 controls (changes) the polarity of the current applied to each of the first electrode group 110 and the second electrode group 210 according to the applied voltage value. Specifically, the EC element drive circuit 500 applies a preset nuclear generation voltage (an example of a third voltage) for a predetermined period of time, and then applies a nuclear growth voltage (an example of a first voltage) and a nuclear dissolution voltage (an example of a first voltage). A control for switching between the second voltage (an example of the second voltage) and the second voltage is executed at each predetermined period, and the polarity of the current supplied to each of the first electrode group 110 and the second electrode group 210 is controlled (changed).
 ここでいう、核生成電圧は、第1電極群110および第2電極群210のそれぞれが交差する領域に金属OB1の結晶核のそれぞれを生成(析出)させるために印加される電圧であり、表示色に対応して異なる電圧値が設定される。核成長電圧は、核生成電圧の印加により生成された金属OB1の結晶核のそれぞれを成長(つまり、第1電極群110および第2電極群210のそれぞれが交差する領域全域に亘って析出させる)ために印加される電圧である。なお、核生成電圧は、核成長電圧を超える電圧値(例えば、核生成電圧が10Vのとき核成長電圧が5V)に設定される。また、核生成電圧は、金属OB1が析出を開始する電圧値を基準電圧とした時、この基準電圧と核生成電圧との差分電圧の絶対値がこの基準電圧と核成長電圧との差分電圧の絶対値を超える電圧値(例えば、基準電圧が-1V,核生成電圧が-10Vの時、核成長電圧が-5V)設定される。また、核生成電圧の極性は、核成長電圧の極性と異なる極性(例えば、基準電圧が-4V,核生成電圧が1Vの時、核成長電圧が-2V、基準電圧が3V,核生成電圧が-1Vの時、核成長電圧が2V)が設定されてもよい。 The nucleation voltage referred to here is a voltage applied to generate (precipitate) each of the crystal nuclei of the metal OB1 in the region where each of the first electrode group 110 and the second electrode group 210 intersects, and is displayed. Different voltage values are set according to the color. The nucleation voltage grows each of the crystal nuclei of the metal OB1 generated by the application of the nucleation voltage (that is, precipitates over the entire region where each of the first electrode group 110 and the second electrode group 210 intersects). Is the voltage applied for this. The nucleation voltage is set to a voltage value exceeding the nucleation voltage (for example, when the nucleation voltage is 10V, the nucleation voltage is 5V). Further, when the voltage value at which the metal OB1 starts to precipitate is used as the reference voltage, the absolute value of the difference voltage between the reference voltage and the nucleation generation voltage is the difference voltage between the reference voltage and the nuclear growth voltage. A voltage value exceeding the absolute value (for example, when the reference voltage is -1V and the nuclear generation voltage is -10V, the nuclear growth voltage is -5V) is set. The polarity of the nucleation voltage is different from the polarity of the nucleation voltage (for example, when the reference voltage is -4V and the nucleation voltage is 1V, the nucleation voltage is -2V, the reference voltage is 3V, and the nucleation voltage is When -1V, the nuclear growth voltage may be set to 2V).
 核溶解電圧は、核生成電圧および核成長電圧により第1電極群110および第2電極群210のそれぞれが交差する領域に析出した金属OB1を溶解させるために印加される電圧である。また、核溶解電圧が印加された場合に、第1電極群110および第2電極群210のそれぞれに供給される電流は、核生成電圧および核成長電圧の印加時の電流が有する極性と逆の極性を有する。 The nuclear dissolution voltage is a voltage applied to dissolve the metal OB1 deposited in the region where each of the first electrode group 110 and the second electrode group 210 intersects by the nucleation voltage and the nuclear growth voltage. Further, when the karyolysis voltage is applied, the currents supplied to each of the first electrode group 110 and the second electrode group 210 are opposite to the polarities of the currents when the nuclear generation voltage and the nuclear growth voltage are applied. Has polarity.
 以下、EC素子100の光学状態の動作方法について説明する。EC素子100の光学状態として、透明状態、反射状態および遮光状態がある。 Hereinafter, the operation method of the optical state of the EC element 100 will be described. The optical state of the EC element 100 includes a transparent state, a reflection state, and a light-shielding state.
 まず、EC素子100が、金属OB1の析出および溶解によって光学状態を透明状態から反射状態に切替える際の動作方法について説明する。なお、以下の説明においては、金属OB1が第1電極群110側に析出する動作を反射状態あるいは遮光状態とした動作方法について説明するが、金属OB1が析出する電極について限定するものではない。 First, the operation method when the EC element 100 switches the optical state from the transparent state to the reflective state by precipitation and dissolution of the metal OB1 will be described. In the following description, an operation method in which the operation of depositing the metal OB1 on the first electrode group 110 side is set to a reflection state or a light-shielding state will be described, but the electrode on which the metal OB1 is deposited is not limited.
 EC素子駆動回路500は、第1電極群110が低電位となり第2電極群210が高電位となるようにEC素子100に核生成電圧または核成長電圧を印加する。このとき、EC素子駆動回路500の印加電圧によって生じる電界の向きは、第2電極群210から第1電極群110に向かう方向となる。 The EC element drive circuit 500 applies a nucleation voltage or a nucleation voltage to the EC element 100 so that the first electrode group 110 has a low potential and the second electrode group 210 has a high potential. At this time, the direction of the electric field generated by the applied voltage of the EC element drive circuit 500 is the direction from the second electrode group 210 to the first electrode group 110.
 電解液EL1に含まれる金属OB1は、溶解した状態において、例えば銀イオンである。金属OB1は、EC素子100に核生成電圧または核成長電圧が印加されると第1電極群110(低電位側の電極)の表面に析出して、金属薄膜(例えば、銀薄膜)を形成する。析出した金属OB1(例えば、銀薄膜)は、高い反射率を有しており、矢印K方向から見た場合にミラー(反射状態)として機能する。なお、金属OB1は、極端に速い析出レートで形成した場合、密度が低い金属薄膜を形成する。密度が低い金属薄膜が形成されたEC素子100は、膜の隙間(つまり、析出した金属薄膜の隙間)に光が入射し迷光するため、遮光材(遮光状態)として機能する。 The metal OB1 contained in the electrolytic solution EL1 is, for example, silver ion in a dissolved state. When a nucleation voltage or a nucleation voltage is applied to the EC element 100, the metal OB1 precipitates on the surface of the first electrode group 110 (electrode on the low potential side) to form a metal thin film (for example, a silver thin film). .. The deposited metal OB1 (for example, a silver thin film) has a high reflectance and functions as a mirror (reflection state) when viewed from the direction of arrow K. When the metal OB1 is formed at an extremely fast precipitation rate, it forms a metal thin film having a low density. The EC element 100 on which a metal thin film having a low density is formed functions as a light-shielding material (light-shielding state) because light is incident on the gaps between the films (that is, the gaps between the precipitated metal thin films) and strays.
 EC素子駆動回路500は、後述するEC素子駆動回路制御部400から入力される制御信号によって制御される。EC素子駆動回路500は、入力される制御信号に基づいてEC素子100の光学状態を透明状態から反射状態あるいは遮光状態に切替える。また、EC素子駆動回路500は、反射状態あるいは遮光状態のまま動作を維持する場合には、金属OB1の析出量が金属OB1の溶解量を上回るように核生成電圧および核溶解電圧の印加を継続する。 The EC element drive circuit 500 is controlled by a control signal input from the EC element drive circuit control unit 400, which will be described later. The EC element drive circuit 500 switches the optical state of the EC element 100 from the transparent state to the reflection state or the light-shielding state based on the input control signal. Further, when the EC element drive circuit 500 maintains its operation in the reflected state or the light-shielded state, the nucleation voltage and the nuclear dissolution voltage are continuously applied so that the precipitation amount of the metal OB1 exceeds the dissolution amount of the metal OB1. do.
 次に、EC素子100が金属OB1の析出および溶解によって光学状態を反射状態から透明状態に切替える際の動作方法について説明する。 Next, an operation method when the EC element 100 switches the optical state from the reflective state to the transparent state by depositing and melting the metal OB1 will be described.
 EC素子駆動回路500は、析出した金属OB1を再度溶解させるために核生成電圧の印加を停止する。これにより、金属OB1は溶解してイオン状態に戻ることができる。 The EC element drive circuit 500 stops applying the nucleation voltage in order to dissolve the deposited metal OB1 again. As a result, the metal OB1 can be dissolved and returned to the ionic state.
 EC素子100をより短時間で透明状態に切替える場合、EC素子駆動回路500は、逆の極性を有する電流が供給され、金属OB1の溶解を促進させるための核溶解電圧を印加する。具体的には、EC素子駆動回路500は、第1電極群110を高電位、かつ第2電極群210を低電位とする核溶解電圧をEC素子100に印加する。これにより、EC素子駆動回路500は、金属OB1が第2電極群210側に析出を開始し、第1電極群110側に析出した金属OB1をより短時間で溶解させることができる。 When the EC element 100 is switched to the transparent state in a shorter time, the EC element drive circuit 500 is supplied with a current having the opposite polarity and applies a nuclear dissolution voltage for promoting the dissolution of the metal OB1. Specifically, the EC element drive circuit 500 applies a nuclear dissolution voltage to the EC element 100 so that the first electrode group 110 has a high potential and the second electrode group 210 has a low potential. As a result, in the EC element drive circuit 500, the metal OB1 starts to precipitate on the second electrode group 210 side, and the metal OB1 deposited on the first electrode group 110 side can be dissolved in a shorter time.
 次に、図2を参照して、実施の形態1に係る調光装置1000の構造例について説明する。図2は、実施の形態1に係る調光装置1000の構造例を説明する図である。調光装置1000は、EC素子100と、EC素子駆動回路制御部400と、EC素子駆動回路500と、を含んで構成される。なお、図2に示すEC素子100は、複数の第1電極110a,110b,110c,…,110Nのそれぞれおよび複数の第2電極210a,210b,210c,…,210Nのそれぞれの配置の様子を分かりやすくするために、第1電極接続部112、第2電極接続部212、電解液EL1およびスペーサ300を図示していない。 Next, a structural example of the dimmer 1000 according to the first embodiment will be described with reference to FIG. FIG. 2 is a diagram illustrating a structural example of the dimmer 1000 according to the first embodiment. The dimmer 1000 includes an EC element 100, an EC element drive circuit control unit 400, and an EC element drive circuit 500. In the EC element 100 shown in FIG. 2, the arrangement of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N can be seen. For the sake of simplicity, the first electrode connecting portion 112, the second electrode connecting portion 212, the electrolytic solution EL1 and the spacer 300 are not shown.
 EC素子100は、複数の第1電極110a,110b,110c,…,110Nのそれぞれからなる第1電極群110と、複数の第2電極210a,210b,210c,…,210Nのそれぞれからなる第2電極群210と、電解液EL1と、スペーサ300と、によって構成される。EC素子100は、印加電圧に応じて第1電極群110および第2電極群210の複数の交差部(以下、表示画素)のそれぞれに金属OB1が析出して、金属薄膜を形成する。 The EC element 100 includes a first electrode group 110 composed of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N, and a second electrode group 110 composed of each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N. It is composed of an electrode group 210, an electrolytic solution EL1, and a spacer 300. In the EC element 100, the metal OB1 is deposited at each of the plurality of intersections (hereinafter, display pixels) of the first electrode group 110 and the second electrode group 210 according to the applied voltage to form a metal thin film.
