WO2021215039A1 - Method and device for evaluating oral absorbability of drug - Google Patents

Method and device for evaluating oral absorbability of drug Download PDF

Info

Publication number
WO2021215039A1
WO2021215039A1 PCT/JP2020/044362 JP2020044362W WO2021215039A1 WO 2021215039 A1 WO2021215039 A1 WO 2021215039A1 JP 2020044362 W JP2020044362 W JP 2020044362W WO 2021215039 A1 WO2021215039 A1 WO 2021215039A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulated
drug
gastrointestinal
chamber
fluid
Prior art date
Application number
PCT/JP2020/044362
Other languages
French (fr)
Japanese (ja)
Inventor
山下 伸二
片岡 誠
晴輝 東野
敏英 高木
Original Assignee
学校法人常翔学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人常翔学園 filed Critical 学校法人常翔学園
Priority to JP2021521458A priority Critical patent/JP7090272B2/en
Publication of WO2021215039A1 publication Critical patent/WO2021215039A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • the present invention relates to a method and an apparatus for accurately evaluating the absorption of an orally administered drug from the digestive tract.
  • the test preparation which is a newly prepared preparation
  • the standard preparation which is an existing preparation, that is, to meet the BE test, for oral preparations
  • the drug after administration of the preparation The difference between the maximum blood concentration (Cmax) and the area under the blood concentration-time curve (AUC) calculated from the transition of the blood concentration of the drug by measuring the blood concentration of the drug over time is within a certain range. It is required to be.
  • Cmax is an index of drug absorption rate
  • AUC is an index of drug absorption.
  • the preparation first stays in the stomach, where the disintegration of the preparation and the elution of the drug from the preparation begin.
  • the drug moves from the stomach to the small intestine while eluting the drug.
  • the eluted drug is also dissolved and absorbed in the solution in the stomach and small intestine while migrating in the same manner.
  • the drug is hardly absorbed from the stomach, so absorption begins when the drug is transferred to the small intestine.
  • the pH of the solution changes from acidic pH to neutral pH with the transition from the stomach to the small intestine, so that the drug in the solution dissolves or reprecipitates according to the pH.
  • the profile of dissolution / precipitation in the gastrointestinal tract greatly affects the absorption rate and amount of the drug. Furthermore, the effective surface area of the small intestinal mucosa involved in absorption from the small intestine increases with time as the solution is transferred, which affects the drug absorption rate particularly immediately after the start of absorption. Therefore, in order to accurately evaluate the difference in drug absorption rate and absorption amount between pharmaceutical products in vitro, it is necessary to construct a system that can reproduce the above-mentioned in vivo behavior of the pharmaceutical product in the gastrointestinal tract. be.
  • Non-Patent Document 1 uses a liquid feeding pump to sequentially feed a drug-containing liquid to a plurality of vessels simulating the stomach, duodenum, and jejunum, and the accompanying changes over time such as dissolution, dissolution, and precipitation of the drug.
  • the system for observing ((Gastrointestinal Simulator (GIS))
  • GIS Gastrointestinal Simulator
  • the degree of mechanical crushing of the pharmaceutical particles during liquid feeding and the difference in the moving speed between the pharmaceuticals affect the evaluation result. It also differs from the human gastrointestinal tract in that it is difficult to move insoluble particles. Furthermore, since GIS does not include the process of membrane permeation, it is not possible to evaluate the actual amount of absorption. In addition, it is necessary to construct a complicated and expensive system including a computer system for controlling the liquid property and movement of the liquid in the vessel. In addition, due to the slow throughput, it takes a considerable amount of time to evaluate many test products.
  • Non-Patent Document 2 the test drug is added to the solution in the gastrointestinal chamber and stirred by using a device in which the gastrointestinal chamber and the blood vessel chamber are connected via a small intestinal epithelial cell model membrane, and the small intestine is stirred.
  • a system Dissolution Permeation System (D / P system)) for measuring the concentration of a drug that has permeated the epithelial cell model membrane and transferred to the solution in the vascular chamber is described. Since the D / P system measures the concentration of the drug that has permeated the membrane, it is suitable for evaluating the amount of drug absorbed.
  • D / P system Dissolution Permeation System
  • the D / P system uses a solution with a certain composition such as a solution that imitates the stomach or a solution that imitates the small intestine as the solution in the gastrointestinal chamber, the solution composition due to the movement of the drug in the gastrointestinal tract It is not possible to reproduce changes in the environment such as pH. In addition, the increase in the effective drug absorption area of the small intestinal mucosa due to drug transfer cannot be reproduced. Therefore, it is not possible to reproduce the time course of drug elution, dissolution, and absorption in actual human in vivo. In particular, it is difficult to accurately evaluate the difference in absorption rate (Cmax) between formulations.
  • Cmax absorption rate
  • Patent Document 1 uses a device in which a vascular chamber in which a part of the chamber wall is composed of a gastrointestinal model membrane is housed in a gastrointestinal vessel in which a rotating paddle is installed, and is used as a solution in the gastrointestinal vessel.
  • a system In vitro Dissolution Absorption System 2 (IDAS2)
  • IDAS2 is suitable for evaluating the amount of drug absorbed because it measures the concentration of the drug that has permeated the membrane after the drug has been eluted from the drug.
  • An object of the present invention is to provide a method and an apparatus capable of accurately evaluating the absorbability (absorption rate and absorption amount) of a drug into systemic circulating blood after oral administration of a drug or a drug-containing preparation to humans. do.
  • the present inventor repeated research in order to solve the above problems, and put a drug or a drug-containing preparation into a simulated gastrointestinal solution (a solution adjusted by imitating the composition and pH of the solution in the digestive tract) to perform simulated digestion.
  • the drug in the tubule is permeated into the simulated blood through the drug permeable membrane, and in the simulated gastrointestinal tract fluid and / or in the simulated blood (a solution adjusted to imitate the composition and pH of the blood or a solvent such as octanol).
  • a simulation of the injection of the drug or the drug-containing preparation is performed.
  • the gastrointestinal fluid is used as a simulated gastric fluid (a solution adjusted by imitating the composition and pH of the solution in the stomach), and the liquidity and composition of the simulated gastrointestinal fluid are used to simulate the environmental change from the stomach to the small intestine.
  • the volume is changed from simulated gastric fluid to simulated small intestinal fluid (solution adjusted by imitating the composition and pH of the solution in the small intestine) at an arbitrary speed, and the contact area between the simulated gastrointestinal fluid and the drug permeable membrane. It has been found that a method of increasing the amount of water over time can solve the above-mentioned problems.
  • the state of the simulated gastrointestinal fluid such as liquidity, composition, and volume is changed from the stomach to the small intestine over time to create an environment in the gastrointestinal tract where the drug actually administered to humans is placed. It can be reproduced. Therefore, the disintegration of the pharmaceutical product, the elution and dissolution of the drug in the human gastrointestinal tract can be accurately reproduced.
  • the drug that has moved from the stomach to the small intestine has a larger contact area with the mucous membrane of the small intestine as it moves in the small intestine, and the drug absorption rate increases accordingly.
  • AUC absorption amount of the drug
  • Cmax absorption rate of the drug
  • a drug or a drug-containing preparation is put into a simulated gastrointestinal fluid, and the drug in the simulated gastrointestinal fluid is permeated into the simulated blood through a drug permeable membrane, and the simulated gastrointestinal fluid and / or the simulated blood is used. It is a method of evaluating the oral absorbability of an orally administered drug or a drug in a preparation by measuring the drug concentration, in which the state of simulated gastrointestinal fluid is changed from the stomach to the small intestine over time, and at the same time.
  • a method for evaluating oral drug absorption which comprises increasing the contact area between a simulated gastrointestinal fluid and a drug permeable membrane over time.
  • a gastrointestinal chamber for accommodating simulated gastrointestinal fluid which is provided with a simulated gastrointestinal fluid pool at the bottom and has a mechanism for injecting concentrated simulated small intestinal fluid inside, and the inside of the gastrointestinal chamber is stirred.
  • the simulated gastrointestinal fluid to be generated is stirred while injecting the concentrated simulated small intestinal fluid into the simulated gastric fluid by the concentrated simulated small intestinal fluid injection mechanism.
  • a vascular chamber for accommodating simulated blood which is connected to the gastrointestinal chamber at a drug-permeable connection located above the simulated gastric fluid pool, is used, and a drug-permeable membrane is formed on the surface of the drug-permeable connection.
  • the gastrointestinal chamber and the vascular chamber are separated from each other by being installed so that the direction is inclined with respect to the horizontal direction, and the concentrated simulated small intestinal juice is injected into the simulated gastric juice by the concentrated simulated small intestinal juice injection mechanism.
  • the method according to [2] wherein the liquid level of the generated simulated gastrointestinal fluid is raised to increase the contact area between the simulated gastrointestinal juice and the drug permeable membrane over time.
  • the vascular chamber is provided with a mechanism for injecting simulated blood into the inside, and by using this infusion mechanism, the height of the liquid level in the gastrointestinal chamber is matched with the height of the liquid level in the vascular chamber.
  • the drug concentration in the simulated gastrointestinal fluid and / or the drug concentration in the simulated blood is measured over time to simulate the initial drug concentration increase rate in the simulated gastrointestinal fluid and / or the initial drug concentration increase rate in the simulated blood.
  • [6] The method according to any one of [1] to [5], wherein the state of the simulated gastrointestinal fluid that undergoes changes over time is pH, composition, and volume.
  • It has a gastrointestinal tract chamber and a vascular chamber, and a simulated gastrointestinal fluid pool is provided at the bottom of the gastrointestinal tract chamber. It is connected by a connection part, and the drug permeable connection part is installed so that the surface direction of the drug permeable membrane is inclined with respect to the horizontal direction to separate the gastrointestinal tract chamber and the vascular chamber.
  • the gastrointestinal chamber is provided with an inlet for injecting concentrated simulated small intestinal fluid
  • the vascular chamber is provided with an inlet for injecting simulated blood inside, and the simulated gastrointestinal fluid is housed in the gastrointestinal chamber.
  • a drug oral absorption evaluation device which comprises a stirrer for agitating.
  • An automatic liquid feeding device for injecting concentrated simulated small intestinal juice from the injection port of the gastrointestinal chamber and / or an automatic liquid feeding device for injecting simulated blood from the injection port of the vascular chamber is provided [7].
  • the device described in. [9] (a) A device that automatically samples simulated gastrointestinal fluid and / or simulated blood, (b) A device that automatically samples simulated gastrointestinal fluid and / or simulated blood and automatically applies it to a drug measuring device. Or (c) equipped with an automatic monitoring device that automatically samples simulated gastrointestinal fluid and / or simulated blood, automatically applies it to a drug measuring device, and automatically measures the drug concentration by the drug concentration measuring device, [7] or [ 8]. [10] 7. Device.
  • the method of the present invention is by gradually changing the environment (simulated gastrointestinal fluid) in which the drug or the drug-containing preparation is placed after oral administration from the stomach to the small intestine without moving the drug or the drug-containing preparation. , It is possible to accurately reproduce the disintegration of the pharmaceutical product and the elution and dissolution of the drug when orally administered to humans.
  • the method of the present invention reflects the increase in the effective absorption area of the small intestinal mucosa due to the movement of the drug in the human gastrointestinal tract by increasing the contact area between the simulated gastrointestinal fluid and the drug permeable membrane over time. It is possible to evaluate the drug absorption. This makes it possible to accurately evaluate not only the amount of drug absorbed but also the rate of absorption. Therefore, AUC and Cmax can be predicted with high accuracy at the same time.
  • information on the disintegration, dissolution, dissolution, and absorption process of the pharmaceutical product after oral administration to humans can be sufficiently verified before the human BE test. can. Therefore, unnecessary clinical trials can be avoided, the number of subjects in clinical trials can be reduced, or the success rate of clinical trials can be increased.
  • the pH and composition of the simulated gastrointestinal tract fluid can be arbitrarily changed. For example, if the pH is changed from 1.6 to 6.5 over about 10 minutes, the environment becomes similar to the movement of the drug taken during fasting from the stomach to the small intestine. In addition, for example, if the pH is changed from 5 to 6.5 over about 30 minutes, the environment becomes similar to the movement of the preparation taken at the time of feeding from the stomach to the small intestine. Therefore, according to the method of the present invention, oral absorbability under various conditions such as fasting and feeding can be evaluated.
  • the evaluation can be performed according to the subject by adjusting the composition of the simulated gastrointestinal fluid. Further, when examining the change of the formulation, the enteric formulation, the sustained release formulation, etc. can be easily examined by arbitrarily changing the pH and composition of the simulated gastrointestinal fluid.
  • the volume of the simulated gastrointestinal tract fluid affects the drug elution rate.
  • the pharmaceutical product administered to humans moves in the digestive tract, the amount of liquid in the surroundings changes.
  • the volume of the simulated gastrointestinal fluid can be arbitrarily changed, the behavior of elution and dissolution of the drug in the human gastrointestinal tract can be accurately evaluated.
  • the elution property of the drug is controlled by additives, coatings, layer structures, etc., the elution behavior of the pharmaceutical product cannot be evaluated if it is divided according to the volume of the simulated gastrointestinal fluid.
  • the volume of the simulated gastrointestinal tract fluid can be arbitrarily changed to approximate the volume of the human gastrointestinal tract fluid, the oral absorbability of not only the drug but also the drug-containing preparation is evaluated. can do.
  • the method of the present invention does not require a complicated and expensive device because the state of the simulated gastrointestinal fluid can be changed only by controlling the injection rate of the concentrated simulated small intestinal juice.
  • results can be obtained in a short time of about 60 to 120 minutes for one sample.
  • the device of the present invention is a simple and inexpensive device capable of carrying out the method of the present invention having such features.
  • FIG. 1 It is a figure which shows one example of the apparatus of this invention. It is a figure which shows the elution rate and the membrane permeability of metoprolol tartrate from 20 mg of Seroken (registered trademark) tablet. It is a figure which shows the elution rate and the membrane permeability of telmisartan from a telmisartan (registered trademark) tablet under the fasting condition. It is a figure which shows the elution rate and the membrane permeability of telmisartan from a telmisartan tablet under the condition at the time of feeding. It is a figure which shows the human BE test result between the standard preparation under the fasting condition and the preparation A.
  • the pH was changed over a longer period of time than the method shown in Fig. 14. It is a figure which shows the elution rate and the membrane permeability of dipyridamole from a persantin tablet under the fasting condition. The pH at the start is higher than the method shown in Figures 13-15.
  • a drug or a drug-containing preparation is put into a simulated gastrointestinal tract fluid, and the drug in the simulated gastrointestinal tract fluid is permeated into the simulated blood through a drug permeable membrane.
  • a method for evaluating the oral absorbability of an orally administered drug or a drug in a preparation by measuring the drug concentration in the simulated gastrointestinal fluid and / or the simulated blood. This method is characterized in that the contact area between the simulated gastrointestinal fluid and the drug-permeable membrane is increased over time while changing from to the inside of the small intestine over time.
  • the formulations are solid formulations such as tablets, powders, granules, pills and capsules (soft capsules, hard capsules); liquid formulations such as liquids, elixirs, suspensions, emulsions, limonades and syrups. It may be either.
  • a single dose may be added to the simulated gastrointestinal tract fluid.
  • the input amount may be determined according to the purpose of the test.
  • Examples of the "state" of the simulated gastrointestinal fluid that undergoes changes over time include pH, composition, volume, and the like.
  • the simulated gastrointestinal fluid at the time of adding the drug or the drug-containing preparation may be simulated gastric juice. Since the pH of human gastric juice is about 1 to 3 during fasting and about 2 to 6 after eating, the pH of simulated gastric juice should be about 1 to 3 when evaluating oral absorbability during fasting. , When evaluating the oral absorbability at the time of feeding, it should be about 2 to 6.
  • the pH can be adjusted by using a buffer solution such as an acetate buffer solution.
  • the simulated gastric juice may contain a digestive enzyme such as pepsin, sodium chloride, or the like, whereby the simulated gastric juice can be made to resemble a human gastric juice.
  • the volume of simulated gastric juice should be about 20 to 250 mL, especially about 50 to 200 mL.
  • the volume of gastric fluid in human adults is about 20 to 50 mL, and solid preparations are often taken with water except for orally rapidly disintegrating tablets (in clinical trials, they are taken with 150 mL of water). If it is within the range, the evaluation can reflect the dissolution rate of the drug in the human stomach.
  • the drug may be dissolved by stirring the simulated gastric juice, or the drug-containing preparation may be disintegrated to dissolve the drug.
  • the state of the simulated gastrointestinal fluid may be gradually brought closer to that of the human small intestinal fluid by gradually injecting the concentrated simulated small intestinal juice into the simulated gastric juice containing the drug.
  • the simulated gastrointestinal fluid may be agitated while injecting the concentrated simulated small intestinal juice.
  • the concentrated simulated small intestinal juice referred to here is for approximating the composition of the simulated gastrointestinal fluid to the simulated small intestinal juice by adding it to the simulated gastric juice, and its composition, addition amount, addition timing, etc. meet this purpose. Specific examples thereof include, but are not limited to, the following. Since the pH of human small intestinal juice is about 6 to 8, the pH of concentrated simulated small intestinal juice may be about 6.5 to 10.
  • the pH can be adjusted by using a buffer solution such as a carbonate buffer solution, a Tris / HCl buffer solution, a HEPES buffer solution, or a phosphate buffer solution.
  • a buffer solution such as a carbonate buffer solution, a Tris / HCl buffer solution, a HEPES buffer solution, or a phosphate buffer solution.
  • the pH of the simulated gastrointestinal fluid can be finally adjusted to about 6-8.
  • the concentrated simulated small intestinal juice may contain bile acids, lipids, sugars, digestive enzymes such as glycolytic enzymes, proteolytic enzymes, and lipid-degrading enzymes, thereby making the concentrated simulated small intestinal juice of humans. It can be approximated to small intestinal juice.
  • the amount of concentrated simulated small intestinal juice to be injected may be such that the amount of simulated gastrointestinal juice is finally about 50 to 500 mL, especially about 100 to 400 mL. Since the volume of the small intestinal fluid in a human adult is usually about 100 to 400 mL, an evaluation that reflects the absorption rate of the drug in the human small intestine can be performed within this volume range.
  • the injection time of the concentrated simulated small intestinal juice should be about 5 to 120 minutes, especially about 10 to 60 minutes. In the case of fasting evaluation, it may be about 5 to 20 minutes, especially about 10 minutes, and in the case of feeding evaluation, it may be about 20 to 120 minutes, especially about 30 to 60 minutes. This makes it possible to approximate the time it takes for the drug to travel from the stomach to the small intestine in actual humans.
  • the drug permeable membrane may be one in which the drug in the simulated gastrointestinal fluid permeates to the simulated blood side.
  • a cell layer membrane obtained by culturing cells, a gastrointestinal mucosa extracted from a human or non-human animal, an artificial lipid membrane, a porous membrane, and the like can be mentioned.
  • the cell layer membrane include those obtained by culturing cells in a single layer.
  • cells cultured on a porous membrane so as to form a single layer can be used together with the porous membrane.
  • the type of cell is not limited, but includes epithelial cells such as Caco-2 cells, C2BBel cells, MDCK cells, MDR-MDCK cells, BCRP-MDCK cells, HT-29 cells, and T-84 cells, especially the human small intestine.
  • Caco-2 cells which are widely used as model cells, are preferable.
  • the excised gastrointestinal membrane the small intestinal mucosa excised from humans or experimental animals such as rats, dogs, and monkeys can be used. In that case, all the excised submucosal tissues such as muscles can be used, or the submucosal tissues can be peeled off and used.
  • a phospholipid membrane or a lipid membrane formed by adding cholesterol or a membrane protein to phospholipid can be used as the artificial lipid membrane.
  • the lipid membrane can be used alone or formed on a porous membrane.
  • PAMPA Parallel Artificial Membrane Permeability Assay
  • the porous membrane (including the semipermeable membrane) preferably has a pore size of about 0.1 to 0.5 ⁇ m. Porous membranes with various pore sizes are commercially available.
  • membrane filters precision filtration membrane filters made of various materials are commercially available from Merck, and among them, Durapore (registered trademark) membrane filter (polyvinylidene fluoride membrane) and Millipore (registered trademark) filter (cellulose mixture). Ester membranes), Millipore Express Plus (polyether sulfone membranes), Isopore® membrane filters (track-etched polycarbonate membranes), hydrophobic polytetrafluoroethylene (PTFE) membranes, etc. are all available, all of which are preferred. Although it can be used, the Durapore membrane filter has less adsorption of proteins and the like, and can be particularly preferably used in the present invention.
  • a buffer solution having a pH of about 7.3 to 7.5, particularly about 7.4, which imitates blood can be used as the simulated blood.
  • the buffer solution may be any one having a buffering ability at a pH of about 7.3 to 7.5, and examples thereof include a phosphate buffer solution, a HEPES buffer solution, and a Tris / hydrochloric acid buffer solution.
  • plasma protein may be added to the simulated blood, whereby it can be approximated to human blood.
  • the drug permeable membrane is a porous membrane
  • an organic solvent such as octanol, hexane or chloroform or an oil such as olive oil
  • the biological membrane contains phospholipids as the main component, the magnitude of distributability in the oil / water two-layer system is interpreted as an index of affinity for the biological membrane. , Can mimic drug permeation from the small intestine.
  • octanol which is widely used for measuring the distributiveness of drugs, is preferable.
  • the simulated gastrointestinal fluid may be brought into contact with the drug-permeable membrane at the same time as or thereafter when the concentrated simulated small intestinal juice is started to be infused, and the contact area thereof may be gradually increased. This makes it possible to reproduce the increase in effective small intestinal mucosal area in which the drug administered to humans can be absorbed.
  • the drug permeable membrane may bring the region corresponding to the region in contact with the simulated gastrointestinal fluid into contact with the simulated blood. Therefore, the amount of simulated blood used may be gradually increased so that the contact area with the drug permeable membrane changes in this way.
  • the final contact area between the drug-permeable membrane and the simulated gastrointestinal fluid should be about 0.5 to 20 cm 2. Therefore, a drug permeable membrane having an area of 0.5 to 20 cm 2 or larger can be used.
  • one or both of the simulated gastrointestinal fluid and the simulated blood may be sampled over time to measure the drug concentration. It is preferable to sample both simulated gastrointestinal fluid and simulated blood over time.
  • the drug concentration in the simulated blood can be plotted against the elapsed time, and Cmax, which is an index of the absorption rate or the absorption rate in vivo, can be estimated from the initial slope of the increase in the drug concentration. Although it depends on the amount of simulated gastrointestinal fluid, the size of the drug permeable membrane, etc., the slope of 10 to 60 minutes after the drug concentration starts to rise is adopted because the absorption rate or Cmax in clinical tests can be estimated accurately. It is preferable to do so.
  • the dissolution rate of the drug is an important factor that determines Cmax
  • the drug concentration in the simulated gastrointestinal fluid is plotted against the elapsed time
  • the drug dissolution rate is calculated from the initial inclination of the increase in the drug concentration, and the drug dissolution rate is obtained.
  • the speed can be taken into account in the estimation of Cmax. It is preferable to adopt a slope of 10 to 60 minutes after the drug concentration begins to rise.
  • the amount of drug absorbed or AUC which is an index thereof, can be estimated from the amount of drug permeation (or membrane permeability) up to a certain period of time.
  • the gastrointestinal chamber may be used to store the simulated gastrointestinal fluid.
  • the upper surface of the gastrointestinal chamber may be open or covered with a lid.
  • a simulated gastric juice pool may be provided at the bottom of the gastrointestinal chamber.
  • the drug or drug-containing preparation is added to the simulated gastric juice placed in the simulated gastric juice pool, the state in which the drug or preparation has moved into the stomach is reproduced.
  • the capacity of the simulated gastric juice pool may be about 20 to 250 mL, especially a capacity that can accommodate about 50 to 200 mL of simulated gastric juice.
  • the total volume of the gastrointestinal chamber including the simulated gastric juice pool may be about 50 to 500 mL, particularly about 100 to 400 mL, as long as it can accommodate the simulated gastrointestinal fluid.
  • the gastrointestinal chamber may be provided with a mechanism for injecting concentrated simulated gastrointestinal fluid into the inside.
  • the injection mechanism may include, for example, an injection port provided in the gastrointestinal chamber and an automatic liquid delivery device.
  • the inlet may be provided on the upper surface or the side surface of the gastrointestinal chamber, but the provision on the side surface, particularly on the side surface of the upper end of the simulated gastric juice pool, is excellent in reproducibility of the state in the human small intestine.
