WO2021210572A1 - Steam trap - Google Patents

Steam trap Download PDF

Info

Publication number
WO2021210572A1
WO2021210572A1 PCT/JP2021/015294 JP2021015294W WO2021210572A1 WO 2021210572 A1 WO2021210572 A1 WO 2021210572A1 JP 2021015294 W JP2021015294 W JP 2021015294W WO 2021210572 A1 WO2021210572 A1 WO 2021210572A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
condensed water
orifice
columnar
steam trap
Prior art date
Application number
PCT/JP2021/015294
Other languages
French (fr)
Japanese (ja)
Inventor
芳彦 伊能
Original Assignee
芳彦 伊能
日東礦工商事株式会社
株式会社ゼットサービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芳彦 伊能, 日東礦工商事株式会社, 株式会社ゼットサービス filed Critical 芳彦 伊能
Publication of WO2021210572A1 publication Critical patent/WO2021210572A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers

Definitions

  • the present invention relates to a steam trap used by being provided in the middle of a steam transfer pipe provided in a steam transfer facility or at a condensed water outlet of a steam heating device facility such as a heat exchanger.
  • the steam trap for example, when transporting steam in a steam transport facility, quickly discharges condensed water (also referred to as condensate or drain) generated by heat dissipation to the outside of the system, and transports the steam efficiently. It is placed in the middle of the pipe.
  • condensed water also referred to as condensate or drain
  • This type of steam trap is disclosed in Patent Document 1.
  • the steam trap disclosed in Patent Document 1 quickly discharges condensed water, which is high-temperature low-pressure condensate, and also reduces steam leakage.
  • a needle valve is provided on the small diameter orifice side, and the opening degree of the small diameter orifice can be adjusted by moving the needle valve up and down.
  • an on-off valve is installed on the entrance side of the communication passage so that it can move up and down.
  • the small-diameter orifice and the lower end of the communication passage form a valve chamber, and the valve chamber, the needle valve, the on-off valve, and the like are formed so as to project diagonally downward from the lower part of the trap casing. For this reason, the size of the steam trap is large.
  • the condensate that flows in from the trap casing inlet collects in the valve chamber and passes through the small diameter orifice to the trap casing outlet. Is discharged to the outside. As a result, leakage of steam can be suppressed.
  • the needle valve is pushed upward to reduce the passage area of the small-diameter orifice, so that only the condensate is discharged to the outside without leaking steam. Can be discharged.
  • the steam trap has a structural portion that protrudes toward the outside of the steam pipe, so that the size is increased.
  • the needle valve and on-off valve must be operated, and the trap casing must be operated. The structure is complicated.
  • the present invention has been made to solve the above problems, and it is possible to prevent an increase in size and simplify the structure, and while promptly discharging the condensed water generated by heat dissipation, the leakage of steam is reduced. It is an object of the present invention to provide a steam trap capable of increasing steam transfer efficiency.
  • the steam trap according to the first aspect of the present invention for solving the above problems is a steam trap arranged in the middle of a transport pipe for transporting steam from a steam source to a steam supply target.
  • Tube-shaped body and It is provided in the main body portion and includes the steam and an orifice having a columnar hole for passing condensed water generated by heat dissipation of the transport pipe.
  • the axial length L of the columnar hole is defined by the following equation (1).
  • the diameter A of the columnar hole is designed so that the amount of the condensed water discharged due to the differential pressure before and after the installation portion of the transport pipe in which the steam trap is installed is equal to the required maximum discharge amount.
  • the assumed minimum load factor B is the ratio of the minimum load assumed by the fluctuation of the heating load to the amount of the condensed water discharged due to the differential pressure before and after the installation site of the transport pipe in which the steam trap is installed. [Assumed minimum load (kg / h) / Assumed maximum load (kg / h)] It is characterized by that.
  • the axial length L of the columnar hole is defined by the equation (1), it prevents the condensed water generated by heat dissipation from collapsing, promptly discharges the condensed water, and reduces steam leakage. Therefore, the steam transfer efficiency and the heating efficiency can be increased.
  • the steam trap of the second aspect of the present invention is characterized in that one or more of the orifices are arranged in the main body portion. According to the above configuration, the number of orifices arranged in the main body can be arbitrarily set as needed, and the degree of freedom in design is increased.
  • a plurality of the orifices are arranged in series in the main body portion, and the steam trap in the main body portion is in the direction in which the steam flows with respect to the plurality of the orifices.
  • An overtaking suppression orifice for suppressing the phenomenon in which the flow of steam overtakes the flow of condensed water is arranged on the upstream side.
  • the steam trap according to the fourth aspect of the present invention is characterized in that one of the orifices is provided with a plurality of columnar holes so as to be parallel to the axial direction of the main body portion.
  • the orifice can have a plurality of columnar holes as required, which increases the degree of freedom in design.
  • FIG. 3 shows only the cylindrical overtaking suppression orifice, the first outflow suppression orifice, the spacer, and the second outflow suppression orifice shown in FIG. Diagram showing the shape of the overtaking suppression orifice