 複数の第1電極110a,110b,110c,…,110Nのそれぞれと複数の第2電極210a,210b,210c,…,210Nのそれぞれとは、直交して配置される。なお、複数の第1電極110a,110b,110c,…,110Nのそれぞれ、および複数の第2電極210a,210b,210c,…,210Nのそれぞれは、上述した直交配置に限らず、例えば120°の角度を成して配置されてもよい。言い換えると、複数の表示画素のそれぞれに析出する金属OB1の形状は、正方形状に限らず、例えばひし形などの四角形であってもよい。 Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged orthogonally to each other. The plurality of first electrodes 110a, 110b, 110c, ..., 110N, and the plurality of second electrodes 210a, 210b, 210c, ..., 210N are not limited to the above-mentioned orthogonal arrangements, and are not limited to the above-mentioned orthogonal arrangements, for example, 120 °. They may be arranged at an angle. In other words, the shape of the metal OB1 deposited on each of the plurality of display pixels is not limited to a square shape, and may be a quadrangle such as a rhombus.
 EC素子駆動回路制御部400は、プロセッサ(不図示)とメモリ(不図示)とを備えて構成される。プロセッサは、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)またはFPGA(Field Programmable Gate Array)を用いて構成される。 The EC element drive circuit control unit 400 includes a processor (not shown) and a memory (not shown). The processor is configured by using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array).
 EC素子駆動回路制御部400のプロセッサ(不図示)は、メモリと協働して、各種の処理および制御を行う。具体的には、プロセッサは、メモリに保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、EC素子駆動回路制御部400の機能を実現する。例えば、プロセッサは、EC素子駆動回路500によってEC素子100が備える第1電極群110および第2電極群210のそれぞれに印加する電圧を変更するタイミングおよび印加電圧値などを制御するための制御信号をEC素子駆動回路500に出力する。プロセッサは、印加する電圧値を切替える制御の実行によりEC素子100が備える第1電極群110および第2電極群210のそれぞれに供給する電流の極性を周期的に変更する。プロセッサは、電流の極性を複数回変更する制御を実行し、第1電極群110のそれぞれと第2電極群210のそれぞれとが交差する領域のそれぞれのエッジ部分に電界が集中することをより抑制しながら金属OB1を析出させる。 The processor (not shown) of the EC element drive circuit control unit 400 performs various processes and controls in cooperation with the memory. Specifically, the processor refers to the program and data stored in the memory and executes the program to realize the function of the EC element drive circuit control unit 400. For example, the processor transmits a control signal for controlling the timing of changing the voltage applied to each of the first electrode group 110 and the second electrode group 210 included in the EC element 100 by the EC element drive circuit 500, the applied voltage value, and the like. Output to the EC element drive circuit 500. The processor periodically changes the polarity of the current supplied to each of the first electrode group 110 and the second electrode group 210 included in the EC element 100 by executing the control of switching the applied voltage value. The processor executes control to change the polarity of the current a plurality of times to further suppress the concentration of the electric field on each edge portion of the region where each of the first electrode group 110 and each of the second electrode group 210 intersects. While depositing the metal OB1.
 EC素子駆動回路制御部400のメモリ(不図示)は、例えばEC素子駆動回路制御部400の処理時に用いられるワークメモリとしてのRAM(Random Access Memory)と、EC素子駆動回路制御部400の動作を規定したプログラムおよびデータを格納するROM(Read Only Memory)とを有する。RAMには、プロセッサにより生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、EC素子駆動回路制御部400の動作(例えば、実施の形態1に係るEC素子駆動回路500により実行されるEC素子100の駆動方法)を規定するプログラムが書き込まれている。 The memory (not shown) of the EC element drive circuit control unit 400 operates, for example, a RAM (Random Access Memory) as a work memory used when processing the EC element drive circuit control unit 400 and the operation of the EC element drive circuit control unit 400. It has a ROM (Read Only Memory) for storing the specified program and data. Data or information generated or acquired by the processor is temporarily stored in the RAM. A program that defines the operation of the EC element drive circuit control unit 400 (for example, the method of driving the EC element 100 executed by the EC element drive circuit 500 according to the first embodiment) is written in the ROM.
 EC素子駆動回路500は、EC素子駆動回路制御部400から出力された制御信号に基づいて、第1電極接続部112を介して複数の第1電極110a,110b,110c,…,110Nのそれぞれに電圧を印加し、第2電極接続部212を介して複数の第2電極210a,210b,210c,…,210Nのそれぞれに電圧を印加する。 The EC element drive circuit 500 is connected to each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N via the first electrode connection unit 112 based on the control signal output from the EC element drive circuit control unit 400. A voltage is applied, and a voltage is applied to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N via the second electrode connecting portion 212.
 図3は、EC素子100の断面線を示す図である。以降に示す各図の説明において使用される断面図は、図3に示すB-B断面線における断面図である。 FIG. 3 is a diagram showing a cross-sectional line of the EC element 100. The cross-sectional view used in the description of each of the drawings shown below is a cross-sectional view taken along the line BB shown in FIG.
 B-B断面線は、第1電極110aの幅方向の中央位置において長手方向を切り口としたEC素子100の断面図である。B-B断面線によって示されるB-B断面は、第1電極群110を構成する複数の第1電極110a,110b,110c,…,110Nのそれぞれの幅方向の中央位置の断面図に等しい。 The BB cross-sectional line is a cross-sectional view of the EC element 100 with the longitudinal direction as the cut end at the center position in the width direction of the first electrode 110a. The BB cross section shown by the BB cross section is equal to the cross-sectional view of the center position in the width direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110.
 なお、上述した幅方向とは、複数の第1電極110a,110b,110c,…,110Nのそれぞれ、または複数の第2電極210a,210b,210c,…,210Nのそれぞれの並列配置される方向であり、矩形状に形成される複数の第1電極110a,110b,110c,…,110Nのそれぞれおよび複数の第2電極210a,210b,210c,…,210Nのそれぞれの電極の短手方向である。 The width direction described above is the direction in which the plurality of first electrodes 110a, 110b, 110c, ..., 110N are arranged in parallel, or the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged in parallel. Yes, it is the lateral direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N formed in a rectangular shape.
 また、図3に示すX方向は、EC素子100の第1電極群110における長手方向または第2電極群210における幅方向を示す。また図3に示すY方向は,EC素子100の第1電極群110における幅方向または第2電極群210における長手方向を示す。 Further, the X direction shown in FIG. 3 indicates the longitudinal direction in the first electrode group 110 of the EC element 100 or the width direction in the second electrode group 210. The Y direction shown in FIG. 3 indicates the width direction of the first electrode group 110 of the EC element 100 or the longitudinal direction of the second electrode group 210.
 次に、図4および図5を参照してEC素子100の構造例について説明する。図4はEC素子100の立体斜視図であり、図5はB-B断面におけるEC素子100の断面図である。 Next, a structural example of the EC element 100 will be described with reference to FIGS. 4 and 5. FIG. 4 is a three-dimensional perspective view of the EC element 100, and FIG. 5 is a cross-sectional view of the EC element 100 in the BB cross section.
 図4は、実施の形態1に係るEC素子100の構造例を説明する図である。図5は、B-B断面におけるEC素子100の構造例を説明する図である。図4に示すZ方向は、第1電極群110と第2電極群210とが対向する方向を示す。なお、図4では、説明を分かりやすくするためにEC素子100の立体斜視図の一部を用いて説明する。 FIG. 4 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment. FIG. 5 is a diagram illustrating a structural example of the EC element 100 in the BB cross section. The Z direction shown in FIG. 4 indicates a direction in which the first electrode group 110 and the second electrode group 210 face each other. In FIG. 4, a part of the three-dimensional perspective view of the EC element 100 will be used for easy explanation.
 第1電極群110を構成する複数の第1電極110a,110b,110c,…,110Nのそれぞれは、所定の空隙を有してY方向に並列に配置される。第1電極群110は、-X方向における端部に露出部を備える。第1電極群110は、露出部に第1電極接続部112が接続されて、EC素子駆動回路500によって電圧を印加される。なお、図4および図5において、第1電極接続部112は省略されている。 Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110 has a predetermined gap and is arranged in parallel in the Y direction. The first electrode group 110 includes an exposed portion at an end portion in the −X direction. In the first electrode group 110, the first electrode connecting portion 112 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500. In addition, in FIG. 4 and FIG. 5, the first electrode connection portion 112 is omitted.
 第1基板111は、第1電極群110において第2電極群210と対向する面と反対方向(以下、Z方向)の面に、第1電極群110を覆うように一体に設けられる。 The first substrate 111 is integrally provided on the surface of the first electrode group 110 in the direction opposite to the surface facing the second electrode group 210 (hereinafter, Z direction) so as to cover the first electrode group 110.
 第2電極群210を構成する複数の第2電極210a,210b,210c,…,210Nのそれぞれは、所定の空隙を有して第1電極群110と対向してX方向に並列に配置される。第2電極群210は、Y方向における端部に露出部を備える。第2電極群210は、露出部に第2電極接続部212が接続されて、EC素子駆動回路500によって電圧を印加される。なお、図4および図5において、第2電極接続部212は省略されている。 Each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N constituting the second electrode group 210 has a predetermined gap and is arranged in parallel in the X direction facing the first electrode group 110. .. The second electrode group 210 includes an exposed portion at an end portion in the Y direction. In the second electrode group 210, the second electrode connecting portion 212 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500. In addition, in FIG. 4 and FIG. 5, the second electrode connection portion 212 is omitted.
 第2基板211は、第2電極群210において第1電極群110と対向する方向と反対方向(以下、-Z方向)の面に、第2電極群210を覆うように一体に設けられる。 The second substrate 211 is integrally provided on the surface of the second electrode group 210 in the direction opposite to the direction facing the first electrode group 110 (hereinafter, -Z direction) so as to cover the second electrode group 210.
 スペーサ300は、第1電極群110一方の端部に備えられる露出部と第2電極群210一方の端部に備えられる露出部とを除いて、第1電極群110および第2電極群210の周縁に沿って、環状に設けられる。なお、図4においてはスペーサ300を省略している。 The spacer 300 is of the first electrode group 110 and the second electrode group 210, except for the exposed portion provided at one end of the first electrode group 110 and the exposed portion provided at one end of the second electrode group 210. It is provided in an annular shape along the peripheral edge. Note that the spacer 300 is omitted in FIG.
 電解液EL1は、第1電極群110、第2電極群210およびスペーサ300によって形成された空間内に備えられる。 The electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300.
 図6は、B-B断面におけるEC素子100の電界分布図EMである。図6は、金属OB1が析出可能な電圧を印加した際のB-B断面における第1基板111と第2基板211との間の電界強度を示す図である。なお、図6に示す複数の第2電極の数は3本であるが、これに限らないことは言うまでもない。 FIG. 6 is an electric field distribution diagram EM of the EC element 100 in the BB cross section. FIG. 6 is a diagram showing the electric field strength between the first substrate 111 and the second substrate 211 in the BB cross section when a voltage capable of depositing the metal OB1 is applied. The number of the plurality of second electrodes shown in FIG. 6 is 3, but it goes without saying that the number is not limited to this.
 図6に示す電界分布図EMにおいて、ポイントR1,R2,R3,R4,R5,R6,R7,R8のそれぞれは、電界が集中する部分を示す。 In the electric field distribution diagram EM shown in FIG. 6, each of the points R1, R2, R3, R4, R5, R6, R7, and R8 indicates a portion where the electric field is concentrated.
 ポイントR1,R2のそれぞれは、第1電極群110の長手方向における両端部に集中した電界を示す。ポイントR3,R4のそれぞれは、複数の第2電極210a,…,210Nのそれぞれのうち両端に設置され、かつ隣り合う電極が存在しない電極(例えば、第2電極210a,210N)の幅方向における両端部に集中した電界を示す。ポイントR5,R6,R7,R8のそれぞれは、複数の第2電極210a,…,210Nのそれぞれが有する端部と空隙との間に集中した電界を示す。また、ポイントR5,R6,R7,R8のそれぞれの電界は、複数の第2電極210a,…,210Nのそれぞれが設置される間の空隙が小さいため、ポイントR3,R4のそれぞれの電界と比較すると、電界が集中する範囲が小さい。 Each of the points R1 and R2 shows an electric field concentrated at both ends in the longitudinal direction of the first electrode group 110. Each of the points R3 and R4 is installed at both ends of the plurality of second electrodes 210a, ..., 210N, and both ends in the width direction of the electrodes having no adjacent electrodes (for example, the second electrodes 210a, 210N). Shows the electric field concentrated in the part. Each of the points R5, R6, R7, and R8 shows an electric field concentrated between the end and the void of each of the plurality of second electrodes 210a, ..., 210N. Further, since the electric fields of points R5, R6, R7, and R8 have small gaps between the installation of the plurality of second electrodes 210a, ..., 210N, they are compared with the electric fields of points R3 and R4. , The range where the electric field is concentrated is small.