  • Examples of the automatic liquid feeding device include those provided with a tube connected to an injection port and a liquid feeding pump.
  • the liquid feed pump may be one that can keep the liquid feed rate constant or change it as planned.
  • the concentrated simulated small intestinal fluid infusion mechanism operates by adjusting the infusion rate and amount so that the state of the simulated gastrointestinal fluid reflects the movement of the drug or preparation taken by humans from the stomach to the small intestine. Is.
  • a mechanism for stirring the simulated gastrointestinal fluid in the gastrointestinal chamber may be used.
  • This stirring mechanism may be capable of stirring the simulated gastric juice and the simulated gastrointestinal fluid obtained by injecting the concentrated simulated small intestinal juice.
  • Examples of the stirring mechanism include rotary blades or vibrating blades installed in the gastrointestinal chamber. Further, it may consist of a magnetic stirrer bar placed at the bottom of the gastrointestinal chamber and a magnetic stirrer placed outside the bottom surface of the gastrointestinal chamber.
  • the internal liquid is agitated by vibrating the gastrointestinal chamber
  • the simulated gastrointestinal liquid is agitated by ultrasonic vibration, or a gas such as air or oxygen is blown into the simulated gastrointestinal liquid.
  • the liquid may be agitated.
  • the mechanism for stirring the simulated gastrointestinal fluid is preferably a rotary blade or a vibrating blade whose stirring speed can be easily controlled.
  • Sampling of simulated gastrointestinal fluid can be done manually. Alternatively, it can be performed using a mechanism for sampling the simulated gastrointestinal fluid at a predetermined time. It is also possible to manually apply the sampled simulated digestive tract fluid to a drug concentration measuring device such as a high performance liquid chromatography device to measure the drug concentration, but the sampled simulated digestive tract fluid can be used as a drug concentration measuring device. An applying mechanism can also be used. Further, it is also possible to use an automatic monitoring device that samples the simulated gastrointestinal fluid at a predetermined time, applies it to the drug concentration measuring device, and measures the drug concentration by the drug concentration measuring device.
  • a drug concentration measuring device such as a high performance liquid chromatography device
  • a vascular chamber may be used to contain simulated blood.
  • the vascular chamber is connected to the gastrointestinal chamber via a drug permeable connection, as described below.
  • the upper surface of the vascular chamber may be open or covered with a lid.
  • the gastrointestinal chamber and the vascular chamber may be in contact with each other with a common side wall, or may be separate containers.
  • the vascular chamber may be equipped with a mechanism for stirring the simulated blood inside.
  • the stirring mechanism the same mechanism as the simulated gastrointestinal fluid stirring mechanism can be exemplified. Since the stirring rate of simulated blood does not affect the evaluation result of oral absorbability, it is convenient to use a magnetic stirrer bar placed at the bottom of the vascular chamber and a magnetic stirrer placed outside the bottom surface of the vascular chamber. ..
  • the gastrointestinal chamber and the vascular chamber are connected or communicated with a drug permeable connection in order to allow the drug in the simulated gastrointestinal fluid to permeate into the simulated blood through the drug permeable membrane.
  • the drug permeable connection is provided on the common side surface of both chambers when the gastrointestinal chamber and the vascular chamber are in common side contact, and both containers when the gastrointestinal chamber and the vascular chamber are separate containers. It is provided as a passage between them.
  • the drug permeable connection is located above the simulated gastric juice pool.
  • the lower end of the drug permeable connection is preferably located near the upper end of the simulated gastric juice pool, which allows monitoring of drug absorption immediately after the drug has moved to the small intestine.
  • a drug permeable membrane is installed at the drug permeable connection in order to allow the drug in the simulated gastrointestinal tract fluid to permeate into the simulated blood via the drug permeable membrane.
  • the gastrointestinal chamber and the vascular chamber are completely separated by a drug permeable membrane.
  • the drug permeable membrane is installed at the drug permeable connection so that its surface direction is inclined with respect to the horizontal direction. NS.
  • the drug permeable membrane is installed so that its plane direction is vertical. The drug-permeable membrane thus installed and the concentrated simulated small intestinal juice injection mechanism jointly increase the contact area between the simulated gastrointestinal fluid and the drug-permeable membrane over time.
  • the shape of the drug-permeable membrane is not particularly limited, and examples thereof include a circular shape, a quadrangular shape, a triangular shape, and a trapezoidal shape. Of these, an inverted triangle or a trapezoid whose upper side is longer than the lower side is preferable in that it approximates an increase in the effective drug absorption area of the actual human small intestine.
  • the vascular chamber is provided with a mechanism for injecting the simulated blood into the inside.
  • the infusion mechanism may include, for example, an infusion port provided in the vascular chamber and an automatic fluid delivery device.
  • the inlet may be provided on the upper surface or the side surface of the vascular chamber.
  • the automatic liquid feeding device include those provided with a tube connected to an injection port and a liquid feeding pump.
  • the liquid feed pump may be one that can keep the liquid feed rate constant or change it as planned.
  • This injection mechanism operates while adjusting the injection rate of simulated blood so that the liquid level in the gastrointestinal chamber and the liquid level in the blood vessel chamber are at the same level. This makes it possible to eliminate the effect of the difference in liquid level between the two chambers on the membrane permeation rate of the drug.
  • Sampling of simulated blood can be done manually. Alternatively, it can be performed using a mechanism for sampling simulated blood at a predetermined time. Further, the sampled simulated blood can be manually applied to a drug concentration measuring device such as a high performance liquid chromatography device to measure the drug concentration, but a mechanism for applying the sampled simulated blood to the drug concentration measuring device is provided. It can also be used. Further, it is also possible to use an automatic monitoring device that samples simulated blood at a predetermined time, applies it to a drug concentration measuring device, and measures the drug concentration by the drug concentration measuring device.
  • a drug concentration measuring device such as a high performance liquid chromatography device to measure the drug concentration
  • the method of the present invention is preferably carried out using a temperature control device that keeps the temperature of each liquid used constant.
  • the temperature control device can keep at least the temperature of the simulated gastrointestinal fluid in the gastrointestinal chamber and / or the temperature of the simulated blood in the vascular chamber constant. Since the temperature affects the elution and dissolution of the drug, it is particularly preferable that the temperature of the simulated gastrointestinal fluid in the gastrointestinal chamber can be kept constant.
  • the temperature control device include a heat medium circulation temperature control device and a heater attached to both chambers.
  • the temperature control device may also be capable of keeping the temperature of the simulated gastric juice to be injected, the concentrated simulated small intestinal juice, and the simulated blood constant.
  • a temperature control chamber accommodating all the mechanisms and members except the control device can be used.
  • the temperature of each liquid may be maintained at about 20 to 37 ° C., and above all, it may be maintained at around 37 ° C., which is the human body temperature.
  • the oral drug absorption evaluation device of the present invention has a gastrointestinal chamber and a vascular chamber, and a simulated gastric fluid pool is provided at the bottom of the gastrointestinal chamber, and the gastrointestinal chamber and the gastrointestinal chamber.
  • the vascular chamber is connected by a drug permeable connection provided above the simulated gastric pool, and the drug permeable connection is such that the drug permeable membrane is tilted with respect to the horizontal direction. It is installed in the gastrointestinal chamber to separate the gastrointestinal chamber from the vascular chamber.
  • the device is provided with an inlet and a stirrer for stirring simulated gastrointestinal fluid contained in the gastrointestinal chamber.
  • the device of the present invention can include an automatic liquid delivery device for injecting concentrated simulated small intestinal juice from the injection port of the gastrointestinal chamber and an automatic liquid delivery device for injecting simulated blood from the injection port of the vascular chamber. ..
  • the automatic liquid feeding device is as described for the method of the present invention.
  • the device of the present invention can be provided with a stirrer that agitates the simulated blood contained in the blood vessel chamber.
  • the stirrer is as described for the method of the present invention.
  • the device of the present invention can be provided with a mechanism for sampling simulated gastrointestinal fluid and / or simulated blood.
  • the sampling mechanism may automatically sample each liquid at a predetermined time (over time).
  • a mechanism for applying the sampled simulated gastrointestinal tract fluid and / or simulated blood to a drug measuring device such as a high performance liquid chromatography device can be provided.
  • a drug concentration measuring device can be provided. It is also possible to provide an automatic monitoring device that automatically samples simulated gastrointestinal fluid over time, applies it to a drug concentration measuring device, and measures the drug concentration by the drug concentration measuring device.
  • the device of the present invention preferably includes a temperature control device capable of keeping at least the temperature of the simulated gastrointestinal fluid in the gastrointestinal chamber and / or the temperature of the simulated blood in the vascular chamber constant.
  • the temperature control device may also be capable of keeping the temperature of the simulated gastric juice to be injected, the concentrated simulated small intestinal juice, and the simulated blood constant.
  • the temperature control device is as described for the method of the present invention.
  • the device comprises a gastrointestinal chamber 1 and a vascular chamber 2.
  • the lumens of both chambers are cylindrical, and the top surfaces of both chambers are open.
  • the bottom of the gastrointestinal chamber 1 constitutes a gastric juice pool 1a.
  • the height of the bottom surface of the vascular chamber is the same as the height of the upper end of the gastric fluid pool 1a.
  • the shape of the gastric juice pool 1a is substantially hemispherical here, but is not particularly limited.
  • a concentrated simulated small intestinal juice injection port 1b is provided on the upper side wall of the gastric juice pool 1a.
  • a tube 3a is connected to the concentrated simulated small intestinal juice injection port 1b so that the concentrated simulated small intestinal juice can be injected into the gastrointestinal chamber 1 using a pump 4a.
  • the gastrointestinal chamber 1 and the vascular chamber 2 communicate with each other by a drug permeable connection part 5.
  • the drug permeable connection 5 is above the gastric pool 1a.
  • a drug permeable membrane 6 is installed in the drug permeable connection portion 5, and the gastrointestinal chamber side and the vascular chamber side of the drug permeable connection portion 5 are completely separated. The drug permeable membrane 6 is installed so that its plane direction is vertical.
  • the drug permeable membrane 6 is a circular porous filter having a diameter of 47 mm (Merck Millipore, Durapore® Membrane, Type 0.22 ⁇ m PVDF Membrane).
  • the volume of the gastric juice pool 1a is 40 mL, and the volume of the gastrointestinal chamber 1 containing the gastric juice pool 1a is 100 mL.
  • a rotary stirrer 7 having stirring blades at two positions above and below is installed coaxially with the lumen of the gastrointestinal chamber. One of the stirring blades is in a position where it can stir in the gastric fluid pool, and the other is above the gastric fluid pool.
  • a magnetic stirrer 8a is installed on the outside of the bottom surface of the vascular chamber, and a magnetic stirrer bar 8b is placed on the bottom surface inside the vascular chamber.
  • a simulated blood inlet 2b is provided on the side wall of the blood vessel chamber 2.
  • a tube 3b is connected to the concentrated simulated small intestinal juice injection port 2b so that the simulated blood can be injected into the vascular chamber 2 using the pump 4b.
  • the pump 4b can control the injection rate of the simulated blood so that the height of the simulated blood in the vascular chamber 2 is the same as the height of the simulated gastrointestinal fluid in the gastrointestinal chamber 1. ..
  • This device manually samples simulated blood and simulated gastrointestinal fluid, but it may be equipped with a device that samples them over time at the required timing and a device that applies it to a drug concentration measuring device. preferable.
  • FIG. 1 An example of a method for evaluating the oral absorbability of a drug in a pharmaceutical product using the apparatus shown in FIG. 1 will be described.
  • 40 mL of simulated gastric juice during fasting is placed in a gastric juice pool, and the test preparation is added thereto for one dose.
  • the simulated gastric juice is stirred with the rotary stirrer 7 to dissolve the drug.
  • the concentrated simulated small intestinal juice is injected from the concentrated simulated small intestinal juice inlet 1b through the tube 3a at a rate of 6 mL / min.
  • the rotary stirrer 7 stirs the simulated gastrointestinal fluid produced by mixing the simulated gastric juice and the concentrated simulated small intestinal juice.
  • the simulated blood is injected into the vascular chamber 2 from the simulated blood injection port 2b via the tube 3b by driving the pump 4b so as to be at the same height as the simulated gastrointestinal fluid.
  • sampling of simulated gastrointestinal fluid was started 1 minute after the start of injection, and sampling of simulated blood was started 2 minutes after the start of injection, and then sampling was performed over time, using a high performance liquid chromatography device. The drug concentration was measured.
  • the drug concentration is plotted against time, and the slope of the graph for 45 minutes from the time when the drug concentration in the simulated blood begins to rise is used as an index of Cmax (absorption rate), and 120 minutes from the start of injection of concentrated simulated small intestinal fluid.
  • Cmax absorption rate
  • AUC absorption amount
  • the rate of drug dissolution in the gastrointestinal tract can be used as an auxiliary parameter in estimating Cmax from the rate of increase in drug concentration in simulated blood.
  • Fasted state simulated gastrointestinal fluid (pH3.0)
  • pH was adjusted to 3.0 instead of adjusting to pH 1.6 with 5 M hydrochloric acid
  • the simulated gastric juice during fasting (pH 3. 0) was prepared.
  • Pre-FaSSIF Food state simulated intestinal fluid
  • HBSS 50.028 mL Sodium bicarbonate 174.996 mg D-glucose 1250.004 mg HEPES 1125 mg Sodium taurocorate 5 mM (1092.996 mg)
  • Lecithin 1.25 mM Add the above components to an appropriate amount of McIlvaine buffer adjusted to pH 4, make a solution, and finally make up to 300 mL (step 1).
  • 40 mL of FaSSGF and 60 mL of the solution prepared in step 1 are mixed, and the pH is adjusted to 6.5 with 5 M sodium hydroxide (step 2). Record the amount of sodium hydroxide required at this time.
  • Pre-FeSSIF Pre-Fed state simulated intestinal fluid
  • Sodium bicarbonate 174.996 mg D-glucose 1250.004 mg
  • HEPES 1125 mg
  • Lecithin 6.25 mM Add the above components to an appropriate amount of McIlvaine buffer adjusted to pH 4, make a solution, and finally make up to 300 mL (step 1).
  • 40 mL of FeSSGF and 60 mL of the solution prepared in step 1 are mixed, and the pH is adjusted to 6.5 with 5 M sodium hydroxide. Record the amount of sodium hydroxide required at this time (step 2).
  • Empirical data 1 (Effect of rotation speed of rotary stirrer in gastrointestinal chamber) 40 mL (pH 1.6) of simulated gastric juice during fasting and 20 mg of Seroken tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG. While stirring with the rotary stirrer 7, the fasting simulated small intestinal juice was injected into the gastrointestinal chamber 1 at a flow rate of 6 mL / min for 10 minutes to obtain 100 mL of the fasting simulated small intestinal juice having a pH of 6.5. The stirring speed by the rotary stirrer 7 was set to 50 rpm, 100 rpm, or 200 rpm. Octanol, which is simulated blood, was injected into the vascular chamber 2 at a flow rate of 2.5 mL / min over 10 minutes to obtain a final volume of 25 mL.
  • Concentrated simulated small intestinal juice is injected into the gastrointestinal chamber. Simulated gastrointestinal juice and simulated blood are sampled over time for 120 minutes from 1 minute after the start of injection, and the concentration of metprorol tartrate, which is the active ingredient of Seroken tablets, is analyzed by high performance liquid chromatography. Measured by chromatography. Furthermore, the elution rate of metoprolol tartrate from the tablets at each time point (percentage of the amount of metoprolol tartrate in the simulated gastrointestinal tract fluid at each time point to the amount of metoprolol tartrate in one tablet) (%) was calculated. In addition, the membrane permeability of metoprolol tartrate at each time point (percentage of the amount of metoprolol tartrate in simulated blood at each time point to the amount of metoprolol tartrate in one tablet) (%) was calculated.
  • Empirical data 2 (Comparison between formulations of telmisartan-containing tablets) 40 mL (pH 1.6) of simulated gastric juice during fasting or 40 mL (pH 5.0) of simulated gastric juice during feeding and 20 mg of telmisartan tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG.
  • the concentrated simulated small intestinal juice during fasting was injected into the gastrointestinal chamber 1 at a flow rate of 6 mL / min for 10 minutes while stirring with the rotary stirrer 7, so that the pH was 6.5 during fasting.
  • the simulated small intestinal juice was 100 mL.
  • pH 6.5 was obtained by injecting simulated small intestinal juice during feeding into the gastrointestinal chamber 1 at a flow rate of 2 mL / min for 30 minutes while stirring with a rotary stirrer 7.
  • the simulated small intestinal juice at the time of feeding was 100 mL.
  • the stirring speed by the rotary stirrer 7 was set to 50 rpm.
  • octanol which is simulated blood, was injected into the vascular chamber 2 at a flow rate of 2.5 mL / min over 10 minutes to give a final volume of 25 mL.
  • octanol was injected into the vascular chamber 2 at a flow rate of 0.833 mL / min over 30 minutes to give a final volume of 25 mL.
  • a preparation manufactured by Boehringer Ingelheim Co., Ltd. was used as a standard preparation, and preparations A and B having different additives were used for comparison.
  • Concentrated simulated small intestinal juice is injected into the gastrointestinal chamber From 1 minute to 120 minutes, simulated gastrointestinal juice and simulated blood are sampled over time, and the concentration of thermisartan, which is the active ingredient of thermisartan tablets, is measured by high performance liquid chromatography. It was measured. Furthermore, the elution rate of telmisartan from the tablets at each time point (percentage of the amount of telmisartan in the simulated gastrointestinal fluid at each time point to the amount of telmisartan in one tablet) (%) was calculated. In addition, the membrane permeability of telmisartan at each time point (percentage of the amount of telmisartan in simulated blood at each time point to the amount of telmisartan in one tablet) (%) was calculated.
  • Empirical data 3 Comparison between oral absorption evaluation results of drug X and clinical trial results
  • the elution rate and membrane permeability of drug X from the drug X-containing preparation were measured.
  • the drug X-containing preparation the standard preparation and the preparations A and B having different additives were used.
  • the drug X concentration in plasma was measured for 12 hours.
  • the standard preparation and the test preparation were administered to the same subject with a drug holiday of 3 days or more.
  • the subject was in a sitting position from the start of administration to 4 hours after administration, and was not in a standing or lying position except at the time of examination and in the toilet.
  • the subject's drinking water was controlled from 1 hour before administration of each preparation to 4 hours after administration, except for drinking water for taking the preparation.
  • the eating conditions were a high-fat diet (900 kcal or more, and the ratio of lipid energy to total energy was 35% or more) within 20 minutes, and the preparation was administered within 10 minutes after eating.
  • Figure 5 shows the results of the BE test in humans between the standard formulation under fasting conditions and formulation A.
  • Fig. 6 shows the results of the dissolution rate and membrane permeability of drug X from the standard preparation and the preparation A under the feeding conditions.
  • the plasma concentration of drug X in the human BE test was lower for the standard preparation than the standard preparation, and the dissolution rate and the membrane permeability were lower than the standard preparation for the preparation A.
  • FIG. 7 shows the results of the BE test in humans between the standard preparation under the feeding conditions and the preparation A.
  • Fig. 8 shows the results of the elution rate and membrane permeability of drug X from the standard preparation and the preparation A under the feeding conditions.
  • the plasma concentration of drug X in the human BE test was lower for the standard preparation than the standard preparation, and the dissolution rate and the membrane permeability were lower than the standard preparation for the preparation A.
  • the difference in plasma drug X concentration between the standard preparation and the preparation A was larger during the fasting than during the fasting, which is consistent with the dissolution rate at the time of fasting. In comparison, the difference in dissolution rate between the standard preparation and the preparation A was larger when eating.
  • Figure 9 shows the results of the BE test in humans between the standard formulation under fasting conditions and formulation B.
  • the results of the elution rate and membrane permeability of the drug X from the standard preparation and the preparation B under the fasting condition are shown in FIG.
  • the plasma concentration of drug X in the human BE study was higher with the standard preparation immediately after administration, but was higher with the preparation B thereafter.
  • the dissolution rate and the membrane permeability of the preparation B were higher than those of the standard preparation.
  • the elution rate and membrane permeability results were close to those of the human BE test.
  • Figure 11 shows the results of the BE test in humans between the standard preparation under the feeding conditions and the preparation B.
  • the results of the dissolution rate and membrane permeability of drug X from the standard preparation and the preparation B under the feeding conditions are shown in FIG.
  • the plasma concentration of drug X in the human BE study was higher for the preparation B than for the standard preparation.
  • the dissolution rate was slightly higher in the standard preparation
  • the membrane permeability was slightly higher in the preparation B.
  • the elution rate and membrane permeability results were close to those of the human BE test.
  • Empirical data 4 (Effect of gastric emptying rate) 40 mL (pH 1.6) of simulated gastric juice during fasting and one 25 mg of Persantin tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG. While stirring with the rotary stirrer 7, the fasting concentrated simulated small intestinal juice is placed in the gastrointestinal chamber 1 over 10 minutes (flow rate 6 mL / min), 20 minutes (flow rate 3 mL / min), or 30 minutes (flow rate 2 mL / min). By injecting into, 100 mL of simulated small intestinal juice at the time of fasting at pH 6.5 was prepared.
  • the stirring speed by the rotary stirrer 7 was set to 50 rpm, 100 rpm, or 200 rpm.
  • Octanol which is simulated blood, was injected into the vascular chamber 2 over 10 minutes (2.5 mL / min), 20 minutes (1.25 mL / min), or 30 minutes (0.83 mL / min) to obtain a final volume of 25 mL. ..
  • Concentrated simulated intestinal juice is injected into the gastrointestinal chamber From 1 minute to 120 minutes, simulated gastrointestinal juice and simulated blood are sampled over time, and the concentration of dipyridamole, the active ingredient of Persantin tablets, is measured by high performance liquid chromatography. It was measured. Furthermore, the elution rate of dipyridamole from the tablets at each time point (percentage of the amount of dipyridamole in the simulated gastrointestinal fluid at each time point to the amount of dipyridamole in one tablet) (%) was calculated. In addition, the membrane permeability of dipyridamole at each time point (percentage of the amount of dipyridamole in simulated blood at each time point to the amount of dipyridamole in one tablet) (%) was calculated.
  • the results are shown in FIGS. 13, 14, and 15.
  • the time taken to change the pH of the simulated gastrointestinal fluid in the gastrointestinal chamber from pH 1.6 to 6.5 was 10 minutes in FIG. 13, 20 minutes in FIG. 14, and 30 minutes in FIG.
  • the pH change rate is changed, the drug elution rate and the membrane permeability are changed. Further, the elution rate and membrane permeability of the drug are affected by the stirring rate, but the degree of influence of the stirring rate differs depending on the pH change rate. Since the method and apparatus of the present invention can arbitrarily set the stirring rate and the change rate of pH of the simulated gastrointestinal fluid in the gastrointestinal chamber, oral absorption in various humans with different gastrointestinal movements and gastric emptying rates. It can be seen that the sex can be evaluated accurately.
  • Empirical data 5 (Effect of gastric pH) 40 mL (pH 3.0) of simulated gastric juice during fasting and one 25 mg of Persantin tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG. While stirring with a rotary stirrer 7 at a stirring speed of 100 rpm, the fasting concentrated simulated small intestinal juice was applied for 10 minutes (flow rate 6 mL / min), 20 minutes (flow rate 3 mL / min), or 30 minutes (flow rate 2 mL / min). By injecting into the gastrointestinal chamber 1, 100 mL of simulated small intestinal juice at the time of fasting at pH 6.5 was obtained.
  • Octanol which is simulated blood, was injected into the vascular chamber 2 over 10 minutes (2.5 mL / min), 20 minutes (1.25 mL / min), or 30 minutes (0.83 mL / min) to obtain a final volume of 25 mL. ..
  • Concentrated simulated intestinal juice is injected into the gastrointestinal chamber From 1 minute to 120 minutes, simulated gastrointestinal juice and simulated blood are sampled over time, and the concentration of dipyridamole, the active ingredient of Persantin tablets, is measured by high performance liquid chromatography. It was measured. Furthermore, the elution rate of dipyridamole from the tablets at each time point (percentage of the amount of dipyridamole in the simulated gastrointestinal fluid at each time point to the amount of dipyridamole in one tablet) (%) was calculated. In addition, the membrane permeability of dipyridamole at each time point (percentage of the amount of dipyridamole in simulated blood at each time point to the amount of dipyridamole in one tablet) (%) was calculated.
  • the results are shown in Fig. 16.
  • the drug elution rate and membrane permeability are different from the results shown in FIGS. 13 to 15 when the pH in the gastrointestinal chamber 1 at the start of the test was 1.6. Further, as described above, the elution rate and the membrane permeability of the drug are affected by the pH change rate, but the degree of influence of the pH change rate is also different from the results shown in FIGS. 13 to 15. Since the gastric pH differs depending on the human even during the same fasting, it can be seen that the method and apparatus of the present invention can accurately evaluate the oral absorption in various humans.
  • the method and apparatus of the present invention can accurately predict the absorption of an orally administered preparation in humans, the burden of the human BE test performed when developing a generic drug or changing the design of a preparation is reduced. It is also very useful in that it can evaluate oral absorbability under various conditions.

