WO2021212816A1 - 电缆预警监控试验平台 - Google Patents

电缆预警监控试验平台 Download PDF

Info

Publication number
WO2021212816A1
WO2021212816A1 PCT/CN2020/128235 CN2020128235W WO2021212816A1 WO 2021212816 A1 WO2021212816 A1 WO 2021212816A1 CN 2020128235 W CN2020128235 W CN 2020128235W WO 2021212816 A1 WO2021212816 A1 WO 2021212816A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
temperature
test platform
optical fiber
early warning
Prior art date
Application number
PCT/CN2020/128235
Other languages
English (en)
French (fr)
Inventor
廉果
卢金贺
康慧
刘海峰
张伟
Original Assignee
江苏亨通电力电缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通电力电缆有限公司 filed Critical 江苏亨通电力电缆有限公司
Publication of WO2021212816A1 publication Critical patent/WO2021212816A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering

Definitions

  • the invention relates to the technical field of cable test platforms, in particular to a cable early warning monitoring test platform.
  • the power system communication dispatching department mainly uses the traditional manual method to passively maintain the line.
  • the staff uses a handheld optical time domain reflectometer to test the cable line.
  • This maintenance method has many shortcomings. For example, it cannot actively and real-time monitor the line. With the transmission quality of the cable, the fault may only be found when the communication is interrupted, and the manual test method is used to test and determine the fault, but at this time, the communication interruption has already caused an impact on the operation of the power system.
  • the technical problem to be solved by the present invention is to provide a cable early warning monitoring test platform, which can verify the system reliability of the cable online monitoring platform.
  • the present invention provides a cable early warning monitoring test platform, including:
  • optical fiber temperature measurement host for irradiating the cable with pulsed light, and the backward Raman scattered light generated during the propagation of the pulsed light on the temperature measurement optical fiber is received by the optical fiber temperature measurement host;
  • the platform host is used to locate the location of the cable fault point according to the backward Raman scattered light, and calculate the temperature of the cable fault point.
  • the optical fiber temperature measurement host further includes:
  • An optical pulse generator which is used to generate local oscillator light and the pulsed light
  • Optical fiber detector which is used to receive the backward Raman scattered light.
  • the test platform further includes a switch for sending the local oscillation light generated by the optical pulse generator and the backward Raman scattered light received by the optical fiber detector To the platform host.
  • the platform host includes a data processor, and the data processor is used to calculate the anti-Stokes light and the Stokes light in the reverse Raman scattered light.
  • the temperature of the cable fault point is calculated by the intensity ratio change; and the cable is located according to the transmission rate of the pulsed light in the temperature measuring fiber and the time difference between receiving the local oscillator light and the backward Raman scattered light The location of the point of failure.
  • the platform host further includes an early warning unit, and the early warning unit is used to initiate an alarm when the temperature of the cable exceeds a threshold.
  • the heating device further includes a heating mold, the heating mold is provided with a cavity, the cavity is arranged along the length direction of the heating mold, and the cavity is used for placing the heating mold.
  • the cable; the heating mold is provided with an electric heating device, and the heating mold is heated by the electric heating device to heat the cable in an interlayer.
  • the inner wall of the cavity is covered with a heat insulation layer.
  • the heating mold is a Hough mold structure.
  • the present invention further includes a temperature sensor provided on the heating mold, the temperature sensor is used to collect the temperature in the cavity, the temperature sensor is connected to a KTC temperature controller, and the KTC temperature controller is The instrument is used to control the temperature in the cavity by controlling the power of the electric heating device.
  • the present invention further includes a lifting mechanism connected to the heating mold, the lifting mechanism supports the lifting of the heating mold;
  • the lifting mechanism includes a support plate, a back plate and a cylinder, and the back plate is provided with Linear slide rail, the support plate is supported on the linear slide rail and slides along the linear slide rail, the air cylinder is connected to the support plate, and the heating mold is installed on the support plate.
  • the cable early warning monitoring test platform of the present invention uses a heating device to heat the cable to simulate the heating of the cable at the fault point.
