WO2021214974A1 - Vehicle travel control method and vehicle travel control device - Google Patents

Vehicle travel control method and vehicle travel control device Download PDF

Info

Publication number
WO2021214974A1
WO2021214974A1 PCT/JP2020/017669 JP2020017669W WO2021214974A1 WO 2021214974 A1 WO2021214974 A1 WO 2021214974A1 JP 2020017669 W JP2020017669 W JP 2020017669W WO 2021214974 A1 WO2021214974 A1 WO 2021214974A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
user
authentication
act
predetermined
Prior art date
Application number
PCT/JP2020/017669
Other languages
French (fr)
Japanese (ja)
Inventor
康啓 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2020/017669 priority Critical patent/WO2021214974A1/en
Publication of WO2021214974A1 publication Critical patent/WO2021214974A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking

Definitions

  • the present invention relates to a vehicle travel control method and a vehicle travel control device that autonomously control the vehicle by operating instructions from the outside of the vehicle.
  • Patent Document 1 A driving support device that detects a relative position between a vehicle and an operator is known (Patent Document 1).
  • a person near the door is presumed to be the operator of the vehicle and its movement is tracked, but the person near the door is not necessarily the user of the vehicle that remotely operates the vehicle. Therefore, in the above-mentioned prior art, a person other than the user of the vehicle near the door of the vehicle may be erroneously estimated to be the user of the vehicle.
  • An object to be solved by the present invention is to provide a vehicle travel control method and a vehicle travel control device capable of specifying a user's relative position with respect to a vehicle.
  • the present invention determines whether or not the authentication act detected around the vehicle is a predetermined authentication act by the controller of the vehicle equipped with the autonomous driving control function. Next, when the detected authentication act is a predetermined authentication act, the user who is in the vicinity of the position where the authentication act is performed is specified, and the relative position of the specified user with respect to the vehicle is detected. Then, the above problem is solved by executing the autonomous driving control of the vehicle based on the detected relative position.
  • the erroneous autonomous driving is performed at the relative position of a person or an object other than the user of the vehicle.
  • Autonomous driving control can be executed based on the correct relative position of the user without executing the control.
  • FIG. 1 is a plan view (No. 1) showing an example of backward remote parking executed by the remote parking system of FIG.
  • FIG. 2 is a plan view (No. 2) showing an example of backward remote parking executed by the remote parking system of FIG.
  • FIG. 3 is a plan view (No. 3) showing an example of backward remote parking executed by the remote parking system of FIG.
  • FIG. 1 is a plan view (No. 1) showing an example of backward remote parking executed by the remote parking system of FIG.
  • FIG. 2 is a plan view (No. 2) showing an example of backward remote parking executed by the remote parking system of FIG.
  • FIG. 3 is a plan view (No.
  • FIG. 4 is a plan view (No. 4) showing an example of backward remote parking executed by the remote parking system of FIG.
  • FIG. 5 is a plan view showing an approachable distance between a vehicle and a user of the vehicle and an approachable distance to an obstacle other than the user when autonomous parking control is performed in the remote parking system of FIG. 2. It is a flowchart which shows the control procedure executed in the remote parking system of FIG. It is a front view of the electronic key used in the remote parking system of the 3rd Embodiment to which the vehicle running control method and the vehicle running control device of this invention are applied.
  • FIG. 11A is a back view of the electronic key shown in FIG. 11A.
  • FIG. 1 is a block diagram showing a remote parking system 1 to which the vehicle travel control method and the vehicle travel control device of the present invention are applied.
  • autonomous driving control refers to a vehicle by automatic control of a vehicle-mounted driving control device without depending on the driving operation of a user (hereinafter, also referred to as a driver) of the vehicle (hereinafter, also referred to as own vehicle). It means to run.
  • autonomous parking control is a kind of autonomous driving control, in which the vehicle is parked (entered or taken out of the garage) by the automatic control of the on-board driving control device without depending on the driving operation of the user. It shall mean that.
  • parking means to continuously park the vehicle in the parking space, but the term “parking route” means not only the route to enter the parking space but also the route from the parking space. It shall also include the garage exit route.
  • the vehicle travel control method and the vehicle travel control device of the present invention include both vehicle travel control when entering the parking space and vehicle travel control when the vehicle is taken out of the parking space. ..
  • warehousing In addition, putting in the garage is also called warehousing, and taking out the garage is also called warehousing.
  • warehousing In the following first embodiment, a specific example of the present invention will be described with reference to an example in which the travel control method and the travel control device according to the present invention are applied to autonomous parking control by remote control.
  • the remote parking system 1 of the present embodiment executes autonomous parking control by the user getting off and remotely controlling the vehicle while confirming safety. Then, when the vehicle may collide with an obstacle, the vehicle is stopped by the autonomous parking control even if there is an instruction of traveling control by remote control.
  • the garage entry autonomous driving control mode using remote control is also referred to as a remote warehousing mode
  • the garage exit autonomous driving control mode using remote control is also referred to as a remote warehousing mode.
  • a remote warehousing mode or a remote warehousing mode combined with remote control is used.
  • the remote warehousing mode is activated, and the user carries the remote controller and gets off.
  • the user sends a forward or backward instruction as a travel control instruction by the remote controller to execute the garage entry by the forward or backward travel control.
  • the remote parking system 1 of the present embodiment is a system including a remote warehousing mode in which such a remote operation is used in combination and a remote warehousing mode in which the remote operation is also used in the same manner.
  • a parking space can be set, a warehousing route to the parking space can be calculated, and traveling can be controlled along the calculated warehousing route by remote control of the user.
  • the remote control of the user is, for example, along the route while the own vehicle V keeps moving forward or backward while automatically steering along the route while pressing and holding the start instruction switch, and while not pressing the start instruction switch. It is possible to interrupt the running and stop both of them. In addition, when the stop instruction switch is pressed, both of them can be stopped.
  • the backward autonomous parking control shown in FIGS. 8A to 8D is illustrated as an example of the autonomous parking control, the present invention can also be applied to parallel parking and other autonomous parking.
  • the remote parking system 1 of the present embodiment is mounted on the vehicle V (see FIG. 2) and is operated by a travel control device 2 for driving the vehicle V by autonomous driving control and a user U (see FIG. 2) of the vehicle V.
  • a remote controller 3 for remotely controlling the travel control device 2 is provided.
  • the remote controller 3 is a portable terminal device having a communication function.
  • a dedicated remote controller corresponding to the remote parking system 1 of the present embodiment is used for a general-purpose mobile terminal such as a smartphone or a tablet terminal.
  • the control application is installed.
  • the mobile terminal functions as the remote controller 3 of the present embodiment by activating the application.
  • the travel control device 2 and the remote controller 3 are connected by a telecommunication line capable of communicating with each other such as a mobile phone communication network or the Internet, a short-distance wireless communication, or the like.
  • the remote controller 3 is associated with the travel control device 2 so as to be able to communicate with each other by the initial authentication process executed when the vehicle is first connected to the travel control device 2.
  • the travel control device 2 includes a controller 21, a travel controller 22, and an authenticator 23.
  • the controller 21 outputs a travel command to the travel controller 22.
  • the travel controller 22 causes the own vehicle V to travel by autonomous travel control based on the remote control from the remote controller 3.
  • the authenticator 23 detects the authentication act by the user U of the vehicle V, identifies the user U with respect to the own vehicle V, tracks the specified user U, detects the relative position of the user U with respect to the vehicle V, and refers to the vehicle V.
  • the controller 21 executes or stops the autonomous parking control based on the relative position of the user U. Even if the user U with respect to the own vehicle V is specified, the specified position is set as the initial position, and the movement of the specified user U is tracked, the relative position of the user U with respect to the vehicle V is detected. good.
  • the controller 21, the travel controller 22, and the authenticator 23 are a computer and software that causes the computer to function as the controller 21, the travel controller 22, and the authenticator 23 of the travel control device 2 in order to exert the above functions. It consists of a program and.
  • the controller 21 includes an object detector 211, an object deceleration calculation unit 212, and a target vehicle speed generation unit 213.
  • the travel controller 22 includes a vehicle speed control unit 221.
  • the authenticator 23 includes an image analysis unit 231, an authentication act determination unit 232, an authentication pattern storage unit 233, an initial position setting unit 234, and a tracking unit 235. Each configuration will be described below.
  • the object detector 211 detects an object such as an obstacle existing around the own vehicle V, and includes, for example, a camera, a radar (millimeter wave radar, laser radar, ultrasonic radar, etc.), a sonar, and the like.
  • the camera, radar and sonar are mounted on the outer panel of the vehicle V.
  • FIG. 2 is a plan view showing an example of the arrangement state of the camera and sonar mounted on the vehicle V, the shooting range of the camera, and the detection range of the sonar.
  • reference numerals C1, C2, C3 and C4 indicate cameras of the object detector 211, and are installed on the front surface and the rear surface of the vehicle V, near the right door mirror and near the left door mirror, respectively.
  • reference numerals CA1, CA2, CA3 and CA4 indicate the shooting range of the cameras C1 to C4.
  • the camera C1 provided on the front surface of the vehicle V captures a wide range of images in front of the vehicle V at an angle of view close to 180 °
  • the camera C2 provided on the rear surface of the vehicle V closes 180 ° behind the vehicle V.
  • the camera C3 provided near the right door mirror captures a wide range of the right side of the vehicle V with an angle of view close to 180 °
  • the camera C4 provided near the left door mirror captures the left side of the vehicle V close to 180 °.
  • reference numerals SN1, SN2, SN3, SN4, SN5, SN6, SN7 and SN8 indicate sonar of the object detector 211, and are installed on the front surface, the right side surface, the rear surface and the left side surface of the vehicle V, respectively.
  • reference numerals SA1, SA2, SA3, SA3, SA5, SA6, SA7, and SA8 indicate the detection range of sonar SN1 to SN8.
  • Sonars SN1 and SN2 provided on the front surface of the vehicle V detect an object in front of the vehicle V
  • sonar SN3 and SN4 provided on the right side surface of the vehicle V detect an object on the right side of the vehicle V, respectively. ..
  • the sonar SN5 and SN6 provided on the rear surface of the vehicle V detect an object behind the vehicle V
  • the sonar SN7 and SN8 provided on the left side surface of the vehicle V detect an object on the left side of the vehicle V, respectively. ..
  • the object detector 211 includes an object position specifying unit (not shown) that specifies the position of the object based on the detection results of the cameras C1 to C4, sonar SN1 to SN8, and the radar described above.
  • the object position specifying unit is a computer in which a software program for specifying the position of an object is installed from images taken by cameras C1 to C4, radar detection signals, and the like.
  • the object information (target information) of the object specified by the object position specifying unit and the position information (relative position coordinates from the current position of the own vehicle, latitude / longitude, etc.) are output to the object deceleration calculation unit 212. Will be done.
  • the object information and the position information are used in the control of decelerating or stopping the own vehicle V by the object deceleration calculation unit 212 when an object such as an unexpected obstacle is detected during the autonomous parking control.
  • the object deceleration calculation unit 212 inputs the position information of an obstacle or other object from the object detector 211, and based on the distance to the object and the vehicle speed, the time until the object collides with the object (TTC: Time to Collision). ) Is calculated, and the deceleration start timing of the own vehicle V is calculated.
  • TTC Time to Collision
  • the vehicle speed of the own vehicle V is decelerated at the timing when the time TTC until the own vehicle V collides with the wall W becomes equal to or less than a predetermined value. Further, when an obstacle is suddenly detected in the parking route during the series of autonomous parking control shown in FIGS. 3A to 3C, the time until the own vehicle V collides with the obstacle TTC. Decelerates or stops the vehicle speed of the own vehicle V at the timing when becomes equal to or less than a predetermined value. This deceleration start timing is output to the target vehicle speed generation unit 213.
  • the target vehicle speed generation unit 213 calculates the target vehicle speed at predetermined time intervals based on the deceleration start timing from the object deceleration calculation unit 212. Regarding the warehousing route shown in FIGS. 3A to 3C, the target vehicle speed to the middle of the parking position shown in FIG. 3B after the user disembarks at the current position shown in FIG.
  • the target vehicle speed when approaching the wall W shown in FIG. 3C is calculated at predetermined time intervals and output to the vehicle speed control unit 221. For example, when the distance to the wall W is less than or equal to a predetermined distance, the vehicle is decelerated so that the user can easily check the approaching state between the own vehicle V and the wall W.
  • the user can immediately stop the own vehicle V by releasing the remote-controlled reverse instruction button. Further, when an unexpected obstacle is detected in the parking route during the series of autonomous parking control shown in FIGS. 3A to 3C, the object deceleration calculation unit 212 outputs the deceleration or stop timing. The target vehicle speed corresponding to this is output to the vehicle speed control unit 221.
  • the authenticator 23 detects a predetermined authentication act by the user U of the own vehicle V.
  • the authenticator 23 includes an image analysis unit 231, an authentication action determination unit 232, an authentication pattern storage unit 233, an initial position setting unit 234, and a tracking unit 235.
  • the image analysis unit 231 analyzes and processes the images around the own vehicle V taken by the plurality of cameras C1 to C4 of the object detector 211, and detects the authentication act by the user U of the own vehicle V.
  • a predetermined authentication image is used as the predetermined authentication pattern. More specifically, as shown in FIG. 2, a predetermined two-dimensional display displayed on the touch panel type display 31 of the remote controller 3 is used. Code AP1 is used.
  • the two-dimensional code AP1 is unique and associated with each vehicle, and is stored in advance in, for example, the authentication pattern storage unit 233.
  • the two-dimensional code AP1 stored in the authentication pattern storage unit 233 is an application for remote control of the remote controller 3 by, for example, an initial authentication process executed when the remote controller 3 is connected to the travel control device 2 for the first time. To be registered in.
  • the remote controller 3 can communicate with the travel control device 2, for example, when the remote warehousing mode or the remote warehousing mode is activated in the travel control device 2 and the remote control application is activated in the remote controller 3. Connected to.
  • the remote controller 3 transmits the travel control instruction to the travel control device 2.
  • the remote controller 3 displays the two-dimensional code AP1 on the display 31 when the remote controller 3 is connected to the travel control device 2 or when a predetermined operation is performed on the remote controller 3 by the user U after the connection.
  • the predetermined operation for displaying the two-dimensional code AP1 on the remote controller 3 is not particularly limited.
  • the two-dimensional code AP1 may be displayed. good. Further, the two-dimensional code AP1 may be displayed in response to an operation instruction using the voice recognition function of the remote controller 3 by the user U. By limiting the timing at which the two-dimensional code AP1 is displayed on the remote controller 3 in this way, it is possible to prevent the two-dimensional code AP1 from being inadvertently displayed on the remote controller 3.
  • the user U causes the display 31 of the remote controller 3 to display the two-dimensional code AP1, and holds the remote controller 3 so that the two-dimensional code AP1 is photographed by the cameras C1 to C4 of the own vehicle V while holding the own vehicle.
  • Approach V The image analysis unit 231 analyzes the images taken by the cameras C1 to C4, and when the two-dimensional code AP1 is detected, cuts out the two-dimensional code part from the image and binarizes the cut-out image. Image processing such as distortion correction is performed to generate an image for authentication.
  • the image analysis unit 231 outputs the generated authentication image to the authentication act determination unit 232.
  • the authentication act determination unit 232 compares the authentication image output from the image analysis unit 231 with the two-dimensional code AP1 read from the authentication pattern storage unit 233. Specifically, the authentication act determination unit 232 compares the authentication image with the two-dimensional code AP1 read from the authentication pattern storage unit 233 by using, for example, pattern recognition processing, and if they match, the user. It is determined that the authentication act performed by U is a predetermined authentication act. When the authentication act determination unit 232 determines that the authentication act performed by the user U is a predetermined authentication act, the authentication act determination unit 232 outputs a determination signal to the initial position setting unit 234.
  • the initial position setting unit 234 identifies the camera in which the authentication act was taken and sets the shooting position by the camera as the initial position of the user U. That is, when the authentication act determination unit 232 determines that the predetermined authentication act has been performed, it is estimated that the person who has performed the predetermined authentication act is the user U of the own vehicle V, and the authentication act has been performed. By detecting the position, the initial position of the user U of the own vehicle V is set. As shown in FIG. 2, the cameras C1 to C4 have different shooting directions. Therefore, by specifying the camera that shot the authentication act, the position where the user U exists with respect to the own vehicle V can be specified. Can be done.
  • the initial position setting unit 234 sets the front of the own vehicle V as the initial position of the user U when a predetermined authentication action is taken by the camera C1 among the plurality of cameras C1 to C4. Further, the initial position setting unit 234 sets the right side of the own vehicle V as the initial position of the user U when a predetermined authentication act is photographed by the camera C3.
  • the tracking unit 235 detects and tracks the user U existing near the initial position. Specifically, the tracking unit 235 acquires detection signals from a plurality of sonar NS1 to NS8, detects the position of the user U existing near the initial position based on the acquired detection signals, and detects the detected user U. Detected and tracked by sonar NS1 to NS8. Further, the tracking unit 235 may analyze the images of the cameras C1 to C4 and detect the position of the user U based on the analysis result. When detecting the position of the user U by analyzing the images of the cameras C1 to C4, when detecting the distance from the vehicle V to the user U, for example, the depth using the motion stereo method or machine learning. Estimates and the like may be used. Further, as shown in FIG.
  • the user U when the front of the own vehicle V is set as the initial position of the user U by the initial position setting unit 234, the user U is actually operated by the sonar SN1 and SN2 that detect the front of the own vehicle V.
  • the position P1 existing in is detected.
  • the sonar SN8 detects the user U and tracks the position.
  • the image of the camera C4 is analyzed and the position of the user U is tracked based on the analysis result.
  • the authenticator 23 starts outputting an authentication signal to the controller 21 when the authentication act performed by the user U is a predetermined authentication act and the position of the user U can be detected.
  • the target vehicle speed generation unit 213 of the controller 21 outputs the target vehicle speed to the vehicle speed control unit 221 when an authentication signal is input and a backward instruction is received by remote control from the user.
  • the vehicle speed control unit 221 generates a control signal for operating the accelerator actuator provided in the drive system of the own vehicle V based on the target vehicle speed from the target vehicle speed generation unit 213. As a result, autonomous parking control is executed.
  • the authenticator 23 stops the output of the authentication signal to the controller 21 when the predetermined authentication act by the user U is detected again during the execution of the autonomous parking control by the own vehicle V. Further, as shown in FIG. 4, the authenticator 23 also causes the user U to move to a position P4 outside the shooting range of the cameras C1 to C4 and the detection range of the sonars SN1 to SN8, and the user U cannot be tracked. The output of the authentication signal to the controller 21 is stopped. When the output of the authentication signal from the authenticator 23 is stopped, the autonomous parking control of the own vehicle V temporarily stops the traveling control after stopping the own vehicle V.
  • the own vehicle V can be stopped quickly by having the cameras C1 to C4 take a picture of the two-dimensional code AP1 without operating the display 31 or the like of the remote controller 3.
  • the autonomous parking control of the own vehicle V may be restarted by causing the authenticator 23 to detect a predetermined authentication act by the user U again.
  • FIG. 5 is a flowchart showing a control procedure executed by the remote parking system 1 of the present embodiment.
  • the user U performs a predetermined authentication act using the two-dimensional code AP1 of the remote controller 3 to himself / herself.
  • An example of causing the vehicle V to store the vehicle by autonomous parking control will be described.
  • step S1 the user U operates the in-vehicle mode selection switch to activate the remote warehousing mode.
  • the user U When the user U is prompted to get off in step S2 and the user U gets off with the remote controller 3, the user U activates the remote controller 3 in step S3.
  • the remote controller 3 is activated by activating the remote control application on the mobile terminal of the user U.
  • the remote controller 3 is communicably connected to the travel control device 2 after activation.
  • the remote controller 3 displays the two-dimensional code AP1 on the display 31 when the remote controller 3 is connected to the travel control device 2 in step S4, or when a predetermined operation is performed on the remote controller 3 by the user U after the connection. do.
  • the user U approaches the own vehicle V while holding the remote controller 3 so that the two-dimensional code AP1 displayed on the display 31 of the remote controller 3 is photographed by the cameras C1 to C4 of the own vehicle V.
  • the image analysis unit 231 detects the authentication act in step S5.
  • the image analysis unit 231 analyzes the images taken by the cameras C1 to C4, and when the two-dimensional code AP1 is detected, cuts out the two-dimensional code part from the image and binarizes the cut-out image. Image processing such as distortion correction is performed to generate an image for authentication.
  • the image analysis unit 231 outputs the generated authentication image to the authentication act determination unit 232.
  • step S6 the authentication action determination unit 232 compares the authentication image output from the image analysis unit 231 with the two-dimensional code AP1 read from the authentication pattern storage unit 233, and the detected authentication action is determined by the user U. Judge whether or not it is an act of authentication.
  • the authentication act determination unit 232 determines that the authentication act performed by the user U is a predetermined authentication act, the authentication act determination unit 232 outputs a determination signal to the initial position setting unit 234.
  • step S7 the initial position setting unit 234 identifies the camera in which the authentication act was taken, and sets the shooting position by the camera as the initial position of the user U. For example, the initial position setting unit 234 sets the front of the own vehicle V as the initial position of the user U when a predetermined authentication action is taken by the camera C1 among the plurality of cameras C1 to C4.
  • step S8 the tracking unit 235 detects the position where the user U actually exists from the vicinity of the initial position by using the sonar NS1 to NS8 and the like.
  • the tracking unit 235 detects the position where the user U actually exists from the vicinity of the initial position by using the sonar NS1 to NS8 and the like.
  • step S9 the authenticator 23 starts outputting an authentication signal to the controller 21 when the authentication act performed by the user U is a predetermined authentication act and the position of the user U can be detected.
  • the target vehicle speed generation unit 213 of the controller 21 outputs the target vehicle speed to the vehicle speed control unit 221 when an authentication signal is input and a backward instruction is received as travel control by remote control from the user.
  • the vehicle speed control unit 221 generates a control signal for operating the accelerator actuator provided in the drive system of the own vehicle V based on the target vehicle speed from the target vehicle speed generation unit 213.
  • step S10 the tracking unit 235 detects and tracks the user U existing near the initial position. Specifically, the tracking unit 235 tracks the position of the user U based on the detection signals acquired from the plurality of sonar NS1 to NS8.
  • step S11 the authenticator 23 stops the output of the authentication signal to the controller 21 when the predetermined authentication act by the user U is detected again during the execution of the autonomous parking control by the own vehicle V.
  • the autonomous parking control of the own vehicle V is interrupted in step S12, and the own vehicle V is stopped.
  • the own vehicle V can be stopped quickly by having the cameras C1 to C4 take a picture of the two-dimensional code AP1 without operating the display 31 or the like of the remote controller 3.
  • the autonomous parking control of the own vehicle V is restarted by causing the authenticator 23 to detect the predetermined authentication act by the user U again in step S5.
  • the authenticator 23 also causes an authentication signal to the controller 21 when the user U moves out of the shooting range of the cameras C1 to C4 and the detection range of the sonars SN1 to SN8 and the user U cannot be tracked. Stops the output of.
  • the autonomous parking control of the own vehicle V is interrupted in step S12, and the own vehicle V is stopped.
  • the autonomous parking control of the own vehicle V is restarted.
  • the authenticator 23 continues to output the authentication signal, so that the autonomous parking control is continued. (Step S14).
  • step S15 it is determined whether or not the user U has instructed the parking completion, and if the parking is not completed, the process returns to step S10.
  • the parking completion process in step S16 is executed to end the above autonomous parking control.
  • the gear of the own vehicle V is set to the parking gear or the neutral, and the parking brake is applied.
  • the travel control device 2 determines whether or not the authentication act detected around the vehicle V is a predetermined authentication act, and the detected authentication is performed.
  • the act is a predetermined authentication act
  • the user U near the position where the authentication act is performed is specified
  • the relative position of the specified user U with respect to the vehicle V is detected
  • autonomous driving control is performed based on the relative position. Run. Therefore, since the relative position of the user U with respect to the vehicle V can be specified by detecting the position where the predetermined authentication act is performed, the erroneous autonomous driving is performed at the relative position of the person or object other than the user U of the vehicle V. Autonomous driving control can be executed based on the correct relative position of the user U without executing the control.
  • the remote parking system 1 of the present embodiment when the relative position of the specified user U with respect to the vehicle V is separated by a predetermined distance or more, or when the relative position of the specified user U with respect to the vehicle V cannot be detected. , Stop vehicle V. Therefore, it is possible to prevent the vehicle V from performing autonomous driving control when the user U is at a position away from the vehicle V or when the relative position of the user U is unknown.
  • the predetermined authentication act is an act of causing the object detector 211 mounted on the vehicle V to detect the predetermined authentication pattern. Therefore, since the authentication act does not require complicated operations or operations, the relative position of the user U can be detected very easily.
  • the remote parking system 1 of the present embodiment since a unique authentication pattern associated with each vehicle is used as a predetermined authentication pattern, the authentication pattern corresponding to a different vehicle is erroneously used. It can be prevented in advance.
  • a predetermined authentication image is used as the predetermined authentication pattern, and in particular, the predetermined two-dimensional code PA1 is used as the authentication image, so that false detection or forgery of the authentication pattern can be detected. Can be prevented.
  • the predetermined authentication pattern is displayed on the display 31 of the remote controller 3. Therefore, if the user U has a mobile terminal used as the remote controller 3, he / she can set his / her initial position in the own vehicle V, which improves convenience.
  • the predetermined authentication pattern is displayed by performing a predetermined operation on the remote controller 3, so that the authentication pattern is carelessly displayed on the remote controller 3. Can be prevented.
  • the object detector 211 includes a plurality of cameras C1 to C4 for photographing the surroundings of the vehicle V, and photographs the authentication act among the plurality of cameras C1 to C4. Since the user U is specified near the shooting position by the camera, the process of detecting the relative position of the user U is very simple and can be processed quickly.
  • the vehicle V is moved into or out of the predetermined space by autonomous driving control, so that the relative position of the user U is determined. Convenience is improved because it can be performed by a series of authentication actions from identification to warehousing or warehousing by autonomous driving control.
  • the remote parking system 1 of the present embodiment when a predetermined authentication act is detected again during entering or leaving the predetermined space by the autonomous driving control of the vehicle V, the autonomous driving control of the vehicle V is performed. Since it is possible to suspend the entry or exit of the warehousing from the predetermined space, the own vehicle V can be stopped without performing complicated operations or operations.
  • the remote warehousing mode is activated by the own vehicle V and then the remote controller 3 is activated to perform the authentication act.
  • the travel control device 2 is operated by the operation of the remote controller 3.
  • the remote warehousing mode or the remote warehousing mode may be set to perform the authentication act. According to this, when leaving the own vehicle V from a narrow parking space where the side door cannot be sufficiently opened, the remote exit mode is set without getting on the own vehicle V and the predetermined authentication action is performed. It can be carried out.
  • a predetermined authentication act is detected after the remote controller 3 is activated. However, for example, when the door opening / closing of the vehicle V is detected and the door is opened / closed, the predetermined authentication is performed. The detection of the act may be started.
  • the two-dimensional code PA1 is used as the predetermined authentication pattern, but as shown in FIG. 6, for example, an image AP2 such as a logo, a character string AP3, or the like may be used as the authentication pattern.
  • an image AP2 such as a logo, a character string AP3, or the like may be used as the authentication pattern.
  • various modes can be used as long as they are photographed by the cameras C1 to C4 and can be determined by image analysis.
  • the controller 21 is the target parking space setting device 214, the vehicle position detector 215, and the parking route generation unit 216 with respect to the first embodiment described above. It is different in that it is provided with the path tracking control unit 217 and that the travel controller 22 is provided with the steering angle control unit 222.
  • the remote parking system 1A according to the present embodiment provides a warehousing route for putting the own vehicle V into the garage or a garage route for taking out the own vehicle V from the predetermined space.
  • a travel command is output to the travel controller 22 so as to calculate and control the steering of the own vehicle V to perform autonomous driving control.
  • the same reference numerals are used and detailed description thereof will be omitted.
  • the target parking space setting device 214 searches for a parking space existing around the own vehicle V, causes the user U to select a desired parking space from the parking spaces that can be parked, and causes the user U to select a desired parking space.
  • the position information of the parking space (relative position coordinates from the current position of the own vehicle, latitude / longitude, etc.) is output to the parking route generation unit 216.
  • the target parking space setting device 214 searches for the warehousing space existing around the own vehicle V that is currently parked, and the user U desires the warehousing space from among the warehousing spaces that can be laid out.
  • the warehousing space is selected, and the position information of the warehousing space (relative position coordinates from the current position of the own vehicle, latitude, longitude, etc.) is output to the parking route generation unit 216.
  • the warehousing space refers to a temporary stop position of the own vehicle when the user U performs a warehousing operation in the remote warehousing mode and then gets on the vehicle.
  • the target parking space setting device 214 is provided with a mode selection switch, a camera, a parking space detection unit, and a touch panel type display, although not shown in detail, in order to exert the above-mentioned functions.
  • the mode selection switch is a switch for selecting and activating the remote warehousing mode or the remote warehousing mode.
  • the cameras are a plurality of cameras that photograph the surroundings of the own vehicle, and for example, the cameras C1, C2, C3, and C4 (see FIG. 2) of the object detector 211 described above are also used.
  • the parking space detection unit is a computer in which a software program for detecting a parking space is installed, and detects a parking space or a delivery space from images taken by a plurality of cameras C1 to C4.
  • the parking space detection unit generates a bird's-eye view image of the surroundings of the own vehicle V from a predetermined virtual viewpoint based on the images taken by the plurality of cameras C1 to C4.
  • the touch panel type display displays a bird's-eye view image generated by the parking space detection unit, and accepts the setting of the parking space or the leaving space according to the touch operation of the user U.
  • the target parking space setting device 214 acquires an image of the surroundings of the own vehicle V taken by a plurality of cameras C1 to C4 and detects a parking space that can be parked. do.
  • the target parking space setting device 214 generates a bird's-eye view image including the detected parking space based on a plurality of images around the own vehicle V and displays it on the touch panel type display.
  • the target parking space setting device 214 outputs the position information of the parking space to the parking route generation unit 216.
  • the parking lot information may be used.
  • the remote exit mode is selected.
  • the target parking space setting device 214 generates a bird's-eye view image including the detected delivery space and displays it on the touch panel type display of the remote controller 3.
  • the target parking space setting device 214 outputs the position information of the shipping space to the parking route generation unit 216.
  • the vehicle position detector 215 is composed of a GPS unit, a gyro sensor, a vehicle speed sensor, etc., detects radio waves transmitted from a plurality of satellite communications by the GPS unit, and periodically acquires the position information of the own vehicle V. , The current position of the own vehicle V is detected based on the acquired position information of the own vehicle V, the angle change information acquired from the gyro sensor, and the vehicle speed acquired from the vehicle speed sensor. The position information of the own vehicle V detected by the vehicle position detector 215 is output to the parking route generation unit 216 and the route tracking control unit 217 at predetermined time intervals.
  • the parking route generation unit 216 includes the size of the own vehicle V stored in advance, the target parking position output from the target parking space setting device 214, and the current position information of the own vehicle V output from the vehicle position detector 215. And, based on the object information output from the object detector 211 and the position information thereof, the parking route that does not collide with or interfere with the object (obstacle) is calculated.
  • the information regarding the size of the own vehicle V includes the vehicle width, the vehicle length, the minimum turning radius, and the like.
  • the target parking position is the position information of the parking space in the remote warehousing mode, and the position information of the warehousing space in the remote warehousing mode. Further, the parking route is a warehousing route in the remote warehousing mode and a warehousing route in the remote warehousing mode.
  • FIGS. 8A to 8D are plan views showing an example of the remote warehousing mode.
  • the target parking space setting device 214 sets the three parkingable parking spaces PS1, PS2 and PS3. Search and display a bird's-eye view image including these on the display.
  • the parking route generation unit 216 calculates the warehousing routes R1 and R2 from the current position shown in FIG. 8A to the parking space PS1 shown in FIGS. 8B, 8C and 8D.
  • the remote exit mode is used. You can also get your vehicle V out of the warehouse at. That is, in the state shown in FIG. 8D, assuming that the user U uses the remote controller 3 to activate the internal combustion engine or the drive motor of the own vehicle V and operates the remote controller 3 to select the remote delivery mode.
  • the target parking space setting device 214 searches for the delivery space DS1 that can be delivered as shown in FIG. 8B, and displays a bird's-eye view image on the display 31 of the remote control device 3.
  • the parking route generation unit 216 calculates the delivery route from the current position shown in FIG. 8D to the delivery space DS1 shown in FIGS. 8C and 8B. As described above, the parking route generation unit 216 calculates the warehousing route from the current position to the parking space in the remote warehousing mode, and calculates the warehousing route from the current position to the warehousing space in the remote warehousing mode. do. Then, these warehousing routes or warehousing routes are output to the route tracking control unit 217 and the target vehicle speed generation unit 213.
  • the route tracking control unit 217 puts the own vehicle V into the warehousing route or the warehousing route at predetermined time intervals based on the warehousing route or the warehousing route from the parking route generation unit 216 and the current position of the own vehicle V from the vehicle position detector 215. Calculate the target steering angle to follow the route along the delivery route.
  • the target steering angle of the warehousing route R1 that goes straight from the current position shown in FIG. 8A to the turning position shown in FIG.
  • the target steering angle of the warehousing path R2 that turns left to the parking position shown in FIG.
  • the steering angle control unit 222 is calculated for each current position of the own vehicle V at predetermined time intervals and output to the steering angle control unit 222. Further, when the route tracking control unit 217 suddenly detects an obstacle in the parking route while executing the series of autonomous parking controls shown in FIGS. 8A to 8D, the own vehicle V detects the obstacle. The target steering angle is corrected so as to avoid traveling, and the target steering angle is output to the steering angle control unit 222.
  • the authenticator 23 can specify the relative position of the user U with respect to the own vehicle V and track the user U. Therefore, the route tracking control unit 217 corrects the target steering angle by distinguishing the user U from other obstacles when traveling along the parking route. Specifically, as shown in FIG. 9, an obstacle other than the user U, for example, a second approach with a margin to a surrounding person P who does not know that the vehicle V is in remote parking. Correct the target steering angle so that it approaches the possible distance L2. On the other hand, for the user U who is remotely controlling the remote parking, the target steering angle is modified so as to approach the first approachable distance L1 which is shorter than the second approachable distance L2. As a result, it is possible to suppress the approach to obstacles other than the user U with a margin. Further, since the user U can travel on the parking route relatively close to the user U, the controllable range of the autonomous parking control is widened.
  • the steering angle control unit 222 generates a control signal for operating the steering actuator provided in the steering system of the own vehicle V based on the target steering angle from the path tracking control unit 217. Further, the vehicle speed control unit 221 generates a control signal for operating the accelerator actuator provided in the drive system of the own vehicle V based on the target vehicle speed from the target vehicle speed generation unit 213. By controlling the steering angle control unit 222 and the vehicle speed control unit 221 at the same time, autonomous parking control is executed.
  • FIG. 10 is a flowchart showing a control procedure executed by the remote parking system 1A of the present embodiment.
  • a control step whose control content is different from that of the first embodiment will be described.
  • step S20 the target parking space setting device 214 searches for a parking space in which the own vehicle V can park using a plurality of on-board cameras C1 to C4 and the like. If the parking space that can be parked is not detected in step S20, the operator may be notified by a language display such as "There is no parking space" or by voice, and this process may be terminated.
  • the target parking space setting device 214 displays the parking space that can be parked on the in-vehicle display, prompts the user U to select the desired parking space, and when the user U selects a specific parking space, the parking space is displayed.
  • the target parking position information is output to the parking route generation unit 216.
  • the parking route generation unit 216 generates the parking routes R1 and R2 shown in FIGS. 8B to 8D from the current position and the target parking position of the own vehicle V, and the object deceleration calculation unit 212 detects the object. Based on the object information detected by the device 211, the deceleration start timing at the time of autonomous parking control is calculated.
  • the parking route generated by the parking route generation unit 216 is output to the route tracking control unit 217, and the deceleration start timing calculated by the object deceleration calculation unit 212 is output to the target vehicle speed generation unit 213.
  • step S2 the control steps after step S2 are the same as those in the first embodiment except that the path tracking control unit 217 and the steering angle control unit 222 control the steering of the own vehicle V, and thus detailed description thereof will be omitted.
  • step S18 it is determined whether or not the own vehicle V has arrived at the target parking space based on the detection result of the vehicle position detector 215, and if not, the process returns to step S13.
  • the parking completion process of step S19 is executed to end the above autonomous parking control.
  • the remote parking system 1A of the present embodiment it is possible to support remote parking in which steering control is simultaneously performed in addition to speed control and braking control of the own vehicle V.
  • the second approachable distance L2 that the vehicle V can approach to the obstacle other than the user U is different, so that the approach to the obstacle other than the user U is suppressed with a margin. be able to.
  • the controllable range of the autonomous parking control is widened.
  • the device for displaying the authentication pattern is different from that in the first embodiment.
  • a two for authentication is provided on the back surface 4R of the remote control key (hereinafter referred to as an electronic key) 4 for remotely controlling the door locking / unlocking device of the own vehicle V.
  • the dimension code AP1 is displayed.
  • the user U holds the electronic key 4 so that the two-dimensional code AP1 on the back surface 4R is photographed by the cameras C1 to C4. , Approaching own vehicle V. Since the determination of the two-dimensional code AP1 is performed by the same method as in the first embodiment, detailed description thereof will be omitted.
  • the authentication pattern may be displayed on the electronic key 4 by providing a display on the electronic key 4, printing the authentication pattern directly on the electronic key 4, or attaching a sticker or the like on which the authentication pattern is printed. ..
  • the device for displaying the authentication pattern is not limited to the electronic key 4, and may be displayed on an engine starter or the like that remotely controls the start of the engine.
  • the authentication pattern displayed on the device such as the electronic key 4 is not limited to the two-dimensional code AP1, and an image AP2 such as a logo, a character string AP3, or the like may be used.
  • the door may be locked or unlocked by the electronic key 4, and when the door is locked or unlocked, it may be determined that the predetermined authentication act has been performed. ..
  • the electronic key 4 is always carried when the user U gets on the vehicle V, so that the electronic key 4 is not forgotten to be carried.
  • step S5 a predetermined authentication act is detected in step S5
  • step S11a when the predetermined authentication act is no longer detected (when it is not detected), the warehousing or warehousing of the vehicle V is interrupted. According to this, the own vehicle V can be stopped without performing complicated operations or work.
  • FIG. 13 shows an act of swinging the remote controller 3 to the left or right by a predetermined amount of movement while the light 32 of the mobile terminal used as the remote controller 3 is made to emit light as a predetermined authentication act.
  • the image analysis unit 231 detects the movement of light from the images taken by the cameras C1 to C4 as an authentication act.
  • the authentication action determination unit 232 compares whether or not the detected light movement amount and the light movement amount stored in the authentication pattern storage unit 233 match, and if they match, a predetermined authentication action. Is determined to have been performed.
  • the authenticator 23 outputs an authentication signal to the controller 21 when the movement of the light is continued, that is, when the movement of the remote controller 3 is continued, and the movement of the light is stopped. In other words, when the movement of the remote controller 3 stops, the output of the authentication signal is stopped.
  • the own vehicle V can be made to enter or leave the vehicle by autonomous parking control only while the authentication act of shaking the remote controller 3 is being performed. Further, not only the amount of movement of light but also the speed of movement of light may be used for determining the authentication act.
  • the movement amount or movement speed of swinging the remote controller 3 is a pattern unique to each vehicle.
  • the remote controller 3 is used.
  • the movement amount or movement speed of the remote control device 3 may be measured, and the measured movement amount or movement speed may be displayed on the display 31 of the remote control device 3 as a guide when shaking the remote control device 3.
  • the moving amount or moving speed of the light emission of the remote controller 3 is set as a predetermined authentication act, but the light 32 may be blinked at a predetermined cycle, and the blinking of the light 32 may be set as a predetermined authentication act. good.
  • the blinking cycle of the light 32 is a pattern unique to each vehicle. It is desirable that the blinking cycle of the light 32 is a cycle that does not cause a photosensitive epilepsy in the person who is watching the blinking.
  • the authentication signal is output from the authenticator 23 to the controller 21 when the blinking of the light 32 is photographed by the cameras C1 to C4 of the vehicle V.
  • the output of the authentication signal is stopped. According to this, the own vehicle V can be stopped without performing complicated operations or work.

Abstract

A vehicle travel control method according to the present invention comprises determining, in a case where autonomous travel control is to be executed according to a remote operation by a user (U) outside a vehicle (V) provided with an autonomous travel control function, whether or not an authentication action detected near the vehicle (V) is a predetermined authentication action, identifying the user (U) present near the position where the authentication action was performed in the case where the detected authentication action is the predetermined authentication action, detecting the relative position of the identified user (U) with respect to the vehicle (V), and executing the autonomous travel control of the vehicle (V) on the basis of the relative position.

Description

車両走行制御方法及び車両走行制御装置Vehicle travel control method and vehicle travel control device
 本発明は、車両の外からの操作指示により、車両を自律走行制御させる車両走行制御方法及び車両走行制御装置に関するものである。 The present invention relates to a vehicle travel control method and a vehicle travel control device that autonomously control the vehicle by operating instructions from the outside of the vehicle.
 リモート操作により車両を移動させる際に操作者から死角となる領域を特定し、死角がある場合には、車速が小さくなるように車両を制御するため、車両のドア付近にいる人物をトラッキングし、車両と操作者との相対位置を検知する運転支援装置が知られている(特許文献1)。 When moving the vehicle by remote operation, the operator identifies the area that becomes a blind spot, and if there is a blind spot, the person near the door of the vehicle is tracked in order to control the vehicle so that the vehicle speed decreases. A driving support device that detects a relative position between a vehicle and an operator is known (Patent Document 1).
特開2019-151211号公報Japanese Unexamined Patent Publication No. 2019-15211
 上記従来技術は、ドア付近にいる人物を車両の操作者と推定してその移動を追跡しているが、ドア付近にいる人物が車両のリモート操作を行う車両のユーザとは限らない。そのため、上記従来技術では、車両のドア付近にいる車両のユーザ以外の人物を、車両のユーザであると誤って推定してしまうことがある。 In the above-mentioned conventional technology, a person near the door is presumed to be the operator of the vehicle and its movement is tracked, but the person near the door is not necessarily the user of the vehicle that remotely operates the vehicle. Therefore, in the above-mentioned prior art, a person other than the user of the vehicle near the door of the vehicle may be erroneously estimated to be the user of the vehicle.
 本発明が解決しようとする課題は、車両に対するユーザの相対位置を特定することができる車両走行制御方法及び車両走行制御装置を提供することである。 An object to be solved by the present invention is to provide a vehicle travel control method and a vehicle travel control device capable of specifying a user's relative position with respect to a vehicle.
 本発明は、自律走行制御機能を備えた車両のコントローラにより、車両の周囲で検出された認証行為が所定の認証行為であるか否かを判定する。次いで、検出された認証行為が所定の認証行為である場合には、認証行為が行われた位置付近にいるユーザを特定し、車両に対する特定したユーザの相対位置を検知する。そして、検知した相対位置に基づいて車両の自律走行制御を実行することによって上記課題を解決する。 The present invention determines whether or not the authentication act detected around the vehicle is a predetermined authentication act by the controller of the vehicle equipped with the autonomous driving control function. Next, when the detected authentication act is a predetermined authentication act, the user who is in the vicinity of the position where the authentication act is performed is specified, and the relative position of the specified user with respect to the vehicle is detected. Then, the above problem is solved by executing the autonomous driving control of the vehicle based on the detected relative position.
 本発明によれば、所定の認証行為が行なわれた位置を検出することによって車両に対するユーザの相対位置を特定することができるので、車両のユーザ以外の人物や物体の相対位置で誤った自律走行制御を実行してしまうことがなく、正しいユーザの相対位置に基づいて自律走行制御が実行できる。 According to the present invention, since the relative position of the user with respect to the vehicle can be specified by detecting the position where the predetermined authentication act is performed, the erroneous autonomous driving is performed at the relative position of a person or an object other than the user of the vehicle. Autonomous driving control can be executed based on the correct relative position of the user without executing the control.
本発明の車両走行制御方法及び車両走行制御装置を適用した第1実施形態のリモート駐車システムを示すブロック図である。It is a block diagram which shows the remote parking system of 1st Embodiment which applied the vehicle running control method and the vehicle running control device of this invention. 図1のリモート駐車システムにおける車両の物体検出器の検出範囲と、物体検出器で検出される遠隔操作器の二次元コードとを示す平面図である。It is a top view which shows the detection range of the object detector of a vehicle in the remote parking system of FIG. 1, and the two-dimensional code of the remote controller detected by the object detector. 図1のリモート駐車システムで実行される後退リモート駐車の一例を示す平面図(その1)である。FIG. 1 is a plan view (No. 1) showing an example of backward remote parking executed by the remote parking system of FIG. 図1のリモート駐車システムで実行される後退リモート駐車の一例を示す平面図(その2)である。FIG. 2 is a plan view (No. 2) showing an example of backward remote parking executed by the remote parking system of FIG. 図1のリモート駐車システムで実行される後退リモート駐車の一例を示す平面図(その3)である。FIG. 3 is a plan view (No. 3) showing an example of backward remote parking executed by the remote parking system of FIG. 図1のリモート駐車システムの認証器によってユーザの移動を追跡している状態を示す平面図である。It is a top view which shows the state which the movement of a user is tracked by the authenticator of the remote parking system of FIG. 図1のリモート駐車システムで実行される制御手順を示すフローチャートである。It is a flowchart which shows the control procedure executed in the remote parking system of FIG. 図1のリモート駐車システムで用いられる認証パターンの他の例を示す説明図である。It is explanatory drawing which shows another example of the authentication pattern used in the remote parking system of FIG. 本発明の車両走行制御方法及び車両走行制御装置を適用した第2実施形態のリモート駐車システムを示すブロック図である。It is a block diagram which shows the remote parking system of the 2nd Embodiment to which the vehicle running control method and the vehicle running control device of this invention are applied. 図2のリモート駐車システムで実行される後退リモート駐車の一例を示す平面図(その1)である。FIG. 1 is a plan view (No. 1) showing an example of backward remote parking executed by the remote parking system of FIG. 図2のリモート駐車システムで実行される後退リモート駐車の一例を示す平面図(その2)である。FIG. 2 is a plan view (No. 2) showing an example of backward remote parking executed by the remote parking system of FIG. 図2のリモート駐車システムで実行される後退リモート駐車の一例を示す平面図(その3)である。FIG. 3 is a plan view (No. 3) showing an example of backward remote parking executed by the remote parking system of FIG. 図2のリモート駐車システムで実行される後退リモート駐車の一例を示す平面図(その4)である。FIG. 4 is a plan view (No. 4) showing an example of backward remote parking executed by the remote parking system of FIG. 図2のリモート駐車システムにおいて自律駐車制御を行う際に、車両と車両のユーザとの接近可能な距離と、ユーザ以外の障害物との接近可能な距離を示す平面図である。FIG. 5 is a plan view showing an approachable distance between a vehicle and a user of the vehicle and an approachable distance to an obstacle other than the user when autonomous parking control is performed in the remote parking system of FIG. 2. 図2のリモート駐車システムで実行される制御手順を示すフローチャートである。It is a flowchart which shows the control procedure executed in the remote parking system of FIG. 本発明の車両走行制御方法及び車両走行制御装置を適用した第3実施形態のリモート駐車システムで用いられる電子キーの正面図である。It is a front view of the electronic key used in the remote parking system of the 3rd Embodiment to which the vehicle running control method and the vehicle running control device of this invention are applied. 図11Aに示す電子キーの裏面図ある。FIG. 11A is a back view of the electronic key shown in FIG. 11A. 本発明の車両走行制御方法及び車両走行制御装置を適用した第4実施形態のリモート駐車システムで実行される制御手順を示すフローチャートである。It is a flowchart which shows the control procedure executed in the remote parking system of 4th Embodiment to which the vehicle travel control method and the vehicle travel control device of this invention are applied. 本発明の車両走行制御方法及び車両走行制御装置を適用した第5実施形態のリモート駐車システムで用いられる認証行為を示す説明図である。It is explanatory drawing which shows the authentication act used in the remote parking system of the 5th Embodiment to which the vehicle running control method and the vehicle running control device of this invention are applied.
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 図1は、本発明の車両走行制御方法及び車両走行制御装置を適用したリモート駐車システム1を示すブロック図である。本明細書において「自律走行制御」とは、車両(以下、自車両ともいう)のユーザ(以下、ドライバともいう)の運転操作に依ることなく、車載された走行制御装置の自動制御により、車両を走行させることをいう。また、「自律駐車制御」とは、自律走行制御の一種であって、ユーザの運転操作に依ることなく、車載された走行制御装置の自動制御により、車両を駐車(車庫入れ又は車庫出し)させることをいうものとする。本明細書において「駐車」とは、駐車スペースへ車両を継続的に止めておくことをいうが、「駐車経路」という場合には、駐車スペースへの車庫入れ経路のみならず、駐車スペースからの車庫出し経路をも含むものとする。その意味で、本発明の車両走行制御方法及び車両走行制御装置は、駐車スペースへの車庫入れ時の車両の走行制御と、駐車スペースからの車庫出し時の車両の走行制御との両方が含まれる。なお、車庫入れを入庫とも言い、車庫出しを出庫とも言う。以下の第1実施形態においては、本発明に係る走行制御方法及び走行制御装置を、遠隔操作による自律駐車制御に適用した一例を挙げて、本発明の具体例を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<< First Embodiment >>
FIG. 1 is a block diagram showing a remote parking system 1 to which the vehicle travel control method and the vehicle travel control device of the present invention are applied. In the present specification, "autonomous driving control" refers to a vehicle by automatic control of a vehicle-mounted driving control device without depending on the driving operation of a user (hereinafter, also referred to as a driver) of the vehicle (hereinafter, also referred to as own vehicle). It means to run. Further, "autonomous parking control" is a kind of autonomous driving control, in which the vehicle is parked (entered or taken out of the garage) by the automatic control of the on-board driving control device without depending on the driving operation of the user. It shall mean that. In the present specification, "parking" means to continuously park the vehicle in the parking space, but the term "parking route" means not only the route to enter the parking space but also the route from the parking space. It shall also include the garage exit route. In that sense, the vehicle travel control method and the vehicle travel control device of the present invention include both vehicle travel control when entering the parking space and vehicle travel control when the vehicle is taken out of the parking space. .. In addition, putting in the garage is also called warehousing, and taking out the garage is also called warehousing. In the following first embodiment, a specific example of the present invention will be described with reference to an example in which the travel control method and the travel control device according to the present invention are applied to autonomous parking control by remote control.
 本実施形態のリモート駐車システム1は、ユーザが降車し、安全を確認しながら車両を遠隔操作することで、自律駐車制御を実行する。そして、車両が障害物と衝突するおそれがある場合には、遠隔操作による走行制御の指示がある場合でも、自律駐車制御により、車両を停車させるものである。以下、遠隔操作を併用した車庫入れ自律走行制御モードをリモート入庫モード、遠隔操作を併用した車庫出し自律走行制御モードをリモート出庫モードともいう。 The remote parking system 1 of the present embodiment executes autonomous parking control by the user getting off and remotely controlling the vehicle while confirming safety. Then, when the vehicle may collide with an obstacle, the vehicle is stopped by the autonomous parking control even if there is an instruction of traveling control by remote control. Hereinafter, the garage entry autonomous driving control mode using remote control is also referred to as a remote warehousing mode, and the garage exit autonomous driving control mode using remote control is also referred to as a remote warehousing mode.
 たとえば、幅狭の車庫や両隣に他車両が駐車している駐車場など、サイドドアが充分に開くほど余裕がない幅狭の駐車スペースでは、ユーザの乗降が困難となる。このような場合でも駐車を可能とするため、遠隔操作を併用したリモート入庫モードやリモート出庫モードが利用される。ユーザが駐車スペースの入口に車両を停車して車庫入れする場合には、リモート入庫モードを起動し、ユーザは遠隔操作器を所持して降車する。ユーザは、遠隔操作器で走行制御の指示として前進または後退の指示を送ることで、前進または後退の走行制御により車庫入れを実行する。また、当該駐車スペースからの車庫出しする場合には、ユーザは所持した遠隔操作器を用いて車両の内燃機関又は駆動用モータをONし、さらにリモート出庫モードを起動する。そして、ユーザは遠隔操作で走行制御の指示として前進または後退の指示を送ることで、前進または後退の走行制御により車庫出しを実行し、その後に乗車する。ユーザの遠隔操作は、例えば、前進または後退の指示スイッチを押し続ける間、車両が前進または後退し続け、指示スイッチを押していない間、車両が停止するようにできる。本実施形態のリモート駐車システム1は、このような遠隔操作を併用したリモート入庫モードと、同じく遠隔操作を併用したリモート出庫モードとを備えるシステムである。 For example, in a narrow parking space where there is not enough room for the side doors to open, such as a narrow garage or a parking lot where other vehicles are parked on both sides, it is difficult for the user to get on and off. In order to enable parking even in such a case, a remote warehousing mode or a remote warehousing mode combined with remote control is used. When the user stops the vehicle at the entrance of the parking space and puts it in the garage, the remote warehousing mode is activated, and the user carries the remote controller and gets off. The user sends a forward or backward instruction as a travel control instruction by the remote controller to execute the garage entry by the forward or backward travel control. Further, when taking out the garage from the parking space, the user turns on the internal combustion engine or the driving motor of the vehicle by using the remote controller possessed, and further activates the remote leaving mode. Then, the user remotely sends a forward or backward instruction as a travel control instruction to execute the garage out by the forward or backward travel control, and then board the vehicle. The remote control of the user can be such that, for example, the vehicle continues to move forward or backward while the forward or backward instruction switch is pressed, and the vehicle stops while the instruction switch is not pressed. The remote parking system 1 of the present embodiment is a system including a remote warehousing mode in which such a remote operation is used in combination and a remote warehousing mode in which the remote operation is also used in the same manner.
 また、後述の第2実施形態では、駐車スペースを設定し、駐車スペースへの入庫経路を演算して、ユーザの遠隔操作により、演算した入庫経路に沿って走行制御することができる。当該駐車スペースからの車庫出しをする場合には、車庫出し位置を設定し、車庫出し位置への出庫経路を演算して、ユーザの遠隔操作により、演算した出庫経路に沿って走行制御することができる。この場合、ユーザの遠隔操作は、例えば、開始の指示スイッチを押し続ける間、自車両Vが経路に沿って自動操舵しながら前進または後退し続け、開始の指示スイッチを押していない間、経路に沿った走行を中断し、自両を停止するようにできる。また、停止の指示スイッチを押した場合には、自両を停止するようにできる。なお、自律駐車制御の一例として、図8A~図8Dに示す後退自律駐車制御を例示するが、縦列自律駐車その他の自律駐車にも本発明を適用することができる。 Further, in the second embodiment described later, a parking space can be set, a warehousing route to the parking space can be calculated, and traveling can be controlled along the calculated warehousing route by remote control of the user. When taking out the garage from the parking space, it is possible to set the garage leaving position, calculate the leaving route to the garage leaving position, and control the running along the calculated leaving route by remote control of the user. can. In this case, the remote control of the user is, for example, along the route while the own vehicle V keeps moving forward or backward while automatically steering along the route while pressing and holding the start instruction switch, and while not pressing the start instruction switch. It is possible to interrupt the running and stop both of them. In addition, when the stop instruction switch is pressed, both of them can be stopped. Although the backward autonomous parking control shown in FIGS. 8A to 8D is illustrated as an example of the autonomous parking control, the present invention can also be applied to parallel parking and other autonomous parking.
 本実施形態のリモート駐車システム1は、車両V(図2参照)に搭載され、自律走行制御により車両Vを走行させる走行制御装置2と、車両VのユーザU(図2参照)による操作によって、走行制御装置2を遠隔操作する遠隔操作器3と、を備える。遠隔操作器3は、通信機能を備えた可搬型の端末装置であり、例えば、スマートフォンやタブレット型端末等の汎用型の携帯端末に対し、本実施形態のリモート駐車システム1に対応した専用のリモートコントロール用アプリケーションをインストールしたものである。携帯端末は、当該アプリケーションを起動することにより、本実施形態の遠隔操作器3として機能する。走行制御装置2と、遠隔操作器3とは、携帯電話通信網やインターネット等の相互に通信可能な電気通信回線、あるいは短距離無線通信等によって接続されている。遠隔操作器3は、走行制御装置2と最初に接続する際に実行される初期認証処理により、走行制御装置2と相互に通信可能となるように対応付けられる。 The remote parking system 1 of the present embodiment is mounted on the vehicle V (see FIG. 2) and is operated by a travel control device 2 for driving the vehicle V by autonomous driving control and a user U (see FIG. 2) of the vehicle V. A remote controller 3 for remotely controlling the travel control device 2 is provided. The remote controller 3 is a portable terminal device having a communication function. For example, a dedicated remote controller corresponding to the remote parking system 1 of the present embodiment is used for a general-purpose mobile terminal such as a smartphone or a tablet terminal. The control application is installed. The mobile terminal functions as the remote controller 3 of the present embodiment by activating the application. The travel control device 2 and the remote controller 3 are connected by a telecommunication line capable of communicating with each other such as a mobile phone communication network or the Internet, a short-distance wireless communication, or the like. The remote controller 3 is associated with the travel control device 2 so as to be able to communicate with each other by the initial authentication process executed when the vehicle is first connected to the travel control device 2.
 走行制御装置2(コントローラ)は、制御器21と、走行制御器22と、認証器23と、を備える。制御器21は、走行制御器22に走行指令を出力する。走行制御器22は、遠隔操作器3からの遠隔操作に基づいて自車両Vを自律走行制御により走行させる。認証器23は、車両VのユーザUによる認証行為を検出し、自車両Vに対するユーザUを特定し、特定したユーザUを追跡し、車両Vに対するユーザUの相対位置を検知し、車両Vに対するユーザUの相対位置に基づいて、制御器21に自律駐車制御を実行又は停止させる。なお、自車両Vに対するユーザUを特定し、その特定した位置を初期位置に設定し、特定したユーザUの移動を追跡することで、車両Vに対するユーザUの相対位置を検知するようにしてもよい。 The travel control device 2 (controller) includes a controller 21, a travel controller 22, and an authenticator 23. The controller 21 outputs a travel command to the travel controller 22. The travel controller 22 causes the own vehicle V to travel by autonomous travel control based on the remote control from the remote controller 3. The authenticator 23 detects the authentication act by the user U of the vehicle V, identifies the user U with respect to the own vehicle V, tracks the specified user U, detects the relative position of the user U with respect to the vehicle V, and refers to the vehicle V. The controller 21 executes or stops the autonomous parking control based on the relative position of the user U. Even if the user U with respect to the own vehicle V is specified, the specified position is set as the initial position, and the movement of the specified user U is tracked, the relative position of the user U with respect to the vehicle V is detected. good.
 制御器21、走行制御器22及び認証器23は、上記の機能を発揮するために、コンピュータと、このコンピュータを走行制御装置2の制御器21、走行制御器22及び認証器23として機能させるソフトウェアプログラムと、によって構成されている。制御器21は、物体検出器211、物体減速演算部212及び目標車速生成部213を備える。走行制御器22は、車速制御部221を備える。認証器23は、画像解析部231、認証行為判定部232、認証パターン記憶部233、初期位置設定部234及び追跡部235を備える。以下、各構成を説明する。 The controller 21, the travel controller 22, and the authenticator 23 are a computer and software that causes the computer to function as the controller 21, the travel controller 22, and the authenticator 23 of the travel control device 2 in order to exert the above functions. It consists of a program and. The controller 21 includes an object detector 211, an object deceleration calculation unit 212, and a target vehicle speed generation unit 213. The travel controller 22 includes a vehicle speed control unit 221. The authenticator 23 includes an image analysis unit 231, an authentication act determination unit 232, an authentication pattern storage unit 233, an initial position setting unit 234, and a tracking unit 235. Each configuration will be described below.
 物体検出器211は、自車両Vの周辺に存在する障害物等の物体を検出するものであり、例えば、カメラ、レーダー(ミリ波レーダー,レーザーレーダー,超音波レーダーなど)及びソナー等を備える。カメラ、レーダー及びソナーは、車両Vの外板部に搭載されている。図2は、車両Vに搭載されたカメラ及びソナーの配置状態と、カメラの撮影範囲及びソナーの検出範囲の一例を示す平面図である。 The object detector 211 detects an object such as an obstacle existing around the own vehicle V, and includes, for example, a camera, a radar (millimeter wave radar, laser radar, ultrasonic radar, etc.), a sonar, and the like. The camera, radar and sonar are mounted on the outer panel of the vehicle V. FIG. 2 is a plan view showing an example of the arrangement state of the camera and sonar mounted on the vehicle V, the shooting range of the camera, and the detection range of the sonar.
 図2において、符号C1、C2、C3及びC4は、物体検出器211のカメラを示し、それぞれ車両Vの前面、後面、右ドアミラー付近及び左ドアミラー付近に設置されている。また、符号CA1、CA2、CA3及びCA4は、カメラC1~C4の撮影範囲を示している。車両Vの前面に設けられたカメラC1は、車両Vの前方を180°に近い画角で広範囲に撮影し、車両Vの後面に設けられたカメラC2は、車両Vの後方を180°に近い画角で広範囲に撮影する。右ドアミラー付近に設けられたカメラC3は、車両Vの右側方を180°に近い画角で広範囲に撮影し、左ドアミラー付近に設けられたカメラC4は、車両Vの左側方を180°に近い画角で広範囲に撮影する。 In FIG. 2, reference numerals C1, C2, C3 and C4 indicate cameras of the object detector 211, and are installed on the front surface and the rear surface of the vehicle V, near the right door mirror and near the left door mirror, respectively. Further, reference numerals CA1, CA2, CA3 and CA4 indicate the shooting range of the cameras C1 to C4. The camera C1 provided on the front surface of the vehicle V captures a wide range of images in front of the vehicle V at an angle of view close to 180 °, and the camera C2 provided on the rear surface of the vehicle V closes 180 ° behind the vehicle V. Shoot a wide range with an angle of view. The camera C3 provided near the right door mirror captures a wide range of the right side of the vehicle V with an angle of view close to 180 °, and the camera C4 provided near the left door mirror captures the left side of the vehicle V close to 180 °. Shoot a wide range with an angle of view.
 また、図2において、符号SN1、SN2、SN3、SN4、SN5、SN6、SN7及びSN8は、物体検出器211のソナーを示し、それぞれ車両Vの前面、右側面、後面及び左側面に設置されている。また、符号SA1、SA2、SA3、SA3、SA5、SA6、SA7、SA8は、ソナーSN1~SN8の検出範囲を示している。車両Vの前面に設けられたソナーSN1及びSN2は、車両Vの前方の物体を検出し、車両Vの右側面に設けられたソナーSN3及びSN4は、車両Vの右側方の物体をそれぞれ検出する。車両Vの後面に設けられたソナーSN5及びSN6は、車両Vの後方の物体を検出し、車両Vの左側面に設けられたソナーSN7及びSN8は、車両Vの左側方の物体をそれぞれ検出する。 Further, in FIG. 2, reference numerals SN1, SN2, SN3, SN4, SN5, SN6, SN7 and SN8 indicate sonar of the object detector 211, and are installed on the front surface, the right side surface, the rear surface and the left side surface of the vehicle V, respectively. There is. Further, reference numerals SA1, SA2, SA3, SA3, SA5, SA6, SA7, and SA8 indicate the detection range of sonar SN1 to SN8. Sonars SN1 and SN2 provided on the front surface of the vehicle V detect an object in front of the vehicle V, and sonar SN3 and SN4 provided on the right side surface of the vehicle V detect an object on the right side of the vehicle V, respectively. .. The sonar SN5 and SN6 provided on the rear surface of the vehicle V detect an object behind the vehicle V, and the sonar SN7 and SN8 provided on the left side surface of the vehicle V detect an object on the left side of the vehicle V, respectively. ..
 物体検出器211は、上述したカメラC1~C4、ソナーSN1~SN8及びレーダーの検出結果に基づいて、物体の位置を特定する物体位置特定部(図示せず)を備えている。物体位置特定部は、コンピュータに、カメラのC1~C4により撮影された画像や、レーダーの検出信号等から物体の位置を特定するためのソフトウェアプログラムがインストールされたものである。物体位置特定部により特定された物体の物体情報(物標情報)と、その位置情報(自車両の現在位置からの相対的位置座標や、緯度・経度など)は、物体減速演算部212へ出力される。物体情報及び位置情報は、自律駐車制御中においては、不意な障害物などの物体を検出した場合に、物体減速演算部212により自車両Vを減速又は停車させる制御に供される。 The object detector 211 includes an object position specifying unit (not shown) that specifies the position of the object based on the detection results of the cameras C1 to C4, sonar SN1 to SN8, and the radar described above. The object position specifying unit is a computer in which a software program for specifying the position of an object is installed from images taken by cameras C1 to C4, radar detection signals, and the like. The object information (target information) of the object specified by the object position specifying unit and the position information (relative position coordinates from the current position of the own vehicle, latitude / longitude, etc.) are output to the object deceleration calculation unit 212. Will be done. The object information and the position information are used in the control of decelerating or stopping the own vehicle V by the object deceleration calculation unit 212 when an object such as an unexpected obstacle is detected during the autonomous parking control.
 物体減速演算部212は、物体検出器211からの障害物その他の物体の位置情報を入力し、物体との距離と、車速とに基づいて、物体と衝突するまでの時間(TTC:Time to Collision)を演算し、自車両Vの減速開始タイミングを演算する。たとえば、図3A~図3Cに示すリモート入庫モードにおいて、障害物としての物体が駐車場の壁Wである場合には、図3A及び図3Bに示すように壁Wとの距離が所定以上である場合は、車速を初期設定値とし、図3Cに示すように自車両Vが壁Wに衝突するまでの時間TTCが所定値以下になるタイミングで、自車両Vの車速を減速する。また、図3A~図3Cに示す一連の自律駐車制御を実行中に、駐車経路の中に不意に障害物を検出した場合も同様に、自車両Vがその障害物に衝突するまでの時間TTCが所定値以下になるタイミングで、自車両Vの車速を減速又は停車させる。この減速開始タイミングは、目標車速生成部213に出力する。 The object deceleration calculation unit 212 inputs the position information of an obstacle or other object from the object detector 211, and based on the distance to the object and the vehicle speed, the time until the object collides with the object (TTC: Time to Collision). ) Is calculated, and the deceleration start timing of the own vehicle V is calculated. For example, in the remote warehousing mode shown in FIGS. 3A to 3C, when the object as an obstacle is the wall W of the parking lot, the distance to the wall W is equal to or greater than a predetermined distance as shown in FIGS. 3A and 3B. In this case, the vehicle speed is set as the initial setting value, and as shown in FIG. 3C, the vehicle speed of the own vehicle V is decelerated at the timing when the time TTC until the own vehicle V collides with the wall W becomes equal to or less than a predetermined value. Further, when an obstacle is suddenly detected in the parking route during the series of autonomous parking control shown in FIGS. 3A to 3C, the time until the own vehicle V collides with the obstacle TTC. Decelerates or stops the vehicle speed of the own vehicle V at the timing when becomes equal to or less than a predetermined value. This deceleration start timing is output to the target vehicle speed generation unit 213.
 目標車速生成部213は、物体減速演算部212からの減速開始タイミングに基づいて、所定時間間隔で目標車速を演算する。図3A~図3Cの入庫経路についていえば、図3Aに示す現在位置で、ユーザが降車した後、その降車位置から発進(後退)して図3Bに示す駐車位置の途中までの目標車速と、図3Cに示す壁Wに接近する際の目標車速とを、所定時間間隔で演算し、車速制御部221に出力する。例えば、壁Wに所定距離以下となった場合には、減速するようにして、ユーザが自車両Vと壁Wとの接近状態を確認しやすいようにする。ユーザは自車両Vと壁Wとが接近し過ぎたときには、遠隔操作の後退の指示ボタンを離すことで、自車両Vをすぐに停車させることができる。また、図3A~図3Cに示す一連の自律駐車制御を実行中に、駐車経路の中に不意な障害物を検出した場合は、物体減速演算部212から減速又は停車タイミングが出力されるので、これに応じた目標車速を車速制御部221に出力する。 The target vehicle speed generation unit 213 calculates the target vehicle speed at predetermined time intervals based on the deceleration start timing from the object deceleration calculation unit 212. Regarding the warehousing route shown in FIGS. 3A to 3C, the target vehicle speed to the middle of the parking position shown in FIG. 3B after the user disembarks at the current position shown in FIG. The target vehicle speed when approaching the wall W shown in FIG. 3C is calculated at predetermined time intervals and output to the vehicle speed control unit 221. For example, when the distance to the wall W is less than or equal to a predetermined distance, the vehicle is decelerated so that the user can easily check the approaching state between the own vehicle V and the wall W. When the own vehicle V and the wall W are too close to each other, the user can immediately stop the own vehicle V by releasing the remote-controlled reverse instruction button. Further, when an unexpected obstacle is detected in the parking route during the series of autonomous parking control shown in FIGS. 3A to 3C, the object deceleration calculation unit 212 outputs the deceleration or stop timing. The target vehicle speed corresponding to this is output to the vehicle speed control unit 221.
 認証器23は、自車両VのユーザUによる所定の認証行為を検出する。認証器23は、画像解析部231、認証行為判定部232、認証パターン記憶部233、初期位置設定部234及び追跡部235を備えている。画像解析部231は、物体検出器211の複数のカメラC1~C4によって撮影された自車両Vの周囲の画像を解析処理し、自車両VのユーザUによる認証行為を検出する。 The authenticator 23 detects a predetermined authentication act by the user U of the own vehicle V. The authenticator 23 includes an image analysis unit 231, an authentication action determination unit 232, an authentication pattern storage unit 233, an initial position setting unit 234, and a tracking unit 235. The image analysis unit 231 analyzes and processes the images around the own vehicle V taken by the plurality of cameras C1 to C4 of the object detector 211, and detects the authentication act by the user U of the own vehicle V.
 本発明におけるユーザUの認証行為には、ユーザUによる様々な行為が適用可能であるが、本実施形態では、例えば、自車両VのカメラC1~C4に所定の認証パターンを撮影させる行為を所定の認証行為としている。本実施形態では、所定の認証パターンとして、所定の認証画像を用いるが、より具体的には、図2に示すように、遠隔操作器3のタッチパネル型のディスプレイ31に表示される所定の二次元コードAP1が用いられる。二次元コードAP1は、車両毎に対応付けられた固有のものであり、例えば、認証パターン記憶部233に予め記憶されている。認証パターン記憶部233に記憶されている二次元コードAP1は、例えば、遠隔操作器3を初めて走行制御装置2に接続する際に実行される初期認証処理により、遠隔操作器3のリモートコントロール用アプリケーションに登録される。 Various actions by the user U can be applied to the authentication action of the user U in the present invention, but in the present embodiment, for example, an action of causing the cameras C1 to C4 of the own vehicle V to shoot a predetermined authentication pattern is predetermined. It is an act of authentication. In the present embodiment, a predetermined authentication image is used as the predetermined authentication pattern. More specifically, as shown in FIG. 2, a predetermined two-dimensional display displayed on the touch panel type display 31 of the remote controller 3 is used. Code AP1 is used. The two-dimensional code AP1 is unique and associated with each vehicle, and is stored in advance in, for example, the authentication pattern storage unit 233. The two-dimensional code AP1 stored in the authentication pattern storage unit 233 is an application for remote control of the remote controller 3 by, for example, an initial authentication process executed when the remote controller 3 is connected to the travel control device 2 for the first time. To be registered in.
 遠隔操作器3は、例えば、走行制御装置2においてリモート入庫モード又はリモート出庫モードが起動され、かつ、遠隔操作器3でリモートコントロール用アプリケーションが起動されているときに、走行制御装置2と通信可能に接続される。遠隔操作器3は、ユーザUからの走行制御の指示が入力されると、走行制御装置2に走行制御の指示を送信する。また、遠隔操作器3は、走行制御装置2と接続した場合、あるいは、接続後にユーザUによって遠隔操作器3に所定の操作が行なわれた場合に、ディスプレイ31に二次元コードAP1を表示する。なお、遠隔操作器3に二次元コードAP1を表示させるための所定の操作は、特に限定されない。例えば、ユーザUによって、遠隔操作器3に設けられた物理的な操作ボタン等が操作された場合、あるいはディスプレイ31に表示されたボタン等が操作された場合に二次元コードAP1を表示させてもよい。また、ユーザUによる遠隔操作器3の音声認識機能を利用した操作指示に応じて二次元コードAP1を表示させてもよい。このように、遠隔操作器3に二次元コードAP1が表示されるタイミングを限定することにより、遠隔操作器3に不用意に二次元コードAP1が表示されるのを防ぐことができる。 The remote controller 3 can communicate with the travel control device 2, for example, when the remote warehousing mode or the remote warehousing mode is activated in the travel control device 2 and the remote control application is activated in the remote controller 3. Connected to. When the travel control instruction from the user U is input, the remote controller 3 transmits the travel control instruction to the travel control device 2. Further, the remote controller 3 displays the two-dimensional code AP1 on the display 31 when the remote controller 3 is connected to the travel control device 2 or when a predetermined operation is performed on the remote controller 3 by the user U after the connection. The predetermined operation for displaying the two-dimensional code AP1 on the remote controller 3 is not particularly limited. For example, even if the user U operates the physical operation button or the like provided on the remote controller 3, or the button or the like displayed on the display 31 is operated, the two-dimensional code AP1 may be displayed. good. Further, the two-dimensional code AP1 may be displayed in response to an operation instruction using the voice recognition function of the remote controller 3 by the user U. By limiting the timing at which the two-dimensional code AP1 is displayed on the remote controller 3 in this way, it is possible to prevent the two-dimensional code AP1 from being inadvertently displayed on the remote controller 3.
 ユーザUは、遠隔操作器3のディスプレイ31に二次元コードAP1を表示させ、この二次元コードAP1が自車両VのカメラC1~C4によって撮影されるように遠隔操作器3を保持しながら自車両Vに接近する。画像解析部231は、カメラC1~C4により撮影された画像を解析し、二次元コードAP1が検出された場合には、その画像から二次元コード部分を切り出し、切り出した画像に二値化処理、歪み補正等の画像処理を施して認証用画像を生成する。画像解析部231は、生成した認証用画像を、認証行為判定部232に出力する。 The user U causes the display 31 of the remote controller 3 to display the two-dimensional code AP1, and holds the remote controller 3 so that the two-dimensional code AP1 is photographed by the cameras C1 to C4 of the own vehicle V while holding the own vehicle. Approach V. The image analysis unit 231 analyzes the images taken by the cameras C1 to C4, and when the two-dimensional code AP1 is detected, cuts out the two-dimensional code part from the image and binarizes the cut-out image. Image processing such as distortion correction is performed to generate an image for authentication. The image analysis unit 231 outputs the generated authentication image to the authentication act determination unit 232.
 認証行為判定部232は、画像解析部231から出力された認証用画像と、認証パターン記憶部233から読み出した二次元コードAP1とを比較する。具体的には、認証行為判定部232は、例えばパターン認識処理等を用いて、認証用画像と、認証パターン記憶部233から読み出した二次元コードAP1とを比較し、一致した場合には、ユーザUの行なった認証行為が所定の認証行為であると判定する。認証行為判定部232は、ユーザUの行なった認証行為が所定の認証行為であると判定すると、初期位置設定部234に判定信号を出力する。 The authentication act determination unit 232 compares the authentication image output from the image analysis unit 231 with the two-dimensional code AP1 read from the authentication pattern storage unit 233. Specifically, the authentication act determination unit 232 compares the authentication image with the two-dimensional code AP1 read from the authentication pattern storage unit 233 by using, for example, pattern recognition processing, and if they match, the user. It is determined that the authentication act performed by U is a predetermined authentication act. When the authentication act determination unit 232 determines that the authentication act performed by the user U is a predetermined authentication act, the authentication act determination unit 232 outputs a determination signal to the initial position setting unit 234.
 初期位置設定部234は、認証行為判定部232から判定信号が入力された場合に、認証行為が撮影されたカメラを特定し、そのカメラによる撮影位置をユーザUの初期位置として設定する。すなわち、認証行為判定部232により所定の認証行為が行なわれたと判定された場合、その所定の認証行為を行なった人物が自車両VのユーザUであると推定し、その認証行為が行われた位置を検出することにより、自車両VのユーザUの初期位置を設定する。カメラC1~C4は、図2に示すように、その撮影方向が異なっているため、認証行為を撮影したカメラを特定することにより、自車両Vに対してユーザUが存在する位置を特定することができる。例えば、初期位置設定部234は、複数のカメラC1~C4のうち、カメラC1によって所定の認証行為が撮影された場合には、自車両Vの前方をユーザUの初期位置として設定する。また、初期位置設定部234は、カメラC3によって所定の認証行為が撮影された場合には、自車両Vの右方をユーザUの初期位置として設定する。 When the determination signal is input from the authentication act determination unit 232, the initial position setting unit 234 identifies the camera in which the authentication act was taken and sets the shooting position by the camera as the initial position of the user U. That is, when the authentication act determination unit 232 determines that the predetermined authentication act has been performed, it is estimated that the person who has performed the predetermined authentication act is the user U of the own vehicle V, and the authentication act has been performed. By detecting the position, the initial position of the user U of the own vehicle V is set. As shown in FIG. 2, the cameras C1 to C4 have different shooting directions. Therefore, by specifying the camera that shot the authentication act, the position where the user U exists with respect to the own vehicle V can be specified. Can be done. For example, the initial position setting unit 234 sets the front of the own vehicle V as the initial position of the user U when a predetermined authentication action is taken by the camera C1 among the plurality of cameras C1 to C4. Further, the initial position setting unit 234 sets the right side of the own vehicle V as the initial position of the user U when a predetermined authentication act is photographed by the camera C3.
 追跡部235は、初期位置付近に存在するユーザUを検出して追跡する。具体的には、追跡部235は、複数のソナーNS1~NS8から検出信号を取得し、取得した検出信号に基づいて、初期位置付近に存在するユーザUの位置を検出し、検出したユーザUをソナーNS1~NS8により検出して追跡する。また、追跡部235は、カメラC1~C4の画像を解析し、その解析結果に基づいてユーザUの位置を検出してもよい。なお、カメラC1~C4の画像を解析してユーザUの位置を検出する場合に、車両VからユーザUまでの距離を検出する場合には、例えば、モーションステレオ法や、機械学習を利用した深度推定等を用いてもよい。さらに、図2に示すように、車両Vの両側方には、ソナーNS1~NS8では検出できないソナー死角エリアが存在する。自車両VのユーザUがこのソナー死角エリアに移動した場合に、カメラC1~C4の画像を解析し、その解析結果に基づいてユーザUの位置を検出もしくは推定してもよい。 The tracking unit 235 detects and tracks the user U existing near the initial position. Specifically, the tracking unit 235 acquires detection signals from a plurality of sonar NS1 to NS8, detects the position of the user U existing near the initial position based on the acquired detection signals, and detects the detected user U. Detected and tracked by sonar NS1 to NS8. Further, the tracking unit 235 may analyze the images of the cameras C1 to C4 and detect the position of the user U based on the analysis result. When detecting the position of the user U by analyzing the images of the cameras C1 to C4, when detecting the distance from the vehicle V to the user U, for example, the depth using the motion stereo method or machine learning. Estimates and the like may be used. Further, as shown in FIG. 2, there are sonar blind spot areas on both sides of the vehicle V that cannot be detected by the sonar NS1 to NS8. When the user U of the own vehicle V moves to this sonar blind spot area, the images of the cameras C1 to C4 may be analyzed, and the position of the user U may be detected or estimated based on the analysis result.
 例えば、図4に示すように、初期位置設定部234により、自車両Vの前方がユーザUの初期位置として設定された場合、自車両Vの前方を検出するソナーSN1、SN2によりユーザUが実際に存在する位置P1を検出する。その後、ユーザUが自車両Vの左方の位置P2に移動した場合には、ソナーSN8によりユーザUを検出してその位置を追跡する。また、ユーザUが自車両Vの左方のソナー死角エリアP3に移動した場合には、カメラC4の画像を解析し、その解析結果に基づいてユーザUの位置を追跡する。 For example, as shown in FIG. 4, when the front of the own vehicle V is set as the initial position of the user U by the initial position setting unit 234, the user U is actually operated by the sonar SN1 and SN2 that detect the front of the own vehicle V. The position P1 existing in is detected. After that, when the user U moves to the position P2 on the left side of the own vehicle V, the sonar SN8 detects the user U and tracks the position. When the user U moves to the sonar blind spot area P3 on the left side of the own vehicle V, the image of the camera C4 is analyzed and the position of the user U is tracked based on the analysis result.
 認証器23は、ユーザUの行なった認証行為が所定の認証行為であって、かつ、ユーザUの位置が検出できた場合に、制御器21に対して認証信号の出力を開始する。制御器21の目標車速生成部213は、認証信号が入力され、ユーザからの遠隔操作で後退指示を受けると、車速制御部221に目標車速を出力する。車速制御部221は、目標車速生成部213からの目標車速に基づいて、自車両Vの駆動系システムに設けられたアクセルアクチュエータを動作する制御信号を生成する。これにより、自律駐車制御が実行される。 The authenticator 23 starts outputting an authentication signal to the controller 21 when the authentication act performed by the user U is a predetermined authentication act and the position of the user U can be detected. The target vehicle speed generation unit 213 of the controller 21 outputs the target vehicle speed to the vehicle speed control unit 221 when an authentication signal is input and a backward instruction is received by remote control from the user. The vehicle speed control unit 221 generates a control signal for operating the accelerator actuator provided in the drive system of the own vehicle V based on the target vehicle speed from the target vehicle speed generation unit 213. As a result, autonomous parking control is executed.
 また、認証器23は、自車両Vによる自律駐車制御の実行中に、ユーザUによる所定の認証行為が再度検出された場合に、制御器21に対する認証信号の出力を停止する。また、認証器23は、図4に示すように、ユーザUがカメラC1~C4の撮影範囲及びソナーSN1~SN8の検出範囲外の位置P4に移動し、ユーザUが追跡できなくなった場合にも制御器21に対する認証信号の出力を停止する。認証器23からの認証信号の出力が停止すると、自車両Vの自律駐車制御は自車両Vを停車した後、走行制御を一旦停止する。これにより、緊急時には、遠隔操作器3のディスプレイ31等を操作することなく、二次元コードAP1をカメラC1~C4に撮影させることで、自車両Vを迅速に停車させることができる。緊急事態が解消した場合には、認証器23にユーザUによる所定の認証行為を再度検出させることにより、自車両Vの自律駐車制御を再開させるようにしてもよい。 Further, the authenticator 23 stops the output of the authentication signal to the controller 21 when the predetermined authentication act by the user U is detected again during the execution of the autonomous parking control by the own vehicle V. Further, as shown in FIG. 4, the authenticator 23 also causes the user U to move to a position P4 outside the shooting range of the cameras C1 to C4 and the detection range of the sonars SN1 to SN8, and the user U cannot be tracked. The output of the authentication signal to the controller 21 is stopped. When the output of the authentication signal from the authenticator 23 is stopped, the autonomous parking control of the own vehicle V temporarily stops the traveling control after stopping the own vehicle V. As a result, in an emergency, the own vehicle V can be stopped quickly by having the cameras C1 to C4 take a picture of the two-dimensional code AP1 without operating the display 31 or the like of the remote controller 3. When the emergency situation is resolved, the autonomous parking control of the own vehicle V may be restarted by causing the authenticator 23 to detect a predetermined authentication act by the user U again.
 次に図5を参照して、本実施形態のリモート駐車システム1の制御フローを説明する。図5は、本実施形態のリモート駐車システム1で実行される制御手順を示すフローチャートである。ここでは、図3A~図3Cに示す後退駐車を自律駐車制御(入庫)により実行するシーンであって、ユーザUが遠隔操作器3の二次元コードAP1を用いた所定の認証行為を行って自車両Vに自律駐車制御による入庫を行わせる例について説明する。まず、自車両Vが駐車スペースの前に停車できたら、ステップS1にて、ユーザUは、車載されたモード選択スイッチを操作してリモート入庫モードを起動する。 Next, the control flow of the remote parking system 1 of the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing a control procedure executed by the remote parking system 1 of the present embodiment. Here, in the scene in which the backward parking shown in FIGS. 3A to 3C is executed by the autonomous parking control (warehousing), the user U performs a predetermined authentication act using the two-dimensional code AP1 of the remote controller 3 to himself / herself. An example of causing the vehicle V to store the vehicle by autonomous parking control will be described. First, when the own vehicle V can stop in front of the parking space, in step S1, the user U operates the in-vehicle mode selection switch to activate the remote warehousing mode.
 ステップS2にて降車が促され、ユーザUが遠隔操作器3を持って降車すると、ステップS3にて、ユーザUは遠隔操作器3を起動する。遠隔操作器3の起動は、ユーザUの携帯端末において、リモートコントロール用アプリケーションを起動することによって行われる。遠隔操作器3は、起動後に走行制御装置2と通信可能に接続する。 When the user U is prompted to get off in step S2 and the user U gets off with the remote controller 3, the user U activates the remote controller 3 in step S3. The remote controller 3 is activated by activating the remote control application on the mobile terminal of the user U. The remote controller 3 is communicably connected to the travel control device 2 after activation.
 遠隔操作器3は、ステップS4において、走行制御装置2と接続した場合、あるいは、接続後にユーザUによって遠隔操作器3に所定の操作が行なわれた場合に、ディスプレイ31に二次元コードAP1を表示する。ユーザUは、遠隔操作器3のディスプレイ31に表示された二次元コードAP1が自車両VのカメラC1~C4によって撮影されるように遠隔操作器3を保持しながら自車両Vに接近する。 The remote controller 3 displays the two-dimensional code AP1 on the display 31 when the remote controller 3 is connected to the travel control device 2 in step S4, or when a predetermined operation is performed on the remote controller 3 by the user U after the connection. do. The user U approaches the own vehicle V while holding the remote controller 3 so that the two-dimensional code AP1 displayed on the display 31 of the remote controller 3 is photographed by the cameras C1 to C4 of the own vehicle V.
 画像解析部231は、ステップS5において、認証行為を検出する。画像解析部231は、カメラC1~C4により撮影された画像を解析し、二次元コードAP1が検出された場合には、その画像から二次元コード部分を切り出し、切り出した画像に二値化処理、歪み補正等の画像処理を施して認証用画像を生成する。画像解析部231は、生成した認証用画像を、認証行為判定部232に出力する。 The image analysis unit 231 detects the authentication act in step S5. The image analysis unit 231 analyzes the images taken by the cameras C1 to C4, and when the two-dimensional code AP1 is detected, cuts out the two-dimensional code part from the image and binarizes the cut-out image. Image processing such as distortion correction is performed to generate an image for authentication. The image analysis unit 231 outputs the generated authentication image to the authentication act determination unit 232.
 認証行為判定部232は、ステップS6において、画像解析部231から出力された認証用画像と、認証パターン記憶部233から読み出した二次元コードAP1とを比較し、検出した認証行為がユーザUによる所定の認証行為であるか否かを判定する。認証行為判定部232は、ユーザUの行なった認証行為が所定の認証行為であると判定すると、初期位置設定部234に判定信号を出力する。 In step S6, the authentication action determination unit 232 compares the authentication image output from the image analysis unit 231 with the two-dimensional code AP1 read from the authentication pattern storage unit 233, and the detected authentication action is determined by the user U. Judge whether or not it is an act of authentication. When the authentication act determination unit 232 determines that the authentication act performed by the user U is a predetermined authentication act, the authentication act determination unit 232 outputs a determination signal to the initial position setting unit 234.
 初期位置設定部234は、ステップS7において、認証行為が撮影されたカメラを特定し、そのカメラによる撮影位置をユーザUの初期位置として設定する。例えば、初期位置設定部234は、複数のカメラC1~C4のうち、カメラC1によって所定の認証行為が撮影された場合には、自車両Vの前方をユーザUの初期位置として設定する。 In step S7, the initial position setting unit 234 identifies the camera in which the authentication act was taken, and sets the shooting position by the camera as the initial position of the user U. For example, the initial position setting unit 234 sets the front of the own vehicle V as the initial position of the user U when a predetermined authentication action is taken by the camera C1 among the plurality of cameras C1 to C4.
 追跡部235は、ステップS8において、初期位置付近から、ソナーNS1~NS8等を利用してユーザUが実際に存在する位置を検出する。上記のように、初期位置設定部234において、自車両Vの前方をユーザUの初期位置として設定された場合には、自車両Vの前方を検出するソナーSN1、SN2によりユーザUが実際に存在する位置を検出する。 In step S8, the tracking unit 235 detects the position where the user U actually exists from the vicinity of the initial position by using the sonar NS1 to NS8 and the like. As described above, when the front of the own vehicle V is set as the initial position of the user U in the initial position setting unit 234, the user U actually exists by the sonars SN1 and SN2 that detect the front of the own vehicle V. Detect the position to do.
 認証器23は、ステップS9において、ユーザUの行なった認証行為が所定の認証行為であって、かつ、ユーザUの位置が検出できた場合に、制御器21に対して認証信号の出力を開始し、これにより、自車両Vの自律駐車制御が開始される。制御器21の目標車速生成部213は、認証信号が入力され、ユーザからの遠隔操作で走行制御として後退指示を受けると、車速制御部221に目標車速を出力する。車速制御部221は、目標車速生成部213からの目標車速に基づいて、自車両Vの駆動系システムに設けられたアクセルアクチュエータを動作する制御信号を生成する。 In step S9, the authenticator 23 starts outputting an authentication signal to the controller 21 when the authentication act performed by the user U is a predetermined authentication act and the position of the user U can be detected. As a result, the autonomous parking control of the own vehicle V is started. The target vehicle speed generation unit 213 of the controller 21 outputs the target vehicle speed to the vehicle speed control unit 221 when an authentication signal is input and a backward instruction is received as travel control by remote control from the user. The vehicle speed control unit 221 generates a control signal for operating the accelerator actuator provided in the drive system of the own vehicle V based on the target vehicle speed from the target vehicle speed generation unit 213.
 追跡部235は、ステップS10において、初期位置付近に存在するユーザUを検出して追跡する。具体的には、追跡部235は、複数のソナーNS1~NS8から取得した検出信号に基づいてユーザUの位置を追跡する。 In step S10, the tracking unit 235 detects and tracks the user U existing near the initial position. Specifically, the tracking unit 235 tracks the position of the user U based on the detection signals acquired from the plurality of sonar NS1 to NS8.
 認証器23は、ステップS11において、自車両Vによる自律駐車制御の実行中に、ユーザUによる所定の認証行為が再度検出された場合に、制御器21に対する認証信号の出力を停止する。認証器23からの認証信号の出力が停止すると、ステップS12において、自車両Vの自律駐車制御が中断され、自車両Vを停車する。これにより、緊急時には、遠隔操作器3のディスプレイ31等を操作することなく、二次元コードAP1をカメラC1~C4に撮影させることで、自車両Vを迅速に停車させることができる。緊急事態が解消した場合には、ステップS5において、認証器23にユーザUによる所定の認証行為を再度検出させることにより、自車両Vの自律駐車制御が再開される。 In step S11, the authenticator 23 stops the output of the authentication signal to the controller 21 when the predetermined authentication act by the user U is detected again during the execution of the autonomous parking control by the own vehicle V. When the output of the authentication signal from the authenticator 23 is stopped, the autonomous parking control of the own vehicle V is interrupted in step S12, and the own vehicle V is stopped. As a result, in an emergency, the own vehicle V can be stopped quickly by having the cameras C1 to C4 take a picture of the two-dimensional code AP1 without operating the display 31 or the like of the remote controller 3. When the emergency situation is resolved, the autonomous parking control of the own vehicle V is restarted by causing the authenticator 23 to detect the predetermined authentication act by the user U again in step S5.
 また、認証器23は、ステップS13において、ユーザUがカメラC1~C4の撮影範囲及びソナーSN1~SN8の検出範囲外に移動し、ユーザUが追跡できなくなった場合にも制御器21に対する認証信号の出力を停止する。認証器23からの認証信号の出力が停止すると、ステップS12において、自車両Vの自律駐車制御が中断され、自車両Vを停車する。これにより、ユーザUが自車両Vから所定距離以上離れた状態で、自車両Vが自律駐車制御を実行するのを抑制することができる。なお、ユーザUが、ステップS5において、再び所定の認証行為を行った場合には、自車両Vの自律駐車制御が再開される。 Further, in step S13, the authenticator 23 also causes an authentication signal to the controller 21 when the user U moves out of the shooting range of the cameras C1 to C4 and the detection range of the sonars SN1 to SN8 and the user U cannot be tracked. Stops the output of. When the output of the authentication signal from the authenticator 23 is stopped, the autonomous parking control of the own vehicle V is interrupted in step S12, and the own vehicle V is stopped. As a result, it is possible to prevent the own vehicle V from executing the autonomous parking control when the user U is separated from the own vehicle V by a predetermined distance or more. When the user U performs the predetermined authentication action again in step S5, the autonomous parking control of the own vehicle V is restarted.
 認証器23は、自律走行制御の実行中に、ユーザUによる再度の認証行為や、ユーザUの検出範囲外への移動が発生しない場合、認証信号の出力を続けるので、自律駐車制御は継続される(ステップS14)。 If the user U does not perform another authentication or move out of the detection range of the user U during the execution of the autonomous driving control, the authenticator 23 continues to output the authentication signal, so that the autonomous parking control is continued. (Step S14).
 ステップS15にて、ユーザUによる駐車完了の指示があったか否かを判断し、駐車完了していない場合はステップS10へ戻る。ユーザUによる駐車完了の指示があった場合には、ステップS16の駐車完了処理を実行して以上の自律駐車制御を終了する。ステップS16の駐車完了処理では、自車両Vのギヤがパーキングギヤあるいはニュートラルに設定され、パーキングブレーキがかけられる。 In step S15, it is determined whether or not the user U has instructed the parking completion, and if the parking is not completed, the process returns to step S10. When the user U gives an instruction to complete parking, the parking completion process in step S16 is executed to end the above autonomous parking control. In the parking completion process of step S16, the gear of the own vehicle V is set to the parking gear or the neutral, and the parking brake is applied.
 以上のとおり、本実施形態のリモート駐車システム1によれば、走行制御装置2は、車両Vの周囲で検出された認証行為が所定の認証行為であるか否かを判定し、検出された認証行為が所定の認証行為である場合に、認証行為が行われた位置付近にいるユーザUを特定し、車両Vに対する特定したユーザUの相対位置を検知し、相対位置に基づいて自律走行制御を実行する。したがって、所定の認証行為が行なわれた位置を検出することによって車両Vに対するユーザUの相対位置を特定することができるので、車両VのユーザU以外の人物や物体の相対位置で誤った自律走行制御を実行してしまうことがなく、正しいユーザUの相対位置に基づいて自律走行制御が実行できる。 As described above, according to the remote parking system 1 of the present embodiment, the travel control device 2 determines whether or not the authentication act detected around the vehicle V is a predetermined authentication act, and the detected authentication is performed. When the act is a predetermined authentication act, the user U near the position where the authentication act is performed is specified, the relative position of the specified user U with respect to the vehicle V is detected, and autonomous driving control is performed based on the relative position. Run. Therefore, since the relative position of the user U with respect to the vehicle V can be specified by detecting the position where the predetermined authentication act is performed, the erroneous autonomous driving is performed at the relative position of the person or object other than the user U of the vehicle V. Autonomous driving control can be executed based on the correct relative position of the user U without executing the control.
 また、本実施形態のリモート駐車システム1によれば、車両Vに対する特定したユーザUの相対位置が所定距離以上離れた場合、あるいは車両Vに対する特定したユーザUの相対位置が検知できなくなった場合に、車両Vを停止する。したがって、ユーザUが車両Vから離れた位置にいる状態、あるいはユーザUの相対位置が不明な状態で車両Vが自律走行制御を行うのを防ぐことができる。 Further, according to the remote parking system 1 of the present embodiment, when the relative position of the specified user U with respect to the vehicle V is separated by a predetermined distance or more, or when the relative position of the specified user U with respect to the vehicle V cannot be detected. , Stop vehicle V. Therefore, it is possible to prevent the vehicle V from performing autonomous driving control when the user U is at a position away from the vehicle V or when the relative position of the user U is unknown.
 また、本実施形態のリモート駐車システム1によれば、所定の認証行為は、所定の認証パターンを車両Vに搭載された物体検出器211に検出させる行為である。したがって、認証行為に煩雑な操作や作業等を必要としないので、非常に簡単にユーザUの相対位置を検出することができる。 Further, according to the remote parking system 1 of the present embodiment, the predetermined authentication act is an act of causing the object detector 211 mounted on the vehicle V to detect the predetermined authentication pattern. Therefore, since the authentication act does not require complicated operations or operations, the relative position of the user U can be detected very easily.
 また、本実施形態のリモート駐車システム1によれば、所定の認証パターンとして、車両毎に対応付けられた固有の認証パターンを用いるので、異なる車両に対応した認証パターンが誤って利用されるのを未然に防ぐことができる。 Further, according to the remote parking system 1 of the present embodiment, since a unique authentication pattern associated with each vehicle is used as a predetermined authentication pattern, the authentication pattern corresponding to a different vehicle is erroneously used. It can be prevented in advance.
 また、本実施形態のリモート駐車システム1によれば、所定の認証パターンとして、所定の認証画像を用い、特に認証画像として所定の二次元コードPA1を用いるので、認証パターンの誤検出や偽造などを防ぐことができる。 Further, according to the remote parking system 1 of the present embodiment, a predetermined authentication image is used as the predetermined authentication pattern, and in particular, the predetermined two-dimensional code PA1 is used as the authentication image, so that false detection or forgery of the authentication pattern can be detected. Can be prevented.
 また、本実施形態のリモート駐車システム1によれば、所定の認証パターンは、遠隔操作器3のディスプレイ31に表示される。したがって、ユーザUは、遠隔操作器3として利用される携帯端末を所持していれば、自車両Vに自身の初期位置を設定することができ、利便性が向上する。 Further, according to the remote parking system 1 of the present embodiment, the predetermined authentication pattern is displayed on the display 31 of the remote controller 3. Therefore, if the user U has a mobile terminal used as the remote controller 3, he / she can set his / her initial position in the own vehicle V, which improves convenience.
 また、本実施形態のリモート駐車システム1によれば、所定の認証パターンは、遠隔操作器3に所定の操作を行うことにより表示されるので、遠隔操作器3に不用意に認証パターンが表示されるのを防ぐことができる。 Further, according to the remote parking system 1 of the present embodiment, the predetermined authentication pattern is displayed by performing a predetermined operation on the remote controller 3, so that the authentication pattern is carelessly displayed on the remote controller 3. Can be prevented.
 また、本実施形態のリモート駐車システム1によれば、物体検出器211は、車両Vの周囲を撮影する複数のカメラC1~C4を含み、複数のカメラC1~C4のうち、認証行為を撮影したカメラによる撮影位置付近でユーザUを特定するので、ユーザUの相対位置の検出処理が非常に簡単であり、迅速に処理することが可能である。 Further, according to the remote parking system 1 of the present embodiment, the object detector 211 includes a plurality of cameras C1 to C4 for photographing the surroundings of the vehicle V, and photographs the authentication act among the plurality of cameras C1 to C4. Since the user U is specified near the shooting position by the camera, the process of detecting the relative position of the user U is very simple and can be processed quickly.
 また、本実施形態のリモート駐車システム1によれば、検出した認証行為が所定の認証行為である場合に、車両Vを自律走行制御により所定スペースに入庫又は出庫させるので、ユーザUの相対位置の特定から、自律走行制御による入庫又は出庫まで、一連の認証行為によって行うことができ、利便性が向上する。 Further, according to the remote parking system 1 of the present embodiment, when the detected authentication act is a predetermined authentication act, the vehicle V is moved into or out of the predetermined space by autonomous driving control, so that the relative position of the user U is determined. Convenience is improved because it can be performed by a series of authentication actions from identification to warehousing or warehousing by autonomous driving control.
 また、本実施形態のリモート駐車システム1によれば、車両Vの自律走行制御による所定スペースへの入庫又は出庫中に、所定の認証行為が再び検出された場合には、車両Vの自律走行制御による所定スペースへの入庫又は出庫を中断することができるので、複雑な操作や作業を行わなくても、自車両Vを停車させることができる。 Further, according to the remote parking system 1 of the present embodiment, when a predetermined authentication act is detected again during entering or leaving the predetermined space by the autonomous driving control of the vehicle V, the autonomous driving control of the vehicle V is performed. Since it is possible to suspend the entry or exit of the warehousing from the predetermined space, the own vehicle V can be stopped without performing complicated operations or operations.
 上記第1実施形態では、自車両Vでリモート入庫モードを起動し、その後に遠隔操作器3を起動して認証行為を行うように説明したが、遠隔操作器3の操作によって走行制御装置2をリモート入庫モード又はリモート出庫モードに設定し、認証行為を行うようにしてもよい。これによれば、サイドドアが充分に開くほど余裕がない幅狭の駐車スペースから自車両Vを出庫する際に、自車両Vに乗車せずにリモート出庫モードに設定して所定の認証行為を行うことができる。また、上記実施形態では、遠隔操作器3の起動後に所定の認証行為を検出するように説明したが、例えば、車両Vのドアの開閉を検出し、ドアが開閉された場合に、所定の認証行為の検出を開始するようにしてもよい。 In the above first embodiment, it has been described that the remote warehousing mode is activated by the own vehicle V and then the remote controller 3 is activated to perform the authentication act. However, the travel control device 2 is operated by the operation of the remote controller 3. The remote warehousing mode or the remote warehousing mode may be set to perform the authentication act. According to this, when leaving the own vehicle V from a narrow parking space where the side door cannot be sufficiently opened, the remote exit mode is set without getting on the own vehicle V and the predetermined authentication action is performed. It can be carried out. Further, in the above embodiment, it has been described that a predetermined authentication act is detected after the remote controller 3 is activated. However, for example, when the door opening / closing of the vehicle V is detected and the door is opened / closed, the predetermined authentication is performed. The detection of the act may be started.
 また、上記実施形態では、所定の認証パターンとして二次元コードPA1を用いたが、図6に示すように、例えば、ロゴ等の画像AP2や、文字列AP3等を認証パターンとして用いてもよい。このように、所定の認証パターンは、カメラC1~C4によって撮影し、画像解析により判定可能なものであれば、様々な態様のものを用いることができる。 Further, in the above embodiment, the two-dimensional code PA1 is used as the predetermined authentication pattern, but as shown in FIG. 6, for example, an image AP2 such as a logo, a character string AP3, or the like may be used as the authentication pattern. As described above, as the predetermined authentication pattern, various modes can be used as long as they are photographed by the cameras C1 to C4 and can be determined by image analysis.
《第2実施形態》
 次に、本発明の第2実施形態について説明する。図7に示すように、本実施形態に係るリモート駐車システム1Aは、上記の第1実施形態に対し、制御器21が、目標駐車スペース設定器214、車両位置検出器215、駐車経路生成部216及び経路追従制御部217を備えている点と、走行制御器22が操舵角制御部222を備えている点とで異なっている。本実施形態に係るリモート駐車システム1Aは、第1実施形態とは異なり、自車両Vを所定スペースへ車庫入れするための入庫経路、又は自車両Vを所定スペースから車庫出しするための出庫経路を演算し、自車両Vの操舵を制御して自律走行制御を行うように、走行制御器22に走行指令を出力する。なお、第1実施形態と同じ構成については、同じ符号を用いて詳しい説明は省略する。
<< Second Embodiment >>
Next, a second embodiment of the present invention will be described. As shown in FIG. 7, in the remote parking system 1A according to the present embodiment, the controller 21 is the target parking space setting device 214, the vehicle position detector 215, and the parking route generation unit 216 with respect to the first embodiment described above. It is different in that it is provided with the path tracking control unit 217 and that the travel controller 22 is provided with the steering angle control unit 222. Unlike the first embodiment, the remote parking system 1A according to the present embodiment provides a warehousing route for putting the own vehicle V into the garage or a garage route for taking out the own vehicle V from the predetermined space. A travel command is output to the travel controller 22 so as to calculate and control the steering of the own vehicle V to perform autonomous driving control. Regarding the same configuration as that of the first embodiment, the same reference numerals are used and detailed description thereof will be omitted.
 目標駐車スペース設定器214は、リモート入庫モードの際には、自車両Vの周辺に存在する駐車スペースを探索し、駐車可能な駐車スペースの中からユーザUに所望の駐車スペースを選択させ、この駐車スペースの位置情報(自車両の現在位置からの相対的位置座標や、緯度・経度など)を駐車経路生成部216に出力する。また、目標駐車スペース設定器214は、リモート出庫モードの際には、現在駐車している自車両Vの周囲に存在する出庫スペースを探索し、出庫可能な出庫スペースの中からユーザUに所望の出庫スペースを選択させ、この出庫スペースの位置情報(自車両の現在位置からの相対的位置座標や、緯度・経度など)を駐車経路生成部216に出力する。なお、出庫スペースとは、リモート出庫モードの際に、ユーザUが出庫操作を行ったのち、乗車する際の自車両の一時停車位置をいう。 In the remote warehousing mode, the target parking space setting device 214 searches for a parking space existing around the own vehicle V, causes the user U to select a desired parking space from the parking spaces that can be parked, and causes the user U to select a desired parking space. The position information of the parking space (relative position coordinates from the current position of the own vehicle, latitude / longitude, etc.) is output to the parking route generation unit 216. Further, in the remote warehousing mode, the target parking space setting device 214 searches for the warehousing space existing around the own vehicle V that is currently parked, and the user U desires the warehousing space from among the warehousing spaces that can be laid out. The warehousing space is selected, and the position information of the warehousing space (relative position coordinates from the current position of the own vehicle, latitude, longitude, etc.) is output to the parking route generation unit 216. The warehousing space refers to a temporary stop position of the own vehicle when the user U performs a warehousing operation in the remote warehousing mode and then gets on the vehicle.
 目標駐車スペース設定器214は、上述した機能を発揮するために、詳しくは図示しないが、モード選択スイッチ、カメラ、駐車スペース検出部及びタッチパネル型ディスプレイを備える。モード選択スイッチは、リモート入庫モード又はリモート出庫モードを選択して起動させるためのスイッチである。カメラは、自車両の周囲を撮影する複数のカメラであり、例えば、前述の物体検出器211のカメラC1、C2、C3及びC4(図2参照)が兼用される。駐車スペース検出部は、駐車スペースを検出するためのソフトウェアプログラムがインストールされたコンピュータであり、複数のカメラC1~C4により撮影された画像から駐車スペース又は出庫スペースを検出する。また、駐車スペース検出部は、複数のカメラC1~C4により撮影された画像に基づいて、自車両Vの周囲を所定の仮想視点から見下ろした俯瞰画像を生成する。タッチパネル型ディスプレイは、駐車スペース検出部により生成された俯瞰画像を表示するとともに、ユーザUのタッチ操作に応じて、駐車スペース又は出庫スペースの設定を受け付ける。 The target parking space setting device 214 is provided with a mode selection switch, a camera, a parking space detection unit, and a touch panel type display, although not shown in detail, in order to exert the above-mentioned functions. The mode selection switch is a switch for selecting and activating the remote warehousing mode or the remote warehousing mode. The cameras are a plurality of cameras that photograph the surroundings of the own vehicle, and for example, the cameras C1, C2, C3, and C4 (see FIG. 2) of the object detector 211 described above are also used. The parking space detection unit is a computer in which a software program for detecting a parking space is installed, and detects a parking space or a delivery space from images taken by a plurality of cameras C1 to C4. Further, the parking space detection unit generates a bird's-eye view image of the surroundings of the own vehicle V from a predetermined virtual viewpoint based on the images taken by the plurality of cameras C1 to C4. The touch panel type display displays a bird's-eye view image generated by the parking space detection unit, and accepts the setting of the parking space or the leaving space according to the touch operation of the user U.
 目標駐車スペース設定器214は、ユーザUがモード選択スイッチによりリモート入庫モードを選択すると、複数のカメラC1~C4によって撮影された自車両Vの周囲の画像を取得し、駐車可能な駐車スペースを検出する。目標駐車スペース設定器214は、自車両Vの周囲の複数の画像に基づいて、検出した駐車スペースを含む俯瞰画像を生成し、タッチパネル型ディスプレイに表示する。ユーザUが、表示された駐車スペースから所望の駐車スペースを選択すると、目標駐車スペース設定器214は、この駐車スペースの位置情報を駐車経路生成部216に出力する。なお、駐車可能な駐車スペースを検出する場合に、ナビゲーション装置の地図情報に詳細な位置情報を有する駐車場情報が含まれるときは、当該駐車場情報を用いてもよい。 When the user U selects the remote warehousing mode with the mode selection switch, the target parking space setting device 214 acquires an image of the surroundings of the own vehicle V taken by a plurality of cameras C1 to C4 and detects a parking space that can be parked. do. The target parking space setting device 214 generates a bird's-eye view image including the detected parking space based on a plurality of images around the own vehicle V and displays it on the touch panel type display. When the user U selects a desired parking space from the displayed parking spaces, the target parking space setting device 214 outputs the position information of the parking space to the parking route generation unit 216. When detecting a parking space that can be parked, if the map information of the navigation device includes parking lot information having detailed position information, the parking lot information may be used.
 また、目標駐車スペース設定器214は、ユーザUが遠隔操作器3を用いて自車両Vの内燃機関又は駆動用モータを起動し、遠隔操作器3の操作によりリモート出庫モードを選択した場合には、複数のカメラC1~C4によって撮影された自車両Vの周囲の画像を取得し、出庫可能な出庫スペースを検出する。目標駐車スペース設定器214は、検出した出庫スペースを含む俯瞰画像を生成し、遠隔操作器3のタッチパネル型のディスプレイに表示する。ユーザUが、表示された出庫スペースから所望の出庫スペースを選択すると、目標駐車スペース設定器214は、この出庫スペースの位置情報を駐車経路生成部216に出力する。 Further, when the user U activates the internal combustion engine or the drive motor of the own vehicle V by using the remote controller 3 and the remote controller 3 operates the target parking space setting device 214, the remote exit mode is selected. , Acquires images around the own vehicle V taken by a plurality of cameras C1 to C4, and detects a delivery space that can be delivered. The target parking space setting device 214 generates a bird's-eye view image including the detected delivery space and displays it on the touch panel type display of the remote controller 3. When the user U selects a desired shipping space from the displayed shipping space, the target parking space setting device 214 outputs the position information of the shipping space to the parking route generation unit 216.
 車両位置検出器215は、GPSユニット、ジャイロセンサ、および車速センサなどから構成され、GPSユニットにより複数の衛星通信から送信される電波を検出し、自車両Vの位置情報を周期的に取得するとともに、取得した自車両Vの位置情報と、ジャイロセンサから取得した角度変化情報と、車速センサから取得した車速とに基づいて、自車両Vの現在位置を検出する。車両位置検出器215により検出された自車両Vの位置情報は、所定時間間隔で駐車経路生成部216及び経路追従制御部217に出力される。 The vehicle position detector 215 is composed of a GPS unit, a gyro sensor, a vehicle speed sensor, etc., detects radio waves transmitted from a plurality of satellite communications by the GPS unit, and periodically acquires the position information of the own vehicle V. , The current position of the own vehicle V is detected based on the acquired position information of the own vehicle V, the angle change information acquired from the gyro sensor, and the vehicle speed acquired from the vehicle speed sensor. The position information of the own vehicle V detected by the vehicle position detector 215 is output to the parking route generation unit 216 and the route tracking control unit 217 at predetermined time intervals.
 駐車経路生成部216は、予め記憶されている自車両Vの大きさと、目標駐車スペース設定器214から出力された目標駐車位置と、車両位置検出器215から出力された自車両Vの現在位置情報と、物体検出器211から出力された物体情報及びその位置情報とに基づいて、物体(障害物)に衝突又は干渉しない駐車経路を演算する。なお、自車両Vの大きさに関する情報には、車幅、車長及び最小回転半径等が含まれる。また、目標駐車位置は、リモート入庫モードの場合は駐車スペースの位置情報であり、リモート出庫モードの場合は出庫スペースの位置情報である。さらに、駐車経路は、リモート入庫モードの場合は入庫経路であり、リモート出庫モードの場合は出庫経路である。 The parking route generation unit 216 includes the size of the own vehicle V stored in advance, the target parking position output from the target parking space setting device 214, and the current position information of the own vehicle V output from the vehicle position detector 215. And, based on the object information output from the object detector 211 and the position information thereof, the parking route that does not collide with or interfere with the object (obstacle) is calculated. The information regarding the size of the own vehicle V includes the vehicle width, the vehicle length, the minimum turning radius, and the like. Further, the target parking position is the position information of the parking space in the remote warehousing mode, and the position information of the warehousing space in the remote warehousing mode. Further, the parking route is a warehousing route in the remote warehousing mode and a warehousing route in the remote warehousing mode.
 図8A~8Dは、リモート入庫モードの一例を示す平面図である。図8Aに示す自車両Vの現在位置において、ユーザUがモード選択スイッチを操作してリモート入庫モードを選択すると、目標駐車スペース設定器214は、3つの駐車可能な駐車スペースPS1、PS2及びPS3を探索してこれらを含む俯瞰画像をディスプレイに表示する。これに対してユーザUが駐車スペースPS1を選択したとする。この場合、駐車経路生成部216は、図8Aに示す現在位置から、図8B、図8C及び図8Dに示す駐車スペースPS1に至る入庫経路R1,R2を演算する。 8A to 8D are plan views showing an example of the remote warehousing mode. When the user U operates the mode selection switch to select the remote warehousing mode at the current position of the own vehicle V shown in FIG. 8A, the target parking space setting device 214 sets the three parkingable parking spaces PS1, PS2 and PS3. Search and display a bird's-eye view image including these on the display. On the other hand, it is assumed that the user U selects the parking space PS1. In this case, the parking route generation unit 216 calculates the warehousing routes R1 and R2 from the current position shown in FIG. 8A to the parking space PS1 shown in FIGS. 8B, 8C and 8D.
 なお、図8Dに示す駐車位置において、破線で示すように自車両Vの両隣に他車両V3,V4が駐車中であって、ユーザUがドアを開いて乗車し難い場合には、リモート出庫モードにて自車両Vを出庫させることもできる。すなわち、図8Dに示す状態で、ユーザUが遠隔操作器3を用いて自車両Vの内燃機関又は駆動用モータを起動し、遠隔操作器3を操作してリモート出庫モードを選択したとすると、目標駐車スペース設定器214は、たとえば図8Bに示す出庫可能な出庫スペースDS1を探索して遠隔操作器3のディスプレイ31に俯瞰画像を表示する。これに対してユーザUが当該出庫スペースDS1を選択すると、駐車経路生成部216は、図8Dに示す現在位置から、図8C及び図8Bに示す出庫スペースDS1に至る出庫経路を演算する。以上のように、駐車経路生成部216は、リモート入庫モードの場合は、現在位置から駐車スペースに至る入庫経路を演算し、リモート出庫モードの場合は、現在位置から出庫スペースに至る出庫経路を演算する。そして、これらの入庫経路又は出庫経路を経路追従制御部217及び目標車速生成部213に出力する。 In the parking position shown in FIG. 8D, when other vehicles V3 and V4 are parked on both sides of the own vehicle V as shown by the broken line and it is difficult for the user U to open the door and board the vehicle, the remote exit mode is used. You can also get your vehicle V out of the warehouse at. That is, in the state shown in FIG. 8D, assuming that the user U uses the remote controller 3 to activate the internal combustion engine or the drive motor of the own vehicle V and operates the remote controller 3 to select the remote delivery mode. For example, the target parking space setting device 214 searches for the delivery space DS1 that can be delivered as shown in FIG. 8B, and displays a bird's-eye view image on the display 31 of the remote control device 3. On the other hand, when the user U selects the delivery space DS1, the parking route generation unit 216 calculates the delivery route from the current position shown in FIG. 8D to the delivery space DS1 shown in FIGS. 8C and 8B. As described above, the parking route generation unit 216 calculates the warehousing route from the current position to the parking space in the remote warehousing mode, and calculates the warehousing route from the current position to the warehousing space in the remote warehousing mode. do. Then, these warehousing routes or warehousing routes are output to the route tracking control unit 217 and the target vehicle speed generation unit 213.
 経路追従制御部217は、駐車経路生成部216からの入庫経路又は出庫経路と、車両位置検出器215からの自車両Vの現在位置とに基づいて、所定時間間隔で自車両Vを入庫経路又は出庫経路に沿った経路に追従するための目標操舵角を演算する。図8A~図8Dの入庫経路R1,R2についていえば、図8Aに示す現在位置から図8Bに示す切り返し位置まで直進する入庫経路R1の目標操舵角と、図8Bに示す切り返し位置から図8C及び図8Dに示す駐車位置まで左旋回する入庫経路R2の目標操舵角とを、自車両Vの現在位置ごとに所定時間間隔で演算し、操舵角制御部222に出力する。また、経路追従制御部217は、図8A~図8Dに示す一連の自律駐車制御を実行中に、駐車経路の中に不意に障害物を検出した場合には、自車両Vがその障害物を避けて走行するように目標操舵角を修正し、操舵角制御部222に出力する。 The route tracking control unit 217 puts the own vehicle V into the warehousing route or the warehousing route at predetermined time intervals based on the warehousing route or the warehousing route from the parking route generation unit 216 and the current position of the own vehicle V from the vehicle position detector 215. Calculate the target steering angle to follow the route along the delivery route. Regarding the warehousing routes R1 and R2 of FIGS. 8A to 8D, the target steering angle of the warehousing route R1 that goes straight from the current position shown in FIG. 8A to the turning position shown in FIG. The target steering angle of the warehousing path R2 that turns left to the parking position shown in FIG. 8D is calculated for each current position of the own vehicle V at predetermined time intervals and output to the steering angle control unit 222. Further, when the route tracking control unit 217 suddenly detects an obstacle in the parking route while executing the series of autonomous parking controls shown in FIGS. 8A to 8D, the own vehicle V detects the obstacle. The target steering angle is corrected so as to avoid traveling, and the target steering angle is output to the steering angle control unit 222.
 第1実施形態と同様に、本実施形態のリモート駐車システム1Aでは、認証器23により、自車両Vに対するユーザUの相対位置を特定し、ユーザUを追跡することができる。そのため、経路追従制御部217は、駐車経路に沿って走行している際に、ユーザUと、それ以外の障害物とを区別して目標操舵角を修正する。具体的には、図9に示すように、ユーザU以外の障害物、例えば、車両Vがリモート駐車中であることを知らない周囲の人物Pに対しては、余裕を持って第2の接近可能距離L2まで接近するように目標操舵角を修正する。これに対し、リモート駐車を遠隔操作中のユーザUに対しては、第2の接近可能距離L2よりも短い第1の接近可能距離L1まで接近するように目標操舵角を修正する。これにより、ユーザU以外の障害物に対しては、余裕を持って接近を抑制することができる。また、ユーザUに対しては、比較的近くまで接近して駐車経路を走行することができるので、自律駐車制御の制御可能範囲が広くなる。 Similar to the first embodiment, in the remote parking system 1A of the present embodiment, the authenticator 23 can specify the relative position of the user U with respect to the own vehicle V and track the user U. Therefore, the route tracking control unit 217 corrects the target steering angle by distinguishing the user U from other obstacles when traveling along the parking route. Specifically, as shown in FIG. 9, an obstacle other than the user U, for example, a second approach with a margin to a surrounding person P who does not know that the vehicle V is in remote parking. Correct the target steering angle so that it approaches the possible distance L2. On the other hand, for the user U who is remotely controlling the remote parking, the target steering angle is modified so as to approach the first approachable distance L1 which is shorter than the second approachable distance L2. As a result, it is possible to suppress the approach to obstacles other than the user U with a margin. Further, since the user U can travel on the parking route relatively close to the user U, the controllable range of the autonomous parking control is widened.
 操舵角制御部222は、経路追従制御部217からの目標操舵角に基づいて、自車両Vの操舵系システムに設けられた操舵アクチュエータを動作する制御信号を生成する。また、車速制御部221は、目標車速生成部213からの目標車速に基づいて、自車両Vの駆動系システムに設けられたアクセルアクチュエータを動作する制御信号を生成する。これら操舵角制御部222と車速制御部221とを同時に制御することで、自律駐車制御が実行される。 The steering angle control unit 222 generates a control signal for operating the steering actuator provided in the steering system of the own vehicle V based on the target steering angle from the path tracking control unit 217. Further, the vehicle speed control unit 221 generates a control signal for operating the accelerator actuator provided in the drive system of the own vehicle V based on the target vehicle speed from the target vehicle speed generation unit 213. By controlling the steering angle control unit 222 and the vehicle speed control unit 221 at the same time, autonomous parking control is executed.
 次に図10を参照して、本実施形態のリモート駐車システム1Aの制御フローを説明する。図10は、本実施形態のリモート駐車システム1Aで実行される制御手順を示すフローチャートである。ここでは、第1実施形態とは制御内容が異なっている制御ステップについて説明する。 Next, the control flow of the remote parking system 1A of the present embodiment will be described with reference to FIG. FIG. 10 is a flowchart showing a control procedure executed by the remote parking system 1A of the present embodiment. Here, a control step whose control content is different from that of the first embodiment will be described.
 目標駐車スペース設定器214は、ステップS20にて、車載された複数のカメラC1~C4などを用いて自車両Vが駐車可能な駐車スペースを探索する。なお、ステップS20において駐車可能な駐車スペースが検出されない場合は、「駐車スペースがありません」といった言語表示または音声にて操作者に報知し、本処理を終了してもよい。 In step S20, the target parking space setting device 214 searches for a parking space in which the own vehicle V can park using a plurality of on-board cameras C1 to C4 and the like. If the parking space that can be parked is not detected in step S20, the operator may be notified by a language display such as "There is no parking space" or by voice, and this process may be terminated.
 目標駐車スペース設定器214は、ステップS21にて、駐車可能な駐車スペースを車載のディスプレイに表示し、ユーザUに希望する駐車スペースの選択を促し、ユーザUが特定の駐車スペースを選択したら、その目標駐車位置情報を駐車経路生成部216へ出力する。駐車経路生成部216は、ステップS22において、自車両Vの現在位置と目標駐車位置とから、図8B~図8Dに示す駐車経路R1,R2を生成するとともに、物体減速演算部212は、物体検出器211により検出された物体情報に基づいて、自律駐車制御時の減速開始タイミングを演算する。駐車経路生成部216により生成された駐車経路は経路追従制御部217へ出力され、物体減速演算部212により演算された減速開始タイミングは、目標車速生成部213へ出力される。 In step S21, the target parking space setting device 214 displays the parking space that can be parked on the in-vehicle display, prompts the user U to select the desired parking space, and when the user U selects a specific parking space, the parking space is displayed. The target parking position information is output to the parking route generation unit 216. In step S22, the parking route generation unit 216 generates the parking routes R1 and R2 shown in FIGS. 8B to 8D from the current position and the target parking position of the own vehicle V, and the object deceleration calculation unit 212 detects the object. Based on the object information detected by the device 211, the deceleration start timing at the time of autonomous parking control is calculated. The parking route generated by the parking route generation unit 216 is output to the route tracking control unit 217, and the deceleration start timing calculated by the object deceleration calculation unit 212 is output to the target vehicle speed generation unit 213.
 以上により自律駐車制御がスタンバイ状態となるので、ユーザUに自律駐車制御の開始の承諾を促し、ユーザUが開始を承諾することで自律駐車制御が開始される。図8Aに示す後退駐車においては、図8Aに示す現在位置から一旦前進し、図8Bに示す切り返し位置に到着したら、ステップS2にてユーザUの降車を促したのち、図8Cに示すように左に操舵しながら後退し、図8Dに示す駐車スペースPS1まで直進する。なお、ステップS2以降の制御ステップについては、経路追従制御部217及び操舵角制御部222によって自車両Vのステアリングを制御する点以外は第1実施形態と共通するため、詳しい説明は省略する。 Since the autonomous parking control is in the standby state as described above, the user U is urged to consent to the start of the autonomous parking control, and when the user U approves the start, the autonomous parking control is started. In the backward parking shown in FIG. 8A, once the vehicle advances from the current position shown in FIG. 8A and reaches the turning position shown in FIG. 8B, the user U is urged to disembark in step S2, and then left as shown in FIG. 8C. Retreat while steering to, and go straight to the parking space PS1 shown in FIG. 8D. The control steps after step S2 are the same as those in the first embodiment except that the path tracking control unit 217 and the steering angle control unit 222 control the steering of the own vehicle V, and thus detailed description thereof will be omitted.
 ステップS18では、車両位置検出器215の検出結果に基づいて、自車両Vが目標駐車スペースに到着したか否かを判断し、到着していない場合はステップS13へ戻る。自車両Vが目標駐車スペースに到着した場合には、ステップS19の駐車完了処理を実行して以上の自律駐車制御を終了する。 In step S18, it is determined whether or not the own vehicle V has arrived at the target parking space based on the detection result of the vehicle position detector 215, and if not, the process returns to step S13. When the own vehicle V arrives at the target parking space, the parking completion process of step S19 is executed to end the above autonomous parking control.
 以上のとおり、本実施形態のリモート駐車システム1Aによれば、自車両Vの速度制御及び制動制御に加え、操舵制御を同時に行うリモート駐車にも対応することができる。特に、本実施形態のリモート駐車システム1Aによれば、車両Vの自律走行制御による所定スペースへの入庫中又は出庫中に、車両VがユーザUに対して接近可能な第1の接近可能距離L1と、車両VがユーザU以外の障害物に対して接近可能な第2の接近可能距離L2とが異なっているので、ユーザU以外の障害物に対しては、余裕を持って接近を抑制することができる。また、ユーザUに対しては、比較的近くまで接近して駐車経路を走行することができるので、自律駐車制御の制御可能範囲が広くなる。 As described above, according to the remote parking system 1A of the present embodiment, it is possible to support remote parking in which steering control is simultaneously performed in addition to speed control and braking control of the own vehicle V. In particular, according to the remote parking system 1A of the present embodiment, the first approachable distance L1 that the vehicle V can approach the user U while entering or leaving the predetermined space by the autonomous driving control of the vehicle V And the second approachable distance L2 that the vehicle V can approach to the obstacle other than the user U is different, so that the approach to the obstacle other than the user U is suppressed with a margin. be able to. Further, since the user U can travel on the parking route relatively close to the user U, the controllable range of the autonomous parking control is widened.
《第3実施形態》
 次に、本発明の第3実施形態について説明する。本実施形態は、上記の第1実施形態に対し、認証パターンを表示させる機器が異なっている。本実施形態では、例えば、図11A及び図11Bに示すように、自車両Vのドアの施解錠装置を遠隔操作するリモートコントロールキー(以下、電子キーという)4の裏面4Rに、認証用の二次元コードAP1が表示されている。この電子キー4を用いて自車両Vに対して認証行為を行う場合には、ユーザUは、裏面4Rの二次元コードAP1がカメラC1~C4によって撮影されるように電子キー4を保持して、自車両Vに接近する。二次元コードAP1の判定は、第1実施形態と同様の手法によって行われるため、詳しい説明は省略する。
<< Third Embodiment >>
Next, a third embodiment of the present invention will be described. In this embodiment, the device for displaying the authentication pattern is different from that in the first embodiment. In the present embodiment, for example, as shown in FIGS. 11A and 11B, a two for authentication is provided on the back surface 4R of the remote control key (hereinafter referred to as an electronic key) 4 for remotely controlling the door locking / unlocking device of the own vehicle V. The dimension code AP1 is displayed. When performing an authentication act on the own vehicle V using the electronic key 4, the user U holds the electronic key 4 so that the two-dimensional code AP1 on the back surface 4R is photographed by the cameras C1 to C4. , Approaching own vehicle V. Since the determination of the two-dimensional code AP1 is performed by the same method as in the first embodiment, detailed description thereof will be omitted.
 電子キー4に対する認証パターンの表示は、電子キー4にディスプレイを設けて表示してもよいし、電子キー4に認証パターンを直接印字し、あるいは認証パターンを印字したシール等を貼付してもよい。また、認証パターンを表示する機器は電子キー4に限定されず、エンジンの始動を遠隔操作するエンジンスタータ等に表示させてもよい。また、電子キー4等の機器に表示する認証パターンは、二次元コードAP1に限定されず、ロゴ等の画像AP2や、文字列AP3等を用いてもよい。 The authentication pattern may be displayed on the electronic key 4 by providing a display on the electronic key 4, printing the authentication pattern directly on the electronic key 4, or attaching a sticker or the like on which the authentication pattern is printed. .. Further, the device for displaying the authentication pattern is not limited to the electronic key 4, and may be displayed on an engine starter or the like that remotely controls the start of the engine. Further, the authentication pattern displayed on the device such as the electronic key 4 is not limited to the two-dimensional code AP1, and an image AP2 such as a logo, a character string AP3, or the like may be used.
 また、電子キー4を用いた認証行為として、電子キー4によるドアの施錠又は解錠を検出し、ドアの施錠又は解錠された場合に、所定の認証行為が行われたと判定してもよい。このように、電子キー4を所定の認証行為に用いる実施形態によれば、電子キー4はユーザUが車両Vに乗車する際に必ず携帯するので、携帯し忘れることがない。 Further, as an authentication act using the electronic key 4, the door may be locked or unlocked by the electronic key 4, and when the door is locked or unlocked, it may be determined that the predetermined authentication act has been performed. .. As described above, according to the embodiment in which the electronic key 4 is used for a predetermined authentication act, the electronic key 4 is always carried when the user U gets on the vehicle V, so that the electronic key 4 is not forgotten to be carried.
《第4実施形態》
 次に、本発明の第4実施形態について説明する。本実施形態は、上記の第1実施形態に対し、自車両Vに自律走行制御による入庫又は出庫を中断させるタイミングが異なっている。本実施形態では、図12のフローチャートに示すように、ステップS5で所定の認証行為を検出し、この認証行為が検出されている間は、車両Vの自律走行制御による所定スペースへの入庫又は出庫を継続する。そして、ステップS11aにおいて、所定の認証行為が検出されなくなった場合(非検出なった場合)に、車両Vの入庫又は出庫を中断する。これによれば、複雑な操作や作業を行わなくても、自車両Vを停車させることができる。
<< Fourth Embodiment >>
Next, a fourth embodiment of the present invention will be described. In this embodiment, the timing at which the own vehicle V suspends warehousing or warehousing by autonomous driving control is different from that in the first embodiment described above. In the present embodiment, as shown in the flowchart of FIG. 12, a predetermined authentication act is detected in step S5, and while this authentication act is detected, the vehicle V enters or leaves the predetermined space by autonomous driving control. To continue. Then, in step S11a, when the predetermined authentication act is no longer detected (when it is not detected), the warehousing or warehousing of the vehicle V is interrupted. According to this, the own vehicle V can be stopped without performing complicated operations or work.
《第5実施形態》
 次に、本発明の第5実施形態について説明する。本実施形態は、例えば、遠隔操作器3のライトの発光を所定の認証行為として用いている。図13は、所定の認証行為として、遠隔操作器3として用いられる携帯端末のライト32を発光させた状態で、遠隔操作器3を所定の移動量で左右に振る行為を示している。この実施形態によれば、画像解析部231は、カメラC1~C4により撮影された画像から光の移動を認証行為として検出する。認証行為判定部232は、検出した光の移動量と、認証パターン記憶部233に記憶されている光の移動量とが一致するか否かを比較し、一致する場合には、所定の認証行為が行われたと判定する。
<< Fifth Embodiment >>
Next, a fifth embodiment of the present invention will be described. In this embodiment, for example, the light emission of the light of the remote controller 3 is used as a predetermined authentication act. FIG. 13 shows an act of swinging the remote controller 3 to the left or right by a predetermined amount of movement while the light 32 of the mobile terminal used as the remote controller 3 is made to emit light as a predetermined authentication act. According to this embodiment, the image analysis unit 231 detects the movement of light from the images taken by the cameras C1 to C4 as an authentication act. The authentication action determination unit 232 compares whether or not the detected light movement amount and the light movement amount stored in the authentication pattern storage unit 233 match, and if they match, a predetermined authentication action. Is determined to have been performed.
 また、認証器23は、光の移動が継続されている場合、すなわち、遠隔操作器3の移動が継続されている場合に制御器21に対して認証信号の出力を行い、光の移動が止まった場合、すなわち、遠隔操作器3の移動が止まった場合に認証信号の出力を停止する。これにより、遠隔操作器3を振るという認証行為が行われている間だけ、自車両Vに自律駐車制御による入庫又は出庫を実行させることができる。また、光の移動量だけでなく、光の移動速度も認証行為の判定に用いてもよい。 Further, the authenticator 23 outputs an authentication signal to the controller 21 when the movement of the light is continued, that is, when the movement of the remote controller 3 is continued, and the movement of the light is stopped. In other words, when the movement of the remote controller 3 stops, the output of the authentication signal is stopped. As a result, the own vehicle V can be made to enter or leave the vehicle by autonomous parking control only while the authentication act of shaking the remote controller 3 is being performed. Further, not only the amount of movement of light but also the speed of movement of light may be used for determining the authentication act.
 遠隔操作器3を振る移動量又は移動速度は、車両毎に固有のパターンとされている。遠隔操作器3を、車両毎に固有の移動量又は移動速度で振れるようにするために、例えば、遠隔操作器3に予め設けられている加速度センサ又はジャイロセンサ等を用いて、遠隔操作器3の移動量又は移動速度を計測し、この計測した移動量又は移動速度を、遠隔操作器3を振る際の目安として遠隔操作器3のディスプレイ31に表示してもよい。 The movement amount or movement speed of swinging the remote controller 3 is a pattern unique to each vehicle. In order to make the remote controller 3 swing at a movement amount or a movement speed peculiar to each vehicle, for example, using an acceleration sensor or a gyro sensor provided in advance in the remote controller 3, the remote controller 3 is used. The movement amount or movement speed of the remote control device 3 may be measured, and the measured movement amount or movement speed may be displayed on the display 31 of the remote control device 3 as a guide when shaking the remote control device 3.
 また、本実施形態では、遠隔操作器3の発光の移動量又は移動速度を所定の認証行為としたが、ライト32を所定の周期で点滅させ、このライト32の点滅を所定の認証行為としてもよい。ライト32の点滅周期は、車両毎に固有のパターンとされている。なお、ライト32の点滅周期は、点滅を見ている人物に光過敏性発作を引き起こさないような周期にすることが望ましい。ライト32の点滅を所定の認証行為として用いる場合には、ライト32の点滅が車両VのカメラC1~C4によって撮影されているときに、認証器23から制御器21に対して認証信号の出力を行い、ライト32の点滅が隠されてカメラC1~C4によって撮影されなくなった場合に、認証信号の出力を停止する。これによれば、複雑な操作や作業を行わなくても、自車両Vを停車させることができる。 Further, in the present embodiment, the moving amount or moving speed of the light emission of the remote controller 3 is set as a predetermined authentication act, but the light 32 may be blinked at a predetermined cycle, and the blinking of the light 32 may be set as a predetermined authentication act. good. The blinking cycle of the light 32 is a pattern unique to each vehicle. It is desirable that the blinking cycle of the light 32 is a cycle that does not cause a photosensitive epilepsy in the person who is watching the blinking. When the blinking of the light 32 is used as a predetermined authentication act, the authentication signal is output from the authenticator 23 to the controller 21 when the blinking of the light 32 is photographed by the cameras C1 to C4 of the vehicle V. When the blinking of the light 32 is hidden and the cameras C1 to C4 do not take a picture, the output of the authentication signal is stopped. According to this, the own vehicle V can be stopped without performing complicated operations or work.
 1…リモート駐車システム
 2…走行制御装置(コントローラ)
  21…制御器
   211…物体検出器
   212…物体減速演算部
   213…目標車速生成部
   214…目標駐車スペース設定器
   215…車両位置検出器
   216…駐車経路生成部
   217…経路追従制御部
  22…走行制御器
   221…車速制御部
   222…操舵角制御部
  23…認証器
   231…画像解析部
   232…認証行為判定部
   233…認証パターン記憶部
   234…初期位置設定部
   235…追跡部
 3…遠隔操作器
 4…電子キー
  31…ディスプレイ
  32…ライト
 C1~C4…カメラ
 SN1~SN8…ソナー
 AP1…二次元コード
1 ... Remote parking system 2 ... Driving control device (controller)
21 ... Controller 211 ... Object detector 212 ... Object deceleration calculation unit 213 ... Target vehicle speed generator 214 ... Target parking space setting device 215 ... Vehicle position detector 216 ... Parking route generator 217 ... Path tracking control unit 22 ... Travel control Device 221 ... Vehicle speed control unit 222 ... Steering angle control unit 23 ... Authenticator 231 ... Image analysis unit 232 ... Authentication action judgment unit 233 ... Authentication pattern storage unit 234 ... Initial position setting unit 235 ... Tracking unit 3 ... Remote controller 4 ... Electronic key 31 ... Display 32 ... Light C1 to C4 ... Camera SN1 to SN8 ... Sonar AP1 ... Two-dimensional code

Claims (18)

  1.  自律走行制御機能を備えた車両の外のユーザによる遠隔操作により、自律走行制御を実行するコントローラの車両走行制御方法において、
     前記コントローラは、前記車両の周囲で検出された認証行為が所定の認証行為であるか否かを判定し、
     検出された前記認証行為が前記所定の認証行為である場合に、前記認証行為が行われた位置付近にいるユーザを特定し、
     前記車両に対する前記特定したユーザの相対位置を検知し、
     前記相対位置に基づいて自律走行制御を実行する車両走行制御方法。
    In the vehicle driving control method of a controller that executes autonomous driving control by remote control by a user outside the vehicle having an autonomous driving control function.
    The controller determines whether or not the authentication act detected around the vehicle is a predetermined authentication act.
    When the detected authentication act is the predetermined authentication act, the user who is in the vicinity of the position where the authentication act is performed is identified.
    Detecting the relative position of the specified user with respect to the vehicle,
    A vehicle driving control method that executes autonomous driving control based on the relative position.
  2.  前記車両に対する前記特定したユーザの相対位置が所定距離以上離れた場合、あるいは前記車両に対する前記特定したユーザの相対位置が検知できなくなった場合に、前記車両を停止する自律走行制御を実行する請求項1に記載の車両走行制御方法。 A claim for executing autonomous driving control to stop the vehicle when the relative position of the specified user with respect to the vehicle is separated by a predetermined distance or more, or when the relative position of the specified user with respect to the vehicle cannot be detected. The vehicle running control method according to 1.
  3.  前記車両の自律走行制御中に、前記車両が前記ユーザに対して接近可能な第1の接近可能距離と、前記車両が前記ユーザ以外の障害物に対して接近可能な第2の接近可能距離とが異なっている請求項1又は2に記載の車両走行制御方法。 During the autonomous driving control of the vehicle, a first approachable distance that the vehicle can approach the user and a second approachable distance that the vehicle can approach an obstacle other than the user. The vehicle traveling control method according to claim 1 or 2, wherein the vehicle travel control method is different.
  4.  前記所定の認証行為は、所定の認証パターンを前記車両に搭載された検出器に検出させる行為である請求項1~3のいずれか1項に記載の車両走行制御方法。 The vehicle running control method according to any one of claims 1 to 3, wherein the predetermined authentication act is an act of causing a detector mounted on the vehicle to detect a predetermined authentication pattern.
  5.  前記所定の認証パターンは、車両毎に対応付けられた固有の認証パターンである請求項4に記載の車両走行制御方法。 The vehicle running control method according to claim 4, wherein the predetermined authentication pattern is a unique authentication pattern associated with each vehicle.
  6.  前記所定の認証パターンは、所定の認証画像である請求項4又は5に記載の車両走行制御方法。 The vehicle running control method according to claim 4 or 5, wherein the predetermined authentication pattern is a predetermined authentication image.
  7.  前記所定の認証画像は、所定の二次元コードである請求項6に記載の車両走行制御方法。 The vehicle running control method according to claim 6, wherein the predetermined authentication image is a predetermined two-dimensional code.
  8.  前記所定の認証パターンは、遠隔操作器の画面に表示される請求項4~7のいずれか1項に記載の車両走行制御方法。 The vehicle running control method according to any one of claims 4 to 7, wherein the predetermined authentication pattern is displayed on the screen of the remote controller.
  9.  前記所定の認証パターンは、遠隔操作器の発光によって表示される請求項4又は5に記載の車両走行制御方法。 The vehicle running control method according to claim 4 or 5, wherein the predetermined authentication pattern is displayed by light emission of a remote controller.
  10.  前記所定の認証行為は、発光によって前記所定の認証パターンを表示している前記遠隔操作器を移動させる行為を含む請求項9に記載の車両走行制御方法。 The vehicle travel control method according to claim 9, wherein the predetermined authentication act includes an act of moving the remote controller displaying the predetermined authentication pattern by light emission.
  11.  前記所定の認証パターンは、前記遠隔操作器に所定の操作を行うことにより表示される請求項8~10のいずれか1項に記載の車両走行制御方法。 The vehicle traveling control method according to any one of claims 8 to 10, wherein the predetermined authentication pattern is displayed by performing a predetermined operation on the remote controller.
  12.  前記検出器は、前記車両の周囲を撮影する複数のカメラを含み、
     前記複数のカメラのうち、前記認証行為を撮影したカメラによる撮影位置付近で前記ユーザを特定する請求項4~11のいずれか1項に記載の車両走行制御方法。
    The detector includes a plurality of cameras that capture the surroundings of the vehicle.
    The vehicle travel control method according to any one of claims 4 to 11, wherein among the plurality of cameras, the user is specified in the vicinity of a shooting position by the camera that has shot the authentication act.
  13.  検出した前記認証行為が前記所定の認証行為である場合には、前記車両を自律走行制御により所定スペースに入庫又は出庫させる請求項1~12のいずれか1項に記載の車両走行制御方法。 The vehicle travel control method according to any one of claims 1 to 12, wherein when the detected authentication act is the predetermined authentication act, the vehicle is warehousing or leaving the predetermined space by autonomous driving control.
  14.  前記所定の認証行為が検出されている間は、前記車両の自律走行制御による所定スペースへの入庫又は出庫を継続し、前記所定の認証行為が検出されなくなった場合には、前記車両の自律走行制御による所定スペースへの入庫又は出庫を中断する請求項13に記載の車両走行制御方法。 While the predetermined authentication act is detected, the vehicle continues to enter or leave the predetermined space by the autonomous driving control of the vehicle, and when the predetermined authentication act is no longer detected, the vehicle autonomously travels. The vehicle traveling control method according to claim 13, wherein the warehousing or warehousing in a predetermined space by control is interrupted.
  15.  前記車両の自律走行制御による所定スペースへの入庫又は出庫中に、前記所定の認証行為が再び検出された場合には、前記車両の自律走行制御による所定スペースへの入庫又は出庫を中断する請求項13に記載の車両走行制御方法。 Claim to suspend the warehousing or warehousing in the predetermined space by the autonomous driving control of the vehicle when the predetermined authentication act is detected again during the warehousing or warehousing in the predetermined space by the autonomous driving control of the vehicle. 13. The vehicle traveling control method according to 13.
  16.  前記所定の認証行為は、前記車両のドアの施解錠装置をリモートコントロールキーにより操作する行為である請求項1に記載の車両走行制御方法。 The vehicle running control method according to claim 1, wherein the predetermined authentication act is an act of operating the door locking / unlocking device of the vehicle with a remote control key.
  17.  前記車両のドアの開閉を検出し、前記ドアが開閉された場合に前記認証行為の検出を開始する請求項1~16のいずれか1項に記載の車両走行制御方法。 The vehicle traveling control method according to any one of claims 1 to 16, which detects the opening / closing of the door of the vehicle and starts the detection of the authentication act when the door is opened / closed.
  18.  自律走行制御機能を備えた車両の外のユーザによる遠隔操作により、自律走行制御を実行する車両走行制御装置において、
     前記車両に搭載され、前記車両の周囲の物体情報を検出する物体検出器と、
     前記物体情報により、前記車両の周囲で行われた認証行為を検出し、検出した前記認証行為が、所定の認証行為であるか否かを判定する認証器と、を備え、
     検出された前記認証行為が前記所定の認証行為である場合に、前記認証行為が行われた位置付近にいるユーザを特定し、前記車両に対する前記特定したユーザの相対位置を検知し、前記相対位置に基づいて自律走行制御を実行する車両走行制御装置。
    In a vehicle driving control device that executes autonomous driving control by remote control by a user outside the vehicle equipped with an autonomous driving control function.
    An object detector mounted on the vehicle and detecting object information around the vehicle,
    It is provided with an authenticator that detects an authentication act performed around the vehicle based on the object information and determines whether or not the detected authentication act is a predetermined authentication act.
    When the detected authentication act is the predetermined authentication act, a user near the position where the authentication act is performed is specified, the relative position of the specified user with respect to the vehicle is detected, and the relative position is detected. A vehicle driving control device that executes autonomous driving control based on.
PCT/JP2020/017669 2020-04-24 2020-04-24 Vehicle travel control method and vehicle travel control device WO2021214974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017669 WO2021214974A1 (en) 2020-04-24 2020-04-24 Vehicle travel control method and vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017669 WO2021214974A1 (en) 2020-04-24 2020-04-24 Vehicle travel control method and vehicle travel control device

Publications (1)

Publication Number Publication Date
WO2021214974A1 true WO2021214974A1 (en) 2021-10-28

Family

ID=78270686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017669 WO2021214974A1 (en) 2020-04-24 2020-04-24 Vehicle travel control method and vehicle travel control device

Country Status (1)

Country Link
WO (1) WO2021214974A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089733A (en) * 2013-11-06 2015-05-11 トヨタ自動車株式会社 Parking support system
JP2019505059A (en) * 2015-11-04 2019-02-21 ズークス インコーポレイテッド Dispatch of autonomous vehicles and coordination of maintenance management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089733A (en) * 2013-11-06 2015-05-11 トヨタ自動車株式会社 Parking support system
JP2019505059A (en) * 2015-11-04 2019-02-21 ズークス インコーポレイテッド Dispatch of autonomous vehicles and coordination of maintenance management

Similar Documents

Publication Publication Date Title
US11377099B2 (en) Parking assist system
US11479238B2 (en) Parking assist system
JP7110393B2 (en) VEHICLE DRIVING CONTROL METHOD AND VEHICLE DRIVING CONTROL DEVICE
US11305757B2 (en) Vehicle travel control method and vehicle travel control device
JP2021195080A (en) On-vehicle device, and control method
US11364933B2 (en) Vehicle control system
JP7276471B2 (en) Vehicle remote control method and vehicle remote control device
US11586224B2 (en) Vehicle control apparatus, vehicle, operation method for vehicle control apparatus, and storage medium
CN112977426B (en) Parking assist system
CN111746508B (en) Vehicle control system
US11327479B2 (en) Vehicle control system
JP7271571B2 (en) Vehicle travel control method and vehicle travel control device during parking
WO2021214974A1 (en) Vehicle travel control method and vehicle travel control device
US11414070B2 (en) Parking assist system
JP7206103B2 (en) VEHICLE DRIVING CONTROL METHOD AND VEHICLE DRIVING CONTROL DEVICE
JP7278760B2 (en) Vehicle travel control method and vehicle travel control device during parking
US20240140470A1 (en) Control device, control method, and storage medium
JP7184948B2 (en) remote control system
US11623521B2 (en) Parking assist system
US20230311917A1 (en) Control device, control method, and computer-readable recording medium
RU2795171C1 (en) Method and device for remote control of vehicle
US20240042990A1 (en) Control device, control method, and storage medium storing control program
US20210179084A1 (en) Parking assist system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP