WO2021212893A1 - 裂纹缺陷的无损检测方法、检测标准件及其制造方法 - Google Patents
裂纹缺陷的无损检测方法、检测标准件及其制造方法 Download PDFInfo
- Publication number
- WO2021212893A1 WO2021212893A1 PCT/CN2020/139981 CN2020139981W WO2021212893A1 WO 2021212893 A1 WO2021212893 A1 WO 2021212893A1 CN 2020139981 W CN2020139981 W CN 2020139981W WO 2021212893 A1 WO2021212893 A1 WO 2021212893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crack
- additive manufacturing
- manufacturing
- forming process
- crack defect
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 84
- 238000009659 non-destructive testing Methods 0.000 title claims abstract description 47
- 238000012360 testing method Methods 0.000 title claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 58
- 239000000654 additive Substances 0.000 claims abstract description 49
- 230000000996 additive effect Effects 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims description 39
- 238000002844 melting Methods 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 16
- 210000000746 body region Anatomy 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 230000007480 spreading Effects 0.000 claims description 13
- 238000003892 spreading Methods 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910000856 hastalloy Inorganic materials 0.000 claims description 10
- 238000007689 inspection Methods 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 230000001066 destructive effect Effects 0.000 claims description 5
- 230000003416 augmentation Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 7
- 238000000879 optical micrograph Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000002311 subsequent effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/90—Means for process control, e.g. cameras or sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/12—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
- B23K31/125—Weld quality monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/18—Investigating the presence of flaws defects or foreign matter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/027—Specimens with holes or notches
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0298—Manufacturing or preparing specimens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/03—Investigating materials by wave or particle radiation by transmission
- G01N2223/04—Investigating materials by wave or particle radiation by transmission and measuring absorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/615—Specific applications or type of materials composite materials, multilayer laminates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the invention relates to the field of processing quality inspection of workpieces, in particular to a method for detecting cracks in an additively manufactured workpiece, a detection standard part and a manufacturing method thereof.
- AM additive Manufacturing
- 3D printing Three Dimension Printing
- Three Dimension Printing Three Dimension Printing
- metal additive manufacturing technology is gradually mature and has been widely used in aerospace, medical, automotive, nuclear power and other fields.
- SLM Selective Laser Melting
- SLM is considered to be one of the most potential AM technologies, due to the use of finely focused laser beams as the shaping energy source, high-speed and high-precision scanning galvanometers as the processing beam control unit and the use of Thinner layer thickness control technology.
- SLM technology has more advantages in obtaining high-density and high-precision forming parts, and can complete the direct forming of complex cavities, profiles, thin-walled, and variable-section parts , Widely used in aerospace and other fields, such as aero-engine pre-rotation nozzles, fuel nozzles, turbine blades and other parts.
- the SLM component Due to the rapid melting and solidification of the metal powder material in the SLM process, the SLM component is prone to crack defects.
- the principle is that the uneven temperature field caused by the local heat input in the laser selective melting and forming process will inevitably cause local thermal effects. Therefore, the molten pool will be subjected to tensile stress during solidification and subsequent cooling, and residual stress will be formed in the subsequent process, which will eventually lead to cracks.
- Aerospace SLM components are currently widely used non-destructive testing methods (such as industrial CT testing, ultrasonic testing, radiographic testing, fluorescent penetrant testing, etc.) to detect the location of cracks and the proportion of crack defects and other characteristics to analyze and evaluate whether the parts meet the requirements of use.
- the general steps of the traditional non-destructive testing method are to manufacture standard parts with crack defects, calibrate the standard parts, and obtain the calibration detection signal corresponding to the crack defect; or you can directly look up the table and fit the calibration detection signal corresponding to the defect; Perform non-destructive testing of the workpiece to obtain the test detection signal of the workpiece, and compare the test detection signal with the calibration detection signal to obtain the crack defect status of the workpiece, including the crack position and the proportion of crack defects.
- the traditional nondestructive testing process has poor accessibility and detection blind spots. It is difficult to simply follow the corresponding relationship between the crack defects of traditional parts and the calibration detection signal of non-destructive testing. It needs to be re-calibrated to clarify the characteristics of the non-destructive testing signal characteristics of the crack defects of the additive manufacturing workpiece, and the determination can be clear The non-destructive testing parameters of the non-destructive testing signal.
- the inventor found that in the model design stage, the crack structure is designed to obtain a three-dimensional model, and standard parts are obtained by additive manufacturing based on the three-dimensional model. Smaller cracks are easily filled by the metal melted by the boundary contour and cannot form cracks. Therefore, it is difficult to obtain standard parts of crack defects with consistent three-dimensional models, and it cannot truly reflect the crack defects of additive manufacturing.
- the purpose of the present invention is to provide a method for detecting cracks in an additively manufactured workpiece, a detection standard part and a manufacturing method thereof, so as to realize accurate non-destructive detection of crack defects in an additively manufactured workpiece.
- a method for manufacturing crack defect standard parts is used for non-destructive testing of crack defects in additively manufactured workpieces, including: Step A. Setting the crack defect area of the standard part, in the crack defect area The ratio of crack defects in the crack defect area is set as a first ratio value; step B. Select an additive manufacturing forming process for manufacturing the crack defect area, and obtain the first ratio value corresponding to the The first process parameter of the additive manufacturing forming process; step C. The additive manufacturing forming process is performed based on the first process parameter to form the crack defect area.
- the additive manufacturing forming process is a laser selective melting forming process
- the first process parameter includes a first laser line energy density
- the material of the crack defect area is Hastelloy X alloy
- the first ratio value is 0.07%-1.2%
- the first process parameter includes, a first laser
- the linear energy density is 230J/m-400J/m
- the first scanning pitch is 0.07mm-0.09mm
- the first strip width is 3mm-10mm
- the first spreading thickness is 0.02 mm-0.03mm
- the energy density of the first laser line is determined by the following formula:
- a is the first ratio value
- ⁇ is the energy density of the first laser line.
- the first ratio value is 1.2%, the first laser line energy density is 400 J/m, and the first scanning pitch is 0.07 mm, the width of the first strip is 3mm, the overlap of the first strip is 0.1mm, and the thickness of the first spreading powder is 0.03mm; or, in the step B, the first ratio value is 0.07% , The first laser line energy density is 230J/m, the first scanning pitch is 0.09mm, the first strip width is 10mm, the first strip overlaps 0.05mm, and the first powder spreading thickness is 0.03 mm; or, in the step B, the first ratio value is 0.43%, the first laser line energy density is 277 J/m, the first scanning pitch is 0.08 mm, and the first strip width is 5 mm , The first strip overlaps 0.07mm, and the first powder spreading thickness is 0.03mm.
- step A it further includes setting a body region of the standard part, and the body region has no crack defects; in the step B, further Including, selecting another additive manufacturing forming process for manufacturing the body region, and obtaining the second process parameters of the another additive manufacturing forming process corresponding to the body region; in the step C, further including , Performing the another additive manufacturing forming process based on the second process parameter to form the body region.
- the another additive manufacturing forming process is a laser selective melting forming process
- the material of the body region is Hastelloy X alloy
- the second process parameters of another additive manufacturing process include: the second laser line energy density is 170J/m-200J/m, the second scanning pitch is 0.08mm-0.10mm, the second strip width is 4mm-6mm, and the second The belt overlap is 0.06mm-0.1mm, and the second spreading thickness is 0.02mm-0.03mm.
- a crack defect standard part according to another aspect of the present invention is manufactured by the manufacturing method described in any one of the above.
- a method for nondestructive testing of crack defects is used to detect the crack defects of additively manufactured workpieces, including: Step 1. Perform nondestructive testing on the above standard parts to obtain the nondestructive testing of the crack defects of the standard parts
- the detected calibration detection signal determines the detection parameters of the non-destructive testing; step 2. According to the detection parameters obtained in the first step, the non-destructive testing is performed on the additively manufactured workpiece to obtain the additively manufactured workpiece According to the test detection signal, the proportion of crack defects of the additively manufactured workpiece is obtained according to the test detection signal.
- the method further includes step 3. Performing a mechanical test on the additively manufactured workpiece to obtain the mechanical properties of the additively manufactured workpiece, and obtain the proportion of crack defects The relationship with the mechanical properties.
- the step one includes manufacturing the standard part as described above; performing non-destructive testing to obtain the calibration detection signal of the non-destructive testing of the crack defect of the standard part , To determine the detection parameters of the non-destructive testing.
- the progressive effects of the present invention include obtaining cracked inspection standard parts by adjusting the process parameters, reflecting the crack defects of the additively manufactured workpieces more truly, and obtaining more accurate calibration results and non-destructive testing parameters, thereby The accuracy and reliability of the non-destructive inspection results of the crack defects of the additively manufactured workpieces are improved, and the relationship between the crack defects of the additively manufactured workpieces and the mechanical properties of the additively manufactured workpieces is further obtained more accurately and reliably.
- FIG. 1 is a schematic flowchart of a method for manufacturing a standard component for detecting cracks in an additively manufactured workpiece according to one or more embodiments.
- Fig. 2 is a schematic structural diagram of a standard component according to one or more embodiments.
- Fig. 3 is an optical micrograph of a crack defect with a first scale value according to an embodiment.
- Fig. 4 is an optical micrograph of a crack defect with a first scale value according to another embodiment.
- Fig. 5 is an optical microscope photograph of a crack defect with a first scale value according to still another embodiment.
- Fig. 6 is a corresponding graph of the energy density of the laser line and the first ratio value.
- Fig. 7 is an optical micrograph of a crack-free defect in the body region of a standard part according to one or more embodiments.
- FIG. 8 is a schematic flowchart of a method for detecting cracks in an additively manufactured workpiece according to one or more embodiments.
- the method for manufacturing a standard component for detecting cracks in an additively manufactured workpiece includes:
- Step A Set the crack defect area of the standard part, in the crack defect area, the ratio of the crack defect to the crack defect area is set as a first ratio value
- the process of setting the crack defect area can be realized by computer-aided design software such as UG.
- the specific structure of the standard part 10 can be: the standard part 10 includes a body area 1 and a crack defect area 2, and the body area 1 is No crack defects.
- the crack defect area 2 may not be limited to the one crack defect area 2 shown in FIG. In this case, it is assumed that the standard part 10 has only the crack defect area 2.
- the area ratio of the crack defect to the crack defect area 2 is the first ratio value, and the first ratio value is set according to the needs of the data points that need to be calibrated.
- multiple crack defect regions 2 may have different first ratio values, so that the calibration process can be accelerated, and the calibration detection signals corresponding to different crack defects accounted for at the same time can be calibrated.
- Step B Selecting the additive manufacturing forming process for manufacturing the crack defect area, and obtaining the first process parameter of the additive manufacturing forming process corresponding to the first ratio value;
- Step C Perform the additive manufacturing forming process based on the first process parameters to form the crack defect area.
- the first ratio value is set to 1.2%
- the additive manufacturing process is selected as the laser selective melting forming process
- the EOS M280 laser selective melting forming equipment is used
- the forming material is Hastelloy X alloy, corresponding to the first A process parameter is: the energy density of the first laser line is 400J/m, the first scanning distance is 0.07mm, the width of the first strip is 3mm, the first strip is overlapped by 0.1mm, and the thickness of the first powder layer is 0.02mm-0.03mm , This embodiment is 0.03mm; the obtained optical micrograph of the crack defect area is shown in Figure 3.
- the first ratio value is set to 0.07%
- the additive manufacturing process is a laser selective melting forming process
- EOS M280 laser selective melting forming equipment is used
- the forming material is Hastelloy X alloy, corresponding to the first process parameter
- the energy density of the first laser line is 230J/m
- the first scanning distance is 0.09mm
- the first strip width is 10mm
- the first powder layer thickness is 0.02mm-0.03mm.
- This implementation The example is 0.03mm
- the obtained optical micrograph of the crack defect area is shown in Figure 4.
- the first ratio value is set to 0.43%
- the additive manufacturing process is a laser selective melting forming process
- EOS M280 laser selective melting forming equipment is used
- the forming material is Hastelloy X alloy, corresponding to the first process parameter
- the energy density of the first laser line is 277J/m
- the first scanning distance is 0.08mm
- the first strip width is 5mm
- the first powder layer thickness is 0.02mm-0.03mm.
- This implementation The example is 0.03mm
- the obtained optical micrograph of the crack defect area is shown in Figure 5.
- the first process parameter corresponding to the first ratio value can be obtained by experimental methods, or calculated by consulting literature and fitting simulation. Generally speaking, it is tested or calculated based on the laser volume energy density.
- the volume energy density includes the laser line energy density, the thickness of the powder layer, the overlapping width of the strips and the scanning distance. The larger the volume energy density, the easier it is to produce cracks. The principle is that when the band overlap width is larger and the scanning distance is smaller, the volume laser energy density generated is larger, resulting in a larger temperature gradient, a larger residual stress, and finally more cracks.
- the inventor unexpectedly discovered in the research that for the first ratio value of 0.07%-1.2%, the first scanning distance is 0.07mm-0.09mm, the first strip width is 3mm-10mm, and the first strip overlaps 0.05mm- Within the range of 0.1mm and the first spreading thickness of 0.02mm-0.03mm, the formation of crack defects is only related to the energy density of the laser line, and can be quickly obtained by the formula:
- a is the first ratio value
- ⁇ is the energy density of the first laser line.
- the first ratio value and the actual value of the first laser energy density are basically consistent with the formula.
- the specific actual values are shown in the following table:
- Table 1 The first ratio value and the actual value of the first laser energy density
- the corresponding first process parameter can be determined quickly and accurately through the formula, and the manufacturing efficiency can be improved.
- the additive manufacturing process in the above embodiments is a laser selective melting and forming process, and is not limited to this. Any additive manufacturing process that may produce crack defects is applicable, and the material is not limited.
- Hastelloy X alloy can also be other materials.
- the Hastelloy X alloy used here is widely used in high-density and high-precision forming parts, and is widely used in aerospace and other fields, such as aero engine pre-rotation nozzles, fuel nozzles, turbine blades and other parts.
- the beneficial effect of setting the range of the first ratio value to 0.07%-1.2% is that the inventors have found in long-term practice that crack defects with the first ratio value of 0.07%-1.2% are effective for laser selective melting of Hastelloy X alloy.
- the formed part has the greatest impact on high-density and high-precision forming parts. If the first ratio value is less than 0.07%, it can be approximated as no crack defect, and the impact on the performance of the workpiece is limited. If the first ratio value is greater than 1.2%, it is usually caused by thermal stress. If it is too large, it will cause serious warpage of the forming surface. There is no need for crack detection, just abandon reprinting and manufacturing, and it will not cause subsequent effects.
- the standard parts manufactured by the method of this case can accurately calibrate the calibration detection signal corresponding to the first ratio value 0.07%-1.2%, so as to accurately account for the crack defect ratio to 0.07%-1.2%
- the crack defect of the workpiece is detected, which is especially suitable for the non-destructive testing of the high-density and high-precision forming parts formed by the laser selective melting of Hastelloy X alloy. It can be understood that this case is also applicable to other materials, and other workpieces of additive manufacturing processes that may have crack defects.
- the first ratio value is not limited to 0.07%-1.2%, and can also be in other ranges.
- step B further includes the additive manufacturing of the body zone, which may be through another additive manufacturing process, the process parameter of which is the second process parameter.
- the other additive manufacturing forming process is a laser selective melting forming process including the material of the body region is Hastelloy X alloy
- the second process parameters include: the second laser line energy density is 170J/m-200J/m , The second scanning pitch is 0.08mm-0.10mm, the second strip width is 4mm-6mm, the second strip overlaps 0.06mm-0.10mm, and the second spreading thickness is 0.02mm-0.03mm.
- the first The energy density of the second laser line is 185J/m
- the second scanning distance is 0.09mm
- the second strip width is 5mm
- the second spreading thickness is 0.03mm.
- the optical microscope photo of the body area is shown in the figure. 7 shown.
- the non-destructive testing method for additively manufactured workpiece cracks may include the following steps:
- Step 1 Perform non-destructive testing on the standard part 10 manufactured by the above manufacturing method, obtain the calibration detection signal of the non-destructive testing of the crack defect of the standard part 10, and determine the testing parameters that can clearly reflect the non-destructive testing of the crack defect;
- Step 2 Perform the non-destructive testing on the additive manufacturing workpiece according to the detection parameters obtained in the step 1, to obtain a test detection signal of the additive manufacturing workpiece, and obtain the augmentation based on the test detection signal The percentage of crack defects in the workpiece made of materials.
- step 2 the standard part is obtained according to step 1.
- Industrial CT inspection parameters, non-destructive inspection of additive manufacturing workpieces, test inspection images are obtained, and the proportion of crack defects in additive manufacturing workpieces can be obtained according to the images. It can be understood that non-destructive testing can also be ultrasonic testing.
- the steps are similar.
- the detection signal is a waveform image. It is necessary to compare the calibration detection signal and the test detection signal to fit.
- Industrial CT is more intuitive than ultrasound, but the cost is higher. .
- Those skilled in the art can understand that the above steps can also be applied to other non-destructive testing methods, and are not limited to industrial CT and ultrasonic testing.
- the specific step of step one may be to manufacture standard parts, and then perform non-destructive testing. This calculation result is more accurate and reliable, but it is not limited to this. For example, you can entrust batch processing to purchase standard parts in advance, and then perform non-destructive testing when required for testing.
- the detection method further includes step three, performing a mechanical test on the additively manufactured workpiece to obtain the mechanical properties of the additively manufactured workpiece, and further obtain the ratio of the percentage of crack defects and the mechanical properties. relation.
- the mechanical test can specifically be tensile, endurance, fatigue and other strength evaluation tests. The performance evaluation results obtained in this way can actually analyze and study the relationship between crack defects and the mechanical properties of the workpiece, and provide powerful applications for additive manufacturing of formed workpieces, such as SLM formed workpieces. Theoretical support.
- the beneficial effect of using the above-mentioned embodiments to provide the manufacturing method of standard parts, standard parts, and crack defect detection methods is that the inspection standard parts with cracks are obtained by adjusting the process parameters, which more truly reflects the quality of the additive manufacturing workpiece.
- For crack defects more accurate calibration results and non-destructive testing parameters are obtained, thereby improving the accuracy and reliability of the non-destructive testing results of crack defects of additive manufacturing workpieces, and further obtaining more accurate and reliable cracks of additive manufacturing workpieces The relationship between defects and the mechanical properties of additively manufactured workpieces.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Quality & Reliability (AREA)
- Toxicology (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Powder Metallurgy (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
一种裂纹缺陷的无损检测方法、检测标准件及其制造方法,用于增材制造工件裂纹缺陷的无损检测,其中,裂纹缺陷标准件的制造方法包括步骤A.设定标准件的裂纹缺陷区,在裂纹缺陷区中,裂纹缺陷占裂纹缺陷区的比例设定为第一比例值;步骤B.选择用于制造裂纹缺陷区的增材制造成形工艺,获取第一比例值对应的增材制造成形工艺的第一工艺参数;步骤C.基于第一工艺参数执行增材制造成形工艺,以形成裂纹缺陷区。裂纹缺陷的无损检测方法具有检测结果准确可靠的优点。
Description
本发明涉及工件的加工质量检测领域,尤其涉及一种增材制造工件裂纹的检测方法、检测标准件及其制造方法。
增材制造(Additive Manufacturing,AM)技术,俗称3D打印、三维打印(Three Dimension Printing)技术,目前金属增材制造技术逐渐成熟,已广泛应用于航空航天、医疗、汽车、核电等领域。例如,激光选区熔化(Selective Laser Melting,SLM)被认为是最具潜力的AM技术之一,由于采用细微聚焦光斑的激光束作为成形能量源、高速高精度扫描振镜作为加工光束控制单元及采用更薄的层厚控制技术,相对于其他AM技术而言,SLM技术在获得高致密和高精度成形件方面更具有优势,可完成复杂型腔、型面、薄壁、变截面零件的直接成形,广泛应用于航空航天等领域,如航空发动机预旋喷嘴、燃油喷嘴、涡轮叶片等零件。
由于SLM过程中的金属粉末材料发生快速熔化凝固复杂相变过程,SLM构件易存在裂纹缺陷,其原理在于,由于激光选区熔化成形过程中,局部热输入导致的不均匀温度场必然引起局部热效应,因此熔池在凝固及随后的冷却过程中将承受拉伸应力的作用,并在随后的过程中形成残余应力,最终导致裂纹的产生。
航空航天用SLM构件目前广泛采用无损检测方法(如工业CT检测、超声检测、射线检测、荧光渗透检测等)检测零件的裂纹位置及裂纹缺陷占比等特征以分析评价零件是否满足使用要求。传统的无损检测方法一般的步骤是,制造具有裂纹缺陷的标准件,对标准件进行标定,得到裂纹缺陷对应的标定检测信号;或者也可以直接查表以及拟合得到缺陷对应的标定检测信号;对工件进行无损检测,得到工件的试验检测信号,对比试验检测信号与标定检测信号,即可得到工件的裂纹缺陷情况,包括裂纹位置以及裂纹缺陷占比等特征。
然而,发明人发现,增材制造结构件由于其组织和缺陷特征与传统制件不同,存在不均匀性和各向异性等特征,且几何形状复杂,传统无损检测工艺出现可达性差、检测盲区大等难题,因此不能简单沿用传统制件的裂纹缺陷与无损检测的标定检测信号的对应关系,需重新进行标定,明确增材制造工件的裂纹缺陷 的无损检测信号特征,以及确定可以得到清楚的无损检测信号的无损检测参数。
现有技术中,制造裂纹检测的检测标准件主要有三种方法,一种是利用疲劳试验机进行疲劳试验,制造出具有一定尺寸的裂纹缺陷;第二种方法是用等离子体或其他高能束切割出裂纹,然后再焊合。
然而,发明人发现,这两种方法制造的具有裂纹缺陷的标准件,制造过程会对标准件的组织进行了较大程度的破坏,其裂纹形态与增材制造过程产生的裂纹差别较大,另外,由于已经发生了组织也不能进一步的就标准件进行力学测试,评价裂纹对标准件的力学性能影响。
现有技术中,还存在采用增材制造的方式制造标准件,例如激光选区熔化(SLM),在增材制造的模型设计阶段,将裂纹缺陷的形状设计在标准件,即通过结构设计的方法得到裂纹,以期得到与增材制造组织过程产生裂纹相近的结构的标准件,从而希望得到更为准确的标定结果。例如公开号为CN108436081A的中国专利申请文件,其预先设计了裂纹缺陷的长度为8mm,将需要的裂纹缺陷尺寸、位置等信息添加至试样模型,形成带有缺陷的三维模型,再对该三维模型进行打印。
然而,发明人发现,在模型设计阶段设计裂纹结构得到三维模型,并根据三维模型进行增材制造得到标准件,若宽度大的裂纹易将几十微米直径的粉末留存在裂纹缝隙内,若宽度较小的裂纹易被边界轮廓熔化的金属填充,无法成形裂纹,因此很难得到三维模型一致的裂纹缺陷的标准件,也无法真实地反映增材制造裂纹缺陷。
因此,本领域需要一种增材制造工件裂纹的检测方法、检测标准件及其制造方法,以实现对增材制造工件的裂纹缺陷准确的无损检测,也可以进一步地测试得到增材制造工件的裂纹缺陷与其力学性能的关系。
发明内容
本发明的目的在于提供一种增材制造工件裂纹的检测方法、检测标准件及其制造方法,以实现对增材制造工件的裂纹缺陷准确的无损检测。
根据本发明一个方面的一种裂纹缺陷标准件的制造方法,用于增材制造工件裂纹缺陷的无损检测,包括:步骤A.设定所述标准件的裂纹缺陷区,在所述裂纹缺陷区中,裂纹缺陷占所述裂纹缺陷区的比例设定为第一比例值;步骤B.选择用 于制造所述裂纹缺陷区的增材制造成形工艺,获取所述第一比例值对应的所述增材制造成形工艺的第一工艺参数;步骤C.基于所述第一工艺参数执行所述增材制造成形工艺,以形成所述裂纹缺陷区。
在所述制造方法的一个或多个实施例中,在所述步骤B中,所述增材制造成形工艺为激光选区熔化成形工艺,所述第一工艺参数包括第一激光线能量密度,设定的所述第一比例值越高,对应地设定所述第一激光线能量密度越高。
在所述制造方法的一个或多个实施例中,所述裂纹缺陷区的材料为Hastelloy X合金,所述第一比例值为0.07%-1.2%,所述第一工艺参数包括,第一激光线能量密度为230J/m-400J/m,第一扫描间距0.07mm-0.09mm,第一条带宽度3mm-10mm,第一条带搭接0.05mm-0.1mm,以及第一铺粉厚度0.02mm-0.03mm;所述第一激光线能量密度通过以下公式确定:
a=1.3-1.4/(1+(η/291)
8)
其中,a为第一比例值,η为第一激光线能量密度。
在所述制造方法的一个或多个实施例中,在所述步骤B中,所述第一比例值为1.2%,所述第一激光线能量密度400J/m,所述第一扫描间距0.07mm,所述第一条带宽度3mm,所述第一条带搭接0.1mm,所述第一铺粉厚度0.03mm;或者,在所述步骤B中,所述第一比例值为0.07%,所述第一激光线能量密度230J/m,所述第一扫描间距0.09mm,所述第一条带宽度10mm,所述第一条带搭接0.05mm,所述第一铺粉厚度0.03mm;或者,在所述步骤B中,所述第一比例值为0.43%,所述第一激光线能量密度277J/m,所述第一扫描间距0.08mm,所述第一条带宽度5mm,所述第一条带搭接0.07mm,所述第一铺粉厚度0.03mm。
在所述制造方法的一个或多个实施例中,在所述步骤A中,还包括设定所述标准件的一本体区,所述本体区无裂纹缺陷;在所述步骤B中,还包括,选择用于制造所述本体区的另一增材制造成形工艺,获取所述本体区对应的所述另一增材制造成形工艺的第二工艺参数;在所述步骤C中,还包括,基于所述第二工艺参数执行所述另一增材制造成形工艺,以形成所述本体区。
在所述制造方法的一个或多个实施例中,在所述步骤B中,所述另一增材制造成形工艺为激光选区熔化成形工艺,所述本体区的材料为Hastelloy X合金,所述另一增材制造成形工艺的第二工艺参数包括,第二激光线能量密度170J/m- 200J/m,第二扫描间距0.08mm-0.10mm,第二条带宽度4mm-6mm,第二条带搭接0.06mm-0.1mm,第二铺粉厚度0.02mm-0.03mm。
根据本发明另一个方面的一种裂纹缺陷标准件,其通过以上任意一项所述的制造方法制造。
根据本发明又一个方面的一种裂纹缺陷的无损检测方法,用于检测增材制造工件的裂纹缺陷,包括:步骤一.对上述标准件进行无损检测得到所述标准件裂纹缺陷的所述无损检测的标定检测信号,确定所述无损检测的检测参数;步骤二.根据所述步骤一得到的所述检测参数,对所述增材制造工件进行所述无损检测,得到所述增材制造工件的试验检测信号,根据所述试验检测信号得到所述增材制造工件的裂纹缺陷占比。
在所述无损检测方法的一个或多个实施例中,还包括步骤三.对所述增材制造工件进行力学测试,得到所述增材制造工件的力学性能,以及得到所述裂纹缺陷占比与所述力学性能的关系。
在所述无损检测方法的一个或多个实施例中,在所述步骤一中,包括制造如上所述的标准件;进行无损检测得到所述标准件裂纹缺陷的所述无损检测的标定检测信号,确定所述无损检测的检测参数。
综上,本发明的进步效果包括,通过工艺参数调整的方式得到具有裂纹的检测标准件,更为真实地反映增材制造工件的裂纹缺陷,得到更为准确的标定结果以及无损检测参数,从而提高了增材制造工件的裂纹缺陷无损检测结果的准确性以及可靠性,以及进一步地得到更为准确可靠的增材制造工件的裂纹缺陷与增材制造工件的力学性能之间的关系。
附图概述
本发明的具体特征、性能由以下的实施例及其附图进一步给出。
图1是根据一个或多个实施例的增材制造工件裂纹的检测标准件的制造方法的流程示意图。
图2是根据一个或多个实施例的标准件的结构示意图。
图3是根据一实施例的第一比例值的裂纹缺陷的光学显微镜照片。
图4是根据另一实施例的第一比例值的裂纹缺陷的光学显微镜照片。
图5是根据又一实施例的第一比例值的裂纹缺陷的光学显微镜照片。
图6是激光线能量密度与第一比例值的对应曲线图。图7是根据一个或多个实施例的标准件的本体区的无裂纹缺陷的光学显微镜照片。
图8是根据一个或多个实施例的增材制造工件裂纹的检测方法的流程示意图。
下述公开了多种不同的实施所述的主题技术方案的实施方式或者实施例。为简化公开内容,下面描述了各元件和排列的具体实例,当然,这些仅仅为例子而已,并非是对本发明的保护范围进行限制。“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
如图1所示,在一实施例中,增材制造工件裂纹的检测标准件的制造方法包括:
步骤A.设定所述标准件的裂纹缺陷区,在所述裂纹缺陷区中,裂纹缺陷占所述裂纹缺陷区的比例设定为第一比例值;
具体地,设定裂纹缺陷区的过程可以通过UG等计算机辅助设计软件实现,参考图2,标准件10的具体结构可以是,标准件10包括本体区1以及裂纹缺陷区2,本体区1为无裂纹缺陷。但并不以此为限,裂纹缺陷区2可以不限于图2中所示的一处裂纹缺陷区2,也可以是多处,一个极限的例子是,为了标定可能的整个工件均具有裂纹的情况,设定标准件10仅具有裂纹缺陷区2。裂纹缺陷占裂纹缺陷区2的面积比例为第一比例值,第一比例值根据需要标定的数据点的需要设定,在具有多个裂纹缺陷区2的标准件10的一个或多个实施例中,多个裂纹缺陷区2可以具有不同的第一比例值,如此可以加速标定的过程,实现对不同的裂纹缺陷占比对应的标定检测信号的同时标定。
步骤B.选择用于制造所述裂纹缺陷区的增材制造成形工艺,获取所述第一比 例值对应的所述增材制造成形工艺的第一工艺参数;
步骤C.基于所述第一工艺参数执行所述增材制造成形工艺,以形成所述裂纹缺陷区。
具体地,例如在一实施例中,设定第一比例值为1.2%,选择增材制造工艺为激光选区熔化成形工艺,采用EOS M280激光选区熔化成形设备,成形材料为Hastelloy X合金,对应第一工艺参数为:第一激光线能量密度为400J/m,第一扫描间距0.07mm,第一条带宽度3mm,第一条带搭接0.1mm,第一铺粉层厚度0.02mm-0.03mm,此实施例为0.03mm;得到的裂纹缺陷区的光学显微镜照片如图3所示。
例如在另一实施例中,设定第一比例值为0.07%,增材制造工艺为激光选区熔化成形工艺,采用EOS M280激光选区熔化成形设备,成形材料为Hastelloy X合金,对应第一工艺参数为:第一激光线能量密度为230J/m,第一扫描间距0.09mm,第一条带宽度10mm,第一条带搭接0.05mm,第一铺粉层厚度0.02mm-0.03mm,此实施例为0.03mm;得到的裂纹缺陷区的光学显微镜照片如图4所示。
例如在又一实施例中,设定第一比例值为0.43%,增材制造工艺为激光选区熔化成形工艺,采用EOS M280激光选区熔化成形设备,成形材料为Hastelloy X合金,对应第一工艺参数为:第一激光线能量密度为277J/m,第一扫描间距0.08mm,第一条带宽度5mm,第一条带搭接0.07mm,第一铺粉层厚度0.02mm-0.03mm,此实施例为0.03mm;得到的裂纹缺陷区的光学显微镜照片如图5所示。
条带打印的具体方式为本领域技术人员所熟知,例如可以参考EOS M280激光选区熔化成形设备的使用手册,也可以参考学术论文,例如Sun Z,Tan X,Tor S B,et al.Selective laser melting of stainless steel 316L with low porosity and high build rates[J].Materials & Design,2016,104:197-204,此处不再赘述。
第一比例值对应的第一工艺参数,可以通过试验的方法得到,也可以通过查阅文献资料以及拟合仿真的方式计算得到。一般而言是根据激光体积能量密度进行试验或者计算,体积能量密度包括激光线能量密度,铺粉层厚,条带搭接宽度以及扫描间距,体积能量密度越大,越容易产生裂纹。其原理在于,当条带搭接宽度越大,扫描间距越小时,产生的体积激光能量密度越大,导致温度梯度越大,残余应力也越大,最终产生的裂纹越多。
但发明人在研究中意外发现,对于第一比例值为0.07%-1.2%,在第一扫描间距0.07mm-0.09mm,第一条带宽度3mm-10mm,第一条带搭接0.05mm-0.1mm,以及第一铺粉厚度0.02mm-0.03mm范围内,裂纹缺陷的形成仅与激光线能量密度关联,并可以通过公式快速得到:
a=1.3-1.4/(1+(η/291)
8)
其中,a为第一比例值,η为第一激光线能量密度。
如图6所示,第一比例值以及第一激光能量密度的实际值与公式之间基本吻合。具体实际值如下表所示:
表1:第一比例值以及第一激光能量密度的实际值
线能量密度(J/m) | 第一比例值(%) |
230 | 0.07 |
240 | 0.16 |
250 | 0.24 |
260 | 0.31 |
277 | 0.43 |
290 | 0.58 |
300 | 0.67 |
310 | 0.8 |
320 | 0.88 |
330 | 0.93 |
340 | 0.97 |
350 | 1.01 |
360 | 1.07 |
370 | 1.12 |
380 | 1.15 |
390 | 1.18 |
400 | 1.20 |
因此,对于第一比例值为0.07%-1.2%的范围内,可以快速准确地通过公式确 定对应的第一工艺参数,提高制造效率。
另外,从图3至图5也可以看出,在第一比例值为0.07%-1.2%范围内,也仅存在单独的裂纹缺陷,而不会混杂有未熔合缺陷等其它的缺陷形式,由此制造得到的标准件,可以得到更为准确的检测裂纹缺陷的检测参数。
本领域技术人员可以理解到,以上实施例中增材制造工艺为激光选区熔化成形工艺,并不以此为限,任何可能产生裂纹缺陷的增材制造工艺的工件均可适用,材料也不限于Hastelloy X合金,也可以是其他材料。此处采用的Hastelloy X合金在高致密和高精度成形件方面应用广泛,广泛应用于航空航天等领域,如航空发动机预旋喷嘴、燃油喷嘴、涡轮叶片等零件。将第一比例值的范围设定为0.07%-1.2%的有益效果还在于,发明人在长期实践中发现,在第一比例值为0.07%-1.2%的裂纹缺陷对于Hastelloy X合金激光选区熔化成形的在高致密和高精度成形件的影响最大,若第一比例值小于0.07%,可近似于无裂纹缺陷,对工件的性能影响有限,若第一比例值大于1.2%,通常由热应力过大,导致成形面翘曲严重,无需进行裂纹检测,直接放弃重新打印制造即可,也不会造成后续影响。可以理解到,以上叙述表明,采用本案方法制造的标准件,可以准确地标定出第一比例值0.07%-1.2%对应的标定检测信号,从而准确地将裂纹缺陷占比为0.07%-1.2%工件的裂纹缺陷检测出来,特别适用于Hastelloy X合金激光选区熔化成形的在高致密和高精度成形件的无损检测。可以理解到,本案也适用于其他材料,其他可能产生裂纹缺陷的增材制造工艺的工件,第一比例值也不限于0.07%-1.2%,也可以是其他的范围。
在一些实施例中,对于具有本体区1的标准件而言,步骤B还包括本体区的增材制造,可以是通过另一增材制造工艺,其工艺参数为第二工艺参数。在一实施例中,该另一增材制造成形工艺为激光选区熔化成形工艺包括,本体区的材料为Hastelloy X合金,第二工艺参数包括,第二激光线能量密度170J/m-200J/m,第二扫描间距0.08mm-0.10mm,第二条带宽度4mm-6mm,第二条带搭接0.06mm-0.10mm,第二铺粉厚度0.02mm-0.03mm,在一实施例中,第二激光线能量密度为185J/m,第二扫描间距0.09mm,第二条带宽度5mm,第二条带搭接0.06mm,第二铺粉厚度0.03mm得到的本体区的光学显微镜照片如图7所示。
参考图8,在一实施例中,增材制造工件裂纹的无损检测方法可以包括以下 步骤:
步骤一.对以上制造方法制造得到的标准件10进行无损检测,得到标准件10裂纹缺陷的无损检测的标定检测信号,以及确定可以清楚地反映裂纹缺陷的无损检测的检测参数;
步骤二.根据所述步骤一得到的所述检测参数,对所述增材制造工件进行所述无损检测,得到所述增材制造工件的试验检测信号,根据所述试验检测信号得到所述增材制造工件的裂纹缺陷占比。
具体地,例如进行工业CT的无损检测,首先对标准件10进行无损检测,调试检测参数,直至可以清晰地反映裂纹缺陷,得到标准件的无损检测图像,在步骤二中,根据步骤一得到的工业CT的检测参数,对增材制造工件进行无损检测,得到试验检测图像,根据图像得到增材制造工件的裂纹缺陷占比。可以理解到,无损检测还可以是超声检测,步骤类似,检测信号为波形图像,需要对比标定检测信号与试验检测信号进行拟合,工业CT相对于超声而言更为直观,但成本也更高。本领域技术人员可以理解到,以上步骤还可以适用于其它无损检测方法,不以工业CT、超声检测为限制。
在一些实施例中,步骤一的具体步骤可以是制造标准件,接着进行无损检测。如此计算结果更为准确可靠,但不以此为限,例如可以提前委托批量加工购买标准件,待有检测需要时再进行无损检测。
进一步地,在一些实施例中,检测方法还包括步骤三,对该增材制造工件进行力学测试,得到所述增材制造工件的力学性能,并进一步得到该裂纹缺陷占比与该力学性能的关系。力学测试具体可以是伸、持久、疲劳等强度考核试验,如此可以获得的性能考核结果能实际分析研究裂纹缺陷与工件力学性能的关系,为增材制造成形工件,例如SLM成形工件的应用提供有力的理论支持。
综上,采用上述实施例提供标准件的制造方法、标准件以及裂纹缺陷检测方法的有益效果在于,通过工艺参数调整的方式得到具有裂纹的检测标准件,更为真实地反映增材制造工件的裂纹缺陷,得到更为准确的标定结果以及无损检测参数,从而提高了增材制造工件的裂纹缺陷无损检测结果的准确性以及可靠性,以及进一步地得到更为准确可靠的增材制造工件的裂纹缺陷与增材制造工件的力学性能之间的关系。
本发明虽然以上述实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。
Claims (8)
- 一种裂纹缺陷标准件的制造方法,用于增材制造工件裂纹缺陷的无损检测,其特征在于,包括:步骤A.设定所述标准件的裂纹缺陷区,在所述裂纹缺陷区中,裂纹缺陷占所述裂纹缺陷区的比例设定为第一比例值;步骤B.选择用于制造所述裂纹缺陷区的增材制造成形工艺,获取所述第一比例值对应的所述增材制造成形工艺的第一工艺参数;步骤C.基于所述第一工艺参数执行所述增材制造成形工艺,以形成所述裂纹缺陷区;其中,所述增材制造成形工艺为激光选区熔化成形工艺,所述裂纹缺陷区的材料为Hastelloy X合金,所述第一比例值为0.07%-1.2%,所述第一工艺参数包括,第一激光线能量密度为230J/m-400J/m,第一扫描间距0.07mm-0.09mm,第一条带宽度3mm-10mm,第一条带搭接0.05mm-0.1mm,以及第一铺粉厚度0.02mm-0.03mm;所述第一激光线能量密度通过以下公式确定:a=1.3-1.4/(1+(η/291) 8)其中,a为第一比例值,η为第一激光线能量密度。
- 如权利要求1所述的制造方法,其特征在于,在所述步骤B中,所述第一比例值为1.2%,所述第一激光线能量密度400J/m,所述第一扫描间距0.07mm,所述第一条带宽度3mm,所述第一条带搭接0.1mm,所述第一铺粉厚度0.03mm;或者,在所述步骤B中,所述第一比例值为0.07%,所述第一激光线能量密度230J/m,所述第一扫描间距0.09mm,所述第一条带宽度10mm,所述第一条带搭接0.05mm,所述第一铺粉厚度0.03mm;或者,在所述步骤B中,所述第一比例值为0.43%,所述第一激光线能量密度277J/m,所述第一扫描间距0.08mm,所述第一条带宽度5mm,所述第一条带搭接0.07mm,所述第一铺粉厚度0.03mm。
- 如权利要求1所述的制造方法,其特征在于,在所述步骤A中,还包括设定所述标准件的一本体区,所述本体区无裂纹缺陷;在所述步骤B中,还包括,选择用于制造所述本体区的另一增材制造成形工艺,获取所述本体区对应的所述另一增材制造成形工艺的第二工艺参数;在所述步骤C中,还包括,基于所述第二工艺参数执行所述另一增材制造成形工艺,以形成所述本体区。
- 如权利要求3所述的制造方法,其特征在于,在所述步骤B中,所述另一增材制造成形工艺为激光选区熔化成形工艺,所述本体区的材料为Hastelloy X合金,所述另一增材制造成形工艺的第二工艺参数包括,第二激光线能量密度163J/m-200J/m,第二扫描间距0.08mm-0.10mm,第二条带宽度4mm-6mm,第二条带搭接0.06mm-0.1mm,第二铺粉厚度0.02mm-0.03mm。
- 一种裂纹缺陷标准件,其特征在于,通过权利要求1-4任意一项所述的制造方法制造。
- 一种裂纹缺陷的无损检测方法,用于检测增材制造工件的裂纹缺陷,其特征在于,包括:步骤一.对如权利要求5所述的标准件进行无损检测得到所述标准件裂纹缺陷的所述无损检测的标定检测信号,确定所述无损检测的检测参数;步骤二.根据所述步骤一得到的所述检测参数,对所述增材制造工件进行所述无损检测,得到所述增材制造工件的试验检测信号,根据所述试验检测信号得到所述增材制造工件的裂纹缺陷占比。
- 如权利要求6所述的检测方法,其特征在于,还包括:步骤三.对所述增材制造工件进行力学测试,得到所述增材制造工件的力学性能,以及得到所述裂纹缺陷占比与所述力学性能的关系。
- 如权利要求6所述的检测方法,其特征在于,在所述步骤一中,包括:制造如权利要求5所述的标准件;进行无损检测得到所述标准件裂纹缺陷的所述无损检测的标定检测信号,确定所述无损检测的检测参数。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20932126.4A EP4141408A4 (en) | 2020-04-22 | 2020-12-28 | NON-DESTRUCTIVE TESTING METHOD FOR CRACK DEFECTS, AND TEST STANDARD PART AND METHOD FOR MANUFACTURING SAME |
US17/920,557 US20230150028A1 (en) | 2020-04-22 | 2020-12-28 | A non-destructive testing method for crack defects, and a testing standard part and a manufacturing method thereof |
JP2022564476A JP7450758B2 (ja) | 2020-04-22 | 2020-12-28 | クラック欠陥の非破壊検査方法、検査標準品及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010319649.5A CN111207985B (zh) | 2020-04-22 | 2020-04-22 | 裂纹缺陷的无损检测方法、检测标准件及其制造方法 |
CN202010319649.5 | 2020-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021212893A1 true WO2021212893A1 (zh) | 2021-10-28 |
Family
ID=70784764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/139981 WO2021212893A1 (zh) | 2020-04-22 | 2020-12-28 | 裂纹缺陷的无损检测方法、检测标准件及其制造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230150028A1 (zh) |
EP (1) | EP4141408A4 (zh) |
JP (1) | JP7450758B2 (zh) |
CN (1) | CN111207985B (zh) |
WO (1) | WO2021212893A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110542717A (zh) * | 2018-05-29 | 2019-12-06 | 中国航发商用航空发动机有限责任公司 | 基于加工机床的整体叶盘无损检测装置和方法 |
CN111207985B (zh) * | 2020-04-22 | 2020-08-07 | 中国航发上海商用航空发动机制造有限责任公司 | 裂纹缺陷的无损检测方法、检测标准件及其制造方法 |
CN112834620A (zh) * | 2020-12-01 | 2021-05-25 | 中广核检测技术有限公司 | 一种用于pbf增材制造离线超声波无损检测方法 |
CN113959798A (zh) * | 2021-08-26 | 2022-01-21 | 南昌航空大学 | 一种激光选区熔化增材制造内部流道缺陷射线检测对比试样设计与加工方法 |
CN114260464A (zh) * | 2021-12-31 | 2022-04-01 | 西安增材制造国家研究院有限公司 | 一种基于slm法制备高温合金自然缺陷群的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160355904A1 (en) * | 2015-06-02 | 2016-12-08 | Clarkson University | Methods for Modifying and Enhancing Material Properties of Additive Manufactured Metallic Parts |
CN106881462A (zh) * | 2017-01-23 | 2017-06-23 | 华中科技大学 | 一种针对激光选区熔化成形缺陷的在线检测与优化系统 |
CN108195856A (zh) * | 2017-12-07 | 2018-06-22 | 北京星航机电装备有限公司 | 一种增材制造材料工业ct检测灵敏度测试方法 |
CN108436081A (zh) | 2018-03-06 | 2018-08-24 | 无锡市产品质量监督检验院 | 一种预置缺陷的金属试样3d打印成形方法 |
CN109080134A (zh) * | 2018-07-25 | 2018-12-25 | 沈阳精合数控科技开发有限公司 | 通过调节激光功率控制成型速度的打印方法及装置 |
CN110414873A (zh) * | 2019-09-05 | 2019-11-05 | 安徽机电职业技术学院 | 一种金属3d打印件内部缺陷的综合评价方法 |
CN111207985A (zh) * | 2020-04-22 | 2020-05-29 | 中国航发上海商用航空发动机制造有限责任公司 | 裂纹缺陷的无损检测方法、检测标准件及其制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH705662A1 (de) * | 2011-11-04 | 2013-05-15 | Alstom Technology Ltd | Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM). |
WO2014106753A1 (en) * | 2013-01-07 | 2014-07-10 | Bae Systems Plc | Object production using an additive manufacturing process and quality assessment of the object |
JP2019163941A (ja) * | 2018-03-19 | 2019-09-26 | Ntn株式会社 | 超音波探傷試験用標準試験片、超音波探傷試験方法及び軸受部品の製造方法 |
CN108941560B (zh) * | 2018-07-27 | 2019-06-11 | 中南大学 | 一种消除Renè104镍基高温合金激光增材制造裂纹的方法 |
CN110496966B (zh) * | 2019-08-30 | 2021-12-03 | 鑫精合激光科技发展(北京)有限公司 | 一种激光沉积增材制造方法 |
-
2020
- 2020-04-22 CN CN202010319649.5A patent/CN111207985B/zh active Active
- 2020-12-28 US US17/920,557 patent/US20230150028A1/en active Pending
- 2020-12-28 JP JP2022564476A patent/JP7450758B2/ja active Active
- 2020-12-28 WO PCT/CN2020/139981 patent/WO2021212893A1/zh unknown
- 2020-12-28 EP EP20932126.4A patent/EP4141408A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160355904A1 (en) * | 2015-06-02 | 2016-12-08 | Clarkson University | Methods for Modifying and Enhancing Material Properties of Additive Manufactured Metallic Parts |
CN106881462A (zh) * | 2017-01-23 | 2017-06-23 | 华中科技大学 | 一种针对激光选区熔化成形缺陷的在线检测与优化系统 |
CN108195856A (zh) * | 2017-12-07 | 2018-06-22 | 北京星航机电装备有限公司 | 一种增材制造材料工业ct检测灵敏度测试方法 |
CN108436081A (zh) | 2018-03-06 | 2018-08-24 | 无锡市产品质量监督检验院 | 一种预置缺陷的金属试样3d打印成形方法 |
CN109080134A (zh) * | 2018-07-25 | 2018-12-25 | 沈阳精合数控科技开发有限公司 | 通过调节激光功率控制成型速度的打印方法及装置 |
CN110414873A (zh) * | 2019-09-05 | 2019-11-05 | 安徽机电职业技术学院 | 一种金属3d打印件内部缺陷的综合评价方法 |
CN111207985A (zh) * | 2020-04-22 | 2020-05-29 | 中国航发上海商用航空发动机制造有限责任公司 | 裂纹缺陷的无损检测方法、检测标准件及其制造方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP4141408A4 |
Z, TAN XTOR S B ET AL.: "Selective laser melting of stainless steel 316L with low porosity and high build rates [J", MATERIALS & DESIGN, vol. 104, 2016, pages 197 - 204, XP029571258, DOI: 10.1016/j.matdes.2016.05.035 |
Also Published As
Publication number | Publication date |
---|---|
CN111207985A (zh) | 2020-05-29 |
US20230150028A1 (en) | 2023-05-18 |
JP2023523737A (ja) | 2023-06-07 |
EP4141408A1 (en) | 2023-03-01 |
EP4141408A4 (en) | 2024-05-22 |
CN111207985B (zh) | 2020-08-07 |
JP7450758B2 (ja) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021212893A1 (zh) | 裂纹缺陷的无损检测方法、检测标准件及其制造方法 | |
WO2021212894A1 (zh) | 未熔合缺陷的无损检测方法、检测标准件及其制造方法 | |
WO2021212847A1 (zh) | 预制裂纹缺陷、内置裂纹缺陷的制备方法及预制件 | |
AU2014204284B2 (en) | Object production using an additive manufacturing process and quality assessment of the object | |
Rieder et al. | On-and offline ultrasonic characterization of components built by SLM additive manufacturing | |
JP5864861B2 (ja) | 成形空気孔の形成方法及びシステム | |
Ünal-Saewe et al. | Process development for tip repair of complex shaped turbine blades with IN718 | |
HU191162B (en) | Test body for evaluating the results of non-destructive testing as well as method for producing test bodies | |
CN103264225A (zh) | 一种激光对接焊工艺参数的优化方法和装置 | |
CN112881533A (zh) | 一种超声检测试块及其制备方法 | |
Pereira et al. | Study of laser metal deposition additive manufacturing, CNC milling, and NDT ultrasonic inspection of IN718 alloy preforms | |
JP7418620B2 (ja) | Lmdプロセスを制御することによって融合不良欠陥を予備成形する方法 | |
CN117758254A (zh) | 零部件表面损伤激光熔覆修复方法、装置及零部件 | |
EP2752720A1 (en) | Object production using an additive manufacturing process and quality assessment of the object | |
Na et al. | Nondestructive evaluation of programmed defects in ti-6al-4v l-pbf astm e8-compliant dog-bone samples | |
RU2808972C1 (ru) | Способ неразрушающего испытания на дефекты типа трещина и стандартная деталь для испытания и способ ее производства | |
RU2808971C1 (ru) | Способ неразрушающего испытания на дефекты типа lof, и стандартная деталь для испытания и способ ее производства | |
Lindgren et al. | Modelling additive manufacturing of superalloys | |
CN109719413B (zh) | 一种零变形无缺陷焊接控制方法 | |
Andurkar et al. | Effect of Build Orientation on Residual Stress and Microstructure in Inconel 625 Fabricated via Laser Powder Bed Fusion | |
Ball1a | Location of Cracks Occurring in an Additive Manufacturing Process by Acoustic Emission | |
Gill | Microstructure Evaluation and Mechanical Testing of Ti6Al4v Overlap Samples Manufactured by Dual-Laser Slm | |
Xu et al. | Surface Quality Detection of Laser Lap Welds and Its Influence on Joint Strength. | |
Zhang et al. | A modified SWT model for very high cycle fatigue life prediction of L-PBF Ti-6Al-4V alloy based on Single Defect: Effect of building orientation | |
van Rooyen | Indentation Investigation of 304L Stainless Steel Friction Stir Weld Simulated Crack Repair and Software Development for Rapid Processing of Indentation Data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20932126 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022564476 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020932126 Country of ref document: EP Effective date: 20221122 |