  • the optical fiber temperature measurement host uses pulsed light of a specific frequency to irradiate the cable, and the pulsed light is generated during the propagation process on the temperature measurement fiber inside the cable.
  • Backward Raman scattered light the backward Raman scattered light is received and transmitted to the platform host.
  • the platform host locates the location of the cable fault point based on the backward Raman scattered light, and calculates the temperature of the cable at the fault point. To verify the system reliability of the cable online monitoring platform.
  • Figure 1 is a structural block diagram of a cable early warning monitoring test platform in a preferred embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a heating device in a preferred embodiment of the present invention.
  • 2- heating device 21- heating mold, 22- cavity, 23- temperature sensor, 24-KTC temperature controller, 25- support plate, 26- back plate, 27- cylinder;
  • 6-Platform host 61-data processor, 62-warning unit;
  • the test platform is used to verify the reliability of the cable online monitoring platform. It includes a heating device 2, an optical fiber temperature measurement host 4, and a platform host 6.
  • the heating The device 2 is used to heat the cable 1 to simulate the heating of the above-mentioned cable 1 at the point of failure; wherein, the above-mentioned cable 1 has a temperature measuring optical fiber; the above-mentioned optical fiber temperature measurement host 4 is used to irradiate the above-mentioned cable 1 with pulsed light, and the above-mentioned pulsed light enters the inner cable
  • the backward Raman scattered light generated during the propagation process on the temperature measuring optical fiber is received by the optical fiber temperature measuring host 4; the platform host 6 is used to locate the location of the failure point of the cable 1 according to the backward Raman scattered light, and Calculate the temperature of the cable 1 fault point.
  • the system of the cable online monitoring platform is respectively guided into the optical fiber temperature measuring host 4 and the platform host 6, and then the heating device 2 is turned on to heat the cable 1, that is, the fault point of the cable heating is predetermined, and the temperature of the fault point is determined by the cable
  • the internal temperature measurement fiber optic sensing when the temperature of the fault point and the fault point are determined, start the test platform to verify the platform by verifying whether the location of the fault point and the temperature of the fault point after the processing of the platform host 6 are consistent with the predetermined
  • the reliability of the system when the location of the fault point obtained after the data is processed by the platform host 6 is consistent with the actual location, and the temperature of the fault point is consistent with the actual temperature, the system reliability of the cable online monitoring platform is verified.
  • the test platform of the present invention is designed based on the principle of Raman scattering, by capturing the back Raman scattered light during the propagation of pulsed light on the temperature measuring fiber, and processing it.
  • This design takes into account the high sensitivity of Raman scattering to temperature. This makes it possible to effectively ensure the accuracy and accuracy of the location and temperature of the fault point obtained by the calculation.
  • the optical fiber temperature measurement host 4 includes an optical pulse generator 41 and an optical fiber detector 42.
  • the optical pulse generator 41 is used to generate the local oscillation light and the pulse light
  • the optical fiber detector 42 is used to receive the backward pull. Mann scattered light.
  • the test platform further includes a switch 8 for sending the local oscillation light generated by the optical pulse generator 41 and the backward Raman scattered light received by the optical fiber detector 42 to the platform host 6.
  • the platform host 6 includes a data processor 61 and an early warning unit 62, the data processor 61 according to the reverse Raman scattered light of the anti-Stokes (Anti-Stokes) and Stokes
  • the temperature of the above-mentioned cable fault point is calculated according to the intensity ratio change of the Stokes; and the above-mentioned location is determined based on the transmission rate of the above-mentioned pulsed light in the above-mentioned temperature measuring fiber, and the time difference between receiving the above-mentioned local oscillator light and the backward Raman scattered light.
  • the location of the cable fault point is used to start an alarm when the temperature of the cable exceeds a threshold.
  • the heating device 2 includes a heating mold 21, the heating mold 21 is provided with a cavity 22, and the cavity 22 is used to place the cable 1; the heating mold 21 is provided with The electric heating device heats the heating mold 21 through the electric heating device to heat the cable 1 in an interlayer.
  • the heating mold 21 is made of 304 stainless steel, which is light and low in cost.