 上述したポイントR1~R8のそれぞれに示す電界強度が高い部分は、第1電極群110および第2電極群210が交差する領域を超えて金属OB1が析出、あるいは領域内の一部に金属OB1が集中して析出することにより、表示ムラが発生する。また、ポイントR1~R8のそれぞれに示す電界強度が高い部分は、電界が集中しやすいため、金属OB1が析出または溶解するまでの時間が早い。また、これらのポイントR1~R8のそれぞれは、電界強度が強くより多くの金属OB1が析出するため、電圧の印加を停止した場合であってもEC素子100を透明状態に切替える際には多くの時間を要する。 In the portion where the electric field strength is high shown at each of the above-mentioned points R1 to R8, the metal OB1 is deposited beyond the region where the first electrode group 110 and the second electrode group 210 intersect, or the metal OB1 is partially formed in the region. Display unevenness occurs due to concentrated precipitation. Further, since the electric field is likely to be concentrated in the portion where the electric field strength is high shown at each of the points R1 to R8, the time until the metal OB1 is deposited or melted is short. Further, since each of these points R1 to R8 has a strong electric field strength and more metal OB1 is deposited, many metal OB1s are deposited when the EC element 100 is switched to the transparent state even when the application of the voltage is stopped. It takes time.
 このようなポイントR1~R8のそれぞれに示す電界強度を低減させ、領域内の一部に金属OB1が集中して析出することを抑制可能な電流・電圧の制御方法について、図7~図14を参照して説明する。 7 to 14 show a current / voltage control method capable of reducing the electric field strength shown at each of the points R1 to R8 and suppressing the concentration and precipitation of the metal OB1 in a part of the region. It will be explained with reference to.
<従来の電流・電圧の制御方法>
 まず、従来のEC素子における電流・電圧の制御方法について、図7を参照して説明する。図7は、従来の電流の制御方法による金属OB1の析出例を説明する図である。
<Conventional current / voltage control method>
First, a method of controlling current and voltage in a conventional EC element will be described with reference to FIG. 7. FIG. 7 is a diagram illustrating an example of precipitation of metal OB1 by a conventional current control method.
 従来のEC素子駆動回路は、金属OB1の結晶核を形成させるための核生成電圧を所定期間GP0に亘って印加して、EC素子100が備える第1電極群110および第2電極群210のいずれかに金属OB1を析出させる。EC素子駆動回路は、所定期間GP0に亘って核生成電圧を印加した後、形成された結晶核を成長させる(つまり、第1電極群110および第2電極群210が交差する領域に亘って金属OB1を析出させる)ための核成長電圧を印加し続ける。なお、核成長電圧の電圧値は、核生成電圧の電圧値よりも小さい。 In the conventional EC element drive circuit, a nucleation voltage for forming a crystal nucleus of the metal OB1 is applied over GP0 for a predetermined period, and either the first electrode group 110 or the second electrode group 210 included in the EC element 100 is applied. Crab metal OB1 is deposited. The EC element drive circuit applies a nucleation voltage over GP0 for a predetermined period of time, and then grows the formed crystal nuclei (that is, a metal over a region where the first electrode group 110 and the second electrode group 210 intersect. Continue to apply the nucleation voltage for depositing OB1). The voltage value of the nucleation voltage is smaller than the voltage value of the nucleation voltage.
 図7に示す従来の電圧の制御方法におけるEC素子駆動回路は、時間0(ゼロ)から時間S1(つまり、所定期間GP0)に亘って核生成電圧を印加し、時間S1から核成長電圧を印加する。これにより、EC素子100に供給される電流の電流波形CW0は、EC素子駆動回路により核生成電圧が印加される所定期間GP0の間に電流値が増加し、核生成電圧から核成長電圧への切り替えのタイミング(時間S1)でピークを有する。また、EC素子100に供給される電流は、核成長電圧が印加されると、核生成電圧よりも小さい核成長電圧に対応して電流値が降下する。核生成電圧に対応する電流値まで下がった後、以降この電流値を維持する。 In the EC element drive circuit in the conventional voltage control method shown in FIG. 7, a nucleation voltage is applied from time 0 (zero) to time S1 (that is, GP0 for a predetermined period), and a nucleation voltage is applied from time S1. do. As a result, the current waveform CW0 of the current supplied to the EC element 100 increases in current value during a predetermined period GP0 when the nucleation voltage is applied by the EC element drive circuit, and the current value changes from the nucleation voltage to the nucleation voltage. It has a peak at the switching timing (time S1). Further, when the nuclear growth voltage is applied, the current supplied to the EC element 100 drops in value corresponding to the nuclear growth voltage smaller than the nucleation voltage. After the current value drops to the value corresponding to the nucleation voltage, this current value is maintained thereafter.
 析出グラフPW0は、第1電極群110および第2電極群210が交差する領域に析出する金属OB1の析出量を示す。析出グラフPW0に示すように、金属OB1の析出量は時間経過とともに増加する。なお、図7では説明を簡単にするため、時間経過に比例して析出量が増加する析出グラフPW0の例を示すが、実際の析出量は領域に析出可能な最大析出量を漸近線とする2次曲線を描くように増加する。 The precipitation graph PW0 shows the amount of metal OB1 deposited in the region where the first electrode group 110 and the second electrode group 210 intersect. As shown in the precipitation graph PW0, the amount of metal OB1 deposited increases with the passage of time. Note that FIG. 7 shows an example of a precipitation graph PW0 in which the amount of precipitation increases in proportion to the passage of time for the sake of simplicity, but the actual amount of precipitation has the maximum amount of precipitation that can be deposited in the region as an asymptote. It increases to draw a quadratic curve.
 第1電極群110および第2電極群210が交差する複数の領域のそれぞれのうち第1電極110aと第2電極210Nとが交差する領域における金属OB1の析出の様子について説明する。時間S1における領域CC1は、結晶核が生成された直後の状態を示す。時間S2における領域CC2は、核生成電圧の印加が開始され、領域CC1よりも金属OB1の析出量が増加する。時間S3における領域CC3は、領域CC2よりも金属OB1の析出量がさらに増加する。時間S4における領域CC4は、領域CC3よりも金属OB1の析出量が増加するとともに、エッジ部分CC41(矩形状を有する領域CC4の紙面上側および右側)の電界強度が高くなって表示ムラが発生する。 The state of precipitation of the metal OB1 in the region where the first electrode 110a and the second electrode 210N intersect each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect will be described. The region CC1 at time S1 indicates the state immediately after the crystal nuclei are generated. In the region CC2 at time S2, the application of the nucleation voltage is started, and the amount of metal OB1 deposited increases as compared with the region CC1. In the region CC3 at time S3, the amount of metal OB1 deposited is further increased as compared with the region CC2. In the region CC4 at time S4, the amount of metal OB1 deposited increases as compared with the region CC3, and the electric field strength of the edge portion CC41 (the upper side and the right side of the paper surface of the rectangular region CC4) becomes higher, causing display unevenness.
<実施の形態1に係る電流・電圧の制御方法>
 次に、図8を参照して、実施の形態1に係るEC素子駆動回路500により実行される電流・電圧の制御方法について説明する。図8は、実施の形態1に係る電流・電圧の制御方法による金属OB1の析出例を説明する図である。
<Method of controlling current / voltage according to the first embodiment>
Next, with reference to FIG. 8, a current / voltage control method executed by the EC element drive circuit 500 according to the first embodiment will be described. FIG. 8 is a diagram illustrating an example of precipitation of metal OB1 by the current / voltage control method according to the first embodiment.
 まず、実施の形態1に係るEC素子駆動回路500による電圧の制御方法について説明する。実施の形態1に係るEC素子駆動回路500は、核生成電圧を所定期間GP1に亘って印加して、EC素子100が備える第1電極群110および第2電極群210のいずれかに金属OB1を析出させる。 First, a voltage control method by the EC element drive circuit 500 according to the first embodiment will be described. In the EC element drive circuit 500 according to the first embodiment, a nucleation voltage is applied over GP1 for a predetermined period, and the metal OB1 is applied to either the first electrode group 110 or the second electrode group 210 included in the EC element 100. Precipitate.
 EC素子駆動回路500は、所定期間GP1に亘って核生成電圧を印加した後、所定期間PP1に亘って核生成電圧よりも小さい電圧値を有する核成長電圧を印加する。 The EC element drive circuit 500 applies a nucleation voltage over a predetermined period of GP1 and then applies a nuclear growth voltage having a voltage value smaller than the nucleation voltage over a predetermined period of PP1.
 EC素子駆動回路500は、所定期間PP1に亘って核成長電圧を印加した後、所定期間MP1に亘って核溶解電圧を印加し、第1電極群110および第2電極群210が交差する領域に亘って析出した金属OB1を溶解させる。なお、核溶解電圧の電圧値は、核成長電圧の電圧値と比較して、EC素子100に流れる電流の極性を逆にする電圧値である。EC素子駆動回路500は、所定期間MP1に亘って核溶解電圧を印加した後、電圧値を所定の核成長電圧に切替え、所定期間PP1に亘って印加する。 The EC element drive circuit 500 applies a nuclear growth voltage over a predetermined period of PP1 and then applies a nuclear dissolution voltage over a predetermined period of MP1, in a region where the first electrode group 110 and the second electrode group 210 intersect. The metal OB1 precipitated over the entire surface is dissolved. The voltage value of the nuclear dissolution voltage is a voltage value that reverses the polarity of the current flowing through the EC element 100 as compared with the voltage value of the nuclear growth voltage. The EC element drive circuit 500 applies a nuclear dissolution voltage over a predetermined period of MP1, then switches the voltage value to a predetermined nuclear growth voltage, and applies the voltage over a predetermined period of PP1.
 EC素子駆動回路500は、一度核生成電圧を印加した後、上述した所定期間PP1に亘る核成長電圧の印加と所定期間MP1に亘る核溶解電圧の印加とを交互に(つまり周期的に)実行する。つまり、EC素子駆動回路500は、所定期間PP1に亘って核成長電圧を印加し、その後所定期間MP1に亘って核溶解電圧を印加する制御を1周期として繰り返し実行する。周期TP1の期間は、所定期間PP1と所定期間MP1との合算である。 After applying the nucleation voltage once, the EC element drive circuit 500 alternately (that is, periodically) executes the application of the nucleation voltage over the predetermined period PP1 and the application of the nuclear dissolution voltage over the predetermined period MP1. do. That is, the EC element drive circuit 500 repeatedly executes the control of applying the nuclear growth voltage over the predetermined period PP1 and then applying the nuclear dissolution voltage over the predetermined period MP1 as one cycle. The period of the cycle TP1 is the sum of the predetermined period PP1 and the predetermined period MP1.
 図8に示す実施の形態1に係る電圧の制御方法におけるEC素子駆動回路500は、時間0(ゼロ)から時間t11に亘って核生成電圧を印加し、時間t11から時間t12に亘って核成長電圧を印加し、時間t12から時間t13に亘って核溶解電圧を印加する。EC素子駆動回路500は、時間t13から時間t14に亘って核成長電圧を再度印加し、時間t14から時間t15に亘って核溶解電圧を再度印加し、時間t15から時間t16に亘って核成長電圧を再度印加する制御(つまり、核成長電圧と核溶解電圧とを交互に切替えて印加する制御)を実行する。なお、以降の時間におけるEC素子駆動回路500の制御を省略する。 In the EC element drive circuit 500 in the voltage control method according to the first embodiment shown in FIG. 8, a nuclear generation voltage is applied from time 0 (zero) to time t11, and nuclear growth occurs from time t11 to time t12. A voltage is applied and a nuclear dissolution voltage is applied from time t12 to time t13. The EC element drive circuit 500 reapplies the nuclear growth voltage from time t13 to time t14, reapplies the nuclear dissolution voltage from time t14 to time t15, and reapplies the nuclear growth voltage from time t15 to time t16. Is reapplied (that is, the control of alternately switching and applying the nuclear growth voltage and the nuclear dissolution voltage) is executed. The control of the EC element drive circuit 500 in the subsequent time is omitted.