  • FIG. 3 shows the operation example of condensed water and steam when the axial length L of a columnar hole is 10mm, 5mm, 2.5mm.
  • FIG. 1 shows an example of a steam transfer facility including the first embodiment of the steam trap of the present invention.
  • the steam transfer facility 100 shown in FIG. 1 recovers the steam boiler 101, the heating device 102 as a heating target (steam supply target) that heats with the steam V, and the condensed water W generated when the steam V is transported.
  • the steam main transport pipe 110, the condensed water recovery pipe 120, and the condensed water supply pipe which are connected to the ring water tank 103 for storing the steam, the steam boiler 101, and the heating device 102, and convey the steam V and the condensed water W. 121 and.
  • the steam boiler 101 transports and supplies steam V to the heating device 102 through the steam main transport pipe 110.
  • the heating device 102 is heated to a predetermined temperature by the steam V and performs a predetermined work by the steam V.
  • the condensed water W generated in the heating device 102 after the work of the heating device 102 is executed is recovered from the heating device 102 to the ring water tank 103 through the condensed water recovery pipe 120.
  • the condensed water W stored in the ring water tank 103 is supplied to the steam boiler 101 through the condensed water supply pipe 121, and is reused to generate steam V.
  • the steam main transport pipe 110 dissipates heat, so that when the steam V is transported, condensed water W is generated in the steam main transport pipe 110.
  • the steam trap 1 of the present embodiment is arranged in the middle of the steam main transfer pipe 110 in order to remove the condensed water W to the outside of the steam transfer system and transfer only the steam V to the heating device 102.
  • the steam trap 1 is arranged in the middle of the steam main transport pipe 110 so that it can be detachably replaced.
  • the installation position of the steam trap 1 is symbolically shown.
  • this type of steam transfer equipment 100 in order to promote energy saving, it is required not only to improve the efficiency of the steam boiler 101, for example, but also to improve the transfer efficiency of steam V by using the steam trap 1. .. That is, by arranging the steam trap 1 in the middle of the steam main transport pipe 110, the steam main transport pipe 110 is quickly discharged to the outside of the steam transport system while the condensed water W generated by the heat radiation of the steam main transport pipe 110 is quickly discharged. It is required to reduce the leakage of steam V passing through and improve the steam transfer efficiency.
  • the steam trap 1 can prevent the size of the steam trap 1 from becoming larger and simplify the structure as compared with the conventional steam trap, as will be described in detail below. Moreover, the steam trap 1 can quickly discharge the condensed water W generated by the heat radiation of the steam main transport pipe 110 as a steam pipe, while reducing the leakage of steam V passing through the steam main transport pipe 110. By doing so, the structure is such that the steam transfer efficiency can be improved.
  • FIG. 2 is a cross-sectional view taken along the axial direction showing a preferable example of the internal structure of the steam trap 1 shown in FIG.
  • the steam main transport pipe 110 has a primary side union 111 and a secondary side union 112.
  • the primary side union 111 and the secondary side union 112 are one and the other connecting portions for detachably attaching the steam trap 1.
  • the steam trap 1 is detachably connected between the primary union 111 and the secondary union 112 so that the steam trap 1 can be replaced as needed.
  • the primary union 111 has a connecting member 111B, a connecting screw 111C, and a packing 111D.
  • the opposite secondary union 112 has a connecting member 112B, a connecting screw 112C, and a packing 112D.
  • the secondary union 112 has a connecting member 112B and a connecting screw 112C.
  • the primary side union 111 is on the steam boiler 101 side (primary side) shown in FIG. 1, and the secondary side union 112 is arranged outside the steam transport system (secondary side).
  • FIG. 3 is an exploded cross-sectional view showing the components of the steam trap 1.
  • the steam trap 1 includes a tubular main body 2 (see FIG. 2), a drain intake portion 11, a drain discharge portion 12, an internal set screw member 3, and a spring washer. It has a flat washer 5, an overtaking suppression orifice 6, a first outflow suppression orifice 7, a spacer 8, a second outflow suppression orifice 9, and a packing 10.
  • the drain intake unit 11 is a side that takes in steam V and condensed water W from the steam boiler 101 of FIG.
  • the drain discharge unit 12 is a side that discharges steam V and condensed water W to the outside of the steam transport system.
  • the convex portion 111G of the connecting member 111B of the first union 111 is fitted into the concave portion 11C of the drain intake portion 11 and closely adhered while sandwiching the packing 111D.
  • the female screw 111F of the connecting screw 111C is screwed into the male screw 11B of the drain intake portion 11, so that the connecting member 111B and the drain intake portion 11 are detachably connected in an airtight state.
  • the convex portion 112G of the connecting member 112B of the second union 112 is fitted into the concave portion 12C of the drain discharge portion 12 and closely adhered while sandwiching the packing 112D.
  • the female screw 112F of the connecting screw 112C is screwed into the male screw 12B of the drain discharge portion 12, so that the connecting member 112B and the drain discharge portion 12 are detachably connected in an airtight state.
