WO2021215009A1 - Internal defect estimation device - Google Patents

Internal defect estimation device Download PDF

Info

Publication number
WO2021215009A1
WO2021215009A1 PCT/JP2020/017845 JP2020017845W WO2021215009A1 WO 2021215009 A1 WO2021215009 A1 WO 2021215009A1 JP 2020017845 W JP2020017845 W JP 2020017845W WO 2021215009 A1 WO2021215009 A1 WO 2021215009A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal defect
calculation unit
photographing device
defect estimation
photographing
Prior art date
Application number
PCT/JP2020/017845
Other languages
French (fr)
Japanese (ja)
Inventor
亮輔 安部
祐貴 河村
恵 入江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/017845 priority Critical patent/WO2021215009A1/en
Priority to JP2020568492A priority patent/JPWO2021215009A1/ja
Publication of WO2021215009A1 publication Critical patent/WO2021215009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present disclosure relates to an internal defect estimation device that estimates internal defects of a structure.
  • Patent Document 1 proposes a method of applying a load to a structure and obtaining a stress using the displacement amount of the structure obtained by comparing the image information of the structure before and after applying the load. By using the calculated displacement amount and stress, it is possible to estimate the internal defects of the structure.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an internal defect estimation device capable of efficiently estimating internal defects of a structure.
  • the internal defect estimation device applies a load to the object, and the load-applying part that moves relative to the object and the first photographing that measures the object.
  • the second imaging device which is provided at a position away from the first imaging device in the direction in which the device and the load-applying unit move, and measures the object, and the first measurement value measured by the first imaging device. It also includes a processing unit that determines an abnormal part of the object from the difference from the second measured value measured by the second photographing apparatus.
  • an internal defect estimation device capable of efficiently estimating internal defects of a structure.
  • the figure which shows the state which the load from the wheel of the measuring vehicle is applied to the floor slab shown in FIG. Enlarged view of part A shown in FIG.
  • Block diagram showing physical changes, information, etc. in the internal defect estimation device It is a conceptual diagram of the image data taken by the photographing apparatus in Embodiment 1, and is the figure which shows the state which the measuring vehicle moved k from the traveling coordinate origin. It is a conceptual diagram of the image data taken by the photographing apparatus in Embodiment 1, and is the figure which shows the state which the measuring vehicle has moved k + 1 from the traveling coordinate origin. It is a conceptual diagram of the image data taken by the photographing apparatus in Embodiment 1, and is the figure which shows the state which the measuring vehicle has moved k + 2 from the traveling coordinate origin.
  • FIG. 5 shows a flow in which a defect degree calculation device calculates a predicted diameter of an internal defect, a predicted equivalent physical property value of 62P for an internal defect, and a predicted height of 61P for an internal defect in the internal defect estimating device according to the first embodiment.
  • FIG. 1 is a conceptual diagram showing a vehicle equipped with the internal defect estimation device according to the first embodiment and a structure in which the vehicle travels.
  • the object is the deck 5 of the bridge and the internal defect estimation device 2 is mounted on the measuring vehicle 1 which is a moving body will be described as an example.
  • the internal defect estimation device 2 is mounted on the measuring vehicle 1 which is a moving body.
  • the structure in which the measuring vehicle 1 travels and measures is a floor slab 5 installed substantially horizontally on a plurality of piers 4 extending in the vertical direction.
  • the floor slab 5 portion that comes into contact with the measurement vehicle 1, that is, the portion that comes into contact with the wheels 11 of the measurement vehicle 1, is the load generated by the weight of the measurement vehicle 1 itself and the measurement vehicle. Receives the load generated by the movement of 1.
  • FIG. 2 is a floor slab measured by the internal defect estimation device according to the first embodiment, and is a diagram showing a floor slab without internal defects.
  • FIG. 3 is a diagram showing a state in which a load from the wheels of the measuring vehicle is applied to the floor slab shown in FIG.
  • FIG. 4 is a floor slab measured by the internal defect estimation device according to the first embodiment, and is a diagram showing a floor slab having an internal defect.
  • FIG. 5 is a diagram showing a state in which a load from the wheels of the measuring vehicle is applied to the floor slab shown in FIG.
  • FIG. 6 is a partially enlarged view of the portion A shown in FIG.
  • the wheel 11 of the measurement vehicle 1 serves as a load applying portion that applies a load to the floor slab 5.
  • the main cause of internal defects in the deck 5 is the load generated by the movement applied from the moving body on the deck 5.
  • internal defects are promoted due to meteorological and environmental conditions such as rainwater, corrosion of reinforcing bars, and material deterioration due to alkali-aggregate reaction.
  • the internal defect estimation device 2 efficiently measures the strain on the surface of the deck 5 and estimates the size of the internal defect and the like. In the following description, an example in which the internal defect is hollow is shown.
  • FIG. 7 is a diagram showing a schematic configuration of the internal defect estimation device according to the first embodiment.
  • the internal defect estimation device 2 includes a photographing device 1100.
  • the photographing device 1100 includes a first photographing device 1101 and a second photographing device 1102 provided at intervals along the traveling direction of the wheels 11 of the measuring vehicle 1.
  • the first photographing device 1101 and the second photographing device 1102 are provided at different positions from the wheels 11.
  • the photographing device 1100 may include two or more photographing devices. Further, in the first embodiment, two sets of photographing devices 1100 are provided. Three or more sets of photographing devices 1100 may be provided.
  • the distance between the first photographing device 1101 and the second photographing device 1102 is known.
  • the first photographing device 1101 and the second photographing device 1102 are, for example, a line scan camera or a stereo camera having an area photographing element that photographs two areas with and without load.
  • the internal defect estimation device 2 includes a movement amount signal generation device 1000 that generates a signal synchronized with the movement of the measurement vehicle 1.
  • the internal defect estimation device 2 obtains the movement distance of the measurement vehicle 1 from the signal output from the movement amount signal generation device 1000 and the time, and while the measurement vehicle 1 is moving, the first photographing device 1101 and the first imaging device 2 (Ii)
  • a synchronous photographing trigger device 1200 for outputting a trigger signal for causing the same floor slab 5 to be photographed by the photographing device 1102 is provided.
  • the internal defect estimation device 2 includes a distance measuring device 1300 which is a distance measuring unit.
  • the ranging device 1300 includes a first ranging device 1301, a second ranging device 1302, and a third ranging device 1303.
  • the first distance measuring device 1301, the second distance measuring device 1302, and the third distance measuring device 1303 each have a known relative position with respect to the photographing device 1100, and can measure the distance to the floor slab 5.
  • the first ranging device 1301, the second ranging device 1302, and the third ranging device 1303 are all arranged so as not to be arranged in the same straight line. Further, the distance measuring device 1300 may include four or more distance measuring devices.
  • the internal defect estimation device 2 includes an arithmetic unit 2000 which is an arithmetic unit.
  • the arithmetic unit is a part of the processing unit.
  • the arithmetic unit 2000 includes a vehicle posture arithmetic unit 1400, an image composition / arithmetic unit 1500, and a defect degree arithmetic unit 1600.
  • the vehicle attitude calculation device 1400 obtains the attitude correction parameter from three or more distance measurement values output from the distance measurement device 1300.
  • the image composition / calculation device 1500 calculates the image of the floor slab 5 output from the photographing device 1100.
  • the defect degree calculation device 1600 performs a calculation for predicting the position and shape of the internal defect of the deck 5 from the image data after the calculation obtained from the image composition / calculation device 1500.
  • the internal defect estimation device 2 includes a display device 1700.
  • the display device 1700 displays the calculation result or the like obtained from the calculation device 2000.
  • the internal defect estimation device 2 includes a control device 1800.
  • the user of the internal defect estimation device 2 can operate the control device 1800 to change various settings of the internal defect estimation device 2.
  • the internal defect estimation device 2 includes a vehicle information storage device 1900.
  • the vehicle information storage device 1900 stores information indicating the vehicle weight distribution of the measurement vehicle 1.
  • the internal defect estimation device 2 applies a load to the floor slab 5 by the measuring vehicle 1 itself according to the above-described configuration, and takes an image of the surface of the floor slab 5 from the running measurement vehicle 1. When taking an image, a place where the distance from the position where the load is applied is different is taken. Based on the captured image, the amount of deformation of the surface of the deck 5 is measured, the mechanical characteristics are calculated using the information of the vehicle weight distribution, and the size of the internal defect of the deck 5 is estimated.
  • the first photographing device 1101 and the second photographing device 1102 are different in the installation distance from the wheel 11 of the measuring vehicle 1 with respect to the traveling direction.
  • the first photographing device 1101 and the second photographing device 1102 photograph a region having a different distance from the point where the load is applied to the deck 5 by the measuring vehicle 1 itself.
  • the shooting at time t1 is defined as the first shooting.
  • the movement amount signal generation device 1000 and the synchronous shooting trigger device 1200 are arranged at the arrangement interval between the two sets of the shooting devices 1100. Measures a distance equal to the value multiplied by an integer of 1 or more When the vehicle 1 moves, control is performed so that the first photographing device 1101 and the second photographing device 1102 take a second image and photograph the same deck 5 at the time of unloading. do.
  • the speed of the measurement vehicle 1 is, for example, an average value or an instantaneous value.
  • the movement amount signal generation device 1000 and the synchronous shooting trigger so that the first shooting device 1101 and the second shooting device 1102 take pictures of the floor slabs 5 before and after the load is sequentially applied in synchronization with the movement of the measuring vehicle 1.
  • the device 1200 controls the shooting of the photographing device 1100.
  • the vehicle posture calculation device 1400 calculates the vehicle posture correction parameter P1 representing the posture change of the measurement vehicle 1 during traveling.
  • the vehicle posture correction parameter P1 is the arrangement position of the photographing device 1100 obtained from the information obtained from the first range measuring device 1301, the second range measuring device 1302, and the third range measuring device 1303 included in the range measuring device 1300. It is obtained from the relative relationship between the virtual plane 120 including the above and the road surface plane composed of points on the road surface measured by the distance measuring device 1300.
  • FIG. 8 is a schematic diagram showing the positional relationship of each part when obtaining the vehicle posture correction parameter in the first embodiment. Note that FIG. 8 is a schematic diagram in a two-dimensional space for the sake of simplification of the description.
  • the distance L_B2 is known.
  • the distance between the second distance measuring device 1302 measured by the second distance measuring device 1302 and the deck 5 is set to H1_D2, and the third distance measuring device is used.
  • H1_D3 be the distance between the third ranging device 1303 and the deck 5 measured by the device 1303.
  • the distance between the second ranging device 1302 measured by the second ranging device 1302 and the deck 5 is H2_D2, and the distance between the third ranging device 1303 measured by the third ranging device 1303 and the deck 5 is H2_D3. And. At this time, the angle formed by the road surface plane connecting the AF points of the deck 5 and the virtual plane 120 is set to ⁇ 2.
  • FIG. 9 is a block diagram showing physical changes, information, and the like in the internal defect estimation device according to the first embodiment.
  • the image composition / arithmetic unit 1500 corrects the image data of the floor slab 5 acquired by the photographing device 1100 at different times to the image photographed by the measuring vehicle 1 in the same posture using the vehicle posture correction parameter P1.
  • the image is corrected with respect to the coordinate data of the image J_t2 taken at time t2 using the vehicle posture correction parameter P1.
  • the image is corrected with respect to the coordinate data of the image J_t1 taken at time t1 using the reciprocal of the vehicle posture correction parameter P1.
  • the image corrected according to the posture of the measurement vehicle 1 is stored for each movement distance of the measurement vehicle 1 based on the travel coordinate origin set in advance by the user through the control device 1800. , Obtain composite images J1 and J2 having the same relative distance from the axle of the measurement vehicle 1. Details will be described later with reference to FIGS. 10 to 13.
  • the defect degree calculation device 1600 is a road surface surface when the vehicle weight of the measuring vehicle 1 itself is applied to the road surface from two types of composite images J1 and J2 obtained by photographing the same area of the deck 5 of the photographing device 1100. The displacement distribution and surface strain distribution in the vertical direction are calculated, and the calculation is performed to predict the position and shape of internal defects.
  • the measuring device and the arithmetic unit can be operated by the user issuing a control signal via the control device 1800.
  • FIG. 10 is a conceptual diagram of image data captured by the photographing apparatus according to the first embodiment, and is a diagram showing a state in which the measuring vehicle has moved k from the origin of the traveling coordinates.
  • FIG. 11 is a conceptual diagram of image data captured by the photographing apparatus according to the first embodiment, and is a diagram showing a state in which the measuring vehicle has moved k + 1 from the origin of the traveling coordinates.
  • FIG. 12 is a conceptual diagram of image data captured by the photographing apparatus according to the first embodiment, and is a diagram showing a state in which the measuring vehicle has moved by k + 2 from the origin of the traveling coordinates.
  • FIG. 13 is a conceptual diagram of a structure of image data stored for each movement distance of the measurement vehicle in the first embodiment.
  • the internal defect estimation device 2 records the movement distance Lic with the travel coordinate origin set at an arbitrary position set by the user together with the image 15 taken while the measuring vehicle 1 is traveling.
  • Image composition ⁇ In order to reduce the influence of the unevenness of the measurement sensitivity, that is, the distribution of the surface strain and the vertical deformation amount corresponding to the internal defects caused by the difference in the relative distance of the wheel 11 of the measurement vehicle 1 from the axle.
  • the arithmetic unit 1500 constitutes a composite image in which the relative distance between the axle of the measuring vehicle 1 and the target location in the X direction is the same.
  • the composite images obtained by performing the above-described processing on the image 15 acquired from the photographing apparatus 1100 by the image compositing / arithmetic unit 1500 are J1 and J2, respectively.
  • FIGS. 14, 15, and 16 the surface strain distribution ⁇ and the vertical direction generated according to the internal defects when there are internal defects in the deck 5, which are carried out in the defect degree calculation device 1600.
  • An example of the calculation result of the deformation amount distribution ⁇ , the equivalent physical properties and height of the internal defects obtained from the calculation result, and the respective prediction results will be described.
  • the measuring vehicle 1 travels on the floor slab 5
  • the floor slab 5 is divided into two or more regions along the traveling direction of the measuring vehicle 1.
  • 14, 15, and 16 show an example in which the deck 5 is divided into seven regions S1 to S7.
  • FIG. 14 is a diagram showing an example of a floor slab in which an internal defect is formed.
  • FIG. 15 shows the surface strain distribution ⁇ and the vertical deformation amount distribution ⁇ at each position using the composite image obtained by calculating with the image compositing / arithmetic unit according to the first embodiment on the floor slab shown in FIG. It is a figure which shows the example which obtained.
  • the means for obtaining the surface strain distribution is a digital image correlation method or the like.
  • the means for obtaining the vertical variate distribution is the triangulation method or the like.
  • each position in the area of the deck 5 receives the same load from the measurement vehicle 1. It is a composite image that reflects the deformed state of. Therefore, by analyzing the surface strain distribution at each position, it is possible to detect a wider range of internal defects than using only an image at a certain temporary point.
  • the predicted diameter of the internal defect, the predicted equivalent physical property value of the internal defect 62P, and the predicted height 61P of the internal defect were calculated using the surface strain distribution, the vertical deformation amount distribution, and the coordinate data shown in FIG. It is a figure which shows the result.
  • the position coordinate data at the position where the surface strain distribution of each coordinate exceeds the preset threshold value ⁇ thr is used as the predicted diameter of the internal defect in the region.
  • the preset threshold value ⁇ thr for the surface strain distribution of each coordinate is once calculated for all areas with a temporary value, and then the user operates the control device 1800 while looking at the display device 1700 to change and determine it. You may.
  • the method of obtaining the predicted equivalent physical characteristic value 62P of the internal defect and the predicted height 61P of the internal defect will be described in detail with reference to FIGS. 17 and 18.
  • FIGS. 17 and 18 show the prediction of internal defects based on the physical model performed in the defect degree arithmetic unit according to the first embodiment, and the learned response function stored in the defect degree arithmetic unit. It is a figure. In FIGS. 17 and 18, hollowing progresses in the direction indicated by the arrow 17.
  • FIG. 19 shows a flow in which the defect degree calculation device calculates the predicted diameter of the internal defect, the predicted equivalent physical property value of the internal defect 62P, and the predicted height 61P of the internal defect in the internal defect estimating device according to the first embodiment. It is a figure.
  • measurement data such as strain of the deck 5 is acquired (step S1).
  • the predicted height of the internal defect is 61P
  • the predicted equivalent physical property value of the internal defect is 62P
  • the maximum value of the surface strain for each region is 51 or the amount of vertical deformation.
  • a function representing the relationship between the maximum value 52 and a numerical table digitized using the function are stored in advance, and this is called a learned response function.
  • the defect degree calculation device 1600 uses the composite images J1 and J2 obtained from the image composition / calculation device 1500, and the maximum value of the surface strain obtained from the strain distribution for each region obtained by the defect degree calculation device 1600.
  • the defect degree calculation device 1600 is the vertical deformation amount obtained from the strain distribution for each region obtained by performing in the defect degree calculation device 1600 using the composite images J1 and J2 of the image composition / calculation device 1500. It is the closest value to the product of the maximum value 52, the predicted height 61P of the internal defect, the learned response function, and the vertical load of the measurement position obtained from the vehicle weight distribution stored in the vehicle information storage device 1900. At that time, the predicted equivalent physical property value 62P of the internal defect is obtained. That is, the predicted equivalent physical property value 62P of the internal defect is calculated (step S3). Then, the predicted internal defect diameter is calculated (step S4).
  • the predicted equivalent physical characteristic value 62P of the internal defect and the predicted height 61P of the internal defect are standardized so that the estimation result of the internal defect of the entire object becomes a value from 0 to 1, and is based on the standardized value.
  • the abnormal portion is determined, and the obtained calculation result and the like are displayed on the display device 1700.
  • bridges and roads are targeted, but it can also be applied to surfaces such as buildings, buildings, quays, embankments, tunnels, etc. where the measurement target surface is inclined from horizontal to nearly vertical.
  • the object can be predicted for internal defects on the wall surface of a building or a building. Is also available.
  • the structure equipped with the internal defect estimation device 2 is attracted to the target measurement surface so that the load of the structure is applied to the target measurement surface.
  • the structure on which the internal defect estimation device 2 is mounted may be leaned against the measurement surface to apply a load to the measurement surface.
  • the structure equipped with the internal defect estimation device 2 may be attracted to the target measurement surface, and the weight may be pressed against the measurement surface by a spring force from the bottom surface of the structure. In this case, a load is applied to the measurement surface by the pressed weight.
  • the load applied to the measurement surface may be measured by a load cell provided on the structure.
  • the load is applied not only to bridges and roads, but also to any surface such as buildings, buildings, quays, embankments, tunnels, etc., where the measurement target surface is inclined from horizontal or nearly vertical. It can also be used to predict internal defects of an object.
  • the internal defect estimation device 2 moves from the load applying unit that applies a load to the object and moves relatively, the first photographing device 1101 that measures the object, and the first photographing device 1101. Processing to determine an abnormal part from the difference between the values measured by the second photographing device 1102, the first photographing device 1101, and the second photographing device 1102, which are provided at a position away from the load applying portion in the direction and measure the object. Since the unit is provided, the measurement vehicle 1 equipped with the internal defect estimation device 2 can easily detect defects and deterioration inside the structure by passing through the measurement target once. Further, since the measurement can be continued while moving the measurement vehicle 1, it is possible to improve the efficiency of estimating the internal defect.
  • the vehicle posture correction parameter P1 is based on the relative relationship between the virtual plane 120 of the measurement vehicle 1 obtained from the installation position of the photographing device 1100 and the road surface plane formed by the points on the road surface obtained from the measurement data of the photographing device 1100. You may ask. As a result, the distance measuring device 1300 can be omitted, and the configuration of the internal defect estimating device 2 can be simplified.
  • the vehicle posture correction parameter P1 may be obtained by using the output value of the angle detection device that is installed inside the internal defect estimation device and detects the installation postures of the first imaging device and the second imaging device.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Abstract

This internal defect estimation device comprises: a load application unit (11) that applies a load to an object (5) and moves relative to the object (5); a first imaging device that measures the object (5); a second imaging device that is provided at a position farther from the first imaging device than the load application unit (11) in a direction in which the load application unit (11) moves, and measures the object (5); and a processing unit that that determines an abnormal part of the object (5) from the difference between a first measured value measured by the first imaging device and a second measured value measured by the second imaging device.

Description

内部欠陥推定装置Internal defect estimator
 本開示は、構造物の内部欠陥を推定する内部欠陥推定装置に関する。 The present disclosure relates to an internal defect estimation device that estimates internal defects of a structure.
 RC造の高架橋、高速道路のRC床版等の構造物では、交通量の増加による疲労損傷、凍結防止剤による鉄筋腐食、凍害、アルカリ骨材反応を原因とする耐久性の低下、および早期劣化による損傷欠陥等の内部欠陥の事例が報告されている。社会インフラの維持管理の観点からは、適切な経済性を有し、必要十分な検出精度で内部欠陥を推定できることが望まれる。 For structures such as RC viaducts and RC slabs on highways, fatigue damage due to increased traffic volume, reinforcement corrosion due to antifreeze agents, frost damage, reduced durability due to alkaline aggregate reaction, and early deterioration Cases of internal defects such as damage defects due to damage have been reported. From the viewpoint of maintenance of social infrastructure, it is desirable to have appropriate economic efficiency and to be able to estimate internal defects with necessary and sufficient detection accuracy.
 内部欠陥の状況および進行状況を把握するために、打音による検査、超音波法による検査、電磁誘導による温度評価を用いた検査、電磁波等による非破壊検査が従来から行われている。 In order to grasp the status and progress of internal defects, inspection by tapping sound, inspection by ultrasonic method, inspection using temperature evaluation by electromagnetic induction, non-destructive inspection by electromagnetic waves, etc. have been conventionally performed.
 特許文献1には、構造物に荷重を付与し、荷重を付与する前後の構造物の画像情報を比較することで得られる構造物の変位量を用いて応力を求める方法が提案されている。算出された変位量および応力を用いることで、構造物の内部欠陥を推定することも可能となる。 Patent Document 1 proposes a method of applying a load to a structure and obtaining a stress using the displacement amount of the structure obtained by comparing the image information of the structure before and after applying the load. By using the calculated displacement amount and stress, it is possible to estimate the internal defects of the structure.
特開2006-343160号公報Japanese Unexamined Patent Publication No. 2006-343160
 高速道路等の構造物に対する内部欠陥の推定は、対象の範囲が非常に広範となる。そのため、従来技術に示した方法を実施する装置を車両に搭載して、車両を移動させながら内部欠陥の推定をできれば作業の効率化を図ることができる。しかしながら、荷重を付与した状態で撮影した画像と、荷重を付与していない状態で撮影した画像の2つの画像を得るために、車両を停止させて撮影する必要があるため、十分に効率化を図ることができないという問題があった。 The scope of estimation of internal defects in structures such as highways is very wide. Therefore, if a device that implements the method shown in the prior art is mounted on the vehicle and the internal defects can be estimated while moving the vehicle, the work efficiency can be improved. However, in order to obtain two images, an image taken with a load applied and an image taken without a load applied, it is necessary to stop the vehicle and take a picture, so that the efficiency is sufficiently improved. There was a problem that it could not be planned.
 本開示は、上記に鑑みてなされたものであって、効率よく構造物の内部欠陥を推定できる内部欠陥推定装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an internal defect estimation device capable of efficiently estimating internal defects of a structure.
 上述した課題を解決し、目的を達成するために、内部欠陥推定装置は、対象物に荷重を加え、対象物に対して相対的に移動する荷重付与部と、対象物を計測する第一撮影装置と、荷重付与部が移動する方向に第一撮影装置から荷重付与部よりも離れた位置に設けられ、対象物を計測する第二撮影装置と、第一撮影装置が計測した第一計測値および第二撮影装置が計測した第二計測値との差分から対象物の異常部分を判断する処理部と、を備える。 In order to solve the above-mentioned problems and achieve the purpose, the internal defect estimation device applies a load to the object, and the load-applying part that moves relative to the object and the first photographing that measures the object. The second imaging device, which is provided at a position away from the first imaging device in the direction in which the device and the load-applying unit move, and measures the object, and the first measurement value measured by the first imaging device. It also includes a processing unit that determines an abnormal part of the object from the difference from the second measured value measured by the second photographing apparatus.
 本開示によれば、効率よく構造物の内部欠陥を推定できる内部欠陥推定装置を得ることができるという効果を奏する。 According to the present disclosure, it is possible to obtain an internal defect estimation device capable of efficiently estimating internal defects of a structure.
実施の形態1にかかる内部欠陥推定装置が搭載された車両とその車両が走行する構造体を示す概念図A conceptual diagram showing a vehicle equipped with the internal defect estimation device according to the first embodiment and a structure in which the vehicle travels. 実施の形態1にかかる内部欠陥推定装置で計測される床版であって、内部欠陥のない床版を示す図The figure which shows the floor slab measured by the internal defect estimation apparatus which concerns on Embodiment 1 and has no internal defect. 図2に示す床版に計測車両の車輪からの荷重が加わった状態を示す図The figure which shows the state which the load from the wheel of the measuring vehicle is applied to the floor slab shown in FIG. 実施の形態1にかかる内部欠陥推定装置で計測される床版であって、内部欠陥がある床版を示す図The figure which shows the floor slab measured by the internal defect estimation apparatus which concerns on Embodiment 1, and shows the floor slab which has an internal defect. 図4に示す床版に計測車両の車輪からの荷重が加わった状態を示す図The figure which shows the state which the load from the wheel of the measuring vehicle is applied to the floor slab shown in FIG. 図5に示すA部分を拡大した部分拡大図Enlarged view of part A shown in FIG. 実施の形態1にかかる内部欠陥推定装置の概略構成を示す図The figure which shows the schematic structure of the internal defect estimation apparatus which concerns on Embodiment 1. 実施の形態1において、車両姿勢補正パラメータを求める際の各部の位置関係を示した模式図In the first embodiment, a schematic diagram showing the positional relationship of each part when obtaining the vehicle posture correction parameter. 実施の形態1にかかる内部欠陥推定装置における物理変化および情報等を示すブロック線図Block diagram showing physical changes, information, etc. in the internal defect estimation device according to the first embodiment. 実施の形態1における撮影装置が撮影する画像データの概念図であって、計測車両が走行座標原点からk移動した状態を示す図It is a conceptual diagram of the image data taken by the photographing apparatus in Embodiment 1, and is the figure which shows the state which the measuring vehicle moved k from the traveling coordinate origin. 実施の形態1における撮影装置が撮影する画像データの概念図であって、計測車両が走行座標原点からk+1移動した状態を示す図It is a conceptual diagram of the image data taken by the photographing apparatus in Embodiment 1, and is the figure which shows the state which the measuring vehicle has moved k + 1 from the traveling coordinate origin. 実施の形態1における撮影装置が撮影する画像データの概念図であって、計測車両が走行座標原点からk+2移動した状態を示す図It is a conceptual diagram of the image data taken by the photographing apparatus in Embodiment 1, and is the figure which shows the state which the measuring vehicle has moved k + 2 from the traveling coordinate origin. 実施の形態1における計測車両の移動距離ごとに記憶している画像データの構造体の概念図Conceptual diagram of the structure of the image data stored for each movement distance of the measurement vehicle in the first embodiment 内部欠陥が形成された床版の一例を示す図The figure which shows an example of the floor slab which formed the internal defect 図14に示した床版に対して、実施の形態1における画像合成・演算装置で演算して取得した合成画像を使って各位置の表面ひずみ分布εと垂直方向変形量分布λを求めた例を示す図An example in which the surface strain distribution ε and the vertical deformation amount distribution λ at each position were obtained from the floor slab shown in FIG. 14 using the composite image obtained by calculating with the image composition / arithmetic unit according to the first embodiment. Diagram showing 図15に示した表面ひずみ分布と垂直方向変形量分布と座標データを用いて、内部欠陥の予測径、内部欠陥の予測等価物性値62P、内部欠陥の予測高さ61Pを計算した結果を示す図The figure which shows the result of having calculated the predicted diameter of an internal defect, the predicted equivalent physical property value 62P of an internal defect, and the predicted height 61P of an internal defect using the surface strain distribution, the vertical deformation amount distribution and the coordinate data shown in FIG. 実施の形態1における欠陥度合い演算装置内で実施している、物理モデルに基づく内部欠陥の予測、および欠陥度合い演算装置内に記憶している学習済みの応答関数について示す図The figure which shows the prediction of the internal defect based on a physical model, and the learned response function stored in the defect degree arithmetic unit which is carried out in the defect degree arithmetic unit of Embodiment 1. 実施の形態1における欠陥度合い演算装置内で実施している、物理モデルに基づく内部欠陥の予測、および欠陥度合い演算装置内に記憶している学習済みの応答関数について示す図The figure which shows the prediction of the internal defect based on a physical model, and the learned response function stored in the defect degree arithmetic unit which is carried out in the defect degree arithmetic unit of Embodiment 1. 実施の形態1にかかる内部欠陥推定装置において、欠陥度合い演算装置が内部欠陥の予測径、内部欠陥の予測等価物性値62P、および内部欠陥の予測高さ61Pを算出するフローを示す図FIG. 5 shows a flow in which a defect degree calculation device calculates a predicted diameter of an internal defect, a predicted equivalent physical property value of 62P for an internal defect, and a predicted height of 61P for an internal defect in the internal defect estimating device according to the first embodiment.
 以下に、本開示の実施の形態にかかる内部欠陥推定装置を図面に基づいて詳細に説明する。 The internal defect estimation device according to the embodiment of the present disclosure will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる内部欠陥推定装置が搭載された車両とその車両が走行する構造体を示す概念図である。以下では、対象物を橋梁の床版5とし、内部欠陥推定装置2を移動体である計測車両1に搭載した場合を例に説明する。