 実施の形態1に係るEC素子駆動回路500は、第1電極群110および第2電極群210に印加する電圧値を制御し、印加される電圧値に基づいて、異なる極性を有する電流を供給する。電流波形CW1は、実施の形態1に係るEC素子100に流れる電流値の時間変化を示すグラフである。第1電極群110および第2電極群210に供給される電流は、印加される核成長電圧または核溶解電圧に基づいて、供給される電流の極性が変化する。以下、実施の形態1に係る第1電極群110および第2電極群210に供給される電流値の時間変化について説明する。 The EC element drive circuit 500 according to the first embodiment controls the voltage values applied to the first electrode group 110 and the second electrode group 210, and supplies currents having different polarities based on the applied voltage values. .. The current waveform CW1 is a graph showing the time change of the current value flowing through the EC element 100 according to the first embodiment. The polarity of the supplied current changes in the current supplied to the first electrode group 110 and the second electrode group 210 based on the applied nuclear growth voltage or karyolysis voltage. Hereinafter, the time change of the current value supplied to the first electrode group 110 and the second electrode group 210 according to the first embodiment will be described.
 まず、第1電極群110および第2電極群210に供給される電流は、EC素子駆動回路500による核生成電圧の印加が開始されると、第1電極群110および第2電極群210に印加される電圧値が設定された核生成電圧に到達したタイミング(時間t10)で電流値がピーク(核生成電流I10)となる。 First, the current supplied to the first electrode group 110 and the second electrode group 210 is applied to the first electrode group 110 and the second electrode group 210 when the application of the nuclear generation voltage by the EC element drive circuit 500 is started. The current value peaks (nuclear generation current I10) at the timing (time t10) when the voltage value to be adjusted reaches the set nuclear generation voltage.
 次に、時間t11でEC素子駆動回路500による核成長電圧の印加が開始されると、電流は、さらに減少し、第1電極群110および第2電極群210に印加される電圧値が設定された核成長電圧に到達したタイミング(時間t11)で核成長電流I11となる。電流は、時間t13でEC素子駆動回路500による核溶解電圧の印加が開始されると、極性が逆になり、第1電極群110および第2電極群210に印加される電圧値が設定された核溶解電圧に到達したタイミング(時間t14)で核溶解電流I12となる。 Next, when the application of the nuclear growth voltage by the EC element drive circuit 500 is started at time t11, the current is further reduced, and the voltage values applied to the first electrode group 110 and the second electrode group 210 are set. The nuclear growth current I11 is reached at the timing (time t11) when the nuclear growth voltage is reached. When the application of the nuclear dissolution voltage by the EC element drive circuit 500 was started at time t13, the polarities of the currents were reversed, and the voltage values applied to the first electrode group 110 and the second electrode group 210 were set. The nuclear dissolution current I12 is reached at the timing (time t14) when the nuclear dissolution voltage is reached.
 電流は、時間t15でEC素子駆動回路500による核成長電圧の印加が再度開始されると、第1電極群110および第2電極群210に印加される電圧値が設定された核成長電圧に到達したタイミング(時間t16)で再度核成長電流I11となる。電流は、時間t17でEC素子駆動回路500による核溶解電圧の印加が開始されると、極性が逆になり、EC素子100に印加される電圧値が設定された核溶解電圧に到達したタイミング(時間t18)で核溶解電流I12となる。 When the application of the nuclear growth voltage by the EC element drive circuit 500 is restarted at time t15, the current reaches the set nuclear growth voltage with the voltage values applied to the first electrode group 110 and the second electrode group 210. At the timing (time t16), the nuclear growth current I11 is reached again. When the application of the nuclear dissolution voltage by the EC element drive circuit 500 is started at time t17, the polarity of the current is reversed, and the timing at which the voltage value applied to the EC element 100 reaches the set nuclear dissolution voltage ( At time t18), the nuclear dissolution current I12 is reached.
 電流は、時間t19でEC素子駆動回路500による核成長電圧の印加が再度開始されると、第1電極群110および第2電極群210に印加される電圧値が設定された核成長電圧に到達したタイミング(時間t20)で再度核成長電流I11となる。電流は、時間t21でEC素子駆動回路500による核溶解電圧の印加が開始される。 When the application of the nuclear growth voltage by the EC element drive circuit 500 is restarted at time t19, the current reaches the set nuclear growth voltage with the voltage values applied to the first electrode group 110 and the second electrode group 210. At the timing (time t20), the nuclear growth current I11 is reached again. As for the current, the application of the nuclear dissolution voltage by the EC element drive circuit 500 is started at time t21.
 第1電極群110および第2電極群210が交差する領域に析出する金属OB1の析出量は、析出グラフPW1に示すように核生成した時間から時間経過とともに増加する。なお、図8では説明を簡単にするため、析出量が直線的に変化した析出グラフPW1を用いて説明する。 The amount of metal OB1 deposited in the region where the first electrode group 110 and the second electrode group 210 intersect increases with the passage of time from the time of nucleation as shown in the precipitation graph PW1. In FIG. 8, for the sake of simplicity, the precipitation graph PW1 in which the precipitation amount is linearly changed will be used for explanation.
 第1電極群110および第2電極群210が交差する複数の領域のそれぞれのうち第1電極110aと第2電極210Nとが交差する領域における金属OB1の析出の様子について説明する。時間t10における領域C1は、核生成電流I10が流れるタイミング(つまり、EC素子駆動回路500により印加される電圧値が設定された核生成電圧に到達したタイミング)において結晶核が生成された直後の状態を示す。時間t13における領域C2は、EC素子駆動回路500により核生成電流よりも小さい核成長電流が継続して第1電極群110および第2電極群210に供給されるため、領域C2よりも金属OB1の析出量が増加する。 The state of precipitation of the metal OB1 in the region where the first electrode 110a and the second electrode 210N intersect each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect will be described. The region C1 at time t10 is a state immediately after the crystal nuclei are generated at the timing when the nucleation current I10 flows (that is, the timing when the voltage value applied by the EC element drive circuit 500 reaches the set nucleation voltage). Is shown. In the region C2 at time t13, since the nucleation current smaller than the nucleation current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500, the metal OB1 is larger than the region C2. The amount of precipitation increases.
 一方、時間t15における領域C3は、時間t13からEC素子駆動回路500により核成長電流と極性が逆となる核溶解電流が継続して第1電極群110および第2電極群210に供給されるため、時間t13における領域C2の析出量よりも金属OB1の析出量が減少する。 On the other hand, in the region C3 at time t15, the nuclear dissolution current having a polarity opposite to that of the nuclear growth current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from time t13. , The precipitation amount of the metal OB1 is smaller than the precipitation amount of the region C2 at time t13.
 時間t17における領域C4は、時間t15からEC素子駆動回路500により核溶解電流と極性が逆となる核成長電流が継続して第1電極群110および第2電極群210に供給されるため、領域C3よりも金属OB1の析出量が増加する。 In the region C4 at the time t17, the nuclear growth current having a polarity opposite to that of the nuclear dissolution current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from the time t15. The amount of metal OB1 deposited is higher than that of C3.
 また、時間t19における領域C5は、時間t17からEC素子駆動回路500により核成長電流と極性が逆となる核溶解電流が継続して第1電極群110および第2電極群210に供給されるため、時間t17における領域C4の析出量よりも金属OB1の析出量が減少する。 Further, in the region C5 at time t19, the nuclear dissolution current having a polarity opposite to that of the nuclear growth current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from time t17. , The precipitation amount of the metal OB1 is smaller than the precipitation amount of the region C4 at time t17.
 時間t21における領域C6は、時間t19からEC素子駆動回路500により核溶解電流と極性が逆となる核成長電流が継続して第1電極群110および第2電極群210に供給されるため、領域C5よりも金属OB1の析出量が増加する。 In the region C6 at the time t21, the nuclear growth current having a polarity opposite to that of the nuclear dissolution current is continuously supplied to the first electrode group 110 and the second electrode group 210 by the EC element drive circuit 500 from the time t19. The amount of metal OB1 deposited is higher than that of C5.
 なお、実施の形態1に係るEC素子駆動回路500により印加される核生成電圧および核溶解電圧のそれぞれの電圧値と、核生成電流および核溶解電流のそれぞれの電流値とは、金属OB1が溶解する媒体の成分に基づく抵抗値、またはEC素子100内の電気回路の経路長などに基づく損失等を考慮して任意の核生成電圧および核溶解電圧のそれぞれの電圧値が設定される。 The metal OB1 is dissolved in the respective voltage values of the nuclear generation voltage and the nuclear dissolution voltage applied by the EC element drive circuit 500 according to the first embodiment and the respective current values of the nuclear generation current and the nuclear dissolution current. The respective voltage values of the nuclear generation voltage and the nuclear dissolution voltage are set in consideration of the resistance value based on the component of the medium to be used, the loss based on the path length of the electric circuit in the EC element 100, and the like.
 さらに、実施の形態1に係るEC素子駆動回路500により供給される核生成電流および核溶解電流のそれぞれは、核生成電圧の極性と核溶解電圧の極性とが同じ極性である例で説明するが、核生成電圧の極性と核溶解電圧の極性とを変えた電圧を印加することにより電流の極性を変化させてもよい。 Further, each of the nuclear generation current and the nuclear dissolution current supplied by the EC element drive circuit 500 according to the first embodiment will be described with an example in which the polarity of the nuclear generation voltage and the polarity of the nuclear dissolution voltage are the same. , The polarity of the current may be changed by applying a voltage in which the polarity of the nuclear generation voltage and the polarity of the nuclear dissolution voltage are changed.
 以上のように、実施の形態1に係るEC素子駆動回路500は、電圧値を核成長電圧と核溶解電圧との間で交互に切替えて第1電極群110および第2電極群210に供給される電流の極性を変化させる。これにより、EC素子100は、エッジ部分等に電界強度が集中することを抑制して電界集中に起因する表示ムラの発生を抑制できる。 As described above, the EC element drive circuit 500 according to the first embodiment alternately switches the voltage value between the nuclear growth voltage and the nuclear dissolution voltage and supplies the voltage value to the first electrode group 110 and the second electrode group 210. Change the polarity of the current. As a result, the EC element 100 can suppress the concentration of the electric field strength on the edge portion and the like, and can suppress the occurrence of display unevenness due to the electric field concentration.
 また、金属OB1は、電界強度が強いところほど析出または溶解しやすい。よって、実施の形態1に係るEC素子100は、エッジ部分などの部分的な領域に電界強度が集中する場合であっても、核成長電圧と核溶解電圧との間で交互に繰り返し切替えることで金属OB1が析出と溶解とを繰り返しながら徐々に析出する。したがって、EC素子100は、第1電極群110および第2電極群210が交差する各領域全体に均一に金属OB1を析出させることができる。 Further, the metal OB1 is more likely to be precipitated or dissolved as the electric field strength is stronger. Therefore, the EC element 100 according to the first embodiment alternately and repeatedly switches between the nuclear growth voltage and the nuclear dissolution voltage even when the electric field strength is concentrated in a partial region such as an edge portion. The metal OB1 gradually precipitates while repeating precipitation and dissolution. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
 次に、図9を参照して、実施の形態1に係るEC素子駆動回路500によって第1電極群110および第2電極群210に印加される電圧の電圧波形VW2および電流の電流波形CW2について説明する。図9は、実施の形態1に係るEC素子駆動回路500により印加される電圧波形VW2および電流波形CW2の計測結果の一例を示す図である。 Next, with reference to FIG. 9, the voltage waveform VW2 of the voltage applied to the first electrode group 110 and the second electrode group 210 and the current waveform CW2 of the current by the EC element drive circuit 500 according to the first embodiment will be described. do. FIG. 9 is a diagram showing an example of measurement results of the voltage waveform VW2 and the current waveform CW2 applied by the EC element drive circuit 500 according to the first embodiment.