  • the inner end portion 11N of the drain intake portion 11 is fixed to the outer peripheral surface of one end portion 2B of the main body portion 2 by, for example, a fixing member 20 by welding or application of an adhesive. There is.
  • the male threaded portion 3N of the internal settling screw member 3 is screwed into the female threaded portion 11N of the drain taking-in portion 11, so that the internal settling screw member 3 is fixed to the drain taking-in portion 11.
  • the drain intake portion 11 has an internal hole 11H
  • the internal set screw member 3 has an internal hole 3H, 3J, and a convex portion 3K.
  • the outer peripheral surface of the convex portion 3K is inserted so as to be in close contact with the inner peripheral surface of one end portion 2B of the main body portion 2.
  • the inner diameter of the inner hole 11H is larger than the inner diameter of the inner hole 3J, and the inner diameter of the inner hole 3J is larger than the inner diameter of the inner hole 3H.
  • the inner end portion 12N of the drain discharge portion 12 is attached to the outer peripheral surface of the other end portion 2C of the main body portion 2 by, for example, a fixing member 21 by welding or application of an adhesive. It is fixed.
  • the drain discharge unit 12 has an internal hole 12H.
  • the inner diameter of the inner hole 12H is the same as the inner diameter of the inner hole 3H.
  • the outer peripheral surface of the convex portion 12K of the drain discharge portion 12 is inserted so as to be in close contact with the inner peripheral surface of the other end portion 2C of the main body portion 2.
  • the spring washer 4, the flat washer 5, the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10 shown in FIG. 3 are Inside the tubular main body 2, they are arranged in order and in series from one end 2B to the other end 2C. As shown in FIG. 2, each outer peripheral surface of the spring washer 4, the flat washer 5, the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10 is It is in close contact with the inner peripheral surface of the main body 2. Each of these members is made of a metal such as SUS, except for the packing 10.
  • the outer diameters of the spring washer 4, the flat washer 5, the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10 are convex. It is the same as the outer diameter of the portion 3K and the convex portion 12K.
  • the spring washer 4 and the flat washer 5 are arranged between the convex portion 3K and the overtaking suppression orifice 6, and the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, and the second outflow suppression orifice 9 are arranged.
  • the spring washer-4 urges the drain discharge portion 12 side with the packing 10 interposed therebetween.
  • FIG. 4 shows only the cylindrical overtaking suppression orifice 6 shown in FIG. 3, the first outflow suppression orifice 7, the spacer 8, and the second outflow suppression orifice 9.
  • FIG. 5 shows the characteristic shape of the overtaking suppression orifice 6.
  • the overtaking suppression orifice 6 has an inlet hole 6B, an orifice hole 6C, an outlet hole 6D, and a recess 6F.
  • the inner diameter of the inlet hole 6B and the inner diameter of the outlet hole 6D are the same, but the inner diameter of the recess 6F is larger than the inner diameter of the outlet hole 6D.
  • the inner diameter of the orifice 6C is considerably smaller than the inner diameter of the inlet hole 6B, and the inner diameter of the orifice 6C is, for example, about 3 mm, but is not particularly limited.
  • the central axis CL2 of the orifice hole 6C is eccentric downward with respect to the central axis CL1 of the inlet hole 6B, the outlet hole 6D, and the recess 6F.
  • the overtaking suppression orifice 6 suppresses the phenomenon that the steam flow overtakes or precedes the flow of the condensed water. That is, the diameter of the orifice hole 6C of the overtaking suppression orifice 6 is small, and since it is eccentric below the central axis, the condensed water W, which is heavier than the light steam V and exists at the lower position, is passed first. After that, by passing the steam V, it is possible to prevent the condensed water W from being transported overtaking the steam V. As a result, it is possible to suppress the phenomenon that a large amount of steam V overtakes the condensed water W which is a drain.
  • the first outflow suppression orifice 7 has a convex portion 7B, a columnar hole 7C, and a concave portion 7D.
  • the inner diameter of the concave portion 7D is larger than the inner diameter of the convex portion 7B
  • the inner diameter of the columnar hole 7C is smaller than the inner diameter of the convex portion 7B and smaller than the inner diameter of the above-mentioned orifice 6C.
  • the positions of the central axes of the convex portion 7B, the columnar hole 7C, and the concave portion 7D are the same. As shown in FIG.
  • the convex portion 7B is fitted in close contact with the concave portion 6F of the overtaking suppression orifice 6.
  • the first outflow suppression orifice 7 is also called an outflow suppression columnar orifice, and suppresses the outflow rate of steam V on the primary side.
  • the spacer 8 has a convex portion 8B, a guide hole 8C, and a concave portion 8D.
  • the spacer 8 is a member for arranging the first outflow suppression orifice 7 and the second outflow suppression orifice 9 apart from each other.
  • the inner diameter of the concave portion 8D is larger than the inner diameter of the convex portion 8B, and the inner diameter of the guide hole 8C is the same as the inner diameter of the convex portion 7B.
  • the positions of the central axes of the convex portion 8B, the guide hole 8C, and the concave portion 8D are the same. As shown in FIG.
  • the convex portion 8B is fitted in close contact with the concave portion 7D of the first outflow suppression orifice 7.
  • the spacer 8 is also referred to as a back pressure maintaining spacer, and maintains the pressure inside the spacer 8 higher than the pressure on the drain opening portion (condensed water opening portion) side when the load of the drain (condensed water W) is reduced.