Abstract

A method for evaluating the oral absorbability of a drug according to the present invention, said method comprising putting the drug or a drug-containing preparation into a simulated gastrointestinal fluid, allowing the drug in the simulated gastrointestinal fluid to permeate into a simulated blood through a drug-permeable membrane, and then measuring the drug concentration in the simulated gastrointestinal fluid and/or the simulated blood to thereby evaluate the oral absorbability of the drug or the drug in the preparation after oral administration, characterized in that the conditions of the simulated gastrointestinal fluid are changed with time so as to mimic the conditions in the stomach and then the conditions in the small intestine and, at the same time, the contact area between the simulated gastrointestinal fluid and the drug-permeable membrane is enlarged with time. According to this method, the absorbability of a drug into the blood circulating through the whole body, after the oral administration of the drug or a drug-containing preparation to a human being, can be evaluated at a high accuracy.

Description

薬物の経口吸収性評価方法及び装置Oral absorption evaluation method and device for drugs
 本発明は、経口投与される薬物の消化管からの吸収性を精度よく評価する方法及び装置に関する。 The present invention relates to a method and an apparatus for accurately evaluating the absorption of an orally administered drug from the digestive tract.
 同じ薬物を含む二つの製剤が生物学的に同等であり、投与後同じ治療効果を期待できることを示すための試験 (生物学的同等性試験、以下、「BE(Bioequivalence)試験」ということもある。)は、後発医薬品の認可、あるいは新規医薬品の臨床試験時の製剤変更などに際して実施され、特に後発医薬品開発では最重要なプロセスである。新規に調製された製剤である被験製剤が既存の製剤である標準製剤と生物学的に同等であることを示す、即ちBE試験に適合するためには、経口剤については、製剤投与後の薬物の血中濃度を経時的に測定し、薬物の血中濃度推移から算出した最高血中濃度(Cmax)、及び血中濃度-時間曲線下面積(AUC)の製剤間差が一定の範囲内にあることが要求される。Cmaxは薬物の吸収速度の指標であり、AUCは薬物の吸収量の指標である。 A test to show that two formulations containing the same drug are bioequivalent and the same therapeutic effect can be expected after administration (bioequivalence test, hereinafter referred to as "BE (Bioequivalence) test"). .) Is carried out when approving a generic drug or changing the formulation at the time of clinical trial of a new drug, and is the most important process especially in the development of a generic drug. In order to show that the test preparation, which is a newly prepared preparation, is bioequivalent to the standard preparation, which is an existing preparation, that is, to meet the BE test, for oral preparations, the drug after administration of the preparation The difference between the maximum blood concentration (Cmax) and the area under the blood concentration-time curve (AUC) calculated from the transition of the blood concentration of the drug by measuring the blood concentration of the drug over time is within a certain range. It is required to be. Cmax is an index of drug absorption rate, and AUC is an index of drug absorption.
 我が国における経口剤のBE試験では、先ず、試験製剤及び標準製剤からの薬物の溶出性について、in vitroでの検証を行い、そこで溶出が類似と判断された場合にヒトにおける臨床試験を実施する。ヒトBE試験の前に製剤からの薬物溶出性を検証する方法として、パドル法、回転バスケット法、フロースルーセル法などが第17改正日本薬局方に定められている。しかし、これらの試験法は実際の消化管内の生理状態を反映しているとは言い難く、また薬物の溶出性のみの評価であることから、全身循環血中への吸収性を含めた高い精度での検証は難しい。 In the BE test of oral preparations in Japan, first, the dissolution property of the drug from the test preparation and the standard preparation is verified in vitro, and if the dissolution is judged to be similar, a clinical test in humans is carried out. The paddle method, rotary basket method, flow-through cell method, etc. are stipulated in the 17th revised Japanese Pharmacopoeia as methods for verifying drug elution from the drug before the human BE test. However, it is hard to say that these test methods reflect the actual physiological state in the gastrointestinal tract, and since they only evaluate the dissolution of the drug, they are highly accurate including the absorption into the systemic circulation blood. Verification is difficult.
 経口投与された固形製剤が血液中に吸収されるプロセスとして、まず製剤は胃に滞留し、そこで製剤の崩壊、製剤からの薬物の溶出が始まる。製剤は薬物を溶出しながら胃から小腸へと移行する。溶出した薬物も同様に移行しながら胃・小腸内の溶液中に溶解し吸収される。一般に薬物は胃からはほとんど吸収されないため、薬物が小腸へ移行した時点から吸収が始まる。この時、胃から小腸への移行に伴って、溶液のpHが酸性pHから中性pHへと変化するため、溶液中の薬物はpHに従って溶解あるいは再析出する。小腸から吸収される薬物は、小腸内の溶液中に溶解した薬物のみであるため、消化管内での溶解・析出のプロファイルは薬物の吸収速度および吸収量に大きく影響する。さらに、小腸からの吸収に関わる有効な小腸粘膜の表面積は、溶液の移行に伴って経時的に増加するため、特に吸収開始直後の薬物吸収速度に影響を及ぼす。
 従って、in vitroにおいて製剤間での薬物吸収速度および吸収量の違いを精度値良く評価するためには、上記の様なin vivoでの製剤の消化管内挙動を再現可能なシステムの構築が必要である。
As a process in which an orally administered solid preparation is absorbed into the blood, the preparation first stays in the stomach, where the disintegration of the preparation and the elution of the drug from the preparation begin. The drug moves from the stomach to the small intestine while eluting the drug. The eluted drug is also dissolved and absorbed in the solution in the stomach and small intestine while migrating in the same manner. Generally, the drug is hardly absorbed from the stomach, so absorption begins when the drug is transferred to the small intestine. At this time, the pH of the solution changes from acidic pH to neutral pH with the transition from the stomach to the small intestine, so that the drug in the solution dissolves or reprecipitates according to the pH. Since the only drug absorbed from the small intestine is the drug dissolved in the solution in the small intestine, the profile of dissolution / precipitation in the gastrointestinal tract greatly affects the absorption rate and amount of the drug. Furthermore, the effective surface area of the small intestinal mucosa involved in absorption from the small intestine increases with time as the solution is transferred, which affects the drug absorption rate particularly immediately after the start of absorption.
Therefore, in order to accurately evaluate the difference in drug absorption rate and absorption amount between pharmaceutical products in vitro, it is necessary to construct a system that can reproduce the above-mentioned in vivo behavior of the pharmaceutical product in the gastrointestinal tract. be.
 従来より、in vivoでの製剤の消化管内挙動の予測を目的としたin vitroの装置が種々開発されている。
 例えば、非特許文献1は、送液ポンプを用いて、胃、十二指腸、空腸を模した複数のベッセルに薬物含有液を順に送液し、それに伴う薬物の溶出、溶解、析出などの経時的変化を観察するシステム((Gastrointestinal Simulator (GIS))を記載している。
 しかし、GISは、ベッセル間を接続するチューブがヒトの体内には存在しないものであるため、チューブ内の固形の製剤粒子の移動効率の差によって製剤間差が生じる可能性があり、in vivoにおける製剤の挙動を正確に再現できない。例えば、送液中の製剤粒子の機械的粉砕の程度や移動速度の製剤間の違いが評価結果に影響を与える。また、不溶性粒子を移動させ難い点でヒト消化管と異なる。さらに、GISは膜透過のプロセスを含まないため、実際の吸収量に関する評価はできない。また、ベッセル中の液の液性や移動を制御するためのコンピュータシステムを含めて、複雑かつ高額なシステム構築が必要である。また、スループットが遅いため、多くの被験製剤を評価するためには相当の時間を要する。
Conventionally, various in vitro devices have been developed for the purpose of predicting the in vivo behavior of a pharmaceutical product in vivo.
For example, Non-Patent Document 1 uses a liquid feeding pump to sequentially feed a drug-containing liquid to a plurality of vessels simulating the stomach, duodenum, and jejunum, and the accompanying changes over time such as dissolution, dissolution, and precipitation of the drug. The system for observing ((Gastrointestinal Simulator (GIS))) is described.
However, in GIS, since the tube connecting the vessels does not exist in the human body, the difference in the migration efficiency of the solid formulation particles in the tube may cause the difference between the formulations, and in vivo. The behavior of the drug cannot be accurately reproduced. For example, the degree of mechanical crushing of the pharmaceutical particles during liquid feeding and the difference in the moving speed between the pharmaceuticals affect the evaluation result. It also differs from the human gastrointestinal tract in that it is difficult to move insoluble particles. Furthermore, since GIS does not include the process of membrane permeation, it is not possible to evaluate the actual amount of absorption. In addition, it is necessary to construct a complicated and expensive system including a computer system for controlling the liquid property and movement of the liquid in the vessel. In addition, due to the slow throughput, it takes a considerable amount of time to evaluate many test products.
 また、非特許文献2は、消化管チャンバーと血管チャンバーとの間を、小腸上皮細胞モデル膜を介して接続した装置を用い、消化管チャンバー内の溶液に被験薬物を投入して撹拌し、小腸上皮細胞モデル膜を透過して血管チャンバー内の溶液に移行した薬物の濃度を測定するシステム(Dissolution Permeation System (D/P system))を記載している。
 D/P systemは、膜透過した薬物の濃度を測定するため、薬物吸収量の評価には適している。しかし、D/P systemでは、消化管チャンバー内の溶液として胃内を模した溶液又は小腸内を模した溶液といった一定の組成の溶液を用いるため、薬物が消化管内を移動することによる溶液組成やpHなどの環境の変化を再現できない。また、薬物の移行に伴う小腸粘膜の薬物吸収有効面積の増加を再現できない。従って、実際のヒトin vivoにおける薬物の溶出、溶解、及び吸収の経時的な推移を再現することはできない。特に、吸収速度(Cmax)の製剤間での違いに関する精度の高い評価は難しい。
In Non-Patent Document 2, the test drug is added to the solution in the gastrointestinal chamber and stirred by using a device in which the gastrointestinal chamber and the blood vessel chamber are connected via a small intestinal epithelial cell model membrane, and the small intestine is stirred. A system (Dissolution Permeation System (D / P system)) for measuring the concentration of a drug that has permeated the epithelial cell model membrane and transferred to the solution in the vascular chamber is described.
Since the D / P system measures the concentration of the drug that has permeated the membrane, it is suitable for evaluating the amount of drug absorbed. However, since the D / P system uses a solution with a certain composition such as a solution that imitates the stomach or a solution that imitates the small intestine as the solution in the gastrointestinal chamber, the solution composition due to the movement of the drug in the gastrointestinal tract It is not possible to reproduce changes in the environment such as pH. In addition, the increase in the effective drug absorption area of the small intestinal mucosa due to drug transfer cannot be reproduced. Therefore, it is not possible to reproduce the time course of drug elution, dissolution, and absorption in actual human in vivo. In particular, it is difficult to accurately evaluate the difference in absorption rate (Cmax) between formulations.
 また、特許文献1は、回転するパドルを内部に設置した消化管ベッセル中に、チャンバー壁の一部を消化管モデル膜で構成した血管チャンバーを収容した装置を用い、消化管ベッセル内の溶液に被験製剤を投入して撹拌し、消化管モデル膜を透過して血管チャンバー内の溶液に移行した薬物の濃度を測定するシステム(In vitro Dissolution Absorption System 2 (IDAS2))を開示している。
 IDAS2は、製剤から薬物が溶出した後、膜透過した薬物の濃度を測定するため、薬物吸収量の評価には適している。しかし、IDAS2では、消化管ベッセル内の溶液のpHを、胃内を模したpHから小腸内を模したpHの2段階に変化させるため、製剤の胃から小腸への移行速度、及びそれに伴う経時的な環境溶液pHの変化を再現できない。また、薬物の移行に伴う小腸粘膜の薬物吸収有効面積の増加を再現できない。従って、実際のヒトin vivoにおける薬物の溶出、溶解、及び吸収の経時的な推移を再現することはできない。特に、吸収速度(Cmax)の製剤間での違いに関する精度の高い評価は難しい。また、GIS同様、チャンバーの設置を行うための大掛かりな装置が必要であり、汎用性に乏しい。
Further, Patent Document 1 uses a device in which a vascular chamber in which a part of the chamber wall is composed of a gastrointestinal model membrane is housed in a gastrointestinal vessel in which a rotating paddle is installed, and is used as a solution in the gastrointestinal vessel. We disclose a system (In vitro Dissolution Absorption System 2 (IDAS2)) that measures the concentration of a drug that has passed through a gastrointestinal model membrane and transferred to a solution in a vascular chamber by adding and stirring the test product.
IDAS2 is suitable for evaluating the amount of drug absorbed because it measures the concentration of the drug that has permeated the membrane after the drug has been eluted from the drug. However, in IDAS2, the pH of the solution in the gastrointestinal vessel is changed from the pH that imitates the stomach to the pH that imitates the small intestine. The change in pH of the environmental solution cannot be reproduced. In addition, the increase in the effective drug absorption area of the small intestinal mucosa due to drug transfer cannot be reproduced. Therefore, it is not possible to reproduce the time course of drug elution, dissolution, and absorption in actual human in vivo. In particular, it is difficult to accurately evaluate the difference in absorption rate (Cmax) between formulations. Also, like GIS, a large-scale device for installing the chamber is required, and it lacks versatility.
 さらに、現在、我が国の生物学的同等性試験ガイドラインは改定が進められており、今後は絶食時のみでなく、食後でのヒト同等性試験が要求される見通しである。絶食時と摂食時とでは消化管内の液組成、pHや移動速度など多くの生理的要因が異なるため、所望の条件下で製剤からの薬物の溶出、溶解、吸収を評価できるシステムが求められる。
 従来のシステムの難点を解消した、簡便かつ精度良く経口製剤の生物学的同等性を評価できるin vitroシステムの開発は、今後の医薬品開発において極めて重要な位置づけとなる。
Furthermore, the bioequivalence test guidelines in Japan are currently being revised, and it is expected that human equivalence tests will be required not only during fasting but also after meals. Since many physiological factors such as liquid composition in the gastrointestinal tract, pH and transfer rate differ between fasting and feeding, a system capable of evaluating elution, dissolution and absorption of the drug from the pharmaceutical product under desired conditions is required. ..
The development of an in vitro system that solves the difficulties of conventional systems and can evaluate the bioequivalence of oral preparations easily and accurately will be extremely important in future drug development.
特許第6386193号Patent No. 6386193
 本発明は、薬物又は薬物含有製剤をヒトに経口投与した後の、薬物の全身循環血中への吸収性(吸収速度及び吸収量)を精度よく評価できる方法及び装置を提供することを課題とする。 An object of the present invention is to provide a method and an apparatus capable of accurately evaluating the absorbability (absorption rate and absorption amount) of a drug into systemic circulating blood after oral administration of a drug or a drug-containing preparation to humans. do.
 本発明者は、上記課題を解決するために研究を重ね、薬物又は薬物含有製剤を模擬消化管液(消化管内の溶液の組成やpH等を模して調整した溶液)に投入し、模擬消化管液中の薬物を薬物透過性膜を介して模擬血液中に透過させ、模擬消化管液及び/又は模擬血液中(血液の組成やpHを模して調整した溶液あるいはオクタノールなどの溶媒で、血管側チャンバー内に注入して用いる溶液)の薬物濃度を測定することにより、経口投与した薬物又は製剤中の薬物の経口吸収性を評価する方法において、薬物又は薬物含有製剤を投入するときの模擬消化管液を模擬胃液(胃内の溶液の組成やpH等を模して調整した溶液)とし、胃内から小腸内への環境変化を模すために、模擬消化管液の液性、組成、容量を模擬胃液から模擬小腸液(小腸内の溶液の組成やpH等を模して調整した溶液)へと任意の速度で変化させると共に、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させる方法が上記課題を解決できることを見出した。 The present inventor repeated research in order to solve the above problems, and put a drug or a drug-containing preparation into a simulated gastrointestinal solution (a solution adjusted by imitating the composition and pH of the solution in the digestive tract) to perform simulated digestion. The drug in the tubule is permeated into the simulated blood through the drug permeable membrane, and in the simulated gastrointestinal tract fluid and / or in the simulated blood (a solution adjusted to imitate the composition and pH of the blood or a solvent such as octanol). In a method of evaluating the oral absorbability of a drug or a drug contained in an orally administered drug or a preparation by measuring the drug concentration of the solution (solution used by injecting into the blood vessel side chamber), a simulation of the injection of the drug or the drug-containing preparation is performed. The gastrointestinal fluid is used as a simulated gastric fluid (a solution adjusted by imitating the composition and pH of the solution in the stomach), and the liquidity and composition of the simulated gastrointestinal fluid are used to simulate the environmental change from the stomach to the small intestine. , The volume is changed from simulated gastric fluid to simulated small intestinal fluid (solution adjusted by imitating the composition and pH of the solution in the small intestine) at an arbitrary speed, and the contact area between the simulated gastrointestinal fluid and the drug permeable membrane. It has been found that a method of increasing the amount of water over time can solve the above-mentioned problems.
 上記方法では、経時的に、模擬消化管液の液性、組成、容量などの状態を胃内から小腸内へと変化させることにより、実際にヒトに投与された薬物がおかれる消化管内環境を再現することができる。従って、ヒト消化管内での製剤の崩壊、薬物の溶出及び溶解を精度よく再現することができる。
 また、胃から小腸内に移動した薬物は、小腸内を移動するに従い、小腸粘膜との接触面積が大きくなり、その分薬物吸収速度が増大する。上記方法では、経時的に、模擬消化管液と薬物透過性膜との接触面積を増大させることにより、薬物の吸収量(AUC)だけでなく、薬物の吸収速度(Cmax)を評価することができる。
In the above method, the state of the simulated gastrointestinal fluid such as liquidity, composition, and volume is changed from the stomach to the small intestine over time to create an environment in the gastrointestinal tract where the drug actually administered to humans is placed. It can be reproduced. Therefore, the disintegration of the pharmaceutical product, the elution and dissolution of the drug in the human gastrointestinal tract can be accurately reproduced.
In addition, the drug that has moved from the stomach to the small intestine has a larger contact area with the mucous membrane of the small intestine as it moves in the small intestine, and the drug absorption rate increases accordingly. In the above method, not only the absorption amount of the drug (AUC) but also the absorption rate of the drug (Cmax) can be evaluated by increasing the contact area between the simulated gastrointestinal fluid and the drug permeable membrane over time. can.
 本発明は、上記知見に基づき完成されたものであり、下記〔1〕~〔10〕を提供する。
〔1〕 薬物又は薬物含有製剤を模擬消化管液に投入し、模擬消化管液中の薬物を薬物透過性膜を介して模擬血液中に透過させ、模擬消化管液及び/又は模擬血液中の薬物濃度を測定することにより、経口投与した薬物又は製剤中の薬物の経口吸収性を評価する方法であって、模擬消化管液の状態を胃内から小腸内へと経時的に変化させると共に、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させることを特徴とする、薬物経口吸収性評価方法。
〔2〕 模擬消化管液を収容する消化管チャンバーであって、底部に模擬胃液溜まりが設けられ、濃縮模擬小腸液を内部に注入する機構を備えた消化管チャンバーと、消化管チャンバー内を撹拌する機構を用いて、模擬胃液溜まりに模擬胃液と薬物又は薬物含有製剤を投入した後、濃縮模擬小腸液注入機構により濃縮模擬小腸液を模擬胃液に注入しながら、生成する模擬消化管液を撹拌することにより模擬消化管液の状態を胃内から小腸内へと経時的に変化させる、〔1〕に記載の方法。
〔3〕 模擬胃液溜まりより上部に位置する薬物透過性接続部で消化管チャンバーと接続された、模擬血液を収容する血管チャンバーを用い、薬物透過性接続部には、薬物透過性膜がその面方向が水平方向に対して傾きを持つように設置されて消化管チャンバーと血管チャンバーとを区分するようにしておき、濃縮模擬小腸液注入機構により濃縮模擬小腸液を模擬胃液に注入することにより、生成する模擬消化管液の液面を上昇させて、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させる、〔2〕に記載の方法。
〔4〕 血管チャンバーが模擬血液を内部に注入する機構を備え、この注入機構を用いて、消化管チャンバー内の液面の高さに血管チャンバー内の液面の高さを一致させるように、模擬血液を血管チャンバー内に注入する、〔3〕に記載の方法。
〔5〕 模擬消化管液中の薬物濃度及び/又は模擬血液中の薬物濃度を経時的に測定し、模擬消化管液の初期薬物濃度上昇速度及び/又は模擬血液の初期薬物濃度上昇速度と模擬血液の薬物濃度-時間曲線下面積を算出することで、薬物の経口吸収性を評価する、〔1〕~〔4〕の何れかに記載の方法。
〔6〕 経時的に変化を受ける模擬消化管液の状態が、pH、組成、及び容量である、〔1〕~〔5〕の何れかに記載の方法。
〔7〕 消化管チャンバーと血管チャンバーを有し、消化管チャンバーの底部には模擬胃液溜まりが設けられており、消化管チャンバーと血管チャンバーは、模擬胃液溜まりより上部に設けられた、薬物透過性接続部で接続されており、薬物透過性接続部は、薬物透過性膜が、その面方向が水平方向に対して傾きを持つように設置されて、消化管チャンバーと血管チャンバーとを区分するものであり、消化管チャンバーは、濃縮模擬小腸液を内部に注入する注入口を備え、血管チャンバーは、模擬血液を内部に注入する注入口を備え、消化管チャンバー内に収容される模擬消化管液を撹拌する撹拌機を備えることを特徴とする、薬物経口吸収性評価装置。
〔8〕 濃縮模擬小腸液を消化管チャンバーの注入口から注入するための自動送液装置、及び/又は模擬血液を血管チャンバーの注入口から注入するための自動送液装置を備える、〔7〕に記載の装置。
〔9〕 (a)模擬消化管液及び/若しくは模擬血液を自動でサンプリングする装置、(b)模擬消化管液及び/若しくは模擬血液を自動でサンプリングして自動で薬物測定装置にアプライする装置、又は(c)模擬消化管液及び/若しくは模擬血液を自動でサンプリングして自動で薬物測定装置にアプライし薬物濃度測定装置により自動で薬物濃度を測定する自動モニタリング装置を備える、〔7〕又は〔8〕に記載の装置。
〔10〕 少なくとも消化管チャンバー内の模擬消化管液の温度及び/又は血管チャンバー内の模擬血液の温度を一定に保持できる温度調節装置を備える、〔7〕~〔9〕の何れかに記載の装置。
The present invention has been completed based on the above findings, and provides the following [1] to [10].