 図8に示すように所定の周期で電流の極性を変化させる場合、EC素子駆動回路500は、第1電極群110および第2電極群210に印加する電圧の電圧値を所定の周期で変更する制御を実行する。図9に示す例において、EC素子駆動回路500は、約2Vの核生成電圧を印加時間0.04s(つまり、期間GP2=0.04s)間に亘って印加した後、印加時間0.1s(つまり、期間PP2=0.1s)間に亘って核成長電圧1.8Vと、印加時間0.025s(つまり、期間MP2=0.025s)間に亘って核成長電圧0.2Vと、を周期TP2=0.125sごとに交互に切替えて印加する。電圧波形VW2は、EC素子駆動回路500により印加された電圧の時間変化を示す。 When the polarity of the current is changed in a predetermined cycle as shown in FIG. 8, the EC element drive circuit 500 changes the voltage value of the voltage applied to the first electrode group 110 and the second electrode group 210 in a predetermined cycle. Take control. In the example shown in FIG. 9, the EC element drive circuit 500 applies a nuclear generation voltage of about 2 V for an application time of 0.04 s (that is, a period GP2 = 0.04 s), and then applies an application time of 0.1 s (that is, a period GP2 = 0.04 s). That is, the nuclear growth voltage is 1.8 V over the period PP2 = 0.1 s), and the nuclear growth voltage is 0.2 V over the application time of 0.025 s (that is, the period MP2 = 0.025 s). TP2 = 0.125 s is alternately switched and applied. The voltage waveform VW2 shows the time change of the voltage applied by the EC element drive circuit 500.
 また、EC素子駆動回路500により上述のような電圧が印加された場合、第1電極群110および第2電極群210に供給される電流の極性は、電流波形CW2に示すように印加される電圧値の変化により交互に変化する。具体的に、電流の極性は、核成長電圧が印加される期間PP2の間で正極となり、核溶解電圧が印加される期間MP2の間で負極となるように交互に変化する。 When the above voltage is applied by the EC element drive circuit 500, the polarity of the current supplied to the first electrode group 110 and the second electrode group 210 is the voltage applied as shown in the current waveform CW2. It changes alternately as the value changes. Specifically, the polarity of the current alternates so that it becomes a positive electrode during the period PP2 where the nuclear growth voltage is applied and becomes a negative electrode during the period MP2 where the karyolysis voltage is applied.
 これにより、第1電極群110および第2電極群210が交差する領域に析出する金属OB1の析出量は、図8に示す析出グラフPW1のように、核成長電圧が印加される期間(つまり、核成長電流が供給される期間)に金属OB1が析出し、核溶解電圧が印加される期間(つまり、核溶解電流が供給される期間)に析出した金属OB1が溶解する。また、このように電流の極性を交互に切替える電圧制御を実行することにより、EC素子駆動回路500は、第1電極群110および第2電極群210が交差する領域のうちエッジ部分などへの電界集中をより抑制できる。つまり、実施の形態1に係るEC素子駆動回路500は、電極のエッジ部の電界をより抑制して表示ムラを低減し、高品位な表示を実現できる。また、EC素子100は、エッジ部分などの部分的な領域に電界強度が集中する場合であっても、核成長電圧と核溶解電圧との間で交互に繰り返し切替えることで金属OB1が析出と溶解とを繰り返しながら徐々に析出する。したがって、EC素子100は、第1電極群110および第2電極群210が交差する各領域全体に均一に金属OB1を析出させることができる。 As a result, the amount of metal OB1 deposited in the region where the first electrode group 110 and the second electrode group 210 intersect is the period during which the nuclear growth voltage is applied (that is, as shown in the precipitation graph PW1 shown in FIG. 8). The metal OB1 is precipitated during the period (the period during which the nuclear growth current is supplied), and the precipitated metal OB1 is dissolved during the period during which the nuclear dissolution voltage is applied (that is, the period during which the nuclear dissolution current is supplied). Further, by executing the voltage control for alternately switching the polarity of the current in this way, the EC element drive circuit 500 causes the electric field in the edge portion of the region where the first electrode group 110 and the second electrode group 210 intersect. Concentration can be suppressed more. That is, the EC element drive circuit 500 according to the first embodiment can further suppress the electric field at the edge portion of the electrode to reduce display unevenness and realize high-quality display. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
 次に、図10を参照して、実施の形態1に係るEC素子駆動回路500によって印加される核成長電圧と核溶解電圧との印加時間の比率について説明する。図10は、核成長電流および核溶解電流の供給時間の変化による表示ムラの発生に関する実験結果の一例を示す図である。図10では、核成長電流の供給時間を100msに設定して、核溶解電流の供給時間を変化させた場合における表示ムラの発生の有無について実験した結果である。 Next, with reference to FIG. 10, the ratio of the application time to the nuclear growth voltage and the nuclear dissolution voltage applied by the EC element drive circuit 500 according to the first embodiment will be described. FIG. 10 is a diagram showing an example of experimental results regarding the occurrence of display unevenness due to changes in the supply times of the nuclear growth current and the nuclear dissolution current. FIG. 10 shows the results of an experiment on the presence or absence of display unevenness when the supply time of the nuclear growth current was set to 100 ms and the supply time of the nuclear dissolution current was changed.
 核成長電流の供給時間を100ms、核溶解電流の供給時間を0(ゼロ)msに設定した場合、第1電極群110および第2電極群210が交差する複数の領域のそれぞれには、第1電極群110および第2電極群210が交差する複数の領域のそれぞれのエッジ部分などに電界が集中し、図7に示す従来の電流・電圧の制御方法と同様にエッジ部分などに金属OB1が過剰に析出するため、表示ムラが発生する。 When the supply time of the nuclear growth current is set to 100 ms and the supply time of the nuclear dissolution current is set to 0 (zero) ms, the first electrode group 110 and the second electrode group 210 intersect each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect. The electric field is concentrated on the edge portions of the plurality of regions where the electrode group 110 and the second electrode group 210 intersect, and the metal OB1 is excessive on the edge portions and the like as in the conventional current / voltage control method shown in FIG. Since it is deposited on the surface, display unevenness occurs.
 核成長電流の供給時間を100ms、核溶解電流の供給時間を5ms(つまり、供給時間の比率が核成長電流:核溶解電流=20:1)に設定した場合の表示ムラの有無について説明する。第1電極群110および第2電極群210が交差する複数の領域のそれぞれには、第1電極群110および第2電極群210が交差する複数の領域のそれぞれのエッジ部分などに電界が集中し、このエッジ部分などに金属OB1が過剰に析出して表示ムラが発生する。 The presence or absence of display unevenness when the supply time of the nuclear growth current is set to 100 ms and the supply time of the nuclear dissolution current is set to 5 ms (that is, the ratio of the supply time is the nuclear growth current: the nuclear dissolution current = 20: 1) will be described. In each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect, the electric field is concentrated on the edge portions of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect. , Metal OB1 is excessively deposited on the edge portion and the like, and display unevenness occurs.
 核成長電流の供給時間を100ms、核溶解電流の供給時間を10ms(つまり、供給時間の比率が核成長電流:核溶解電流=10:1)に設定した場合の表示ムラの有無について説明する。第1電極群110および第2電極群210が交差する複数の領域のそれぞれには、第1電極群110および第2電極群210が交差する複数の領域のそれぞれのエッジ部分などに電界が集中し、このエッジ部分などに金属OB1が多めに析出して軽微な表示ムラが発生する。 The presence or absence of display unevenness when the supply time of the nuclear growth current is set to 100 ms and the supply time of the nuclear dissolution current is set to 10 ms (that is, the ratio of the supply time is set to nuclear growth current: nuclear dissolution current = 10: 1) will be described. In each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect, the electric field is concentrated on the edge portions of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect. , A large amount of metal OB1 is deposited on the edge portion and the like, and slight display unevenness occurs.
 核成長電流の供給時間を100ms、核溶解電流の供給時間を25ms(つまり、供給時間の比率が核成長電流:核溶解電流=4:1)に設定した場合の表示ムラの有無について説明する。第1電極群110および第2電極群210が交差する複数の領域のそれぞれには、第1電極群110および第2電極群210が交差する複数の領域のそれぞれのエッジ部分などに電界が集中しなくなり、表示ムラが発生しない。 Explain the presence or absence of display unevenness when the supply time of the nuclear growth current is set to 100 ms and the supply time of the nuclear dissolution current is set to 25 ms (that is, the ratio of the supply time is set to nuclear growth current: nuclear dissolution current = 4: 1). In each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect, the electric field is concentrated on the edge portions of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect. It disappears and display unevenness does not occur.
 核成長電流の供給時間を100ms、核溶解電流の供給時間を50ms(つまり、供給時間の比率が核成長電流:核溶解電流=2:1)に設定した場合の表示ムラの有無について説明する。第1電極群110および第2電極群210が交差する複数の領域のそれぞれには、第1電極群110および第2電極群210が交差する複数の領域のそれぞれのエッジ部分などに電界が集中しなくなり、表示ムラが発生しない。一方、核溶解電流の供給時間に伴って溶解する金属OB1の溶解量と、再度供給される核成長電流の供給時間に伴って再度析出する金属OB1の再析出量との差分が大きくなるため、第1電極群110および第2電極群210が交差する複数の領域のそれぞれには、表示が点滅するようなちらつきが発生する。 The presence or absence of display unevenness when the supply time of the nuclear growth current is set to 100 ms and the supply time of the nuclear dissolution current is set to 50 ms (that is, the ratio of the supply time is set to nuclear growth current: nuclear dissolution current = 2: 1) will be described. In each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect, the electric field is concentrated on the edge portions of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect. It disappears and display unevenness does not occur. On the other hand, the difference between the dissolution amount of the metal OB1 that dissolves with the supply time of the nuclear dissolution current and the reprecipitation amount of the metal OB1 that reprecipitates with the supply time of the re-supplied nuclear growth current becomes large. In each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect, flicker such that the display blinks occurs.
 核成長電流の供給時間を100ms、核溶解電流の供給時間を100ms(つまり、供給時間の比率が核成長電流:核溶解電流=1:1)に設定した場合の表示ムラの有無について説明する。第1電極群110および第2電極群210が交差する複数の領域のそれぞれには、核溶解電流の供給時間に伴って溶解する金属OB1の溶解量と、再度供給される核成長電流の供給時間に伴って再度析出する金属OB1の再析出量とが略同量となり、析出した金属OB1の維持が困難となる。 The presence or absence of display unevenness when the supply time of the nuclear growth current is set to 100 ms and the supply time of the nuclear dissolution current is set to 100 ms (that is, the ratio of the supply time is set to nuclear growth current: nuclear dissolution current = 1: 1) will be described. In each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect, the dissolution amount of the metal OB1 that dissolves with the supply time of the nuclear dissolution current and the supply time of the nuclear growth current to be supplied again As a result, the amount of reprecipitation of the metal OB1 reprecipitated becomes substantially the same, and it becomes difficult to maintain the deposited metal OB1.
