WO2021212840A1 - 一种漏电检测电路、漏电保护电路及家用电器 - Google Patents

一种漏电检测电路、漏电保护电路及家用电器 Download PDF

Info

Publication number
WO2021212840A1
WO2021212840A1 PCT/CN2020/133033 CN2020133033W WO2021212840A1 WO 2021212840 A1 WO2021212840 A1 WO 2021212840A1 CN 2020133033 W CN2020133033 W CN 2020133033W WO 2021212840 A1 WO2021212840 A1 WO 2021212840A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling capacitor
voltage
circuit
sampling resistor
detection circuit
Prior art date
Application number
PCT/CN2020/133033
Other languages
English (en)
French (fr)
Inventor
白智锐
李雪
陈小雷
盛保敬
Original Assignee
青岛经济技术开发区海尔热水器有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛经济技术开发区海尔热水器有限公司, 海尔智家股份有限公司 filed Critical 青岛经济技术开发区海尔热水器有限公司
Publication of WO2021212840A1 publication Critical patent/WO2021212840A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • G01R19/15Indicating the presence of current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus

Definitions

  • the invention belongs to the field of household appliances, and specifically relates to a leakage detection circuit, a leakage protection circuit and a household appliance.
  • Household appliances free people from arduous, trivial, and time-consuming housework, create a more comfortable and beautiful life and working environment that is more conducive to physical and mental health, and provide a variety of cultural and entertainment conditions. It has become a modern family Necessities of life.
  • a leakage detection and protection device is usually provided on the household electrical appliance or the household electrical connection terminal in the user's home.
  • the reference potential point for capacitance-sensing electrical measurement devices is generally the floor of the circuit board, and there is no substantial reference potential.
  • the ground capacitance is uncertain, the anti-interference ability is poor, and it is greatly affected by the environment. Factors such as whether it is held or not have an impact on it.
  • the detection circuit will be energized with strong current, which will cause certain difficulties in isolation of the strong current, and it is difficult for the product to comply with safety regulations.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a leakage detection circuit.
  • the voltage detection reference point and the reference potential form a stronger and more Stable coupling makes the measurement stable and reliable.
  • Another object of the present invention is to provide a leakage protection circuit including the above-mentioned leakage detection circuit.
  • Another object of the present invention is to provide a household appliance including the above-mentioned leakage detection circuit and/or leakage protection circuit.
  • a leakage detection circuit includes a live conductor with alternating current and a connecting end for connecting with the conductor under test.
  • the connecting end is connected with the first end of a first coupling capacitor, and the second end of the first coupling capacitor is coupled with the fourth The first end of the capacitor is connected, and the second end of the fourth coupling capacitor is grounded;
  • the charged conductor is connected to the first end of the second coupling capacitor, the second end of the second coupling capacitor is connected to the first end of the third coupling capacitor, and the second end of the third coupling capacitor is grounded;
  • a sampling resistor is connected between the intersection of the second end of the second coupling capacitor and the first end of the third coupling capacitor and the intersection of the second end of the first coupling capacitor and the first end of the fourth coupling capacitor.
  • the second end of the third coupling capacitor is grounded after being connected to the neutral line.
  • the capacitance values of the second coupling capacitor and the third coupling capacitor are equal or within 20% of the difference.
  • first coupling capacitor and/or the second coupling capacitor and/or the third coupling capacitor are electronic components with capacitive characteristics, or capacitors formed by two metal structures close to each other;
  • the fourth coupling capacitor has a metal structure with an electrode plate at one end and a ground at the other end to form a structure with capacitance characteristics.
  • a voltage dividing resistor is also provided between the intersection of the first coupling capacitor and the fourth coupling capacitor and the sampling resistor.
  • it also includes a voltage collection circuit connected to both ends of the sampling resistor and used to detect the voltage across the sampling resistor.
  • a leakage protection circuit includes the above-mentioned leakage detection circuit.
  • it also includes a detection circuit connected to both ends of the sampling resistor and used for detecting whether the voltage at both ends of the sampling resistor is less than a set threshold.
  • the detection circuit includes a voltage conditioning circuit, a comparison circuit, a warning circuit and/or a switch circuit;
  • the voltage conditioning circuit is connected to both ends of the sampling resistor, and is used to adjust the voltage at both ends of the sampling resistor and output to the comparison circuit;
  • the comparison circuit is used to compare the conditioned voltage with the reference voltage of the comparison circuit, and output the comparison result to the warning circuit and/or the switch circuit;
  • the warning circuit sends out warning information according to the comparison result; and/or, the switch circuit is disconnected or connected according to the comparison result.
  • a household appliance includes the above-mentioned leakage detection circuit, and/or the above-mentioned leakage protection circuit.
  • the household appliance is a gas water heater, an electric water heater or a heat pump water heater.
  • the present invention has the following beneficial effects compared with the prior art.
  • the voltage measurement reference point is connected to the charged conductor and the neutral line through the double capacitor form, and the second coupling capacitor and the third coupling capacitor are set so that the second coupling capacitor, the The intersection of the third coupling capacitor and the sampling resistor constitutes a reference point when detecting the voltage across the sampling resistor, and the reference point forms a strong and stable coupling with the reference potential point, making the reference point of the voltage acquisition circuit Become a reliable benchmark, making the measurement stable and reliable, and avoiding "missing but not reporting" or “non-missing false positives" on live conductors.
  • Figure 1 is a schematic diagram of the circuit structure of the leakage detection circuit of the present invention.
  • FIG. 2 is a schematic diagram of the circuit structure of the leakage protection circuit of the present invention.
  • FIG. 3 is a schematic diagram of functional modules of an embodiment of the leakage protection circuit of the present invention.
  • FIG. 4 is a schematic diagram of functional modules of another embodiment of the leakage protection circuit of the present invention.
  • leakage protection circuit 101, leakage detection circuit; 102, detection circuit; 1021, voltage conditioning circuit; 1022, comparison circuit; 1023, warning circuit; 1024, switch circuit;
  • connection should be interpreted broadly. For example, it can be a fixed connection or a detachable connection. Or integrally connected; it can be mechanically or electrically connected; it can be directly connected or indirectly connected through an intermediate medium.
  • connection should be interpreted broadly. For example, it can be a fixed connection or a detachable connection. Or integrally connected; it can be mechanically or electrically connected; it can be directly connected or indirectly connected through an intermediate medium.
  • the present invention provides a leakage detection circuit, a leakage protection circuit and a household appliance.
  • FIG. 1 shows a schematic diagram of the circuit structure of the leakage detection circuit 101.
  • the leakage detection circuit 101 includes a live conductor G with alternating current and a connection terminal H for connecting with the conductor B under test.
  • the connecting end H is connected to the first end of the first coupling capacitor C1, the second end of the first coupling capacitor C1 is connected to the first end of the fourth coupling capacitor C4, and the second end of the fourth coupling capacitor C4 is grounded.
  • the charged conductor G is connected to the first end of the second coupling capacitor C2, the second end of the second coupling capacitor C2 is connected to the first end of the third coupling capacitor C3, and the second end of the third coupling capacitor C3 is grounded.
  • a sample is connected between the intersection of the second end of the second coupling capacitor C2 and the first end of the third coupling capacitor C3 and the intersection of the second end of the first coupling capacitor C1 and the first end of the fourth coupling capacitor C4 Resistance R1.
  • intersection of the second coupling capacitor C2, the third coupling capacitor C3 and the sampling resistor R1 constitutes a reference point E when detecting the voltage across the sampling resistor R1.
  • the charged conductor G has a first state and a second state:
  • the charged conductor G When the voltage across the sampling resistor R1 is greater than or equal to the set threshold, the charged conductor G is in the first state. At this time, there is no leakage at the leakage point A, and the charged conductor G is disconnected from the conductor B under test. On, then no current will flow through the conductor B under test.
  • the charged conductor G When the voltage at both ends of the sampling resistor R1 is lower than the set threshold, the charged conductor G is in the second state. At this time, a leakage occurs at the leakage point A, and the charged conductor G is connected to the measured conductor B , Then, there will be current flowing through the conductor B under test.
  • the second end of the third coupling capacitor is grounded after being connected to the neutral line.
  • the circuit structure includes the power system, which includes the earth, the output winding of the transformer T, the live wire L, the live conductor G, and the conductor B under test.
  • the transformer T specifically refers to a transformer T whose neutral point is grounded.
  • the live conductor is connected to the live wire, so the live conductor has an alternating voltage to the earth.
  • the fourth coupling capacitor C4 is connected in series with the sampling resistor R1 and then coupled to the third
  • the capacitor C3 is connected in parallel, and then connected in series with the second coupling capacitor C2.
  • the AC voltage between the charged conductor G and the ground wire causes a certain AC current to pass through this path, and the two ends of the sampling resistor R1 can pick up an AC voltage of a certain amplitude, for example, greater than or equal to the set threshold.
  • the first end of the first coupling capacitor C1 is also connected to the charged conductor G through the connecting end H, that is, the connecting end H is charged through the conductor B under test. Therefore, a path from the charged conductor G to the ground can be seen as: the first coupling capacitor C1 and the fourth coupling capacitor C4 are in series structure, and the second coupling capacitor C2 and the third coupling capacitor C3 are in series structure; at this time, the sampling resistor The intersection of R1 with the first coupling capacitor C1 and the fourth coupling capacitor C4, that is, the AC potential at the voltage monitoring point is between the neutral line N and the live line L.
  • the potential between the access point D and the reference point E is relatively balanced, and the amplitude of the AC voltage is reduced or even cancelled to zero.
  • the two ends of the sampling resistor R1 cannot pick up the AC voltage with amplitude or are lower than the set threshold.
  • the measured conductor B can be the housing of a household appliance or a conductor that should not be charged but may be charged.
  • the measured conductor B is the housing of a household appliance
  • the insulating layer of the live conductor G is damaged, a leakage point A appears on the live conductor G, so that the measured conductor B is the housing of the household appliance and the live conductor G
  • the user accidentally touches the shell there will be a danger of electric shock.
  • the potential at both ends of the sampling resistor R1 is relatively balanced, and the voltage detected by connecting a voltmeter at both ends of the sampling resistor R1 is lower than the set threshold or the voltage at both ends of the sampling resistor R1 cannot be detected at this time.
  • the voltage at both ends of the sampling resistor R1 detected by the multimeter is lower than the set threshold or the voltage at both ends of the sampling resistor R1 cannot be detected at this time, it means that the charged conductor G is leaking and the household appliance The shell may be live, if you touch the shell at this time, there will be a risk of electric shock.
  • the intersection point of the sampling resistor R1 with the second end of the second coupling capacitor C2 and the first end of the third coupling capacitor C3 is the reference point E when the voltage across the sampling resistor R1 is obtained.
  • the leakage detection circuit 101 of the present invention when no leakage occurs, a circuit flows through the sampling resistor R1, and the reference point E is connected to the charged conductor G through the second coupling capacitor C2, and to the neutral line N through the third coupling capacitor C3 connection.
  • the circuit loop of the electrical connection and the capacitive coupling is completely set up, so that the measurement Stable and reliable.
  • the capacitance values of the second coupling capacitor C2 and the third coupling capacitor C3 are equal or within 20% of the difference.
  • the first coupling capacitor C1 and/or the second coupling capacitor C2 and/or the third coupling capacitor C3 are electronic components with capacitive characteristics, or two metal structures close to each other Constitute the capacitor.
  • the fourth coupling capacitor has a metal structure at one end and a ground at the other end to form a structure with capacitance characteristics.
  • the function of the first coupling capacitor C1, the second coupling capacitor C2, and the third coupling capacitor C3 is to form a strong and stable coupling between the two ends of the coupling capacitor.
  • the first coupling capacitor C1, the second coupling capacitor C2, and the third coupling capacitor C3 of the present invention only need to be capable of being turned on in an AC state.
  • electronic components with capacitive characteristics can be selected as the first coupling capacitor C1, the second coupling capacitor C2, and the third coupling capacitor C3.
  • the first coupling capacitor C1, the second coupling capacitor C2, and the third coupling capacitor C3 are designed as two metal structures close to each other. Two metal structures close to each other form a capacitor, which has the characteristic of "passing and blocking" the capacitor.
  • a voltage dividing resistor R2 is further provided between the intersection of the first coupling capacitor C1 and the fourth coupling capacitor C4 and the sampling resistor R1.
  • the function of setting the voltage divider resistor R2 is to make the voltage value at both ends of the sampling resistor R1 smaller, so as to facilitate the subsequent collection of the voltage of the sampling resistor R1 for comparison with the comparator.
  • the required threshold should be around 0.7 volts.
  • a voltage acquisition circuit is connected to both ends of the sampling resistor R1 for detecting the voltage across the sampling resistor R1.
  • a voltmeter is connected between the two ends of the sampling resistor R1.
  • the sampling resistor R1 itself can be set to include a combination of a resistance with a large impedance and a display lamp, similar to the principle of an electric tester, when a current flows through the resistor and the display lamp, the display lamp emits light.
  • the present invention also provides a leakage protection circuit, which includes the above-mentioned leakage detection circuit 101 and the detection circuit 102.
  • the detection circuit 102 is used in the voltage acquisition circuit to amplify and process the voltage across the sampling resistor R1. When the voltage across the sampling resistor R1 is lower than the set threshold, a display or alarm signal will be formed in the detection circuit 102.
  • the above-mentioned leakage detection circuit 101 obtains the voltage across the sampling resistor R1. When the voltage across the sampling resistor R1 is lower than the set threshold, it indicates that a leakage has occurred. The leakage protection circuit 10 sends out a warning message or directly cuts off the voltage on the live conductor G. Current. When the voltage across the sampling resistor R1 is greater than or equal to the set threshold, no leakage occurs, and the leakage protection circuit 10 is maintained in a normal state.
  • the leakage protection circuit 10 includes a leakage detection circuit 101 and a detection circuit 102.
  • the detection circuit 102 includes a voltage conditioning circuit 1021, a comparison circuit 1022, and a warning circuit 1023.
  • the voltage conditioning circuit 1021 is connected to both ends of the sampling resistor R1 in the leakage detection circuit 101, and is used to adjust the voltage across the sampling resistor R1 and output to the comparison circuit 1022.
  • the voltage conditioning circuit 1021 may include one or more combinations of functions such as voltage conversion, rectification, filtering, and amplification, and convert the voltage across the sampling resistor R1 into a suitable voltage and output it to the comparison circuit 1022.
  • the comparison circuit 1022 is used to compare the conditioned voltage with a reference voltage, and output the comparison result to the warning circuit 1023.
  • the warning circuit 1023 sends out warning information according to the comparison result.
  • the voltage introduced on the live wire L is 220 volts AC mains
  • the live conductor G leaks, and there is a transformer T
  • the coupling capacitor provides an AC channel for it, so that the potential at both ends of the sampling resistor R1 is relatively balanced.
  • the function of the voltage conditioning circuit 1021 is to transform, rectify, and filter the voltage across the sampling resistor R1. , Amplification and other processing, so that the AC voltage at both ends of the resistor corresponds to a DC output voltage with a suitable amplitude. Then, the adjusted voltage is output to the comparison circuit 1022.
  • the comparison circuit 1022 is provided with a reference voltage, and the comparison circuit 1022 compares and outputs the output voltage of the conditioning circuit with the reference voltage, so as to realize the judgment of the voltage amplitude at both ends of the sampling resistor R1.
  • the reference voltage here is the set threshold.
  • the comparison circuit 1022 when the voltage across the sampling resistor R1 is greater than the set threshold, that is, when the input voltage of the comparison circuit 1022 is greater than the reference voltage of the comparison circuit 1022, the comparison circuit 1022 outputs a high-level signal; when the voltage across the sampling resistor R1 is less than the set threshold That is, when the input voltage of the comparison circuit 1022 is less than the reference voltage of the comparison circuit 1022, the comparison circuit 1022 outputs a low level. Then, regardless of the high level or the low level, the comparison result is output to the warning circuit 1023.
  • the warning circuit 1023 can be a light warning, a sound warning, or a combination of the two. For example, when the warning circuit 1023 receives a high level, it controls the light or the whistle to keep the light off and no whistle, indicating that there is no leakage at this time, and you can continue to supply power to the live conductor G and connect it to the live conductor G The device is operating normally. When the warning circuit 1023 receives the low level, it controls the lights to flash and the warning whistle, indicating that a leakage phenomenon has occurred at this time, and prompts the user or operator to perform the next step to cut off the power supply to the live conductor G.
  • the leakage protection circuit 10 includes a leakage detection circuit 101 and a detection circuit 102, wherein the detection circuit 102 includes a voltage conditioning circuit 1021, a comparison circuit 1022, and a switching circuit 1024.
  • the switch circuit 1024 is used to control the conduction and disconnection of the charged conductor G and the power supply terminal.
  • the voltage conditioning circuit 1021 is connected to both ends of the sampling resistor R1 in the leakage detection circuit 101, and is used to convert the AC voltage across the sampling resistor R1 to a DC output voltage with a suitable amplitude, and output to the Comparison circuit 1022.
  • the voltage conditioning circuit 1021 may include one or more combinations of functions such as voltage conversion, rectification, filtering, amplifying, etc., to convert the voltage across the sampling resistor R1 into a suitable voltage and output it to the comparison Circuit 1022.
  • the comparison circuit 1022 is used to compare the conditioned voltage with a reference voltage, and output the comparison result to the switch circuit 1024.
  • the switch circuit 1024 is disconnected or connected according to the comparison result.
  • the voltage introduced on the live conductor G is 220 volts AC mains, when the live conductor G leaks, and there is a transformer T, it is like connecting the AC power to the first coupling capacitor C1 and the fourth coupling capacitor C4.
  • the coupling capacitor provides an AC channel for it, so that an AC voltage is generated at both ends of the sampling resistor R1.
  • AC voltage is usually not directly used for detection due to its voltage amplitude, period, noise and other factors, but must be processed by a conditioning circuit and output.
  • the function of the voltage conditioning circuit 1021 is to transform and rectify the voltage across the sampling resistor R1. , Filtering, amplifying, etc., so that the AC voltage at both ends of the resistor corresponds to a DC output voltage with a suitable amplitude. Then, the adjusted voltage is output to the comparison circuit 1022.
  • the comparison circuit 1022 is provided with a reference voltage, and the comparison circuit 1022 compares and outputs the output voltage of the conditioning circuit with the reference voltage, so as to realize the judgment of the voltage amplitude at both ends of the sampling resistor R1. For example, when the voltage across the sampling resistor R1 is greater than the set threshold, that is, when the input voltage of the comparison circuit 1022 is greater than the reference voltage of the comparison circuit 1022, the comparison circuit 1022 outputs a high-level signal; when the voltage across the sampling resistor R1 is less than the set threshold That is, when the input voltage of the comparison circuit 1022 is less than the reference voltage of the comparison circuit 1022, the comparison circuit 1022 outputs a low level. Then, regardless of the high level or the low level, the comparison result is output to the switch circuit 1024.
  • the switch circuit 1024 when the switch circuit 1024 receives a high level, it means that no leakage has occurred at this time, and the switch circuit 1024 is controlled to be turned on to continue supplying power to the live conductor G, so that the equipment connected to the live conductor G can operate normally.
  • the switch circuit 1024 receives a low level, it indicates that a leakage phenomenon has occurred at this time, and the switch circuit 1024 is controlled to be turned off to cut off the power supply to the live conductor G.
  • the voltage conditioning circuit 1021, the comparison circuit 1022, the warning circuit 1023, and the switching circuit 1024 in the above solution have various implementation forms.
  • the present invention does not limit the voltage conditioning circuit 1021, the comparison circuit 1022, the warning circuit 1023, and the switching circuit 1024.
  • the specific structure of the invention, any structure that can realize the above-mentioned solution of the present invention is within the protection scope of the present invention.
  • the voltage measurement reference point E is connected to the charged conductor G and the neutral line N through the double capacitor form, and the second coupling capacitor C2 and the third coupling capacitor C3 are set to detect the voltage across the sampling resistor R1.
  • the point E and the reference potential point F of the earth form a strong and stable coupling, so that the reference point E of the voltage acquisition circuit becomes a reliable reference, and there will be no leakage or false alarms.
  • the leakage protection circuit 10 may include the above-mentioned warning circuit 1023 and the switch circuit 1024 at the same time. The specific working process is as described above and will not be repeated here.
  • the present invention also provides a household appliance, which includes the leakage detection circuit 101 and/or the leakage protection circuit 10 described above.
  • the above-mentioned leakage detection circuit 101 and/or leakage protection circuit 10 can be used in a safety detection function module in a household appliance to improve the efficiency of leakage detection and improve the safety performance of the household appliance.
  • the household appliance is a gas water heater, an electric water heater or a heat pump water heater.
  • the shells of gas water heaters, electric water heaters and heat pump water heaters mostly adopt metal structures. Therefore, the use of the leakage detection circuit 101 and/or the leakage protection circuit 10 of the present invention can greatly improve the performance of gas water heaters, electric water heaters, and heat pump water heaters. Safety performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种漏电检测电路(101)、漏电保护电路及家用电器,漏电检测电路包括带有交流电的带电导体(G)和用于与被测导体(B)连接的连接端(H),连接端(H)与第一耦合电容(C1)的第一端连接,第一耦合电容(C1)的第二端与第四耦合电容(C4)的第一端连接,第四耦合电容(C4)的第二端接地;带电导体(G)与第二耦合电容(C2)的第一端连接,第二耦合电容(C2)的第二端与第三耦合电容(C3)的第一端连接,第三耦合电容(C3)的第二端接地;第二耦合电容(C2)的第二端和第三耦合电容(C3)的第一端的交汇点与第一耦合电容(C1)的第二端和第四耦合电容(C4)的第一端的交汇点之间连接有采样电阻(R1)。本漏电检测电路(101)测压基准点(E)通过双电容形式分别与带电导体(G)、零线(N)连接,使采样电阻(R1)两端电压的检测基准点(E)与参考电位(F)形成较强较稳定的耦合,使检测稳定可靠。

Description

一种漏电检测电路、漏电保护电路及家用电器 技术领域
本发明属于家用电器设备领域,具体地说,涉及一种漏电检测电路、漏电保护电路及家用电器。
背景技术
家用电器使人们从繁重、琐碎、费时的家务劳动中解放出来,为人类创造了更为舒适优美、更有利于身心健康的生活和工作环境,提供了丰富多彩的文化娱乐条件,已成为现代家庭生活的必需品。
部分家用电器由于安装强度和安全可靠的要求,其外壳都是采用金属加工制作而成的。家用电器的供电都是由强电提供,强电直接与家用电器的电源端连接,如果一旦家用电器内部的设备因为绝缘老化,破损而发生漏电,当金属外壳接地失效,或者没有实现有效的接地时,当有用户触摸到金属壳体的时候,将会给用户带来安全隐患。因此,在家用电器上或者用户家中的入户接电端通常都设有漏电检测保护装置。
现有技术中,对于电容感应式测电装置,例如非接触式测电笔、家电中的漏电感应模块等的参考电位点一般为电路板的铺地,没有实质上的参考电位,探测系统因为到地电容不确定,抗干扰能力差,受环境影响大。例如是否手握等因素都对它有影响。
而使用与零线电气连接的参考点取得方式,探测电路就会被通上强电,对强电的隔离造成一定困难,产品难以符合安全规范。
有鉴于此,特提出本发明。
发明内容
本发明要解决的技术问题在于克服现有技术的不足,提供一种漏电检测电路,通过在漏电检测电路中增加具有耦合特性的电容结构,使电压的检测基准点与参考电位形成较强、较稳定的耦合,使得测量稳定可靠。
本发明的另外一个目的是提供一种漏电保护电路,包括上述的漏电检测电路。
本发明的另外一个目的是提供一种家用电器,包括上述的漏电检测电路和/或漏电保护电路。
为解决上述技术问题,本发明采用技术方案的基本构思是:
一种漏电检测电路,包括带有交流电的带电导体和用于与被测导体连接的连接端,连接端与第一耦合电容的第一端连接,第一耦合电容的第二端与第四耦合电容的第一端连接,所述第四耦合电容的第二端接地;
带电导体与第二耦合电容的第一端连接,第二耦合电容的第二端与第三耦合电容的第一端连接,第三耦合电容的第二端接地;
第二耦合电容的第二端和第三耦合电容的第一端的交汇点与第一耦合电容的第二端和第四耦合电容的第一端的交汇点之间连接有采样电阻。
进一步的,第三耦合电容的第二端通过接零线后接地。
进一步的,所述第二耦合电容和所述第三耦合电容的电容值相等或相差20%之内。
进一步的,所述第一耦合电容和/或所述第二耦合电容和/或所述第三耦合电容为具有电容特性的电子元件,或者,相互靠近的两个金属结构所构成的电容;
所述第四耦合电容由一端极板为金属结构,另一端为大地构成的形成具有 电容特性的结构。
进一步的,所述第一耦合电容和第四耦合电容的交汇点与所述采样电阻之间还设有分压电阻。
进一步的,还包括电压采集电路,连接在所述采样电阻两端,用于检测所述采样电阻两端的电压。
一种漏电保护电路,包括如上所述的漏电检测电路。
进一步的,还包括探测电路,所述探测电路连接在所述采样电阻的两端,用于探测所述采样电阻的两端的电压是否小于设定阈值。
进一步的,所述探测电路包括电压调理电路、比较电路、警示电路和/或开关电路;其中
所述电压调理电路与所述采样电阻的两端连接,用于调理所述采样电阻两端的电压并输出至所述比较电路;
所述比较电路用于将调理后的电压与所述比较电路的参考电压进行比较,并将比较结果输出至所述警示电路和/或开关电路;
所述警示电路根据比较结果发出警示信息;和/或,所述开关电路根据比较结果断开或连通。
一种家用电器,包括如上所述的漏电检测电路,和/或,如上所述的漏电保护电路。
进一步的,所述家用电器为燃气热水器、电热水器或热泵热水器。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
本发明在检测采样电阻两端的交流电压时,测压基准点通过双电容形式分别与带电导体、零线连接,通过设置第二耦合电容和第三耦合电容,使所述第 二耦合电容、所述第三耦合电容和所述采样电阻的交汇点构成检测所述采样电阻两端电压时的基准点,其基准点与参考电位点形成较强、较稳定的耦合,使得电压采集电路的基准点成为可靠基准,使得测量稳定可靠,避免带电导体出现“漏而不报”或者“不漏误报”的情况。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明漏电检测电路的电路结构示意图;
图2是本发明漏电保护电路的电路结构示意图;
图3是本发明漏电保护电路的一个实施例的功能模块示意图;
图4是本发明漏电保护电路的另一个实施例的功能模块示意图;
图中:10、漏电保护电路;101、漏电检测电路;102、探测电路;1021、电压调理电路;1022、比较电路;1023、警示电路;1024、开关电路;
A、漏电点;B、被测导体;C1、第一耦合电容;C2、第二耦合电容;C3、第三耦合电容;C4、第四耦合电容;L、火线;D、接入点;E、基准点;F、参考电位点;N、零线;R1、采样电阻;R2、分压电阻;T、变压器;G、带电导体;H、连接端。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“上”“下”“前”“后”“左”“右”“竖直”“水平”“内”“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”“相连”“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1至图4所示,本发明提供一种漏电检测电路,一种漏电保护电路和一种家用电器。
图1所示为漏电检测电路101的电路结构示意图。漏电检测电路101包括带有交流电的带电导体G和用于与被测导体B连接的连接端H。
连接端H与第一耦合电容C1的第一端连接,第一耦合电容C1的第二端与第四耦合电容C4的第一端连接,所述第四耦合电容C4的第二端接地。
带电导体G与第二耦合电容C2的第一端连接,第二耦合电容C2的第二端与第三耦合电容C3的第一端连接,第三耦合电容C3的第二端接地。
第二耦合电容C2的第二端和第三耦合电容C3的第一端的交汇点与第一耦合电容C1的第二端和第四耦合电容C4的第一端的交汇点之间连接有采样电阻R1。
所述第二耦合电容C2、所述第三耦合电容C3和所述采样电阻R1的交汇点构成检测所述采样电阻R1两端电压时的基准点E。
所述带电导体G具有第一状态和第二状态:
当所述采样电阻R1两端的电压大于等于设定阈值,所述带电导体G在第一状态下,此时,漏电点A没有出现漏电情况,所述带电导体G与所述被测导体B断开,那么,不会有电流流过被测导体B。
当所述采样电阻R1两端的电压低于设定阈值,所述带电导体G在第二状态下,此时,漏电点A出现漏电情况,所述带电导体G与所述被测导体B接通,那么,就会有电流流过被测导体B。
进一步的,第三耦合电容的第二端通过接零线后接地。
详细的,如图1所示,电路结构中包含电力系统,电力系统包含大地、变压器T输出绕组、火线L、带电导体G和被测导体B。其中,变压器T特指中性点接地的变压器T,其绕组的相线端对大地具有交流电压,引出线成为火线L。带电导体与火线连接,因此,带电导体上对大地具有交流电压。
当被测导体B不带电时,也就是带电导体G的漏电点A没有出现漏电情况,从带电导体G到大地的通路可看为:第四耦合电容C4与采样电阻R1串联后与第三耦合电容C3并联,再与第二耦合电容C2串联。带电导体G与地线之间的交流电压使得一定的交流电流通过这个通路,采样电阻R1的两端可以采得一定幅值的交流电压,例如,大于等于设定阈值。
当带电导体G的漏电点A出现漏电情况,那么第一耦合电容C1的第一端也就通过连接端H与带电导体G相接,也就是连接端H通过被测导体B带电。因此,从带电导体G到大地的一个通路可看为:第一耦合电容C1与第四耦合电容C4呈串联结构,第二耦合电容C2与第三耦合电容C3呈串联结构;此时,采样电阻R1与第一耦合电容C1和第四耦合电容C4的交汇点,即电压监测点的交流电位处于零线N、火线L之间。采样电阻R1两端,接入点D与基准点E之间电位相对平衡,采得交流电压幅值降低甚至被抵消为零。这时采样电阻R1两端采不到具有幅值的交流电压或者低于设定阈值。
因此,可以根据采样电阻R1采得交流电压是否低于某个设定阈值,来判定带电导体G是否存在漏电点A。
上述方案中,通过检测采样电阻R1两端的交流电压是否低于某个设定阈值来判定是否存在漏电。那么在检测采样电阻R1两端的交流电压时,本发明的方案中,测压基准点E通过双电容形式分别与带电导体G、零线N连接,通过设置第二耦合电容C2和第三耦合电容C3,使检测采样电阻R1两端的电压时,其基准点E与参考电位点F形成较强、较稳定的耦合,使得电压采集电路的基准点E成为可靠基准。
进一步的,上述优选的方案中,当第三耦合电容C3的第二端通过接零线后再于地线连接,那么,参考电位点F就位于零线上,可防止在地线不良的情况下失效。
被测导体B可以是家用电器的外壳或者是本不应带电但却有可能带电的导体。例如,被测导体B为家用电器的外壳时,在带电导体G的绝缘层发生破损时,那么带电导体G上即出现漏电点A,使被测导体B也就是家用电器的外壳与带电导体G之间导通,这时,如果用户不小心触碰到外壳就会发生触电的危险。
当被测导体B与带电导体G导通时,由于第一耦合电容C1、第四耦合电容C4具有“通交隔直”的特性,因此,带电导体G、第一耦合电容C1、第四耦合电容C4以及大地之间就构成了具有电流的回路。
此时,采样电阻R1两端的电位相对平衡,通过在采样电阻R1两端连接电压表检测到的电压低于设定阈值或者是不能够检测到此时采样电阻R1两端的电压。
换句话说,如果采用万用表检测到的采样电阻R1的两端电压低于设定阈值或者是不能够检测到此时采样电阻R1两端的电压,那就说明带电导体G发生了漏电,家用电器的外壳有可能已经带电,如果这时,触摸外壳,就会有触电的风险。
反之,如果采用万用表检测采样电阻R1的两端的电压时,检测出电压,说明带电导体G没有发生漏电现象,外壳也不带电,用户触摸外壳发生触电的风险很小,或者几乎没有风险。
采样电阻R1与第二耦合电容C2的第二端和第三耦合电容C3的第一端的交汇点即为获得采样电阻R1两端电压时的基准点E。本发明的漏电检测电路101中,当没有漏电发生时,采样电阻R1中有电路流过,基准点E既与带电导体G通过第二耦合电容C2连接,又与零线N通过第三耦合电容C3连接。
进一步的,通过设置具有电容特性的第一耦合电容C1、第二耦合电容C2、第三耦合电容C3和第四耦合电容C4,完整地架设了电连接、电容耦合相结合的电路回路,使得测量稳定可靠。
优选的方案中,所述第二耦合电容C2和所述第三耦合电容C3的电容值相等或相差20%之内。
详细的,当第二耦合电容C2与第三耦合电容C3相等或非常相近时,火线L、零线N反接对其影响可忽略不计,适用性极强。
进一步的方案中,所述第一耦合电容C1和/或所述第二耦合电容C2和/或所述第三耦合电容C3为具有电容特性的电子元件,或者,相互靠近的两个金属结构所构成的电容。
所述第四耦合电容由一端极板为金属结构,另一端为大地构成的形成具有电容特性的结构。
详细的,所述第一耦合电容C1、所述第二耦合电容C2、所述第三耦合电容C3的作用是使耦合电容的两端形成较强的、较为稳定的耦合。
因此,本发明的所述第一耦合电容C1、所述第二耦合电容C2、所述第三耦合电容C3只需能够起到在交流状态下导通的目的即可。
优选的,在一些实施方式中,为了简化电路结构,可选用具有电容特性的电子元件作为所述第一耦合电容C1、所述第二耦合电容C2、所述第三耦合电容C3。
在另一些实施方式中,为了充分利用电路中现有结构,将所述第一耦合电容C1、所述第二耦合电容C2和所述第三耦合电容C3设计为相互靠近的两个金属结构,使两个相互靠近的金属结构构成电容,具有电容“通交隔直”的特性。
进一步的方案中,所述第一耦合电容C1和第四耦合电容C4的交汇点与所述采样电阻R1之间还设有分压电阻R2。
详细的,设置分压电阻R2的作用是为了使采样电阻R1两端的电压值更小,便于后续采集采样电阻R1的电压与比较器进行比较。
例如,使用三极管导通电压作为比较电压时,要求的设定阈值应在0.7伏 左右。
上述方案中,设置分压电阻R2使得获取采样电阻R1两端电压时更加精确,便于实施,也便于调试。
进一步的方案中,上述采样电阻R1的两端连接有电压采集电路,用于检测所述采样电阻R1两端的电压。
例如,在采样电阻R1的两端之间连接有电压表。
再或者,采样电阻R1本身可以设置为包括一大阻抗的电阻与显示灯的组合,类似测电笔原理,当有电流流过电阻与显示灯时,显示灯发光。
本发明还提供一种漏电保护电路,包括上述的漏电检测电路101和探测电路102。
如图2所示,在电压采集电路中使用探测电路102,将采样电阻R1两端的电压放大、处理。当采样电阻R1两端的电压低于设定阈值时,探测电路102中将形成显示或报警信号。
通过上述的漏电检测电路101获取采样电阻R1两端的电压,当采样电阻R1两端的电压低于设定阈值时,说明发生了漏电现象,漏电保护电路10发出警示信息或直接切断带电导体G上的电流。当采样电阻R1两端的电压大于等于设定阈值时,没有发生漏电现象,漏电保护电路10维持在常态。
在一种实施方式中,漏电保护电路10包括漏电检测电路101和探测电路102。其中,探测电路102包括电压调理电路1021、比较电路1022和警示电路1023。
其中,所述电压调理电路1021与所述漏电检测电路101中的采样电阻R1的两端连接,用于调理所述采样电阻R1两端的电压并输出至所述比较电路1022。
所述电压调理电路1021可以包含电压变换、整流、滤波、放大等其中一种或多种组合的功能,将所述采样电阻R1两端的电压转化为合适的电压并输出至所述比较电路1022。
所述比较电路1022用于将调理后的电压与参考电压进行比较,并将比较结果输出至所述警示电路1023。
所述警示电路1023根据比较结果发出警示信息。
详细的,由于火线L上引入的电压为220伏的交流市电,因此,当带电导体G发生漏电时,而且具有变压器T,如同将交流电接入第一耦合电容C1和第四耦合电容C4,耦合电容为其提供交流通道,使采样电阻R1两端的电位相对平衡。由于其电压幅度、周期、噪声等因素通常不能直接用于检出,而要通过调理电路处理后输出,电压调理电路1021的作用就是对采样电阻R1两端的电压进行电压幅值变换、整流、滤波、放大等处理,使得电阻两端的交流电压对应一个幅值合适的直流输出电压。然后,再将调整后的电压输出至比较电路1022中。
比较电路1022中设有参考电压,比较电路1022将调理电路的输出电压和参考电压进行比较输出,实现对采样电阻R1两端电压幅值的判断。优选的,此处的参考电压即为设定阈值。例如,当采样电阻R1两端的电压大于设定阈值,即比较电路1022的输入电压大于比较电路1022的参考电压时,比较电路1022输出高电平信号;当采样电阻R1两端的电压小于设定阈值,即比较电路1022的输入电压小于比较电路1022的参考电压时,比较电路1022输出低电平。那么不管是高电平还是低电平,该比较结果输出至警示电路1023。
警示电路1023可以是灯光警示,也可是是声音警示,或者两者的结合。例如,当警示电路1023收到高电平时,控制灯光或者鸣笛保持不发光、不鸣笛的 状态,说明此时并没有发生漏电现象,可继续向带电导体G供电,使与带电导体G连接的设备正常运行。当警示电路1023收到低电平时,控制灯光闪烁、警示鸣笛,说明此时发生了漏电现象,提示用户或者操作人员进行下一步操作,切断向带电导体G供电的电源。
在另一种实施方式中,漏电保护电路10包括漏电检测电路101和探测电路102,其中,探测电路102包括电压调理电路1021、比较电路1022和开关电路1024。开关电路1024用于控制带电导体G与供电端的导通与断开。
其中,所述电压调理电路1021与所述漏电检测电路101中的采样电阻R1的两端连接,用于转换所述采样电阻R1两端的交流电压到幅值合适直流输出电压,并输出至所述比较电路1022。
详细的,所述电压调理电路1021可以包含电压变换、整流、滤波、放大等其中一种或多种组合的功能,将所述采样电阻R1两端的电压转化为合适的电压并输出至所述比较电路1022。
所述比较电路1022用于将调理后的电压与参考电压进行比较,并将比较结果输出至所述开关电路1024。
所述开关电路1024根据比较结果断开或连通。
详细的,由于带电导体G上引入的电压为220伏的交流市电,因此,当带电导体G发生漏电时,而且具有变压器T,如同将交流电接入第一耦合电容C1和第四耦合电容C4,耦合电容为其提供交流通道,使采样电阻R1两端产生交流电压。交流电压由于其电压幅度、周期、噪声等因素通常不能直接用于检出,而要通过调理电路处理后输出,电压调理电路1021的作用就是对采样电阻R1两端的电压进行电压幅值变换、整流、滤波、放大等处理,使得电阻两端的交流电压对应一个幅值合适的直流输出电压。然后,再将调整后的电压输出至比 较电路1022中。
比较电路1022中设有参考电压,比较电路1022将调理电路的输出电压和参考电压进行比较输出,实现对采样电阻R1两端电压幅值的判断。例如,当采样电阻R1两端的电压大于设定阈值,即比较电路1022的输入电压大于比较电路1022的参考电压时,比较电路1022输出高电平信号;当采样电阻R1两端的电压小于设定阈值,即比较电路1022的输入电压小于比较电路1022的参考电压时,比较电路1022输出低电平。那么不管是高电平还是低电平,该比较结果输出至开关电路1024。
例如,当开关电路1024收到高电平时,说明此时并没有发生漏电现象,控制开关电路1024导通,可继续向带电导体G供电,使与带电导体G连接的设备正常运行。当开关电路1024收到低电平时,说明此时发生了漏电现象,控制开关电路1024断开,切断向带电导体G供电的电源。
上述方案中的电压调理电路1021、比较电路1022、警示电路1023以及开关电路1024,其实现形式多种多样,本发明并不限定电压调理电路1021、比较电路1022、警示电路1023以及开关电路1024具有的具体结构,凡能够实现本发上述方案的结构均在本发明的保护范围之内。
上述方案中,测压基准点E通过双电容形式分别与带电导体G、零线N连接,通过设置第二耦合电容C2和第三耦合电容C3,使检测采样电阻R1两端的电压时,其基准点E与大地的参考电位点F形成较强、较稳定的耦合,使得电压采集电路的基准点E成为可靠基准,不会出现漏电不报,或者不漏误报的情况。
再一种实施方式中,漏电保护电路10可同时包括上述的警示电路1023和开关电路1024。具体工作过程如上所述,不再赘述。
本发明还提供一种家用电器,包括上述的漏电检测电路101和/或漏电保护 电路10。
详细的,上述的漏电检测电路101和/或漏电保护电路10可用于家用电器中的安全检测功能模块,提高漏电检测效率,提高家用电器的安全性能。
进一步的,所述家用电器为燃气热水器、电热水器或热泵热水器。
详细的,燃气热水器、电热水器以及热泵热水器的外壳多采用金属结构,因此,采用本发明的上述漏电检测电路101和/或漏电保护电路10,可极大地提高燃气热水器、电热水器以及热泵热水器的安全性能。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (10)

  1. 一种漏电检测电路,包括带有交流电的带电导体和用于与被测导体连接的连接端,其特征在于,
    连接端与第一耦合电容的第一端连接,第一耦合电容的第二端与第四耦合电容的第一端连接,所述第四耦合电容的第二端接地;
    带电导体与第二耦合电容的第一端连接,第二耦合电容的第二端与第三耦合电容的第一端连接,第三耦合电容的第二端接地;
    第二耦合电容的第二端和第三耦合电容的第一端的交汇点与第一耦合电容的第二端和第四耦合电容的第一端的交汇点之间连接有采样电阻。
  2. 根据权利要求1所述的一种漏电检测电路,其特征在于,
    第三耦合电容的第二端通过接零线后接地。
  3. 根据权利要求1或2所述的一种漏电检测电路,其特征在于,
    所述第二耦合电容和所述第三耦合电容的电容值相等或相差20%之内。
  4. 根据权利要求2所述的一种漏电检测电路,其特征在于,
    所述第一耦合电容和/或所述第二耦合电容和/或所述第三耦合电容为具有电容特性的电子元件,或者,相互靠近的两个金属结构所构成的电容;
    所述第四耦合电容由一端极板为金属结构,另一端为大地构成的形成具有电容特性的结构。
  5. 根据权利要求1所述的一种漏电检测电路,其特征在于,
    所述第一耦合电容和第四耦合电容的交汇点与所述采样电阻之间还设有分压电阻。
  6. 根据权利要求1-5任一所述的一种漏电检测电路,其特征在于,还包括电压采集电路,连接在所述采样电阻两端,用于检测所述采样电阻两端的电压。
  7. 一种漏电保护电路,其特征在于,包括如权利要求1-6任一所述的漏电检测电路。
  8. 根据权利要求7所述的一种漏电保护电路,其特征在于,还包括探测电路,所述探测电路连接在所述采样电阻的两端,用于探测所述采样电阻的两端的电压是否小于设定阈值。
  9. 根据权利要求8所述的一种漏电保护电路,其特征在于,所述探测电路包括电压调理电路、比较电路、警示电路和/或开关电路;其中
    所述电压调理电路与所述采样电阻的两端连接,用于调理所述采样电阻两端的电压并输出至所述比较电路;
    所述比较电路用于将调理后的电压与所述比较电路的参考电压进行比较,并将比较结果输出至所述警示电路和/或开关电路;
    所述警示电路根据比较结果发出警示信息;和/或,所述开关电路根据比较结果断开或连通。
  10. 一种家用电器,其特征在于,包括如权利要求1-6任一所述的漏电检测电路,和/或,如权利要求7-9任一所述的漏电保护电路;
    优选的,所述家用电器为燃气热水器、电热水器或热泵热水器。
PCT/CN2020/133033 2020-09-07 2020-12-01 一种漏电检测电路、漏电保护电路及家用电器 WO2021212840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010928728.6 2020-09-07
CN202010928728.6A CN112834950B (zh) 2020-09-07 2020-09-07 一种漏电检测电路、漏电保护电路及家用电器

Publications (1)

Publication Number Publication Date
WO2021212840A1 true WO2021212840A1 (zh) 2021-10-28

Family

ID=75923304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133033 WO2021212840A1 (zh) 2020-09-07 2020-12-01 一种漏电检测电路、漏电保护电路及家用电器

Country Status (2)

Country Link
CN (1) CN112834950B (zh)
WO (1) WO2021212840A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106623A (zh) * 2023-04-12 2023-05-12 浙江恒业电子股份有限公司 一种非隔离采样交流电的双功率计算单相电能表及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155357A (zh) * 1994-05-10 1997-07-23 内沃电力及电子工业(1994)有限公司 用于监测电气设备接地完备性的检测器
JP2013142658A (ja) * 2012-01-12 2013-07-22 Denso Corp 漏電検出装置
CN103293427A (zh) * 2012-02-27 2013-09-11 海洋王(东莞)照明科技有限公司 电器漏电指示电路及金属外壳的电器装置
CN104358700A (zh) * 2014-11-27 2015-02-18 滨州学院 一种具有温控和防碰触、漏电的风扇控制电路
WO2019130717A1 (ja) * 2017-12-26 2019-07-04 株式会社豊田自動織機 漏電検知回路
CN110196373A (zh) * 2019-06-18 2019-09-03 周芸 三芯电源插座漏电告警装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87206361U (zh) * 1987-04-16 1988-03-23 张世昌 电器绝缘监视装置
CN101504429B (zh) * 2009-03-09 2014-08-13 朱玉光 便携式电工电桥漏电压在线测量仪器
CN101593962B (zh) * 2009-04-09 2011-11-23 贾翱东 家用电器防触电装置
CN202496158U (zh) * 2011-12-31 2012-10-17 海尔集团公司 一种家用电器金属外壳防漏电装置
CN104502678B (zh) * 2014-12-18 2017-08-25 吴江变压器有限公司 测量电力变压器电压比的方法
CN208567153U (zh) * 2018-04-04 2019-03-01 广东格美淇电器有限公司 地线带电检测装置和一种电热水器
CN111060842B (zh) * 2018-10-16 2024-06-21 株式会社电装 漏电判断系统
CN109116191A (zh) * 2018-11-02 2019-01-01 国网山西省电力公司电力科学研究院 一种电缆缺陷高次谐波试验与检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155357A (zh) * 1994-05-10 1997-07-23 内沃电力及电子工业(1994)有限公司 用于监测电气设备接地完备性的检测器
JP2013142658A (ja) * 2012-01-12 2013-07-22 Denso Corp 漏電検出装置
CN103293427A (zh) * 2012-02-27 2013-09-11 海洋王(东莞)照明科技有限公司 电器漏电指示电路及金属外壳的电器装置
CN104358700A (zh) * 2014-11-27 2015-02-18 滨州学院 一种具有温控和防碰触、漏电的风扇控制电路
WO2019130717A1 (ja) * 2017-12-26 2019-07-04 株式会社豊田自動織機 漏電検知回路
CN110196373A (zh) * 2019-06-18 2019-09-03 周芸 三芯电源插座漏电告警装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106623A (zh) * 2023-04-12 2023-05-12 浙江恒业电子股份有限公司 一种非隔离采样交流电的双功率计算单相电能表及方法
CN116106623B (zh) * 2023-04-12 2023-08-29 浙江恒业电子股份有限公司 一种非隔离采样交流电的双功率计算单相电能表及方法

Also Published As

Publication number Publication date
CN112834950B (zh) 2022-01-18
CN112834950A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
US20180149688A1 (en) Grounding detection apparatus, control method thereof and pool system
CN103545786B (zh) 一种漏电流保护装置
CN108027400B (zh) 防短路检测装置及用户终端
CN112666488B (zh) 接地故障检测方法和装置
US10627454B2 (en) Grounding wire detection circuit
CN104155505A (zh) 一种地线带电检测装置、空调及电器设备
CN207299557U (zh) 基于无地线检测原理的多功能智能安全防护热水器
CN205333771U (zh) 一种零序电流互感器断线和短路检测电路
WO2021212840A1 (zh) 一种漏电检测电路、漏电保护电路及家用电器
CN100561814C (zh) 电气设备保护电路
CN202434818U (zh) 一种具有漏电报警功能的电源插座
CN212301815U (zh) 一种漏电检测系统及电热水器
WO2021212839A1 (zh) 一种漏电检测电路、漏电保护电路及家用电器
CN204794018U (zh) 微机保护与测控装置
CN108400571B (zh) 一种漏电报警的漏电保护器
CN106410743B (zh) 一种电源检测电路及电子产品
CN205749762U (zh) 一种用于接地线检测装置的报警驱动电路
CN206148921U (zh) 一种电源检测电路及电子产品
CN215375727U (zh) 安全检测装置以及电子设备
CN210982716U (zh) 智能电表接线端子接触不良检测电路及装置
CN202305642U (zh) 地线带电检测装置
CN207456632U (zh) 一种基于热传导的变压器温度监测仪
CN109390906B (zh) 一种家用电器漏电保护电路
CN207051411U (zh) 一种地线检测电路及地线测试设备
CN105403756A (zh) 一种具有地线带电检测功能的电路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932423

Country of ref document: EP

Kind code of ref document: A1