[1] A drug or a drug-containing preparation is put into a simulated gastrointestinal fluid, and the drug in the simulated gastrointestinal fluid is permeated into the simulated blood through a drug permeable membrane, and the simulated gastrointestinal fluid and / or the simulated blood is used. It is a method of evaluating the oral absorbability of an orally administered drug or a drug in a preparation by measuring the drug concentration, in which the state of simulated gastrointestinal fluid is changed from the stomach to the small intestine over time, and at the same time. A method for evaluating oral drug absorption, which comprises increasing the contact area between a simulated gastrointestinal fluid and a drug permeable membrane over time.
[2] A gastrointestinal chamber for accommodating simulated gastrointestinal fluid, which is provided with a simulated gastrointestinal fluid pool at the bottom and has a mechanism for injecting concentrated simulated small intestinal fluid inside, and the inside of the gastrointestinal chamber is stirred. After pouring the simulated gastric fluid and the drug or drug-containing preparation into the simulated gastric fluid pool, the simulated gastrointestinal fluid to be generated is stirred while injecting the concentrated simulated small intestinal fluid into the simulated gastric fluid by the concentrated simulated small intestinal fluid injection mechanism. The method according to [1], wherein the state of the simulated gastrointestinal tract fluid is changed from the stomach to the small intestine over time.
[3] A vascular chamber for accommodating simulated blood, which is connected to the gastrointestinal chamber at a drug-permeable connection located above the simulated gastric fluid pool, is used, and a drug-permeable membrane is formed on the surface of the drug-permeable connection. The gastrointestinal chamber and the vascular chamber are separated from each other by being installed so that the direction is inclined with respect to the horizontal direction, and the concentrated simulated small intestinal juice is injected into the simulated gastric juice by the concentrated simulated small intestinal juice injection mechanism. The method according to [2], wherein the liquid level of the generated simulated gastrointestinal fluid is raised to increase the contact area between the simulated gastrointestinal juice and the drug permeable membrane over time.
[4] The vascular chamber is provided with a mechanism for injecting simulated blood into the inside, and by using this infusion mechanism, the height of the liquid level in the gastrointestinal chamber is matched with the height of the liquid level in the vascular chamber. The method according to [3], wherein the simulated blood is injected into the vascular chamber.
[5] The drug concentration in the simulated gastrointestinal fluid and / or the drug concentration in the simulated blood is measured over time to simulate the initial drug concentration increase rate in the simulated gastrointestinal fluid and / or the initial drug concentration increase rate in the simulated blood. The method according to any one of [1] to [4], wherein the oral absorbability of a drug is evaluated by calculating the area under the drug concentration-time curve of blood.
[6] The method according to any one of [1] to [5], wherein the state of the simulated gastrointestinal fluid that undergoes changes over time is pH, composition, and volume.
[7] It has a gastrointestinal tract chamber and a vascular chamber, and a simulated gastrointestinal fluid pool is provided at the bottom of the gastrointestinal tract chamber. It is connected by a connection part, and the drug permeable connection part is installed so that the surface direction of the drug permeable membrane is inclined with respect to the horizontal direction to separate the gastrointestinal tract chamber and the vascular chamber. The gastrointestinal chamber is provided with an inlet for injecting concentrated simulated small intestinal fluid, and the vascular chamber is provided with an inlet for injecting simulated blood inside, and the simulated gastrointestinal fluid is housed in the gastrointestinal chamber. A drug oral absorption evaluation device, which comprises a stirrer for agitating.
[8] An automatic liquid feeding device for injecting concentrated simulated small intestinal juice from the injection port of the gastrointestinal chamber and / or an automatic liquid feeding device for injecting simulated blood from the injection port of the vascular chamber is provided [7]. The device described in.
[9] (a) A device that automatically samples simulated gastrointestinal fluid and / or simulated blood, (b) A device that automatically samples simulated gastrointestinal fluid and / or simulated blood and automatically applies it to a drug measuring device. Or (c) equipped with an automatic monitoring device that automatically samples simulated gastrointestinal fluid and / or simulated blood, automatically applies it to a drug measuring device, and automatically measures the drug concentration by the drug concentration measuring device, [7] or [ 8].
[10] 7. Device.
 本発明の方法は、薬物又は薬物含有製剤を移動させることなく、経口投与後の薬物又は薬物含有製剤がおかれる環境(模擬消化管液)を胃内から小腸内へと徐々に変化させることにより、ヒトに経口投与された場合の製剤の崩壊、薬物の溶出や溶解を精度よく再現することができる。 The method of the present invention is by gradually changing the environment (simulated gastrointestinal fluid) in which the drug or the drug-containing preparation is placed after oral administration from the stomach to the small intestine without moving the drug or the drug-containing preparation. , It is possible to accurately reproduce the disintegration of the pharmaceutical product and the elution and dissolution of the drug when orally administered to humans.
 また、本発明の方法は、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させることで、ヒト消化管内での薬物の移動に伴う小腸粘膜の吸収有効面積の増大を反映した薬物吸収性の評価を行える。これにより、薬物の吸収量だけでなく、吸収速度を精度よく評価することができる。従って、AUCとCmaxを同時に精度よく予測することができる。 In addition, the method of the present invention reflects the increase in the effective absorption area of the small intestinal mucosa due to the movement of the drug in the human gastrointestinal tract by increasing the contact area between the simulated gastrointestinal fluid and the drug permeable membrane over time. It is possible to evaluate the drug absorption. This makes it possible to accurately evaluate not only the amount of drug absorbed but also the rate of absorption. Therefore, AUC and Cmax can be predicted with high accuracy at the same time.
 このように、本発明の方法によれば、ヒトに経口投与した後の製剤の崩壊、薬物の溶出、溶解、及び吸収過程に関する情報を、ヒトBE試験の前に十分に検証しておくことができる。従って、無駄な臨床試験を避けることができ、あるいは臨床試験の被験者数を減らすことができ、あるいは臨床試験の成功率を上げることができる。 Thus, according to the method of the present invention, information on the disintegration, dissolution, dissolution, and absorption process of the pharmaceutical product after oral administration to humans can be sufficiently verified before the human BE test. can. Therefore, unnecessary clinical trials can be avoided, the number of subjects in clinical trials can be reduced, or the success rate of clinical trials can be increased.
 また、本発明の方法では、模擬消化管液のpHや組成を任意に変化させることができる。例えば、約10分かけてpHを1.6から6.5程度に変化させれば、絶食時に服用した製剤の胃から小腸への移動に近似した環境となる。また、例えば、約30分かけてpHを5から6.5程度に変化させれば、摂食時に服用した製剤の胃から小腸への移動に近似した環境となる。従って、本発明の方法によれば、絶食時、摂食時等の様々な状況下での経口吸収性を評価できる。
 また、年齢や疾患により胃内液や小腸内液の組成は異なるため、模擬消化管液の組成を調整することで、対象者に合わせた評価を行える。
 さらに、製剤処方の変更の検討に当たっては、模擬消化管液のpHや組成を任意に変化させることで、腸溶性製剤化、徐放性製剤化などの検討を容易に行える。
Further, in the method of the present invention, the pH and composition of the simulated gastrointestinal tract fluid can be arbitrarily changed. For example, if the pH is changed from 1.6 to 6.5 over about 10 minutes, the environment becomes similar to the movement of the drug taken during fasting from the stomach to the small intestine. In addition, for example, if the pH is changed from 5 to 6.5 over about 30 minutes, the environment becomes similar to the movement of the preparation taken at the time of feeding from the stomach to the small intestine. Therefore, according to the method of the present invention, oral absorbability under various conditions such as fasting and feeding can be evaluated.
In addition, since the composition of the gastric fluid and the small intestinal fluid differs depending on the age and disease, the evaluation can be performed according to the subject by adjusting the composition of the simulated gastrointestinal fluid.
Further, when examining the change of the formulation, the enteric formulation, the sustained release formulation, etc. can be easily examined by arbitrarily changing the pH and composition of the simulated gastrointestinal fluid.
 また、溶液中での製剤からの薬物の溶出速度は溶液中の薬物濃度の影響を受けるため、模擬消化管液の容量は薬物溶出速度に影響を及ぼす。ヒトに投与された製剤は、消化管内を移動するに従い、周囲の液量が変化していく。本発明の方法では、模擬消化管液の容量を任意に変化させることができるため、ヒト消化管内での薬物の溶出、溶解の挙動を精度よく評価することができる。
 また、製剤は、添加物、コーティング、層構造などにより薬物の溶出性が制御されているため、模擬消化管液の容量に合わせて分割すると溶出挙動を評価できない。この点、本発明の方法では、模擬消化管液の容量を任意に変化させてヒトの消化管液の容量に近似させることができるため、薬物だけでなく、薬物含有製剤の経口吸収性を評価することができる。
In addition, since the elution rate of the drug from the pharmaceutical product in the solution is affected by the drug concentration in the solution, the volume of the simulated gastrointestinal tract fluid affects the drug elution rate. As the pharmaceutical product administered to humans moves in the digestive tract, the amount of liquid in the surroundings changes. In the method of the present invention, since the volume of the simulated gastrointestinal fluid can be arbitrarily changed, the behavior of elution and dissolution of the drug in the human gastrointestinal tract can be accurately evaluated.
In addition, since the elution property of the drug is controlled by additives, coatings, layer structures, etc., the elution behavior of the pharmaceutical product cannot be evaluated if it is divided according to the volume of the simulated gastrointestinal fluid. In this respect, in the method of the present invention, since the volume of the simulated gastrointestinal tract fluid can be arbitrarily changed to approximate the volume of the human gastrointestinal tract fluid, the oral absorbability of not only the drug but also the drug-containing preparation is evaluated. can do.
 また、本発明の方法は、濃縮模擬小腸液の注入速度を制御するだけで模擬消化管液の状態を変化させることができるため、複雑、高価な装置が不要である。また、1検体について60~120分間程度の短時間で結果を出すことができる。 Further, the method of the present invention does not require a complicated and expensive device because the state of the simulated gastrointestinal fluid can be changed only by controlling the injection rate of the concentrated simulated small intestinal juice. In addition, results can be obtained in a short time of about 60 to 120 minutes for one sample.
 本発明の装置は、このような特長のある本発明方法を実施できる簡便かつ安価な装置である。 The device of the present invention is a simple and inexpensive device capable of carrying out the method of the present invention having such features.
本発明の装置の1例を示す図である。It is a figure which shows one example of the apparatus of this invention. セロケン(登録商標)錠20mgからのメトプロロール酒石酸塩の溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of metoprolol tartrate from 20 mg of Seroken (registered trademark) tablet. 絶食時条件でのテルミサルタン(登録商標)錠からのテルミサルタンの溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of telmisartan from a telmisartan (registered trademark) tablet under the fasting condition. 摂食時条件でのテルミサルタン錠からのテルミサルタンの溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of telmisartan from a telmisartan tablet under the condition at the time of feeding. 絶食時条件の標準製剤と製剤Aとの間のヒトBE試験結果を示す図である。It is a figure which shows the human BE test result between the standard preparation under the fasting condition and the preparation A. 絶食時条件での標準製剤及び製剤Aからの薬物Xの溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of the drug X from the standard preparation and the preparation A under the fasting condition. 摂食時条件の標準製剤と製剤Aとの間のヒトBE試験結果を示す図である。It is a figure which shows the human BE test result between the standard preparation under the feeding condition and the preparation A. 摂食時条件での標準製剤及び製剤Aからの薬物Xの溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of the drug X from the standard preparation and the preparation A under the feeding condition. 絶食時条件の標準製剤と製剤Bとの間のヒトBE試験結果を示す図である。It is a figure which shows the human BE test result between the standard preparation under the fasting condition and the preparation B. 絶食時条件での標準製剤及び製剤Bからの薬物Xの溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of the drug X from the standard preparation and the preparation B under the fasting condition. 摂食時条件の標準製剤と製剤Bとの間のヒトBE試験結果を示す図である。It is a figure which shows the human BE test result between the standard preparation under the feeding condition and the preparation B. 摂食時条件での標準製剤及び製剤Bからの薬物Xの溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of the drug X from the standard preparation and the preparation B under the feeding condition. 絶食時条件でのペルサンチン(登録商標)錠からのジピリダモールの溶出率及び膜透過率を示す図である。It is a figure which shows the elution rate and the membrane permeability of dipyridamole from Persantin (registered trademark) lock under the fasting condition. 絶食時条件でのペルサンチン錠からのジピリダモールの溶出率及び膜透過率を示す図である。図13に結果を示す方法より長い時間をかけてpHを変化させている。It is a figure which shows the elution rate and the membrane permeability of dipyridamole from a persantin tablet under the fasting condition. The pH was changed over a longer period of time than the method shown in Fig. 13. 絶食時条件でのペルサンチン錠からのジピリダモールの溶出率及び膜透過率を示す図である。図14に結果を示す方法より長い時間をかけてpHを変化させている。It is a figure which shows the elution rate and the membrane permeability of dipyridamole from a persantin tablet under the fasting condition. The pH was changed over a longer period of time than the method shown in Fig. 14. 絶食時条件でのペルサンチン錠からのジピリダモールの溶出率及び膜透過率を示す図である。図13~15に結果を示す方法より開始時のpHが高い。It is a figure which shows the elution rate and the membrane permeability of dipyridamole from a persantin tablet under the fasting condition. The pH at the start is higher than the method shown in Figures 13-15.
 以下、本発明を詳細に説明する。
(1)薬物経口吸収性評価方法
 本発明の方法は、薬物又は薬物含有製剤を模擬消化管液に投入し、模擬消化管液中の薬物を薬物透過性膜を介して模擬血液中に透過させ、模擬消化管液及び/又は模擬血液中の薬物濃度を測定することにより、経口投与した薬物又は製剤中の薬物の経口吸収性を評価する方法であって、模擬消化管液の状態を胃内から小腸内へと経時的に変化させると共に、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させることを特徴とする方法である。
Hereinafter, the present invention will be described in detail.
(1) Drug Oral Absorption Evaluation Method In the method of the present invention, a drug or a drug-containing preparation is put into a simulated gastrointestinal tract fluid, and the drug in the simulated gastrointestinal tract fluid is permeated into the simulated blood through a drug permeable membrane. , A method for evaluating the oral absorbability of an orally administered drug or a drug in a preparation by measuring the drug concentration in the simulated gastrointestinal fluid and / or the simulated blood. This method is characterized in that the contact area between the simulated gastrointestinal fluid and the drug-permeable membrane is increased over time while changing from to the inside of the small intestine over time.
 本発明方法では、薬物だけでなく、薬物を含有する製剤を評価対象とすることができる。製剤は、錠剤、散剤、顆粒剤、丸剤、カプセル剤(軟カプセル剤、硬カプセル剤)などの固形製剤;液剤、エリキシル剤、懸濁剤、乳剤、リモナーデ剤、シロップ剤などの液体製剤の何れであってもよい。
 製剤の場合は、1回服用量を模擬消化管液に投入すればよい。薬物の場合は、試験目的に応じて投入量を定めればよい。
In the method of the present invention, not only a drug but also a drug-containing preparation can be evaluated. The formulations are solid formulations such as tablets, powders, granules, pills and capsules (soft capsules, hard capsules); liquid formulations such as liquids, elixirs, suspensions, emulsions, limonades and syrups. It may be either.
In the case of a pharmaceutical product, a single dose may be added to the simulated gastrointestinal tract fluid. In the case of a drug, the input amount may be determined according to the purpose of the test.
 模擬消化管液の経時的変化を受ける「状態」としては、pH、組成、容量などが挙げられる。
 薬物又は薬物含有製剤を投入するときの模擬消化管液は模擬胃液とすればよい。ヒトの胃内液のpHは、絶食時は約1~3であり、食後は約2~6であるから、模擬胃液のpHは、絶食時経口吸収性を評価する場合は約1~3とし、摂食時経口吸収性を評価する場合は約2~6とすればよい。例えば、酢酸緩衝液などの緩衝液を用いることでpHを調整することができる。
 また、模擬胃液は、ペプシンのような消化酵素や塩化ナトリウムなどを含んでいてもよく、これにより模擬胃液をヒトの胃内液に近似させることができる。
Examples of the "state" of the simulated gastrointestinal fluid that undergoes changes over time include pH, composition, volume, and the like.
The simulated gastrointestinal fluid at the time of adding the drug or the drug-containing preparation may be simulated gastric juice. Since the pH of human gastric juice is about 1 to 3 during fasting and about 2 to 6 after eating, the pH of simulated gastric juice should be about 1 to 3 when evaluating oral absorbability during fasting. , When evaluating the oral absorbability at the time of feeding, it should be about 2 to 6. For example, the pH can be adjusted by using a buffer solution such as an acetate buffer solution.
In addition, the simulated gastric juice may contain a digestive enzyme such as pepsin, sodium chloride, or the like, whereby the simulated gastric juice can be made to resemble a human gastric juice.
 また、模擬胃液の容量は、約20~250mL、中でも約50~200mLとすればよい。ヒト成人の胃内液の容量は20~50mL程度であり、固形製剤は、口腔内速崩壊錠などを除き、水で服用することが多いため(臨床試験では150mLの水で服用)、この容量範囲であれば、ヒトの胃内での薬物の溶解速度を反映した評価を行える。 The volume of simulated gastric juice should be about 20 to 250 mL, especially about 50 to 200 mL. The volume of gastric fluid in human adults is about 20 to 50 mL, and solid preparations are often taken with water except for orally rapidly disintegrating tablets (in clinical trials, they are taken with 150 mL of water). If it is within the range, the evaluation can reflect the dissolution rate of the drug in the human stomach.
 模擬胃液に薬物又は薬物含有製剤を投入した後は、模擬胃液を撹拌することにより、薬物を溶解させ、又は薬物含有製剤を崩壊させて薬物を溶解させればよい。 After the drug or drug-containing preparation is added to the simulated gastric juice, the drug may be dissolved by stirring the simulated gastric juice, or the drug-containing preparation may be disintegrated to dissolve the drug.
 次いで、薬物を含む模擬胃液に濃縮模擬小腸液を徐々に注入することにより、模擬消化管液の状態を徐々にヒト小腸内液の状態に近づければよい。また、濃縮模擬小腸液を注入しながら模擬消化管液を撹拌すればよい。ここでいう濃縮模擬小腸液とは、模擬胃液に加えることにより模擬消化管液の組成を模擬小腸液に近似させるためのものであって、その組成、添加量、添加タイミング等はこの目的に合致するものであれば、限定されないが、具体的には以下のものを例示できる。
 ヒトの小腸内液のpHは約6~8であるから、濃縮模擬小腸液のpHは約6.5~10とすればよい。例えば、炭酸緩衝液、Tris/HCl緩衝液、HEPES緩衝液、リン酸緩衝液などの緩衝液を用いることでpHを調整することができる。このようなpH範囲の濃縮模擬小腸液を注入することにより、模擬消化管液のpHを最終的に約6~8とすることができる。
 また、濃縮模擬小腸液は、胆汁酸、脂質、糖質や、糖分解酵素、タンパク質分解酵素、脂質分解酵素のような消化酵素などを含んでいてよく、これにより、濃縮模擬小腸液をヒトの小腸内液に近似させることができる。
Then, the state of the simulated gastrointestinal fluid may be gradually brought closer to that of the human small intestinal fluid by gradually injecting the concentrated simulated small intestinal juice into the simulated gastric juice containing the drug. In addition, the simulated gastrointestinal fluid may be agitated while injecting the concentrated simulated small intestinal juice. The concentrated simulated small intestinal juice referred to here is for approximating the composition of the simulated gastrointestinal fluid to the simulated small intestinal juice by adding it to the simulated gastric juice, and its composition, addition amount, addition timing, etc. meet this purpose. Specific examples thereof include, but are not limited to, the following.