 図11を参照して、核成長電流の供給時間:核溶解電流の供給時間=5:1の比率に対応する核成長電圧および核溶解電圧の印加時間を設定した場合の電圧波形VW3と、第1電極群110および第2電極群210が交差する複数の領域のそれぞれに析出する金属OB1の析出量の変化とを説明する。図11は、核成長電圧:核溶解電圧=5:1における金属析出量の変化例を説明する図である。なお、図11では、核生成電圧の印加後の核成長電圧および核溶解電圧の電圧波形VW3を示し、核生成電圧の印加前および印加時については説明を省略する。 With reference to FIG. 11, the voltage waveform VW3 when the application time of the nuclear growth voltage and the nuclear dissolution voltage corresponding to the ratio of the supply time of the nuclear growth current: the supply time of the nuclear dissolution current = 5: 1 is set, and the first The change in the amount of metal OB1 deposited in each of the plurality of regions where the one electrode group 110 and the second electrode group 210 intersect will be described. FIG. 11 is a diagram illustrating an example of a change in the amount of metal precipitation at a nuclear growth voltage: a nuclear dissolution voltage = 5: 1. Note that FIG. 11 shows the voltage waveform VW3 of the nucleation voltage and the nuclear dissolution voltage after the application of the nucleation voltage, and the description will be omitted before and during the application of the nucleation voltage.
 電圧波形VW3は、EC素子駆動回路500により印加された電圧の時間変化を示す。図11に示すEC素子駆動回路500は、所定期間PP3に亘って核成長電圧V31を印加した後、所定期間MP3に亘って核溶解電圧V32を印加する制御を繰り返し実行する。なお、周期TP3の長さは、所定期間PP3と所定期間MP3との合算であり、所定期間PP3:所定期間MP3=5:1である。 The voltage waveform VW3 shows the time change of the voltage applied by the EC element drive circuit 500. The EC element drive circuit 500 shown in FIG. 11 repeatedly executes control of applying the nuclear growth voltage V31 over a predetermined period PP3 and then applying the nuclear dissolution voltage V32 over a predetermined period MP3. The length of the cycle TP3 is the sum of the predetermined period PP3 and the predetermined period MP3, and the predetermined period PP3: the predetermined period MP3 = 5: 1.
 析出グラフPW3は、核成長電圧V31と核溶解電圧V32とを5:1の印加時間の比率で印加する場合における第1電極群110と第2電極群210とが交差する領域のそれぞれに析出する金属OB1の析出量の変化を示す。金属OB1は、核成長電圧V31が印加されている間(つまり、所定期間PP3)に亘って析出量が増加し、核溶解電圧V32が印加されている間(つまり、所定期間MP3)に亘って析出量が減少する。金属OB1の析出量は、核成長電圧の印加制御および核溶解電圧の印加制御を含む制御(つまり周期TP3)を繰り返すごとに増加する。 The precipitation graph PW3 precipitates in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V31 and the nuclear dissolution voltage V32 are applied at a ratio of application time of 5: 1. The change in the precipitation amount of the metal OB1 is shown. The amount of the metal OB1 deposited increases while the nuclear growth voltage V31 is applied (that is, PP3 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V32 is applied (that is, MP3 for a predetermined period). The amount of precipitation decreases. The amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP3) is repeated.
 上述のように、核成長電圧V31と核溶解電圧V32との印加時間の比率を5:1に設定した場合、EC素子100は、金属OB1の析出と溶解とを繰り返させることで、エッジ部分などへの電界強度の集中をより抑制し、表示ムラの発生を抑制できる。また、EC素子100は、エッジ部分などの部分的な領域に電界強度が集中する場合であっても、核成長電圧と核溶解電圧との間で交互に繰り返し切替えることで金属OB1が析出と溶解とを繰り返しながら徐々に析出する。したがって、EC素子100は、第1電極群110および第2電極群210が交差する各領域全体に均一に金属OB1を析出させることができる。 As described above, when the ratio of the application time of the nuclear growth voltage V31 and the nuclear dissolution voltage V32 is set to 5: 1, the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge portion or the like. It is possible to further suppress the concentration of the electric field strength on the surface and suppress the occurrence of display unevenness. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
 図12を参照して、供給時間の比率が核成長電流:核溶解電流=4:1に対応する核成長電圧および核溶解電圧の印加時間を設定した場合の電圧波形VW4と、第1電極群110および第2電極群210が交差する複数の領域のそれぞれに析出する金属OB1の析出量の変化とを説明する。図12は、核成長電圧:核溶解電圧=4:1における金属析出量の変化例を説明する図である。なお、図12では、核生成電圧の印加後の核成長電圧および核溶解電圧の電圧波形VW4を示し、核生成電圧の印加前および印加時については説明を省略する。 With reference to FIG. 12, the voltage waveform VW4 when the application time of the nuclear growth voltage and the nuclear dissolution voltage corresponding to the supply time ratio of nuclear growth current: nuclear dissolution current = 4: 1 is set, and the first electrode group. A change in the amount of metal OB1 deposited in each of the plurality of regions where 110 and the second electrode group 210 intersect will be described. FIG. 12 is a diagram illustrating an example of a change in the amount of metal precipitation at a nuclear growth voltage: a nuclear dissolution voltage = 4: 1. Note that FIG. 12 shows the voltage waveform VW4 of the nucleation voltage and the nuclear dissolution voltage after the application of the nucleation voltage, and the description will be omitted before and during the application of the nucleation voltage.
 電圧波形VW4は、EC素子駆動回路500により印加された電圧の時間変化を示す。図12に示すEC素子駆動回路500は、所定期間PP4に亘って核成長電圧V41を印加した後、所定期間MP4に亘って核溶解電圧V42を印加する制御を繰り返し実行する。なお、周期TP4の長さは、所定期間PP4と所定期間MP4との合算であり、所定期間PP4:所定期間MP4=4:1である。 The voltage waveform VW4 indicates the time change of the voltage applied by the EC element drive circuit 500. The EC element drive circuit 500 shown in FIG. 12 repeatedly executes control of applying the nuclear growth voltage V41 over a predetermined period PP4 and then applying the nuclear dissolution voltage V42 over a predetermined period MP4. The length of the cycle TP4 is the sum of the predetermined period PP4 and the predetermined period MP4, and the predetermined period PP4: the predetermined period MP4 = 4: 1.
 析出グラフPW4は、核成長電圧V41と核溶解電圧V42とを4:1の印加時間の比率で印加する場合における第1電極群110と第2電極群210とが交差する領域のそれぞれに析出する金属OB1の析出量の変化を示す。金属OB1は、核成長電圧V41が印加されている間(つまり、所定期間PP4)に亘って析出量が増加し、核溶解電圧V42が印加されている間(つまり、所定期間MP4)に亘って析出量が減少する。金属OB1の析出量は、核成長電圧の印加制御および核溶解電圧の印加制御を含む制御(つまり周期TP4)を繰り返すごとに増加する。 The precipitation graph PW4 precipitates in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V41 and the nuclear dissolution voltage V42 are applied at a ratio of the application time of 4: 1. The change in the precipitation amount of the metal OB1 is shown. The amount of the metal OB1 deposited increases while the nuclear growth voltage V41 is applied (that is, PP4 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V42 is applied (that is, MP4 for a predetermined period). The amount of precipitation decreases. The amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP4) is repeated.
 上述のように、核成長電圧V41と核溶解電圧V42との印加時間の比率を4:1に設定した場合、EC素子100は、金属OB1の析出と溶解とを繰り返させることで、エッジ部分などへの電界強度の集中をより抑制し、表示ムラの発生を抑制できる。また、EC素子100は、エッジ部分などの部分的な領域に電界強度が集中する場合であっても、核成長電圧と核溶解電圧との間で交互に切替えることで電界強度が集中する領域における金属OB1の過剰析出と過剰溶解とを繰り返して、第1電極群110および第2電極群210が交差する複数の領域のそれぞれの全体に金属OB1を均一に析出させることができる。 As described above, when the ratio of the application time of the nuclear growth voltage V41 and the nuclear dissolution voltage V42 is set to 4: 1, the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge portion or the like. It is possible to further suppress the concentration of the electric field strength on the surface and suppress the occurrence of display unevenness. Further, even when the electric field strength is concentrated in a partial region such as an edge portion, the EC element 100 is in a region where the electric field strength is concentrated by alternately switching between the nuclear growth voltage and the nuclear dissolution voltage. By repeating excessive precipitation and excessive dissolution of the metal OB1, the metal OB1 can be uniformly deposited over each of the plurality of regions where the first electrode group 110 and the second electrode group 210 intersect.
 図13を参照して、供給時間の比率が核成長電流:核溶解電流=3.5:1に対応する核成長電圧および核溶解電圧の印加時間を設定した場合の電圧波形VW5と、第1電極群110および第2電極群210が交差する複数の領域のそれぞれに析出する金属OB1の析出量の変化とを説明する。図13は、核成長電圧:核溶解電圧=3.5:1における金属析出量の変化例を説明する図である。なお、図13では、核生成電圧の印加後の核成長電圧および核溶解電圧の電圧波形VW5を示し、核生成電圧の印加前および印加時については説明を省略する。 With reference to FIG. 13, the voltage waveform VW5 when the application time of the nuclear growth voltage and the nuclear dissolution voltage corresponding to the supply time ratio of nuclear growth current: nuclear dissolution current = 3.5: 1 is set, and the first The change in the amount of metal OB1 deposited in each of the plurality of regions where the electrode group 110 and the second electrode group 210 intersect will be described. FIG. 13 is a diagram illustrating an example of a change in the amount of metal precipitation at a nuclear growth voltage: a nuclear dissolution voltage = 3.5: 1. Note that FIG. 13 shows the voltage waveform VW5 of the nucleation voltage and the nuclear dissolution voltage after the application of the nucleation voltage, and the description will be omitted before and during the application of the nucleation voltage.
 電圧波形VW5は、EC素子駆動回路500により印加された電圧の時間変化を示す。図13に示すEC素子駆動回路500は、所定期間PP5に亘って核成長電圧V51を印加した後、所定期間MP5に亘って核溶解電圧V52を印加する制御を繰り返し実行する。なお、周期TP5の長さは、所定期間PP5と所定期間MP5との合算であり、所定期間PP5:所定期間MP5=3.5:1である。 The voltage waveform VW5 indicates the time change of the voltage applied by the EC element drive circuit 500. The EC element drive circuit 500 shown in FIG. 13 repeatedly executes control of applying the nuclear growth voltage V51 over a predetermined period PP5 and then applying the nuclear dissolution voltage V52 over a predetermined period MP5. The length of the cycle TP5 is the sum of the predetermined period PP5 and the predetermined period MP5, and the predetermined period PP5: the predetermined period MP5 = 3.5: 1.
 析出グラフPW5は、核成長電圧V51と核溶解電圧V52とを3.5:1の印加時間の比率で印加する場合における第1電極群110と第2電極群210とが交差する領域のそれぞれに析出する金属OB1の析出量の変化を示す。金属OB1は、核成長電圧V51が印加されている間(つまり、所定期間PP5)に亘って析出量が増加し、核溶解電圧V52が印加されている間(つまり、所定期間MP5)に亘って析出量が減少する。金属OB1の析出量は、核成長電圧の印加制御および核溶解電圧の印加制御を含む制御(つまり周期TP5)を繰り返すごとに増加する。 The precipitation graph PW5 is shown in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V51 and the nuclear dissolution voltage V52 are applied at a ratio of application time of 3.5: 1. The change in the precipitation amount of the deposited metal OB1 is shown. The amount of the metal OB1 deposited increases while the nuclear growth voltage V51 is applied (that is, PP5 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V52 is applied (that is, MP5 for a predetermined period). The amount of precipitation decreases. The amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP5) is repeated.
 上述のように、核成長電圧V51と核溶解電圧V52との印加時間の比率を3.5:1に設定した場合、EC素子100は、金属OB1の析出と溶解とを繰り返させることで、エッジ部分などへの電界強度の集中をより抑制し、表示ムラの発生を抑制できる。また、EC素子100は、エッジ部分などの部分的な領域に電界強度が集中する場合であっても、核成長電圧と核溶解電圧との間で交互に繰り返し切替えることで金属OB1が析出と溶解とを繰り返しながら徐々に析出する。したがって、EC素子100は、第1電極群110および第2電極群210が交差する各領域全体に均一に金属OB1を析出させることができる。 As described above, when the ratio of the application time of the nuclear growth voltage V51 and the nuclear dissolution voltage V52 is set to 3.5: 1, the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge. It is possible to further suppress the concentration of the electric field strength on the portion and the like, and suppress the occurrence of display unevenness. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
 図14を参照して、供給時間の比率が核成長電流:核溶解電流=2:1に対応する核成長電圧および核溶解電圧の印加時間を設定した場合の電圧波形VW6と、第1電極群110および第2電極群210が交差する複数の領域のそれぞれに析出する金属OB1の析出量の変化とを説明する。図14は、核成長電圧:核溶解電圧=2:1における金属析出量の変化例を説明する図である。なお、図14では、核生成電圧の印加後の核成長電圧および核溶解電圧の電圧波形VW6を示し、核生成電圧の印加前および印加時については説明を省略する。 With reference to FIG. 14, the voltage waveform VW6 when the application time of the nuclear growth voltage and the nuclear dissolution voltage corresponding to the supply time ratio of nuclear growth current: nuclear dissolution current = 2: 1 is set, and the first electrode group. A change in the amount of metal OB1 deposited in each of the plurality of regions where 110 and the second electrode group 210 intersect will be described. FIG. 14 is a diagram illustrating an example of a change in the amount of metal precipitation at a nuclear growth voltage: a nuclear dissolution voltage = 2: 1. Note that FIG. 14 shows the voltage waveform VW6 of the nucleation voltage and the nuclear dissolution voltage after the application of the nucleation voltage, and the description will be omitted before and during the application of the nucleation voltage.
 電圧波形VW6は、EC素子駆動回路500により印加された電圧の時間変化を示す。図14に示すEC素子駆動回路500は、所定期間PP6に亘って核成長電圧V61を印加した後、所定期間MP6に亘って核溶解電圧V62を印加する制御を繰り返し実行する。なお、周期TP6の長さは、所定期間PP6と所定期間MP6との合算であり、所定期間PP6:所定期間MP6=2:1である。 The voltage waveform VW6 indicates the time change of the voltage applied by the EC element drive circuit 500. The EC element drive circuit 500 shown in FIG. 14 repeatedly executes control of applying the nuclear growth voltage V61 over a predetermined period of PP6 and then applying the nuclear dissolution voltage V62 over a predetermined period of MP6. The length of the cycle TP6 is the sum of the predetermined period PP6 and the predetermined period MP6, and the predetermined period PP6: the predetermined period MP6 = 2: 1.
 析出グラフPW6は、核成長電圧V61と核溶解電圧V62とを2:1の印加時間の比率で印加する場合における第1電極群110と第2電極群210とが交差する領域のそれぞれに析出する金属OB1の析出量の変化を示す。金属OB1は、核成長電圧V61が印加されている間(つまり、所定期間PP6)に亘って析出量が増加し、核溶解電圧V62が印加されている間(つまり、所定期間MP6)に亘って析出量が減少する。金属OB1の析出量は、核成長電圧の印加制御および核溶解電圧の印加制御を含む制御(つまり周期TP6)を繰り返すごとに増加する。 The precipitation graph PW6 precipitates in each of the regions where the first electrode group 110 and the second electrode group 210 intersect when the nuclear growth voltage V61 and the nuclear dissolution voltage V62 are applied at a ratio of the application time of 2: 1. The change in the precipitation amount of the metal OB1 is shown. The amount of the metal OB1 deposited increases while the nuclear growth voltage V61 is applied (that is, PP6 for a predetermined period), and the precipitation amount of the metal OB1 increases while the nuclear dissolution voltage V62 is applied (that is, MP6 for a predetermined period). The amount of precipitation decreases. The amount of metal OB1 deposited increases each time the control including the application control of the nuclear growth voltage and the application control of the nuclear dissolution voltage (that is, the period TP6) is repeated.
 上述のように、核成長電圧V61と核溶解電圧V62との印加時間の比率を2:1に設定した場合、EC素子100は、金属OB1の析出と溶解とを繰り返させることで、エッジ部分などへの電界強度の集中をより抑制し、表示ムラの発生を抑制できる。また、EC素子100は、エッジ部分などの部分的な領域に電界強度が集中する場合であっても、核成長電圧と核溶解電圧との間で交互に繰り返し切替えることで金属OB1が析出と溶解とを繰り返しながら徐々に析出する。したがって、EC素子100は、第1電極群110および第2電極群210が交差する各領域全体に均一に金属OB1を析出させることができる。 As described above, when the ratio of the application time of the nuclear growth voltage V61 and the nuclear dissolution voltage V62 is set to 2: 1, the EC element 100 repeats the precipitation and dissolution of the metal OB1 to form an edge portion or the like. It is possible to further suppress the concentration of the electric field strength on the surface and suppress the occurrence of display unevenness. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
 以上により、実施の形態1に係るEC素子100は、透光性を有し、並列に配置された複数の第1電極110a,…,110Nと、複数の第1電極110a,…,110Nのそれぞれと対向して並列に配置された複数の第2電極210a,…,210Nと、複数の第1電極110a,…,110Nと複数の第2電極210a,…,210Nとの間に配置された、金属OB1を含む電解液EL1と、電解液EL1に電圧を印加するEC素子駆動回路500と、を備える。EC素子駆動回路500は、電解液EL1に印加される電圧に基づく電流の極性を交互に切り替えて、複数の第1電極110a,…,110Nおよび複数の第2電極210a,…,210Nのいずれか一方に金属OB1を析出または溶解させる。 As described above, the EC element 100 according to the first embodiment has translucency and has a plurality of first electrodes 110a, ..., 110N arranged in parallel and a plurality of first electrodes 110a, ..., 110N, respectively. A plurality of second electrodes 210a, ..., 210N arranged in parallel facing each other, a plurality of first electrodes 110a, ..., 110N and a plurality of second electrodes 210a, ..., 210N. The electrolytic solution EL1 containing the metal OB1 and the EC element drive circuit 500 for applying a voltage to the electrolytic solution EL1 are provided. The EC element drive circuit 500 alternately switches the polarity of the current based on the voltage applied to the electrolytic solution EL1, and one of a plurality of first electrodes 110a, ..., 110N and a plurality of second electrodes 210a, ..., 210N. Metal OB1 is precipitated or dissolved on one side.
 これにより、実施の形態1に係るEC素子100は、EC素子駆動回路500により、第1電極群110および第2電極群210が交差する領域のうちエッジ部分などへの電界集中をより抑制できるとともに、金属OB1を徐々に析出させて、領域内により均等な厚みを有する金属薄膜を形成できる。したがって、EC素子100は、表示ムラをより低減し、高品位な表示を実現できる。また、EC素子100は、エッジ部分などの部分的な領域に電界強度が集中する場合であっても、核成長電圧と核溶解電圧との間で交互に繰り返し切替えることで金属OB1が析出と溶解とを繰り返しながら徐々に析出する。したがって、EC素子100は、第1電極群110および第2電極群210が交差する各領域全体に均一に金属OB1を析出させることができる。 As a result, in the EC element 100 according to the first embodiment, the EC element drive circuit 500 can further suppress the electric field concentration on the edge portion of the region where the first electrode group 110 and the second electrode group 210 intersect. , The metal OB1 can be gradually precipitated to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display. Further, in the EC element 100, even when the electric field strength is concentrated in a partial region such as an edge portion, the metal OB1 is deposited and dissolved by alternately and repeatedly switching between the nuclear growth voltage and the nuclear dissolution voltage. Gradually precipitates while repeating. Therefore, the EC element 100 can uniformly deposit the metal OB1 over the entire region where the first electrode group 110 and the second electrode group 210 intersect.
 以上により、実施の形態1に係るEC素子100におけるEC素子駆動回路500は、金属OB1を析出させる核生成電圧または核成長電圧(第1の電圧の一例)と金属OB1を溶解させる核溶解電圧(第2の電圧の一例)とを切り替えて印加する。これにより、実施の形態1に係るEC素子100は、核溶解電圧(つまり、核溶解電流)が印加される期間に第1電極群110および第2電極群210が交差する領域のうちエッジ部分などへ集中した電界値を低減できる。つまり、実施の形態1に係るEC素子駆動回路500は、電極のエッジ部への電界集中をより抑制して表示ムラを低減し、高品位な表示を実現できる。 As described above, the EC element drive circuit 500 in the EC element 100 according to the first embodiment has a nuclear generation voltage or a nuclear growth voltage (an example of a first voltage) for precipitating the metal OB1 and a nuclear dissolution voltage for melting the metal OB1 (an example of the first voltage). An example of the second voltage) is switched and applied. As a result, the EC element 100 according to the first embodiment has an edge portion in the region where the first electrode group 110 and the second electrode group 210 intersect during the period in which the nuclear dissolution voltage (that is, the nuclear dissolution current) is applied. The electric field value concentrated on can be reduced. That is, the EC element drive circuit 500 according to the first embodiment can further suppress the electric field concentration on the edge portion of the electrode, reduce the display unevenness, and realize a high-quality display.
 以上により、実施の形態1に係るEC素子駆動回路500は、核成長電圧を超える核生成電圧(第3の電圧の一例)を最初に印加した後、核成長電圧および核溶解電圧を印加する。これにより、実施の形態1に係るEC素子100は、第1電極群110および第2電極群210のそれぞれが交差する領域に金属OB1の結晶核のそれぞれを最初に生成(析出)させてから、この金属OB1の結晶核を成長(析出)させる核成長電圧と、核成長電圧の印加時に成長した金属OB1を溶解させる核溶解電圧とを交互に印加することで、金属OB1の析出量をより均一にする電圧制御を容易に実行できる。 As described above, the EC element drive circuit 500 according to the first embodiment applies the nucleation voltage (an example of the third voltage) that exceeds the nucleation voltage first, and then applies the nucleation voltage and the karyolysis voltage. As a result, in the EC element 100 according to the first embodiment, after each of the crystal nuclei of the metal OB1 is first generated (precipitated) in the region where each of the first electrode group 110 and the second electrode group 210 intersects, the EC element 100 is first generated (precipitated). By alternately applying a nuclear growth voltage that grows (precipitates) the crystal nuclei of the metal OB1 and a nuclear dissolution voltage that dissolves the metal OB1 that has grown when the nuclear growth voltage is applied, the precipitation amount of the metal OB1 becomes more uniform. The voltage control can be easily performed.
 以上により、実施の形態1に係るEC素子駆動回路500は、金属OB1が析出を開始する基準電圧との差分の絶対値が、基準電圧(例えば、3V)と核成長電圧(例えば、2V)との差分の絶対値を超える核生成電圧(例えば、-1V)を最初に印加した後、核成長電圧および核溶解電圧を印加する。これにより、実施の形態1に係るEC素子100は、第1電極群110および第2電極群210のそれぞれが交差する領域に金属OB1の結晶核のそれぞれを最初に生成(析出)させてから、この金属OB1の結晶核を成長(析出)させる核成長電圧と、核成長電圧の印加時に成長した金属OB1を溶解させる核溶解電圧とを交互に印加することで、金属OB1の析出量をより均一にする電圧制御を容易に実行できる。 As described above, in the EC element drive circuit 500 according to the first embodiment, the absolute value of the difference from the reference voltage at which the metal OB1 starts to precipitate is the reference voltage (for example, 3V) and the nuclear growth voltage (for example, 2V). A nuclear production voltage (eg, -1V) that exceeds the absolute value of the difference is first applied, and then a nuclear growth voltage and a nuclear dissolution voltage are applied. As a result, in the EC element 100 according to the first embodiment, after each of the crystal nuclei of the metal OB1 is first generated (precipitated) in the region where each of the first electrode group 110 and the second electrode group 210 intersects, the EC element 100 is first generated (precipitated). By alternately applying a nuclear growth voltage that grows (precipitates) the crystal nuclei of the metal OB1 and a nuclear dissolution voltage that dissolves the metal OB1 that has grown when the nuclear growth voltage is applied, the precipitation amount of the metal OB1 becomes more uniform. The voltage control can be easily performed.
 以上により、実施の形態1に係るEC素子駆動回路500は、核成長電圧と核溶解電圧とを周期的に交互に切り替えて印加する。これにより、実施の形態1に係るEC素子100は、電極のエッジ部などへの電界集中をより抑制するとともに、第1電極群110および第2電極群210が交差する領域に金属OB1を徐々に析出させて、領域内により均等な厚みを有する金属薄膜を形成できる。したがって、EC素子100は、表示ムラをより低減し、高品位な表示を実現できる。 As described above, the EC element drive circuit 500 according to the first embodiment periodically alternately switches and applies the nuclear growth voltage and the nuclear dissolution voltage. As a result, the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode, and gradually applies the metal OB1 to the region where the first electrode group 110 and the second electrode group 210 intersect. It can be precipitated to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
 以上により、実施の形態1に係るEC素子駆動回路500は、核成長電圧の印加時間と核溶解電圧の印加時間との比率が2:1となるように交互に切り替える。これにより、実施の形態1に係るEC素子100は、電極のエッジ部などへの電界集中をより抑制して表示ムラを低減するとともに、金属OB1の析出時間が金属OB1の溶解時間を上回るため、第1電極群110および第2電極群210が交差する領域に金属OB1を徐々に析出させて、領域内により均等な厚みを有する金属薄膜を形成できる。したがって、EC素子100は、表示ムラをより低減し、高品位な表示を実現できる。 As described above, the EC element drive circuit 500 according to the first embodiment alternately switches so that the ratio of the application time of the nuclear growth voltage and the application time of the nuclear dissolution voltage is 2: 1. As a result, the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode and reduces display unevenness, and the precipitation time of the metal OB1 exceeds the dissolution time of the metal OB1. The metal OB1 can be gradually deposited in the region where the first electrode group 110 and the second electrode group 210 intersect to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
 以上により、実施の形態1に係るEC素子駆動回路500は、核成長電圧の印加時間と核溶解電圧の印加時間との比率が3.5:1となるように交互に切り替える。これにより、実施の形態1に係るEC素子100は、電極のエッジ部への電界集中をより抑制して表示ムラを低減するとともに、金属OB1の析出時間が金属OB1の溶解時間を上回るため、第1電極群110および第2電極群210が交差する領域に金属OB1を徐々に析出させて、領域内により均等な厚みを有する金属薄膜を形成できる。したがって、EC素子100は、表示ムラをより低減し、高品位な表示を実現できる。 As described above, the EC element drive circuit 500 according to the first embodiment alternately switches so that the ratio of the application time of the nuclear growth voltage and the application time of the nuclear dissolution voltage is 3.5: 1. As a result, the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode to reduce display unevenness, and the precipitation time of the metal OB1 exceeds the dissolution time of the metal OB1. The metal OB1 can be gradually deposited in the region where the 1-electrode group 110 and the 2nd electrode group 210 intersect to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
 以上により、実施の形態1に係るEC素子駆動回路500は、核溶解電圧の印加時間が核成長電圧の印加時間の1/10以上となるように交互に切り替える。これにより、実施の形態1に係るEC素子100は、電極のエッジ部などへの電界集中をより抑制して表示ムラを低減するとともに、金属OB1の析出時間が金属OB1の溶解時間を上回るため、第1電極群110および第2電極群210が交差する領域に金属OB1を徐々に析出させて、領域内により均等な厚みを有する金属薄膜を形成できる。したがって、EC素子100は、表示ムラをより低減し、高品位な表示を実現できる。 As described above, the EC element drive circuit 500 according to the first embodiment alternately switches so that the application time of the nuclear dissolution voltage is 1/10 or more of the application time of the nuclear growth voltage. As a result, the EC element 100 according to the first embodiment further suppresses the concentration of the electric field on the edge portion of the electrode and reduces display unevenness, and the precipitation time of the metal OB1 exceeds the dissolution time of the metal OB1. The metal OB1 can be gradually deposited in the region where the first electrode group 110 and the second electrode group 210 intersect to form a metal thin film having a more uniform thickness in the region. Therefore, the EC element 100 can further reduce display unevenness and realize a high-quality display.
 以上、添付図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the attached drawings, the present disclosure is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications, modifications, substitutions, additions, deletions, and equality within the scope of the claims. It is understood that it belongs to the technical scope of the present disclosure. Further, each component in the various embodiments described above may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2020年4月24日出願の日本特許出願(特願2020-077755)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application filed on April 24, 2020 (Japanese Patent Application No. 2020-07775), the contents of which are incorporated herein by reference.
 本開示は、EC(エレクトロクロミック)素子を駆動する際の電極の幅方向のエッジ部の表示ムラを低減し、高品位な表示を実現する調光素子として有用である。 The present disclosure is useful as a dimming element that reduces display unevenness of an edge portion in the width direction of an electrode when driving an EC (electrochromic) element and realizes a high-quality display.
100 EC素子
110 第1電極群
111 第1基板
210 第2電極群
211 第2基板
500 EC素子駆動回路
EL1 電解液
I11 核成長電流
I12 核溶解電流
OB1 金属
V31,V41,V51,V61 核成長電圧
V32,V42,V52,V62 核溶解電圧
100 EC element 110 1st electrode group 111 1st substrate 210 2nd electrode group 211 2nd substrate 500 EC element drive circuit EL1 Electrolyte I11 Nuclear growth current I12 Karyolysis current OB1 Metal V31, V41, V51, V61 Nuclear growth voltage V32 , V42, V52, V62 Karyolysis voltage

Claims (8)

  1.  透光性を有し、並列に配置された複数の第1電極と、
     前記複数の第1電極のそれぞれと対向して並列に配置された複数の第2電極と、
     前記複数の第1電極と前記複数の第2電極との間に配置された、金属を含む電解液と、
     前記電解液に電圧を印加する電源と、を備え、
     前記電源は、前記電解液に印加される電圧に基づく電流の極性を交互に切り替えて、前記複数の第1電極および前記複数の第2電極のいずれか一方に前記金属を析出または溶解させる、
     調光素子。
    With a plurality of first electrodes that are translucent and are arranged in parallel,
    A plurality of second electrodes arranged in parallel facing each of the plurality of first electrodes,
    An electrolytic solution containing a metal, which is arranged between the plurality of first electrodes and the plurality of second electrodes.
    A power source for applying a voltage to the electrolytic solution is provided.
    The power source alternately switches the polarity of the current based on the voltage applied to the electrolytic solution to deposit or dissolve the metal on one of the plurality of first electrodes and the plurality of second electrodes.
    Dimming element.
  2.  前記電源は、前記金属を析出させる第1の電圧と前記金属を溶解させる第2の電圧とを切り替えて印加する、
     請求項1に記載の調光素子。
    The power supply is applied by switching between a first voltage for precipitating the metal and a second voltage for melting the metal.
    The dimming element according to claim 1.
  3.  前記電源は、前記第1の電圧を超える第3の電圧を最初に印加した後、前記第1の電圧、前記第2の電圧を印加する、
     請求項2に記載の調光素子。
    The power supply first applies a third voltage exceeding the first voltage, and then applies the first voltage and the second voltage.
    The dimming element according to claim 2.
  4.  前記電源は、前記金属が析出を開始する基準電圧との差分の絶対値が前記基準電圧と前記第1の電圧との差分の絶対値を超える第3の電圧を最初に印加した後、前記第1の電圧、前記第2の電圧を印加する、
     請求項2に記載の調光素子。
    The power supply first applies a third voltage in which the absolute value of the difference from the reference voltage at which the metal starts to precipitate exceeds the absolute value of the difference between the reference voltage and the first voltage, and then the first application. Apply the voltage of 1, the second voltage,
    The dimming element according to claim 2.
  5.  前記電源は、前記第1の電圧と前記第2の電圧とを周期的に交互に切り替えて印加する、
     請求項2に記載の調光素子。
    The power supply applies the first voltage and the second voltage by alternately switching periodically.
    The dimming element according to claim 2.
  6.  前記電源は、前記第1の電圧の印加時間と前記第2の電圧の印加時間との比率が2:1となるように交互に切り替える、
     請求項2に記載の調光素子。
    The power supply is alternately switched so that the ratio of the application time of the first voltage to the application time of the second voltage is 2: 1.
    The dimming element according to claim 2.
  7.  前記電源は、前記第1の電圧の印加時間と前記第2の電圧の印加時間との比率が3.5:1となるように交互に切り替える、
     請求項2に記載の調光素子。
    The power supply is alternately switched so that the ratio of the application time of the first voltage to the application time of the second voltage is 3.5: 1.
    The dimming element according to claim 2.
  8.  前記電源は、前記第2の電圧の印加時間が前記第1の電圧の印加時間の1/10以上になるように交互に切り替える、
     請求項2に記載の調光素子。
    The power supply is alternately switched so that the application time of the second voltage is 1/10 or more of the application time of the first voltage.
    The dimming element according to claim 2.
PCT/JP2021/008303 2020-04-24 2021-03-03 Light control element WO2021215122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077755 2020-04-24
JP2020077755 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215122A1 true WO2021215122A1 (en) 2021-10-28

Family

ID=78270587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008303 WO2021215122A1 (en) 2020-04-24 2021-03-03 Light control element

Country Status (1)

Country Link
WO (1) WO2021215122A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003337351A (en) * 2002-05-20 2003-11-28 Sony Corp Driving method for display device
JP2006330528A (en) * 2005-05-30 2006-12-07 Fujitsu Ltd Electrodeposition display device
WO2007032117A1 (en) * 2005-09-14 2007-03-22 Konica Minolta Holdings, Inc. Method of driving display
JP2015184441A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Electrochromic display device and drive method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003337351A (en) * 2002-05-20 2003-11-28 Sony Corp Driving method for display device
JP2006330528A (en) * 2005-05-30 2006-12-07 Fujitsu Ltd Electrodeposition display device
WO2007032117A1 (en) * 2005-09-14 2007-03-22 Konica Minolta Holdings, Inc. Method of driving display
JP2015184441A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Electrochromic display device and drive method

Similar Documents

Publication Publication Date Title
JP3811811B2 (en) Fringe field switching mode liquid crystal display
WO2013161636A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and thin film transistor array substrate
CN109283704A (en) Reversible electrochemical mirror
US9835911B2 (en) Liquid crystal display device
CN104570533B (en) Optical device, imaging device, and method for driving optical element
JP2019507910A (en) Electrochromic element
US20200234664A1 (en) Array Substrate, Liquid Crystal Display Device and Driving Method Thereof
JP2012042814A (en) Electrochromic device
JP2010002573A (en) Method for changing reflectivity reversibly, element therefor, method of manufacturing element, and transmittance variable element and reflectivity variable mirror
WO2019031606A1 (en) Drive circuit and drive method for driving electrodeposition element
JP5603896B2 (en) Liquid crystal fresnel lens element and image display device
JP6763523B2 (en) How to drive the mirror device and electrodeposition element
JP5677388B2 (en) Liquid crystal optical device, image display device, and driving device
WO2005012994A1 (en) Electrochromic display
WO2021215122A1 (en) Light control element
JP6575920B2 (en) Electrochromic device and electrochromic device
JPH0728099A (en) Fully solid state type electrochromic element and its production
JP2007011225A (en) Display device and manufacturing method thereof
JP2019518235A (en) Electrochromic element
CN102929045A (en) Polymer dispersed liquid crystal panel and preparation method thereof and liquid crystal display device
CN108535968B (en) Light screen and preparation method and application thereof
US11402716B2 (en) Visual range adjustment component and driving method thereof, visual range adjustment device, and display device
JP5317565B2 (en) Display device
CN108345150B (en) Liquid crystal display device and method for improving quality of protruded electrode in display panel thereof
WO2020217736A1 (en) Light control element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP