WO2021212902A1 - 一种水合物开采过程中增强储层稳定性的方法 - Google Patents

一种水合物开采过程中增强储层稳定性的方法 Download PDF

Info

Publication number
WO2021212902A1
WO2021212902A1 PCT/CN2020/140516 CN2020140516W WO2021212902A1 WO 2021212902 A1 WO2021212902 A1 WO 2021212902A1 CN 2020140516 W CN2020140516 W CN 2020140516W WO 2021212902 A1 WO2021212902 A1 WO 2021212902A1
Authority
WO
WIPO (PCT)
Prior art keywords
clay stabilizer
hydrate
reservoir
stabilizer
stability
Prior art date
Application number
PCT/CN2020/140516
Other languages
English (en)
French (fr)
Inventor
李栋梁
郭泽晖
梁德青
曾家明
姚远欣
卢静生
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2021212902A1 publication Critical patent/WO2021212902A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/12Swell inhibition, i.e. using additives to drilling or well treatment fluids for inhibiting clay or shale swelling or disintegrating

Definitions

  • the invention relates to the technical field of natural gas hydrate mining, and in particular to a method for enhancing reservoir stability during the hydrate mining process.
  • Natural gas hydrate is an ice-like crystalline compound formed by water and CH 4 , C 2 H 6 and other alkanes or small molecule gases under high pressure and low temperature conditions. 97% of hydrate deposits are distributed on the edge of ocean continents, and the rest are permanently distributed on land. Tundra. As the most ideal alternative to fossil energy in the 21st century, many countries around the world have been engaged in hydrate exploration and research since 1998.
  • Marine hydrates are generally present in soft and unconsolidated sediments with a water depth of 800m or more and the seafloor below 400m. Except for a small amount of sandy sediments, most of the sediments are fine-grained argillaceous silt, and the clay content in the reservoir is too high. , The formation permeability is low.
  • Water-based drilling fluids suitable for submarine hydrate reservoirs water in water-based fracturing fluids and water produced by hydrate decomposition make clay swell with water absorption, not only occupy the internal pores of the reservoir, destroy the cement structure of the reservoir, but also decompose the hydrate It may break the equilibrium conditions for the stable existence of in-situ hydrates, reduce the strength parameters of the formation around the well, and cause geological disasters and engineering problems such as instability of the well wall.
  • marine hydrate reservoirs are ultra-low temperature oil and gas wells (the average temperature of hydrate reservoirs in the Shenhu area of the South China Sea is 14.15°C), which requires cold-resistant clay stabilizers to avoid freezing of clay stabilizers or precipitation of effective substances. .
  • the purpose of the present invention is to aim at the characteristics of marine natural gas hydrate reservoirs, in order to extend the single-well production cycle, increase the hydrate production range, and solve the problems of hydrate production shaft wall instability, etc., to propose a vertical well scheme.
  • a method for enhancing the stability of the reservoir during the hydrate mining process After the drilling operation is completed, the open hole annulus of the natural gas hydrate reservoir is filled with a mud containing a compound clay stabilizer to improve the stability of the well wall.
  • the compound clay stabilizer based on the total weight percentage of 100%, is composed of the following components by weight percentage: 5% KCl, 20%-40% Gemini quaternary ammonium salt clay stabilizer, 10% polyaluminum chloride Al 2 Cl(OH) 5 , the remaining component is clean water or sea water;
  • the structure of the Gemini quaternary ammonium salt clay stabilizer is:
  • the method of using the compound clay stabilizer includes: adding filtered seawater or clear water, foaming agent, foam stabilizer, and compound clay stabilizer to the compounding tank according to the mass ratio to form a base liquid; and then adding the base liquid Mix with cement mortar until the two are evenly mixed to form a clay-containing stabilizer drilling slurry; finally, in the hydrate mining operation, use a drilling device to drill from the seabed surface to the designed depth to form a well, and substitute the drilling slurry to fill the open hole annulus , Used to maintain the stability of the well wall; after the grouting is completed, the hydrate reservoir is exploited.
  • the present invention proposes for the first time that a compound clay stabilizer is added to the drilling slurry for hydrate mining.
  • the clay stabilizer used in cementing can not only reduce clay expansion but also avoid the dispersion and migration of soil particles; on the other hand, the clay stabilizer mortar can effectively enhance the cementation of soil particles and hydrate molecules, increase the strength of the formation, and thereby Reduce geological disasters and engineering problems that may occur in hydrate depressurization mining.
  • the invention compounded a clay stabilizer with multiple functions and energy efficiency, which can increase the added amount to further enhance the stability of the reservoir while reducing the production cost.
  • Figure 1 is the relationship curve between the concentration of the clay stabilizer and the anti-swelling rate in the examples.
  • Figure 2 is a triaxial shear stress-strain diagram of hydrate deposits with and without clay stabilizer added in the examples.
  • the square represents the soil without adding the clay stabilizer
  • the circle represents the addition of the clay stabilizer. Soil.
  • Fig. 3 is a graph showing the change in settlement of the overlying layer along the well position in the Z-direction hydrate goaf after the preparation of the slurry containing the compound clay stabilizer of the present invention in an embodiment.
  • a method for enhancing the stability of the reservoir during the hydrate mining process The filtered seawater or clean water, foaming agent, foam stabilizer and compound clay stabilizer are added to the mixing tank according to the mass ratio to form the base liquid; then the base liquid is added And cement mortar, stir until the two are evenly mixed to form a clay-containing stabilizer drilling slurry; finally, in the hydrate mining operation, use a drilling device to drill from the seabed surface to the designed depth to form a well hole, and substitute the drilling slurry to fill the open hole ring Empty, used to maintain the stability of the well wall; after the grouting is completed, the hydrate reservoir is exploited.
  • the present invention adds a clay stabilizer to the drilling slurry to inhibit the expansion of stratum soil particles and reduce the hydration stress of the reservoir.
  • Gemini quaternary ammonium salt clay stabilizer has the advantages of good stability, cold and salt resistance, good water solubility, and inhibition of metal corrosion.
  • the cationic groups and clay particles in the Gemini quaternary ammonium salt solution produce electrostatic adsorption.
  • the polar ends of the cations can penetrate deep into the electric double layer to form an adsorption film, which increases the polar interaction distance between water molecules and clay, which can effectively prevent storage.
  • the layered soil skeleton expands.
  • Polyaluminum chloride (PAC) enters the clay layer to replace the adsorbed interlayer water, changing its hydrophilicity to increase the anti-swelling effect. Hydrates may play a role in cementing sediment particles in the pores. Decomposition of hydrates leads to the destruction of the soil framework.
  • Polyaluminum chloride can effectively agglomerate clay particles to enhance the strength of hydrate deposits, thereby improving reservoir stability.
  • the compound clay stabilizer is based on the total weight percentage of 100%, and consists of the following components in weight percentage: 5% KCl, 20%-40% Gemini quaternary ammonium salt clay stabilizer, 10% polyaluminum chloride Al 2 Cl(OH) 5 , the balance is clean water or sea water, the structure of Gemini quaternary ammonium salt clay stabilizer is:
  • the preparation method of the above-mentioned compound clay stabilizer includes the following steps:
  • Step 1 Add a quantitative amount of triethylamine to a three-necked flask with a stirring device, keep the temperature of the water bath below 25°C, slowly drop concentrated hydrochloric acid into the flask and continue to react and stir for 2-3 hours;
  • Step 2 Add epichlorohydrin to the aqueous solution of triethylamine hydrochloride, adjust the pH to be weakly alkaline, turn on the heating and stirring device at 70°C until the solution is clear, take out the reactant after 6 hours of reaction, spin-evaporate, and recrystallize with absolute ethanol
  • the Gemini quaternary ammonium salt clay stabilizer was obtained by washing with acetone more than three times.
  • the synthesis reaction equation is as follows:
  • Step 3 Weigh quantitative KCl solid, polyaluminum chloride Al 2 Cl(OH) 5 and 1% Gemini quaternary ammonium salt clay stabilizer solution into a 500 ml volumetric flask.
  • the amount ratio of triethylamine and epichlorohydrin substances required for the synthesis of Gemini quaternary ammonium salt clay stabilizer is 2:1.
  • the above-mentioned compound clay stabilizer has good cold resistance and anti-swelling effect, and the relationship between its concentration and anti-swelling rate is shown in Figure 1.
  • the amount of clay stabilizer used is between 0-0.8%, the anti-swelling rate gradually increases. When it exceeds 0.8%, the rising rate decreases significantly, and the anti-swelling rate is about 85%.
  • the clay stabilizer was used in the triaxial undrained shear test of the natural sand hydrate in the South China Sea, and the obtained stress-strain relationship is shown in Figure 2.
  • Figure 2 shows that after adding the compound clay stabilizer, the sediments show an obvious stress hardening trend.
  • the particle size analysis shows that the particle size of the sediment is significantly increased after the clay stabilizer is added, and the particles with a particle size of less than 40 ⁇ m are significantly reduced (41.2% to 9.4%), which effectively reduces the degree of dispersion of soil particles.
  • this embodiment only uses the compound clay stabilizer in grouting, and uses the clay stabilizer to respond to the sediment particles mechanically, which not only achieves the effect of improving the stability of the reservoir, but also the clay stabilizer.
  • the stabilizer also has the effect of being cold-resistant and strongly inhibiting the formation of hydrates.

Abstract

一种水合物开采过程中增强储层稳定性的方法,属于天然气水合物开采领域,基于南海神狐海域泥质粉砂型水合物的储层特性,向天然气水合物储层中注入含复配粘土稳定剂的砂浆,粘土稳定剂各组分按总重量百分比为100%计,各组分构成为:5%KCl、20%-40%Gemini季铵盐粘土稳定剂、10%聚合氯化铝Al2Cl(OH)5,余量为清水或海水,一方面,固井中使用该粘土稳定剂既能减少粘土膨胀又能避免土颗粒分散运移,另一方面,含粘土稳定剂砂浆能有效增强土颗粒和水合物分子胶接作用,增加地层强度,从而降低水合物降压开采中可能发生的地质灾害和工程问题。

Description

一种水合物开采过程中增强储层稳定性的方法 技术领域
本发明涉及天然气水合物开采技术领域,具体涉及一种水合物开采过程中增强储层稳定性的方法。
背景技术
天然气水合物是水与CH 4、C 2H 6等烷烃或小分子气体在高压和低温条件下形成的冰状结晶化合物,97%的水合物矿藏分布于海洋大陆边缘,其余分布于陆域永久冻土带。作为21世纪化石能源最理想的替代能源,自1998年起全球众多国家都开始从事水合物勘查和研究。
海洋水合物一般赋存在水深800m以上、海底400m以下的的松软未固结沉积物中,除少量为砂质外,大多沉积物为颗粒很细的泥质粉砂,储层中黏土含量过高、地层渗透率低。适用于海底水合物储层的水基钻井液、水基压裂液中的水和水合物分解产生的水使得黏土吸水膨胀,不仅占据储层内部孔隙,破坏储层胶结结构,而且水合物分解可能打破原位水合物稳定存在的平衡条件,降低井周地层强度参数,造成井壁失稳等地质灾难和工程问题。然而,和常规油气井相比,海洋水合物藏地层属于超低温油气井(南海神狐海域水合物储层平均温度14.15℃),需要耐寒型粘土稳定剂,避免粘土稳定剂结冰或有效物质析出。
因此,开采过程中黏土膨胀造成的井壁破坏和地层失稳是实现天然气水合物产业化亟待解决的核心问题。针对泥质粉砂型储层水合物开采过程中储层稳定性增强,考虑将粘土稳定剂加入钻井泥浆中,以延长单井开采周期、提高水合物开采范围,实现海洋天然气水合物的商化开采奠定基础。
发明内容
本发明的目的是针对海洋天然气水合物储层的特性,为延长单井开采周期,提高水合物开采范围,解决水合物开采井壁失稳等问题,提出一种采用垂直井方案,在套管射孔完井方式下,利用耐寒型粘土稳定剂提高储层稳定性的方法。
为实现上述目的,本发明采用的技术方案是:
一种水合物开采过程中增强储层稳定性的方法,在钻井作业结束后,通过向天然气水合物储层的裸眼环空中填充含复配粘土稳定剂的泥浆,提高井壁稳定性,所述的复配粘土稳定剂,按总重量百分比为100%计,由如下重量百分比的组分构成:5%KCl、20%-40%Gemini 季铵盐粘土稳定剂、10%聚合氯化铝Al 2Cl(OH) 5,剩余组分为清水或海水;
所述Gemini季铵盐粘土稳定剂结构为:
Figure PCTCN2020140516-appb-000001
进一步地,所述复配粘土稳定剂的使用方法包括:将过滤海水或清水、起泡剂、稳泡剂及复配粘土稳定剂按质量比例加入到配液罐形成基液;再将基液和水泥砂浆搅拌至二者混合均匀形成含粘土稳定剂钻井配浆;最后,在水合物开采作业时,使用钻探装置从海底表面钻至设计深度形成井眼,替入钻井配浆填充裸眼环空,用于维护井壁稳定;注浆完成后,对水合物储层进行开采。
与现有技术相比,本发明的有益效果是:
1、基于天然气水合物储层复杂的成藏条件,本发明首次提出将复配粘土稳定剂加入水合物开采的钻井配浆中。一方面,固井中使用该粘土稳定剂既能减少粘土膨胀又能避免土颗粒分散运移;另一方面,含粘土稳定剂砂浆能够有效增强土颗粒和水合物分子胶结作用,增加地层强度,从而降低水合物降压开采中可能发生的地质灾害和工程问题。
2、本发明复配出具有多种作用能效的粘土稳定剂,可以在提高加入量而进一步增强储层稳定的同时降低生产成本。
附图说明
图1是实施例中粘土稳定剂的浓度和防膨率关系的关系曲线。
图2是实施例中添加粘土稳定剂和不添加粘土稳定剂的含水合物沉积物三轴剪切应力应变图,图中,方形代表未添加粘土稳定剂土体,圆形代表添加粘土稳定剂土体。
图3是实施例中使用含本发明复配粘土稳定剂配浆后,Z方向水合物采空区上覆层沿井位置沉降量变化图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例
一种水合物开采过程中增强储层稳定性的方法,将过滤海水或清水、起泡剂、稳泡剂及复配粘土稳定剂按质量比例加入到配液罐形成基液;再将基液和水泥砂浆,搅拌至二者混合均匀形成含粘土稳定剂钻井配浆;最后,在水合物开采作业时,使用钻探装置从海底表面钻至设计深度形成井眼,替入钻井配浆填充裸眼环空,用于维护井壁稳定;注浆完成后,对水合物储层进行开采。
水合物开采中钻进活动显著打破井周水合物稳定存在的相平衡条件,引发水合物分解,降低地层强度,导致地层失稳破坏等潜在风险。因此本发明在钻井配浆中加入粘土稳定剂,抑制地层土颗粒膨胀,降低储层水化应力。Gemini季铵盐粘土稳定剂具有稳定性好、耐寒抗盐、水溶性好、抑制金属腐蚀等优势。Gemini季铵盐溶液中阳离子基团和粘土颗粒产生静电吸附作用,阳离子的极性端可深入到双电层内部形成吸附膜,増加了水分子和粘土间的极性作用距离,能够有效防止储层土骨架膨胀。另外,大分子链与粘土间有较强的范德华引力作用,因此又能有效避免土颗粒分散运移。聚合氯化铝(PAC)通过进入粘土层间置换出所吸附层间水,改变其亲水性来增加防膨效果。水合物在孔隙中可能起到胶结沉积物颗粒的作用,水合物分解导致土骨架破坏,而聚合氯化铝能有效团聚粘土颗粒,增强含水合物沉积物强度,进而提高储层稳定性。
其中,复配粘土稳定剂按总重量百分比为100%计,由如下重量百分比的组分构成:5%KCl、20%-40%Gemini季铵盐粘土稳定剂、10%聚合氯化铝Al 2Cl(OH) 5,余量为清水或海水,Gemini季铵盐粘土稳定剂结构为:
Figure PCTCN2020140516-appb-000002
上述复配粘土稳定剂的制备方法包括以下步骤:
步骤一,把定量三乙胺加入带有搅拌装置的三口烧瓶中,保持水浴温度25℃以下,向烧瓶中缓慢滴入浓盐酸并持续反应搅拌2-3h;
步骤二,将环氧氯丙烷加入三乙胺盐酸盐水溶液中,调节pH呈弱碱性,开启加热搅拌装置70℃直至溶液澄清,反应6h后取出反应物旋蒸,用无水乙醇重结晶三次以上并用丙酮洗涤得到Gemini季铵盐粘土稳定剂,合成反应方程式如下:
Figure PCTCN2020140516-appb-000003
步骤三,称取定量KCl固体、聚合氯化铝Al 2Cl(OH) 5和1%的Gemini季铵盐粘土稳定剂溶液定容到500ml容量瓶中。
在上述步骤二中,合成Gemini季铵盐粘土稳定剂所需三乙胺和环氧氯丙烷物质的量比为2:1。
上述复配粘土稳定剂具有良好的耐寒防膨效果,其浓度与防膨率关系如图1所示。当粘土稳定剂使用量在0-0.8%之间时,防膨率逐渐上升,当超过0.8%时,上升速率显著下降,防膨率约为85%。将该粘土稳定剂用于含水合物物南海天然砂土的三轴不排水剪切实验中,得到的应力应变关系如图2所示。图2中显示,添加复配黏土稳定剂后沉积物呈现明显得应力硬化趋势。粒径分析可得,添加粘土稳定剂后沉积物粒径显著增加,粒径<40μm的颗粒明显减小(41.2%降至9.4%),有效降低土颗粒分散程度。
拟合添加粘土稳定剂前后土体三轴实验数据,得到参数用于竖直井降压开采储层沉降模拟实验,模拟结果如图3所示,在储层中使用含复配粘土稳定剂注浆后,井底沉降量显著减少。从图3可得,使用实施例方法后,储层最大沉降量约为使用前的30%左右。
另外,本实施例与现有技术(CN108278103B)相比,只在注浆中使用复配粘土稳定剂,利用粘土稳定剂对沉积物颗粒力学响应,不仅达到了提高储层稳定性的作用,粘土稳定剂还有着耐寒和强烈抑制水合物的生成效果。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (2)

  1. 一种水合物开采过程中增强储层稳定性的方法,其特征在于:在钻井作业结束后,通过向天然气水合物储层的裸眼环空中填充含复配粘土稳定剂的泥浆,提高井壁稳定性,所述的复配粘土稳定剂,按总重量百分比为100%计,由如下重量百分比的组分构成:5%KCl、20%-40%Gemini季铵盐粘土稳定剂、10%聚合氯化铝Al 2Cl(OH) 5,剩余组分为清水或海水;
    所述Gemini季铵盐粘土稳定剂结构为:
    Figure PCTCN2020140516-appb-100001
  2. 根据权利要求1所述的一种水合物开采过程中增强储层稳定性的方法,其特征在于:所述复配粘土稳定剂的使用方法包括:将过滤海水或清水、起泡剂、稳泡剂及复配粘土稳定剂按质量比例加入到配液罐形成基液;再将基液和水泥砂浆搅拌至二者混合均匀形成含粘土稳定剂钻井配浆;最后,在水合物开采作业时,使用钻探装置从海底表面钻至设计深度形成井眼,替入钻井配浆填充裸眼环空,用于维护井壁稳定;注浆完成后,对水合物储层进行开采。
PCT/CN2020/140516 2020-12-01 2020-12-29 一种水合物开采过程中增强储层稳定性的方法 WO2021212902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011382983.1A CN112392446A (zh) 2020-12-01 2020-12-01 一种水合物开采过程中增强储层稳定性的方法
CN202011382983.1 2020-12-01

Publications (1)

Publication Number Publication Date
WO2021212902A1 true WO2021212902A1 (zh) 2021-10-28

Family

ID=74603932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140516 WO2021212902A1 (zh) 2020-12-01 2020-12-29 一种水合物开采过程中增强储层稳定性的方法

Country Status (2)

Country Link
CN (1) CN112392446A (zh)
WO (1) WO2021212902A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745476A (zh) * 2022-10-14 2023-03-07 广州海洋地质调查局 多孔性水泥聚合物复合材料、制备方法及其在天然气水合物储层的增强增渗应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705080A (zh) * 2009-12-04 2010-05-12 中国石油大学(华东) 深水钻井液
CN103131397A (zh) * 2013-02-16 2013-06-05 中国石油化工股份有限公司 一种钻井液用黏土稳定剂及其制备方法
CN104152119A (zh) * 2013-05-13 2014-11-19 中国石油化工股份有限公司 一种油基钻井液用配制剂
CN108180001A (zh) * 2018-01-19 2018-06-19 吉林大学 泡沫注浆法改造海洋泥质粉砂型天然气水合物储层的方法
CN108278103A (zh) * 2018-01-19 2018-07-13 吉林大学 基于注泡沫砂浆技术的泥质粉砂型天然气水合物开采方法
WO2019089759A1 (en) * 2017-11-06 2019-05-09 Saudi Arabian Oil Company Drill-in fluid compositions and methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423029A (zh) * 2001-12-07 2003-06-11 盖海防 油田注水调剖增产技术工艺
CN101585775B (zh) * 2009-05-11 2013-11-27 中国海洋石油总公司 粘土稳定剂及其制备方法与应用
CN101974316B (zh) * 2010-10-14 2013-05-29 中国海洋石油总公司 一种钻井用钻井液
CN103242810B (zh) * 2013-05-30 2016-01-20 中国石油集团渤海钻探工程有限公司 保护煤层防塌的钻井液
CN105626017A (zh) * 2014-10-29 2016-06-01 中国石油化工股份有限公司 水敏性稠油井注蒸汽伴注粘土防膨剂的使用方法
CN104371687A (zh) * 2014-12-05 2015-02-25 陕西延长石油油田化学科技有限责任公司 一种油田用粘土稳定剂
US10273396B2 (en) * 2016-01-26 2019-04-30 Rhodia Operations Clay stabilizing and methods of use with quaternary ammonium salts
CN106753300B (zh) * 2016-12-28 2019-10-08 中国科学院广州能源研究所 一种双效复合型水合物抑制剂及其制备方法
US10266745B2 (en) * 2017-02-03 2019-04-23 Saudi Arabian Oil Company Anti-bit balling drilling fluids, and methods of making and use thereof
CN107325804A (zh) * 2017-07-13 2017-11-07 陕西省石油化工研究设计院 一种压裂用防膨稳定剂
CN107870174A (zh) * 2017-09-19 2018-04-03 西南石油大学 一种煤层气用粘土稳定剂的筛选方法及煤层气开采方法
CN109488260B (zh) * 2018-12-17 2020-12-11 吉林大学 采用含防膨剂压裂液提高天然气水合物开采效率的方法
CN111997595A (zh) * 2020-08-06 2020-11-27 中国科学院广州能源研究所 一种天然气水合物地质分层装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705080A (zh) * 2009-12-04 2010-05-12 中国石油大学(华东) 深水钻井液
CN103131397A (zh) * 2013-02-16 2013-06-05 中国石油化工股份有限公司 一种钻井液用黏土稳定剂及其制备方法
CN104152119A (zh) * 2013-05-13 2014-11-19 中国石油化工股份有限公司 一种油基钻井液用配制剂
WO2019089759A1 (en) * 2017-11-06 2019-05-09 Saudi Arabian Oil Company Drill-in fluid compositions and methods
CN108180001A (zh) * 2018-01-19 2018-06-19 吉林大学 泡沫注浆法改造海洋泥质粉砂型天然气水合物储层的方法
CN108278103A (zh) * 2018-01-19 2018-07-13 吉林大学 基于注泡沫砂浆技术的泥质粉砂型天然气水合物开采方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU HAILIANG, HAIXIONG TANG, JUNFENG LUO, HONGSHU WEI: "Deepwater gas hydrates drilling and coring techniques", OIL DRILLING & PRODUCTION TECHNOLOGY, vol. 31, no. 1, 28 February 2009 (2009-02-28), pages 27 - 30, XP055860008, ISSN: 1000-7393, DOI: 10.13639/j.odpt.2009.01.020 *
SUN ZEPING: "Preparation and Anti-swelling Evaluation of Glycerol as Cold-resistant Clay Stabilizer", CHINESE MASTER'S THESES FULL-TEXT DATABASE, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 August 2016 (2016-08-15), CN , XP055860005, ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745476A (zh) * 2022-10-14 2023-03-07 广州海洋地质调查局 多孔性水泥聚合物复合材料、制备方法及其在天然气水合物储层的增强增渗应用
CN115745476B (zh) * 2022-10-14 2023-08-01 广州海洋地质调查局 多孔性水泥聚合物复合材料、制备方法及其在天然气水合物储层的增强增渗应用

Also Published As

Publication number Publication date
CN112392446A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Fangzheng Re-recognition of “unconventional” in unconventional oil and gas
Allahvirdizadeh A review on geothermal wells: Well integrity issues
Yuan et al. A holistic review of geosystem damage during unconventional oil, gas and geothermal energy recovery
CN104927805A (zh) 一种适用于陆相沉积敏感性页岩地层的高密度水基钻井液
CN104277803A (zh) KCl封堵防塌钻井液及其制备方法
US20080171673A1 (en) Compositions comprising sorel cements and oil based fluids
EP3110903A1 (en) Aqueous solution and methods for manufacture and use
US20150252663A1 (en) Flowable composition, method for producing the flowable composition and method for fracking a subterranean formation using the flowable composition
CN112761608B (zh) 压驱一体化提高页岩油采收率降低压裂液返排的方法
CA2976099C (en) Treatment fluids comprising anhydrous ammonia for use in subterranean formation operations
WO2021212902A1 (zh) 一种水合物开采过程中增强储层稳定性的方法
US10501686B2 (en) Methods of preparing treatment fluids comprising anhydrous ammonia for use in subterranean formation operations
CN113738329B (zh) 一种近岸水下扇油藏的开采方法
CN104449622B (zh) 抗高温高压有机复合型油层保护液及其制备方法
Sheng Alkaline-Polymer Flooding
Joshi et al. Challenges and Recent Advances in Sustainable Oil and Gas Recovery and Transportation
Peng et al. Drilling Fluid Formula and Performance for Slow Angle Wireline Core Drilling.
Maley et al. Surface modification of proppant to improve transport and placement
CN104073225B (zh) 一种钾盐钻探冲洗液
US20230323194A1 (en) Foam stabilization using nanoparticles
Qi et al. Research and application of a controllable permeability refracturing technology in a high-water-cut potential layer
ALEHEMER Impact of Temperature on the Rheological Properties with Shear Stress limit of Iron Oxide Nanoparticle Modified Drilling Fluid of Dibella, Oil Field
Yodgorov et al. Development of inhibitory drilling fluid for drilling in clay layer
Zhao et al. Cracking mechanism of shale cracks during fracturing
Dang et al. A precious achievements review of geological development and IOR application from 20 sucessful years in high temperature fractured granite reservoir

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931866

Country of ref document: EP

Kind code of ref document: A1