Since the pH of human small intestinal juice is about 6 to 8, the pH of concentrated simulated small intestinal juice may be about 6.5 to 10. For example, the pH can be adjusted by using a buffer solution such as a carbonate buffer solution, a Tris / HCl buffer solution, a HEPES buffer solution, or a phosphate buffer solution. By injecting concentrated simulated small intestinal juice in such a pH range, the pH of the simulated gastrointestinal fluid can be finally adjusted to about 6-8.
In addition, the concentrated simulated small intestinal juice may contain bile acids, lipids, sugars, digestive enzymes such as glycolytic enzymes, proteolytic enzymes, and lipid-degrading enzymes, thereby making the concentrated simulated small intestinal juice of humans. It can be approximated to small intestinal juice.
 濃縮模擬小腸液の注入量は、模擬消化管液の量が最終的に約50~500mL、中でも約100~400mLとなる量とすればよい。ヒト成人の小腸内液の容量は、通常100~400mL程度であるため、この容量範囲であれば、ヒトの小腸内での薬物の吸収速度を反映した評価を行える。 The amount of concentrated simulated small intestinal juice to be injected may be such that the amount of simulated gastrointestinal juice is finally about 50 to 500 mL, especially about 100 to 400 mL. Since the volume of the small intestinal fluid in a human adult is usually about 100 to 400 mL, an evaluation that reflects the absorption rate of the drug in the human small intestine can be performed within this volume range.
 濃縮模擬小腸液の注入時間は、約5~120分間、中でも約10~60分間とすればよい。また、絶食時評価の場合は、約5~20分、中でも約10分とすればよく、摂食時評価の場合は、約20~120分、中でも約30~60分とすればよい。これにより、実際のヒトでの薬物の胃から小腸への移動時間に近似させることができる。 The injection time of the concentrated simulated small intestinal juice should be about 5 to 120 minutes, especially about 10 to 60 minutes. In the case of fasting evaluation, it may be about 5 to 20 minutes, especially about 10 minutes, and in the case of feeding evaluation, it may be about 20 to 120 minutes, especially about 30 to 60 minutes. This makes it possible to approximate the time it takes for the drug to travel from the stomach to the small intestine in actual humans.
 薬物透過性膜は、模擬消化管液中の薬物が模擬血液側に透過するものであればよい。例えば、細胞を培養して得られる細胞層膜、ヒト又は非ヒト動物から摘出した消化管粘膜、人工脂質膜、多孔質膜などが挙げられる。
 細胞層膜としては、細胞を単層に培養したものが挙げられる。通常、細胞を多孔質膜上で単層になるよう培養したものを、多孔質膜ごと用いることができる。細胞の種類は限定されないが、Caco-2細胞、C2BBel細胞、MDCK細胞、MDR-MDCK細胞、BCRP-MDCK細胞、HT-29細胞、T-84細胞のような上皮細胞が挙げられ、中でもヒト小腸モデル細胞として汎用されているCaco-2細胞が好ましい。
 摘出消化管膜としては、ヒトあるいはラット、イヌ、サルなどの実験動物から摘出した小腸粘膜を用いることができる。その場合、筋肉などの粘膜下組織ごと摘出した全てを用いるか、あるいは粘膜下組織を剥がして用いることができる。
 人工脂質膜としては、リン脂質膜、又はリン脂質にコレステロールや膜タンパク質を加えて形成した脂質膜を用いることができる。脂質膜は、それ単独で、又は多孔質膜上に形成して用いることができる。例としては、多孔質膜であるメンブレンフィルターにリン脂質等の有機溶媒溶液を塗布し、生体膜に類似した脂質膜を保持させたPAMPA(Parallel Artificial Membrane Permeability Assay)などを用いることができる。
 多孔質膜(半透膜を含む)は、孔径0.1~0.5μm程度のものが好ましい。種々の孔径の多孔質膜が市販されている。例えば、メンブレンフィルターとしてメルク社から様々な材質の精密ろ過メンブレンフィルターが市販されており、その中で、デュラポア(登録商標)メンブレンフィルター(ポリビニリデンフルオライド膜)、ミリポア(登録商標)フィルター(セルロース混合エステル膜)、ミリポアエクスプレスプラス(ポリエーテルスルホン膜)、アイソポア(登録商標)メンブレンフィルター(トラックエッチドポリカーボネート膜)、疎水性ポリテトラフルオロエチレン(PTFE)膜などが入手可能で、これらはいずれも好ましく用いることができるが、中でもデュラポアメンブレンフィルターはタンパク質などの吸着が少なく、本発明において特に好ましく用いることができる。
The drug permeable membrane may be one in which the drug in the simulated gastrointestinal fluid permeates to the simulated blood side. For example, a cell layer membrane obtained by culturing cells, a gastrointestinal mucosa extracted from a human or non-human animal, an artificial lipid membrane, a porous membrane, and the like can be mentioned.
Examples of the cell layer membrane include those obtained by culturing cells in a single layer. Usually, cells cultured on a porous membrane so as to form a single layer can be used together with the porous membrane. The type of cell is not limited, but includes epithelial cells such as Caco-2 cells, C2BBel cells, MDCK cells, MDR-MDCK cells, BCRP-MDCK cells, HT-29 cells, and T-84 cells, especially the human small intestine. Caco-2 cells, which are widely used as model cells, are preferable.
As the excised gastrointestinal membrane, the small intestinal mucosa excised from humans or experimental animals such as rats, dogs, and monkeys can be used. In that case, all the excised submucosal tissues such as muscles can be used, or the submucosal tissues can be peeled off and used.
As the artificial lipid membrane, a phospholipid membrane or a lipid membrane formed by adding cholesterol or a membrane protein to phospholipid can be used. The lipid membrane can be used alone or formed on a porous membrane. As an example, PAMPA (Parallel Artificial Membrane Permeability Assay) in which an organic solvent solution such as phospholipid is applied to a membrane filter which is a porous membrane and a lipid membrane similar to a biological membrane is retained can be used.
The porous membrane (including the semipermeable membrane) preferably has a pore size of about 0.1 to 0.5 μm. Porous membranes with various pore sizes are commercially available. For example, as membrane filters, precision filtration membrane filters made of various materials are commercially available from Merck, and among them, Durapore (registered trademark) membrane filter (polyvinylidene fluoride membrane) and Millipore (registered trademark) filter (cellulose mixture). Ester membranes), Millipore Express Plus (polyether sulfone membranes), Isopore® membrane filters (track-etched polycarbonate membranes), hydrophobic polytetrafluoroethylene (PTFE) membranes, etc. are all available, all of which are preferred. Although it can be used, the Durapore membrane filter has less adsorption of proteins and the like, and can be particularly preferably used in the present invention.
 薬物透過性膜が細胞層膜、摘出消化管膜、又は人工脂質膜である場合は、模擬血液として、血液を模したpH約7.3~7.5、特に約7.4の緩衝液を用いることができる。緩衝液はpH約7.3~7.5で緩衝能を有するものであればよく、リン酸緩衝液、HEPES緩衝液、Tris/塩酸緩衝液などが挙げられる。また、模擬血液に血漿タンパク質を配合してもよく、これによりヒト血液に近似させることができる。
 また、薬物透過性膜が多孔質膜である場合は、模擬血液として、オクタノール、ヘキサン、クロロホルムのような有機溶媒や、オリーブ油のような油を用いることができる。生体膜はリン脂質を主成分とするため、油/水の二層系における分配性の大きさは生体膜への親和性の指標と解釈されることから、このような油性物質を用いることで、小腸からの薬物透過を摸することができる。中でも、薬物の分配性測定に汎用されているオクタノールが好ましい。
When the drug permeable membrane is a cell layer membrane, an excised gastrointestinal membrane, or an artificial lipid membrane, a buffer solution having a pH of about 7.3 to 7.5, particularly about 7.4, which imitates blood can be used as the simulated blood. The buffer solution may be any one having a buffering ability at a pH of about 7.3 to 7.5, and examples thereof include a phosphate buffer solution, a HEPES buffer solution, and a Tris / hydrochloric acid buffer solution. In addition, plasma protein may be added to the simulated blood, whereby it can be approximated to human blood.
When the drug permeable membrane is a porous membrane, an organic solvent such as octanol, hexane or chloroform or an oil such as olive oil can be used as the simulated blood. Since the biological membrane contains phospholipids as the main component, the magnitude of distributability in the oil / water two-layer system is interpreted as an index of affinity for the biological membrane. , Can mimic drug permeation from the small intestine. Of these, octanol, which is widely used for measuring the distributiveness of drugs, is preferable.
 濃縮模擬小腸液を注入し始めると同時又はそれ以降に、模擬消化管液と薬物透過性膜を接触させ、その接触面積を徐々に増大させればよい。これにより、ヒトに投与された薬物が吸収され得る有効な小腸粘膜面積の増大を再現することができる。
 また、薬物透過性膜は、模擬消化管液と接触している領域に対応する領域を模擬血液と接触させればよい。従って、模擬血液の使用量は、薬物透過性膜との接触面積がこのように変化するよう徐々に増大させればよい。
 薬物透過性膜と模擬消化管液との接触面積は、最終的に0.5~20cm2程度となるようにすればよい。従って、薬物透過性膜は、面積が0.5~20cm2又はそれより大きいものを使用することができる。
The simulated gastrointestinal fluid may be brought into contact with the drug-permeable membrane at the same time as or thereafter when the concentrated simulated small intestinal juice is started to be infused, and the contact area thereof may be gradually increased. This makes it possible to reproduce the increase in effective small intestinal mucosal area in which the drug administered to humans can be absorbed.
Further, the drug permeable membrane may bring the region corresponding to the region in contact with the simulated gastrointestinal fluid into contact with the simulated blood. Therefore, the amount of simulated blood used may be gradually increased so that the contact area with the drug permeable membrane changes in this way.
The final contact area between the drug-permeable membrane and the simulated gastrointestinal fluid should be about 0.5 to 20 cm 2. Therefore, a drug permeable membrane having an area of 0.5 to 20 cm 2 or larger can be used.
 模擬消化管液と薬物透過性膜との接触が始まった後、模擬消化管液と模擬血液の一方又は両方を経時的にサンプリングし、薬物濃度を測定すればよい。模擬消化管液と模擬血液の両方を経時的にサンプリングすることが好ましい。
 経過時間に対して模擬血液中の薬物濃度をプロットし、薬物濃度上昇の初期傾きからin vivoでの吸収速度あるいは吸収速度の指標であるCmaxを推定することができる。模擬消化管液の量、薬物透過性膜のサイズなどにもよるが、臨床試験での吸収速度あるいはCmaxを正確に推定できる点で、薬物濃度が上昇し始めてから10~60分間の傾きを採用するのが好ましい。
 また、薬物の溶解速度はCmaxを定める重要な要因であるため、経過時間に対して模擬消化管液中の薬物濃度をプロットし、薬物濃度上昇の初期傾きから薬物溶解速度を算出し、薬物溶解速度をCmaxの推定に加味することができる。薬物濃度が上昇し始めてから10~60分間の傾きを採用するのが好ましい。
 また、一定時間までの薬物の膜透過量(あるいは膜透過率)から、薬物吸収量あるいはその指標であるAUCを推定することができる。模擬消化管液の量、薬物透過性膜のサイズなどにもよるが、臨床試験での薬物吸収量あるいはAUCを正確に推定できる点で、濃縮模擬小腸液の注入開始から60~240分間、中でも120分間の膜透過量(あるいは膜透過率)を採用するのが好ましい。
After the contact between the simulated gastrointestinal fluid and the drug permeable membrane is started, one or both of the simulated gastrointestinal fluid and the simulated blood may be sampled over time to measure the drug concentration. It is preferable to sample both simulated gastrointestinal fluid and simulated blood over time.
The drug concentration in the simulated blood can be plotted against the elapsed time, and Cmax, which is an index of the absorption rate or the absorption rate in vivo, can be estimated from the initial slope of the increase in the drug concentration. Although it depends on the amount of simulated gastrointestinal fluid, the size of the drug permeable membrane, etc., the slope of 10 to 60 minutes after the drug concentration starts to rise is adopted because the absorption rate or Cmax in clinical tests can be estimated accurately. It is preferable to do so.
In addition, since the dissolution rate of the drug is an important factor that determines Cmax, the drug concentration in the simulated gastrointestinal fluid is plotted against the elapsed time, the drug dissolution rate is calculated from the initial inclination of the increase in the drug concentration, and the drug dissolution rate is obtained. The speed can be taken into account in the estimation of Cmax. It is preferable to adopt a slope of 10 to 60 minutes after the drug concentration begins to rise.
In addition, the amount of drug absorbed or AUC, which is an index thereof, can be estimated from the amount of drug permeation (or membrane permeability) up to a certain period of time. Although it depends on the amount of simulated gastrointestinal fluid, the size of the drug permeable membrane, etc., it is possible to accurately estimate the amount of drug absorbed or AUC in clinical trials. It is preferable to adopt the film permeation amount (or film permeability) for 120 minutes.
(2)薬物経口吸収性評価方法を行うための機構・部材
 上記説明した本発明の薬物経口吸収性評価方法は、種々の機構又は部材を用いて行うことができるが、好適な例を以下に説明する。
(2) Mechanism / Member for Performing Oral Drug Absorption Evaluation Method The drug oral absorbability evaluation method of the present invention described above can be performed using various mechanisms or members, and suitable examples are described below. explain.
 模擬消化管液を収容するものとして消化管チャンバーを使用すればよい。消化管チャンバーの上面は開放していてもよく、蓋で覆われていてもよい。 The gastrointestinal chamber may be used to store the simulated gastrointestinal fluid. The upper surface of the gastrointestinal chamber may be open or covered with a lid.
 模擬消化管液の状態を胃内から小腸内に変化させるために、第1に、消化管チャンバーの底部には模擬胃液溜まりが設けられていればよい。模擬胃液溜まりに入れた模擬胃液に薬物又は薬物含有製剤を投入した時点で、薬物又は製剤が胃内に移動した状態が再現される。 In order to change the state of the simulated gastric juice from the stomach to the small intestine, first, a simulated gastric juice pool may be provided at the bottom of the gastrointestinal chamber. When the drug or drug-containing preparation is added to the simulated gastric juice placed in the simulated gastric juice pool, the state in which the drug or preparation has moved into the stomach is reproduced.
 模擬胃液溜まりの容量は、約20~250mL、中でも約50~200mLの模擬胃液を収容できる容量であればよい。また、模擬胃液溜まりを含む消化管チャンバーの全容量は、最終的に約50~500mL、中でも約100~400mLとなる模擬消化管液を収容できる容量であればよい。 The capacity of the simulated gastric juice pool may be about 20 to 250 mL, especially a capacity that can accommodate about 50 to 200 mL of simulated gastric juice. The total volume of the gastrointestinal chamber including the simulated gastric juice pool may be about 50 to 500 mL, particularly about 100 to 400 mL, as long as it can accommodate the simulated gastrointestinal fluid.
 模擬消化管液の状態を胃内から小腸内に変化させるために、第2に、消化管チャンバーは濃縮模擬小腸液を内部に注入する機構を備えていればよい。この注入機構を用いて、濃縮模擬小腸液を模擬胃液に徐々に注入することで、模擬消化管液の状態(pH、組成、容量など)を小腸液に近似させていくことができる。
 注入機構は、例えば、消化管チャンバーに設けられた注入口と、自動送液装置を含むものとすることができる。注入口は、消化管チャンバーの上面又は側面に設けられていればよいが、側面、中でも模擬胃液溜まりの上端部側面に設けられていることが、ヒト小腸内の状態の再現性に優れる点で好ましい。自動送液装置としては、注入口に接続されたチューブと送液ポンプを備えるものが挙げられる。送液ポンプは、送液速度を一定にできるか、又は予定した通りに変化させることができるものであればよい。
 濃縮模擬小腸液注入機構は、模擬消化管液の状態が、ヒトが服用した薬物又は製剤の胃から小腸への移動を反映したものとなるように、注入速度及び量を調整しながら作動するものである。
Secondly, in order to change the state of the simulated gastrointestinal fluid from the stomach to the small intestine, the gastrointestinal chamber may be provided with a mechanism for injecting concentrated simulated gastrointestinal fluid into the inside. By gradually injecting the concentrated simulated small intestinal juice into the simulated gastric juice using this injection mechanism, the state (pH, composition, volume, etc.) of the simulated gastrointestinal fluid can be approximated to that of the small intestinal juice.
The injection mechanism may include, for example, an injection port provided in the gastrointestinal chamber and an automatic liquid delivery device. The inlet may be provided on the upper surface or the side surface of the gastrointestinal chamber, but the provision on the side surface, particularly on the side surface of the upper end of the simulated gastric juice pool, is excellent in reproducibility of the state in the human small intestine. preferable. Examples of the automatic liquid feeding device include those provided with a tube connected to an injection port and a liquid feeding pump. The liquid feed pump may be one that can keep the liquid feed rate constant or change it as planned.
The concentrated simulated small intestinal fluid infusion mechanism operates by adjusting the infusion rate and amount so that the state of the simulated gastrointestinal fluid reflects the movement of the drug or preparation taken by humans from the stomach to the small intestine. Is.
 模擬消化管液の状態を胃内から小腸内に変化させるために、第3に、消化管チャンバー内の模擬消化管液を撹拌する機構を用いればよい。この撹拌機構は、模擬胃液を撹拌することができ、かつ濃縮模擬小腸液の注入により得られる模擬消化管液を撹拌できるものとすればよい。
 撹拌機構としては、消化管チャンバー内に設置された回転翼又は振動翼が挙げられる。また、消化管チャンバーの底部に置いたマグネチックスターラーバーと消化管チャンバーの底面外部に設置したマグネチックスターラーからなるものであってもよい。また、消化管チャンバーを振動させることで内部の液を撹拌するもの、模擬消化管液を超音波振動させることで撹拌するもの、又は模擬消化管液中に空気や酸素などの気体を吹き込むことによって液を撹拌するものであってもよい。
 模擬消化管液の撹拌速度は経口吸収性の評価結果に影響するため、模擬消化管液を撹拌する機構は、撹拌速度を制御し易い回転翼又は振動翼であることが好ましい。
In order to change the state of the simulated gastrointestinal fluid from the stomach to the small intestine, thirdly, a mechanism for stirring the simulated gastrointestinal fluid in the gastrointestinal chamber may be used. This stirring mechanism may be capable of stirring the simulated gastric juice and the simulated gastrointestinal fluid obtained by injecting the concentrated simulated small intestinal juice.
Examples of the stirring mechanism include rotary blades or vibrating blades installed in the gastrointestinal chamber. Further, it may consist of a magnetic stirrer bar placed at the bottom of the gastrointestinal chamber and a magnetic stirrer placed outside the bottom surface of the gastrointestinal chamber. In addition, the internal liquid is agitated by vibrating the gastrointestinal chamber, the simulated gastrointestinal liquid is agitated by ultrasonic vibration, or a gas such as air or oxygen is blown into the simulated gastrointestinal liquid. The liquid may be agitated.
Since the stirring speed of the simulated gastrointestinal fluid affects the evaluation result of oral absorbability, the mechanism for stirring the simulated gastrointestinal fluid is preferably a rotary blade or a vibrating blade whose stirring speed can be easily controlled.
 模擬消化管液のサンプリングは手作業で行うことができる。或いは、模擬消化管液を所定時間にサンプリングする機構を用いて行うこともできる。
 また、サンプリングした模擬消化管液を、手作業で高速液体クロマトグラフィー装置などの薬物濃度測定装置にアプライして薬物濃度を測定することもできるが、サンプリングした模擬消化管液を薬物濃度測定装置にアプライする機構を用いることもできる。さらに、予め定めた時間に模擬消化管液をサンプリングし、薬物濃度測定装置にアプライし、薬物濃度測定装置により薬物濃度を測定する自動モニタリング装置を用いることもできる。
Sampling of simulated gastrointestinal fluid can be done manually. Alternatively, it can be performed using a mechanism for sampling the simulated gastrointestinal fluid at a predetermined time.
It is also possible to manually apply the sampled simulated digestive tract fluid to a drug concentration measuring device such as a high performance liquid chromatography device to measure the drug concentration, but the sampled simulated digestive tract fluid can be used as a drug concentration measuring device. An applying mechanism can also be used. Further, it is also possible to use an automatic monitoring device that samples the simulated gastrointestinal fluid at a predetermined time, applies it to the drug concentration measuring device, and measures the drug concentration by the drug concentration measuring device.
 本発明の方法では、模擬血液を収容するために血管チャンバーを用いればよい。血管チャンバーは、後述するように、薬物透過性接続部を介して消化管チャンバーと連結されたものである。血管チャンバーの上面は開放していてもよく、蓋で覆われていてもよい。消化管チャンバーと血管チャンバーは、側壁を共通にして接していてもよく、別容器であってもよい。 In the method of the present invention, a vascular chamber may be used to contain simulated blood. The vascular chamber is connected to the gastrointestinal chamber via a drug permeable connection, as described below. The upper surface of the vascular chamber may be open or covered with a lid. The gastrointestinal chamber and the vascular chamber may be in contact with each other with a common side wall, or may be separate containers.
 血管チャンバーは、内部の模擬血液を撹拌する機構を備えていればよい。撹拌機構としては、模擬消化管液撹拌機構と同様のものを例示できる。模擬血液の撹拌速度は経口吸収性の評価結果に影響しないため、血管チャンバーの底部に置いたマグネチックスターラーバーと血管チャンバーの底面外部に設置したマグネチックスターラーからなるものを用いるのが簡便である。 The vascular chamber may be equipped with a mechanism for stirring the simulated blood inside. As the stirring mechanism, the same mechanism as the simulated gastrointestinal fluid stirring mechanism can be exemplified. Since the stirring rate of simulated blood does not affect the evaluation result of oral absorbability, it is convenient to use a magnetic stirrer bar placed at the bottom of the vascular chamber and a magnetic stirrer placed outside the bottom surface of the vascular chamber. ..
 模擬消化管液中の薬物を薬物透過性膜を介して模擬血液中に透過させるために、第1に、消化管チャンバーと血管チャンバーは、薬物透過性接続部で接続され又は連通している。薬物透過性接続部は、消化管チャンバーと血管チャンバーが側面を共通にして接している場合は、両チャンバーの共通側面に設けられ、消化管チャンバーと血管チャンバーが別容器である場合は、両容器間に通路として設けられる。何れにしても、薬物透過性接続部は、模擬胃液溜まりより上部に位置する。
 薬物透過性接続部の下端は、模擬胃液溜まりの上端付近に位置することが好ましく、これにより、薬物が小腸に移動した直後からの薬物吸収をモニタリングすることができる。
First, the gastrointestinal chamber and the vascular chamber are connected or communicated with a drug permeable connection in order to allow the drug in the simulated gastrointestinal fluid to permeate into the simulated blood through the drug permeable membrane. The drug permeable connection is provided on the common side surface of both chambers when the gastrointestinal chamber and the vascular chamber are in common side contact, and both containers when the gastrointestinal chamber and the vascular chamber are separate containers. It is provided as a passage between them. In any case, the drug permeable connection is located above the simulated gastric juice pool.
The lower end of the drug permeable connection is preferably located near the upper end of the simulated gastric juice pool, which allows monitoring of drug absorption immediately after the drug has moved to the small intestine.
 模擬消化管液中の薬物を薬物透過性膜を介して模擬血液中に透過させるために、第2に、薬物透過性膜が薬物透過性接続部に設置される。消化管チャンバーと血管チャンバーは、薬物透過性膜により完全に区分されている。 Second, a drug permeable membrane is installed at the drug permeable connection in order to allow the drug in the simulated gastrointestinal tract fluid to permeate into the simulated blood via the drug permeable membrane. The gastrointestinal chamber and the vascular chamber are completely separated by a drug permeable membrane.
 模擬消化管液と薬物透過性膜との接触面積を経時的に増大させるために、薬物透過性膜は薬物透過性接続部に、その面方向が水平方向に対して傾きを持つように設置される。これにより、消化管チャンバー内の模擬消化管液の液面が上昇するにつれ、模擬消化管液との接触面積が増大する。中でも、薬物透過性膜は、その面方向が垂直になるように設置されることが好ましい。このように設置された薬物透過性膜と濃縮模擬小腸液注入機構が共同して、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させる。
 薬物透過性膜の形は、特に限定されず、円形、四角形、三角形、台形などの形が挙げられる。中でも、実際のヒト小腸の薬物吸収有効面積の増大に近似する点で、逆三角形、又は上辺が下辺より長い台形が好ましい。
In order to increase the contact area between the simulated gastrointestinal fluid and the drug permeable membrane over time, the drug permeable membrane is installed at the drug permeable connection so that its surface direction is inclined with respect to the horizontal direction. NS. As a result, as the liquid level of the simulated gastrointestinal fluid in the gastrointestinal chamber rises, the contact area with the simulated gastrointestinal fluid increases. Above all, it is preferable that the drug permeable membrane is installed so that its plane direction is vertical. The drug-permeable membrane thus installed and the concentrated simulated small intestinal juice injection mechanism jointly increase the contact area between the simulated gastrointestinal fluid and the drug-permeable membrane over time.
The shape of the drug-permeable membrane is not particularly limited, and examples thereof include a circular shape, a quadrangular shape, a triangular shape, and a trapezoidal shape. Of these, an inverted triangle or a trapezoid whose upper side is longer than the lower side is preferable in that it approximates an increase in the effective drug absorption area of the actual human small intestine.
 薬物透過性膜の模擬消化管液と接触している領域に対応する領域(反対面の同じ領域)を模擬血液と接触させるために、血管チャンバーは、模擬血液を内部に注入する機構を備えていればよい。
 注入機構は、例えば、血管チャンバーに設けられた注入口と、自動送液装置を含むものとすることができる。注入口は、血管チャンバーの上面又は側面に設けられていればよい。自動送液装置としては、注入口に接続されたチューブと送液ポンプを備えるものが挙げられる。送液ポンプは、送液速度を一定にできるか、又は予定した通りに変化させることができるものであればよい。
 この注入機構は、消化管チャンバー内の液面と血管チャンバー内の液面が同じ高さになるように模擬血液の注入速度を調整しながら作動するものである。これにより、両チャンバーの液面高さの違いが薬物の膜透過速度に与える影響を排除することができる。
In order to bring the region corresponding to the region of the drug permeable membrane in contact with the simulated gastrointestinal fluid (the same region on the opposite side) into contact with the simulated blood, the vascular chamber is provided with a mechanism for injecting the simulated blood into the inside. Just do it.
The infusion mechanism may include, for example, an infusion port provided in the vascular chamber and an automatic fluid delivery device. The inlet may be provided on the upper surface or the side surface of the vascular chamber. Examples of the automatic liquid feeding device include those provided with a tube connected to an injection port and a liquid feeding pump. The liquid feed pump may be one that can keep the liquid feed rate constant or change it as planned.
This injection mechanism operates while adjusting the injection rate of simulated blood so that the liquid level in the gastrointestinal chamber and the liquid level in the blood vessel chamber are at the same level. This makes it possible to eliminate the effect of the difference in liquid level between the two chambers on the membrane permeation rate of the drug.
 模擬血液のサンプリングは手作業で行うことができる。或いは、模擬血液を所定時間にサンプリングする機構を用いて行うこともできる。
 また、サンプリングした模擬血液を、手作業で高速液体クロマトグラフィー装置などの薬物濃度測定装置にアプライして薬物濃度を測定することもできるが、サンプリングした模擬血液を薬物濃度測定装置にアプライする機構を用いることもできる。さらに、予め定めた時間に模擬血液をサンプリングし、薬物濃度測定装置にアプライし、薬物濃度測定装置により薬物濃度を測定する自動モニタリング装置を用いることもできる。
Sampling of simulated blood can be done manually. Alternatively, it can be performed using a mechanism for sampling simulated blood at a predetermined time.
Further, the sampled simulated blood can be manually applied to a drug concentration measuring device such as a high performance liquid chromatography device to measure the drug concentration, but a mechanism for applying the sampled simulated blood to the drug concentration measuring device is provided. It can also be used. Further, it is also possible to use an automatic monitoring device that samples simulated blood at a predetermined time, applies it to a drug concentration measuring device, and measures the drug concentration by the drug concentration measuring device.
 本発明の方法は、使用する各液の温度を一定に保持する温度調節装置を用いて行うことが好ましい。
 温度調節装置は、少なくとも消化管チャンバー内の模擬消化管液の温度及び/又は血管チャンバー内の模擬血液の温度を一定に保つことができるものである。薬物の溶出、溶解に温度が影響するため、特に、消化管チャンバー内の模擬消化管液の温度を一定に保つことができるものであることが好ましい。温度調節装置としては、両チャンバーに付設された、熱媒体循環温度調節装置やヒーターなどが挙げられる。温度調節装置は、さらに、注入する模擬胃液、濃縮模擬小腸液、模擬血液の温度も一定に保つことができるものであってよい。この場合、制御装置を除く全ての機構、部材を収容する温度調節チャンバーを用いることができる。
 各液の温度は、通常、20~37℃程度に保持すればよく、中でも、ヒトの体温である37℃付近に保持すればよい。
The method of the present invention is preferably carried out using a temperature control device that keeps the temperature of each liquid used constant.
The temperature control device can keep at least the temperature of the simulated gastrointestinal fluid in the gastrointestinal chamber and / or the temperature of the simulated blood in the vascular chamber constant. Since the temperature affects the elution and dissolution of the drug, it is particularly preferable that the temperature of the simulated gastrointestinal fluid in the gastrointestinal chamber can be kept constant. Examples of the temperature control device include a heat medium circulation temperature control device and a heater attached to both chambers. The temperature control device may also be capable of keeping the temperature of the simulated gastric juice to be injected, the concentrated simulated small intestinal juice, and the simulated blood constant. In this case, a temperature control chamber accommodating all the mechanisms and members except the control device can be used.
Normally, the temperature of each liquid may be maintained at about 20 to 37 ° C., and above all, it may be maintained at around 37 ° C., which is the human body temperature.
(3)薬物経口吸収性評価装置
 本発明の薬物経口吸収性評価装置は、消化管チャンバーと血管チャンバーを有し、消化管チャンバーの底部には模擬胃液溜まりが設けられており、消化管チャンバーと血管チャンバーは、模擬胃液溜まりより上部に設けられた薬物透過性接続部で接続されており、薬物透過性接続部は、薬物透過性膜が、その面方向が水平方向に対して傾きを持つように設置されて、消化管チャンバーと血管チャンバーとを区分するものであり、消化管チャンバーは、濃縮模擬小腸液を内部に注入する注入口を備え、血管チャンバーは、模擬血液を内部に注入する注入口を備え、消化管チャンバー内に収容される模擬消化管液を撹拌する撹拌機を備えることを特徴とする装置である。
(3) Oral drug absorption evaluation device The oral drug absorption evaluation device of the present invention has a gastrointestinal chamber and a vascular chamber, and a simulated gastric fluid pool is provided at the bottom of the gastrointestinal chamber, and the gastrointestinal chamber and the gastrointestinal chamber. The vascular chamber is connected by a drug permeable connection provided above the simulated gastric pool, and the drug permeable connection is such that the drug permeable membrane is tilted with respect to the horizontal direction. It is installed in the gastrointestinal chamber to separate the gastrointestinal chamber from the vascular chamber. The device is provided with an inlet and a stirrer for stirring simulated gastrointestinal fluid contained in the gastrointestinal chamber.
 各部材は、本発明の方法について説明した通りである。 Each member is as described for the method of the present invention.
 本発明の装置は、濃縮模擬小腸液を消化管チャンバーの注入口から注入するための自動送液装置や、模擬血液を血管チャンバーの注入口から注入するための自動送液装置を備えることができる。自動送液装置は、本発明の方法について説明した通りである。 The device of the present invention can include an automatic liquid delivery device for injecting concentrated simulated small intestinal juice from the injection port of the gastrointestinal chamber and an automatic liquid delivery device for injecting simulated blood from the injection port of the vascular chamber. .. The automatic liquid feeding device is as described for the method of the present invention.
 また、本発明の装置は、血管チャンバー内に収容される模擬血液を撹拌する撹拌機を備えることができる。撹拌機は、本発明の方法について説明した通りである。 Further, the device of the present invention can be provided with a stirrer that agitates the simulated blood contained in the blood vessel chamber. The stirrer is as described for the method of the present invention.
 また、本発明の装置は、模擬消化管液及び/又は模擬血液をサンプリングする機構を備えることができる。サンプリング機構は予め定めた時間に(経時的に)自動で各液をサンプリングするものであってよい。さらに、サンプリングした模擬消化管液及び/又は模擬血液を高速液体クロマトグラフィー装置のような薬物測定装置にアプライする機構を備えることができる。さらに、薬物濃度測定装置を備えることができる。また、経時的に自動で模擬消化管液をサンプリングし、薬物濃度測定装置にアプライし、薬物濃度測定装置により薬物濃度を測定する自動モニタリング装置を備えることもできる。 Further, the device of the present invention can be provided with a mechanism for sampling simulated gastrointestinal fluid and / or simulated blood. The sampling mechanism may automatically sample each liquid at a predetermined time (over time). Further, a mechanism for applying the sampled simulated gastrointestinal tract fluid and / or simulated blood to a drug measuring device such as a high performance liquid chromatography device can be provided. Further, a drug concentration measuring device can be provided. It is also possible to provide an automatic monitoring device that automatically samples simulated gastrointestinal fluid over time, applies it to a drug concentration measuring device, and measures the drug concentration by the drug concentration measuring device.
 本発明の装置は、少なくとも消化管チャンバー内の模擬消化管液の温度及び/又は血管チャンバー内の模擬血液の温度を一定に保つことができる温度調節装置を備えることが好ましい。温度調節装置は、さらに、注入する模擬胃液、濃縮模擬小腸液、模擬血液の温度も一定に保つことができるものであってよい。温度調節装置は、本発明の方法について説明した通りである。 The device of the present invention preferably includes a temperature control device capable of keeping at least the temperature of the simulated gastrointestinal fluid in the gastrointestinal chamber and / or the temperature of the simulated blood in the vascular chamber constant. The temperature control device may also be capable of keeping the temperature of the simulated gastric juice to be injected, the concentrated simulated small intestinal juice, and the simulated blood constant. The temperature control device is as described for the method of the present invention.
 以下、実施例を挙げて、本発明をより詳細に説明するが、本発明はこれらに限定されない。
(1)薬物経口吸収性評価装置
 本発明の薬物経口吸収性評価装置の1例を図1に示す。
 この装置は、消化管チャンバー1と血管チャンバー2を備える。両チャンバーの内腔は円筒形であり、両チャンバーの上面は開放している。
 消化管チャンバー1の底部は胃液溜まり1aを構成している。血管チャンバーの底面高さは、胃液溜まり1aの上端と同じ高さである。胃液溜まり1aの形状は、ここでは略半球形であるが、特に限定されない。
 胃液溜まり1aの側壁上部には濃縮模擬小腸液注入口1bが設けられている。濃縮模擬小腸液注入口1bにはチューブ3aが接続されており、ポンプ4aを用いて濃縮模擬小腸液を消化管チャンバー1内に注入できるようになっている。
 消化管チャンバー1と血管チャンバー2は、薬物透過性接続部5で連通している。薬物透過性接続部5は、胃液溜まり1aより上部にある。
 薬物透過性接続部5には、薬物透過性膜6が設置されて、薬物透過性接続部5の消化管チャンバー側と血管チャンバー側が完全に区切られている。薬物透過性膜6は、その面方向が垂直になるように設置されている。薬物透過性膜6は、直径47mmの円形の多孔質フィルター(メルクミリポア社、Durapore(登録商標)メンブラン、Type 0.22μm PVDF Membrane)である。
 胃液溜まり1aの容量は40mLであり、胃液溜まり1aを含む消化管チャンバー1の容量は100mLである。
 消化管チャンバー1内部には、上下2つの位置に撹拌羽を備える回転攪拌機7が、消化管チャンバー内腔と同軸に設置されている。撹拌羽の一方は、胃液溜まり内を撹拌できる位置にあり、他方は胃液溜まりより上部にある。
 血管チャンバーの底面外側にはマグネチックスターラー8aが設置されており、血管チャンバー内の底面にはマグネチックスターラーバー8bが置かれている。
 血管チャンバー2の側壁には模擬血液注入口2bが設けられている。濃縮模擬小腸液注入口2bにはチューブ3bが接続されており、ポンプ4bを用いて模擬血液を血管チャンバー2内に注入できるようになっている。ポンプ4bは、血管チャンバー2内の模擬血液の液面高さが、消化管チャンバー1内の模擬消化管液の液面高さと同じになるように、模擬血液の注入速度を制御できるものである。
 この装置は、手作業で模擬血液と模擬消化管液をサンプリングするものであるが、必要なタイミングでそれらを経時的にサンプリングする装置や、それを薬物濃度測定装置にアプライする装置を備えることが好ましい。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(1) Drug Oral Absorption Evaluation Device An example of the drug oral absorption evaluation device of the present invention is shown in FIG.
The device comprises a gastrointestinal chamber 1 and a vascular chamber 2. The lumens of both chambers are cylindrical, and the top surfaces of both chambers are open.
The bottom of the gastrointestinal chamber 1 constitutes a gastric juice pool 1a. The height of the bottom surface of the vascular chamber is the same as the height of the upper end of the gastric fluid pool 1a. The shape of the gastric juice pool 1a is substantially hemispherical here, but is not particularly limited.
A concentrated simulated small intestinal juice injection port 1b is provided on the upper side wall of the gastric juice pool 1a. A tube 3a is connected to the concentrated simulated small intestinal juice injection port 1b so that the concentrated simulated small intestinal juice can be injected into the gastrointestinal chamber 1 using a pump 4a.
The gastrointestinal chamber 1 and the vascular chamber 2 communicate with each other by a drug permeable connection part 5. The drug permeable connection 5 is above the gastric pool 1a.
A drug permeable membrane 6 is installed in the drug permeable connection portion 5, and the gastrointestinal chamber side and the vascular chamber side of the drug permeable connection portion 5 are completely separated. The drug permeable membrane 6 is installed so that its plane direction is vertical. The drug permeable membrane 6 is a circular porous filter having a diameter of 47 mm (Merck Millipore, Durapore® Membrane, Type 0.22 μm PVDF Membrane).
The volume of the gastric juice pool 1a is 40 mL, and the volume of the gastrointestinal chamber 1 containing the gastric juice pool 1a is 100 mL.
Inside the gastrointestinal chamber 1, a rotary stirrer 7 having stirring blades at two positions above and below is installed coaxially with the lumen of the gastrointestinal chamber. One of the stirring blades is in a position where it can stir in the gastric fluid pool, and the other is above the gastric fluid pool.
A magnetic stirrer 8a is installed on the outside of the bottom surface of the vascular chamber, and a magnetic stirrer bar 8b is placed on the bottom surface inside the vascular chamber.
A simulated blood inlet 2b is provided on the side wall of the blood vessel chamber 2. A tube 3b is connected to the concentrated simulated small intestinal juice injection port 2b so that the simulated blood can be injected into the vascular chamber 2 using the pump 4b. The pump 4b can control the injection rate of the simulated blood so that the height of the simulated blood in the vascular chamber 2 is the same as the height of the simulated gastrointestinal fluid in the gastrointestinal chamber 1. ..
This device manually samples simulated blood and simulated gastrointestinal fluid, but it may be equipped with a device that samples them over time at the required timing and a device that applies it to a drug concentration measuring device. preferable.
 図1の装置を用いて製剤中の薬物の経口吸収性を評価する方法の1例を説明する。絶食時の経口吸収性を評価する場合を例にとると、胃液溜まりに、絶食時の液性の模擬胃液を40mL入れておき、ここに被験製剤を1回投与分投入する。次いで、回転攪拌機7で模擬胃液を撹拌して薬剤を溶解させる。次いで、ポンプ4aの駆動によりチューブ3aを介して濃縮模擬小腸液注入口1bから濃縮模擬小腸液を6mL/分の速度で注入する。その間、回転攪拌機7で、模擬胃液と濃縮模擬小腸液との混合により生じる模擬消化管液を撹拌する。一方、血管チャンバー2には、ポンプ4bの駆動によりチューブ3bを介して模擬血液注入口2bから模擬血液を、模擬消化管液と同じ高さになるように注入する。
 以下の各試験では、模擬消化管液は注入開始1分後より、模擬血液は注入開始2分後より、それぞれサンプリングを開始し、以後経時的にサンプリングを行い、高速液体クロマトグラフィー装置を用いて薬物濃度を測定した。
 時間に対して薬物濃度をプロットし、模擬血液中の薬物濃度が上昇し始めたときから45分間のグラフの傾きをCmax(吸収速度)の指標とし、濃縮模擬小腸液の注入開始から120分間の膜透過量をAUC(吸収量)の指標とした。また、模擬消化管液中の薬物濃度が上昇し始めたときから45分間のグラフの傾きを消化管内での薬物溶解速度とした。消化管内での薬物溶解速度は、模擬血液中の薬物濃度の上昇速度からCmaxを推定する際の補助的なパラメータとして用いることができる。
An example of a method for evaluating the oral absorbability of a drug in a pharmaceutical product using the apparatus shown in FIG. 1 will be described. Taking the case of evaluating oral absorbability during fasting as an example, 40 mL of simulated gastric juice during fasting is placed in a gastric juice pool, and the test preparation is added thereto for one dose. Next, the simulated gastric juice is stirred with the rotary stirrer 7 to dissolve the drug. Then, by driving the pump 4a, the concentrated simulated small intestinal juice is injected from the concentrated simulated small intestinal juice inlet 1b through the tube 3a at a rate of 6 mL / min. Meanwhile, the rotary stirrer 7 stirs the simulated gastrointestinal fluid produced by mixing the simulated gastric juice and the concentrated simulated small intestinal juice. On the other hand, the simulated blood is injected into the vascular chamber 2 from the simulated blood injection port 2b via the tube 3b by driving the pump 4b so as to be at the same height as the simulated gastrointestinal fluid.
In each of the following tests, sampling of simulated gastrointestinal fluid was started 1 minute after the start of injection, and sampling of simulated blood was started 2 minutes after the start of injection, and then sampling was performed over time, using a high performance liquid chromatography device. The drug concentration was measured.
The drug concentration is plotted against time, and the slope of the graph for 45 minutes from the time when the drug concentration in the simulated blood begins to rise is used as an index of Cmax (absorption rate), and 120 minutes from the start of injection of concentrated simulated small intestinal fluid. The amount of membrane permeation was used as an index of AUC (absorption amount). In addition, the slope of the graph for 45 minutes from the time when the drug concentration in the simulated gastrointestinal fluid began to increase was taken as the drug dissolution rate in the gastrointestinal tract. The rate of drug dissolution in the gastrointestinal tract can be used as an auxiliary parameter in estimating Cmax from the rate of increase in drug concentration in simulated blood.
(2)薬物経口吸収性評価試験
(2-1)試薬の調製
絶食時模擬胃液(FaSSGF: Fasted state simulated gastrointestinal fluid)(pH1.6)
 タウロコール酸ナトリウム 80 μM(11.7 mg)
レシチン                 20 μM
塩化ナトリウム           34.2 μM(398 mg)
 
 pH4に調節したマッキルベイン緩衝液の適量に上記成分を加え、溶液とした後、最終的に200mLにメスアップする。その後、5Mの塩酸でpH1.6に調節する。マッキルベイン緩衝液の組成は、リン酸水素二ナトリウム0.02 M、クエン酸 0.01Mである。
(2) Drug oral absorption evaluation test
(2-1) Preparation of reagents
Fasted state simulated gastrointestinal fluid (pH 1.6)
Sodium taurocholate 80 μM (11.7 mg)
Lecithin 20 μM
Sodium chloride 34.2 μM (398 mg)

Add the above ingredients to an appropriate amount of McIlvaine buffer adjusted to pH 4, make a solution, and finally make up to 200 mL. Then, adjust the pH to 1.6 with 5M hydrochloric acid. The composition of McIlvaine buffer is disodium hydrogen phosphate 0.02 M and citric acid 0.01 M.
絶食時模擬胃液(FaSSGF: Fasted state simulated gastrointestinal fluid)(pH3.0)
 上記の絶食時模擬胃液(pH1.6)の調製方法において、5Mの塩酸でpH1.6に調節するのに代えてpH3.0に調節した他は、同様にして、絶食時模擬胃液(pH3.0)を調製した。
Fasted state simulated gastrointestinal fluid (pH3.0)
In the above method for preparing simulated gastric juice during fasting (pH 1.6), except that the pH was adjusted to 3.0 instead of adjusting to pH 1.6 with 5 M hydrochloric acid, the simulated gastric juice during fasting (pH 3. 0) was prepared.
絶食時濃縮模擬小腸液(5/3倍濃縮)(Pre-FaSSIF: Fasted state simulated intestinal fluid)
HBSS              50.028 mL
重炭酸ナトリウム         174.996 mg
D-グルコース             1250.004 mg
HEPES                     1125 mg
タウロコール酸ナトリウム 5 mM(1092.996 mg)
レシチン                 1.25 mM  
 
 pH4に調節したマッキルベイン緩衝液の適量に上記成分を加え、溶液とした後、最終的に300mLにメスアップする(工程1)。次いで、pH調整用水酸化ナトリウム量の試算操作として、FaSSGF40mLと工程1で調整した溶液60mLを混合し、5Mの水酸化ナトリウムでpH6.5に調節する(工程2)。このとき必要とした水酸化ナトリウム量を記録しておく。工程1で調整した溶液60mLに、工程2で必要であった量の5M 水酸化ナトリウムを添加する。
Pre-FaSSIF (Fasted state simulated intestinal fluid)
HBSS 50.028 mL
Sodium bicarbonate 174.996 mg
D-glucose 1250.004 mg
HEPES 1125 mg
Sodium taurocorate 5 mM (1092.996 mg)
Lecithin 1.25 mM

Add the above components to an appropriate amount of McIlvaine buffer adjusted to pH 4, make a solution, and finally make up to 300 mL (step 1). Next, as a trial calculation operation for the amount of sodium hydroxide for pH adjustment, 40 mL of FaSSGF and 60 mL of the solution prepared in step 1 are mixed, and the pH is adjusted to 6.5 with 5 M sodium hydroxide (step 2). Record the amount of sodium hydroxide required at this time. Add the amount of 5M sodium hydroxide required in step 2 to 60 mL of the solution prepared in step 1.
摂食時模擬胃液(FeSSGF:Fed state simulated gastrointestinal fluid)
塩化ナトリウム          237.02 mM(2.77g/100mL)
酢酸                    17.12 mM(0.2056g/100mL)
酢酸ナトリウム           29.75mM(0.488g/100mL)  
 
 上記組成の酢酸緩衝液 100mLに、3.5%の脂肪分を含んだmilk(牛乳、市販品)を100mL混合する。次いで、1M 塩酸でpH 5.0に調整する。
Fed state simulated gastrointestinal fluid (FeSSGF)
Sodium chloride 237.02 mM (2.77 g / 100 mL)
Acetic acid 17.12 mM (0.2056 g / 100 mL)
Sodium acetate 29.75 mM (0.488 g / 100 mL)

100 mL of milk (milk, commercially available) containing 3.5% fat is mixed with 100 mL of the acetate buffer having the above composition. Then adjust to pH 5.0 with 1M hydrochloric acid.
摂食時濃縮模擬小腸液(5/3倍濃縮)(Pre-FeSSIF:Pre-Fed state simulated intestinal fluid)
HBSS             50.028 mL
重炭酸ナトリウム        174.996 mg
D-グルコース        1250.004 mg
HEPES             1125 mg
タウロコール酸ナトリウム 25 mM(5464.98 mg)
レシチン                 6.25 mM
 
 pH4に調節したマッキルベイン緩衝液の適量に上記成分を加え、溶液とした後、最終的に300mLにメスアップする(工程1)。次いで、pH調整用水酸化ナトリウム量の試算操作として、FeSSGF40mLと工程1で調整した溶液60mLを混ぜ合わせ、5Mの水酸化ナトリウムでpH6.5に調節する。このとき必要とした水酸化ナトリウム量を記録しておく(工程2)。工程1で調整した溶液60mLに工程2で必要であった量の5M 水酸化ナトリウムを添加する。
Pre-FeSSIF (Pre-Fed state simulated intestinal fluid)
HBSS 50.028 mL
Sodium bicarbonate 174.996 mg
D-glucose 1250.004 mg
HEPES 1125 mg
Sodium taurocholate 25 mM (5464.98 mg)
Lecithin 6.25 mM

Add the above components to an appropriate amount of McIlvaine buffer adjusted to pH 4, make a solution, and finally make up to 300 mL (step 1). Next, as a trial calculation operation for the amount of sodium hydroxide for pH adjustment, 40 mL of FeSSGF and 60 mL of the solution prepared in step 1 are mixed, and the pH is adjusted to 6.5 with 5 M sodium hydroxide. Record the amount of sodium hydroxide required at this time (step 2). Add the amount of 5M sodium hydroxide required in step 2 to 60 mL of the solution prepared in step 1.
(2-2)実証データ 1(消化管チャンバー内の回転攪拌機の回転数の影響)
 図1の装置の消化管チャンバー1の胃液溜まり1aに、絶食時模擬胃液40mL(pH 1.6)とセロケン錠20mgを1錠入れた。回転攪拌機7で撹拌しながら、絶食時濃縮模擬小腸液を、6mL/分の流量で10分間かけて消化管チャンバー1内に注入することにより、pH6.5の絶食時模擬小腸液100mLとした。回転攪拌機7による撹拌速度は、50 rpm、100 rpm、又は200 rpmとした。
 血管チャンバー2内に、模擬血液であるオクタノールを、2.5mL/分の流量で10分間かけて注入し、最終容量25mLとした。
(2-2) Empirical data 1 (Effect of rotation speed of rotary stirrer in gastrointestinal chamber)
40 mL (pH 1.6) of simulated gastric juice during fasting and 20 mg of Seroken tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG. While stirring with the rotary stirrer 7, the fasting simulated small intestinal juice was injected into the gastrointestinal chamber 1 at a flow rate of 6 mL / min for 10 minutes to obtain 100 mL of the fasting simulated small intestinal juice having a pH of 6.5. The stirring speed by the rotary stirrer 7 was set to 50 rpm, 100 rpm, or 200 rpm.
Octanol, which is simulated blood, was injected into the vascular chamber 2 at a flow rate of 2.5 mL / min over 10 minutes to obtain a final volume of 25 mL.
 消化管チャンバーに濃縮模擬小腸液を注入開始1分後から120分間にわたり、模擬消化管液及び模擬血液をそれぞれ経時的にサンプリングし、セロケン錠の有効成分であるメトプロロール酒石酸塩の濃度を高速液体クロマトグラフィーで測定した。さらに、各時点での錠剤からのメトプロロール酒石酸塩の溶出率(1錠中のメトプロロール酒石酸塩量に対する各時点での模擬消化管液中のメトプロロール酒石酸塩量の百分率)(%)を算出した。また、各時点でのメトプロロール酒石酸塩の膜透過率(1錠中のメトプロロール酒石酸塩量に対する各時点での模擬血液中のメトプロロール酒石酸塩量の百分率)(%)を算出した。 Concentrated simulated small intestinal juice is injected into the gastrointestinal chamber. Simulated gastrointestinal juice and simulated blood are sampled over time for 120 minutes from 1 minute after the start of injection, and the concentration of metprorol tartrate, which is the active ingredient of Seroken tablets, is analyzed by high performance liquid chromatography. Measured by chromatography. Furthermore, the elution rate of metoprolol tartrate from the tablets at each time point (percentage of the amount of metoprolol tartrate in the simulated gastrointestinal tract fluid at each time point to the amount of metoprolol tartrate in one tablet) (%) was calculated. In addition, the membrane permeability of metoprolol tartrate at each time point (percentage of the amount of metoprolol tartrate in simulated blood at each time point to the amount of metoprolol tartrate in one tablet) (%) was calculated.
 結果を図2に示す。模擬消化管液の撹拌速度を変えると、薬物の溶出率及び膜透過率が変わることが分かる。 The result is shown in figure 2. It can be seen that the elution rate and membrane permeability of the drug change when the stirring rate of the simulated gastrointestinal fluid is changed.
(2-3)実証データ 2(テルミサルタン含有錠剤の製剤間の比較)
 図1の装置の消化管チャンバー1の胃液溜まり1aに、絶食時模擬胃液40mL(pH 1.6)又は摂食時模擬胃液40mL(pH 5.0)とテルミサルタン錠20mgを1錠入れた。絶食時条件の実験では、回転攪拌機7で撹拌しながら、絶食時濃縮模擬小腸液を、6mL/分の流量で10分間かけて消化管チャンバー1内に注入することにより、pH6.5の絶食時模擬小腸液100mLとした。また、摂食時条件の実験では、回転攪拌機7で撹拌しながら、摂食時模擬小腸液を、2mL/分の流量で30分間かけて消化管チャンバー1内に注入することにより、pH6.5の摂食時模擬小腸液100mLとした。回転攪拌機7による撹拌速度は50 rpmとした。
 また、絶食時条件の実験では、血管チャンバー2内に、模擬血液であるオクタノールを、2.5mL/分の流量で10分間かけて注入し、最終容量25mLとした。摂食時条件の実験では、血管チャンバー2内に、オクタノールを、0.833mL/分の流量で30分間かけて注入し、最終容量25mLとした。
 テルミサルタン錠として、ベーリンガーインゲルハイム株式会社製の製剤を標準製剤とし、これとは添加物が異なる製剤A、製剤Bを比較として用いた。
(2-3) Empirical data 2 (Comparison between formulations of telmisartan-containing tablets)
40 mL (pH 1.6) of simulated gastric juice during fasting or 40 mL (pH 5.0) of simulated gastric juice during feeding and 20 mg of telmisartan tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG. In the fasting condition experiment, the concentrated simulated small intestinal juice during fasting was injected into the gastrointestinal chamber 1 at a flow rate of 6 mL / min for 10 minutes while stirring with the rotary stirrer 7, so that the pH was 6.5 during fasting. The simulated small intestinal juice was 100 mL. In the experiment of feeding conditions, pH 6.5 was obtained by injecting simulated small intestinal juice during feeding into the gastrointestinal chamber 1 at a flow rate of 2 mL / min for 30 minutes while stirring with a rotary stirrer 7. The simulated small intestinal juice at the time of feeding was 100 mL. The stirring speed by the rotary stirrer 7 was set to 50 rpm.
In the fasting experiment, octanol, which is simulated blood, was injected into the vascular chamber 2 at a flow rate of 2.5 mL / min over 10 minutes to give a final volume of 25 mL. In the experiment under feeding conditions, octanol was injected into the vascular chamber 2 at a flow rate of 0.833 mL / min over 30 minutes to give a final volume of 25 mL.
As the telmisartan tablet, a preparation manufactured by Boehringer Ingelheim Co., Ltd. was used as a standard preparation, and preparations A and B having different additives were used for comparison.
 消化管チャンバーに濃縮模擬小腸液を注入開始1分後から120分間にわたり、模擬消化管液及び模擬血液をそれぞれ経時的にサンプリングし、テルミサルタン錠の有効成分であるテルミサルタンの濃度を高速液体クロマトグラフィーで測定した。さらに、各時点での錠剤からのテルミサルタンの溶出率(1錠中のテルミサルタン量に対する各時点での模擬消化管液中のテルミサルタン量の百分率)(%)を算出した。また、各時点でのテルミサルタンの膜透過率(1錠中のテルミサルタン量に対する各時点での模擬血液中のテルミサルタン量の百分率)(%)を算出した。 Concentrated simulated small intestinal juice is injected into the gastrointestinal chamber From 1 minute to 120 minutes, simulated gastrointestinal juice and simulated blood are sampled over time, and the concentration of thermisartan, which is the active ingredient of thermisartan tablets, is measured by high performance liquid chromatography. It was measured. Furthermore, the elution rate of telmisartan from the tablets at each time point (percentage of the amount of telmisartan in the simulated gastrointestinal fluid at each time point to the amount of telmisartan in one tablet) (%) was calculated. In addition, the membrane permeability of telmisartan at each time point (percentage of the amount of telmisartan in simulated blood at each time point to the amount of telmisartan in one tablet) (%) was calculated.
 絶食時条件の結果を図3に示し、摂食時条件の結果を図4に示す。絶食時条件では、製剤間でテルミサルタンの溶出率に大きな違いが認められた。一方、摂食時条件では、製剤間でテルミサルタンの透過率にやや違いが認められたものの有意差はなかったことから、摂食条件下では絶食条件下に比べてテルミサルタン経口製剤の製剤間差が検出され難いことが分かる。
 本発明の方法及び装置によれば、絶食時と摂食時の経口吸収性の違いを評価できることが分かる。
The results of the fasting conditions are shown in Fig. 3, and the results of the fasting conditions are shown in Fig. 4. Under fasting conditions, there was a large difference in the elution rate of telmisartan between the formulations. On the other hand, under the feeding conditions, although there was a slight difference in the permeability of telmisartan between the formulations, there was no significant difference. It turns out that it is difficult to detect.
It can be seen that the method and apparatus of the present invention can evaluate the difference in oral absorbability between fasting and feeding.
(2-4)実証データ 3(薬物Xの経口吸収性評価結果と臨床試験結果との対比)
 「(2-3)実証データ 2」と同じ条件で、薬物X含有製剤からの薬物Xの溶出率及び膜透過率を測定した。薬物X含有製剤として、標準製剤、及びこれとは添加物が異なる製剤A、製剤Bを用いた。
 また、健常被験者に標準製剤、製剤A、又は製剤Bを1錠投与した後、12時間にわたり、血漿中の薬物X濃度を測定した。これは、標準製剤と製剤A又は製剤Bとの間のヒトでのBE試験である。
 BE試験は、日本の後発医薬品の生物学的同等性試験ガイドラインに準じて行った。概要について説明すると、同一被検者に、3日以上の休薬期間をおいて、標準製剤と試験製剤(製剤A又は製剤B)を投与するクロスオーバー試験とした。被験者の姿勢は、投与開始から投与後4時間までは、坐位とし、検査時やトイレを除き立位または臥位はとらないようにした。被験者の飲水管理は、各製剤の投与前1時間から投与後4時間までは、製剤服用のための飲水以外は絶水とした。摂食時条件は、高脂肪食(900 kcal以上、且つ、総エネルギーに対する脂質のエネルギーの占める割合が35%以上)を20分間以内で摂り、食後10分以内に製剤を投与する条件とした。
(2-4) Empirical data 3 (Comparison between oral absorption evaluation results of drug X and clinical trial results)
Under the same conditions as in "(2-3) Empirical data 2", the elution rate and membrane permeability of drug X from the drug X-containing preparation were measured. As the drug X-containing preparation, the standard preparation and the preparations A and B having different additives were used.
In addition, after administering one tablet of the standard preparation, the preparation A, or the preparation B to a healthy subject, the drug X concentration in plasma was measured for 12 hours. This is a BE test in humans between the standard formulation and formulation A or formulation B.
The BE test was conducted according to the bioequivalence test guidelines for generic drugs in Japan. To explain the outline, it was a crossover study in which the standard preparation and the test preparation (formulation A or preparation B) were administered to the same subject with a drug holiday of 3 days or more. The subject was in a sitting position from the start of administration to 4 hours after administration, and was not in a standing or lying position except at the time of examination and in the toilet. The subject's drinking water was controlled from 1 hour before administration of each preparation to 4 hours after administration, except for drinking water for taking the preparation. The eating conditions were a high-fat diet (900 kcal or more, and the ratio of lipid energy to total energy was 35% or more) within 20 minutes, and the preparation was administered within 10 minutes after eating.
 絶食時条件の標準製剤と製剤Aとの間のヒトでのBE試験結果を図5に示す。また、摂食時条件の標準製剤及び製剤Aからの薬物Xの溶出率及び膜透過率の結果を図6に示す。
 ヒトBE試験での薬物Xの血漿中濃度は、製剤Aが標準製剤より低く、これに一致して、溶出率及び膜透過率は、製剤Aが標準製剤より低かった。
Figure 5 shows the results of the BE test in humans between the standard formulation under fasting conditions and formulation A. In addition, Fig. 6 shows the results of the dissolution rate and membrane permeability of drug X from the standard preparation and the preparation A under the feeding conditions.
The plasma concentration of drug X in the human BE test was lower for the standard preparation than the standard preparation, and the dissolution rate and the membrane permeability were lower than the standard preparation for the preparation A.
 摂食時条件の標準製剤と製剤Aとの間のヒトでのBE試験結果を図7に示す。また、摂食時条件の標準製剤及び製剤Aからの薬物Xの溶出率及び膜透過率の結果を図8に示す。
 ヒトBE試験での薬物Xの血漿中濃度は、製剤Aが標準製剤より低く、これに一致して、溶出率及び膜透過率は、製剤Aが標準製剤より低かった。
 また、BE試験では、絶食時に比べて摂食時の方が、標準製剤と製剤Aとの間の血漿中薬物X濃度の差が大きかったが、これに一致して、溶出率は、絶食時に比べて摂食時の方が、標準製剤と製剤Aとの間の溶出率の差が大きかった。
Figure 7 shows the results of the BE test in humans between the standard preparation under the feeding conditions and the preparation A. In addition, Fig. 8 shows the results of the elution rate and membrane permeability of drug X from the standard preparation and the preparation A under the feeding conditions.
The plasma concentration of drug X in the human BE test was lower for the standard preparation than the standard preparation, and the dissolution rate and the membrane permeability were lower than the standard preparation for the preparation A.
In the BE test, the difference in plasma drug X concentration between the standard preparation and the preparation A was larger during the fasting than during the fasting, which is consistent with the dissolution rate at the time of fasting. In comparison, the difference in dissolution rate between the standard preparation and the preparation A was larger when eating.
 絶食時条件の標準製剤と製剤Bとの間のヒトでのBE試験結果を図9に示す。また、絶食時条件の標準製剤及び製剤Bからの薬物Xの溶出率及び膜透過率の結果を図10に示す。
 ヒトBE試験での薬物Xの血漿中濃度は、投与直後は標準製剤の方が高かったが、その後は製剤Bの方が高かった。一方、溶出率及び膜透過率は、製剤Bが標準製剤より高かった。溶出率及び膜透過率の結果は、ヒトBE試験結果に近かった。
Figure 9 shows the results of the BE test in humans between the standard formulation under fasting conditions and formulation B. In addition, the results of the elution rate and membrane permeability of the drug X from the standard preparation and the preparation B under the fasting condition are shown in FIG.
The plasma concentration of drug X in the human BE study was higher with the standard preparation immediately after administration, but was higher with the preparation B thereafter. On the other hand, the dissolution rate and the membrane permeability of the preparation B were higher than those of the standard preparation. The elution rate and membrane permeability results were close to those of the human BE test.
 摂食時条件の標準製剤と製剤Bとの間のヒトでのBE試験結果を図11に示す。また、摂食時条件の標準製剤及び製剤Bからの薬物Xの溶出率及び膜透過率の結果を図12に示す。
 ヒトBE試験での薬物Xの血漿中濃度は、製剤Bが標準製剤より高かった。これに対して、溶出率は標準製剤の方がやや高く、膜透過率は製剤Bの方がやや高かった。溶出率及び膜透過率の結果は、ヒトBE試験結果に近かった。
Figure 11 shows the results of the BE test in humans between the standard preparation under the feeding conditions and the preparation B. In addition, the results of the dissolution rate and membrane permeability of drug X from the standard preparation and the preparation B under the feeding conditions are shown in FIG.
The plasma concentration of drug X in the human BE study was higher for the preparation B than for the standard preparation. On the other hand, the dissolution rate was slightly higher in the standard preparation, and the membrane permeability was slightly higher in the preparation B. The elution rate and membrane permeability results were close to those of the human BE test.
 本発明の方法及び装置を用いた上記試験結果から、製剤Aは標準製剤より経口吸収性が悪く、製剤Bは標準製剤と経口吸収性が同等又はそれ以上であることが予測されるが、この予測は、ヒトでのBE試験結果と一致していた。
 本発明の方法及び装置によれば、ヒトBE試験結果を精度よく予測できることが分かる。
From the above test results using the method and apparatus of the present invention, it is predicted that the product A has poorer oral absorbability than the standard product, and the product B has the same or better oral absorbability as the standard product. The prediction was consistent with the BE test results in humans.
According to the method and apparatus of the present invention, it can be seen that the human BE test result can be predicted accurately.
(2-5)実証データ 4(胃排出速度の影響)
 図1の装置の消化管チャンバー1の胃液溜まり1aに、絶食時模擬胃液40mL(pH 1.6)とペルサンチン錠25mgを1錠入れた。回転攪拌機7で撹拌しながら、絶食時濃縮模擬小腸液を、10分間(流量6mL/分)、20分間(流量3mL/分)、又は30分間(流量2mL/分)かけて消化管チャンバー1内に注入することにより、pH6.5の絶食時模擬小腸液100mLとした。回転攪拌機7による撹拌速度は、50 rpm、100 rpm、又は200 rpmとした。
 血管チャンバー2内に、模擬血液であるオクタノールを、10分間(2.5mL/分)、20分間(1.25mL/分)、又は30分間(0.83mL/分)かけて注入し、最終容量25mLとした。
(2-5) Empirical data 4 (Effect of gastric emptying rate)
40 mL (pH 1.6) of simulated gastric juice during fasting and one 25 mg of Persantin tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG. While stirring with the rotary stirrer 7, the fasting concentrated simulated small intestinal juice is placed in the gastrointestinal chamber 1 over 10 minutes (flow rate 6 mL / min), 20 minutes (flow rate 3 mL / min), or 30 minutes (flow rate 2 mL / min). By injecting into, 100 mL of simulated small intestinal juice at the time of fasting at pH 6.5 was prepared. The stirring speed by the rotary stirrer 7 was set to 50 rpm, 100 rpm, or 200 rpm.
Octanol, which is simulated blood, was injected into the vascular chamber 2 over 10 minutes (2.5 mL / min), 20 minutes (1.25 mL / min), or 30 minutes (0.83 mL / min) to obtain a final volume of 25 mL. ..
 消化管チャンバーに濃縮模擬小腸液を注入開始1分後から120分間にわたり、模擬消化管液及び模擬血液をそれぞれ経時的にサンプリングし、ペルサンチン錠の有効成分であるジピリダモールの濃度を高速液体クロマトグラフィーで測定した。さらに、各時点での錠剤からのジピリダモールの溶出率(1錠中のジピリダモール量に対する各時点での模擬消化管液中のジピリダモール量の百分率)(%)を算出した。また、各時点でのジピリダモールの膜透過率(1錠中のジピリダモール量に対する各時点での模擬血液中のジピリダモール量の百分率)(%)を算出した。 Concentrated simulated intestinal juice is injected into the gastrointestinal chamber From 1 minute to 120 minutes, simulated gastrointestinal juice and simulated blood are sampled over time, and the concentration of dipyridamole, the active ingredient of Persantin tablets, is measured by high performance liquid chromatography. It was measured. Furthermore, the elution rate of dipyridamole from the tablets at each time point (percentage of the amount of dipyridamole in the simulated gastrointestinal fluid at each time point to the amount of dipyridamole in one tablet) (%) was calculated. In addition, the membrane permeability of dipyridamole at each time point (percentage of the amount of dipyridamole in simulated blood at each time point to the amount of dipyridamole in one tablet) (%) was calculated.
 結果を図13、図14、及び図15に示す。消化管チャンバー内の模擬消化管液のpHをpH1.6~6.5に変化させるのにかけた時間は、図13は10分間、図14は20分間、図15は30分間である。
 pH変化速度を変えると、薬物の溶出率及び膜透過率が変わっている。また、薬物の溶出率及び膜透過率は撹拌速度の影響を受けるところ、撹拌速度の影響の度合いは、pH変化速度により異なっている。
 本発明方法及び装置は、消化管チャンバー内の模擬消化管液の撹拌速度やpHの変化速度を任意に設定できるため、消化管の動きや胃からの排出速度が異なる多様なヒトでの経口吸収性を精度よく評価できることが分かる。
The results are shown in FIGS. 13, 14, and 15. The time taken to change the pH of the simulated gastrointestinal fluid in the gastrointestinal chamber from pH 1.6 to 6.5 was 10 minutes in FIG. 13, 20 minutes in FIG. 14, and 30 minutes in FIG.
When the pH change rate is changed, the drug elution rate and the membrane permeability are changed. Further, the elution rate and membrane permeability of the drug are affected by the stirring rate, but the degree of influence of the stirring rate differs depending on the pH change rate.
Since the method and apparatus of the present invention can arbitrarily set the stirring rate and the change rate of pH of the simulated gastrointestinal fluid in the gastrointestinal chamber, oral absorption in various humans with different gastrointestinal movements and gastric emptying rates. It can be seen that the sex can be evaluated accurately.
(2-6)実証データ 5(胃内pHの影響)
 図1の装置の消化管チャンバー1の胃液溜まり1aに、絶食時模擬胃液40mL(pH 3.0)とペルサンチン錠25mgを1錠入れた。撹拌速度100 rpmで回転攪拌機7で撹拌しながら、絶食時濃縮模擬小腸液を、10分間(流量6mL/分)、20分間(流量3mL/分)、又は30分間(流量2mL/分)かけて消化管チャンバー1内に注入することにより、pH6.5の絶食時模擬小腸液100mLとした。
 血管チャンバー2内に、模擬血液であるオクタノールを、10分間(2.5mL/分)、20分間(1.25mL/分)、又は30分間(0.83mL/分)かけて注入し、最終容量25mLとした。
(2-6) Empirical data 5 (Effect of gastric pH)
40 mL (pH 3.0) of simulated gastric juice during fasting and one 25 mg of Persantin tablets were placed in the gastric juice pool 1a of the gastrointestinal chamber 1 of the device shown in FIG. While stirring with a rotary stirrer 7 at a stirring speed of 100 rpm, the fasting concentrated simulated small intestinal juice was applied for 10 minutes (flow rate 6 mL / min), 20 minutes (flow rate 3 mL / min), or 30 minutes (flow rate 2 mL / min). By injecting into the gastrointestinal chamber 1, 100 mL of simulated small intestinal juice at the time of fasting at pH 6.5 was obtained.
Octanol, which is simulated blood, was injected into the vascular chamber 2 over 10 minutes (2.5 mL / min), 20 minutes (1.25 mL / min), or 30 minutes (0.83 mL / min) to obtain a final volume of 25 mL. ..
 消化管チャンバーに濃縮模擬小腸液を注入開始1分後から120分間にわたり、模擬消化管液及び模擬血液をそれぞれ経時的にサンプリングし、ペルサンチン錠の有効成分であるジピリダモールの濃度を高速液体クロマトグラフィーで測定した。さらに、各時点での錠剤からのジピリダモールの溶出率(1錠中のジピリダモール量に対する各時点での模擬消化管液中のジピリダモール量の百分率)(%)を算出した。また、各時点でのジピリダモールの膜透過率(1錠中のジピリダモール量に対する各時点での模擬血液中のジピリダモール量の百分率)(%)を算出した。 Concentrated simulated intestinal juice is injected into the gastrointestinal chamber From 1 minute to 120 minutes, simulated gastrointestinal juice and simulated blood are sampled over time, and the concentration of dipyridamole, the active ingredient of Persantin tablets, is measured by high performance liquid chromatography. It was measured. Furthermore, the elution rate of dipyridamole from the tablets at each time point (percentage of the amount of dipyridamole in the simulated gastrointestinal fluid at each time point to the amount of dipyridamole in one tablet) (%) was calculated. In addition, the membrane permeability of dipyridamole at each time point (percentage of the amount of dipyridamole in simulated blood at each time point to the amount of dipyridamole in one tablet) (%) was calculated.
 結果を図16に示す。試験開始時の消化管チャンバー1内のpHを1.6にした図13~図15に示す結果とは、薬物の溶出率及び膜透過率が異なっている。また、前述した通り、薬物の溶出率及び膜透過率はpH変化速度の影響を受けるところ、pH変化速度の影響の度合いも、図13~図15に示す結果とは異なっている。同じ絶食時でもヒトにより胃内pHは異なるため、本発明方法及び装置によれば、多様なヒトでの経口吸収性を精度よく評価できることが分かる。 The results are shown in Fig. 16. The drug elution rate and membrane permeability are different from the results shown in FIGS. 13 to 15 when the pH in the gastrointestinal chamber 1 at the start of the test was 1.6. Further, as described above, the elution rate and the membrane permeability of the drug are affected by the pH change rate, but the degree of influence of the pH change rate is also different from the results shown in FIGS. 13 to 15. Since the gastric pH differs depending on the human even during the same fasting, it can be seen that the method and apparatus of the present invention can accurately evaluate the oral absorption in various humans.
 本発明の方法及び装置は、経口投与製剤のヒトでの吸収性を精度よく予測できるため、後発医薬品の開発や製剤の設計変更時に行うヒトBE試験の負担が軽減される。また、様々な条件での経口吸収性を評価できる点でも、非常に有用なものである。 Since the method and apparatus of the present invention can accurately predict the absorption of an orally administered preparation in humans, the burden of the human BE test performed when developing a generic drug or changing the design of a preparation is reduced. It is also very useful in that it can evaluate oral absorbability under various conditions.

Claims (10)

  1.  薬物又は薬物含有製剤を模擬消化管液に投入し、模擬消化管液中の薬物を薬物透過性膜を介して模擬血液中に透過させ、模擬消化管液及び/又は模擬血液中の薬物濃度を測定することにより、経口投与した薬物又は製剤中の薬物の経口吸収性を評価する方法であって、模擬消化管液の状態を胃内から小腸内へと経時的に変化させると共に、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させることを特徴とする、薬物経口吸収性評価方法。 A drug or drug-containing preparation is injected into the simulated gastrointestinal tract fluid, and the drug in the simulated gastrointestinal tract fluid is permeated into the simulated blood through a drug permeable membrane to adjust the drug concentration in the simulated gastrointestinal fluid and / or simulated blood. It is a method of evaluating the oral absorbability of a drug administered orally administered or a drug in a preparation by measuring, and the state of the simulated gastrointestinal fluid is changed over time from the stomach to the small intestine, and the simulated digestive tract is used. A method for evaluating oral drug absorption, which comprises increasing the contact area between a liquid and a drug permeable membrane over time.
  2.  模擬消化管液を収容する消化管チャンバーであって、底部に模擬胃液溜まりが設けられ、濃縮模擬小腸液を内部に注入する機構を備えた消化管チャンバーと、消化管チャンバー内を撹拌する機構を用いて、模擬胃液溜まりに模擬胃液と薬物又は薬物含有製剤を投入した後、濃縮模擬小腸液注入機構により濃縮模擬小腸液を模擬胃液に注入しながら、生成する模擬消化管液を撹拌することにより模擬消化管液の状態を胃内から小腸内へと経時的に変化させる、請求項1に記載の方法。 A gastrointestinal chamber that houses simulated gastrointestinal fluid, and has a gastrointestinal chamber with a simulated gastric fluid pool at the bottom and a mechanism for injecting concentrated simulated small intestinal fluid into the inside, and a mechanism for stirring the inside of the gastrointestinal chamber. By injecting the simulated gastric fluid and the drug or drug-containing preparation into the simulated gastric fluid pool, and then injecting the concentrated simulated small intestinal fluid into the simulated gastric fluid by the concentrated simulated small intestinal fluid injection mechanism, the simulated gastrointestinal fluid to be generated is stirred. The method according to claim 1, wherein the state of the simulated gastrointestinal fluid is changed from the stomach to the small intestine over time.
  3.  模擬胃液溜まりより上部に位置する薬物透過性接続部で消化管チャンバーと接続された、模擬血液を収容する血管チャンバーを用い、薬物透過性接続部には、薬物透過性膜がその面方向が水平方向に対して傾きを持つように設置されて消化管チャンバーと血管チャンバーとを区分するようにしておき、濃縮模擬小腸液注入機構により濃縮模擬小腸液を模擬胃液に注入することにより、生成する模擬消化管液の液面を上昇させて、模擬消化管液と薬物透過性膜との接触面積を経時的に増大させる、請求項2に記載の方法。 A vascular chamber for accommodating simulated blood is used, which is connected to the gastrointestinal chamber at a drug-permeable connection located above the simulated gastric fluid pool, and a drug-permeable membrane is horizontal to the drug-permeable connection. It is installed so as to have an inclination with respect to the direction so that the gastrointestinal chamber and the vascular chamber are separated, and the simulated small intestinal juice is generated by injecting the concentrated simulated small intestinal juice into the simulated gastric juice by the concentrated simulated small intestinal juice injection mechanism. The method according to claim 2, wherein the liquid level of the gastrointestinal tract fluid is raised to increase the contact area between the simulated gastrointestinal tract fluid and the drug permeable membrane over time.
  4.  血管チャンバーが模擬血液を内部に注入する機構を備え、この注入機構を用いて、消化管チャンバー内の液面の高さに血管チャンバー内の液面の高さを一致させるように、模擬血液を血管チャンバー内に注入する、請求項3に記載の方法。 The vascular chamber is equipped with a mechanism for injecting simulated blood into the inside, and this injection mechanism is used to inject the simulated blood so that the height of the liquid level in the gastrointestinal chamber matches the height of the liquid level in the vascular chamber. The method according to claim 3, wherein the injection is performed into a vascular chamber.
  5.  模擬消化管液中の薬物濃度及び/又は模擬血液中の薬物濃度を経時的に測定し、模擬消化管液の初期薬物濃度上昇速度及び/又は模擬血液の初期薬物濃度上昇速度と模擬血液の薬物濃度-時間曲線下面積を算出することで、薬物の経口吸収性を評価する、請求項1~4の何れかに記載の方法。 The drug concentration in the simulated gastrointestinal tract fluid and / or the drug concentration in the simulated blood is measured over time, and the initial drug concentration increase rate in the simulated gastrointestinal fluid and / or the initial drug concentration increase rate in the simulated blood and the drug in the simulated blood The method according to any one of claims 1 to 4, wherein the oral absorbability of the drug is evaluated by calculating the area under the concentration-time curve.
  6.  経時的に変化を受ける模擬消化管液の状態が、pH、組成、及び容量である、請求項1~5の何れかに記載の方法。 The method according to any one of claims 1 to 5, wherein the state of the simulated gastrointestinal fluid that undergoes changes over time is pH, composition, and volume.
  7.  消化管チャンバーと血管チャンバーを有し、消化管チャンバーの底部には模擬胃液溜まりが設けられており、消化管チャンバーと血管チャンバーは、模擬胃液溜まりより上部に設けられた、薬物透過性接続部で接続されており、薬物透過性接続部は、薬物透過性膜が、その面方向が水平方向に対して傾きを持つように設置されて、消化管チャンバーと血管チャンバーとを区分するものであり、消化管チャンバーは、濃縮模擬小腸液を内部に注入する注入口を備え、血管チャンバーは、模擬血液を内部に注入する注入口を備え、消化管チャンバー内に収容される模擬消化管液を撹拌する撹拌機を備えることを特徴とする、薬物経口吸収性評価装置。 It has a gastrointestinal chamber and a vascular chamber, and a simulated gastrointestinal tract chamber is provided at the bottom of the gastrointestinal tract chamber. The drug permeable connection is connected, and the drug permeable membrane is installed so that its surface direction is inclined with respect to the horizontal direction to separate the gastrointestinal tract chamber and the vascular chamber. The gastrointestinal chamber is provided with an inlet for injecting concentrated simulated small intestinal fluid, and the vascular chamber is provided with an inlet for injecting simulated blood inside, and the simulated gastrointestinal fluid contained in the gastrointestinal chamber is agitated. A drug oral absorption evaluation device comprising a stirrer.
  8.  濃縮模擬小腸液を消化管チャンバーの注入口から注入するための自動送液装置、及び/又は模擬血液を血管チャンバーの注入口から注入するための自動送液装置を備える、請求項7に記載の装置。 The seventh aspect of claim 7, further comprising an automatic liquid delivery device for injecting concentrated simulated small intestinal juice from an injection port of a gastrointestinal chamber and / or an automatic liquid delivery device for injecting simulated blood from an injection port of a vascular chamber. Device.
  9.  (a)模擬消化管液及び/若しくは模擬血液を自動でサンプリングする装置、(b)模擬消化管液及び/若しくは模擬血液を自動でサンプリングして自動で薬物測定装置にアプライする装置、又は(c)模擬消化管液及び/若しくは模擬血液を自動でサンプリングして自動で薬物測定装置にアプライし薬物濃度測定装置により自動で薬物濃度を測定する自動モニタリング装置を備える、請求項7又は8に記載の装置。 (a) A device that automatically samples simulated gastrointestinal fluid and / or simulated blood, (b) A device that automatically samples simulated gastrointestinal fluid and / or simulated blood and automatically applies it to a drug measuring device, or (c) ) The invention according to claim 7 or 8, further comprising an automatic monitoring device that automatically samples simulated gastrointestinal fluid and / or simulated blood, automatically applies it to a drug measuring device, and automatically measures the drug concentration by the drug concentration measuring device. Device.
  10.  少なくとも消化管チャンバー内の模擬消化管液の温度及び/又は血管チャンバー内の模擬血液の温度を一定に保持できる温度調節装置を備える、請求項7~9の何れかに記載の装置。 The device according to any one of claims 7 to 9, further comprising a temperature control device capable of keeping at least the temperature of the simulated gastrointestinal fluid in the gastrointestinal chamber and / or the temperature of the simulated blood in the vascular chamber constant.
PCT/JP2020/044362 2020-04-22 2020-11-27 Method and device for evaluating oral absorbability of drug WO2021215039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021521458A JP7090272B2 (en) 2020-04-22 2020-11-27 Oral absorption evaluation method and device for drugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-076301 2020-04-22
JP2020076301 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021215039A1 true WO2021215039A1 (en) 2021-10-28

Family

ID=78270464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044362 WO2021215039A1 (en) 2020-04-22 2020-11-27 Method and device for evaluating oral absorbability of drug

Country Status (2)

Country Link
JP (1) JP7090272B2 (en)
WO (1) WO2021215039A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527246A (en) * 2022-02-17 2022-05-24 深圳中旭生物科技有限公司 Cardiovascular and cerebrovascular medicine research and development check out test set
CN115240875A (en) * 2022-07-25 2022-10-25 湖南慧泽生物医药科技有限公司 Direct estimation method for drug absorption rate constant
CN116952856A (en) * 2023-07-25 2023-10-27 广州新征程生物科技有限公司天津分公司 Embryo element pill content high-precision detection system based on big data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807115A (en) * 1996-01-31 1998-09-15 Hu; Oliver Yoa-Pu Dissolution apparatus simulating physiological gastrointestinal conditions
JP2012037512A (en) * 2010-08-04 2012-02-23 Rohm & Haas Co Improved elusion test device
JP6386193B2 (en) * 2014-11-21 2018-09-05 アブソープション システムズ グループ リミテッド ライアビリティ カンパニー System for concomitant assessment of drug dissolution, absorption and permeation and method of using the system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807115A (en) * 1996-01-31 1998-09-15 Hu; Oliver Yoa-Pu Dissolution apparatus simulating physiological gastrointestinal conditions
JP2012037512A (en) * 2010-08-04 2012-02-23 Rohm & Haas Co Improved elusion test device
JP6386193B2 (en) * 2014-11-21 2018-09-05 アブソープション システムズ グループ リミテッド ライアビリティ カンパニー System for concomitant assessment of drug dissolution, absorption and permeation and method of using the system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527246A (en) * 2022-02-17 2022-05-24 深圳中旭生物科技有限公司 Cardiovascular and cerebrovascular medicine research and development check out test set
CN115240875A (en) * 2022-07-25 2022-10-25 湖南慧泽生物医药科技有限公司 Direct estimation method for drug absorption rate constant
CN115240875B (en) * 2022-07-25 2023-08-15 湖南慧泽生物医药科技有限公司 Direct estimation method of drug absorption rate constant
CN116952856A (en) * 2023-07-25 2023-10-27 广州新征程生物科技有限公司天津分公司 Embryo element pill content high-precision detection system based on big data
CN116952856B (en) * 2023-07-25 2024-03-26 广州新征程生物科技有限公司天津分公司 Embryo element pill content high-precision detection system based on big data

Also Published As

Publication number Publication date
JP7090272B2 (en) 2022-06-24
JPWO2021215039A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP7090272B2 (en) Oral absorption evaluation method and device for drugs
Charalabidis et al. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): beyond guidelines
Guerra et al. Development and validation of a new dynamic computer‐controlled model of the human stomach and small intestine
Silva et al. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: The hidden role of bicarbonate buffer
Minekus The TNO gastro-intestinal model (TIM)
Gittings et al. Dissolution methodology for taste masked oral dosage forms
Zahirul et al. Dissolution testing for sustained or controlled release oral dosage forms and correlation with in vivo data: challenges and opportunities
Huang et al. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives
Rezhdo et al. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement
US20080214438A1 (en) Methods and Apparatus for Creating Particle Derivatives of HDL with Reduced Lipid Content
Baxevanis et al. Fed-state gastric media and drug analysis techniques: Current status and points to consider
Cascone et al. The influence of dissolution conditions on the drug ADME phenomena
Van Den Abeele et al. Gastrointestinal and systemic disposition of diclofenac under fasted and fed state conditions supporting the evaluation of in vitro predictive tools
O'farrell et al. In vitro models to evaluate ingestible devices: Present status and current trends
CN111435134A (en) Gastrointestinal dynamic simulation device
Shrivas et al. Advances in in vivo predictive dissolution testing of solid oral formulations: how closer to in vivo performance?
Bogataj et al. Development of a glass-bead device for dissolution testing
Cascone et al. Gastrointestinal behavior and ADME phenomena: I. In vitro simulation
Pompa et al. A new gastro-intestinal mathematical model to study drug bioavailability
CN209894783U (en) Gastrointestinal dynamic simulation device
Cascone et al. Mimicking the contractions of a human stomach and their effect on pharmaceuticals
Klein Rectal dosage forms
Basit Dissolution testing of solid dosage forms
Garbacz et al. Investigation of the dissolution characteristics of nifedipine extended-release formulations using USP apparatus 2 and a novel dissolution apparatus
Kakuk et al. Advances in drug release investigations: Trends and developments for dissolution test media

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021521458

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932330

Country of ref document: EP

Kind code of ref document: A1