WO2021213267A1 - 混合自动重传应答消息传输资源的确定方法、装置及设备 - Google Patents

混合自动重传应答消息传输资源的确定方法、装置及设备 Download PDF

Info

Publication number
WO2021213267A1
WO2021213267A1 PCT/CN2021/087745 CN2021087745W WO2021213267A1 WO 2021213267 A1 WO2021213267 A1 WO 2021213267A1 CN 2021087745 W CN2021087745 W CN 2021087745W WO 2021213267 A1 WO2021213267 A1 WO 2021213267A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
sps pdsch
pdsch
harq
ack
Prior art date
Application number
PCT/CN2021/087745
Other languages
English (en)
French (fr)
Inventor
高雪娟
司倩倩
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021213267A1 publication Critical patent/WO2021213267A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method, device and equipment for determining transmission resources of a hybrid automatic repeat response message.
  • a new air interface (New Radio, NR) system, to support semi-persistent scheduling (Semi-Persistent Scheduling, SPS) physical downlink shared channel (Physical Downlink Shared CHannel, PDSCH) transmission, and supports Multiple SPS configurations are configured on one carrier, and the minimum period of one SPS configuration can be 1 ms.
  • SPS transmission is configured, high-level signaling will configure the radio network temporary identity (RNTI) corresponding to SPS accordingly; such as Configured Scheduling-RNTI (CS-RNTI) for scrambling
  • RNTI radio network temporary identity
  • CS-RNTI Configured Scheduling-RNTI
  • the higher layer signaling will also configure the transmission period of the SPS PDSCH accordingly.
  • the base station can activate an SPS configuration by sending a PDCCH indicating SPS activation.
  • the PDCCH indicating SPS activation can notify the scheduling information of this SPS (including time domain, frequency domain resources, modulation and coding schemes) (Modulation and coding scheme, MCS) and other information), the terminal can determine the periodic SPS transmission opportunity according to the PDCCH indicating SPS activation and the SPS cycle pre-configured by higher-layer signaling, and perform SPS in each periodic SPS transmission opportunity Transmission (base station transmission, terminal reception).
  • the base station can send a PDCCH (also known as SPS PDSCH release) indicating the release of downlink SPS resources, thereby indicating the release of resources for a certain SPS configuration, where it indicates the release of downlink SPS resources
  • PDCCH also known as SPS PDSCH release
  • the PDCCH can indicate only one SPS configuration for resource release at a time, or it can indicate multiple SPS configurations for resource release at the same time.
  • 5G NR supports flexible timing relationships.
  • PDSCH ie dynamic PDCSH
  • the physical downlink control channel carrying its scheduling information indicates the scheduling timing relationship between PDSCH and PDCCH (Scheduling timing) and PDSCH to The corresponding hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback timing relationship (HARQ-ACK timing).
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • the time domain resource assignment indication field (Time Domain Resource Assignment, TDRA) in the downlink control information (Downlink Control Information, DCI) format used by the PDCCH indicates the time slot offset K0 between the time slot where the PDSCH is located and the time slot where the DCI is located. (I.e. scheduling timing relationship);
  • the PDSCH to HARQ-ACK feedback timing indication field in the DCI format indicates the number of time slots K1 between PDSCH and HARQ-ACK (i.e., feedback timing relationship), as shown in FIG. 1.
  • DCI formats for scheduling PDSCH there are two DCI formats for scheduling PDSCH, one is a fallback DCI format (such as DCI format 1_0), and the other is a non-fallback DCI format (such as DCI format 1_1, 1_2, etc.).
  • the K1 set corresponding to fallback DCI is fixed to ⁇ 1,2,3,4,5,6,7,8 ⁇
  • the K1 set corresponding to non-fallback DCI format is the largest K1 set defined in the system (0-16
  • the maximum 8 values selected in the integer value of) must contain at least the values in ⁇ 0,1,2,3,4,5,6,7 ⁇ .
  • K1 can indicate a value to the terminal through the 3-bit HARQ-ACK time indicator field in the DCI, so the value can be dynamically changed.
  • the PDCCH indicating the release of downlink SPS resources also needs to be fed back by HARQ-ACK, and its feedback timing can also be indicated by the PDSCH to HARQ-ACK feedback timing indication field in the PDCCH.
  • its K1 value can also be indicated by the PDSCH to HARQ-ACK feedback timing indicator field in the PDCCH that indicates SPS activation, and this K1 value is used to determine the HARQ-ACK feedback for each subsequent periodic SPS transmission. Location.
  • a fallback DCI always contains a 3-bit PDSCH to HARQ-ACK feedback timing indicator field, which is used to indicate a K1 value in a positive integer with a value of 1-8. Whether a non-fallback DCI contains the PDSCH to HARQ-ACK feedback timing indication field depends on the high-level signaling pre-configured several candidate K1 values for the terminal. When only one K1 value is configured, the DCI does not include the PDSCH to HARQ-ACK feedback timing indicator field, and the terminal uses this K1 value to fix the PDSCH, SPS PDSCH, and PDCCH that indicate the release of downlink SPS resources that require HARQ-ACK feedback.
  • the DCI contains Bits PDSCH to HARQ-ACK feedback timing indication field indicate the HARQ-ACK time of the PDSCH (including the activated SPS PDSCH) or the PDCCH that indicates the release of downlink SPS resources.
  • the HARQ-ACK feedback is transmitted in time slot n+K1, where the time slots here are all referenced to the Physical Uplink Control Channel (Physical Uplink Control CHannel).
  • PUCCH Physical Uplink Control Channel
  • SCS subcarrier Spacing
  • the 5G NR system supports two HARQ-ACK codebook generation methods, semi-static and dynamic.
  • the so-called HARQ-ACK codebook refers to the HARQ-ACK generated for downlink transmission (including PDSCH and PDCCH indicating the release of downlink SPS resources) in the same time domain location (such as a time slot or sub-slot) or on the same PUCCH.
  • ACK feedback sequence refers to the HARQ-ACK generated for downlink transmission (including PDSCH and PDCCH indicating the release of downlink SPS resources) in the same time domain location (such as a time slot or sub-slot) or on the same PUCCH.
  • the semi-static codebook can determine the HARQ-ACK feedback downlink transmission in the same time slot (slot) or sub-slot (sub-slot) n on each carrier c according to the value of the HARQ-ACK timer in the K1 set
  • the position set Mc can also be referred to as the candidate PDSCH position set
  • the HARQ-ACK codebook transmitted in the time slot or sub-slot n can be determined according to Mc.
  • the corresponding time slot for HARQ-ACK feedback in the time slot or sub-slot n is determined according to each K1 value, and in each of these time slots, the pre-configured downlink time domain resource allocation is further performed.
  • each SLIV provides a start symbol and transmission length for downlink transmission
  • TDM time division multiplexing
  • uplink symbols for example, when both are downlink and/or flexible (Flexible) symbols, it means that the downlink transmission corresponding to the SLIV can exist in the time slot. If there is overlap between SLIVs, only the overlapped SLIVs One SLIV will be selected to schedule a downlink transmission, while other SLIVs are not available.
  • all SLIVs in the TDRA table can be divided into multiple SLIV groups, and each SLIV group considers that there is a downlink transmission, so as to determine The maximum number of downlink transmissions of TDM transmission that may exist in a time slot, and so on, determine each of the multiple slots corresponding to HARQ-ACK feedback in time slot or sub-slot n according to K1.
  • the downlink transmission format in a slot, the total number of downlink transmissions in multiple slots is taken as Mc, and the semi-static HARQ-ACK codebook transmitted in the time slot or sub-slot n is determined according to Mc, including the codebook The size and specific content and sequence of HARQ-ACK.
  • the HARQ-ACK of the SPS PDSCH under different SPS configurations can be multiplexed and transmitted on the same PUCCH.
  • different SPS configurations have different cycles and specific resource allocations, it may cause that in some time slots, there are multiple SPS configurations corresponding to SPS PDSCH.
  • SPS configured for repeated transmission overlaps with other SPS, there is no clear method for how to perform the HARQ-ACK feedback of the repeated transmission SPS.
  • the embodiments of the present disclosure provide a method, device and equipment for determining the transmission resource of a hybrid automatic retransmission response message.
  • the SPS is configured for repeated transmission
  • HARQ-ACK feedback of the repeated transmission SPS can be performed.
  • a method for determining transmission resources of a hybrid automatic retransmission response message is applied to a terminal or a network device, and the method includes:
  • the target SPS PDSCH is in K repeated transmissions
  • the target SPS PDSCH determine the time unit where the HARQ-ACK transmission of the hybrid automatic repeat response HARQ-ACK of the repeated SPS PDSCH is transmitted, and the time unit is a predetermined A symbol, or a time slot, or a sub-time Gap, A is a positive integer.
  • the method for determining the transmission resource of the hybrid automatic retransmission response message may further include:
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is transmitted in the time unit.
  • the SPS PDSCH corresponding to the SPS configuration index j is an SPS PDSCH that meets at least one of the following conditions:
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH;
  • SPS PDSCH to be received determined according to the unicast PDSCH receiving capability of the terminal.
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH is a candidate SPS PDSCH, and the candidate SPS PDSCH is obtained in the following manner:
  • Step 1 Use all SPS PDSCHs in a time slot as a set Q, and find the SPS PDSCH corresponding to the smallest SPS configuration index in the set as the candidate SPS PDSCH;
  • Step 2 Remove the SPS PDSCH and the candidate SPS PDSCH that overlap the candidate SPS PDSCH in the time domain from the set to obtain an updated set Q';
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPS PDSCHs in the set Q are obtained.
  • determining the SPS PDSCH to be received according to the unicast PDSCH receiving capability of the terminal includes:
  • the SPS PDSCH corresponding to the lowest SPS configuration index in the current time slot is used as the SPS PDSCH to be received;
  • the terminal When the terminal supports the reception of more than one unicast PDSCH in a time slot, the following method is used to determine the SPS PDSCH to be received:
  • N SPS PDSCH as the SPS PDSCH to be received according to the SPS configuration index from low to high in the current time slot, where N is the unicast PDSCH that the terminal can receive in one time slot.
  • N SPS PDSCHs as the SPS PDSCH to be received according to the SPS configuration index from low to high, where N is The number of unicast PDSCHs that the terminal can receive in a time slot;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPSs in the set Q are obtained PDSCH; among the candidate SPS PDSCHs, in the order of SPS configuration index from low to high, N SPS PDSCHs are selected as the SPS PDSCHs to be received;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty or judge the cumulative selected candidate SPS PDSCH When the number of is N, the judgment ends, and the cumulatively selected N candidate SPS PDSCHs are used as the SPS PDSCHs to be received.
  • the HARQ-ACK of the repeated transmission of the SPS PDSCH is the HARQ-ACK obtained after the combination of the repeated transmission of the SPS PDSCH up to the target SPS PDSCH in K repeated transmissions.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • HARQ-ACK position is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK determined according to the SPS configuration index corresponding to the target SPS PDSCH.
  • the multiple HARQ-ACK positions corresponding to the time slot are arranged in ascending order or descending order according to the SPS configuration index corresponding to the multiple SPS PDSCHs in the time slot.
  • the method for determining the transmission resource of the hybrid automatic retransmission response message further includes:
  • HARQ-ACK feedback is not performed.
  • determining a target SPS PDSCH in the SPS PDSCH repeated transmission includes at least one of the following:
  • the corresponding semi-persistent scheduling SPS configuration index i The semi-persistent scheduling physical downlink shared channel SPS PDSCH is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the configuration The semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i for repeated transmission is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the HARQ-ACK corresponding to SPS PDSCH is the same as the corresponding DCI scheduling with downlink control information.
  • the SPS PDSCH is determined A target SPS PDSCH in repeated transmission.
  • the embodiment of the present disclosure also provides a communication device, including: a transceiver, a processor, a memory, and a program executable by the processor is stored in the memory; when the processor executes the program, it is implemented:
  • the semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i for repeated transmission is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined, and the target SPS PDSCH is the last of the K repeated transmissions SPS PDSCH that does not overlap in time domain with SPS PDSCH corresponding to SPS configuration index j at one time, where j is less than i;
  • the target SPS PDSCH determine the time unit where the HARQ-ACK transmission of the hybrid automatic repeat response HARQ-ACK of the repeated SPS PDSCH is transmitted, and the time unit is a predetermined A symbol, or a time slot, or a sub-time Gap, A is a positive integer.
  • the transceiver is further configured to transmit the HARQ-ACK of the repeatedly transmitted SPS PDSCH in the time unit.
  • the SPS PDSCH corresponding to the SPS configuration index j is an SPS PDSCH that meets at least one of the following conditions:
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH;
  • SPS PDSCH to be received determined according to the unicast PDSCH receiving capability of the terminal.
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH is a candidate SPS PDSCH, and the candidate SPS PDSCH is obtained in the following manner:
  • Step 1 Use all SPS PDSCHs in a time slot as a set Q, and find the SPS PDSCH corresponding to the smallest SPS configuration index in the set as the candidate SPS PDSCH;
  • Step 2 Remove the SPS PDSCH and the candidate SPS PDSCH that overlap the candidate SPS PDSCH in the time domain from the set to obtain an updated set Q';
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPS PDSCHs in the set Q are obtained.
  • determining the SPS PDSCH to be received according to the unicast PDSCH receiving capability of the terminal includes:
  • the SPS PDSCH corresponding to the lowest SPS configuration index in the current time slot is used as the SPS PDSCH to be received;
  • the terminal When the terminal supports the reception of more than one unicast PDSCH in a time slot, the following method is used to determine the SPS PDSCH to be received:
  • N SPS PDSCH as the SPS PDSCH to be received according to the SPS configuration index from low to high in the current time slot, where N is the unicast PDSCH that the terminal can receive in one time slot.
  • N SPS PDSCHs as the SPS PDSCH to be received according to the SPS configuration index from low to high, where N is The number of unicast PDSCHs that the terminal can receive in a time slot;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPSs in the set Q are obtained PDSCH; among the candidate SPS PDSCHs, according to the SPS configuration index from low to high, select N SPS PDSCHs as the SPS PDSCHs to be received;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty or judge the cumulative selected candidate SPS PDSCH When the number of is N, the judgment ends, and the cumulatively selected N candidate SPS PDSCHs are used as the SPS PDSCHs to be received.
  • the HARQ-ACK of the repeated transmission of the SPS PDSCH is the HARQ-ACK obtained after the combination of the repeated transmission of the SPS PDSCH up to the target SPS PDSCH in K repeated transmissions.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • HARQ-ACK position is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK determined according to the SPS configuration index corresponding to the target SPS PDSCH.
  • the multiple HARQ-ACK positions corresponding to the time slot are arranged in ascending order or descending order according to the SPS configuration index corresponding to the multiple SPS PDSCHs in the time slot.
  • the processor is further configured to not perform HARQ-ACK feedback for the SPS PDSCH that is not the target SPS PDSCH among the repeatedly transmitted SPS PDSCH.
  • determining a target SPS PDSCH in the SPS PDSCH repeated transmission includes at least one of the following:
  • the corresponding semi-persistent scheduling SPS configuration index i The semi-persistent scheduling physical downlink shared channel SPS PDSCH is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the configuration The semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i for repeated transmission is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the HARQ-ACK corresponding to SPS PDSCH is the same as the corresponding DCI scheduling with downlink control information
  • the SPS PDSCH is determined A target SPS PDSCH in repeated transmission.
  • the embodiment of the present disclosure also provides a device for determining transmission resources of a hybrid automatic repeat response message, which is applied to a terminal or a network device, and the device includes:
  • the determining module is used to determine a target SPS PDSCH in the SPS PDSCH repeated transmission for the semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i configured with repeated transmission, where the target SPS PDSCH is The last of the K repeated transmissions does not have an SPS PDSCH overlapping in the time domain with the SPS PDSCH corresponding to the SPS configuration index j, where j is less than i;
  • the processing module is configured to determine, according to the target SPS PDSCH, the time unit where the hybrid automatic repeat response HARQ-ACK of the repeated transmission of the SPS PDSCH is transmitted, where the time unit is a predetermined A symbol or a time slot, Or it is a sub-slot, and A is a positive integer.
  • the embodiments of the present disclosure also provide a processor-readable storage medium, the processor-readable storage medium stores processor-executable instructions, and the processor-executable instructions are used to cause the processor to execute the aforementioned Method for determining the transmission resource of the hybrid automatic retransmission response message.
  • a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined by using the semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i configured with repeated transmissions.
  • the target SPS PDSCH is the SPS PDSCH that does not overlap in the time domain with the SPS PDSCH of the corresponding SPS configuration index j in the last of K repeated transmissions, and the j is less than i; according to the target SPS PDSCH, the SPS PDSCH of the repeated transmission is determined
  • the time unit of the HARQ-ACK transmission of the hybrid automatic repeat response thus, the HARQ-ACK feedback of the repeated transmission SPS can be performed when the SPS configured for repeated transmission overlaps with other SPS.
  • Figure 1 is a schematic diagram of the feedback timing relationship between PDSCH and HARQ-ACK
  • FIG. 2 is a schematic flowchart of a method for determining transmission resources of a hybrid automatic retransmission response message according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a specific scheme of a method for determining transmission resources of a hybrid automatic retransmission response message according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another specific solution of the method for determining transmission resources of a hybrid automatic repeat response message according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of another specific solution of a method for determining transmission resources of a hybrid automatic retransmission response message according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram of the architecture of a communication device according to an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the module structure of an apparatus for determining transmission resources of a hybrid automatic repeat response message according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure is a method for determining transmission resources of a hybrid automatic repeat response message, which is applied to a terminal or a network device, and the method includes:
  • Step 21 For the semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i configured with repeated transmission, determine a target SPS PDSCH in the repeated transmission of the SPS PDSCH, and the target SPS PDSCH is K times The last time in the repeated transmission does not have an SPS PDSCH overlapping in the time domain with the SPS PDSCH corresponding to the SPS configuration index j, where j is less than i;
  • Step 22 According to the target SPS PDSCH, determine the time unit of the HARQ-ACK transmission of the hybrid automatic repeat response HARQ-ACK of the repeatedly transmitted SPS PDSCH, and the time unit is a predetermined A symbol, or a time slot, or A sub-slot, A is a positive integer.
  • the method for determining the transmission resource of the hybrid automatic repeat response message may further include:
  • Step 23 Transmit the HARQ-ACK of the repeatedly transmitted SPS PDSCH in the time unit.
  • the terminal sends the HARQ-ACK of the repeatedly transmitted SPS PDSCH in the time unit;
  • the network device receives the HARQ-ACK of the repeatedly transmitted SPS PDSCH in the time unit.
  • the SPS PDSCH configured with the corresponding SPS configuration index i for repeated transmission it is determined according to the SPS PDSCH that does not overlap in the time domain with the SPS PDSCH of the corresponding SPS configuration index j in the last of K repeated transmissions.
  • OFDM Orthogonal Frequency Division Multiplex
  • the SPS PDSCH corresponding to the SPS configuration index j is an SPS PDSCH that satisfies at least one of the following conditions:
  • the SPS PDSCH to be received determined according to the unicast PDSCH receiving capability of the terminal.
  • the SPS PDSCH that needs to be received determined in the overlapping SPS PDSCH is the candidate SPS PDSCH, and the candidate SPS PDSCH is obtained in the following manner (the following method is only an example, and other pre-defined overlapping SPS PDSCHs are not excluded.
  • the SPS PDSCH that needs to be received is determined in the method. It needs to be clear here that if there is overlap between SPS, the SPS PDSCH corresponding to the SPS configuration index j is not any SPS, but is based on the processing between the overlapped SPS According to the rule, there is an SPS that can be transmitted between overlapping SPSs. This is because there can only be one transmission on the overlapping resources.
  • the SPS PDSCH corresponding to the SPS configuration index j here is not the SPS PDSCH that has been judged not to be transmitted due to resource conflicts):
  • Step 111 taking all SPS PDSCHs in a time slot as a set Q, and finding the SPS PDSCH corresponding to the smallest SPS configuration index in the set as the candidate SPS PDSCH;
  • Step 112 remove the SPS PDSCH and the candidate SPS PDSCH that overlap with the candidate SPS PDSCH in the time domain from the set to obtain an updated set Q';
  • Step 113 for the updated set Q', repeat the above step 111) and step 112) until the set Q is empty, and all the candidate SPS PDSCHs in the set Q are obtained.
  • the SPS PDSCH that needs to be received is determined according to the terminal's unicast PDSCH receiving capability, including at least one of the following 211) and 212) (the following manner is only an example, and it does not exclude other predefined time slots based on the terminal capability.
  • the SPS corresponding to SPS configuration index j is not any SPS, but is
  • the terminal's receiving capacity is limited (for example, the number of SPS in this slot is more than the maximum unicast PDSCH number that the terminal can receive in a slot)
  • the one selected according to specific rules does not exceed
  • the SPS PDSCH corresponding to the SPS configuration index j is not the SPS PDSCH that has been determined to be unreceivable due to the limited receiving capability of the terminal, according to specific rules):
  • the SPS PDSCH corresponding to the lowest SPS configuration index in the current time slot is used as the SPS PDSCH to be received;
  • N SPS PDSCHs as the SPS PDSCHs to be received according to the SPS configuration index from low to high in the current time slot, where N is the terminal that can be received in one time slot
  • the number of unicast PDSCHs that is, the maximum number of unicast PDSCHs that can be received according to the unicast PDSCH receiving capability of the terminal (where PDSCH includes PDSCH and SPS PDSCH with DCI scheduling);
  • N is the number of unicast PDSCHs that the terminal can receive in a time slot; that is, the maximum number of unicast PDSCHs that can be received according to the unicast PDSCH receiving capability of the terminal (where PDSCH includes PDSCHs with DCI scheduling and SPS PDSCH);
  • Step 1 Use all SPS PDSCHs in a time slot as a set Q, and find the SPS PDSCH corresponding to the smallest SPS configuration index in the set as the candidate SPS PDSCH;
  • Step 2 Remove the candidate SPS PDSCH from the set There are overlapping SPS PDSCH and candidate SPS PDSCH in the time domain, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the items in the set Q are obtained.
  • N SPS PDSCHs are selected as the SPS PDSCHs to be received according to the SPS configuration index from low to high;
  • Step 1 Use all SPS PDSCHs in a time slot as a set Q, and find the SPS PDSCH corresponding to the smallest SPS configuration index in the set as the candidate SPS PDSCH;
  • Step 2 Remove the candidate SPS PDSCH in the set In the time domain, there are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty or judge the cumulative selection When the number of candidate SPS PDSCHs is N, the judgment ends, and the cumulatively selected N candidate SPS PDSCHs are used as the SPS PDSCHs to be received.
  • the SPS in this time slot can be used as the SPS PDSCH corresponding to the SPS configuration index j; if in the current time slot There is overlap between SPS, but the number of SPS does not exceed the receiving capability of the terminal, then the SPS PDSCH corresponding to the SPS configuration index j is the SPS PDSCH that needs to be received determined in the overlapping SPS PDSCH, that is, according to the above step 111 -113 Get the candidate SPS PDSCH; if there is no overlap between SPS in the current time slot, but the number of SPS exceeds the receiving capability of the terminal, then the SPS PDSCH corresponding to the SPS configuration index j is received according to the unicast PDSCH of the terminal
  • the capability-determined SPS PDSCH to be received is the SPS PDSCH obtained according to the above steps 211 and/or 212; if there is overlap between SPS in the current
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is the HARQ-ACK obtained after combining the repeated transmission of the SPS PDSCH up to the target SPS PDSCH in K repeated transmissions. That is, if the number of repeated transmissions of SPS PDSCH is configured as K times, and if the target SPS PDSCH is K-1 among them, then the HARQ-ACK of the repeated SPS PDSCH is the SPS PDSCH received in the K-1 SPS PDSCH transmission opportunity
  • the HARQ-ACK obtained after the combination is the actual HARQ-ACK that is repeatedly transmitted.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit where the HARQ-ACK transmission is located.
  • HARQ-ACK position of the time slot is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit where the HARQ-ACK transmission is located.
  • time slots n, n+1, n+2, and n+3 all need to be performed in the same HARQ-ACK codebook in time slot n+4 SPS PDSCH HARQ-ACK feedback
  • the SPS PDSCH corresponding to SPS configuration 1 is an SPS with 4 repeated transmissions in timeslots n, n+1, n+2, and n+3, and the 4 repeated transmissions are determined
  • the target SPS PDSCH is the SPS PDSCH in time slot n+2.
  • the HARQ-ACK of the SPS PDSCH of the SPS configuration 1 that is repeatedly transmitted is mapped to the HARQ-ACK position in the HARQ-ACK codebook in the time slot n+4 corresponding to the HARQ-ACK position in the time slot n+2, that is, if the time slot
  • the HARQ-ACK codebook includes 4-bit HARQ-ACK.
  • the first bit to the last bit correspond to the time slot n to time slot n+3.
  • the SPS for repeated transmission The HARQ-ACK of the SPS PDSCH of configuration 1 is mapped to the position of the third bit HARQ-ACK in the HARQ-ACK codebook.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK codebook and the target SPS
  • the HARQ-ACK position corresponding to the PDSCH; the HARQ-ACK position corresponding to the target SPS PDSCH is the HARQ-ACK position determined according to the SPS configuration index corresponding to the target SPS PDSCH, where the time slot corresponds to
  • the HARQ-ACK positions are arranged in ascending order or descending order of the SPS configuration indexes corresponding to the multiple SPS PDSCHs in the time slot.
  • time slots n, n+1, n+2, and n+3 all need to be performed in the same HARQ-ACK codebook in time slot n+4 SPS PDSCH HARQ-ACK feedback
  • the SPS PDSCH corresponding to SPS configuration 1 is an SPS with 4 repeated transmissions in timeslots n, n+1, n+2, and n+3, and the 4 repeated transmissions are determined
  • the target SPS PDSCH is the SPS PDSCH in time slot n+2.
  • the HARQ-ACK of the SPS PDSCH of the SPS configuration 1 that is repeatedly transmitted is mapped to the HARQ-ACK position in the HARQ-ACK codebook in the time slot n+4 corresponding to the HARQ-ACK position in the time slot n+2.
  • Each slot in slots n to n+3 corresponds to a 2-bit HARQ-ACK (that is, each slot contains 2 possible downlink transmission positions, that is, there are two sets of SLIV), and the HARQ-ACK codebook includes 8-bit HARQ -ACK, every 2 bits from the first bit to the last bit correspond to each time slot from time slot n to time slot n+3 (that is, the first and second bits correspond to the time slot n, and the third and fourth bits correspond to the time slot Slot n+1, the 5th and 6th bits correspond to time slot n+2, and the 7th and 8th bits correspond to time slot n+3), if it is assumed that the SLIV corresponding to the target SPS PDSCH is two SLIVs in time slot n+2
  • the group corresponds to the first SLIV group (that is, the first downlink transmission position of the two possible downlink transmission positions), and the HARQ-ACK of the SPS PDSCH of the SPS configuration 1 that is repeatedly transmitted is mapped
  • the foregoing steps 21 and 22 may be performed to determine the target SPS PDSCH, and the HARQ-ACK transmission time unit is determined based on the target SPS PDSCH (that is, if the following conditions are not met: ,
  • the time unit of HARQ-ACK transmission of SPS PDSCH that is repeatedly transmitted can be determined without using the method of the present disclosure; of course, it is not ruled out that the following conditions are not required to be judged.
  • the method of the present disclosure is always used Determine the time unit of HARQ-ACK transmission of repeated SPS PDSCH):
  • the SPS PDSCH configured for repeated transmission has time domain overlap with other SPS PDSCHs in at least one of the repeated transmission time slots or the last time slot;
  • the time unit for transmitting HARQ-ACK there is only HARQ-ACK transmission corresponding to SPS PDSCH, or, when the dynamic HARQ-ACK codebook is configured to use, the HARQ-ACK corresponding to SPS PDSCH, and the corresponding PDSCH with DCI scheduling or
  • the HARQ-ACK of the PDCCH indicating the release of the downlink SPS resources is multiplexed and transmitted.
  • a target SPS PDSCH in the repeated transmission of the SPS PDSCH include at least one of the following:
  • the corresponding semi-persistent scheduling SPS configuration configured with repeated transmission has time domain overlap with other SPS PDSCH in at least one of the repeated transmission time slots or the last time slot, the corresponding semi-persistent scheduling SPS configuration configured with repeated transmission
  • the semi-persistent scheduling physical downlink shared channel SPS PDSCH of index i determines a target SPS PDSCH in the repeated transmission of the SPS PDSCH;
  • the HARQ-ACK corresponding to SPS PDSCH has the corresponding downlink control information
  • the DCI scheduled PDSCH or the HARQ-ACK of the PDCCH indicating the release of the downlink SPS resources are multiplexed and transmitted, for the semi-persistent scheduling physical downlink shared channel SPS PDSCH configured with the corresponding semi-persistent scheduling SPS configuration index i for repeated transmission, determine the SPS PDSCH is a target SPS PDSCH in repeated transmission.
  • the SPS PDSCH corresponding to SPS configuration 4 that adopts repeated transmission it is based on time in 4 repeated transmissions.
  • SPS PDSCH ie, target SPS PDSCH
  • the K1 value corresponding to the SPS configuration determine the time slot where the HARQ-ACK feedback transmission of the SPS PDSCH of the SPS configuration 4 for repeated transmission is located, that is, based on the time slot n+ Find the UL time slot (that is, the time slot divided according to the UL SCS) that overlaps with the SPS PDSCH of SPS configuration 4 until the end of the PDSCH in SPS configuration 4.
  • the HARQ-ACK is the HARQ-ACK decoded after combining the information of the three SPS PDSCHs repeatedly transmitted in time slots n, n+1, and n+2 (that is, this HARQ-ACK is used to indicate that the repeated transmission is in progress. It is used to determine the HARQ-ACK feedback position of the SPS PDSCH position of all the repeated SPS PDSCH after the effective HARQ-ACK combined, thereby reflecting the gain of repeated transmission), thus avoiding the 4th repeated transmission according to the related technology.
  • the fourth repeated transmission that is, the transmission in timeslot n+3 overlaps with another SPS PDSCH with a lower SPS configuration index number, time domain resources overlap,
  • the HARQ-ACK codebook in the time slot n+4 of the feedback transmission contains the HARQ-ACK transmission of the SPS PDSCH corresponding to the SPS configuration 4, and the HARQ-ACK corresponding to the SPS PDSCH of the SPS configuration 4 cannot be reported. problem.
  • the SPS HARQ-ACK codebook in time slot n+3 can predict the repeated transmission of SPS PDSCH in all time slots that may be HARQ-ACK feedback in time slot n+3 determined according to K1set. Leaving HARQ-ACK, it corresponds to the situation in Figure 3.
  • the SPS HARQ-ACK codebook in time slot n+3 can contain 3-bit HARQ-ACK, corresponding to the corresponding ones in time slots n, n+1, and n+2, respectively
  • the SPS configures the SPS PDSCH of 4, but there will be some redundancy in this way (in fact, the HARQ-ACK of the SPS PDSCH in the time slots n and n+1 does not need to be fed back).
  • the method for determining the transmission resource of the hybrid automatic repeat response message may further include: for the SPS PDSCH that is not the target SPS PDSCH in the repeated transmission of the SPS PDSCH, HARQ- ACK feedback.
  • Embodiment 2 The specific implementation example is as follows Embodiment 2:
  • the difference is that it is assumed that there is an SPS PDSCH transmission corresponding to SPS configuration 5 in time slot n+2 and an SPS PDSCH corresponding to SPS configuration 4 overlaps in the time domain, as shown in Figure 4, then Similar to the situation in Example 1, for the SPS PDSCH corresponding to SPS configuration 4 with repeated transmissions, the 4 repeated transmissions are based on the SPS PDSCH (that is, the target SPS PDSCH) in time slot n+2 and the K1 corresponding to the SPS configuration.
  • the SPS PDSCH corresponding to SPS configuration 5 will not Transmission also does not feedback HARQ-ACK, and does not affect the SPS PDSCH corresponding to SPS configuration 4 in time slot n+2, so the result of the HARQ-ACK transmission time slot of SPS PDSCH in configuration 4 is the same as that of Example 1. ,No longer.
  • the difference is that it is assumed that there are overlaps between multiple SPSs in the time slot n+2, as shown in FIG. 4 SPS PDSCH, in the 4 repeated transmissions, based on the SPS PDSCH in time slot n+2 (ie target SPS PDSCH) and the K1 value corresponding to the SPS configuration, determine the HARQ-ACK of the SPS PDSCH of the repeated transmission SPS configuration 4
  • the time slot where the feedback transmission is located is based on the end of the SPS and PDSCH corresponding to SPS configuration 4 in time slot n+2.
  • the last UL time slot that overlaps with it is found based on the SCS transmitting PUCCH; this is because, although There is an SPS PDSCH corresponding to configuration 2 in time slot n+2, but since the SPS PDSCH corresponding to configuration 2 overlaps with the SPS corresponding to configuration 1, the SPS PDSCH corresponding to configuration 2 is actually based on the overlap rule between SPSs, and It does not belong to the SPS PDSCH that the terminal needs to receive, so there is no need to consider the overlap between this SPS PDSCH and the SPS PDSCH of the corresponding configuration 4 that is repeatedly transmitted, then in the time slot n+2, there is no correspondence smaller than the number 4.
  • the SPS PDSCH of the SPS configuration overlaps with the SPS PDSCH of the corresponding SPS configuration 2, so that it can be determined that the SPS PDSCH of the corresponding SPS configuration 2 in the time slot n+3 is the last SPS PDSCH (that is, the target SPS PDSCH) that meets the conditions.
  • the obtained result of the HARQ-ACK transmission time slot is the same as that of Embodiment 1, and will not be repeated.
  • only the UL and DL have the same SCS and single carrier as an example.
  • the SPS PDSCH of the repeated transmission is determined according to the SPS PDSCH that does not overlap the SPS PDSCH of the corresponding SPS configuration index j in the time domain according to the last of the K repeated transmissions.
  • the time unit of HARQ-ACK transmission Ensure that the HARQ-ACK feedback can be performed normally when the PDSCH is repeatedly transmitted.
  • the feedback timing is determined according to the last transmission in the repeated transmission, due to the conflict between the repeated transmission of the SPS PDSCH and other SPS PDSCHs, the repeated transmission of the SPS PDSCH cannot perform HARQ -ACK feedback.
  • an embodiment of the present disclosure also provides a communication device 60, including: a transceiver 61, a processor 62, and a memory 63, where a program executable by the processor 62 is stored in the memory 63;
  • the processor 62 executes the program, it is realized that for the semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i configured with repeated transmission, determine a target SPS PDSCH in the repeated transmission of the SPS PDSCH,
  • the target SPS PDSCH is an SPS PDSCH that does not overlap in time domain with the SPS PDSCH of the corresponding SPS configuration index j in the last of K repeated transmissions, and the j is less than i; the SPS for repeated transmission is determined according to the target SPS PDSCH
  • the time unit of the HARQ-ACK transmission of the hybrid automatic repeat response of the PDSCH is a predetermined A symbol, or a time slot, or a sub
  • the transceiver 61 is further configured to transmit the HARQ-ACK of the repeatedly transmitted SPS PDSCH in the time unit.
  • the SPS PDSCH corresponding to the SPS configuration index j is an SPS PDSCH that meets at least one of the following conditions:
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH;
  • SPS PDSCH to be received determined according to the unicast PDSCH receiving capability of the terminal.
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH is a candidate SPS PDSCH, and the candidate SPS PDSCH is obtained in the following manner:
  • Step 1 Use all SPS PDSCHs in a time slot as a set Q, and find the SPS PDSCH corresponding to the smallest SPS configuration index in the set as the candidate SPS PDSCH;
  • Step 2 Remove the SPS PDSCH and the candidate SPS PDSCH that overlap the candidate SPS PDSCH in the time domain from the set to obtain an updated set Q';
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPS PDSCHs in the set Q are obtained.
  • determining the SPS PDSCH to be received according to the unicast PDSCH receiving capability of the terminal includes:
  • the SPS PDSCH corresponding to the lowest SPS configuration index in the current time slot is used as the SPS PDSCH to be received;
  • the SPS PDSCH to be received is determined in one of the following ways:
  • N SPS PDSCH as the SPS PDSCH to be received according to the SPS configuration index from low to high in the current time slot, where N is the unicast PDSCH that the terminal can receive in one time slot.
  • N SPS PDSCHs as the SPS PDSCH to be received according to the SPS configuration index from low to high, where N is The number of unicast PDSCHs that the terminal can receive in a time slot;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPSs in the set Q are obtained PDSCH; among the candidate SPS PDSCHs, according to the SPS configuration index from low to high, select N SPS PDSCHs as the SPS PDSCHs to be received;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, or judge the cumulative selected candidate SPS When the number of PDSCHs is N, the judgment ends, and the cumulatively selected N candidate SPS PDSCHs are used as the SPS PDSCHs to be received.
  • the HARQ-ACK of the repeated transmission of the SPS PDSCH is the HARQ-ACK obtained after the combination of the repeated transmission of the SPS PDSCH up to the target SPS PDSCH in K repeated transmissions.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • HARQ-ACK position is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK determined according to the SPS configuration index corresponding to the target SPS PDSCH.
  • the multiple HARQ-ACK positions corresponding to the time slot are arranged in ascending order or descending order according to the SPS configuration index corresponding to the multiple SPS PDSCHs in the time slot.
  • the processor 62 is further configured to not perform HARQ-ACK feedback for the SPS PDSCH that is not the target SPS PDSCH among the repeatedly transmitted SPS PDSCH.
  • determining a target SPS PDSCH in the SPS PDSCH repeated transmission includes at least one of the following:
  • the corresponding semi-persistent scheduling SPS configuration index i The semi-persistent scheduling physical downlink shared channel SPS PDSCH is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the configuration The semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i for repeated transmission is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the HARQ-ACK corresponding to SPS PDSCH is the same as the corresponding DCI scheduling with downlink control information
  • the SPS PDSCH is determined A target SPS PDSCH in repeated transmission.
  • the communication device in this embodiment can be a terminal or a network device.
  • the network device here is a base station.
  • the communication device in this embodiment is a device corresponding to the method shown in FIG.
  • the implementation methods in the examples are all applicable to the embodiments of the device, and the same technical effects can also be achieved.
  • the transceiver 61 and the memory 63, as well as the transceiver 61 and the processor 62 can all be communicatively connected via a bus interface.
  • the functions of the processor 62 can also be implemented by the transceiver 61, and the functions of the transceiver 61 can also be implemented by the processor. 62 realized.
  • the above-mentioned terminal provided by the embodiment of the present disclosure can implement all the method steps implemented in the above-mentioned method embodiment and can achieve the same technical effect. The part and beneficial effects of this will be described in detail.
  • an embodiment of the present disclosure also provides an apparatus 70 for determining transmission resources of a hybrid automatic repeat response message, which is applied to a terminal or a network device, and the apparatus 70 includes:
  • the determining module 71 is configured to determine a target SPS PDSCH in the SPS PDSCH repeated transmission for the semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i configured with repeated transmission, the target SPS PDSCH Is an SPS PDSCH that does not overlap in the time domain with the SPS PDSCH of the corresponding SPS configuration index j in the last of the K repeated transmissions, and the j is less than i;
  • the processing module 72 is configured to determine, according to the target SPS PDSCH, the time unit where the hybrid automatic repeat response HARQ-ACK of the repeated transmission of the SPS PDSCH is transmitted, where the time unit is a predetermined A symbol or a time slot , Or a sub-slot, A is a positive integer.
  • the device further includes: a transceiver module, configured to transmit the HARQ-ACK of the repeatedly transmitted SPS PDSCH in the time unit.
  • a transceiver module configured to transmit the HARQ-ACK of the repeatedly transmitted SPS PDSCH in the time unit.
  • the SPS PDSCH corresponding to the SPS configuration index j is an SPS PDSCH that meets at least one of the following conditions:
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH;
  • SPS PDSCH to be received determined according to the unicast PDSCH receiving capability of the terminal.
  • the SPS PDSCH to be received determined in the overlapping SPS PDSCH is a candidate SPS PDSCH, and the candidate SPS PDSCH is obtained in the following manner:
  • Step 1 Use all SPS PDSCHs in a time slot as a set Q, and find the SPS PDSCH corresponding to the smallest SPS configuration index in the set as the candidate SPS PDSCH;
  • Step 2 Remove the SPS PDSCH and the candidate SPS PDSCH that overlap the candidate SPS PDSCH in the time domain from the set to obtain an updated set Q';
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPS PDSCHs in the set Q are obtained.
  • determining the SPS PDSCH to be received according to the unicast PDSCH receiving capability of the terminal includes:
  • the SPS PDSCH corresponding to the lowest SPS configuration index in the current time slot is used as the SPS PDSCH to be received;
  • the SPS PDSCH to be received is determined in one of the following ways:
  • N SPS PDSCH as the SPS PDSCH to be received according to the SPS configuration index from low to high in the current time slot, where N is the unicast PDSCH that the terminal can receive in one time slot.
  • N SPS PDSCHs as the SPS PDSCH to be received according to the SPS configuration index from low to high, where N is The number of unicast PDSCHs that the terminal can receive in a time slot;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty, and all the candidate SPSs in the set Q are obtained PDSCH; among the candidate SPS PDSCHs, according to the SPS configuration index from low to high, select N SPS PDSCHs as the SPS PDSCHs to be received;
  • Step 1 Take all SPS PDSCHs in a time slot as a set Q, find the SPS PDSCH corresponding to the smallest SPS configuration index in the set, as the candidate SPS PDSCH;
  • Step 2 Remove the set and candidate SPS PDSCH in the time domain There are overlapping SPS PDSCH and candidate SPS PDSCH, and the updated set Q'is obtained;
  • Step 3 For the updated set Q', repeat the above steps 1 and 2 until the set Q is empty or judge the cumulative selected candidate SPS PDSCH When the number of is N, the judgment ends, and the cumulatively selected N candidate SPS PDSCHs are used as the SPS PDSCHs to be received.
  • the HARQ-ACK of the repeated transmission of the SPS PDSCH is the HARQ-ACK obtained after the combination of the repeated transmission of the SPS PDSCH up to the target SPS PDSCH in K repeated transmissions.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • HARQ-ACK position is mapped to the HARQ-ACK codebook corresponding to the SPS PDSCH in the time unit of the HARQ-ACK transmission corresponding to the time slot of the target SPS PDSCH transmission.
  • the HARQ-ACK of the repeatedly transmitted SPS PDSCH is mapped to the HARQ-ACK determined according to the SPS configuration index corresponding to the target SPS PDSCH.
  • the multiple HARQ-ACK positions corresponding to the time slot are arranged in ascending order or descending order according to the SPS configuration index corresponding to the multiple SPS PDSCHs in the time slot.
  • the processor is further configured to not perform HARQ-ACK feedback for the SPS PDSCH that is not the target SPS PDSCH among the repeatedly transmitted SPS PDSCH.
  • determining a target SPS PDSCH in the SPS PDSCH repeated transmission includes at least one of the following:
  • the corresponding semi-persistent scheduling SPS configuration index i The semi-persistent scheduling physical downlink shared channel SPS PDSCH is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the configuration The semi-persistent scheduling physical downlink shared channel SPS PDSCH corresponding to the semi-persistent scheduling SPS configuration index i for repeated transmission is determined, and a target SPS PDSCH in the repeated transmission of the SPS PDSCH is determined;
  • the HARQ-ACK corresponding to SPS PDSCH is the same as the corresponding DCI scheduling with downlink control information
  • the SPS PDSCH is determined A target SPS PDSCH in repeated transmission.
  • the device in this embodiment is a device corresponding to the method shown in FIG. 2 above, and the implementation manners in the above embodiments are all applicable to the embodiments of the device, and the same technical effects can also be achieved. It should be noted here that the above-mentioned device provided by the embodiment of the present disclosure can realize all the method steps realized by the above-mentioned method embodiment and can achieve the same technical effect. The part and beneficial effects of this will be described in detail.
  • the embodiments of the present disclosure also provide a processor-readable storage medium, the processor-readable storage medium stores processor-executable instructions, and the processor-executable instructions are used to cause the processor to execute the aforementioned Method for determining the transmission resource of the hybrid automatic retransmission response message. All the implementation manners in the foregoing method embodiment are applicable to this embodiment, and the same technical effect can also be achieved.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), programmable logic devices (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to execute the present disclosure Other electronic units or a combination of the functions described above.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD programmable logic devices
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above series of processing can naturally be performed in a chronological order in the order of description, but do not necessarily need to be performed in a chronological order, and some steps can be performed in parallel or independently of each other.
  • a person of ordinary skill in the art can understand that all or any of the steps or components of the methods and devices of the present disclosure can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices with hardware and firmware. , Software, or a combination of them. This can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种混合自动重传应答消息传输资源的确定方法、装置及设备。所述方法包括:对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。

Description

混合自动重传应答消息传输资源的确定方法、装置及设备
相关申请的交叉引用
本申请主张在2020年4月20日在中国提交的中国专利申请号No.202010312269.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种混合自动重传应答消息传输资源的确定方法、装置及设备。
背景技术
在第五代(5 th Generation,5G)新空口(New Radio,NR)系统中,支持半持续调度(Semi-Persistent Scheduling,SPS)物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)传输,并且支持一个载波上配置多个SPS配置,一个SPS配置的最小周期可以为1ms。当配置了SPS传输时,高层信令会相应的配置SPS对应的无线网络临时标识(Radio Network Tempory Identity,RNTI);如配置调度-RNTI(Configured Scheduling-RNTI,CS-RNTI),用于加扰激活和去激活SPS传输的PDSCH,高层信令还会相应的配置SPS PDSCH的传输周期。当存在业务需要进行SPS传输时,基站可以通过发送指示SPS激活的PDCCH来激活一个SPS配置,指示SPS激活的PDCCH中可以通知这个SPS的调度信息(包括时域、频域资源、调制和编码方案(Modulation and coding scheme,MCS)等信息),终端按照指示SPS激活的PDCCH以及高层信令预先配置的SPS周期就可以确定周期性的SPS传输机会,在每个周期性的SPS传输机会中进行SPS传输(基站发送、终端接收)。当确定不再需要这个SPS配置或者需要更改SPS配置时,基站可以发送指示下行SPS资源释放的PDCCH(也称SPS PDSCH release),从而指示对某一个SPS配置释放资源,其中,指示下行SPS资源释放的PDCCH可以一次仅指示一个SPS配置进行资源释放,也可以同时指示多个SPS配置进行资源释放。
5G NR中支持灵活的定时关系。对于具有对应的物理下行控制信道 (Physical Downlink Control CHannel,PDCCH)的PDSCH(即dynamic PDCSH),承载其调度信息的物理下行控制信道指示PDSCH与PDCCH之间的调度定时关系(Scheduling timing)以及PDSCH到其对应的混合自动重传请求应答(Hybrid automatic repeat request acknowledgement,HARQ-ACK)之间的反馈定时关系(HARQ-ACK timing)。具体地,PDCCH所使用的下行控制信息(Downlink Control Information,DCI)格式中的时域资源分配指示域(Time Domain Resource Assignment,TDRA)指示PDSCH所在时隙与DCI所在时隙的时隙偏移K0(即调度定时关系);DCI格式中的PDSCH到HARQ-ACK反馈定时指示域指示PDSCH到HARQ-ACK之间的时隙个数K1(即反馈定时关系),如图1所示。
调度PDSCH的DCI有两种格式,一种是回退(fall back)DCI格式(如DCI格式1_0),另一种是非回退(non-fallback)DCI格式(如DCI格式1_1、1_2等)。其中,fallback DCI对应的K1集合固定为{1,2,3,4,5,6,7,8},non-fallback DCI格式对应的K1集合为系统中定义的最大K1集合(0-16中的整数值)中选择出的最多8个值,需要至少包含{0,1,2,3,4,5,6,7}中的值。K1可以通过DCI中的3比特HARQ-ACK时间指示域指示一个值给终端,因此该值可以是动态改变的。指示下行SPS资源释放的PDCCH也是需要进行HARQ-ACK反馈的,其反馈时序也是可以由PDCCH中的PDSCH到HARQ-ACK反馈定时指示域进行指示的。对于SPS PDSCH,其K1值也是可以通过指示SPS激活的PDCCH中的PDSCH到HARQ-ACK反馈定时指示域指示的,并且对后续周期性的每一次SPS传输都是用这个K1值确定HARQ-ACK反馈位置。
一个fallback DCI中总是包含3比特PDSCH到HARQ-ACK反馈定时指示域,用于指示取值为1-8的正整数中的一个K1值。一个non-fallback DCI中是否包含PDSCH到HARQ-ACK反馈定时指示域,取决于高层信令预先为终端配置了几个候选K1值。当仅配置了一个K1值时,DCI中不包含PDSCH到HARQ-ACK反馈定时指示域,终端固定使用这一个K1值对需要进行HARQ-ACK反馈的PDSCH、SPS PDSCH、指示下行SPS资源释放的PDCCH确定HARQ-ACK反馈时域位置;当配置了超过1个K1值时,DCI中包含
Figure PCTCN2021087745-appb-000001
比特PDSCH到HARQ-ACK反馈定时指示域,指示PDSCH(包括 被激活的SPS PDSCH)或指示下行SPS资源释放的PDCCH的HARQ-ACK时间。对于传输结束在时隙n的PDSCH或指示下行SPS资源释放的PDCCH,其HARQ-ACK反馈在时隙n+K1中传输,其中,这里的时隙都是参考物理上行控制信道(Physical Uplink Control CHannel,PUCCH)传输所在的载波的子载波间隔(SubCarrier Spacing,SCS)定义的时隙(即PUCCH传输时隙,当DL和UL具有不同的SCS时),即K1=0参考点是与PDSCH或指示下行SPS资源释放的PDCCH重叠的最后一个PUCCH传输时隙;上述是以时隙为K1单位的情况,当K1单位为子时隙时,同理。
5G NR系统中支持半静态(semi-static)和动态(dynamic)两种HARQ-ACK码本(codebook)产生方式。所谓HARQ-ACK codebook即针对在同一个时域位置(如时隙或子时隙)或同一PUCCH上进行HARQ-ACK反馈的下行传输(包括PDSCH和指示下行SPS资源释放的PDCCH)产生的HARQ-ACK反馈序列。
Semi-static codebook可以根据K1集合中的HARQ-ACK定时器的值确定每个载波c上对应在同一个时隙(slot)或子时隙(sub-slot)n进行HARQ-ACK反馈的下行传输的位置集合Mc(也可以称为候选PDSCH位置集合),然后根据Mc即可以确定时隙或子时隙n中传输的HARQ-ACK codebook。具体的,根据每个K1值确定对应的在时隙或子时隙n进行HARQ-ACK反馈的时隙,在这些时隙中的每个时隙中,进一步根据预先配置的下行时域资源分配信息表(即TDRA表格)中的各种时域资源分配信息(即起始和长度指示值(Start and length indicator value,SLIV),每个SLIV提供了一个下行传输的起始符号和传输长度),确定一个时隙中时分复用(Time division multiplexing,TDM)存在的最大的下行传输的个数,例如,如果配置了半静态的上下行时隙结构,当根据一个SLIV确定的在一个时隙中的这个SLIV所指示的符号集合中存在上行符号,则该SLIV不能用作下行传输,因为存在上下行资源冲突,该下行传输实际不会发生,只有满足一个时隙中根据SLIV确定的符号集合中不包含上行符号,例如都为下行和/或灵活(Flexible)符号时,才说明该SLIV对应的下行传输可以在该时隙中存在,其中如果存在SLIV之间的重叠,重叠的SLIV中只会选择一个SLIV调度一个下行传输,而其他SLIV则不可用, 因此根据SLIV重叠的规则,可以从TDRA表格中的所有SLIV中分成多个SLIV组,每个SLIV组认为存在一个下行传输,从而确定出在一个时隙中可能存在的最大的TDM传输的下行传输个数,以此类推,确定出根据K1得到的对应在时隙或子时隙n中进行HARQ-ACK反馈的多个slot中每个slot中的下行传输格式,将多个slot中的总的下行传输个数作为Mc,根据Mc确定在时隙或子时隙n中传输的semi-static HARQ-ACK码本,包括码本的大小和HARQ-ACK具体内容和顺序。
在支持配置多个SPS配置的情况下,不同SPS配置下的SPS PDSCH的HARQ-ACK可以在同一个PUCCH上进行复用传输。考虑到不同的SPS配置由于周期和具体资源分配不同,可能会导致在部分时隙中,存在多个SPS配置对应的SPS PDSCH之间的时域资源存在重叠,而SPS还可以被配置进行重复传输,当被配置进行重复传输的SPS与其他SPS重叠时,如何进行重复传输的SPS的HARQ-ACK反馈还没有明确的方法。
发明内容
本公开实施例提供了一种混合自动重传应答消息传输资源的确定方法、装置及设备。当SPS被配置进行重复传输时,且当被配置进行重复传输的SPS与其他SPS重叠时,可以进行重复传输的SPS的HARQ-ACK反馈。
本公开的实施例提供如下技术方案:
一种混合自动重传应答消息传输资源的确定方法,应用于终端或者网络设备,所述方法包括:
对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
可选的,混合自动重传应答消息传输资源的确定方法,还可以包括:
在所述时间单元中传输所述重复传输的SPS PDSCH的HARQ-ACK。
可选的,所述对应SPS配置索引j的SPS PDSCH为满足下述至少一个条件的SPS PDSCH:
在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH;
根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH。
可选的,在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH为候选SPS PDSCH,所述候选SPS PDSCH通过以下方式得到:
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;
步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;
步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH。
可选的,根据终端的单播PDSCH接收能力确定需要接收的SPS PDSCH包括:
当终端在一个时隙中仅支持接收一个单播PDSCH时,将当前时隙中对应最低SPS配置索引的SPS PDSCH作为需要接收的SPS PDSCH;和/或
当终端在一个时隙中支持接收超过一个单播PDSCH时,如下一种方式确定需要接收的SPS PDSCH:
如果SPS之间没有重叠,将当前时隙中按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
如果SPS之间存在重叠,则在重叠的SPS PDSCH中先确定需要接收的SPS PDSCH,然后再按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选 SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH;在所述候选SPS PDSCH中,按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空或者判断累计选择出的候选SPS PDSCH的个数为N个时,结束判断,并将累计选择的N个候选SPS PDSCH作为需要接收的SPS PDSCH。
可选的,重复传输的SPS PDSCH的HARQ-ACK为K次重复传输中,到所述目标SPS PDSCH为止的重复传输的SPS PDSCH合并之后得到的HARQ-ACK。
可选的,重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK传输所在的时间单元中的对应于SPS PDSCH的HARQ-ACK码本中的对应于所述目标SPS PDSCH传输所在的时隙的HARQ-ACK位置。
可选的,如果所述目标SPS PDSCH传输所在的时隙中包含多个HARQ-ACK位置,重复传输的SPS PDSCH的HARQ-ACK映射到根据所述目标SPS PDSCH对应的SPS配置索引确定的HARQ-ACK位置上,其中,所述时隙对应的多个HARQ-ACK位置是按照该时隙中的多个SPS PDSCH对应的SPS配置索引的从小到大或者从大到小顺序排列的。
可选的,混合自动重传应答消息的传输资源的确定方法还包括:
对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。
可选的,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,包括以下至少一项:
当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙 或最后一个时隙中与其他SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有下行控制信息DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH。
本公开的实施例还提供一种通信设备,包括:收发机,处理器,存储器,所述存储器上存有所述处理器可执行的程序;所述处理器执行所述程序时实现:对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
可选的,所述收发机还用于在所述时间单元中传输所述重复传输的SPS PDSCH的HARQ-ACK。
可选的,所述对应SPS配置索引j的SPS PDSCH为满足下述至少一个条件的SPS PDSCH:
在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH;
根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH。
可选的,在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH为候选SPS PDSCH,所述候选SPS PDSCH通过以下方式得到:
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;
步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;
步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH。
可选的,根据终端的单播PDSCH接收能力确定需要接收的SPS PDSCH包括:
当终端在一个时隙中仅支持接收一个单播PDSCH时,将当前时隙中对应最低SPS配置索引的SPS PDSCH作为需要接收的SPS PDSCH;和/或
当终端在一个时隙中支持接收超过一个单播PDSCH时,如下一种方式确定需要接收的SPS PDSCH:
如果SPS之间没有重叠,将当前时隙中按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
如果SPS之间存在重叠,则在重叠的SPS PDSCH中先确定需要接收的SPS PDSCH,然后再按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH;在所述候选SPS PDSCH中,按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找 到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空或者判断累计选择出的候选SPS PDSCH的个数为N个时,结束判断,并将累计选择的N个候选SPS PDSCH作为需要接收的SPS PDSCH。
可选的,重复传输的SPS PDSCH的HARQ-ACK为K次重复传输中,到所述目标SPS PDSCH为止的重复传输的SPS PDSCH合并之后得到的HARQ-ACK。
可选的,重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK传输所在的时间单元中的对应于SPS PDSCH的HARQ-ACK码本中的对应于所述目标SPS PDSCH传输所在的时隙的HARQ-ACK位置。
可选的,如果所述目标SPS PDSCH传输所在的时隙中包含多个HARQ-ACK位置,重复传输的SPS PDSCH的HARQ-ACK映射到根据所述目标SPS PDSCH对应的SPS配置索引确定的HARQ-ACK位置上,其中,所述时隙对应的多个HARQ-ACK位置是按照该时隙中的多个SPS PDSCH对应的SPS配置索引的从小到大或者从大到小顺序排列的。
可选的,所述处理器还用于:对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。
可选的,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,包括以下至少一项:
当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙或最后一个时隙中与其他SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索 引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有下行控制信息DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH。
本公开的实施例还提供一种混合自动重传应答消息传输资源的确定装置,应用于终端或者网络设备,所述装置包括:
确定模块,用于对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
处理模块,用于根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
本公开的实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有处理器可执行指令,所述处理器可执行指令用于使所述处理器执行如上所述的混合自动重传应答消息传输资源的确定方法。
本公开实施例的有益效果是:
本公开的上述实施例中,通过对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元;从而实现了被配置进行重复传输的SPS与其他SPS重叠时,可以进行重复传输的SPS 的HARQ-ACK反馈。
附图说明
图1为PDSCH到HARQ-ACK之间的反馈定时关系示意图;
图2为本公开的实施例混合自动重传应答消息传输资源的确定方法的流程示意图;
图3为本公开的实施例混合自动重传应答消息传输资源的确定方法的一具体方案示意图;
图4为本公开的实施例混合自动重传应答消息传输资源的确定方法的另一具体方案示意图;
图5为本公开的实施例混合自动重传应答消息传输资源的确定方法的另一具体方案示意图;
图6为本公开的实施例通信设备的架构框图;
图7为本公开的实施例的混合自动重传应答消息传输资源的确定装置的模块结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。术语“一”、“所述”等均为泛指概念,用于表示同类对象,而不特指对象的个数。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有 的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
如图2所示,本公开的实施例一种混合自动重传应答消息传输资源的确定方法,应用于终端或者网络设备,所述方法包括:
步骤21,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
步骤22,根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
本公开的一可选的实施例中,混合自动重传应答消息传输资源的确定方法,还可以包括:
步骤23,在所述时间单元中传输所述重复传输的SPS PDSCH的HARQ-ACK。具体来说,终端在所述时间单元中发送所述重复发送的SPS PDSCH的HARQ-ACK;网络设备(如基站)在所述时间单元中接收所述重复传输的SPS PDSCH的HARQ-ACK。
本公开的上述实施例,对于配置了重复传输的对应SPS配置索引i的SPS PDSCH,根据K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,确定重复传输的SPS PDSCH的HARQ-ACK传输所在的时间单元,所述j小于i,所述时间单元为预定的A个符号(比如正交频分复用(Orthogonal frequency division multiplex,OFDM)符号),或为一个时隙(Slot),或为一个子时隙。从而实现了被配置进行重复传输的SPS与其他SPS重叠时,可以进行重复传输的SPS的HARQ-ACK反馈。
本公开的一可选的实施例中,所述对应SPS配置索引j的SPS PDSCH为满足下述至少一个条件的SPS PDSCH:
1)在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH;
2)根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH。
其中,在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH为候选SPS PDSCH,所述候选SPS PDSCH通过以下方式得到(下述方式仅为示例,不排除其他预先定义好的从存在重叠的SPS PDSCH中确定出需要接收的SPS PDSCH的方式,这里需要明确的是,如果存在SPS之间的重叠,对应SPS配置索引j的SPS PDSCH并不是任何一个SPS,而是根据对重叠的SPS之间的处理规则得到的,在重叠的SPS之间是可以传输的SPS,这是因为重叠的资源上只能有一个传输,那么重叠的SPS中必然有一部分是可以传输的,而另一部是由于资源冲突而不可以传输的,这里的对应SPS配置索引j的SPS PDSCH并不是哪些由于资源冲突而已经判断不可以传输的SPS PDSCH):
步骤111),将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;
步骤112),去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;
步骤113),针对更新的集合Q’,重复上述步骤111)和步骤112),直到集合Q为空,得到集合Q中所有的候选SPS PDSCH。
其中,根据终端的单播PDSCH接收能力确定需要接收的SPS PDSCH包括以下211)和212)中的至少一种(下述方式仅为示例,不排除其他预先定义好的根据终端能力从一个时隙中包含的所有SPS PDSCH中确定出需要接收的SPS PDSCH的方式,这里需要明确的是,如果一个时隙中存在多个SPS,对应SPS配置索引j的SPS PDSCH并不是任何一个SPS,而是在终端接收能力受限时(比如这个时隙中存在的SPS个数比终端在一个时隙中能够接收的最大单播PDSCH个数还多),根据终端接收能力,按照特定规则选择出的不超过接收能力的这个时隙中的部分SPS,这里的对应SPS配置索引j的SPS PDSCH并不是哪些由于终端接收能力受限,根据特定规则而已经判断不可以被接收的SPS PDSCH):
211)当终端在一个时隙中仅支持接收一个单播PDSCH时,将当前时隙中对应最低SPS配置索引的SPS PDSCH作为需要接收的SPS PDSCH;
212)当终端在一个时隙中支持接收超过一个单播PDSCH时,进一步可 以使用如下方式中的一种:
2121)、如果SPS之间没有重叠,将当前时隙中按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;即根据终端的单播PDSCH接收能力确定的能够最大接收的单播PDSCH的个数(其中PDSCH包含具有DCI调度的PDSCH和SPS PDSCH);
2122)、如果SPS之间存在重叠,则在重叠的SPS PDSCH中先确定需要接收的SPS PDSCH,然后再按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;即根据终端的单播PDSCH接收能力确定的能够最大接收的单播PDSCH的个数(其中PDSCH包含具有DCI调度的PDSCH和SPS PDSCH);
2123)、步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH,在所述候选SPS PDSCH中,按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH;
2124)、步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空或者判断累计选择出的候选SPS PDSCH的个数为N个时,结束判断,并将累计选择的N个候选SPS PDSCH作为需要接收的SPS PDSCH。
如果在当前时隙中,没有SPS之间的重叠,SPS的个数也不超过终端的接收能力,则这个时隙中的SPS都可以作为对应SPS配置索引j的SPS PDSCH;如果在当前时隙中,存在SPS之间的重叠,但SPS的个数不超过终端的接收 能力,那么对应SPS配置索引j的SPS PDSCH为在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH,即根据上述步骤111-113得到候选SPS PDSCH;如果在当前时隙中,不存在SPS之间的重叠,但SPS的个数超过终端的接收能力,那么对应SPS配置索引j的SPS PDSCH为根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH,即根据上述步骤211和/或212得到的SPS PDSCH;如果在当前时隙中,既存在SPS之间的重叠,且SPS的个数也超过终端的接收能力,那么对应SPS配置索引j的SPS PDSCH为:在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH中,进一步根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH,即上述两种方式都执行之后得到的SPS PDSCH。
本公开的上述实施例中,重复传输的SPS PDSCH的HARQ-ACK为K次重复传输中,到所述目标SPS PDSCH为止的重复传输的SPS PDSCH合并之后得到的HARQ-ACK。即如果配置SPS PDSCH的重复传输次数为K次,如果所述目标SPS PDSCH为其中的K-1次,那么重复传输的SPS PDSCH的HARQ-ACK为K-1SPS PDSCH传输机会中接收到的SPS PDSCH合并之后得到的HARQ-ACK,即为重复传输实际的HARQ-ACK。
本公开的上述实施例中,重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK传输所在的时间单元中的对应于SPS PDSCH的HARQ-ACK码本中的对应于所述目标SPS PDSCH传输所在的时隙的HARQ-ACK位置。即如果根据K1集合={1,2,3,4}确定时隙n、n+1、n+2、n+3都需要在时隙n+4中的同一个HARQ-ACK码本中进行SPS PDSCH的HARQ-ACK反馈,如果对应SPS配置1的SPS PDSCH为在时隙n、n+1、n+2、n+3中进行4次重复传输的SPS,且确定4次重复传输中的目标SPS PDSCH为时隙n+2中的SPS PDSCH,时隙n、n+1和n+3中分别存在对应其他SPS配置的SPS PDSCH传输也需要在时隙n+4中的同一个HARQ-ACK码本重传输HARQ-ACK,则时隙n+4中的HARQ-ACK码本是需要对时隙n、n+1、n+2和n+3都预留HARQ-ACK反馈位置的,对于对应SPS配置1的进行4次重复传输的SPS PDSCH,虽然时隙n、n+1、n+3中也包含这个SPS PDSCH的传输机会,但由于目标SPS PDSCH是时隙n+2中的SPS PDSCH,则重复传输的SPS配置 1的SPS PDSCH的HARQ-ACK是映射到时隙n+4中的HARQ-ACK码本中对应于时隙n+2的HARQ-ACK位置,即如果时隙n到n+3中每个时隙对应1比特HARQ-ACK,HARQ-ACK码本包括4比特HARQ-ACK,从第一比特到最后一比特分别对应时隙n到时隙n+3中的每一个时隙(即第1比特对应时隙n,第2比特对应时隙n+1,第3比特对应时隙n+2,第4比特对应时隙n+3),则重复传输的SPS配置1的SPS PDSCH的HARQ-ACK是映射到HARQ-ACK码本中的第3比特HARQ-ACK的位置的。
本公开的上述实施例中,如果所述目标SPS PDSCH传输所在的时隙中包含多个HARQ-ACK位置,重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK码本中与所述目标SPS PDSCH对应的HARQ-ACK位置;其中与所述目标SPS PDSCH对应的HARQ-ACK位置即:根据所述目标SPS PDSCH对应的SPS配置索引确定的HARQ-ACK位置,其中,所述时隙对应的多个HARQ-ACK位置是按照该时隙中的多个SPS PDSCH对应的SPS配置索引的从小到大或者从大到小顺序排列的。即如果根据K1集合={1,2,3,4}确定时隙n、n+1、n+2、n+3都需要在时隙n+4中的同一个HARQ-ACK码本中进行SPS PDSCH的HARQ-ACK反馈,如果对应SPS配置1的SPS PDSCH为在时隙n、n+1、n+2、n+3中进行4次重复传输的SPS,且确定4次重复传输中的目标SPS PDSCH为时隙n+2中的SPS PDSCH,时隙n、n+1和n+3中分别存在对应其他SPS配置的SPS PDSCH传输也需要在时隙n+4中的同一个HARQ-ACK码本重传输HARQ-ACK,则时隙n+4中的HARQ-ACK码本是需要对时隙n、n+1、n+2和n+3都预留HARQ-ACK反馈位置的,对于对应SPS配置1的进行4次重复传输的SPS PDSCH,虽然时隙n、n+1、n+3中也包含这个SPS PDSCH的传输机会,但由于目标SPS PDSCH是时隙n+2中的SPS PDSCH,则重复传输的SPS配置1的SPS PDSCH的HARQ-ACK是映射到时隙n+4中的HARQ-ACK码本中对应于时隙n+2的HARQ-ACK位置,即如果假设时隙n到n+3中每个时隙对应2比特HARQ-ACK(即每个时隙中都包含2个可能的下行传输位置,即有两组SLIV),HARQ-ACK码本包括8比特HARQ-ACK,从第一比特到最后一比特每2比特分别对应时隙n到时隙n+3中的每一个时隙(即第1、2比特对应时隙n,第3、4比特对应时 隙n+1,第5、6比特对应时隙n+2,第7、8比特对应时隙n+3),则如果假设目标SPS PDSCH对应的SLIV在时隙n+2中的两个SLIV组中对应的是第一个SLIV组(即两个可能的下行传输位置中对应第一个下行传输位置),则重复传输的SPS配置1的SPS PDSCH的HARQ-ACK是映射到HARQ-ACK码本中的第5比特HARQ-ACK的位置的,如果假设目标SPS PDSCH对应的SLIV在时隙n+2中的两个SLIV组中对应的是第2个SLIV组(即两个可能的下行传输位置中对应第2个下行传输位置),则重复传输的SPS配置1的SPS PDSCH的HARQ-ACK是映射到HARQ-ACK码本中的第6比特HARQ-ACK的位置的。
本公开的上述实施例中,对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。即如果根据K1集合={1,2,3,4}确定时隙n、n+1、n+2、n+3都需要在时隙n+4中的同一个HARQ-ACK码本中进行SPS PDSCH的HARQ-ACK反馈,如果对应SPS配置1的SPS PDSCH为在时隙n、n+1、n+2、n+3中进行4次重复传输的SPS,且确定4次重复传输中的目标SPS PDSCH为时隙n+2中的SPS PDSCH,时隙n、n+1和n+3中分别存在对应其他SPS配置的SPS PDSCH传输也需要在时隙n+4中的同一个HARQ-ACK码本重传输HARQ-ACK,则时隙n+4中的HARQ-ACK码本是需要对时隙n、n+1、n+2和n+3都预留HARQ-ACK反馈位置的,对于对应SPS配置1的进行4次重复传输的SPS PDSCH,虽然时隙n、n+1、n+3中也包含这个SPS PDSCH的传输机会,但在HARQ-ACK码本中,并不需要对这些SPS PDSCH传输机会预留HARQ-ACK反馈的位置,因为并不需要对这些SPS PDSCH反馈HARQ-ACK。
本公开的上述实施例中,当满足如下条件的至少一个时,可以执行上述步骤21和22来确定目标SPS PDSCH并基于目标SPS PDSCH确定HARQ-ACK传输的时间单元(即如果不满足下述条件,可以不采用本公开的方式确定重复传输的SPS PDSCH的HARQ-ACK传输的时间单元;当然,也不排除不需要进行下述条件的判断,对任何SPS传输情况,总是使用本公开的方式确定重复传输的SPS PDSCH的HARQ-ACK传输的时间单元):
当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙 或最后一个时隙中与其他SPS PDSCH存在时域重叠;
当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠;
在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输。
本公开的一可选的实施例中,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,包括以下至少一项:
1)当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙或最后一个时隙中与其他SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
2)当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
3)在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有下行控制信息DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH。
具体实现时,如以下实施例1:如图3所示,时隙n到n+3为对应SPS配置4的SPS PDSCH进行K=4次重复传输的时隙,其中重复传输的最后一个时隙(即时隙n+3)中对应SPS配置4(即i=4)的SPS PDSCH与对应SPS 配置3(即j=3)的SPS PDSCH在时域上存在资源重叠,而在时隙n+2中,对应SPS配置4的SPS PDSCH在时域上不与任何其他SPS PDSCH存在重叠,则根据本公开方法,对于采用重复传输的对应SPS配置4的SPS PDSCH,在4次重复传输中是基于时隙n+2中的SPS PDSCH(即目标SPS PDSCH)以及SPS配置对应的K1值,确定重复传输的SPS配置4的SPS PDSCH的HARQ-ACK反馈传输所在的时隙的,即基于时隙n+2中的对应SPS配置4的SPS PDSCH的结束为止找到与之重叠的传输PUCCH的UL时隙(即根据UL的SCS划分的时隙),本实施例中,由于UL和DL的SCS相同,因此UL和DL的时隙划分是对齐的,因此找到的是UL时隙n+2,以UL时隙n+2作为K1=0时的参考点(即UL时隙n+2即为K1=0是对应的UL时隙),可以得到K1=1时对应的UL时隙n+3,从而确定重复传输的对应SPS配置4的SPS PDSCH的HARQ-ACK反馈是在时隙n+3中传输,其中HARQ-ACK是时隙n、n+1和n+2中重复传输的3次SPS PDSCH的信息合并之后译码得到的HARQ-ACK(即这个HARQ-ACK是用来表示重复传输中,到用于确定HARQ-ACK反馈位置的SPS PDSCH位置的所有重复的SPS PDSCH合并之后的有效HARQ-ACK,从而体现出重复传输的增益),从而避免了按照相关技术根据4次重复传输中的第4次重复传输以及K1确定HARQ-ACK的传输时隙中,由于第4次重复传输(即时隙n+3中的传输)与另一个对应SPS配置索引编号更低的SPS PDSCH存在时域资源重叠,而导致在反馈传输的时隙n+4中的HARQ-ACK码本中并包含对应SPS配置4的SPS PDSCH的HARQ-ACK传输,从而导致对应SPS配置4的SPS PDSCH的HARQ-ACK不能上报的问题。其中,时隙n+3中的SPS HARQ-ACK码本中,不需要包含时隙n和n+1中对应SPS配置4的SPS PDSCH的HARQ-ACK,即即使此时K1集合={1,2,3},即根据K1集合的范围,基于时隙n+3,可以推断出时隙n、n+1和n+2中都可能存在SPS可以在时隙n+3中进行HARQ-ACK反馈,但如果时隙n和n+1中仅包含重复传输的SPS PDSCH中不是用来确定反馈时的目标SPS PDSCH,则由于重复传输的多个SPS PDSCH最终的HARQ-ACK已经在用来确定反馈时的目标SPS PDSCH对应的HARQ-ACK位置上传输了,则同一个HARQ-ACK码本中就不需要对其他不是目标SPS PDSCH的SPS  PDSCH预留HARQ-ACK反馈位置了,即在假设K1集合={1,2,3}时,时隙n+3中的SPS HARQ-ACK码本中对应于图3的情况,仅包含对应时隙n+2中的SPS配置4的SPS PDSCH的1比特HARQ-ACK反馈就够了。当然,也不排除时隙n+3中的SPS HARQ-ACK码本可以对根据K1set确定的可能在时隙n+3中进行HARQ-ACK反馈的所有时隙中的重复传输的SPS PDSCH都预留HARQ-ACK,则对应于图3情况,时隙n+3中的SPS HARQ-ACK码本可以包含3比特HARQ-ACK,分别对应于时隙n、n+1和n+2中的对应SPS配置4的SPS PDSCH,但这样就会存在一定的冗余(实际上时隙n和n+1中的SPS PDSCH的HARQ-ACK没必要反馈)。
本公开的一可选的实施例中,混合自动重传应答消息的传输资源的确定方法还可以包括:对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。
具体实现实例如下实施例2:
类似上述实施例1,所不同的是假设时隙n+2中还存在一个对应SPS配置5的SPS PDSCH传输与对应SPS配置4的SPS PDSCH在时域上存在重叠,如图4所示,则类似实施例1中的情况,对于采用重复传输的对应SPS配置4的SPS PDSCH,在4次重复传输中是基于时隙n+2中的SPS PDSCH(即目标SPS PDSCH)以及SPS配置对应的K1值,确定重复传输的SPS配置4的SPS PDSCH的HARQ-ACK反馈传输所在的时隙的,即基于时隙n+2中的对应SPS配置4的SPS PDSCH的结束为止找到与之重叠的根据传输PUCCH的SCS确定的最后一个UL时隙;这是因为,虽然时隙n+2中存在一个与对应SPS配置4的SPS PDSCH重叠的SPS PDSCH,但由于这个SPS PDSCH对应的SPS配置的索引是5,比SPS配置4的索引大,因此对应SPS配置5的SPS PDSCH是会被对应SPS配置4的SPS PDSCH所停止的,即在这样的时域重叠下,是对应SPS配置5的SPS PDSCH不会传输也不会反馈HARQ-ACK,并不影响时隙n+2中的对应SPS配置4的SPS PDSCH,所以得到的配置4的SPS PDSCH的HARQ-ACK传输时隙的结果是同实施例1的,不再赘述。
实施例3:
类似上述实施例1,所不同的是假设时隙n+2中存在多个SPS之间的相 互重叠,如图5所示,则类似实施例1中的情况,对于采用重复传输的对应SPS配置4的SPS PDSCH,在4次重复传输中是基于时隙n+2中的SPS PDSCH(即目标SPS PDSCH)以及SPS配置对应的K1值,确定重复传输的SPS配置4的SPS PDSCH的HARQ-ACK反馈传输所在的时隙的,即基于时隙n+2中的对应SPS配置4的SPS PDSCH的结束为止找到与之重叠的根据传输PUCCH的SCS确定的最后一个UL时隙;这是因为,虽然时隙n+2中存在对应配置2的SPS PDSCH,但由于这个对应配置2的SPS PDSCH与对应配置1的SPS重叠,则这个对应配置2的SPS PDSCH实际上根据SPS之间的重叠规则,并不属于终端需要接收的SPS PDSCH,因此并不需要考虑这个SPS PDSCH与重复传输的对应配置4的SPS PDSCH之间的重叠,那么在时隙n+2中,就不存在一个对应比编号4小的SPS配置的SPS PDSCH与对应SPS配置2的SPS PDSCH重叠,从而可以确定时隙n+3中的对应SPS配置2的SPS PDSCH即为最后一个满足条件的SPS PDSCH(即目标SPS PDSCH),从而得到的HARQ-ACK传输时隙的结果是同实施例1的,不再赘述。
上述实施例中仅以UL和DL的SCS相同、单载波的情况为例,SCS不同、多载波聚合等情况下同样适用;上述实施例中仅以时隙为单位的传输为了,当K1的单位为子时隙或者其他预定的时间单元长度时,同样适用;上述实施例中,在时隙n+3中,是否存在对应SPS配置1的SPS PDSCH传输并不影响本实施例的判断结果,因为这个SPS配置对应的SPS PDSCH的时域资源并不与对应SPS配置4的SPS PDSCH以及其他SPS PDSCH的时域资源重叠。
本公开的上述实施例中,当SPS PDSCH进行重复传输时,根据K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,确定重复传输的SPS PDSCH的HARQ-ACK传输所在的时间单元。保证PDSCH重复传输时可以正常的进行HARQ-ACK反馈,避免按照重复传输中的最后一次传输确定反馈时序时,由于重复传输的SPS PDSCH与其他SPS PDSCH的冲突导致这个重复传输的SPS PDSCH无法进行HARQ-ACK反馈。
如图6所示,本公开的实施例还提供一种通信设备60,包括:收发机61, 处理器62,存储器63,所述存储器63上存有所述处理器62可执行的程序;所述处理器62执行所述程序时实现:对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
可选的,所述收发机61还用于在所述时间单元中传输所述重复传输的SPS PDSCH的HARQ-ACK。
可选的,所述对应SPS配置索引j的SPS PDSCH为满足下述至少一个条件的SPS PDSCH:
在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH;
根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH。
可选的,在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH为候选SPS PDSCH,所述候选SPS PDSCH通过以下方式得到:
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;
步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;
步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH。
可选的,根据终端的单播PDSCH接收能力确定需要接收的SPS PDSCH包括:
当终端在一个时隙中仅支持接收一个单播PDSCH时,将当前时隙中对应最低SPS配置索引的SPS PDSCH作为需要接收的SPS PDSCH;和/或
当终端在一个时隙中支持接收超过一个单播PDSCH时,按照按照如下一种方式确定需要接收的SPS PDSCH:
如果SPS之间没有重叠,将当前时隙中按照SPS配置索引从低到高的顺 序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
如果SPS之间存在重叠,则在重叠的SPS PDSCH中先确定需要接收的SPS PDSCH,然后再按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH;在所述候选SPS PDSCH中,按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,或者判断累计选择出的候选SPS PDSCH的个数为N个时,结束判断,并将累计选择的N个候选SPS PDSCH作为需要接收的SPS PDSCH。
可选的,重复传输的SPS PDSCH的HARQ-ACK为K次重复传输中,到所述目标SPS PDSCH为止的重复传输的SPS PDSCH合并之后得到的HARQ-ACK。
可选的,重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK传输所在的时间单元中的对应于SPS PDSCH的HARQ-ACK码本中的对应于所述目标SPS PDSCH传输所在的时隙的HARQ-ACK位置。
可选的,如果所述目标SPS PDSCH传输所在的时隙中包含多个HARQ-ACK位置,重复传输的SPS PDSCH的HARQ-ACK映射到根据所述目标SPS PDSCH对应的SPS配置索引确定的HARQ-ACK位置上,其中,所 述时隙对应的多个HARQ-ACK位置是按照该时隙中的多个SPS PDSCH对应的SPS配置索引的从小到大或者从大到小顺序排列的。
可选的,所述处理器62还用于:对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。
可选的,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,包括以下至少一项:
当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙或最后一个时隙中与其他SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有下行控制信息DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH。
需要说明的是,该实施例中的通信设备可以终端,也可是网络设备,这里的网络设备如基站,该实施例中的通信设备是与上述图2所示的方法对应的设备,上述各实施例中的实现方式均适用于该设备的实施例中,也能达到相同的技术效果。该设备中,收发机61与存储器63,以及收发机61与处理器62均可以通过总线接口通讯连接,处理器62的功能也可以由收发机61实现,收发机61的功能也可以由处理器62实现。在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤, 且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图7所示,本公开的实施例还提供一种混合自动重传应答消息传输资源的确定装置70,应用于终端或者网络设备,所述装置70包括:
确定模块71,用于对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
处理模块72,用于根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
可选的,该装置还包括:收发模块,用于在所述时间单元中传输所述重复传输的SPS PDSCH的HARQ-ACK。
可选的,所述对应SPS配置索引j的SPS PDSCH为满足下述至少一个条件的SPS PDSCH:
在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH;
根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH。
可选的,在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH为候选SPS PDSCH,所述候选SPS PDSCH通过以下方式得到:
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;
步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;
步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH。
可选的,根据终端的单播PDSCH接收能力确定需要接收的SPS PDSCH包括:
当终端在一个时隙中仅支持接收一个单播PDSCH时,将当前时隙中对 应最低SPS配置索引的SPS PDSCH作为需要接收的SPS PDSCH;和/或
当终端在一个时隙中支持接收超过一个单播PDSCH时,按照如下一种方式确定需要接收的SPS PDSCH:
如果SPS之间没有重叠,将当前时隙中按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
如果SPS之间存在重叠,则在重叠的SPS PDSCH中先确定需要接收的SPS PDSCH,然后再按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH;在所述候选SPS PDSCH中,按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH;
步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空或者判断累计选择出的候选SPS PDSCH的个数为N个时,结束判断,并将累计选择的N个候选SPS PDSCH作为需要接收的SPS PDSCH。
可选的,重复传输的SPS PDSCH的HARQ-ACK为K次重复传输中,到所述目标SPS PDSCH为止的重复传输的SPS PDSCH合并之后得到的HARQ-ACK。
可选的,重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK传输所在的时间单元中的对应于SPS PDSCH的HARQ-ACK码本中的对应于所 述目标SPS PDSCH传输所在的时隙的HARQ-ACK位置。
可选的,如果所述目标SPS PDSCH传输所在的时隙中包含多个HARQ-ACK位置,重复传输的SPS PDSCH的HARQ-ACK映射到根据所述目标SPS PDSCH对应的SPS配置索引确定的HARQ-ACK位置上,其中,所述时隙对应的多个HARQ-ACK位置是按照该时隙中的多个SPS PDSCH对应的SPS配置索引的从小到大或者从大到小顺序排列的。
可选的,所述处理器还用于:对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。
可选的,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,包括以下至少一项:
当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙或最后一个时隙中与其他SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有下行控制信息DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH。
需要说明的是,该实施例中的装置是与上述图2所示的方法对应的装置,上述各实施例中的实现方式均适用于该装置的实施例中,也能达到相同的技术效果。在此需要说明的是,本公开实施例提供的上述装置,能够实现上述 方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开的实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有处理器可执行指令,所述处理器可执行指令用于使所述处理器执行如上所述的混合自动重传应答消息传输资源的确定方法。上述方法实施例中的所有实现方式均适用于该实施例中,也能达到相同的技术效果。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质 等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (22)

  1. 一种混合自动重传应答消息传输资源的确定方法,应用于终端或者网络设备,包括:
    对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
    根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
  2. 根据权利要求1所述的混合自动重传应答消息传输资源的确定方法,还包括:
    在所述时间单元中传输所述重复传输的SPS PDSCH的HARQ-ACK。
  3. 根据权利要求1所述的混合自动重传应答消息传输资源的确定方法,其中,所述对应SPS配置索引j的SPS PDSCH为满足下述至少一个条件的SPS PDSCH:
    在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH;
    根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH。
  4. 根据权利要求3所述的混合自动重传应答消息传输资源的确定方法,其中,在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH为候选SPS PDSCH,所述候选SPS PDSCH通过以下方式得到:
    步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;
    步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;
    步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH。
  5. 根据权利要求3所述的混合自动重传应答消息传输资源的确定方法, 其中,根据终端的单播PDSCH接收能力确定需要接收的SPS PDSCH包括:
    当终端在一个时隙中仅支持接收一个单播PDSCH时,将当前时隙中对应最低SPS配置索引的SPS PDSCH作为需要接收的SPS PDSCH;和/或
    当终端在一个时隙中支持接收超过一个单播PDSCH时,按照如下一种方式确定需要接收的SPS PDSCH:
    如果SPS之间没有重叠,将当前时隙中按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
    如果SPS之间存在重叠,则在重叠的SPS PDSCH中先确定需要接收的SPS PDSCH,然后再按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
    步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH;在所述候选SPS PDSCH中,按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH;
    步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空或者判断累计选择出的候选SPS PDSCH的个数为N个时,结束判断,并将累计选择的N个候选SPS PDSCH作为需要接收的SPS PDSCH。
  6. 根据权利要求1所述的混合自动重传应答消息传输资源的确定方法,其中,重复传输的SPS PDSCH的HARQ-ACK为K次重复传输中,到所述目标SPS PDSCH为止的重复传输的SPS PDSCH合并之后得到的HARQ-ACK。
  7. 根据权利要求1所述的混合自动重传应答消息传输资源的确定方法,其中,
    重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK传输所在的时间单元中的对应于SPS PDSCH的HARQ-ACK码本中的对应于所述目标SPS PDSCH传输所在的时隙的HARQ-ACK位置。
  8. 根据权利要求7所述的混合自动重传应答消息传输资源的确定方法,其中,
    如果所述目标SPS PDSCH传输所在的时隙中包含多个HARQ-ACK位置,重复传输的SPS PDSCH的HARQ-ACK映射到根据所述目标SPS PDSCH对应的SPS配置索引确定的HARQ-ACK位置上,其中,所述时隙对应的多个HARQ-ACK位置是按照该时隙中的多个SPS PDSCH对应的SPS配置索引的从小到大或者从大到小顺序排列的。
  9. 根据权利要求1所述的混合自动重传应答消息传输资源的确定方法,还包括:
    对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。
  10. 根据权利要求1所述的混合自动重传应答消息传输资源的确定方法,其中,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,包括以下至少一项:
    当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙或最后一个时隙中与其他SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
    当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
    在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有下行控制信息DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH。
  11. 一种通信设备,包括:收发机,处理器,存储器,所述存储器上存有所述处理器可执行的程序;所述处理器执行所述程序时实现:对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
    根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
  12. 根据权利要求11所述的通信设备,其中,所述收发机还用于在所述时间单元中传输所述重复传输的SPS PDSCH的HARQ-ACK。
  13. 根据权利要求11所述的通信设备,其中,所述对应SPS配置索引j的SPS PDSCH为满足下述至少一个条件的SPS PDSCH:
    在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH;
    根据终端的单播PDSCH接收能力确定的需要接收的SPS PDSCH。
  14. 根据权利要求13所述的通信设备,其中,在重叠的SPS PDSCH中确定的需要接收的SPS PDSCH为候选SPS PDSCH,所述候选SPS PDSCH通过以下方式得到:
    步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;
    步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;
    步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为 空,得到集合Q中所有的候选SPS PDSCH。
  15. 根据权利要求13所述的通信设备,其中,根据终端的单播PDSCH接收能力确定需要接收的SPS PDSCH包括:
    当终端在一个时隙中仅支持接收一个单播PDSCH时,将当前时隙中对应最低SPS配置索引的SPS PDSCH作为需要接收的SPS PDSCH;和/或
    当终端在一个时隙中支持接收超过一个单播PDSCH时,按照如下一种方式确定需要接收的SPS PDSCH:
    如果SPS之间没有重叠,将当前时隙中按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
    如果SPS之间存在重叠,则在重叠的SPS PDSCH中先确定需要接收的SPS PDSCH,然后再按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH,其中N为终端在一个时隙中能够接收的单播PDSCH的个数;
    步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空,得到集合Q中所有的候选SPS PDSCH;在所述候选SPS PDSCH中,按照SPS配置索引从低到高的顺序,选择N个SPS PDSCH作为需要接收的SPS PDSCH;
    步骤1:将一个时隙中的所有SPS PDSCH作为一个集合Q,在集合中找到对应最小SPS配置索引的SPS PDSCH,作为候选SPS PDSCH;步骤2:去掉所述集合中与候选SPS PDSCH在时域上存在重叠的SPS PDSCH以及候选SPS PDSCH,得到更新的集合Q’;步骤3:针对更新的集合Q’,重复上述步骤1和步骤2,直到集合Q为空或者判断累计选择出的候选SPS PDSCH的个数为N个时,结束判断,并将累计选择的N个候选SPS PDSCH作为需要接收的SPS PDSCH。
  16. 根据权利要求11所述的通信设备,其中,重复传输的SPS PDSCH 的HARQ-ACK为K次重复传输中,到所述目标SPS PDSCH为止的重复传输的SPS PDSCH合并之后得到的HARQ-ACK。
  17. 根据权利要求11所述的通信设备,其中,
    重复传输的SPS PDSCH的HARQ-ACK映射到HARQ-ACK传输所在的时间单元中的对应于SPS PDSCH的HARQ-ACK码本中的对应于所述目标SPS PDSCH传输所在的时隙的HARQ-ACK位置。
  18. 根据权利要求17所述的通信设备,其中,
    如果所述目标SPS PDSCH传输所在的时隙中包含多个HARQ-ACK位置,重复传输的SPS PDSCH的HARQ-ACK映射到根据所述目标SPS PDSCH对应的SPS配置索引确定的HARQ-ACK位置上,其中,所述时隙对应的多个HARQ-ACK位置是按照该时隙中的多个SPS PDSCH对应的SPS配置索引的从小到大或者从大到小顺序排列的。
  19. 根据权利要求11所述的通信设备,其中,所述处理器还用于:对于所述重复传输的SPS PDSCH中不是所述目标SPS PDSCH的SPS PDSCH,不进行HARQ-ACK反馈。
  20. 根据权利要求11所述的通信设备,其中,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,包括以下至少一项:
    当配置了重复传输的SPS PDSCH在重复传输的时隙中的至少一个时隙或最后一个时隙中与其他SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
    当配置了重复传输且对应SPS配置索引i的SPS PDSCH,在重复传输的时隙中的至少一个时隙或最后一个时隙中与对应SPS配置索引j的SPS PDSCH存在时域重叠时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH;
    在传输HARQ-ACK的时间单元中,仅存在对应SPS PDSCH的 HARQ-ACK传输,或,在配置使用动态HARQ-ACK码本时,对应SPS PDSCH的HARQ-ACK,与对应具有下行控制信息DCI调度的PDSCH或指示下行SPS资源释放的PDCCH的HARQ-ACK进行复用传输时,对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH。
  21. 一种混合自动重传应答消息传输资源的确定装置,应用于终端或者网络设备,包括:
    确定模块,用于对于配置了重复传输的对应半持续调度SPS配置索引i的半持续调度物理下行共享信道SPS PDSCH,确定所述SPS PDSCH重复传输中的一个目标SPS PDSCH,所述目标SPS PDSCH为K次重复传输中的最后一次不与对应SPS配置索引j的SPS PDSCH存在时域重叠的SPS PDSCH,所述j小于i;
    处理模块,用于根据所述目标SPS PDSCH,确定重复传输的SPS PDSCH的混合自动重传应答HARQ-ACK传输所在的时间单元,所述时间单元为预定的A个符号,或为一个时隙,或为一个子时隙,A为正整数。
  22. 一种处理器可读存储介质,所述处理器可读存储介质存储有处理器可执行指令,所述处理器可执行指令用于使所述处理器执行权利要求1至10中任一项所述的混合自动重传应答消息传输资源的确定方法。
PCT/CN2021/087745 2020-04-20 2021-04-16 混合自动重传应答消息传输资源的确定方法、装置及设备 WO2021213267A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010312269.9A CN113541881B (zh) 2020-04-20 2020-04-20 混合自动重传应答消息传输资源的确定方法、装置及设备
CN202010312269.9 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021213267A1 true WO2021213267A1 (zh) 2021-10-28

Family

ID=78123616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087745 WO2021213267A1 (zh) 2020-04-20 2021-04-16 混合自动重传应答消息传输资源的确定方法、装置及设备

Country Status (2)

Country Link
CN (1) CN113541881B (zh)
WO (1) WO2021213267A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322341A1 (en) * 2021-04-05 2022-10-06 Nokia Technologies Oy Tdra enhancements for 60 ghz scenario
WO2023151048A1 (zh) * 2022-02-11 2023-08-17 富士通株式会社 信息反馈方法以及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031381A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 Sps pdsch的发送接收方法及其装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109972A1 (en) * 2013-10-21 2015-04-23 Intel IP Corporation Coverage enhancement and semi-persistent scheduling support in lte-tdd systems
CN106171023A (zh) * 2014-11-27 2016-11-30 华为技术有限公司 半永久性调度确认或否认码道的分配方法和基站
WO2019028857A1 (en) * 2017-08-11 2019-02-14 Lenovo (Beijing) Limited HARQ-ACK FEEDBACK SYNCHRONIZATION FOR SPS-PDSCH
CN110138514A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种进行混合自动重传请求反馈的方法和终端
CN110324132A (zh) * 2018-03-28 2019-10-11 华硕电脑股份有限公司 无线通信系统中确定码本大小的方法及设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813118B2 (en) * 2017-07-10 2020-10-20 Lg Electronics Inc. Method for transmitting and receiving uplink control information and devices supporting the same
US20190253904A1 (en) * 2018-02-09 2019-08-15 Mediatek Inc. Downlink channel reception in wireless communication system
US11303419B2 (en) * 2018-04-06 2022-04-12 Qualcomm Incorporated Semi-static HARQ-ACK codebook with multiple PDSCH transmissions per slot
CN110505040B (zh) * 2018-05-18 2020-05-26 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN110677222B (zh) * 2018-07-03 2022-04-05 大唐移动通信设备有限公司 一种pdsch重复传输的harq反馈方法及装置
KR102634704B1 (ko) * 2018-11-02 2024-02-06 지티이 코포레이션 피드백 코드북 결정

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109972A1 (en) * 2013-10-21 2015-04-23 Intel IP Corporation Coverage enhancement and semi-persistent scheduling support in lte-tdd systems
CN106171023A (zh) * 2014-11-27 2016-11-30 华为技术有限公司 半永久性调度确认或否认码道的分配方法和基站
WO2019028857A1 (en) * 2017-08-11 2019-02-14 Lenovo (Beijing) Limited HARQ-ACK FEEDBACK SYNCHRONIZATION FOR SPS-PDSCH
CN110138514A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种进行混合自动重传请求反馈的方法和终端
CN110324132A (zh) * 2018-03-28 2019-10-11 华硕电脑股份有限公司 无线通信系统中确定码本大小的方法及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322341A1 (en) * 2021-04-05 2022-10-06 Nokia Technologies Oy Tdra enhancements for 60 ghz scenario
US11576174B2 (en) * 2021-04-05 2023-02-07 Nokia Technologies Oy TDRA enhancements for 60 GHz scenario
WO2023151048A1 (zh) * 2022-02-11 2023-08-17 富士通株式会社 信息反馈方法以及装置

Also Published As

Publication number Publication date
CN113541881A (zh) 2021-10-22
CN113541881B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN110476385B (zh) 用于接收下行链路数据传输的方法和装置
CN109586877B (zh) 上行传输方法和相应设备
US11252717B2 (en) Co-existence of latency tolerant and low latency communications
US11811534B2 (en) Feedback method for repetitive uplink transmission in communication system
WO2021213267A1 (zh) 混合自动重传应答消息传输资源的确定方法、装置及设备
CN108271262B (zh) 分配上行控制信道的方法及设备
US11863471B2 (en) User equipment, access network device, and feedback information sending and receiving methods
CN106658742B (zh) 数据调度及传输的方法、装置及系统
KR20210133310A (ko) 반지속적 스케줄링 데이터의 harq-ack 피드백 방법, ue, 기지국, 장치 및 매체
CN102223215B (zh) Ack/nack的传输方法、接收方法及其装置
CN101958775B (zh) 确认信息的发送方法及用户设备
CN102647261B (zh) 调度信令发送及应答反馈的方法、系统和设备
EP2555574B1 (en) Mobile communication system, base station apparatus, mobile station apparatus, mobile communication method and integrated circuit
US20220248436A1 (en) Method and device for transmitting harq-ack
CN110661598B (zh) 一种半静态调度混合自动重传请求应答方法和设备
CN111294186B (zh) Harq-ack码本反馈方法及用户终端、计算机可读存储介质
JP2014515238A (ja) Ack/nackフィードバック情報を送信するための方法および装置
KR20120016057A (ko) 다중 반송파 시스템에서 긍정/부정 수신 확인 메시지를 피드백하는 방법
JP7297682B2 (ja) 端末及び通信方法
JP2011061671A (ja) 基地局、端末及び無線通信システム
JPWO2019003635A1 (ja) 端末及び通信方法
CN104601304B (zh) Ack/nack反馈信息的传输方法和装置以及接收方法和装置
JP6564052B2 (ja) チャネル状態情報の伝送方法、ユーザ機器、及びアクセス・ネットワーク・デバイス
WO2010133042A1 (zh) 一种sr信息与ack/nack信息反馈或多个sr信息反馈的方法和设备
JP2013535925A (ja) 上り応答信号を伝送する方法、移動端末及びマルチキャリア通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791903

Country of ref document: EP

Kind code of ref document: A1