  • the shape of the second outflow suppression orifice 9 is similar to the shape of the first outflow suppression orifice 7.
  • the second outflow suppression orifice 9 has a convex portion 9B, a columnar hole 9C, and a concave portion 9D.
  • the inner diameter of the concave portion 9D is substantially the same as the inner diameter of the convex portion 9B, and the inner diameter of the columnar hole 9C is smaller than the inner diameter of the convex portion 9B.
  • the positions of the central axes of the convex portion 9B, the orifice 9C, and the concave portion 9D are the same.
  • the diameter of the columnar hole 9C and the diameter of the columnar hole 7C are the same.
  • the convex portion 9B is closely fitted into the concave portion 8D of the spacer 8.
  • the recess 9D is closely connected to the internal hole 12H of the drain discharge portion 12 via the packing 10.
  • the second outflow suppression orifice 9 is also referred to as a back pressure maintenance spacer pressure maintenance orifice, and suppresses the outflow of steam W from the spacer 8 when the load of the drain (condensed water W) is reduced.
  • the heating capacity of the steam V for heating the heating device 102 is , It decreases due to "retention of condensed water W".
  • the condensed water W is generated in the steam main transport pipe 110 when the steam main transport pipe 110 dissipates heat.
  • the condensed water W is high-pressure hot water and is also called a water mass.
  • the steam trap 1 has a discharge capacity of condensed water W and an outflow amount of steam V.
  • the axial lengths L of the columnar holes 7C and 9C are , Is defined by equation (1) as follows.
  • L Axial length (mm) of columnar holes 7C and 9C (orifice holes)
  • A Diameter (mm) of columnar holes 7C and 9C (orifice holes)
  • B assumed minimum load factor (%)
  • the maximum amount of condensed water W discharged due to the differential pressure before and after the installation site where the steam trap 1 is installed in the steam main transport pipe 110 is the maximum required.
  • the diameter is designed to be equal to the emission amount.
  • the assumed minimum load factor B is the minimum assumed by the heating load fluctuation and the like of the amount of condensed water W discharged due to the differential pressure before and after the installation site where the steam trap 1 is installed in the steam main transport pipe 110.
  • Load ratio [Assumed minimum load (kg / h) / Assumed maximum load (kg / h)] ⁇ ⁇ % Is.
  • the assumed minimum load factor B is generally 50%, but in the embodiment of the present invention, it is set to, for example, 20%.
  • water lumps that block the columnar holes 7C and 9C by the condensed water W are generated at at least two places in the length direction of the columnar holes 7C and 9C. Therefore, it is possible to prevent a large amount of steam V from flowing out and being sent.
  • the diameters A of the columnar holes 7C and 9C should be appropriately set while accurately grasping the amount of condensed water W generated (drain generation amount), the pressure of steam V, and the pressure of steam condensed water on the discharge side. Then, in the steam main transport pipe 110 shown in FIG. 1, a wall of condensed water W is formed, and the required amount of steam V is insufficient to secure the required amount of steam V. It is possible to prevent a phenomenon in which the condensed water W cannot be supplied or, conversely, the wall of the condensed water W is not formed and the condensed water W collapses, causing a large amount of steam V to flow out to the heating device 102 side of FIG.
  • the length L of the columnar holes 7C and 9C to preferably 5 mm or more, most preferably 10 mm or more, the outflow volume and outflow rate of the vapor V due to the load fluctuation can be predicted.
  • the condensed water W is conveyed by the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10.
  • a path is formed, and the condensed water W generated from the steam boiler 101 shown in FIG. 1 is passed through a steam trap 1 arranged in the middle of the steam main transport pipe 110 without damaging the condensed water W.
  • the structure is such that the decrease in the supply amount of steam V for heating the heating device 102 is suppressed, and the steam V can be efficiently transported to the heating device 102.
  • the central axis CL2 of the orifice hole 6C of the overtaking suppression orifice 6 is eccentric downward with respect to the central axis CL1 of the inlet hole 6B and the outlet hole 6D. Therefore, the condensed water W flows in the orifice hole 6C before the light steam V, and after the condensed water W flows, the steam V flows through the orifice hole 6C. That is, in the overtaking suppression orifice 6, the condensed water W is preceded and the steam V is sent after the condensed water W by suppressing the phenomenon that the flow of the steam V overtakes or precedes the flow of the condensed water W. As a result, it is possible to suppress the phenomenon that a large amount of steam W overtakes the condensed water V which is the drain and is sent first, and the steam V flows after the condensed water W flows.
  • the flow of the condensed water W and the flow of the steam V behind the flow of the condensed water W are transferred from the overtaking suppression orifice 6 shown in FIG. 2 to the convex portion 7B of the first outflow suppression orifice 7 and the columnar hole.
  • the outflow rate of steam V on the primary side is suppressed.
  • the first outflow suppression orifice 7 is also referred to as an outflow suppression columnar orifice, and can suppress the outflow rate of steam V on the primary side.
  • At least one condensed water is located on the upstream side (primary side) of the columnar hole 7C. Since W (water mass) exists, the condensed water W (water mass) does not collapse, and the flow of the steam V behind can be suppressed following the flow of the condensed water W.
  • the flow of steam V behind the flow of condensed water W passes through the guide hole 8C of the spacer 8 in FIG. 3 as it is.
  • the spacer 8 is also referred to as a back pressure maintaining spacer, and maintains the pressure inside the spacer 8 higher than the pressure at the open portion of the drain (condensed water W) when the load of the drain (condensed water W) is reduced. Then, the flow of the steam V behind the flow of the condensed water W is formed from the concave portion 7D of the first outflow suppression orifice 7 in FIG. 3 to the convex portion 8B of the second outflow suppression orifice 8, the guide hole 8C, and the concave portion 8D. Go through in order.
  • the flow of steam V behind the flow of the condensed water W passes through the columnar hole 9C of the second outflow suppression orifice 9 in the same manner as in the case of the columnar hole 7C of the first outflow suppression orifice 7.
  • the condensed water W water mass
  • the condensed water W and steam V that have passed through the columnar holes 9C and the recesses 9D of the second outflow suppression orifice 9 pass through the internal holes 12H of the drain discharge portion 12 while maintaining the state, and then the secondary union. It passes through 112 and is delivered to the secondary side.
  • 6 (A) to 6 (C) show that (A) is equal to 10 mm, which is twice the calculated value of L, and (B) is equal to the calculated value of L, 5 mm, with respect to the axial length L of the columnar hole.
  • An example of the flow operation of the condensed water W and the steam V when 5 mm and (C) are 2.5 mm having a half length shorter than the calculated value of 5 mm of L is schematically shown.
  • 6 (A) and 6 (B) show the present embodiment satisfying the condition of the calculated value of L of 5 mm or more
  • FIG. 6 (C) shows a comparative example in which the calculated value of L of 5 mm or more is not satisfied. ing.
  • the condensed water W is formed as a water mass W (see the hatched portion in FIG. 6) having a film width (length) of 0.5 mm due to surface tension.
  • one water mass W having a film width of 0.5 mm is formed in a length region having a pore length of 2.5 mm. Therefore, since L in the figure (A) is 10 mm, which is twice the calculated value of 5 mm, four water masses W are formed at intervals of 2.5 mm, and L in the figure (B) is equal to the calculated value of 5 mm. Since it is 5 mm, two water masses W are formed at intervals of 2.5 mm, and L in FIG.
  • a mass W is formed.
  • the water mass W is located on the most primary side where the steam pressure at the rightmost position acts in the columnar hole portion on the uppermost stage, and 4 in the columnar hole on the lower stage side. It shows a state in which the water mass W moves to the left secondary side (atmosphere side) by 0.5 mm, which is the same width as the water mass W, as it is displaced. The water mass W returns from the bottom to the top of each figure, and the same movement is repeated in order.
  • the steam trap 1 by applying the steam trap 1 to the steam main transfer pipe 110 of the steam transfer facility 100, at least two totals are provided in the tubular main body 2.
  • the first outflow suppression orifice 7 and the second outflow suppression orifice 9 will be arranged in series.
  • the steam trap 1 has a spring washer 4, a flat washer 5, an overtaking suppression orifice 6, a first outflow suppression orifice 7, a spacer 8, and a second outflow suppression orifice 9 in a tubular main body 2.
  • a structure is adopted in which each component of the packing 10 is housed in series.
  • the steam trap 1 of the present embodiment does not have a portion protruding outward from the main body 2, it is possible to prevent the steam trap from becoming larger and to simplify the structure as compared with the conventional steam trap. Further, since the condensed water W generated by the heat radiation of the steam main transport pipe 110 can be quickly discharged to the outside of the steam transport system, the leakage of steam V passing through the steam main transport pipe 110 can be reduced and supplied to the heating device 102. The steam transfer efficiency can be increased.
  • FIG. 7 shows another embodiment of the outflow control orifice of the steam trap of the present invention.
  • the outflow suppression orifice 17 of the present embodiment is provided with two columnar holes 17C and 17C instead of the one columnar hole 7C in the outflow suppression orifice 7 of the above embodiment.
  • the two columnar holes 17C and 17C have the same total area of the columnar holes 17C and 17C as the area of one columnar hole 7C.
  • the two columnar holes 17C and 17C satisfy L ⁇ A / B in the formula (1) in total.
  • the convex portion 17B, the columnar hole 7C, and the concave portion 17D which have other configurations, are formed in the same manner as the outflow suppression orifice 7 of the embodiment.
  • the outflow suppression orifice 17 of the embodiment of FIG. 2 also exerts the same effect as that of the outflow suppression orifice 7 of the embodiment, and can reduce the leakage of steam V and improve the steam transfer efficiency. ..
  • the number of columnar holes of the orifice to be set is one as in the embodiment of FIG. 2 and two cases as in the embodiment of FIG. 7, further, the columnar holes of the orifice are set. The number may be 3 or more.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of claims.
  • two outflow suppression orifices such as the first outflow suppression orifice 7 and the second outflow suppression orifice 9 are arranged in series in the main body 2, but the present invention is not limited to this.
  • One or three or more outflow suppression orifices may be provided in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Air Humidification (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

[Problem] To provide a steam trap capable of preventing an increase in size and simplifying a structure and capable of reducing steam leakage to improve steam transport efficiency while quickly discharging condensed water generated by heat dissipation. [Problem] A steam trap 1 includes orifices 7, 9 which are disposed in the middle of a main steam transport pipe 110 that transports steam from a steam source to a steam supply target, are disposed inside a tubular body part 2, and have columnar holes 7C, 9C through which steam V and condensed water W generated by dissipating heat from the main steam transport pipe 110 pass, wherein the axial length L of the columnar holes 7C, 9C is defined by expression (1). Formula (1): L ≥ A/B, where L = axial length of columnar hole (mm), A = diameter of columnar hole (mm), B = assumed minimum load factor (%).

Description

スチームトラップsteam trap
 本発明は、蒸気搬送設備に設けられている蒸気搬送管の途中に設けられたり、熱交換機等の蒸気加熱機器設備の凝縮水出口に設けられたりして用いられるスチームトラップに関する。 The present invention relates to a steam trap used by being provided in the middle of a steam transfer pipe provided in a steam transfer facility or at a condensed water outlet of a steam heating device facility such as a heat exchanger.
 スチームトラップは、例えば、蒸気搬送設備において蒸気を搬送する際に、放熱によって発生する凝縮水(復水、ドレンともいう)を速やかに系外に排出し、蒸気を効率的に搬送するため、搬送管の途中に配置される。この種のスチームトラップは、特許文献1に開示されている。特許文献1に開示されているスチームトラップは、高温の低圧復水である凝縮水を速やかに排出しながら、蒸気の漏洩も少なくする。 The steam trap, for example, when transporting steam in a steam transport facility, quickly discharges condensed water (also referred to as condensate or drain) generated by heat dissipation to the outside of the system, and transports the steam efficiently. It is placed in the middle of the pipe. This type of steam trap is disclosed in Patent Document 1. The steam trap disclosed in Patent Document 1 quickly discharges condensed water, which is high-temperature low-pressure condensate, and also reduces steam leakage.
 このスチームトラップのトラップケーシングでは、ニードル弁が小径オリフィス側に設けられており、ニードル弁が上下動することで、小径オリフィスの開度を調整できる。また、連通路の入口側には開閉弁が上下動自在に取り付けられている。このため、小径オリフィスと連通路の下端部が、弁室となっており、この弁室やニードル弁と開閉弁等が、トラップケーシングの下部から、斜め下方に向けて突出して形成されている。このため、スチームトラップのサイズが大きくなっている。 In the trap casing of this steam trap, a needle valve is provided on the small diameter orifice side, and the opening degree of the small diameter orifice can be adjusted by moving the needle valve up and down. In addition, an on-off valve is installed on the entrance side of the communication passage so that it can move up and down. For this reason, the small-diameter orifice and the lower end of the communication passage form a valve chamber, and the valve chamber, the needle valve, the on-off valve, and the like are formed so as to project diagonally downward from the lower part of the trap casing. For this reason, the size of the steam trap is large.
 ニードル弁を引き下げて小径オリフィスを全開状態にして、開閉弁を閉じて連絡路を閉じることにより、トラップケーシングの入口から流入した復水は、弁室に溜まりそして小径オリフィスを通ってトラップケーシングの出口から外部に排出される。これにより、蒸気の漏洩を抑えることができる。また、トラップケーシングの入口から流入する復水の量が少ない場合には、ニードル弁を上方に押し込んで小径オリフィスの通過面積を小さくすることにより、蒸気を漏洩することなく、復水だけを外部に排出できる。 By pulling down the needle valve to fully open the small diameter orifice and closing the on-off valve to close the connecting path, the condensate that flows in from the trap casing inlet collects in the valve chamber and passes through the small diameter orifice to the trap casing outlet. Is discharged to the outside. As a result, leakage of steam can be suppressed. When the amount of condensate flowing in from the inlet of the trap casing is small, the needle valve is pushed upward to reduce the passage area of the small-diameter orifice, so that only the condensate is discharged to the outside without leaking steam. Can be discharged.
 蒸気使用機器の初期立ち上げ時のように、蒸気圧力が低くかつ多量の低圧復水が流入してくる場合には、開閉弁を引き下げて連通路を開放することにより、この多量の復水を速やかに外部に排出することができる。 When the steam pressure is low and a large amount of low-pressure condensate flows in, such as at the time of initial startup of steam-using equipment, this large amount of condensate can be removed by pulling down the on-off valve and opening the communication passage. It can be quickly discharged to the outside.
特開2001-50488号公報Japanese Unexamined Patent Publication No. 2001-50488
 ところで、特許文献1に開示されたスチームトラップのトラップケーシングは、小径オリフィスと、連通路と、上下動させるニードル弁と、上下動させる開閉弁と、弁室を配置する必要がある。このため、スチームトラップが蒸気管の外に向かって突出した構造部分を有するので大型化する。しかも、蒸気管の放熱により発生した復水(ドレン、凝縮水)を速やかに排出しながら、蒸気の漏洩を抑制するためには、ニードル弁や開閉弁を動作させなければならず、トラップケーシングの構造が複雑である。 By the way, in the trap casing of the steam trap disclosed in Patent Document 1, it is necessary to arrange a small-diameter orifice, a communication passage, a needle valve that moves up and down, an on-off valve that moves up and down, and a valve chamber. For this reason, the steam trap has a structural portion that protrudes toward the outside of the steam pipe, so that the size is increased. Moreover, in order to suppress steam leakage while promptly discharging the condensate (drain, condensed water) generated by the heat dissipation of the steam pipe, the needle valve and on-off valve must be operated, and the trap casing must be operated. The structure is complicated.
 本発明は、前記課題を解決するためになされたものであり、大型化を防ぐとともに構造を簡単化することができ、放熱により発生した凝縮水を速やかに排出しながら、蒸気の漏洩を少なくして蒸気搬送効率を上げることができるスチームトラップを提供することを目的とする。 The present invention has been made to solve the above problems, and it is possible to prevent an increase in size and simplify the structure, and while promptly discharging the condensed water generated by heat dissipation, the leakage of steam is reduced. It is an object of the present invention to provide a steam trap capable of increasing steam transfer efficiency.
 前記課題を解決するための本発明の第1の態様のスチームトラップは、蒸気発生源からの蒸気を蒸気供給対象に搬送する搬送管の途中に配置されるスチームトラップであって、
 チューブ状の本体部と、
 前記本体部内に配置されて、前記蒸気と、前記搬送管の放熱により発生する凝縮水を通すための柱状孔を有するオリフィスと、を備え、
 前記柱状孔の軸方向の長さLは、以下の式(1)で定義される

 L≧A/B・・・式(1)

L=前記柱状孔の軸方向の長さ(mm)
A=前記柱状孔の径(mm)
B=想定最小負荷率(%)

 ここで、前記柱状孔の径Aは、前記スチームトラップが設置される前記搬送管の設置部位の前後の差圧により排出される前記凝縮水の量が、必要最大排出量と等しくなるように設計された径、
 想定最小負荷率Bは、前記スチームトラップが設置される前記搬送管の設置部位の前後の差圧により排出される前記凝縮水の量の、加熱負荷変動により想定される、最小負荷の割合である[想定最小負荷(kg/h)/想定最大負荷(kg/h)]

ことを特徴とする。
The steam trap according to the first aspect of the present invention for solving the above problems is a steam trap arranged in the middle of a transport pipe for transporting steam from a steam source to a steam supply target.
Tube-shaped body and
It is provided in the main body portion and includes the steam and an orifice having a columnar hole for passing condensed water generated by heat dissipation of the transport pipe.
The axial length L of the columnar hole is defined by the following equation (1).

L ≧ A / B ・ ・ ・ Equation (1)

L = Axial length (mm) of the columnar hole
A = Diameter of the columnar hole (mm)
B = assumed minimum load factor (%)

Here, the diameter A of the columnar hole is designed so that the amount of the condensed water discharged due to the differential pressure before and after the installation portion of the transport pipe in which the steam trap is installed is equal to the required maximum discharge amount. Diameter,
The assumed minimum load factor B is the ratio of the minimum load assumed by the fluctuation of the heating load to the amount of the condensed water discharged due to the differential pressure before and after the installation site of the transport pipe in which the steam trap is installed. [Assumed minimum load (kg / h) / Assumed maximum load (kg / h)]

It is characterized by that.
 前記構成によれば、チューブ状の本体部内にオリフィスを配置する構造を採用すればよいので、スチームトラップの大型化を防ぐとともに、スチームトラップの構造を簡単化することができる。柱状孔の軸方向の長さLは、式(1)で定義されるので、放熱により発生した凝縮水が崩壊することを防いで、凝縮水を速やかに排出しながら、蒸気の漏洩を少なくすることができることから、蒸気搬送効率および加熱効率を上げることができる。 According to the above configuration, since it is sufficient to adopt a structure in which the orifice is arranged in the tubular main body, it is possible to prevent the steam trap from becoming large and to simplify the structure of the steam trap. Since the axial length L of the columnar hole is defined by the equation (1), it prevents the condensed water generated by heat dissipation from collapsing, promptly discharges the condensed water, and reduces steam leakage. Therefore, the steam transfer efficiency and the heating efficiency can be increased.
 また、本発明の第2の態様のスチームトラップは、1つまたは複数の前記オリフィスが、前記本体部内に配置されていることを特徴とする。
 前記構成によれば、必要に応じて、本体部内に配置されるオリフィスの数を任意に設定することができ、設計の自由度が高まる。
Further, the steam trap of the second aspect of the present invention is characterized in that one or more of the orifices are arranged in the main body portion.
According to the above configuration, the number of orifices arranged in the main body can be arbitrarily set as needed, and the degree of freedom in design is increased.
 また、本発明の第3の態様のスチームトラップは、複数の前記オリフィスが、前記本体部内に直列に配置されており、前記複数の前記オリフィスに対して、前記本体部内の前記蒸気の流れる方向の上流側には、前記蒸気の流れが前記凝縮水の流れを追い越す現象を抑制するための追い越し抑制オリフィスが配置されていることを特徴とする。
 前記構成によれば、追い越し抑制オリフィスが複数のオリフィスに対して蒸気の流れる方向の上流側に配置されているで、蒸気の流れが凝縮水の流れよりも先に流れることがなく、凝縮水の流れに続いて蒸気の流れが発生することになるので、凝縮水を速やかに排出しながら、蒸気の漏洩を少なくすることができる。
Further, in the steam trap of the third aspect of the present invention, a plurality of the orifices are arranged in series in the main body portion, and the steam trap in the main body portion is in the direction in which the steam flows with respect to the plurality of the orifices. An overtaking suppression orifice for suppressing the phenomenon in which the flow of steam overtakes the flow of condensed water is arranged on the upstream side.
According to the above configuration, since the overtaking suppression orifice is arranged upstream of the plurality of orifices in the direction of steam flow, the steam flow does not flow before the flow of condensed water, and the condensed water does not flow. Since the steam flow is generated following the flow, it is possible to reduce the leakage of steam while promptly discharging the condensed water.
 また、本発明の第4の態様のスチームトラップは、1つの前記オリフィスには、前記本体部の軸方向と平行になるように複数の前記柱状孔が設けられていることを特徴とする。
 前記構成によれば、オリフィスは、必要に応じて複数の柱状孔を設定することができ、設計の自由度が高まる。
Further, the steam trap according to the fourth aspect of the present invention is characterized in that one of the orifices is provided with a plurality of columnar holes so as to be parallel to the axial direction of the main body portion.
According to the above configuration, the orifice can have a plurality of columnar holes as required, which increases the degree of freedom in design.
 本発明によれば、大型化を防ぐとともに構造を簡単化することができ、放熱により発生した凝縮水を速やかに排出しながら、蒸気の漏洩を少なくして蒸気搬送効率を上げることができるスチームトラップを提供することができる。 According to the present invention, it is possible to prevent an increase in size and simplify the structure, and while promptly discharging condensed water generated by heat dissipation, it is possible to reduce steam leakage and improve steam transfer efficiency. Can be provided.
本発明のスチームトラップの第1実施形態を備える蒸気搬送設備の一例を示す図The figure which shows an example of the steam transfer equipment which comprises 1st Embodiment of the steam trap of this invention. 図1に示すスチームトラップの好ましい内部構造例を示す軸方向に沿った断面図A cross-sectional view taken along the axial direction showing an example of a preferable internal structure of the steam trap shown in FIG. スチームトラップの構成部品を示す分解断面図An exploded cross section showing the components of a steam trap 図3に示す円筒状の追い越し抑制オリフィスと、第1流出抑制オリフィスと、スペーサーと、第2流出抑制オリフィスだけを示す図FIG. 3 shows only the cylindrical overtaking suppression orifice, the first outflow suppression orifice, the spacer, and the second outflow suppression orifice shown in FIG. 追い越し抑制オリフィスの形状を示す図Diagram showing the shape of the overtaking suppression orifice 柱状孔の軸方向の長さLが、10mm、5mm、2.5mmの場合の凝縮水と蒸気の動作例を示す図The figure which shows the operation example of condensed water and steam when the axial length L of a columnar hole is 10mm, 5mm, 2.5mm. 本発明のスチームトラップに用いる流出抑制オリフィスの他の実施形態を示す図3と同様の断面図A cross-sectional view similar to FIG. 3 showing another embodiment of the outflow suppression orifice used in the steam trap of the present invention.