  • the above-mentioned cavity 22 is arranged along the length direction of the above-mentioned heating mold 21, which is convenient for processing the cavity 22.
  • the heating module 21 heats the cable 1 in the heated insulation layer to simulate the heating of the cable at the fault point; among them, the cable 1 is placed in the cavity 22 of the heating module 21, and the heating module 21 is equipped with electric heating devices.
  • the electric heating operation is simple, convenient and easy to use. Control; on the other hand, the interlayer heating cable can protect the cable from damage during the heating process.
  • the above-mentioned electric heating device includes an electric heating wire.
  • the electric heating wire is inserted into the heating mold 21 and connected to an external power source. After the electric heating wire is energized, the heating temperature of the heating mold 21 increases. The heat is transferred to the cable 1 through the heating mold 21 to heat the cable to simulate the heating of the cable at the fault point.
  • the electric heating wire is laid around a circumference of the cavity 22 and is laid at the same time in the extending direction of the cavity 22 to ensure the temperature consistency in the cavity 22.
  • the above-mentioned electric heating device further includes an electric heating block or an electric heating plate, or any combination of an electric heating wire, an electric heating block, and an electric heating plate, as long as the purpose of increasing the temperature in the cavity 22 after being connected to electricity can be achieved That's it.
  • the above-mentioned cavity 22 is usually set as a through structure to realize fixed-point local heating of the cable. According to actual needs, the cavity 22 can also be set as a blind cavity structure, and the end and the proximal end of the cable can be heated at fixed points at the same time.
  • the inner wall of the cavity 22 is covered with a heat insulation layer.
  • the above-mentioned heat insulation layer preferably uses an aluminum foil heat insulation layer, which has the functions of flame retardant, heat insulation, waterproof and waterproof, ensures that the cable is heated evenly in the heating mold 21, and prevents the outer layer of the cable sheath from being burned. The result of the overall test.
  • the above-mentioned heating mold 21 has a Huff mold structure.
  • the Huff mold structure is made up of two halves of the mold.
  • the Huff mold structure Corresponding to the circular structure of the cable, the Huff mold structure has two semicircles. In fact, the two semicircles are actually a little bit closer to a complete semicircle. When they are completely combined, the cable The squeezing force is generated on the side and the cable can be clamped.
  • a temperature sensor 23 is provided on the heating mold 21.
  • the temperature sensor 23 is used to collect the temperature in the cavity 22.
  • the temperature sensor 23 is connected to the KTC temperature controller 24.
  • the controller 24 is used to control the temperature in the cavity 22 by controlling the power of the electric heating device.
  • the above-mentioned temperature sensor 23 preferably adopts a thermocouple.
  • thermocouples The two halves of the Hough mode structure are respectively provided with thermocouples, and the thermocouples respectively collect the temperature in the cavity of the two halves of the Hough mode structure, and output the collected cavity temperature value to KTC
  • KTC temperature controller 24 can set the upper limit temperature value and heating speed of the electric heating device as required, and adjust the heating power according to the real-time temperature value collected by the thermocouple to control the temperature in the cavity 22 to achieve the temperature in the cavity
  • the adjustable and controllable and temperature control accuracy The adjustable and controllable and temperature control accuracy.
  • the heating mold 21 is connected to a lifting mechanism, and the lifting mechanism supports the heating mold 21 to lift.
  • the heating mold 21 supported by the lifting mechanism can adjust the position of the heating mold 21 according to the on-site environment to match the position of the on-site cable.
  • the lifting mechanism includes a support plate 25, a back plate 26, and a lifting cylinder 27.
  • the back plate 26 is provided with a linear slide rail, and the support plate 25 is supported on the linear slide rail and slides along the linear slide rail.
  • the lifting cylinder 27 is connected to the supporting plate 25, and the heating mold 21 is mounted on the supporting plate 25.
  • the heating mold 21 is driven by the lifting cylinder 27 to slide along the linear slide rail to achieve lifting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种电缆预警监控试验平台,包括加热装置(2),用于加热电缆(1)以模拟电缆(1)在故障点的发热;其中,电缆(1)具有测温光纤;光纤测温主机(4),用于使用脉冲光照射电缆(1),脉冲光在测温光纤上传播过程中产生的后向拉曼散射光被光纤测温主机(4)接收;平台主机(6),用于根据后向拉曼散射光定位出电缆故障点的位置,以及计算出电缆故障点的温度。该电缆预警监控试验平台,使用加热装置(2)加热电缆(1)来模拟电缆(1)在故障点的发热,光纤测温主机(4)使用脉冲光照射电缆(1),脉冲光在测温光纤上传播过程中产生后向拉曼散射光,后向拉曼散射光被接收并传输至平台主机(6),平台主机(6)根据后向拉曼散射光计算出电缆故障点的位置和温度,以此来验证电缆(1)在线监控平台的系统可靠性。

Description

电缆预警监控试验平台
本申请要求2020年4月25日向中国国家知识产权局的申请号为2020103359223的专利申请的优先权。
技术领域
本发明涉及电缆试验平台技术领域,具体涉及一种电缆预警监控试验平台。
背景技术
随着城市建设的不断发展,相应的城市供电设施也随之迅猛发展,电缆作为输送电力的载体在城市下方逐渐形成了一个规模庞大的供电网络,因为分布众多,电缆长期过载运行、安装不良、环境因素、绝缘老化等原因引起的火灾会造成重大直接财产损失,并且修复周期长,而且电缆的敷设使用环境比较复杂,不能排除电缆火灾对其它管线、建筑、设施和人员安全的威胁。基于此,如何提高电缆运行效率和保障电缆运行安全,是当前电力部门亟需解决的问题。
目前,电力系统通信调度部门主要采用传统的手工方式被动维护线路,由工作人员采用手持光时域反射仪对电缆线路进行测试,这种维护方式存在诸多不足,比如,不能主动、实时地监测在线使用电缆的传输质量,只有通信中断时才可能发现故障,并通过手工测试方式进行测试与故障判别,但此时由于通信中断已经对电力系统的运行造成了影响。
面对电力部门提出的更高要求,电缆供应商或者设备运营商着手开发电缆在线监控平台,用于在线监测电缆的运行状态,包括故障点的定位和故障预判。与此同时,借助试验平台验证电缆在线监控平台的系统可靠性。目前,尚没有一套完整的试验平台能够验证电缆在线监控平台的系统可靠性。
发明内容
本发明要解决的技术问题是提供一种电缆预警监控试验平台,可以验证电缆在线监控平台的系统可靠性。
为了解决上述技术问题,本发明提供了一种电缆预警监控试验平台,包括,
加热装置,用于加热电缆以模拟所述电缆在故障点的发热;其中,所述电缆具有测温光纤;
光纤测温主机,用于使用脉冲光照射所述电缆,所述脉冲光在所述测温光纤上传播过程中产生的后向拉曼散射光被所述光纤测温主机接收;
平台主机,用于根据所述后向拉曼散射光定位出所述电缆故障点的位置,以及计算出电缆故障点的温度。
本发明一个较佳实施例中,进一步包括所述光纤测温主机包括,
光脉冲发生器,其用于产生本振光和所述脉冲光;
光纤探测器,其用于接收所述后向拉曼散射光。
本发明一个较佳实施例中,进一步包括所述试验平台还包括交换机,用于将所述光脉冲发生器产生的本振光和所述光纤探测器接收的所述后向拉曼散射光发送至所述平台主机。
本发明一个较佳实施例中,进一步包括所述平台主机包括数据处理器,所述数据处理器用于根据所述反向拉曼散射光中的反斯托克斯光和斯托克斯光的强度比值变化计算出所述电缆故障点的温度;以及根据所述脉冲光在所述测温光纤中的传输速率、接收所述本振光和后向拉曼散射光的时间差定位出所述电缆故障点的位置。
本发明一个较佳实施例中,进一步包括所述平台主机包括预警单元,所述 预警单元用于当所述电缆的温度超过阈值时启动报警。
本发明一个较佳实施例中,进一步包括所述加热装置包括加热模,所述加热模上设有腔,所述的腔沿所述加热模的长度方向设置,所述的腔用于放置所述电缆;所述加热模内设有电加热器件,通过所述电加热器件加热所述加热模以隔层加热所述电缆。
本发明一个较佳实施例中,进一步包括所述腔的内壁覆有隔热层。
本发明一个较佳实施例中,进一步包括所述加热模为哈夫模结构。
本发明一个较佳实施例中,进一步包括所述加热模上设有温度传感器,所述温度传感器用于采集所述的腔内温度,所述温度传感器连接KTC温控仪,所述KTC温控仪用于通过控制所述电加热器件的功率以控制所述的腔内温度。
本发明一个较佳实施例中,进一步包括所述加热模连接升降机构,所述升降机构支撑所述加热模升降;所述升降机构包括支撑板、背板和气缸,所述背板上设有直线滑轨,所述支撑板支撑在所述直线滑轨上、且沿所述直线滑轨滑动,所述气缸连接所述支撑板,所述加热模安装在所述支撑板上。
本发明的有益效果:
本发明的电缆预警监控试验平台,使用加热装置加热电缆来模拟电缆在故障点的发热,光纤测温主机使用特定频率的脉冲光照射电缆,脉冲光在电缆内部的测温光纤上传播过程中产生后向拉曼散射光,后向拉曼散射光被接收并传输至平台主机,平台主机根据后向拉曼散射光定位出电缆故障点的位置,以及计算出故障点处电缆的温度,以此来验证电缆在线监控平台的系统可靠性。
附图说明
图1为本发明优选实施例中电缆预警监控试验平台的结构框图;
图2为本发明优选实施例中加热装置的结构示意图。
图中标号说明:
1-电缆;
2-加热装置,21-加热模,22-腔,23-温度传感器,24-KTC温控仪,25-支撑板,26-背板,27-气缸;
4-光纤测温主机,41-光脉冲发生器,42-光纤探测器;
6-平台主机,61-数据处理器,62-预警单元;
8-交换机。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例
本实施例公开一种电缆预警监控试验平台,参照图1所示,该试验平台用于验证电缆在线监控平台的可靠性,其包括加热装置2、光纤测温主机4和平台主机6,上述加热装置2用于加热电缆1以模拟上述电缆1在故障点的发热;其中,上述电缆1具有测温光纤;上述光纤测温主机4用于使用脉冲光照射上述电缆1,上述脉冲光进入电缆内在上述测温光纤上传播过程中产生的后向拉曼散射光被上述光纤测温主机4接收;上述平台主机6用于根据上述后向拉曼散射光定位出上述电缆1故障点的位置,以及计算出电缆1故障点的温度。
试验过程中,将电缆在线监控平台的系统分别对应导入光纤测温主机4和平台主机6,随后启动加热装置2定点加热电缆1,即电缆发热的故障点预先确定,故障点发热的温度被电缆内部的测温光纤感测,故障点的温度和故障点均被确定的情况下,启动试验平台,通过验证平台主机6处理后的故障点位置、故障点温度是否与预先确定的一致来验证平台系统的可靠性,当经过平台主机 6处理数据后获得的故障点位置与实际位置一致、故障点温度与实际温度一致时,电缆在线监控平台的系统可靠性得到验证。
本发明的试验平台基于拉曼散射原理设计,通过抓取脉冲光在测温光纤上传播过程中的后向拉曼散射光进行处理,这样设计是考虑拉曼散射对温度的敏感度较高,使得能够有效保证计算获得的故障点的位置和温度的精度、准确度。
具体的,上述光纤测温主机4包括光脉冲发生器41和光纤探测器42,上述光脉冲发生器41用于产生本振光和上述脉冲光,上述光纤探测器42用于接收上述后向拉曼散射光。上述试验平台还包括交换机8,用于将上述光脉冲发生器41产生的本振光和上述光纤探测器42接收的上述后向拉曼散射光发送至上述平台主机6。
参照图1所示,上述平台主机6包括数据处理器61和预警单元62,上述数据处理器61根据上述反向拉曼散射光中的反斯托克斯光(Anti-Stokes)和斯托克斯光(Stokes)的强度比值变化计算出上述电缆故障点的温度;以及根据上述脉冲光在上述测温光纤中的传输速率、接收上述本振光和后向拉曼散射光的时间差定位出上述电缆故障点的位置。上述预警单元62用于当上述电缆的温度超过阈值时启动报警。
作为本发明的进一步改进,参照图2所示,上述加热装置2包括加热模21,上述加热模21上设有腔22,上述的腔22用于放置上述电缆1;上述加热模21内设有电加热器件,通过上述电加热器件加热上述加热模21以隔层加热上述电缆1。上述加热模21采用304不锈钢材料,轻便、成本低。上述的腔22沿上述加热模21的长度方向设置,这样设置便于加工该腔22。加热模21受热隔层加热电缆1以模拟电缆在故障点的发热;其中,电缆1放置在加热模21的腔22内,加热模21内设置电加热器件,通电加热操作简单、使用方便、易于控制;另一方面,隔层加热电缆能够保护电缆在加热过程中免受损伤。
具体的,上述电加热器件包括电加热丝,制作获得加热模21过程中,将电加热丝嵌入加热模21内部,并通过接头外接电源,电加热丝得电后加热模21受热温度升高,热量通过加热模21传递至电缆1以加热电缆模拟电缆在故障点的发热。通常电加热丝环绕腔22的一周铺设,且在腔22的延伸方向同时铺设,确保腔22内温度一致性。在其它技术方案中,上述电加热器件还包括电加热块或者电加热板,或者电加热丝、电加热块和电加热板的任意组合,只要能实现通过接电后提升腔22内温度的目的即可。
上述的腔22通常设置为贯通结构,实现对电缆的定点局部加热。根据实际使用需要,该腔22还可以设置为盲腔结构,可以同时对电缆的端部和近端部做定点局部加热。
为了确保电缆在腔22内受热均匀,上述腔22的内壁覆有隔热层。本实施例技术方案中,上述隔热层优选使用铝箔隔热层,具有阻燃、隔热、防水、防水的作用,保证电缆在加热模21内受热均匀,防止电缆护套外层烫伤而影响整体试验的结果。
为了配合测试电缆1的外形,以及方便取放电缆1,上述加热模21为哈夫模结构。哈夫模结构由两半模具拼合而成,对应圆形结构的电缆,哈夫模结构具有两个半圆,两个半圆实际上还差一点点才是完整的半圆,完全拼合的时候,对电缆侧面产生挤压力,可以夹紧电缆。
为了监控加热模21内腔22的温度,上述加热模21上设有温度传感器23,上述温度传感器23用于采集上述的腔22内温度,上述温度传感器23连接KTC温控仪24,上述KTC温控仪24用于通过控制上述电加热器件的功率以控制上述的腔22内温度。上述温度传感器23优选采用热电偶,哈夫模结构的两半上分别设有热电偶,由热电偶分别采集哈夫模结构两半的腔内的温度,将采集的腔内温度值输出到KTC温控仪24,KTC温控仪24可以根据需要设置电加热器件加热的上限温度值和加热速度,并根据热电偶采集的实时温度值调节加热功 率以控制腔22内的温度,实现腔内温度的可调可控和温度控制精度。
试验平台的实际环境中,电缆的位置不确定,为了使用方便,上述加热模21连接升降机构,上述升降机构支撑上述加热模21升降。由升降机构支撑加热模21升降可以根据现场环境调节加热模21的位置,以匹配现场电缆的位置。具体的,上述升降机构包括支撑板25、背板26和升降气缸27,上述背板26上设有直线滑轨,上述支撑板25支撑在上述直线滑轨上、且沿上述直线滑轨滑动,上述升降气缸27连接上述支撑板25,上述加热模21安装在上述支撑板25上。由升降气缸27驱动加热模21沿直线滑轨滑动实现升降。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种电缆预警监控试验平台,其特征在于:包括,
    加热装置,用于加热电缆以模拟所述电缆在故障点的发热;其中,所述电缆具有测温光纤;
    光纤测温主机,用于使用脉冲光照射所述电缆,所述脉冲光在所述测温光纤上传播过程中产生的后向拉曼散射光被所述光纤测温主机接收;
    平台主机,用于根据所述后向拉曼散射光定位出所述电缆故障点的位置,以及计算出电缆故障点的温度。
  2. 如权利要求1所述的电缆预警监控试验平台,其特征在于:所述光纤测温主机包括,
    光脉冲发生器,其用于产生本振光和所述脉冲光;
    光纤探测器,其用于接收所述后向拉曼散射光。
  3. 如权利要求2所述的电缆预警监控试验平台,其特征在于:所述试验平台还包括交换机,用于将所述光脉冲发生器产生的本振光和所述光纤探测器接收的所述后向拉曼散射光发送至所述平台主机。
  4. 如权利要求2所述的电缆预警监控试验平台,其特征在于:所述平台主机包括数据处理器,所述数据处理器用于根据所述反向拉曼散射光中的反斯托克斯光和斯托克斯光的强度比值变化计算出所述电缆故障点的温度;以及根据所述脉冲光在所述测温光纤中的传输速率、接收所述本振光和后向拉曼散射光的时间差定位出所述电缆故障点的位置。
  5. 如权利要求1所述的电缆预警监控试验平台,其特征在于:所述平台主机包括预警单元,所述预警单元用于当所述电缆的温度超过阈值时 启动报警。
  6. 如权利要求1~5任一项所述的电缆预警监控试验平台,其特征在于:所述加热装置包括加热模,所述加热模上设有腔,所述的腔沿所述加热模的长度方向设置,所述的腔用于放置所述电缆;所述加热模内设有电加热器件,通过所述电加热器件加热所述加热模以隔层加热所述电缆。
  7. 如权利要求6所述的电缆预警监控试验平台,其特征在于:所述腔的内壁覆有隔热层。
  8. 如权利要求6所述的电缆预警监控试验平台,其特征在于:所述加热模为哈夫模结构。
  9. 如权利要求6所述的电缆预警监控试验平台,其特征在于:所述加热模上设有温度传感器,所述温度传感器用于采集所述的腔内温度,所述温度传感器连接KTC温控仪,所述KTC温控仪用于通过控制所述电加热器件的功率以控制所述的腔内温度。
  10. 如权利要求6所述的电缆预警监控试验平台,其特征在于:所述加热模连接升降机构,所述升降机构支撑所述加热模升降;所述升降机构包括支撑板、背板和气缸,所述背板上设有直线滑轨,所述支撑板支撑在所述直线滑轨上、且沿所述直线滑轨滑动,所述气缸连接所述支撑板,所述加热模安装在所述支撑板上。
PCT/CN2020/128235 2020-04-25 2020-11-12 电缆预警监控试验平台 WO2021212816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010335922.3A CN111474509A (zh) 2020-04-25 2020-04-25 电缆预警监控试验平台
CN202010335922.3 2020-04-25

Publications (1)

Publication Number Publication Date
WO2021212816A1 true WO2021212816A1 (zh) 2021-10-28

Family

ID=71755616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128235 WO2021212816A1 (zh) 2020-04-25 2020-11-12 电缆预警监控试验平台

Country Status (2)

Country Link
CN (1) CN111474509A (zh)
WO (1) WO2021212816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116412932A (zh) * 2023-06-07 2023-07-11 山东千颐科技有限公司 一种矿用分布式光纤测温装置及其使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474509A (zh) * 2020-04-25 2020-07-31 江苏亨通电力电缆有限公司 电缆预警监控试验平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837797A (zh) * 2014-03-12 2014-06-04 国家电网公司 一种光纤复合架空地线雷击辨别与定位方法
CN104075825A (zh) * 2014-06-30 2014-10-01 国家电网公司 一种电力电缆光纤测温基准数据测量方法
CN206684186U (zh) * 2017-03-08 2017-11-28 广东五羊实业发展有限公司 一种电缆性能检测设备
JP2017220981A (ja) * 2016-06-03 2017-12-14 東芝プラントシステム株式会社 電路温度監視システム、電路温度監視装置および電路温度監視方法
CN110018350A (zh) * 2019-04-26 2019-07-16 中辰电缆股份有限公司 一种导体直流电阻在线快速智能测量系统
CN110542491A (zh) * 2019-09-25 2019-12-06 华北电力大学(保定) 变压器光纤复合式导线的温度传递效率试验系统及方法
CN111474509A (zh) * 2020-04-25 2020-07-31 江苏亨通电力电缆有限公司 电缆预警监控试验平台

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202197280U (zh) * 2011-08-30 2012-04-18 华南师范大学 融合光时域反射计与分布式光纤拉曼温度传感器的系统
CN103017934B (zh) * 2012-12-07 2014-06-25 山东大学 消除分布式拉曼测温系统波长色散的自修正方法
CN205670054U (zh) * 2016-06-04 2016-11-02 济南星冉信息技术有限公司 一种光纤分布式高压电缆测温装置
CN108181025A (zh) * 2018-01-26 2018-06-19 国网上海市电力公司 一种光纤复合架空地线热故障在线监测方法
CN208721761U (zh) * 2018-08-08 2019-04-09 河南省嵩阳电力工程有限公司 一种电缆多环境测试装置
CN208847679U (zh) * 2018-09-18 2019-05-10 广州中国科学院工业技术研究院 电缆受热特性测试设备
CN209166675U (zh) * 2018-12-04 2019-07-26 三峡大学 基于光纤测温技术的地下电缆监测装置
CN109459157A (zh) * 2018-12-24 2019-03-12 长园深瑞继保自动化有限公司 基于分布式光纤测温方法的电缆隧道温度监测系统
CN110793616A (zh) * 2019-10-25 2020-02-14 深圳第三代半导体研究院 一种全光纤分布式的电缆安全与可靠性监测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837797A (zh) * 2014-03-12 2014-06-04 国家电网公司 一种光纤复合架空地线雷击辨别与定位方法
CN104075825A (zh) * 2014-06-30 2014-10-01 国家电网公司 一种电力电缆光纤测温基准数据测量方法
JP2017220981A (ja) * 2016-06-03 2017-12-14 東芝プラントシステム株式会社 電路温度監視システム、電路温度監視装置および電路温度監視方法
CN206684186U (zh) * 2017-03-08 2017-11-28 广东五羊实业发展有限公司 一种电缆性能检测设备
CN110018350A (zh) * 2019-04-26 2019-07-16 中辰电缆股份有限公司 一种导体直流电阻在线快速智能测量系统
CN110542491A (zh) * 2019-09-25 2019-12-06 华北电力大学(保定) 变压器光纤复合式导线的温度传递效率试验系统及方法
CN111474509A (zh) * 2020-04-25 2020-07-31 江苏亨通电力电缆有限公司 电缆预警监控试验平台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116412932A (zh) * 2023-06-07 2023-07-11 山东千颐科技有限公司 一种矿用分布式光纤测温装置及其使用方法
CN116412932B (zh) * 2023-06-07 2023-08-18 山东千颐科技有限公司 一种矿用分布式光纤测温装置及其使用方法

Also Published As

Publication number Publication date
CN111474509A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021212816A1 (zh) 电缆预警监控试验平台
CN109884444A (zh) 一种电缆运行状态智能监测系统及方法
CN103676888B (zh) 环网柜电缆接头温度监控系统及方法
WO2014161476A1 (zh) 基于线型感温技术的电缆载流量分析系统及计算方法
CN103560824A (zh) 基于光纤干涉原理的光缆故障无损检测装置及方法
CN110333673A (zh) 一种基于物联网的电缆井环境监测方法、系统及设备
CN206515403U (zh) 一种分布式光纤测温装置
CN203745860U (zh) 环网柜电缆接头温度监控系统
CN203615969U (zh) 一种电缆沟井综合在线监测系统
CN104796191B (zh) 一种传输装置
CN202928695U (zh) 城区电缆接头故障在线监测与预警系统
CN116576403A (zh) 一种城市供热管网泄漏检测方法、装置、设备及存储介质
CN105157872A (zh) 一种电缆温度监测方法及其装置
CN100544795C (zh) 消防员个人防护装备抗辐射热渗透性能综合测试装置
CN2844873Y (zh) 一种基于分布式光纤的对电缆温度检测装置
CN208458880U (zh) 一种在线红外热成像自巡检测温装置
CN203981305U (zh) 电池温度检测组件
CN105466638B (zh) 一种能量传输光纤泄漏监测保护系统
CN104989959A (zh) 一种智能电热集油集气系统
CN208847343U (zh) 热电发电机热成像及可见光双视场实时监测装置
CN111337794A (zh) 用于电缆监测的可控温试验装置
CN202041321U (zh) 一种分布式光纤传感测温系统
CN212514835U (zh) 用于电缆监测的可控温试验装置
CN208781088U (zh) 一种发热缆加热控制装置
CN209166675U (zh) 基于光纤测温技术的地下电缆监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932113

Country of ref document: EP

Kind code of ref document: A1