WO2021210950A1 - Carbon nanotube dispersion and integration device - Google Patents

Carbon nanotube dispersion and integration device Download PDF

Info

Publication number
WO2021210950A1
WO2021210950A1 PCT/KR2021/004816 KR2021004816W WO2021210950A1 WO 2021210950 A1 WO2021210950 A1 WO 2021210950A1 KR 2021004816 W KR2021004816 W KR 2021004816W WO 2021210950 A1 WO2021210950 A1 WO 2021210950A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt solution
solution
carbon nanotube
cnt
unit
Prior art date
Application number
PCT/KR2021/004816
Other languages
French (fr)
Korean (ko)
Inventor
김한성
Original Assignee
주식회사 윤성에프앤씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 윤성에프앤씨 filed Critical 주식회사 윤성에프앤씨
Publication of WO2021210950A1 publication Critical patent/WO2021210950A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71815Feed mechanisms characterised by the means for feeding the components to the mixer using vibrations, e.g. standing waves or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • B01F25/43141Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0727Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis having stirring elements connected to the stirrer shaft each by two or more radial rods, e.g. the shaft being interrupted between the rods, or of crankshaft type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/192Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/92Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/834Mixing in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/836Mixing plants; Combinations of mixers combining mixing with other treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/85Mixing plants with mixing receptacles or mixing tools that can be indexed into different working positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a carbon nanotube dispersion and integration device, and more particularly, to a carbon nanotube dispersion integration device capable of rapidly dispersing a carbon nanotube bundle without damaging the carbon nanotubes.
  • Lithium ion battery makes a slurry in which the active material powder for each positive electrode and negative electrode is dispersed in a solution, coats it on an electrode plate and dries it. It is made by the injection process. When making this slurry, the performance of the battery can be improved by mixing a conductive agent that smoothly flows electricity between the active material powders.
  • Carbon nanotubes are in the form of lines with a length of several thousand times the diameter, electrical conductivity similar to copper, and have an excellent function as a conductive agent. When carbon nanotubes are used, more space is secured in the battery than when conventional conductive materials are used, and the battery capacity can be increased by adding more active materials to the remaining space.
  • the carbon nanotube dispersion method used in the prior art includes a physical dispersion method using ultrasonic waves or a bead mill, and a chemical dispersion method using a surfactant or the like.
  • the ultrasonic dispersion method is a method of dispersing by adding ultrasonic waves after putting carbon nanotube powder in an organic solvent such as NMP (N-Methyl-2-Pyrrolidone, N-methylpyrrolidone) or DMF (Dimethylformamide), This method has a problem in that the stability of the solution is poor.
  • NMP N-Methyl-2-Pyrrolidone, N-methylpyrrolidone
  • DMF Dimethylformamide
  • the method using a bead mill or a high shear disperser has a problem in that the length of the carbon nanotube is shortened by breaking the strand.
  • the chemical method has a problem in that it requires an additional process for adding and removing chemicals other than the components required for the battery. Therefore, there is a need to improve it.
  • the present invention was created to solve the above problems, and an object of the present invention is to provide a carbon nanotube dispersion and integration device capable of rapidly dispersing a carbon nanotube bundle without damaging the carbon nanotube.
  • a carbon nanotube dispersion and integration device includes: a tank unit for accommodating a CNT solution; a first stirrer for rotating the CNT solution accommodated in the tank unit to stir the CNT solution; a second stirring unit passing through the inside of the first stirring unit and rotating the CNT solution accommodated in the tank unit to stir the CNT solution; a first manifold part communicating with the tank part and receiving the CNT solution stirred by the first stirring part or the second stirring part; and the carbon nanotube dispersing device receiving the CNT solution from the first manifold and dispersing the CNT solution.
  • the carbon nanotube dispersing device includes: a solution receiving body; a flow pipe part which is formed through the inside of the solution receiving body part, and through which the CNT solution flows; and a solution receiving part formed on the inner wall of the flow pipe part and including a spiral guide part for guiding the CNT solution to flow in a spiral; and an ultrasonic vibrator part mounted on the outer wall of the solution receiving body part and providing ultrasonic waves to the CNT solution, wherein the spiral guide part alternates between a right helix and a left helix so that the rotation direction is changed at least twice on the inner wall of the flow pipe part. is formed nicely.
  • the carbon nanotube dispersing device further includes a second manifold part communicating with the flow pipe part to receive the CNT solution, wherein the carbon nanotube dispersing device includes the first manifold part and the second manifold part At least one is installed between them.
  • the second manifold part communicates with the tank part, and further includes a pump part for allowing the CNT solution discharged from the second manifold part to flow into the tank part.
  • the present invention is disposed between the tank part and the first manifold part, and further includes a heat exchange part for cooling the CNT solution to a set temperature.
  • the present invention is disposed between the tank part and the first manifold part, and further includes a heat exchange part for heating the CNT solution to a set temperature.
  • the CNT solution is formed in a laminar flow while being spirally flowed by the spiral guide part of the solution receiving part, and can be dispersed by ultrasonic vibration of the ultrasonic vibrator part.
  • a plurality of carbon nanotube dispersing devices are arranged in parallel, and while circulating the CNT solution to the tank part, damage to CNT strands, difficulty in separating CNT lumps, difficulty in uniform dispersion of the entire solution, high manufacturing cost, dispersion It is possible to solve problems such as time increase, and uniformly disperse CNTs in the solution.
  • FIG. 1 is an assembled perspective view schematically showing a carbon nanotube dispersing device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically illustrating a carbon nanotube dispersing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a front view schematically showing a carbon nanotube dispersing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a partially enlarged view schematically showing "A" of FIG. 1 .
  • FIG. 5 is a partially enlarged view schematically showing "B" of FIG. 2 .
  • FIG. 6 is a conceptual diagram schematically illustrating a process of unraveling a CNT lump in a CNT solution in a cone injection unit according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram schematically illustrating a carbon nanotube dispersion and integration device according to an embodiment of the present invention.
  • FIG. 8 is a perspective view schematically illustrating a first stirring unit and a second stirring unit according to an embodiment of the present invention.
  • FIG. 1 is an assembled perspective view schematically showing a carbon nanotube dispersing device according to an embodiment of the present invention
  • FIG. 2 is a perspective view schematically showing a carbon nanotube dispersing device according to an embodiment of the present invention
  • FIG. 3 is It is a front view schematically showing a carbon nanotube dispersing apparatus according to an embodiment of the present invention
  • FIG. 4 is a partially enlarged view schematically showing “A” in FIG. 1
  • FIG. 5 is a schematic view of “B” in FIG. 2 .
  • FIG. 6 is a conceptual diagram schematically illustrating a process of unraveling a CNT lump in a CNT solution in a cone injection unit according to an embodiment of the present invention
  • FIG. 6 is a conceptual diagram schematically illustrating a process of unraveling a CNT lump in a CNT solution in a cone injection unit according to an embodiment of the present invention
  • FIG. 6 is a conceptual diagram schematically illustrating a process of unraveling a CNT lump in a CNT solution in
  • FIG. 7 is a carbon nanotube according to an embodiment of the present invention. It is a conceptual diagram schematically showing a dispersion and integration device, and FIG. 8 is a perspective view schematically showing a first stirrer and a second stirrer according to an embodiment of the present invention.
  • the carbon nanotube dispersing apparatus 1 includes a solution receiving unit 100 and an ultrasonic vibrator 200 .
  • the solution receiving unit 100 is to accommodate the CNT solution (10).
  • the CNT solution 10 is a solution containing CNT (Carbon Nano Tube, carbon nano tube).
  • the solution accommodating part 100 includes a solution accommodating body part 110 , a flow pipe part 120 , and a spiral guide part 130 .
  • the solution receiving body 110 is formed in a semi-cylindrical shape in which one surface (the right side of FIG. 1 ) is formed as a flat surface.
  • the flow pipe part 120 is formed through the inside of the solution receiving body part 110, and provides a path through which the CNT solution 10 flows.
  • One side (upper side in FIG. 1 ) of the flow pipe part 120 is the inlet part 121
  • the other side (the lower side in FIG. 1 ) is the outlet part 123 .
  • the Reynolds number (Re) is calculated from the following equation.
  • is the viscosity coefficient of the CNT solution 10
  • V is the velocity of the CNT solution 10
  • D is the inner diameter of the flow pipe 10
  • is the CNT solution 10
  • the inner diameter (D) of the flow pipe part 120 is set so that the Reynolds number (Re) is 4,000 or less. Therefore, the CNT solution 10 flowing through the flow pipe unit 120 is formed in a transition region or laminar flow.
  • the spiral guide unit 130 is formed on the inner wall of the flow pipe unit 120 to guide the CNT solution 10 to flow in a spiral.
  • the spiral guide unit 130 is alternately formed with a left spiral type and a right spiral type on the inner wall of the flow pipe unit 120 so that the rotation direction is changed at least twice or more.
  • the spiral guide unit 130 is formed to protrude into a concave groove or protrusion on the inner wall of the flow pipe unit 120 .
  • the spiral guide part 130 is formed in a spiral shape with grooves or protrusions on the inner wall of the flow pipe part 120, so that the CNT solution 10 is the flow pipe part ( 120) as it flows through the inner wall and receives rotational force.
  • the spiral guide unit 130 formed on the inner wall of the flow pipe unit 120 is alternately formed in a left spiral type and a right spiral type to change the rotation direction for each set length.
  • the spiral guide unit 130 includes a first spiral guide unit 131 , a second spiral guide unit 133 , and a third spiral guide unit 135 .
  • the first spiral guide part 131 is formed in a spiral (right-handed spiral type in FIG. 1 ) that starts from the inlet part 121 and is twisted in one direction.
  • the second spiral guide part 133 is formed to extend from one side (lower side of FIG. 1 ) of the first spiral guide part 131 and is formed in a spiral twisted in the other direction (left spiral type based on FIG. 1 ).
  • the third spiral guide part 135 is formed to extend from one side (lower side of FIG. 1 ) of the second spiral guide part 133 and is formed in a spiral twisted in one direction (right spiral type in FIG. 1 ).
  • the spiral guide portion 130 including the first spiral guide portion 131 , the second spiral guide portion 133 , and the third spiral guide portion 135 is rotated twice in the flow tube portion 120 .
  • direction is changed.
  • the CNT solution 10 entering the inlet 121 passes the first helix guide part 131 and rotates in the clockwise direction (CW), and then the second helix guide part 133 which is the first rotational direction change point. ) and rotates counterclockwise (CCW).
  • the third spiral guide part 135, which is the second rotation direction change point the rotation direction is changed again in the clockwise direction (CW).
  • the above-described spiral is continuously alternately formed in a left spiral type and a right spiral type, so that the change of the rotation direction may be increased.
  • the CNT solution 10 is stretched along the spiral guide unit 130 on the inner wall of the flow pipe unit 120 and is twisted alternately in a left spiral type and a right spiral type. Therefore, the CNT solution 10 is released as a CNT bundle by hand rubbing.
  • the shape of the cross-section of the groove or protrusion of the flow pipe part 120 may be selected from among hemispherical, circular, and polygonal shapes in consideration of ease of processing and the like.
  • the grooves or protrusions formed on the inner wall of the flow pipe unit 120 rotate the CNT solution 10 flowing through the flow pipe unit 120 .
  • the flow pipe part 120 includes a straight pipe part 120a.
  • the straight pipe part 120a is formed in a straight line toward the outlet part 123 on the lower side of the flow pipe part 120 .
  • the straight pipe part 120a guides the CNT solution 10 to flow in a straight line toward the outlet part 123 side.
  • the length of the straight pipe part 120a is formed to be 1D to 20D based on the inner diameter D of the flow pipe part 120 .
  • the ultrasonic vibrator 200 is mounted on the outer wall of the solution receiving body 110 , and provides ultrasonic waves to the CNT solution 10 .
  • a plurality of ultrasonic vibrator units 200 are disposed along the longitudinal direction of the solution receiving body unit 110 .
  • the ultrasonic vibrator 200 is a torsion generated by a change in the rotational direction of the CNT solution 10 in the flow tube part 120 and the spiral guide part 130 as well as the Van der Waals force between the CNT strands. Dispersing the lumps 15 of CNTs that are not dispersed by
  • the CNT solution 10 flowing along the spiral guide unit 130 receives a torsion force while alternating in clockwise and counterclockwise directions. At this time, the CNT solution 10 is subjected to ultrasonic vibrations in the flow tube unit 120 by the ultrasonic vibrator unit 200 . This ultrasonic vibration separates the CNT strands of the CNT solution 10 that are agglomerated by van der Waals attraction.
  • the ultrasonic vibrator part 200 is arranged in a straight line in the laminar flow inside the flow tube part 120 and the spiral guide part 130 and the ultrasonic vibration is applied in the vertical direction in the direction in which the CNT bundles flowing are agglomerated.
  • CNT strands and strands are separated by a force that overcomes the Der Waals attraction.
  • the CNT solution 10 containing the separated CNTs continues to move while receiving the torsional force alternately in the clockwise and counterclockwise directions, the CNT strands once separated are further separated.
  • the ultrasonic vibrator part 200 includes an ultrasonic vibrator body part 210 and a contact part 230 .
  • the ultrasonic vibrator body 210 accommodates an ultrasonic vibration generating device (not shown) therein.
  • the contact part 230 one surface (the left side of FIG. 1 ) of the ultrasonic vibrator body part 210 is in contact with the outer wall of the solution receiving body part 110 .
  • the ultrasonic vibrator intensively irradiates the ultrasonic vibration to the flow pipe part 120 only.
  • the CNT solution 10 is formed to be narrow and long in the flowing direction (up and down direction based on FIG. 1 ).
  • the width W at which the contact portion 230 is in contact with the outer wall of the solution receiving body 110 is smaller than the inner diameter D of the flow tube portion 120, or twice the inner diameter D of the flow tube portion 120 or less is formed with
  • the ultrasonic vibrator 200 applies ultrasonic waves to the CNT solution 10 flowing through the flow pipe unit 120, so that all CNTs in the CNT solution 10 flowing through the flow pipe unit 120 receive an even ultrasonic force.
  • the ultrasonic vibrator 200 since ultrasonic waves can be evenly irradiated through the entire volume of the fluid passing through the flow pipe unit 120 . , it is possible to obtain a superior ultrasonic dispersion effect than a conventional ultrasonic disperser that simply uses one ultrasonic probe.
  • the carbon nanotube dispersing device 1 further includes a conical dispersing unit 300 .
  • the conical dispersion part 300 is mounted inside the outlet part 123 of the flow pipe part 120 .
  • the CNT solution 10 is discharged to the outside of the outlet portion 123 as it collides with the conical dispersion portion 300 .
  • the conical dispersion part 300 includes a conical dispersion body part 310 and a tip part 320 .
  • the conical dispersion body part 310 is formed in a conical shape, and is mounted on the outlet part 123 and has an inclined surface inclined downward to the lower side (based on FIG. 5 ) of the outlet part 123 .
  • the conical dispersion body part 310 is fixed by a support (not shown) that is formed extending from the solution receiving body part 110 .
  • the tip 320 is sharply formed at the end (the upper end of FIG. 1 ) of the conical dispersion body 310 .
  • the tip 320 collides with the CNT solution 10 before being discharged through the outlet 123 to loosen the lump 15 of the CNT solution 10 .
  • the CNT solution 10 coming down along the flow pipe part 120 is CNT attached to the lump part 15 in parallel by the ultrasonic vibration of the ultrasonic vibrator part 200 and the alternating torsion force by the spiral guide part 130 .
  • the strands are released, but the lumps 15 that are not partially released come down through the straight pipe part 120a and collide with the tip 320, and the lumps 15 themselves are pulled and released by the strong flow rate or the CNT strands are released. When it breaks, it comes loose.
  • the pressure at the tip 320 is high and the flow rate is increased before the CNT solution 10 exits the outlet 123. It exits the part 123, at this time, the pressure and flow rate of the fluid are rapidly reduced, so that the CNT lumps 15 are dispersed from each other, so that a dispersion effect can be obtained.
  • the CNT solution 10 in which the lump 15 is released goes down along the inclined surface of the conical dispersion body 310 .
  • the carbon nanotube dispersion and integration device includes a tank unit 20, a first stirring unit 30, a second stirring unit 40, and a first manifold unit. (50), a carbon nanotube dispersing device (1) is included.
  • the tank unit 20 accommodates the CNT solution 10 .
  • the first stirring unit 30 agitates the CNT solution 10 by rotating the CNT solution 10 accommodated in the tank unit 10 .
  • the second stirring unit 40 passes through the inside of the first stirring unit 30 , and rotates the CNT solution 10 accommodated in the tank unit 20 to stir the CNT solution 10 .
  • the first stirring unit 30 includes a first rotating shaft unit 31 , a disk unit 33 , a stirring rod unit 35 , and a first motor unit 37 .
  • the end of the first rotation shaft 31 is locked in the tank 20 at an end (lower end of FIG. 7 ), and is rotated by receiving power from the first motor 37 .
  • the first rotation shaft part 31 is formed in a hollow shape, and the second rotation shaft part 41 of the second stirring part 40 is rotatably inserted therein.
  • the disc part 33 is formed in a disc shape installed at the end of the first rotating shaft part 31 locked in the tank part 20 .
  • the disk part 33 is rotated according to the rotation of the first rotating shaft part 31 .
  • a plurality of stirring rods 35 are mounted on the disk portion 33 along the circumferential direction of the disk portion 33 . That is, a plurality of agitating rods 35 are vertically disposed in a direction of rotation of the rotating disk portion 33 .
  • the first motor unit 37 transmits power to the first rotating shaft unit 31 to rotate the first rotating shaft unit 31 .
  • the stirring welding part 35 crushes the lumps in the CNT solution 10 into small pieces.
  • the second stirring unit 40 includes a second rotating shaft unit 41 , a stirring fan unit 43 , and a second motor unit 35 .
  • the second rotation shaft part 41 is inserted inside the first rotation shaft part 31 , and the end (lower part of FIG. 7 ) is locked in the tank part 20 , and is rotated by receiving power from the second motor part 35 . do.
  • the stirring fan part 43 consists of a plurality of blades installed at the end of the second rotation shaft part 41 submerged in the tank part 20 .
  • the stirring pan part 43 is rotated according to the rotation of the second rotating shaft part 41 .
  • the second motor part 35 transmits power to the second rotation shaft part 41 to rotate the second rotation shaft part 41 .
  • first stirring unit 30 and the second stirring unit 40 may be operated together, but may be selectively operated so that any one of the first stirring unit 30 and the second stirring unit 40 may be operated .
  • the first manifold part 50 communicates with the tank part 20 and receives the CNT solution 10 stirred by the first agitator 30 or the second agitator 40 .
  • the carbon nanotube dispersing device 1 receives the CNT solution 1 from the first manifold 50 and disperses the CNT solution 10 .
  • the structure and operation of the carbon nanotube dispersing device 1 are replaced by the above description.
  • the second manifold unit 60 is communicated with the flow pipe unit 120 to receive the dispersed CNT solution 10 .
  • the first manifold unit 50 is disposed above the carbon nanotube dispersing device 1 (based on FIG. 7 ), and the second manifold unit 60 is disposed at the lower side of the carbon nanotube dispersing device 1 ( FIG. 7 ). standard) is placed.
  • At least one carbon nanotube dispersing device 1 is installed between the first manifold part 50 and the second manifold part 60 .
  • a plurality of carbon nanotube dispersion devices 1 are disposed between the first manifold part 50 and the second manifold part 60 , and the CNT solution 10 supplied from the first manifold part 50 is While passing through a plurality of carbon nanotube dispersing apparatus 1, more CNT solution 10 may be dispersed than when dispersed as one.
  • the outlet part 123 of the carbon nanotube dispersion device 1 is connected to the second manifold part 60 , and the dispersed CNT solution 10 is merged in the second manifold part 60 and again the tank part 20 ) back to
  • the second manifold unit 60 communicates with the tank unit 20 through a pipe, and a pump 70 is disposed in the middle of the pipe, and the CNT solution 10 discharged from the second manifold 60 is transferred to the tank unit. send.
  • the carbon nanotube dispersion and integration device further includes a heat exchange unit 80 .
  • the heat exchange unit 80 is disposed between the tank unit 20 and the first manifold unit 50, and cools the CNT solution 10 to a set temperature. Since the CNT solution 10 may generate heat by the rotation of the first rotation shaft part 31 of the first stirring part 30 or the second rotation shaft part 41 of the second stirring part 40, cooling water flows. The CNT solution 10 may be cooled by the heat exchanger 80 .
  • the heat exchange unit 80 is disposed between the tank unit 20 and the first manifold unit 50, and heats the CNT solution 10 to a set temperature.
  • the heat exchanger 80 may heat the circulating CNT solution 10 to a set temperature in which hot water or steam can also be supplied in addition to cooling water.
  • the carbon nanotube dispersion and integration device further includes a pump unit 70 .
  • the pump unit 70 allows the CNT solution 10 discharged from the second manifold unit 60 to flow into the tank unit 20 .
  • the CNT solution 10 dispersed by the operation of the pump unit 70 flows to the tank unit 20 .
  • the CNT solution 10 returned to the tank 20 is stirred and dispersed according to the set conditions while repeating the above-described operation.
  • the CNT solution is formed in a laminar flow while being spirally flowed by the spiral guide part of the solution receiving part, and can be dispersed by ultrasonic vibration of the ultrasonic vibrator part.
  • a plurality of carbon nanotube dispersing devices are arranged in parallel, and while circulating the CNT solution to the tank part, damage to CNT strands, difficulty in separating CNT lumps, difficulty in uniform dispersion of the entire solution, high manufacturing cost, dispersion It is possible to solve problems such as time increase, and uniformly disperse CNTs in the solution.

Abstract

A carbon nanotube dispersion and integration device according to the present invention comprises: a tank part which accommodates a CNT solution; a first stirring part which rotates the CNT solution accommodated in the tank part to stir the CNT solution; a second stirring part which penetrates the inside of the first stirring part and rotates the CNT solution accommodated in the tank part to stir the CNT solution; a first manifold part which communicates with the tank part and receives the CNT solution stirred by the first stirring part or the second stirring part; and a carbon nanotube dispersion device which receives the CNT solution from the first manifold part to disperse the CNT solution.

Description

탄소나노튜브 분산 통합 장치Carbon nanotube dispersion and integration device
본 발명은 탄소나노튜브 분산 통합 장치에 관한 것으로, 보다 상세하게는 탄소나노튜브에 손상을 주지 않으면서 빠르게 탄소나노튜브 다발을 분산시킬 수 있는 탄소나노튜브 분산 통합 장치에 관한 것이다. The present invention relates to a carbon nanotube dispersion and integration device, and more particularly, to a carbon nanotube dispersion integration device capable of rapidly dispersing a carbon nanotube bundle without damaging the carbon nanotubes.
리튬 이온 전지(Lithium Ion Battery)는 양극, 음극 별 활물질 분체를 용액에 분산시킨 슬러리를 만들고, 이를 극판에 코팅하여 건조한 후 분리막을 사이에 두고 제조한 양극, 음극판을 겹친 다음, 용기에 넣고 전해액을 주입하는 공정으로 만들어진다. 이 슬러리를 만들 때 활물질 분체 사이에서 전기를 원활하게 흘려 주는 역할을 하는 도전제를 섞어서 제조하면 전지의 성능을 개선할 수 있다.Lithium ion battery (Lithium Ion Battery) makes a slurry in which the active material powder for each positive electrode and negative electrode is dispersed in a solution, coats it on an electrode plate and dries it. It is made by the injection process. When making this slurry, the performance of the battery can be improved by mixing a conductive agent that smoothly flows electricity between the active material powders.
탄소나노튜브(Carbon Nano Tube, CNT)는 직경 대비 길이가 수 천 배에 이르는 선 형태이고, 전기 전도도가 구리와 비슷하고, 도전제로서의 기능이 뛰어나다. 탄소나노튜브를 사용하게 되면 기존 도전제를 사용했을 때 보다 전지 안에 공간이 확보되며 이 남은 공간에 활물질을 더 넣어서 전지 용량을 늘릴 수 있다. Carbon nanotubes (CNTs) are in the form of lines with a length of several thousand times the diameter, electrical conductivity similar to copper, and have an excellent function as a conductive agent. When carbon nanotubes are used, more space is secured in the battery than when conventional conductive materials are used, and the battery capacity can be increased by adding more active materials to the remaining space.
그러나 탄소나노튜브는 여러 가닥이 다발로 얽혀 있으므로, 이를 사용하기 위해서는 용액에 고루 분산시켜야 한다. 종래 기술에서 사용되고 있는 탄소나노튜브 분산 방법은 초음파나 비즈밀을 이용한 물리적인 분산 방법과, 계면 활성제 등을 이용한 화학적인 분산 방법이 있다. However, since several strands of carbon nanotubes are entangled in bundles, they must be evenly dispersed in a solution to use them. The carbon nanotube dispersion method used in the prior art includes a physical dispersion method using ultrasonic waves or a bead mill, and a chemical dispersion method using a surfactant or the like.
물리적인 방법 중 초음파 분산 방법은 NMP(N-Methyl-2-Pyrrolidone, N-메틸피롤리돈)나 DMF(Dimethylformamide) 등의 유기 용매에 탄소나노튜브 분말을 넣은 후에 초음파를 가하여 분산하는 방법이나, 이 방법은 용액의 안정성이 떨어지는 문제점이 있다. Among the physical methods, the ultrasonic dispersion method is a method of dispersing by adding ultrasonic waves after putting carbon nanotube powder in an organic solvent such as NMP (N-Methyl-2-Pyrrolidone, N-methylpyrrolidone) or DMF (Dimethylformamide), This method has a problem in that the stability of the solution is poor.
한편 물리적인 방법 중 비즈밀이나 고전단 분산기 등을 이용한 방법은 탄소나노튜브의 가닥을 끊어서 길이가 짧아지는 문제점이 있다.On the other hand, among the physical methods, the method using a bead mill or a high shear disperser has a problem in that the length of the carbon nanotube is shortened by breaking the strand.
화학적인 방법은 전지에 필요한 성분 이외의 화학물질을 첨부하고 이를 제거하는 추가 공정을 필요로 하는 문제점이 있다. 따라서 이를 개선할 필요성이 요청된다. The chemical method has a problem in that it requires an additional process for adding and removing chemicals other than the components required for the battery. Therefore, there is a need to improve it.
발명의 배경기술은 대한민국 공개특허공보 제10-2019-0091833호(2019.08.07 공개, 발명의 명칭: 탄소나노튜브 분산액의 제조방법)에 개시되어 있다. The background technology of the invention is disclosed in Korean Patent Application Laid-Open No. 10-2019-0091833 (published on August 7, 2019, title of the invention: method for producing a carbon nanotube dispersion).
본 발명은 상기와 같은 문제점을 해결하기 위해 창출된 것으로, 본 발명의 목적은 탄소나노튜브에 손상을 주지 않으면서 빠르게 탄소나노튜브 다발을 분산시킬 수 있는 탄소나노튜브 분산 통합 장치를 제공하는 것이다. The present invention was created to solve the above problems, and an object of the present invention is to provide a carbon nanotube dispersion and integration device capable of rapidly dispersing a carbon nanotube bundle without damaging the carbon nanotube.
본 발명에 따른 탄소나노튜브 분산 통합 장치는: CNT 용액을 수용하는 탱크부; 상기 탱크부에 수용되는 상기 CNT 용액을 회전시켜서 상기 CNT 용액을 교반하는 제1교반부; 상기 제1교반부의 내측을 관통하고, 상기 탱크부에 수용되는 상기 CNT 용액을 회전시켜서 상기 CNT 용액을 교반하는 제2교반부; 상기 탱크부에 연통되고, 상기 제1교반부 또는 상기 제2교반부에 의해 교반되는 상기 CNT 용액을 공급받는 제1매니폴드부; 상기 제1매니폴드부로부터 상기 CNT 용액을 공급받아 상기 CNT 용액을 분산하는 상기 탄소나노튜브 분산 장치를 포함한다.A carbon nanotube dispersion and integration device according to the present invention includes: a tank unit for accommodating a CNT solution; a first stirrer for rotating the CNT solution accommodated in the tank unit to stir the CNT solution; a second stirring unit passing through the inside of the first stirring unit and rotating the CNT solution accommodated in the tank unit to stir the CNT solution; a first manifold part communicating with the tank part and receiving the CNT solution stirred by the first stirring part or the second stirring part; and the carbon nanotube dispersing device receiving the CNT solution from the first manifold and dispersing the CNT solution.
본 발명에서 상기 탄소나노튜브 분산 장치는, 용액수용몸체부; 상기 용액수용몸체부의 내부에 관통 형성되고, 상기 CNT 용액이 유동되는 유동관부; 및 상기 유동관부의 내벽에 형성되어 상기 CNT 용액이 나선형으로 유동되게 가이드하는 나선가이드부를 포함하는 용액수용부; 및 상기 용액수용몸체부의 외벽에 장착되고, 상기 CNT 용액에 초음파를 제공하는 초음파 진동자부를 포함하고, 상기 나선가이드부는 상기 유동관부의 내벽에 적어도 2회 이상 회전 방향이 변경되도록 오른나선형과 왼나선형이 교호되게 형성된다. In the present invention, the carbon nanotube dispersing device includes: a solution receiving body; a flow pipe part which is formed through the inside of the solution receiving body part, and through which the CNT solution flows; and a solution receiving part formed on the inner wall of the flow pipe part and including a spiral guide part for guiding the CNT solution to flow in a spiral; and an ultrasonic vibrator part mounted on the outer wall of the solution receiving body part and providing ultrasonic waves to the CNT solution, wherein the spiral guide part alternates between a right helix and a left helix so that the rotation direction is changed at least twice on the inner wall of the flow pipe part. is formed nicely.
본 발명에서 상기 탄소나노튜브 분산 장치의 상기 유동관부에 연통되어 상기 CNT 용액를 공급받는 제2매니폴드부를 더 포함하고, 상기 탄소나노튜브 분산 장치는 상기 제1매니폴드부와 상기 제2매니폴드부 사이에 적어도 하나 이상이 설치된다.In the present invention, the carbon nanotube dispersing device further includes a second manifold part communicating with the flow pipe part to receive the CNT solution, wherein the carbon nanotube dispersing device includes the first manifold part and the second manifold part At least one is installed between them.
본 발명에서 상기 제2매니폴드부는 상기 탱크부와 연통되고, 상기 제2매니폴드부에서 토출되는 상기 CNT 용액을 상기 탱크부로 유동되게 하는 펌프부를 더 포함한다.In the present invention, the second manifold part communicates with the tank part, and further includes a pump part for allowing the CNT solution discharged from the second manifold part to flow into the tank part.
본 발명에서 상기 탱크부와 상기 제1매니폴드부사이에 배치되고, 상기 CNT 용액을 설정 온도로 냉각하는 열교환부를 더 포함한다.In the present invention, it is disposed between the tank part and the first manifold part, and further includes a heat exchange part for cooling the CNT solution to a set temperature.
본 발명에서 상기 탱크부와 상기 제1매니폴드부사이에 배치되고, 상기 CNT 용액을 설정 온도로 가열하는 열교환부를 더 포함한다.In the present invention, it is disposed between the tank part and the first manifold part, and further includes a heat exchange part for heating the CNT solution to a set temperature.
본 발명에 의하면, CNT 용액이 용액수용부의 나선가이드부에 의해 나선으로 유동되면서 층류로 형성되고, 초음파 진동자부의 초음파 진동에 의해 분산시킬 수 있다. According to the present invention, the CNT solution is formed in a laminar flow while being spirally flowed by the spiral guide part of the solution receiving part, and can be dispersed by ultrasonic vibration of the ultrasonic vibrator part.
또한 본 발명에 의하면, 용액수용부의 출구부에 설치되는 원추형 분산부에 의해 CNT 용액의 덩어리부를 풀어줄 수 있다.In addition, according to the present invention, it is possible to release the lump of the CNT solution by the conical dispersion part installed at the outlet part of the solution receiving part.
또한 본 발명의 의하면, 탄소나노튜브 분산 장치가 복수개로 병렬 배치되어, 탱크부로 CNT 용액을 순환시키면서, CNT 가닥의 손상, CNT 덩어리 분리의 어려움, 전체 용액의 고른 분산의 어려움, 높은 제조 비용, 분산 시간 증대 등의 문제를 해결하고, CNT를 용액에 고루 분산시킬 수 있다. In addition, according to the present invention, a plurality of carbon nanotube dispersing devices are arranged in parallel, and while circulating the CNT solution to the tank part, damage to CNT strands, difficulty in separating CNT lumps, difficulty in uniform dispersion of the entire solution, high manufacturing cost, dispersion It is possible to solve problems such as time increase, and uniformly disperse CNTs in the solution.
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브 분산 장치를 개략적으로 나타내는 조립 사시도이다. 1 is an assembled perspective view schematically showing a carbon nanotube dispersing device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 탄소나노튜브 분산 장치를 개략적으로 나타내는 사시도이다. 2 is a perspective view schematically illustrating a carbon nanotube dispersing apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 탄소나노튜브 분산 장치를 개략적으로 나타내는 정면도이다. 3 is a front view schematically showing a carbon nanotube dispersing apparatus according to an embodiment of the present invention.
도 4는 도 1의 "A"를 개략적으로 나타내는 부분 확대도이다.4 is a partially enlarged view schematically showing "A" of FIG. 1 .
도 5는 도 2의 "B"를 개략적으로 나타내는 부분 확대도이다. FIG. 5 is a partially enlarged view schematically showing "B" of FIG. 2 .
도 6은 본 발명의 일 실시예에 따른 원추분사부에서 CNT 용액에서 CNT 덩어리부를 푸는 과정을 개략적으로 나타내는 개념도이다. 6 is a conceptual diagram schematically illustrating a process of unraveling a CNT lump in a CNT solution in a cone injection unit according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 탄소나노튜브 분산 통합 장치를 개략적으로 나타내는 개념도이다. 7 is a conceptual diagram schematically illustrating a carbon nanotube dispersion and integration device according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 제1교반부와 제2교반부를 개략적으로 나타내는 사시도이다. 8 is a perspective view schematically illustrating a first stirring unit and a second stirring unit according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 탄소나노튜브 분산 장치 및 이를 구비하는 탄소나노튜브 분산 통합 장치의 일 실시예를 설명한다. 이러한 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. Hereinafter, an embodiment of a carbon nanotube dispersion device and a carbon nanotube dispersion and integration device having the same according to the present invention will be described with reference to the accompanying drawings. In this process, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of explanation.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써, 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In addition, the terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators. Therefore, definitions of these terms should be made based on the content throughout this specification.
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브 분산 장치를 개략적으로 나타내는 조립 사시도이고, 도 2는 본 발명의 일 실시예에 따른 탄소나노튜브 분산 장치를 개략적으로 나타내는 사시도이고, 도 3은 본 발명의 일 실시예에 따른 탄소나노튜브 분산 장치를 개략적으로 나타내는 정면도이고, 도 4는 도 1의 "A"를 개략적으로 나타내는 부분 확대도이고, 도 5는 도 2의 "B"를 개략적으로 나타내는 부분 확대도이고, 도 6은 본 발명의 일 실시예에 따른 원추분사부에서 CNT 용액에서 CNT 덩어리부를 푸는 과정을 개략적으로 나타내는 개념도이고, 도 7은 본 발명의 일 실시예에 따른 탄소나노튜브 분산 통합 장치를 개략적으로 나타내는 개념도이고, 도 8은 본 발명의 일 실시예에 따른 제1교반부와 제2교반부를 개략적으로 나타내는 사시도이다. 1 is an assembled perspective view schematically showing a carbon nanotube dispersing device according to an embodiment of the present invention, FIG. 2 is a perspective view schematically showing a carbon nanotube dispersing device according to an embodiment of the present invention, and FIG. 3 is It is a front view schematically showing a carbon nanotube dispersing apparatus according to an embodiment of the present invention, FIG. 4 is a partially enlarged view schematically showing “A” in FIG. 1, and FIG. 5 is a schematic view of “B” in FIG. 2 . It is a partial enlarged view showing, FIG. 6 is a conceptual diagram schematically illustrating a process of unraveling a CNT lump in a CNT solution in a cone injection unit according to an embodiment of the present invention, and FIG. 7 is a carbon nanotube according to an embodiment of the present invention. It is a conceptual diagram schematically showing a dispersion and integration device, and FIG. 8 is a perspective view schematically showing a first stirrer and a second stirrer according to an embodiment of the present invention.
도 1 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 탄소나노튜브 분산 장치(1)는 용액수용부(100)와 초음파 진동자부(200)를 포함한다. 1 to 6 , the carbon nanotube dispersing apparatus 1 according to an embodiment of the present invention includes a solution receiving unit 100 and an ultrasonic vibrator 200 .
용액수용부(100)는 CNT 용액(10)을 수용하는 것이다. CNT 용액(10)은 CNT(Carbon Nano Tube, 탄소나노튜브)를 포함하는 용액이다. 용액수용부(100)는 용액수용몸체부(110), 유동관부(120), 나선가이드부(130)를 포함한다. The solution receiving unit 100 is to accommodate the CNT solution (10). The CNT solution 10 is a solution containing CNT (Carbon Nano Tube, carbon nano tube). The solution accommodating part 100 includes a solution accommodating body part 110 , a flow pipe part 120 , and a spiral guide part 130 .
용액수용몸체부(110)는 일면(도 1 기준 우측)이 평면으로 형성되는 반원기둥 형상으로 형성된다. 유동관부(120)는 용액수용몸체부(110)의 내부에 관통 형성되는 것으로, CNT 용액(10)이 유동되는 경로를 제공한다. 유동관부(120)는 일측(도 1 기준 상측)이 입구부(121)이고, 타측(도 1 기준 하측)이 출구부(123)이다. The solution receiving body 110 is formed in a semi-cylindrical shape in which one surface (the right side of FIG. 1 ) is formed as a flat surface. The flow pipe part 120 is formed through the inside of the solution receiving body part 110, and provides a path through which the CNT solution 10 flows. One side (upper side in FIG. 1 ) of the flow pipe part 120 is the inlet part 121 , and the other side (the lower side in FIG. 1 ) is the outlet part 123 .
설정 내경(D)을 구비하는 유동관부(120)에서 유동되는 CNT 용액(10)을 층류로 형성하기 위해, 설정된 속도로 CNT 용액(10)이 유동되면, CNT 용액(10) 안의 개별 CNT는 유동관부(120)의 길이 방향으로 배열되면서 유동관부(120)로 흘러가게 된다.In order to form the CNT solution 10 flowing in the flow tube part 120 having a set inner diameter D in a laminar flow, when the CNT solution 10 flows at a set speed, the individual CNTs in the CNT solution 10 flow While being arranged in the longitudinal direction of the pipe part 120, it flows into the flow pipe part 120 .
CNT 용액(10)에서 구형 알갱이 모양의 덩어리부(15)를 분리할 때는 CNT 용액(10)에 강한 난류를 줄수록 유리하지만, 본 발명에서는 길다란 선형구조를 가지는 CNT를 CNT 용액(10)의 흐름에 평행하게 배치하기 위하여 층류를 만들어 주는 것이다. 층류를 만들어서 CNT 가닥을 CNT 용액(10)의 유동에 평행하게 배치하면, 난류에 의한 전단력에 의해 CNT 가닥이 손상되는 현상을 방지할 수 있다.When separating the spherical granular mass portion 15 from the CNT solution 10, it is advantageous as strong turbulence is given to the CNT solution 10. It creates a laminar flow in order to arrange it parallel to the If the CNT strands are arranged parallel to the flow of the CNT solution 10 by creating a laminar flow, it is possible to prevent the CNT strands from being damaged by the shear force caused by the turbulence.
유동관부(120)를 흐르는 CNT 용액(10)이 층류(Laminar Flow)인지 난류(Turbulent Flow)인지 알아보기 위해서는 다음 수식에서 레이놀즈 수(Reynolds Number, Re)를 계산한다.In order to determine whether the CNT solution 10 flowing through the flow pipe unit 120 is a laminar flow or a turbulent flow, the Reynolds number (Re) is calculated from the following equation.
[수식][formula]
Figure PCTKR2021004816-appb-img-000001
Figure PCTKR2021004816-appb-img-000001
여기에서, μ는 CNT 용액(10)의 점성계수(Viscosity), V는 CNT 용액(10)의 속도(Velocity), D는 유동관부(10)의 내경(Inner Diameter), ρ는 CNT 용액(10)의 밀도(Density)이다.Here, μ is the viscosity coefficient of the CNT solution 10, V is the velocity of the CNT solution 10, D is the inner diameter of the flow pipe 10, ρ is the CNT solution 10 ) is the density of
유동관부(120) 안에서 흐르는 CNT 용액(10)의 경우, 위 수식에 의해 계산된 레이놀즈 수(Re)가 약 2,100 이하일 때 층류를 형성하고, 4,000 이상에서는 난류를 형성한다. Re가 2,000 ~ 4,000 사이는 천이 영역(T/ransition Zone)이라 부른다. 따라서 사용하는 CNT 용액(10)의 점성계수와 밀도를 알면 관로의 직경과 유체의 흐르는 속도를 조절하여 층류 유동을 얻을 수 있다.In the case of the CNT solution 10 flowing in the flow pipe part 120, when the Reynolds number (Re) calculated by the above equation is about 2,100 or less, laminar flow is formed, and when it is 4,000 or more, turbulence is formed. A range between 2,000 and 4,000 Re is called a transition zone (T/ransition zone). Therefore, if the viscosity coefficient and density of the CNT solution 10 used are known, the laminar flow can be obtained by controlling the diameter of the pipe and the flow rate of the fluid.
본 발명에서 유동관부(120)의 내경(D)은 레이놀즈 수(Re)는 4,000 이하가 나오도록 설정한다. 따라서 유동관부(120)를 흐르는 CNT 용액(10)은 천이 영역 내지 층류로 형성된다. In the present invention, the inner diameter (D) of the flow pipe part 120 is set so that the Reynolds number (Re) is 4,000 or less. Therefore, the CNT solution 10 flowing through the flow pipe unit 120 is formed in a transition region or laminar flow.
나선가이드부(130)는 유동관부(120)의 내벽에 형성되어 CNT 용액(10)이 나선형으로 유동되게 가이드한다. 나선가이드부(130)는 유동관부(120)의 내벽에 적어도 2회 이상 회전 방향이 변경되도록 왼나선형과 오른나선형이 교호되게 형성된다. The spiral guide unit 130 is formed on the inner wall of the flow pipe unit 120 to guide the CNT solution 10 to flow in a spiral. The spiral guide unit 130 is alternately formed with a left spiral type and a right spiral type on the inner wall of the flow pipe unit 120 so that the rotation direction is changed at least twice or more.
나선가이드부(130)는 유동관부(120)의 내벽에 오목한 홈 또는 돌기로 돌출 형성된다. 나선가이드부(130)는 유동관부(120)의 내벽에 홈이나 돌기로 나선형으로 형성되어, 총신 내부를 진행하는 총알이 총신 내부에 마련된 강선에 의하여 회전하듯이 CNT 용액(10)이 유동관부(120)의 내벽을 흘러가면서 회전력을 받게 된다.The spiral guide unit 130 is formed to protrude into a concave groove or protrusion on the inner wall of the flow pipe unit 120 . The spiral guide part 130 is formed in a spiral shape with grooves or protrusions on the inner wall of the flow pipe part 120, so that the CNT solution 10 is the flow pipe part ( 120) as it flows through the inner wall and receives rotational force.
유동관부(120)의 내벽에 형성되는 나선가이드부(130)는 설정 길이마다 회전 방향을 바꾸도록, 왼나선형과 오른나선형이 교호되게 형성된다. 나선가이드부(130)는 제1나선가이드부(131), 제2나선가이드부(133), 제3나선가이드부(135)를 포함한다. The spiral guide unit 130 formed on the inner wall of the flow pipe unit 120 is alternately formed in a left spiral type and a right spiral type to change the rotation direction for each set length. The spiral guide unit 130 includes a first spiral guide unit 131 , a second spiral guide unit 133 , and a third spiral guide unit 135 .
제1나선가이드부(131)는 입구부(121)에서 시작되어 일방향으로 꼬인 나선형(도 1 기준 오른나선형)으로 형성된다. 제2나선가이드부(133)는 제1나선가이드부(131)의 일측(도 1 기준 하측)에서 연장 형성되어 타방향으로 꼬인 나선형(도 1 기준 왼나선형)으로 형성된다. 제3나선가이드부(135)는 제2나선가이드부(133)의 일측(도 1 기준 하측)에서 연장 형성되어 일방향으로 꼬인 나선형(도 1 기준 오른나선형)으로 형성된다. The first spiral guide part 131 is formed in a spiral (right-handed spiral type in FIG. 1 ) that starts from the inlet part 121 and is twisted in one direction. The second spiral guide part 133 is formed to extend from one side (lower side of FIG. 1 ) of the first spiral guide part 131 and is formed in a spiral twisted in the other direction (left spiral type based on FIG. 1 ). The third spiral guide part 135 is formed to extend from one side (lower side of FIG. 1 ) of the second spiral guide part 133 and is formed in a spiral twisted in one direction (right spiral type in FIG. 1 ).
본 발명에서 상술한 제1나선가이드부(131), 제2나선가이드부(133), 제3나선가이드부(135)를 포함하는 나선가이드부(130)는 유동관부(120)에 2회 회전방향이 변경되게 형성된다. 입구부(121)로 들어간 CNT 용액(10)은 제1나선가이드부(131)를 지나변서 시계방향(CW)으로 회전하며 움직이다가, 1번 회전 방향 변화점인 제2나선가이드부(133)를 지나면서 반시계방향(CCW)으로 회전한다. 그러다가 2번 회전 방향 변화점인 제3나선가이드부(135)부터는 다시 시계방향(CW)으로 회전방향이 변하게 된다.In the present invention, the spiral guide portion 130 including the first spiral guide portion 131 , the second spiral guide portion 133 , and the third spiral guide portion 135 is rotated twice in the flow tube portion 120 . direction is changed. The CNT solution 10 entering the inlet 121 passes the first helix guide part 131 and rotates in the clockwise direction (CW), and then the second helix guide part 133 which is the first rotational direction change point. ) and rotates counterclockwise (CCW). Then, from the third spiral guide part 135, which is the second rotation direction change point, the rotation direction is changed again in the clockwise direction (CW).
나선가이드부(130)는 상술한 나선형이 계속적으로 왼나선형과 오른나선형이 교호 형성되어 회전 방향의 변경이 증가될 수 있다. In the spiral guide unit 130 , the above-described spiral is continuously alternately formed in a left spiral type and a right spiral type, so that the change of the rotation direction may be increased.
CNT 용액(10)은 유동관부(120) 내벽에서 나선가이드부(130)를 따라 길게 늘어서서 왼나선형과 오른나선형으로 번갈아 가면서 비틀림을 받게 된다. 따라서 CNT 용액(10)은 손으로 비비는 것과 같이 CNT 다발이 풀어지게 된다. The CNT solution 10 is stretched along the spiral guide unit 130 on the inner wall of the flow pipe unit 120 and is twisted alternately in a left spiral type and a right spiral type. Therefore, the CNT solution 10 is released as a CNT bundle by hand rubbing.
유동관부(120)의 홈 또는 돌기의 단면의 형상이 반구형, 원형, 다각형 중에서 가공의 편이성 등을 고려하여 선택될 수 있다. 유동관부(120)의 내벽에 형성된 홈 또는 돌기는 유동관부(120)를 흐르는 CNT 용액(10)을 회전시킨다.The shape of the cross-section of the groove or protrusion of the flow pipe part 120 may be selected from among hemispherical, circular, and polygonal shapes in consideration of ease of processing and the like. The grooves or protrusions formed on the inner wall of the flow pipe unit 120 rotate the CNT solution 10 flowing through the flow pipe unit 120 .
유동관부(120)에서 나선가이드부(130)를 따라 흐르는 CNT 용액(10)은 난류가 발생되기 직전까지 고속으로 흐르므로, 상술한 회전 방향의 변화는 CNT 용액(10) 안의 CNT 다발에 큰 비틀림 운동 에너지를 가하게 된다.Since the CNT solution 10 flowing from the flow pipe unit 120 along the spiral guide unit 130 flows at a high speed until just before turbulence occurs, the above-described change in the rotation direction causes a large torsion in the CNT bundle in the CNT solution 10 . kinetic energy is applied.
유동관부(120)는 직관부(120a)를 구비한다. 직관부(120a)는 유동관부(120)의 하측에 출구부(123) 측을 향해 직선으로 형성된다. 직관부(120a)는 CNT 용액(10)이 출구부(123) 측을 향해 직선으로 유동되게 가이드한다. 직관부(120a)의 길이는 유동관부(120)의 내경(D)을 기준으로 1D 내지 20D로 이루어지게 형성된다. The flow pipe part 120 includes a straight pipe part 120a. The straight pipe part 120a is formed in a straight line toward the outlet part 123 on the lower side of the flow pipe part 120 . The straight pipe part 120a guides the CNT solution 10 to flow in a straight line toward the outlet part 123 side. The length of the straight pipe part 120a is formed to be 1D to 20D based on the inner diameter D of the flow pipe part 120 .
초음파 진동자부(200)는 용액수용몸체부(110)의 외벽에 장착되고, CNT 용액(10)에 초음파를 제공한다. 초음파 진동자부(200)는 용액수용몸체부(110)의 길이방향을 따라 복수개가 배치된다. The ultrasonic vibrator 200 is mounted on the outer wall of the solution receiving body 110 , and provides ultrasonic waves to the CNT solution 10 . A plurality of ultrasonic vibrator units 200 are disposed along the longitudinal direction of the solution receiving body unit 110 .
초음파 진동자부(200)는 유동관부(120)와 나선가이드부(130)에서 CNT 용액(10)의 회전 방향의 변화로 발생된 비틀림으로도 CNT 가닥 사이의 반데르발스 인력(Van der Waals Force)에 의해 분산되지 않은 CNT의 덩어리부(15)를 분산시킨다. The ultrasonic vibrator 200 is a torsion generated by a change in the rotational direction of the CNT solution 10 in the flow tube part 120 and the spiral guide part 130 as well as the Van der Waals force between the CNT strands. Dispersing the lumps 15 of CNTs that are not dispersed by
나선가이드부(130)를 타고 흐르는 CNT 용액(10)은 시계방향과 반시계방향으로 교번되면서 비틀림 힘을 받게 된다. 이때 초음파 진동자부(200)에 의해 유동관부(120)에 초음파 진동을 CNT 용액(10)이 받게 된다. 이 초음파 진동은 반데르발스 인력으로 뭉쳐 있는 CNT 용액(10)의 CNT 가닥들을 떼어 놓는다.The CNT solution 10 flowing along the spiral guide unit 130 receives a torsion force while alternating in clockwise and counterclockwise directions. At this time, the CNT solution 10 is subjected to ultrasonic vibrations in the flow tube unit 120 by the ultrasonic vibrator unit 200 . This ultrasonic vibration separates the CNT strands of the CNT solution 10 that are agglomerated by van der Waals attraction.
즉, 초음파 진동자부(200)는 유동관부(120)와 나선가이드부(130)의 내부의 층류 흐름에 일직선으로 배치되어 흐르고 있는 CNT 다발들에 뭉쳐 있는 방향의 수직 방향으로 초음파 진동이 가해져서 반데르발스 인력을 이기는 힘을 받아 CNT 가닥과 가닥이 떨어지게 된다. 이때 이 분리된 CNT를 포함하는 CNT 용액(10)가 시계방향과 반시계방향으로 계속 비틀림 힘을 교번으로 받으며 이동하기 때문에 일단 분리된 CNT 가닥은 더욱 멀리 떨어지게 된다.That is, the ultrasonic vibrator part 200 is arranged in a straight line in the laminar flow inside the flow tube part 120 and the spiral guide part 130 and the ultrasonic vibration is applied in the vertical direction in the direction in which the CNT bundles flowing are agglomerated. CNT strands and strands are separated by a force that overcomes the Der Waals attraction. At this time, since the CNT solution 10 containing the separated CNTs continues to move while receiving the torsional force alternately in the clockwise and counterclockwise directions, the CNT strands once separated are further separated.
초음파 진동자부(200)는 초음파 진동자몸체부(210)와 접촉부(230)를 포함한다. 초음파 진동자몸체부(210)는 내부에 초음파 진동 발생장치(미도시)를 수용한다. 접촉부(230)는 초음파 진동자몸체부(210)의 일면(도 1 기준 좌측)이 용액수용몸체부(110)의 외벽에 접촉된다. The ultrasonic vibrator part 200 includes an ultrasonic vibrator body part 210 and a contact part 230 . The ultrasonic vibrator body 210 accommodates an ultrasonic vibration generating device (not shown) therein. In the contact part 230 , one surface (the left side of FIG. 1 ) of the ultrasonic vibrator body part 210 is in contact with the outer wall of the solution receiving body part 110 .
접촉부(230)는 초음파 진동자를 CNT 용액(10)이 흐르는 유동관부(120) 측을 향해 용액수용몸체부(110)의 외벽에 부착될 때, 초음파 진동을 유동관부(120)에만 집중적으로 조사하기 위하여 CNT 용액(10)이 흐르는 방향(도 1 기준 상하방향)으로 좁고 길게 형성된다. When the contact part 230 is attached to the outer wall of the solution receiving body part 110 toward the flow pipe part 120 side through which the CNT solution 10 flows, the ultrasonic vibrator intensively irradiates the ultrasonic vibration to the flow pipe part 120 only. To this end, the CNT solution 10 is formed to be narrow and long in the flowing direction (up and down direction based on FIG. 1 ).
접촉부(230)가 용액수용몸체부(110)의 외벽에 접촉되는 폭(W)은 유동관부(120)의 내경(D)보다 작거나, 유동관부(120)의 내경(D)의 2배 이하로 형성된다. The width W at which the contact portion 230 is in contact with the outer wall of the solution receiving body 110 is smaller than the inner diameter D of the flow tube portion 120, or twice the inner diameter D of the flow tube portion 120 or less is formed with
초음파 진동자부(200)는 유동관부(120)를 흐르는 CNT 용액(10)에 초음파를 가하여, 유동관부(120)를 흐르는 전체 CNT 용액(10) 안의 CNT는 모두 고른 초음파 힘을 받게 되므로, 기존의 초음파 분산 방법인 용기 내에 초음파 프로브를 이용하여 초음파를 조사하여 프로브 주위의 용액에 대해서 분산을 실시하는 방법과 달리, 유동관부(120)을 통과하는 유체의 전체 부피에 통하여 초음파를 고르게 조사할 수 있으므로, 단순히 초음파 프로브 하나를 사용하는 기존 초음파 분산기보다 뛰어난 초음파 분산 효과를 얻을 수 있다.The ultrasonic vibrator 200 applies ultrasonic waves to the CNT solution 10 flowing through the flow pipe unit 120, so that all CNTs in the CNT solution 10 flowing through the flow pipe unit 120 receive an even ultrasonic force. Unlike the method of dispersing the solution around the probe by irradiating ultrasonic waves using an ultrasonic probe in the container, which is an ultrasonic dispersion method, since ultrasonic waves can be evenly irradiated through the entire volume of the fluid passing through the flow pipe unit 120 . , it is possible to obtain a superior ultrasonic dispersion effect than a conventional ultrasonic disperser that simply uses one ultrasonic probe.
본 발명에 따른 탄소나노튜브 분산 장치(1)는 원추형 분산부(300)를 더 포함한다. 원추형 분산부(300)는 유동관부(120)의 출구부(123)의 내측에 장착된다. CNT 용액(10)은 원추형 분산부(300)와 충돌하게 되면서 출구부(123)의 외부로 배출된다. The carbon nanotube dispersing device 1 according to the present invention further includes a conical dispersing unit 300 . The conical dispersion part 300 is mounted inside the outlet part 123 of the flow pipe part 120 . The CNT solution 10 is discharged to the outside of the outlet portion 123 as it collides with the conical dispersion portion 300 .
원추형 분산부(300)는 원추형 분산몸체부(310)와 첨단부(320)를 포함한다. 원추형 분산몸체부(310)는 원추형으로 형성되는 것으로, 출구부(123)에 장착되어 출구부(123)의 하측(도 5 기준)으로 하향 경사진 경사면을 구비한다. 원추형 분산몸체부(310)는 용액수용몸체부(110)에서 연장 형성되는 지지대(미도시) 등에 의해 고정된다.The conical dispersion part 300 includes a conical dispersion body part 310 and a tip part 320 . The conical dispersion body part 310 is formed in a conical shape, and is mounted on the outlet part 123 and has an inclined surface inclined downward to the lower side (based on FIG. 5 ) of the outlet part 123 . The conical dispersion body part 310 is fixed by a support (not shown) that is formed extending from the solution receiving body part 110 .
첨단부(320)는 원추형 분산몸체부(310)의 단부(도 1 기준 상단부)에 뾰족하게 형성된다. 첨단부(320)는 출구부(123)를 통해 배출되기 전의 CNT 용액(10)에 충돌하여 CNT 용액(10)의 덩어리부(15)를 풀게 한다.The tip 320 is sharply formed at the end (the upper end of FIG. 1 ) of the conical dispersion body 310 . The tip 320 collides with the CNT solution 10 before being discharged through the outlet 123 to loosen the lump 15 of the CNT solution 10 .
유동관부(120)를 따라 내려오는 CNT 용액(10)은 초음파 진동자부(200)의 초음파 진동과, 나선가이드부(130)에 의한 교번 비틀림 힘에 의해 평행으로 덩어리부(15)로 붙어 있던 CNT 가닥이 풀어지나, 일부 풀어지지 않은 덩어리부(15)는 직관부(120a)를 통해 내려오면서 첨단부(320)와의 충돌되고 강한 유속에 의하여 덩어리부(15) 자체가 당겨져서 풀어지거나 CNT 가닥이 끊어지면서 풀러지게 된다. The CNT solution 10 coming down along the flow pipe part 120 is CNT attached to the lump part 15 in parallel by the ultrasonic vibration of the ultrasonic vibrator part 200 and the alternating torsion force by the spiral guide part 130 . The strands are released, but the lumps 15 that are not partially released come down through the straight pipe part 120a and collide with the tip 320, and the lumps 15 themselves are pulled and released by the strong flow rate or the CNT strands are released. When it breaks, it comes loose.
또한 첨단부(320)의 뾰족한 끝이 CNT 용액(10)이 경로 안 쪽에 있기 때문에, CNT 용액(10)이 출구(123)를 나오기 전에 첨단부(320)에서 압력이 높아지고 유속이 빨라진 상태로 출구부(123)를 빠져 나가게 되는데, 이 때 유체의 압력과 유속이 급격하게 줄어들게 되어서 CNT 덩어리부(15)가 서로 흩어지므로 분산 효과를 얻을 수 있다.In addition, since the sharp end of the tip 320 is inside the path of the CNT solution 10, the pressure at the tip 320 is high and the flow rate is increased before the CNT solution 10 exits the outlet 123. It exits the part 123, at this time, the pressure and flow rate of the fluid are rapidly reduced, so that the CNT lumps 15 are dispersed from each other, so that a dispersion effect can be obtained.
덩어리부(15)가 풀어진 CNT 용액(10)은 원추형 분산몸체부(310)의 경사면을 따라 내려가게 된다. The CNT solution 10 in which the lump 15 is released goes down along the inclined surface of the conical dispersion body 310 .
도 7 및 도 8을 참조하여 본 발명의 일 실시예에 따른 탄소나노튜브 분산 통합 장치는 탱크부(20), 제1교반부(30), 제2교반부(40), 제1매니폴드부(50), 탄소나노튜브 분산 장치(1)를 포함한다. 7 and 8, the carbon nanotube dispersion and integration device according to an embodiment of the present invention includes a tank unit 20, a first stirring unit 30, a second stirring unit 40, and a first manifold unit. (50), a carbon nanotube dispersing device (1) is included.
탱크부(20)는 CNT 용액(10)을 수용한다. 제1교반부(30)는 탱크부(10)에 수용되는 CNT 용액(10)을 회전시켜서 CNT 용액(10)을 교반한다. 제2교반부(40)는 제1교반부(30)의 내측을 관통하고, 탱크부(20)에 수용되는 CNT 용액(10)을 회전시켜서 CNT 용액(10)을 교반한다.The tank unit 20 accommodates the CNT solution 10 . The first stirring unit 30 agitates the CNT solution 10 by rotating the CNT solution 10 accommodated in the tank unit 10 . The second stirring unit 40 passes through the inside of the first stirring unit 30 , and rotates the CNT solution 10 accommodated in the tank unit 20 to stir the CNT solution 10 .
제1교반부(30)는 제1회전축부(31), 원판부(33), 교반용봉부(35), 제1모터부(37)를 포함한다. 제1회전축부(31)는 단부(도 7 기준 하단부)가 탱크부(20)에 잠기고, 제1모터부(37)로부터 동력을 전달받아 회전된다. 제1회전축부(31)는 중공형으로 형성되어, 내부에 제2교반부(40)의 제2회전축부(41)가 회전 가능하게 삽입된다. The first stirring unit 30 includes a first rotating shaft unit 31 , a disk unit 33 , a stirring rod unit 35 , and a first motor unit 37 . The end of the first rotation shaft 31 is locked in the tank 20 at an end (lower end of FIG. 7 ), and is rotated by receiving power from the first motor 37 . The first rotation shaft part 31 is formed in a hollow shape, and the second rotation shaft part 41 of the second stirring part 40 is rotatably inserted therein.
원판부(33)는 탱크부(20)에 잠긴 제1회전축부(31)의 단부에 설치되는 원판 형상으로 형성된다. 원판부(33)는 제1회전축부(31)의 회전에 따라 회전된다.The disc part 33 is formed in a disc shape installed at the end of the first rotating shaft part 31 locked in the tank part 20 . The disk part 33 is rotated according to the rotation of the first rotating shaft part 31 .
교반용봉부(35)는 원판부(33)에 원판부(33)의 원주방향을 따라 복수개가 장착된다. 즉 교반용봉부(35)는 회전하는 원판부(33)의 회전 방향에 수직으로 복수개가 기립 배치된다. A plurality of stirring rods 35 are mounted on the disk portion 33 along the circumferential direction of the disk portion 33 . That is, a plurality of agitating rods 35 are vertically disposed in a direction of rotation of the rotating disk portion 33 .
제1모터부(37)는 제1회전축부(31)에 동력을 전달하여 제1회전축부(31)를 회전시킨다. The first motor unit 37 transmits power to the first rotating shaft unit 31 to rotate the first rotating shaft unit 31 .
상술한 구성으로 이루어진 제1교반부(30)의 제1회전축부(31)가 회전됨에 따라 교반용봉부(35)가 CNT 용액(10)에 있는 덩어리를 잘게 부수게 된다. As the first rotating shaft part 31 of the first agitating part 30 configured as described above rotates, the stirring welding part 35 crushes the lumps in the CNT solution 10 into small pieces.
제2교반부(40)는 제2회전축부(41), 교반팬부(43), 제2모터부(35)를 포함한다. 제2회전축부(41)는 제1회전축부(31)의 내측에 삽입되고, 단부(도 7 기준 하단부)가 탱크부(20)에 잠기고, 제2모터부(35)로부터 동력을 전달받아 회전된다. The second stirring unit 40 includes a second rotating shaft unit 41 , a stirring fan unit 43 , and a second motor unit 35 . The second rotation shaft part 41 is inserted inside the first rotation shaft part 31 , and the end (lower part of FIG. 7 ) is locked in the tank part 20 , and is rotated by receiving power from the second motor part 35 . do.
교반팬부(43)는 탱크부(20)에 잠긴 제2회전축부(41)의 단부에 설치되는 복수개의 블레이드로 이루어진다. 교반팬부(43)는 제2회전축부(41)의 회전에 따라 회전된다.The stirring fan part 43 consists of a plurality of blades installed at the end of the second rotation shaft part 41 submerged in the tank part 20 . The stirring pan part 43 is rotated according to the rotation of the second rotating shaft part 41 .
제2모터부(35)는 제2회전축부(41)에 동력을 전달하여 제2회전축부(41)를 회전시킨다. The second motor part 35 transmits power to the second rotation shaft part 41 to rotate the second rotation shaft part 41 .
상술한 구성으로 이루어진 제2교반부(40)의 제2회전축부(41)가 회전됨에 따라 교반팬부(43)가 회전되면서 제1교반부(30)의 교반용봉부(35)와 함께 CNT 용액(10)에 있는 덩어리를 잘게 부수게 된다. CNT solution together with the stirring rod part 35 of the first stirring part 30 as the stirring fan part 43 is rotated as the second rotation shaft part 41 of the second stirring part 40 having the above-described configuration is rotated The lump in (10) is crushed.
또는 제1교반부(30)와 제2교반부(40)는 같이 작동될 수 있으나, 선택적으로 작동되어 제1교반부(30)와 제2교반부(40) 중 어느 하나가 작동될 수 있다. Alternatively, the first stirring unit 30 and the second stirring unit 40 may be operated together, but may be selectively operated so that any one of the first stirring unit 30 and the second stirring unit 40 may be operated .
제1매니폴드부(50)는 탱크부(20)에 연통되고, 제1교반부(30) 또는 제2교반부(40)에 의해 교반되는 CNT 용액(10)을 공급받는다.The first manifold part 50 communicates with the tank part 20 and receives the CNT solution 10 stirred by the first agitator 30 or the second agitator 40 .
탄소나노튜브 분산 장치(1)는 제1매니폴드부(50)로부터 CNT 용액(1)을 공급받아 CNT 용액(10)을 분산한다. 탄소나노튜브 분산 장치(1)의 구조 및 작동을 상술한 설명으로 갈음한다.The carbon nanotube dispersing device 1 receives the CNT solution 1 from the first manifold 50 and disperses the CNT solution 10 . The structure and operation of the carbon nanotube dispersing device 1 are replaced by the above description.
제2매니폴드부(60)는 유동관부(120)에 연통되어 분산된 CNT 용액(10)을 공급받는다. 제1매니폴드부(50)는 탄소나노튜브 분산 장치(1)의 상측(도 7 기준)에 배치되고, 제2매니폴드부(60)는 탄소나노튜브 분산 장치(1)의 하측(도 7 기준)에 배치된다. The second manifold unit 60 is communicated with the flow pipe unit 120 to receive the dispersed CNT solution 10 . The first manifold unit 50 is disposed above the carbon nanotube dispersing device 1 (based on FIG. 7 ), and the second manifold unit 60 is disposed at the lower side of the carbon nanotube dispersing device 1 ( FIG. 7 ). standard) is placed.
본 발명에서 탄소나노튜브 분산 장치(1)는 제1매니폴드부(50)와 제2매니폴드부(60) 사이에 적어도 하나 이상이 설치된다. 제1매니폴드부(50)와 제2매니폴드부(60) 사이에 복수개의 탄소나노튜브 분산 장치(1)가 배치되어, 제1매니폴드부(50)에서 공급되는 CNT 용액(10)은 복수개의 탄소나노튜브 분산 장치(1)를 거치면서 하나로 분산했을 때보다 많은 CNT 용액(10)이 분산될 수 있다.In the present invention, at least one carbon nanotube dispersing device 1 is installed between the first manifold part 50 and the second manifold part 60 . A plurality of carbon nanotube dispersion devices 1 are disposed between the first manifold part 50 and the second manifold part 60 , and the CNT solution 10 supplied from the first manifold part 50 is While passing through a plurality of carbon nanotube dispersing apparatus 1, more CNT solution 10 may be dispersed than when dispersed as one.
탄소나노튜브 분산 장치(1)의 출구부(123)는 제2매니폴드부(60)에 연결되고, 분산된 CNT 용액(10)은 제2매니폴드부(60)에서 합쳐져서 다시 탱크부(20)로 돌아간다.The outlet part 123 of the carbon nanotube dispersion device 1 is connected to the second manifold part 60 , and the dispersed CNT solution 10 is merged in the second manifold part 60 and again the tank part 20 ) back to
제2매니폴드부(60)는 탱크부(20)와 관으로 연통되고, 해당 관 중간에 펌프(70)이 배치되어, 제2매니폴드(60)에서 토출되는 CNT 용액(10)을 탱크부로 전송한다.The second manifold unit 60 communicates with the tank unit 20 through a pipe, and a pump 70 is disposed in the middle of the pipe, and the CNT solution 10 discharged from the second manifold 60 is transferred to the tank unit. send.
본 발명에 따른 탄소나노튜브 분산 통합 장치는 열교환부(80)를 더 포함한다. 열교환부(80)는 탱크부(20)와 제1매니폴드부(50)사이에 배치되고, CNT 용액(10)을 설정 온도로 냉각한다. 제1교반부(30)의 제1회전축부(31), 또는 제2교반부(40)의 제2회전축부(41)의 회전에 의해 CNT 용액(10)이 발열할 수 있기 때문에 냉각수가 흐르는 열교환기(80)에 의해 CNT 용액(10)을 냉각시켜 줄 수 있다.The carbon nanotube dispersion and integration device according to the present invention further includes a heat exchange unit 80 . The heat exchange unit 80 is disposed between the tank unit 20 and the first manifold unit 50, and cools the CNT solution 10 to a set temperature. Since the CNT solution 10 may generate heat by the rotation of the first rotation shaft part 31 of the first stirring part 30 or the second rotation shaft part 41 of the second stirring part 40, cooling water flows. The CNT solution 10 may be cooled by the heat exchanger 80 .
또는 열교환부(80)는 탱크부(20)와 제1매니폴드부(50)사이에 배치되고, CNT 용액(10)을 설정 온도로 가열한다. 열교환기(80)는 냉각수 외에 온수 또는 스팀도 공급이 가능한 것으로 장착되는 순환되는 CNT 용액(10)을 설정 온도로 가열할 수 있다.Alternatively, the heat exchange unit 80 is disposed between the tank unit 20 and the first manifold unit 50, and heats the CNT solution 10 to a set temperature. The heat exchanger 80 may heat the circulating CNT solution 10 to a set temperature in which hot water or steam can also be supplied in addition to cooling water.
본 발명에 따른 탄소나노튜브 분산 통합 장치는 펌프부(70)를 더 포함한다. 펌프부(70)는 제2매니폴드부(60)에서 토출되는 CNT 용액(10)을 탱크부(20)로 유동되게 한다. 펌프부(70)의 작동에 의해 분산된 CNT 용액(10)이 탱크부(20)로 유동된다. 탱크부(20)로 돌아간 CNT 용액(10)은 상술한 작동을 반복하면서 설정 조건에 맞제 교반 및 분산이 이루어진다. The carbon nanotube dispersion and integration device according to the present invention further includes a pump unit 70 . The pump unit 70 allows the CNT solution 10 discharged from the second manifold unit 60 to flow into the tank unit 20 . The CNT solution 10 dispersed by the operation of the pump unit 70 flows to the tank unit 20 . The CNT solution 10 returned to the tank 20 is stirred and dispersed according to the set conditions while repeating the above-described operation.
본 발명에 의하면, CNT 용액이 용액수용부의 나선가이드부에 의해 나선으로 유동되면서 층류로 형성되고, 초음파 진동자부의 초음파 진동에 의해 분산시킬 수 있다. According to the present invention, the CNT solution is formed in a laminar flow while being spirally flowed by the spiral guide part of the solution receiving part, and can be dispersed by ultrasonic vibration of the ultrasonic vibrator part.
또한 본 발명에 의하면, 용액수용부의 출구부에 설치되는 원추형 분산부에 의해 CNT 용액의 덩어리부를 풀어줄 수 있다.In addition, according to the present invention, it is possible to release the lump of the CNT solution by the conical dispersion part installed at the outlet part of the solution receiving part.
또한 본 발명의 의하면, 탄소나노튜브 분산 장치가 복수개로 병렬 배치되어, 탱크부로 CNT 용액을 순환시키면서, CNT 가닥의 손상, CNT 덩어리 분리의 어려움, 전체 용액의 고른 분산의 어려움, 높은 제조 비용, 분산 시간 증대 등의 문제를 해결하고, CNT를 용액에 고루 분산시킬 수 있다. In addition, according to the present invention, a plurality of carbon nanotube dispersing devices are arranged in parallel, and while circulating the CNT solution to the tank part, damage to CNT strands, difficulty in separating CNT lumps, difficulty in uniform dispersion of the entire solution, high manufacturing cost, dispersion It is possible to solve problems such as time increase, and uniformly disperse CNTs in the solution.
본 발명은 도면에 도시되는 일 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 아래의 청구범위에 의해서 정하여져야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the drawings, this is merely exemplary, and various modifications and equivalent other embodiments are possible therefrom by those of ordinary skill in the art. will understand Therefore, the true technical protection scope of the present invention should be defined by the following claims.

Claims (6)

  1. CNT 용액을 수용하는 탱크부;a tank unit for accommodating the CNT solution;
    상기 탱크부에 수용되는 상기 CNT 용액을 회전시켜서 상기 CNT 용액을 교반하는 제1교반부;a first stirrer for rotating the CNT solution accommodated in the tank unit to stir the CNT solution;
    상기 제1교반부의 내측을 관통하고, 상기 탱크부에 수용되는 상기 CNT 용액을 회전시켜서 상기 CNT 용액을 교반하는 제2교반부;a second stirring unit passing through the inside of the first stirring unit and rotating the CNT solution accommodated in the tank unit to stir the CNT solution;
    상기 탱크부에 연통되고, 상기 제1교반부 또는 상기 제2교반부에 의해 교반되는 상기 CNT 용액을 공급받는 제1매니폴드부; 및a first manifold part communicating with the tank part and receiving the CNT solution stirred by the first stirring part or the second stirring part; and
    상기 제1매니폴드부로부터 상기 CNT 용액을 공급받아 상기 CNT 용액을 분산하는 탄소나노튜브 분산 장치를 포함하는 것을 특징으로 하는 탄소나노튜브 분산 통합 장치.and a carbon nanotube dispersing device receiving the CNT solution from the first manifold and dispersing the CNT solution.
  2. 제1항에 있어서, According to claim 1,
    상기 탄소나노튜브 분산 장치는, The carbon nanotube dispersion device,
    용액수용몸체부; 상기 용액수용몸체부의 내부에 관통 형성되고, 상기 CNT 용액이 유동되는 유동관부; 및 상기 유동관부의 내벽에 형성되어 상기 CNT 용액이 나선형으로 유동되게 가이드하는 나선가이드부를 포함하는 용액수용부; 및a solution receiving body; a flow pipe part which is formed through the inside of the solution receiving body part, and through which the CNT solution flows; and a solution receiving part formed on the inner wall of the flow pipe part and including a spiral guide part for guiding the CNT solution to flow in a spiral; and
    상기 용액수용몸체부의 외벽에 장착되고, 상기 CNT 용액에 초음파를 제공하는 초음파 진동자부를 포함하고, It is mounted on the outer wall of the solution receiving body, comprising an ultrasonic vibrator for providing ultrasonic waves to the CNT solution,
    상기 나선가이드부는 상기 유동관부의 내벽에 적어도 2회 이상 회전 방향이 변경되도록 오른나선형과 왼나선형이 교호되게 형성되는 것을 특징으로 하는 탄소나노튜브 분산 통합 장치.The carbon nanotube dispersion and integration device, characterized in that the spiral guide portion is alternately formed with a right spiral type and a left spiral type so that the rotation direction is changed at least twice on the inner wall of the flow pipe portion.
  3. 제2항에 있어서, 3. The method of claim 2,
    상기 탄소나노튜브 분산 장치의 상기 유동관부에 연통되어 상기 CNT 용액을 공급받는 제2매니폴드부를 더 포함하고, Further comprising a second manifold part communicating with the flow pipe part of the carbon nanotube dispersion device to receive the CNT solution,
    상기 탄소나노튜브 분산 장치는 상기 제1매니폴드부와 상기 제2매니폴드부 사이에 적어도 하나 이상이 설치되는 것을 특징으로 하는 탄소나노튜브 분산 통합 장치.In the carbon nanotube dispersing device, at least one carbon nanotube dispersion and integration device is installed between the first manifold part and the second manifold part.
  4. 제3항에 있어서, 4. The method of claim 3,
    상기 제2매니폴드부는 상기 탱크부와 연통되고, The second manifold part communicates with the tank part,
    상기 제2매니폴드부에서 토출되는 상기 CNT 용액을 상기 탱크부로 유동되게 하는 펌프부를 더 포함하는 것을 특징으로 하는 탄소나노튜브 분산 통합 장치.Carbon nanotube dispersion and integration device, characterized in that it further comprises a pump for allowing the CNT solution discharged from the second manifold to flow to the tank.
  5. 제2항에 있어서, 3. The method of claim 2,
    상기 탱크부와 상기 제1매니폴드부사이에 배치되고, 상기 CNT 용액을 설정 온도로 냉각하는 열교환부를 더 포함하는 것을 특징으로 하는 탄소나노튜브 분산 통합 장치.The carbon nanotube dispersion and integration device, which is disposed between the tank part and the first manifold part, and further comprises a heat exchange part for cooling the CNT solution to a set temperature.
  6. 제2항에 있어서, 3. The method of claim 2,
    상기 탱크부와 상기 제1매니폴드부 사이에 배치되고, 상기 CNT 용액을 설정 온도로 가열하는 열교환부를 더 포함하는 것을 특징으로 하는 탄소나노튜브 분산 통합 장치.The carbon nanotube dispersion and integration device, which is disposed between the tank part and the first manifold part, and further comprises a heat exchange part for heating the CNT solution to a set temperature.
PCT/KR2021/004816 2020-04-17 2021-04-16 Carbon nanotube dispersion and integration device WO2021210950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200046368A KR102402269B1 (en) 2020-04-17 2020-04-17 Integrated system of dispersing carbon nano tube
KR10-2020-0046368 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021210950A1 true WO2021210950A1 (en) 2021-10-21

Family

ID=78085230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004816 WO2021210950A1 (en) 2020-04-17 2021-04-16 Carbon nanotube dispersion and integration device

Country Status (2)

Country Link
KR (1) KR102402269B1 (en)
WO (1) WO2021210950A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236588A1 (en) * 2002-03-14 2003-12-25 Jang Bor Z. Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
KR101124385B1 (en) * 2012-01-09 2012-03-22 김근배 Using the carbon nanotube dispersion coating solution and using the same methods
KR101514034B1 (en) * 2013-11-18 2015-04-23 한국표준과학연구원 Apparatus and method for dispersing nano powders
US9341185B2 (en) * 2012-09-24 2016-05-17 Lg Electronics Inc. Surface treating agent for wear-resistance surface, manufacturing method thereof and compressor using the same
KR101856482B1 (en) * 2017-11-28 2018-05-10 주식회사 윤성에프앤씨 High shear mixer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311086B2 (en) * 2007-02-12 2013-10-09 学校法人 名城大学 Method for producing carbon nanotube dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236588A1 (en) * 2002-03-14 2003-12-25 Jang Bor Z. Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
KR101124385B1 (en) * 2012-01-09 2012-03-22 김근배 Using the carbon nanotube dispersion coating solution and using the same methods
US9341185B2 (en) * 2012-09-24 2016-05-17 Lg Electronics Inc. Surface treating agent for wear-resistance surface, manufacturing method thereof and compressor using the same
KR101514034B1 (en) * 2013-11-18 2015-04-23 한국표준과학연구원 Apparatus and method for dispersing nano powders
KR101856482B1 (en) * 2017-11-28 2018-05-10 주식회사 윤성에프앤씨 High shear mixer

Also Published As

Publication number Publication date
KR102402269B1 (en) 2022-06-08
KR20210129288A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021210949A1 (en) Apparatus for dispersing carbon nanotubes
JP4623431B2 (en) Two-stage coagulation mixing tank
WO2019117406A1 (en) Gas-dissolving water generation apparatus
WO2021210950A1 (en) Carbon nanotube dispersion and integration device
WO2014196695A1 (en) Circular air flow drying apparatus
CN211084755U (en) Fused silica micropowder drying treatment device
WO2020040604A1 (en) Nanobubble generating apparatus and nanobubble generating system comprising same
CN209893814U (en) High-efficient vibrated fluidized bed
CN109261042B (en) Method for forming uniform carbon nanotube conductive paste and applied process device
BRPI1007349B1 (en) horizontal rotary dryer
CN214810472U (en) Solid-liquid mixing equipment
JP2007021320A (en) Mixing apparatus using external motivity
WO1997001074A1 (en) Method and apparatus for treating material which conducts heat poorly
CN214582228U (en) Drying device for carbon nano tube
JP2013047592A (en) Stirring drying device
CN114459214B (en) Metal powder drying device and use method thereof
CN207838765U (en) A kind of nano-colloid preparing instrument agitating device
Liu et al. Effect of high stirring speed on the agglomerate behaviors for cohesive SiO2 powders in gas fluidization
CN108607427A (en) A kind of mixing equipment
US20220006092A1 (en) Dispersion of small scale materials via cavitation
KR20220107063A (en) Continuous thermal separation of multi-component materials
CN207221800U (en) A kind of cell size blender
TWI719529B (en) Method for forming uniform carbon nanotube conductive paste and applied process device
CN112279490A (en) Rotational flow thermal vibration sludge drying machine
WO2019059426A1 (en) Membrane emulsification device paddle and membrane emulsification device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788371

Country of ref document: EP

Kind code of ref document: A1