Embodiment 1.
FIG. 1 is a conceptual diagram showing a vehicle equipped with the internal defect estimation device according to the first embodiment and a structure in which the vehicle travels. In the following, a case where the object is the deck 5 of the bridge and the internal defect estimation device 2 is mounted on the measuring vehicle 1 which is a moving body will be described as an example.
 内部欠陥推定装置2は、移動体である計測車両1に搭載されている。計測車両1が走行して計測する構造体は、鉛直方向に延びる複数の橋脚4の上に、略水平に設置された床版5である。 The internal defect estimation device 2 is mounted on the measuring vehicle 1 which is a moving body. The structure in which the measuring vehicle 1 travels and measures is a floor slab 5 installed substantially horizontally on a plurality of piers 4 extending in the vertical direction.
 床版5の上を計測車両1が移動すると、計測車両1と接触する床版5部分、すなわち計測車両1の車輪11と接触する部分は、計測車両1自体の重量によって生じる荷重と、計測車両1の移動によって生じる荷重を受ける。 When the measurement vehicle 1 moves on the floor slab 5, the floor slab 5 portion that comes into contact with the measurement vehicle 1, that is, the portion that comes into contact with the wheels 11 of the measurement vehicle 1, is the load generated by the weight of the measurement vehicle 1 itself and the measurement vehicle. Receives the load generated by the movement of 1.
 図2は、実施の形態1にかかる内部欠陥推定装置で計測される床版であって、内部欠陥のない床版を示す図である。図3は、図2に示す床版に計測車両の車輪からの荷重が加わった状態を示す図である。図4は、実施の形態1にかかる内部欠陥推定装置で計測される床版であって、内部欠陥がある床版を示す図である。図5は、図4に示す床版に計測車両の車輪からの荷重が加わった状態を示す図である。図6は、図5に示すA部分を拡大した部分拡大図である。計測車両1の車輪11は、床版5に荷重を加える荷重付与部となる。 FIG. 2 is a floor slab measured by the internal defect estimation device according to the first embodiment, and is a diagram showing a floor slab without internal defects. FIG. 3 is a diagram showing a state in which a load from the wheels of the measuring vehicle is applied to the floor slab shown in FIG. FIG. 4 is a floor slab measured by the internal defect estimation device according to the first embodiment, and is a diagram showing a floor slab having an internal defect. FIG. 5 is a diagram showing a state in which a load from the wheels of the measuring vehicle is applied to the floor slab shown in FIG. FIG. 6 is a partially enlarged view of the portion A shown in FIG. The wheel 11 of the measurement vehicle 1 serves as a load applying portion that applies a load to the floor slab 5.
 図2および図3に示すように、床版5の一部に荷重が加わった場合、内部欠陥がない場合でも荷重が加わっている箇所が床版5の上下面共に垂直方向の最大変形量で変形し、その周囲もそれに合わせて変形する。 As shown in FIGS. 2 and 3, when a load is applied to a part of the floor slab 5, even if there is no internal defect, the place where the load is applied is the maximum amount of deformation in the vertical direction on both the upper and lower surfaces of the floor slab 5. It deforms, and its surroundings also deform accordingly.
 図4から図6に示すように、内部欠陥6に例示される内部欠陥がある床版5の一部に荷重が加わった場合、図2および図3に示した変形に加えて、内部欠陥の程度に応じて、荷重が加わった床版5の表面にひずみが生じる。 As shown in FIGS. 4 to 6, when a load is applied to a part of the deck 5 having an internal defect exemplified by the internal defect 6, in addition to the deformation shown in FIGS. 2 and 3, the internal defect Depending on the degree, the surface of the floor slab 5 to which the load is applied is distorted.
 床版5に内部欠陥ができる原因は、床版5上の移動体から加わる移動によって生じる荷重が主なものである。また、雨水などの気象環境条件ならびに鉄筋の腐食およびアルカリ骨材反応による材料劣化によって内部欠陥が促進される。床版5の使用年数が増加することで、内部欠陥の大きさは拡大する。内部欠陥推定装置2では、床版5の表面のひずみを効率的に計測し、内部欠陥の大きさ等を推定する。なお、以下の説明では、内部欠陥が空洞である例を示す。 The main cause of internal defects in the deck 5 is the load generated by the movement applied from the moving body on the deck 5. In addition, internal defects are promoted due to meteorological and environmental conditions such as rainwater, corrosion of reinforcing bars, and material deterioration due to alkali-aggregate reaction. As the number of years of use of the floor slab 5 increases, the size of internal defects increases. The internal defect estimation device 2 efficiently measures the strain on the surface of the deck 5 and estimates the size of the internal defect and the like. In the following description, an example in which the internal defect is hollow is shown.
 図7は、実施の形態1にかかる内部欠陥推定装置の概略構成を示す図である。内部欠陥推定装置2は、撮影装置1100を備える。撮影装置1100は、計測車両1の車輪11の走行方向に沿って間隔を空けて設けられた第一撮影装置1101と第二撮影装置1102を備える。第一撮影装置1101と第二撮影装置1102は、車輪11からの距離が異なる位置に設けられている。撮影装置1100は、2台以上の撮影装置を備えていてもよい。また、実施の形態1では、撮影装置1100が2組設けられている。撮影装置1100は3組以上設けられていてもよい。第一撮影装置1101と第二撮影装置1102との距離は既知である。第一撮影装置1101および第二撮影装置1102は、例えば、荷重付与有無の2領域を撮影するラインスキャンカメラまたはエリア撮影素子を有するステレオカメラである。 FIG. 7 is a diagram showing a schematic configuration of the internal defect estimation device according to the first embodiment. The internal defect estimation device 2 includes a photographing device 1100. The photographing device 1100 includes a first photographing device 1101 and a second photographing device 1102 provided at intervals along the traveling direction of the wheels 11 of the measuring vehicle 1. The first photographing device 1101 and the second photographing device 1102 are provided at different positions from the wheels 11. The photographing device 1100 may include two or more photographing devices. Further, in the first embodiment, two sets of photographing devices 1100 are provided. Three or more sets of photographing devices 1100 may be provided. The distance between the first photographing device 1101 and the second photographing device 1102 is known. The first photographing device 1101 and the second photographing device 1102 are, for example, a line scan camera or a stereo camera having an area photographing element that photographs two areas with and without load.
 内部欠陥推定装置2は、計測車両1の移動に同期した信号を生成する移動量信号生成装置1000を備える。内部欠陥推定装置2は、移動量信号生成装置1000から出力された信号と時間から計測車両1の移動距離を求めて、計測車両1が移動している最中に、第一撮影装置1101と第二撮影装置1102とに同一の床版5を撮影させるトリガー信号を出力する同期撮影トリガー装置1200を備える。 The internal defect estimation device 2 includes a movement amount signal generation device 1000 that generates a signal synchronized with the movement of the measurement vehicle 1. The internal defect estimation device 2 obtains the movement distance of the measurement vehicle 1 from the signal output from the movement amount signal generation device 1000 and the time, and while the measurement vehicle 1 is moving, the first photographing device 1101 and the first imaging device 2 (Ii) A synchronous photographing trigger device 1200 for outputting a trigger signal for causing the same floor slab 5 to be photographed by the photographing device 1102 is provided.
 内部欠陥推定装置2は、測距部である測距装置1300を備える。測距装置1300は、第一測距装置1301と、第二測距装置1302と、第三測距装置1303と、を備える。第一測距装置1301と、第二測距装置1302と、第三測距装置1303とは、それぞれが撮影装置1100との相対位置が既知で、床版5との距離を計測できる。第一測距装置1301と、第二測距装置1302と、第三測距装置1303と、はすべてが同一直線状に並ばないように配置されている。また、測距装置1300は、4つ以上の測距装置を備えていてもよい。 The internal defect estimation device 2 includes a distance measuring device 1300 which is a distance measuring unit. The ranging device 1300 includes a first ranging device 1301, a second ranging device 1302, and a third ranging device 1303. The first distance measuring device 1301, the second distance measuring device 1302, and the third distance measuring device 1303 each have a known relative position with respect to the photographing device 1100, and can measure the distance to the floor slab 5. The first ranging device 1301, the second ranging device 1302, and the third ranging device 1303 are all arranged so as not to be arranged in the same straight line. Further, the distance measuring device 1300 may include four or more distance measuring devices.
 内部欠陥推定装置2は、演算部である演算装置2000を備える。演算部は、処理部の一部である。演算装置2000は、車両姿勢演算装置1400と、画像合成・演算装置1500と、欠陥度合い演算装置1600と、を備える。 The internal defect estimation device 2 includes an arithmetic unit 2000 which is an arithmetic unit. The arithmetic unit is a part of the processing unit. The arithmetic unit 2000 includes a vehicle posture arithmetic unit 1400, an image composition / arithmetic unit 1500, and a defect degree arithmetic unit 1600.
 車両姿勢演算装置1400は、測距装置1300から出力された3つ以上の測距値か、ら姿勢補正パラメータを求める。画像合成・演算装置1500は、撮影装置1100から出力された床版5の画像を演算する。欠陥度合い演算装置1600は、画像合成・演算装置1500から得られた演算後の画像データから床版5の内部欠陥の位置と形状を予測するための演算を行う。 The vehicle attitude calculation device 1400 obtains the attitude correction parameter from three or more distance measurement values output from the distance measurement device 1300. The image composition / calculation device 1500 calculates the image of the floor slab 5 output from the photographing device 1100. The defect degree calculation device 1600 performs a calculation for predicting the position and shape of the internal defect of the deck 5 from the image data after the calculation obtained from the image composition / calculation device 1500.
 内部欠陥推定装置2は、表示装置1700を備える。表示装置1700は、演算装置2000から得られた演算結果等を表示する。内部欠陥推定装置2は、制御装置1800を備える。内部欠陥推定装置2の使用者は、制御装置1800を操作して、内部欠陥推定装置2の各種設定を変更することができる。内部欠陥推定装置2は、車両情報記憶装置1900を備える。車両情報記憶装置1900には、計測車両1の車重分布を示す情報が記憶されている。 The internal defect estimation device 2 includes a display device 1700. The display device 1700 displays the calculation result or the like obtained from the calculation device 2000. The internal defect estimation device 2 includes a control device 1800. The user of the internal defect estimation device 2 can operate the control device 1800 to change various settings of the internal defect estimation device 2. The internal defect estimation device 2 includes a vehicle information storage device 1900. The vehicle information storage device 1900 stores information indicating the vehicle weight distribution of the measurement vehicle 1.
 内部欠陥推定装置2は、上述した構成によって、計測車両1自身によって床版5に荷重を付与し、走行中の計測車両1から床版5の表面の画像を撮影する。画像の撮影では、荷重が付与された位置からの距離が異なる場所が撮影される。撮影された画像に基づいて、床版5の表面の変形量が計測され、車重分布の情報を使い力学特性が計算されて床版5の内部欠陥の大きさが推定される。 The internal defect estimation device 2 applies a load to the floor slab 5 by the measuring vehicle 1 itself according to the above-described configuration, and takes an image of the surface of the floor slab 5 from the running measurement vehicle 1. When taking an image, a place where the distance from the position where the load is applied is different is taken. Based on the captured image, the amount of deformation of the surface of the deck 5 is measured, the mechanical characteristics are calculated using the information of the vehicle weight distribution, and the size of the internal defect of the deck 5 is estimated.
 上述したように、第一撮影装置1101と第二撮影装置1102とは、進行方向に対して計測車両1の車輪11からの設置距離が異なっている。 As described above, the first photographing device 1101 and the second photographing device 1102 are different in the installation distance from the wheel 11 of the measuring vehicle 1 with respect to the traveling direction.
 そのため、任意の時間t1では、第一撮影装置1101、第二撮影装置1102は、計測車両1自身によって床版5に荷重が付与された点からの距離が異なる領域を撮影する。時間t1での撮影を第1撮影とする。 Therefore, at an arbitrary time t1, the first photographing device 1101 and the second photographing device 1102 photograph a region having a different distance from the point where the load is applied to the deck 5 by the measuring vehicle 1 itself. The shooting at time t1 is defined as the first shooting.
 第1撮影の後に計測車両1が移動した後、すなわち時間t1よりも大きい時間t2では、移動量信号生成装置1000および同期撮影トリガー装置1200は、2組設けられた撮影装置1100同士の配置間隔に1以上の整数を乗じた値と等しい距離を計測車両1が移動した時に、第一撮影装置1101、第二撮影装置1102で第2撮影して除荷時の同じ床版5を撮影するよう制御する。 After the measurement vehicle 1 moves after the first shooting, that is, at the time t2 larger than the time t1, the movement amount signal generation device 1000 and the synchronous shooting trigger device 1200 are arranged at the arrangement interval between the two sets of the shooting devices 1100. Measures a distance equal to the value multiplied by an integer of 1 or more When the vehicle 1 moves, control is performed so that the first photographing device 1101 and the second photographing device 1102 take a second image and photograph the same deck 5 at the time of unloading. do.
 撮影装置1100の計測車両1の進行方向での配置間隔Lと、第1撮影後、第1撮影時の時間t1と時間tとの差(t-t1)と、第1撮影時と第2撮影時までの計測車両1の速度v12との積和Σv12×(t-t1)が等しくなる時間t=t2で第2撮影を行うよう、移動量信号生成装置1000および同期撮影トリガー装置1200が撮影装置1100を制御する。なお、計測車両1の速度は、例えば、平均値または瞬時値である。 The arrangement interval L of the measuring vehicle 1 of the photographing device 1100 in the traveling direction, the difference (tt1) between the time t1 and the time t at the time of the first shooting after the first shooting, and the first shooting and the second shooting. The movement amount signal generation device 1000 and the synchronous shooting trigger device 1200 are the shooting devices so that the second shooting is performed at the time t = t2 at which the sum of products Σv12 × (t−t1) with the speed v12 of the measurement vehicle 1 up to the time becomes equal. Control 1100. The speed of the measurement vehicle 1 is, for example, an average value or an instantaneous value.
 計測車両1の移動と同期して、順次、荷重が付加された前後の床版5を第一撮影装置1101および第二撮影装置1102が撮影するように、移動量信号生成装置1000および同期撮影トリガー装置1200が撮影装置1100の撮影を制御する。 The movement amount signal generation device 1000 and the synchronous shooting trigger so that the first shooting device 1101 and the second shooting device 1102 take pictures of the floor slabs 5 before and after the load is sequentially applied in synchronization with the movement of the measuring vehicle 1. The device 1200 controls the shooting of the photographing device 1100.
 車両姿勢演算装置1400は、走行中の計測車両1の姿勢変化を表す車両姿勢補正パラメータP1を演算する。車両姿勢補正パラメータP1は、測距装置1300が備える第一測距装置1301と、第二測距装置1302と、第三測距装置1303と、から得られる情報から求めた撮影装置1100の配置位置を含む仮想平面120と、測距装置1300で計測した路面上の点で構成する路面平面との相対関係から求められる。 The vehicle posture calculation device 1400 calculates the vehicle posture correction parameter P1 representing the posture change of the measurement vehicle 1 during traveling. The vehicle posture correction parameter P1 is the arrangement position of the photographing device 1100 obtained from the information obtained from the first range measuring device 1301, the second range measuring device 1302, and the third range measuring device 1303 included in the range measuring device 1300. It is obtained from the relative relationship between the virtual plane 120 including the above and the road surface plane composed of points on the road surface measured by the distance measuring device 1300.
 図8は、実施の形態1において、車両姿勢補正パラメータを求める際の各部の位置関係を示した模式図である。なお、図8では、説明を簡略化するために2次元空間での模式図としてある。 FIG. 8 is a schematic diagram showing the positional relationship of each part when obtaining the vehicle posture correction parameter in the first embodiment. Note that FIG. 8 is a schematic diagram in a two-dimensional space for the sake of simplification of the description.
 第1撮影が行われた時間t1において、3以上の測距装置の位置で決定される仮想平面120と計測した床版5上の点で構成される路面平面との位置関係を図8の上段に示す。 At time t1 when the first shooting was performed, the positional relationship between the virtual plane 120 determined by the positions of three or more ranging devices and the road surface plane composed of the measured points on the deck 5 is shown in the upper part of FIG. Shown in.
 第二測距装置1302と第三測距装置1303との距離Ld、第二測距装置1302と第一撮影装置1101との距離L_B1、および第二測距装置1302と第二撮影装置1102との距離L_B2は既知である。2つの測距装置1302,1303を結んだ仮想平面120を基準にした時、第二測距装置1302で計測した第二測距装置1302と床版5との距離をH1_D2とし、第三測距装置1303で計測した第三測距装置1303と床版5との距離をH1_D3とする。 The distance Ld between the second ranging device 1302 and the third ranging device 1303, the distance L_B1 between the second ranging device 1302 and the first photographing device 1101, and the second ranging device 1302 and the second photographing device 1102. The distance L_B2 is known. When the virtual plane 120 connecting the two distance measuring devices 1302 and 1303 is used as a reference, the distance between the second distance measuring device 1302 measured by the second distance measuring device 1302 and the deck 5 is set to H1_D2, and the third distance measuring device is used. Let H1_D3 be the distance between the third ranging device 1303 and the deck 5 measured by the device 1303.
 このとき、床版5の測距点を結んだ路面平面と仮想平面120とのなす角をθ1とする。余弦cosθ1および第一撮影装置1101における路面平面との高さH1_B1は以下のように求められる。
 cosθ1=(1-(Ld/(H1_D2-H1_D3)^2)^(1/2))     (1)
 H1_B1=H1_D2-L_B1*cosθ1    (2)
At this time, the angle formed by the road surface plane connecting the AF points of the deck 5 and the virtual plane 120 is set to θ1. The height H1_B1 with respect to the road surface plane in the cosine cos θ1 and the first photographing apparatus 1101 is obtained as follows.
cosθ1 = (1-(Ld / (H1_D2-H1_D3) ^ 2) ^ (1/2)) (1)
H1_B1 = H1_D2-L_B1 * cosθ1 (2)
 次に、第2撮影が行われた時間t2において、3以上の測距装置の位置で決定される仮想平面120と計測した床版5上の点で構成される路面平面との位置関係を図8の下段に示す。 Next, the positional relationship between the virtual plane 120 determined by the positions of three or more ranging devices and the road surface plane composed of the measured points on the deck 5 at the time t2 when the second shooting is performed is shown. It is shown in the lower part of 8.
 第二測距装置1302で計測した第二測距装置1302と床版5との距離をH2_D2とし、第三測距装置1303で計測した第三測距装置1303と床版5との距離をH2_D3とする。このとき、床版5の測距点を結んだ路面平面と仮想平面120とのなす角をθ2とする。余弦cosθ2および第二撮影装置1102における路面平面との高さH2_B2は以下のように求められる。
 cosθ2=(1-(Ld/(H2_D2-H2_D3)^2)^(1/2))     (3)
 H2_B2=H2_D2-L_B2*cosθ2    (4)
The distance between the second ranging device 1302 measured by the second ranging device 1302 and the deck 5 is H2_D2, and the distance between the third ranging device 1303 measured by the third ranging device 1303 and the deck 5 is H2_D3. And. At this time, the angle formed by the road surface plane connecting the AF points of the deck 5 and the virtual plane 120 is set to θ2. The height H2_B2 with respect to the road surface plane in the cosine cos θ2 and the second photographing apparatus 1102 is obtained as follows.
cosθ2 = (1-(Ld / (H2_D2-H2_D3) ^ 2) ^ (1/2)) (3)
H2_B2 = H2_D2-L_B2 * cosθ2 (4)
 以上より、車両姿勢補正パラメータP1は、第1撮影時点t1における第一撮影装置1101での路面平面との高さH1_B1と、第2撮影時点t2における第二撮影装置1102における路面平面との高さH2_B2より次のように求める。
 P1=H1_B1/H2_B2    (5)
  ={H1_D2- L_B1*cosθ1} / {H2_D3 - L_B2*cosθ2}    (6)
From the above, the vehicle posture correction parameter P1 is the height between the height H1_B1 of the first photographing device 1101 at the first photographing time t1 and the road surface plane of the second photographing device 1102 at the second photographing time t2. Obtained from H2_B2 as follows.
P1 = H1_B1 / H2_B2 (5)
= {H1_D2- L_B1 * cosθ1} / {H2_D3-L_B2 * cosθ2} (6)
 図9は、実施の形態1にかかる内部欠陥推定装置における物理変化および情報等を示すブロック線図である。 FIG. 9 is a block diagram showing physical changes, information, and the like in the internal defect estimation device according to the first embodiment.
 画像合成・演算装置1500は、異なる時間に撮影装置1100で取得した床版5の画像データを、車両姿勢補正パラメータP1を用いて計測車両1が同じ姿勢で撮影した画像に補正する。 The image composition / arithmetic unit 1500 corrects the image data of the floor slab 5 acquired by the photographing device 1100 at different times to the image photographed by the measuring vehicle 1 in the same posture using the vehicle posture correction parameter P1.
 時間t2で撮影した画像J_t2に対して補正を行う場合は、車両姿勢補正パラメータP1を用いて時間t2で撮影した画像J_t2の座標データに対して画像を補正する。時間t1で撮影した画像J_t1に対して補正を行う場合は、車両姿勢補正パラメータP1の逆数を用いて時間t1で撮影した画像J_t1の座標データに対して画像を補正する。 When correcting the image J_t2 taken at time t2, the image is corrected with respect to the coordinate data of the image J_t2 taken at time t2 using the vehicle posture correction parameter P1. When correcting the image J_t1 taken at time t1, the image is corrected with respect to the coordinate data of the image J_t1 taken at time t1 using the reciprocal of the vehicle posture correction parameter P1.
 画像合成・演算装置1500内では、計測車両1の姿勢に応じて補正した画像を、予め使用者が制御装置1800を通じて設定した走行座標原点を基準とする、計測車両1の移動距離ごとに記憶し、計測車両1の車軸との相対距離が同一の合成画像J1,J2を得る。詳細については図10から図13を用いて後述する。 In the image composition / arithmetic unit 1500, the image corrected according to the posture of the measurement vehicle 1 is stored for each movement distance of the measurement vehicle 1 based on the travel coordinate origin set in advance by the user through the control device 1800. , Obtain composite images J1 and J2 having the same relative distance from the axle of the measurement vehicle 1. Details will be described later with reference to FIGS. 10 to 13.
 欠陥度合い演算装置1600は、撮影装置1100の、床版5の同一の領域を撮影した2種類の合成画像J1,J2から、計測車両1自身の車重を路面に付与した時の、路面表面と垂直方向の変位量分布、表面ひずみ分布を演算し、内部欠陥の位置、形状を予測するための演算をする。 The defect degree calculation device 1600 is a road surface surface when the vehicle weight of the measuring vehicle 1 itself is applied to the road surface from two types of composite images J1 and J2 obtained by photographing the same area of the deck 5 of the photographing device 1100. The displacement distribution and surface strain distribution in the vertical direction are calculated, and the calculation is performed to predict the position and shape of internal defects.
 最終的に、床版5のどの位置にどのような形状で、内部欠陥が形成されているか、または内部欠陥の大きさが進行しているかを示した情報が表示装置1700を介して使用者に提示される。以上の動作のうち、使用者が制御を必要とする場合は、制御装置1800を介して使用者が制御信号を発することで、計測装置および演算装置を動作させることができる。 Finally, information indicating the position and shape of the floor slab 5 in which the internal defect is formed or the size of the internal defect is progressing is sent to the user via the display device 1700. Presented. Among the above operations, when the user needs control, the measuring device and the arithmetic unit can be operated by the user issuing a control signal via the control device 1800.
 図10は、実施の形態1における撮影装置が撮影する画像データの概念図であって、計測車両が走行座標原点からk移動した状態を示す図である。図11は、実施の形態1における撮影装置が撮影する画像データの概念図であって、計測車両が走行座標原点からk+1移動した状態を示す図である。図12は、実施の形態1における撮影装置が撮影する画像データの概念図であって、計測車両が走行座標原点からk+2移動した状態を示す図である。図13は、実施の形態1における計測車両の移動距離ごとに記憶している画像データの構造体の概念図である。 FIG. 10 is a conceptual diagram of image data captured by the photographing apparatus according to the first embodiment, and is a diagram showing a state in which the measuring vehicle has moved k from the origin of the traveling coordinates. FIG. 11 is a conceptual diagram of image data captured by the photographing apparatus according to the first embodiment, and is a diagram showing a state in which the measuring vehicle has moved k + 1 from the origin of the traveling coordinates. FIG. 12 is a conceptual diagram of image data captured by the photographing apparatus according to the first embodiment, and is a diagram showing a state in which the measuring vehicle has moved by k + 2 from the origin of the traveling coordinates. FIG. 13 is a conceptual diagram of a structure of image data stored for each movement distance of the measurement vehicle in the first embodiment.
 内部欠陥推定装置2は、使用者が設定した任意の位置を走行座標原点とした移動距離Licを、計測車両1が走行しながら撮影する画像15とともに記録する。計測車両1の車輪11の車軸との相対距離が異なることによって生じる内部欠陥に対応した表面ひずみおよび垂直方向変形量の分布、すなわち計測感度の不均一さの影響を小さくするために、画像合成・演算装置1500は計測車両1の車軸と対象箇所とのX方向における相対距離が同一となる合成画像を構成する。撮影装置1100から取得した画像15に対して、以上で述べた処理を画像合成・演算装置1500で施した合成画像がそれぞれJ1,J2となる。 The internal defect estimation device 2 records the movement distance Lic with the travel coordinate origin set at an arbitrary position set by the user together with the image 15 taken while the measuring vehicle 1 is traveling. Image composition ・ In order to reduce the influence of the unevenness of the measurement sensitivity, that is, the distribution of the surface strain and the vertical deformation amount corresponding to the internal defects caused by the difference in the relative distance of the wheel 11 of the measurement vehicle 1 from the axle. The arithmetic unit 1500 constitutes a composite image in which the relative distance between the axle of the measuring vehicle 1 and the target location in the X direction is the same. The composite images obtained by performing the above-described processing on the image 15 acquired from the photographing apparatus 1100 by the image compositing / arithmetic unit 1500 are J1 and J2, respectively.
 図14、図15、および図16を用いて、欠陥度合い演算装置1600内で実施している、床版5内に内部欠陥がある場合の、内部欠陥に応じて生じる表面ひずみ分布εおよび垂直方向変形量分布λの計算結果と、その計算結果から求められる内部欠陥の等価物性、高さ、それぞれの予測結果の例を説明する。ここで、床版5上を計測車両1が走行するとき、床版5を計測車両1の進行方向に沿って2つ以上の領域に分割して考える。図14、図15、および図16では、床版5を7つの領域である領域S1~S7に分割した例を示す。 Using FIGS. 14, 15, and 16, the surface strain distribution ε and the vertical direction generated according to the internal defects when there are internal defects in the deck 5, which are carried out in the defect degree calculation device 1600. An example of the calculation result of the deformation amount distribution λ, the equivalent physical properties and height of the internal defects obtained from the calculation result, and the respective prediction results will be described. Here, when the measuring vehicle 1 travels on the floor slab 5, the floor slab 5 is divided into two or more regions along the traveling direction of the measuring vehicle 1. 14, 15, and 16 show an example in which the deck 5 is divided into seven regions S1 to S7.
 図14は、内部欠陥が形成された床版の一例を示す図である。図15は、図14に示した床版に対して、実施の形態1における画像合成・演算装置で演算して取得した合成画像を使って各位置の表面ひずみ分布εと垂直方向変形量分布λを求めた例を示す図である。表面ひずみ分布を求める手段は、デジタル画像相関法などである。垂直方向変量分布を求める手段は、三角測量法などである。 FIG. 14 is a diagram showing an example of a floor slab in which an internal defect is formed. FIG. 15 shows the surface strain distribution ε and the vertical deformation amount distribution λ at each position using the composite image obtained by calculating with the image compositing / arithmetic unit according to the first embodiment on the floor slab shown in FIG. It is a figure which shows the example which obtained. The means for obtaining the surface strain distribution is a digital image correlation method or the like. The means for obtaining the vertical variate distribution is the triangulation method or the like.
 上述の通り、合成画像J1,J2は計測車両1の車輪11の車軸と対象箇所との相対距離が同一であるため、床版5の領域の各位置は計測車両1から同じ荷重を受けた場合の変形状態を反映した合成画像となっている。したがって、各位置での表面ひずみ分布を分析することで、ある一時点の画像のみを用いるよりも広い範囲の内部欠陥を検出することができる。 As described above, since the composite images J1 and J2 have the same relative distance between the axle of the wheel 11 of the measurement vehicle 1 and the target location, each position in the area of the deck 5 receives the same load from the measurement vehicle 1. It is a composite image that reflects the deformed state of. Therefore, by analyzing the surface strain distribution at each position, it is possible to detect a wider range of internal defects than using only an image at a certain temporary point.
 図16は、図15に示した表面ひずみ分布と垂直方向変形量分布と座標データを用いて、内部欠陥の予測径、内部欠陥の予測等価物性値62P、内部欠陥の予測高さ61Pを計算した結果を示す図である。 In FIG. 16, the predicted diameter of the internal defect, the predicted equivalent physical property value of the internal defect 62P, and the predicted height 61P of the internal defect were calculated using the surface strain distribution, the vertical deformation amount distribution, and the coordinate data shown in FIG. It is a figure which shows the result.
 内部欠陥の予測径は、各座標の表面ひずみ分布が、予め設定した閾値εthrを上回る位置の、位置座標データを当該領域の内部欠陥予測径とする。各座標の表面ひずみ分布に対して予め設定した閾値εthrは一旦仮の値ですべての領域を計算してから、使用者が表示装置1700を見ながら制御装置1800を操作して変更し決定してもよい。内部欠陥の予測等価物性値62Pと内部欠陥の予測高さ61Pを求める方法は、図17および図18を用いて詳細に説明する。 As for the predicted diameter of the internal defect , the position coordinate data at the position where the surface strain distribution of each coordinate exceeds the preset threshold value ε thr is used as the predicted diameter of the internal defect in the region. The preset threshold value ε thr for the surface strain distribution of each coordinate is once calculated for all areas with a temporary value, and then the user operates the control device 1800 while looking at the display device 1700 to change and determine it. You may. The method of obtaining the predicted equivalent physical characteristic value 62P of the internal defect and the predicted height 61P of the internal defect will be described in detail with reference to FIGS. 17 and 18.
 図17および図18は、実施の形態1における欠陥度合い演算装置内で実施している、物理モデルに基づく内部欠陥の予測、および欠陥度合い演算装置内に記憶している学習済みの応答関数について示す図である。図17および図18では、矢印17で示す方向に進むにしたがって、空洞化が進行している。 17 and 18 show the prediction of internal defects based on the physical model performed in the defect degree arithmetic unit according to the first embodiment, and the learned response function stored in the defect degree arithmetic unit. It is a figure. In FIGS. 17 and 18, hollowing progresses in the direction indicated by the arrow 17.
 図19は、実施の形態1にかかる内部欠陥推定装置において、欠陥度合い演算装置が内部欠陥の予測径、内部欠陥の予測等価物性値62P、および内部欠陥の予測高さ61Pを算出するフローを示す図である。まず、床版5のひずみ等の計測データが取得される(ステップS1)。 FIG. 19 shows a flow in which the defect degree calculation device calculates the predicted diameter of the internal defect, the predicted equivalent physical property value of the internal defect 62P, and the predicted height 61P of the internal defect in the internal defect estimating device according to the first embodiment. It is a figure. First, measurement data such as strain of the deck 5 is acquired (step S1).
 欠陥度合い演算装置1600には、単位荷重を与えた時の、内部欠陥の予測高さ61Pと、内部欠陥の予測等価物性値62Pと、領域ごとの表面ひずみの最大値51または垂直方向変形量の最大値52と、の関係を表した関数またはその関数を使って離散値化した数表が予め記憶されており、これを学習済みの応答関数と呼ぶ。 When a unit load is applied to the defect degree calculation device 1600, the predicted height of the internal defect is 61P, the predicted equivalent physical property value of the internal defect is 62P, and the maximum value of the surface strain for each region is 51 or the amount of vertical deformation. A function representing the relationship between the maximum value 52 and a numerical table digitized using the function are stored in advance, and this is called a learned response function.
 欠陥度合い演算装置1600は、画像合成・演算装置1500から得られた合成画像J1,J2を使って、欠陥度合い演算装置1600で実施して求めた領域ごとのひずみ分布より求めた表面ひずみの最大値51と、学習済みの応答関数と、車両情報記憶装置1900に記憶されている車重分布から求めた計測位置の垂直荷重の積と最も近い値となるときの、内部欠陥の高さの期待値を求め、この値を内部欠陥の予測高さ61Pとする。すなわち、内部欠陥の予測高さ61Pが算出される(ステップS2)。 The defect degree calculation device 1600 uses the composite images J1 and J2 obtained from the image composition / calculation device 1500, and the maximum value of the surface strain obtained from the strain distribution for each region obtained by the defect degree calculation device 1600. The expected value of the height of the internal defect when it becomes the closest value to the product of 51, the learned response function, and the vertical load of the measurement position obtained from the vehicle weight distribution stored in the vehicle information storage device 1900. Is obtained, and this value is set to the predicted height of internal defects of 61P. That is, the predicted height 61P of the internal defect is calculated (step S2).
 次に、欠陥度合い演算装置1600は、画像合成・演算装置1500の合成画像J1,J2を使って欠陥度合い演算装置1600内で実施して求めた領域ごとのひずみ分布より求めた垂直方向変形量の最大値52と、内部欠陥の予測高さ61Pと、学習済みの応答関数と、車両情報記憶装置1900に記憶されている車重分布から求めた計測位置の垂直荷重の積と最も近い値となるときの、内部欠陥の予測等価物性値62Pを求める。すなわち、内部欠陥の予測等価物性値62Pが算出される(ステップS3)。そして、内部欠陥予測径が算出される(ステップS4)。 Next, the defect degree calculation device 1600 is the vertical deformation amount obtained from the strain distribution for each region obtained by performing in the defect degree calculation device 1600 using the composite images J1 and J2 of the image composition / calculation device 1500. It is the closest value to the product of the maximum value 52, the predicted height 61P of the internal defect, the learned response function, and the vertical load of the measurement position obtained from the vehicle weight distribution stored in the vehicle information storage device 1900. At that time, the predicted equivalent physical property value 62P of the internal defect is obtained. That is, the predicted equivalent physical property value 62P of the internal defect is calculated (step S3). Then, the predicted internal defect diameter is calculated (step S4).
 内部欠陥推定装置2において算出した、使用者があらかじめ設定した領域全体の、内部欠陥の予測径、内部欠陥の予測等価物性値62P、および内部欠陥の予測高さ61Pの分布に基づいて設定した値によって、対象物の全体の内部欠陥の推定結果が0から1の値になるように内部欠陥の予測等価物性値62P、内部欠陥の予測高さ61Pが基準化され、基準化された値に基づいて異常部分が判断され、得られた演算結果等が表示装置1700に表示される。 A value set based on the distribution of the predicted diameter of the internal defect, the predicted equivalent physical property value of the internal defect 62P, and the predicted height 61P of the internal defect over the entire region preset by the user, calculated by the internal defect estimation device 2. The predicted equivalent physical characteristic value 62P of the internal defect and the predicted height 61P of the internal defect are standardized so that the estimation result of the internal defect of the entire object becomes a value from 0 to 1, and is based on the standardized value. The abnormal portion is determined, and the obtained calculation result and the like are displayed on the display device 1700.
 以上の説明では、橋梁、道路を対象とするように説明したが、建物、ビル、岸壁、堤防、トンネルなど、計測対象面が水平から傾斜した面、垂直に近い面などについても適用できる。 In the above explanation, it was explained that bridges and roads are targeted, but it can also be applied to surfaces such as buildings, buildings, quays, embankments, tunnels, etc. where the measurement target surface is inclined from horizontal to nearly vertical.
 内部欠陥推定装置2とは別途に設けた構造体で、内部欠陥推定装置2を対象物の計測面に接するように支持することで、対象物を建物やビルなどの壁面の内部欠陥の予測にも利用できる。 It is a structure provided separately from the internal defect estimation device 2, and by supporting the internal defect estimation device 2 so as to be in contact with the measurement surface of the object, the object can be predicted for internal defects on the wall surface of a building or a building. Is also available.
 例えば、内部欠陥推定装置2を搭載した構造体を対象の計測面に吸着させて、構造体の荷重が対象の計測面にかかる状態にする。この状態で内部欠陥推定装置2を用いて撮影、計測、処理することで、傾斜した面および垂直に近い面の内部欠陥の予測にも利用できる。また、内部欠陥推定装置2を搭載した構造物を計測面に立てかけて、計測面に荷重をかけてもよい。また、内部欠陥推定装置2を搭載した構造体を対象の計測面に吸着させて、構造体の底面からばね力で錘を計測面に押し付けてもよい。この場合、計測面には、押し付けられた錘によって荷重が加わる。計測面にかかる荷重は、構造体に設けたロードセルで計測してもよい。 For example, the structure equipped with the internal defect estimation device 2 is attracted to the target measurement surface so that the load of the structure is applied to the target measurement surface. By photographing, measuring, and processing using the internal defect estimation device 2 in this state, it can also be used for predicting internal defects on an inclined surface and a surface close to vertical. Further, the structure on which the internal defect estimation device 2 is mounted may be leaned against the measurement surface to apply a load to the measurement surface. Further, the structure equipped with the internal defect estimation device 2 may be attracted to the target measurement surface, and the weight may be pressed against the measurement surface by a spring force from the bottom surface of the structure. In this case, a load is applied to the measurement surface by the pressed weight. The load applied to the measurement surface may be measured by a load cell provided on the structure.
 上記のように構成することによって、橋梁、道路に限らず、建物、ビル、岸壁、堤防、トンネルなど、計測対象面が水平から傾斜した面、垂直に近い面など任意の面に対して荷重をかけて、対象物の内部欠陥の予測にも利用できる。 By configuring as described above, the load is applied not only to bridges and roads, but also to any surface such as buildings, buildings, quays, embankments, tunnels, etc., where the measurement target surface is inclined from horizontal or nearly vertical. It can also be used to predict internal defects of an object.
 上記のように、内部欠陥推定装置2は、対象物に荷重を加えて相対的に移動する荷重付与部と、対象物を計測する第一撮影装置1101と、この第一撮影装置1101から移動する方向に荷重付与部よりも離れる位置に設けられて対象物を計測する第二撮影装置1102と、第一撮影装置1101、および第二撮影装置1102が計測した値の差分から異常部分を判断する処理部を備えたので、内部欠陥推定装置2を搭載する計測車両1が、一度計測対象を通過することによって、簡単に構造物内部の欠陥、劣化を検出することができる。また、計測車両1を移動しながら計測を継続できるので、内部欠陥の推定の効率化を図ることができる。 As described above, the internal defect estimation device 2 moves from the load applying unit that applies a load to the object and moves relatively, the first photographing device 1101 that measures the object, and the first photographing device 1101. Processing to determine an abnormal part from the difference between the values measured by the second photographing device 1102, the first photographing device 1101, and the second photographing device 1102, which are provided at a position away from the load applying portion in the direction and measure the object. Since the unit is provided, the measurement vehicle 1 equipped with the internal defect estimation device 2 can easily detect defects and deterioration inside the structure by passing through the measurement target once. Further, since the measurement can be continued while moving the measurement vehicle 1, it is possible to improve the efficiency of estimating the internal defect.
 なお、車両姿勢補正パラメータP1は、撮影装置1100の設置位置から求められる計測車両1の仮想平面120と、撮影装置1100の計測データから求められる路面上の点で構成する路面平面との相対関係から求めてもよい。これにより、測距装置1300を省略することができ、内部欠陥推定装置2の構成を簡素化できる。 The vehicle posture correction parameter P1 is based on the relative relationship between the virtual plane 120 of the measurement vehicle 1 obtained from the installation position of the photographing device 1100 and the road surface plane formed by the points on the road surface obtained from the measurement data of the photographing device 1100. You may ask. As a result, the distance measuring device 1300 can be omitted, and the configuration of the internal defect estimating device 2 can be simplified.
 なお、車両姿勢補正パラメータP1は、内部欠陥推定装置内部に設置され、第一撮影装置と第二撮影装置の設置姿勢を検出する角度検出装置の出力値を使って求めてもよい。 The vehicle posture correction parameter P1 may be obtained by using the output value of the angle detection device that is installed inside the internal defect estimation device and detects the installation postures of the first imaging device and the second imaging device.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1 計測車両、2 内部欠陥推定装置、4 橋脚、5 床版、6 内部欠陥、11 車輪、51,52 最大値、1000 移動量信号生成装置、1100 撮影装置、1101 第一撮影装置、1102 第二撮影装置、1200 同期撮影トリガー装置、1300 測距装置、1301 第一測距装置、1302 第二測距装置、1303 第三測距装置、1400 車両姿勢演算装置、1500 画像合成・演算装置、1600 欠陥度合い演算装置、1700 表示装置、1800 制御装置、1900 車両情報記憶装置、2000 演算装置。 1 measurement vehicle, 2 internal defect estimation device, 4 bridge pier, 5 floor slab, 6 internal defect, 11 wheels, 51, 52 maximum value, 1000 movement amount signal generator, 1100 imaging device, 1101 first imaging device, 1102 second Imaging device, 1200 synchronous imaging trigger device, 1300 ranging device, 1301 first ranging device, 1302 second ranging device, 1303 third ranging device, 1400 vehicle attitude calculation device, 1500 image composition / calculation device, 1600 defect Degree calculation device, 1700 display device, 1800 control device, 1900 vehicle information storage device, 2000 calculation device.

Claims (12)

  1.  対象物に荷重を加え、前記対象物に対して相対的に移動する荷重付与部と、
     前記対象物を計測する第一撮影装置と、
     前記荷重付与部が移動する方向に前記第一撮影装置から前記荷重付与部よりも離れた位置に設けられ、前記対象物を計測する第二撮影装置と、
     前記第一撮影装置が計測した第一計測値および前記第二撮影装置が計測した第二計測値との差分から前記対象物の異常部分を判断する処理部と、を備えることを特徴とする内部欠陥推定装置。
    A load-applying portion that applies a load to the object and moves relative to the object,
    The first imaging device that measures the object,
    A second photographing device provided at a position away from the first photographing device in the direction in which the load applying portion moves and measuring the object, and a second photographing device.
    The inside is characterized by including a processing unit that determines an abnormal portion of the object from the difference between the first measured value measured by the first photographing device and the second measured value measured by the second photographing device. Defect estimation device.
  2.  前記対象物との距離を計測する少なくとも3つの測距部と、
     前記荷重付与部の移動に同期した信号を生成する移動量信号生成装置と、をさらに備え、
     前記処理部は、前記差分から前記対象物の変形量と、前記対象物のひずみを算出する演算部を有することを特徴とする請求項1に記載の内部欠陥推定装置。
    At least three ranging units that measure the distance to the object,
    A movement amount signal generator that generates a signal synchronized with the movement of the load applying portion is further provided.
    The internal defect estimation device according to claim 1, wherein the processing unit includes a calculation unit that calculates the amount of deformation of the object and the strain of the object from the difference.
  3.  前記演算部は、前記測距部が計測した距離に基づいて、前記第一撮影装置と前記第二撮影装置の設置姿勢を求め、前記演算部が算出した変形量と前記演算部が算出したひずみを前記設置姿勢に応じて補正するパラメータを算出することを特徴とする請求項2に記載の内部欠陥推定装置。 The calculation unit obtains the installation postures of the first imaging device and the second imaging device based on the distance measured by the distance measuring unit, and the deformation amount calculated by the calculation unit and the strain calculated by the calculation unit. The internal defect estimation device according to claim 2, wherein a parameter for correcting the above-mentioned installation posture is calculated.
  4.  前記演算部は、前記演算部が計測した形状と前記演算部が計測したひずみから、前記対象物の内部欠陥の特徴を示す特徴量を算出し、
     前記特徴量と閾値とを比較して前記異常部分を判断することを特徴とする請求項2または3に記載の内部欠陥推定装置。
    The calculation unit calculates a feature amount indicating the characteristics of the internal defect of the object from the shape measured by the calculation unit and the strain measured by the calculation unit.
    The internal defect estimation device according to claim 2 or 3, wherein the abnormal portion is determined by comparing the feature amount with a threshold value.
  5.  前記荷重付与部は移動体に設けられ、
     前記演算部は、前記測距部が計測した距離に基づいて前記移動体の姿勢を表す仮想平面を算出し、前記仮想平面から前記設置姿勢を求めることを特徴とする請求項3に記載の内部欠陥推定装置。
    The load applying portion is provided on the moving body and is provided on the moving body.
    The interior according to claim 3, wherein the calculation unit calculates a virtual plane representing the posture of the moving body based on the distance measured by the distance measuring unit, and obtains the installation posture from the virtual plane. Defect estimation device.
  6.  第一撮影装置と前記第二撮影装置による前記対象物の計測は、前記対象物の撮影であり、
     前記演算部は、第一撮影装置と前記第二撮影装置とによって撮影された画像に基づいて前記変形量と前記ひずみを算出することを特徴とする請求項2に記載の内部欠陥推定装置。
    The measurement of the object by the first imaging device and the second imaging device is the imaging of the object.
    The internal defect estimation device according to claim 2, wherein the calculation unit calculates the deformation amount and the strain based on the images taken by the first photographing device and the second photographing device.
  7.  前記第一撮影装置および前記第二撮影装置は、前記移動量信号生成装置からの信号に基づいて、前記対象物の同じ領域を撮影することを特徴とする請求項6に記載の内部欠陥推定装置。 The internal defect estimation device according to claim 6, wherein the first photographing device and the second photographing device photograph the same region of the object based on a signal from the movement amount signal generation device. ..
  8.  前記演算部は、前記ひずみまたは前記変形量と前記特徴量との応答関数を用いて前記特徴量を算出することを特徴とする請求項4に記載の内部欠陥推定装置。 The internal defect estimation device according to claim 4, wherein the calculation unit calculates the feature amount by using the response function of the strain or the deformation amount and the feature amount.
  9.  前記演算部は、前記応答関数を数値化した数表を用いて前記特徴量を算出することを特徴とする請求項8に記載の内部欠陥推定装置。 The internal defect estimation device according to claim 8, wherein the calculation unit calculates the feature amount using a numerical table in which the response function is quantified.
  10.  前記演算部は、前記特徴量に対して前記対象物の全体での結果が0から1の値になるように基準化し、基準化した前記特徴量に基づいて前記異常部分を判断することを特徴とする請求項8または9に記載の内部欠陥推定装置。 The calculation unit is characterized in that the result of the entire object is standardized to a value of 0 to 1 with respect to the feature amount, and the abnormal portion is determined based on the standardized feature amount. The internal defect estimation device according to claim 8 or 9.
  11.  前記第一撮影装置と前記第二撮影装置は車両に設けられ、
     前記対象物は、前記車両が走行する床版の路面であり、
     前記演算部は、前記第一撮影装置と前記第二撮影装置の設置位置から前記車両の姿勢を示す仮想平面を算出し、前記第一計測値と前記第二計測値とに基づいて前記路面上の点で構成する路面平面と前記仮想平面との相対関係から、前記演算部が算出した変形量と前記演算部が算出したひずみを前記姿勢に応じて補正するパラメータを算出することを特徴とする請求項2に記載の内部欠陥推定装置。
    The first photographing device and the second photographing device are provided in the vehicle.
    The object is a deck road surface on which the vehicle travels.
    The calculation unit calculates a virtual plane indicating the posture of the vehicle from the installation positions of the first photographing device and the second photographing device, and is on the road surface based on the first measured value and the second measured value. From the relative relationship between the road surface plane composed of the points and the virtual plane, a parameter for correcting the deformation amount calculated by the calculation unit and the strain calculated by the calculation unit according to the posture is calculated. The internal defect estimation device according to claim 2.
  12.  前記第一撮影装置と前記第二撮影装置の設置姿勢を検出する角度検出装置をさらに備えることを特徴とする請求項1に記載の内部欠陥推定装置。 The internal defect estimation device according to claim 1, further comprising an angle detecting device for detecting the installation posture of the first photographing device and the second photographing device.
PCT/JP2020/017845 2020-04-24 2020-04-24 Internal defect estimation device WO2021215009A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/017845 WO2021215009A1 (en) 2020-04-24 2020-04-24 Internal defect estimation device
JP2020568492A JPWO2021215009A1 (en) 2020-04-24 2020-04-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017845 WO2021215009A1 (en) 2020-04-24 2020-04-24 Internal defect estimation device

Publications (1)

Publication Number Publication Date
WO2021215009A1 true WO2021215009A1 (en) 2021-10-28

Family

ID=78270690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017845 WO2021215009A1 (en) 2020-04-24 2020-04-24 Internal defect estimation device

Country Status (2)

Country Link
JP (1) JPWO2021215009A1 (en)
WO (1) WO2021215009A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072236A1 (en) * 2003-06-06 2005-04-07 Luna Innovations Method and apparatus for determining and assessing a characteristic of a material
JP2006343160A (en) * 2005-06-08 2006-12-21 Kanazawa Inst Of Technology Displacement amount measuring method and stress measuring method in structure using picked up image
CN102162217A (en) * 2010-11-18 2011-08-24 武汉武大卓越科技有限责任公司 Laser dynamic deflection survey vehicle
WO2014170989A1 (en) * 2013-04-18 2014-10-23 西日本高速道路エンジニアリング四国株式会社 Device for inspecting shape of road travel surface
CN106918598A (en) * 2017-03-08 2017-07-04 河海大学 Bridge pavement strain and crack detection analysis system and method based on digital picture
WO2019054419A1 (en) * 2017-09-12 2019-03-21 日本電気株式会社 State determining device, state determining method, and computer-readable recording medium
JP2019164018A (en) * 2018-03-19 2019-09-26 株式会社リコー Imaging system, imaging method, mobile body with imaging system installed, imaging apparatus, and mobile body with imaging apparatus installed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072236A1 (en) * 2003-06-06 2005-04-07 Luna Innovations Method and apparatus for determining and assessing a characteristic of a material
JP2006343160A (en) * 2005-06-08 2006-12-21 Kanazawa Inst Of Technology Displacement amount measuring method and stress measuring method in structure using picked up image
CN102162217A (en) * 2010-11-18 2011-08-24 武汉武大卓越科技有限责任公司 Laser dynamic deflection survey vehicle
WO2014170989A1 (en) * 2013-04-18 2014-10-23 西日本高速道路エンジニアリング四国株式会社 Device for inspecting shape of road travel surface
CN106918598A (en) * 2017-03-08 2017-07-04 河海大学 Bridge pavement strain and crack detection analysis system and method based on digital picture
WO2019054419A1 (en) * 2017-09-12 2019-03-21 日本電気株式会社 State determining device, state determining method, and computer-readable recording medium
JP2019164018A (en) * 2018-03-19 2019-09-26 株式会社リコー Imaging system, imaging method, mobile body with imaging system installed, imaging apparatus, and mobile body with imaging apparatus installed

Also Published As

Publication number Publication date
JPWO2021215009A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
Kim et al. Non-contact sensing based geometric quality assessment of buildings and civil structures: A review
JP6767642B2 (en) Measuring device and measuring method
KR101696629B1 (en) System and method for warning collapse using monitoring of structure deformation
WO2019163329A1 (en) Image processing device and image processing method
Riveiro et al. A novel approach to evaluate masonry arch stability on the basis of limit analysis theory and non-destructive geometric characterization
US10739274B2 (en) Imaging support device and imaging support method
Chen et al. 3D LiDAR scans for bridge damage evaluations
JP2022046691A (en) State checking device for built-in object, operation checking device and state checking method for built-in object
JP7235104B2 (en) Point group analysis device, method, and program
US20220138970A1 (en) Structural vibration monitoring method based on computer vision and motion compensation
US20230279620A1 (en) Three-dimensional bridge deck finisher
JP2019174207A (en) Evaluation method and evaluation system
WO2021215009A1 (en) Internal defect estimation device
Dizaji et al. Full-field non-destructive image-based diagnostics of a structure using 3D digital image correlation and laser scanner techniques
Ma et al. 3D structural deformation monitoring of the archaeological wooden shipwreck stern investigated by optical measuring techniques
Wang et al. Completely non-contact modal testing of full-scale bridge in challenging conditions using vision sensing systems
Zhang et al. Identification and detection of a void under highway cement concrete pavement slabs based on finite element analysis
WO2018066435A1 (en) Self position estimation device, self position estimation method, program, and image processing device
Xie et al. Out-of-Plane behavior of clay brick masonry infills contained within RC frames using 3D-Digital image correlation technique
CN112833837B (en) Method for estimating bridge displacement based on acceleration sensor
KR20230080542A (en) The bridge monitoring system
Alipour et al. Digital image and video-based measurements
CN116433755B (en) Structure dense displacement recognition method and system based on deformable three-dimensional model and optical flow representation learning
JP6788291B1 (en) Inspection support system
Yang et al. Real time measurement of the dynamic displacement field of a large-scale arch-truss bridge by remote sensing technology

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020568492

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932085

Country of ref document: EP

Kind code of ref document: A1