 以下に、本発明の好ましい実施形態を、図面を参照しながら詳しく説明する。
(蒸気搬送設備100)
 図1は、本発明のスチームトラップの第1実施形態を備える蒸気搬送設備の一例を示している。まず、スチームトラップ1が使用される蒸気搬送設備100を説明する。図1に示す蒸気搬送設備100は、蒸気ボイラー101と、蒸気Vにより加熱を行う加熱対象(蒸気供給対象)としての加熱機器102と、蒸気Vを搬送する際に発生する凝縮水Wを回収して貯める環水タンク103と、蒸気ボイラー101と加熱機器102とを接続しており、蒸気Vと凝縮水Wを搬送する蒸気主搬送管110と、凝縮水回収管120と、そして凝縮水供給管121と、を有する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
(Steam transfer equipment 100)
FIG. 1 shows an example of a steam transfer facility including the first embodiment of the steam trap of the present invention. First, the steam transfer equipment 100 in which the steam trap 1 is used will be described. The steam transfer facility 100 shown in FIG. 1 recovers the steam boiler 101, the heating device 102 as a heating target (steam supply target) that heats with the steam V, and the condensed water W generated when the steam V is transported. The steam main transport pipe 110, the condensed water recovery pipe 120, and the condensed water supply pipe, which are connected to the ring water tank 103 for storing the steam, the steam boiler 101, and the heating device 102, and convey the steam V and the condensed water W. 121 and.
 蒸気ボイラー101は、加熱機器102に対して、蒸気主搬送管110を通じて蒸気Vを搬送して供給する。これにより、加熱機器102は、蒸気Vにより所定の温度に加熱されるとともに、蒸気Vによる所定の仕事を実行する。加熱機器102の仕事実行の後に加熱機器102において発生した凝縮水Wは、加熱機器102から環水タンク103へ、凝縮水回収管120を通じて、回収される。環水タンク103に貯まった凝縮水Wは、凝縮水供給管121を通じて、蒸気ボイラー101に供給することで、蒸気Vを発生させるために再利用される。蒸気主搬送管110においては、蒸気主搬送管110が放熱することにより、蒸気Vを搬送する際に、蒸気主搬送管110内には凝縮水Wが発生する。この凝縮水Wを蒸気搬送系外へ除いて蒸気Vのみを加熱機器102に搬送させるために、本実施形態のスチームトラップ1が蒸気主搬送管110の途中に配置される。 The steam boiler 101 transports and supplies steam V to the heating device 102 through the steam main transport pipe 110. As a result, the heating device 102 is heated to a predetermined temperature by the steam V and performs a predetermined work by the steam V. The condensed water W generated in the heating device 102 after the work of the heating device 102 is executed is recovered from the heating device 102 to the ring water tank 103 through the condensed water recovery pipe 120. The condensed water W stored in the ring water tank 103 is supplied to the steam boiler 101 through the condensed water supply pipe 121, and is reused to generate steam V. In the steam main transport pipe 110, the steam main transport pipe 110 dissipates heat, so that when the steam V is transported, condensed water W is generated in the steam main transport pipe 110. The steam trap 1 of the present embodiment is arranged in the middle of the steam main transfer pipe 110 in order to remove the condensed water W to the outside of the steam transfer system and transfer only the steam V to the heating device 102.
 図1に示すように、スチームトラップ1は、蒸気主搬送管110の途中に、着脱自在に交換できるように配置されている。図1においては、スチームトラップ1の設置位置を象徴的に示している。この種の蒸気搬送設備100では、省エネルギー化を促進するために、例えば蒸気ボイラー101の高効率化等を図るだけでなく、スチームトラップ1を用いて、蒸気Vの搬送効率を高めることが求められる。すなわち、蒸気主搬送管110の途中にスチームトラップ1を配置することにより、蒸気主搬送管110の放熱により発生した凝縮水Wを蒸気搬送系外へ速やかに排出しながら、蒸気主搬送管110を通る蒸気Vの漏洩を少なくして、蒸気搬送効率を上げることが求められる。 As shown in FIG. 1, the steam trap 1 is arranged in the middle of the steam main transport pipe 110 so that it can be detachably replaced. In FIG. 1, the installation position of the steam trap 1 is symbolically shown. In this type of steam transfer equipment 100, in order to promote energy saving, it is required not only to improve the efficiency of the steam boiler 101, for example, but also to improve the transfer efficiency of steam V by using the steam trap 1. .. That is, by arranging the steam trap 1 in the middle of the steam main transport pipe 110, the steam main transport pipe 110 is quickly discharged to the outside of the steam transport system while the condensed water W generated by the heat radiation of the steam main transport pipe 110 is quickly discharged. It is required to reduce the leakage of steam V passing through and improve the steam transfer efficiency.
 そこで、本発明の第1実施形態では、このスチームトラップ1は、以下に詳しく説明するように、従来のスチームトラップに比べて大型化を防ぐとともに構造を簡単化することができる。しかも、スチームトラップ1は、蒸気管としての蒸気主搬送管110の放熱により発生した凝縮水Wを速やかに排出しながら、蒸気主搬送管110を通る蒸気Vの漏洩を少なくして搬送できるようにすることで、蒸気搬送効率を上げることができる構造となっている。 Therefore, in the first embodiment of the present invention, the steam trap 1 can prevent the size of the steam trap 1 from becoming larger and simplify the structure as compared with the conventional steam trap, as will be described in detail below. Moreover, the steam trap 1 can quickly discharge the condensed water W generated by the heat radiation of the steam main transport pipe 110 as a steam pipe, while reducing the leakage of steam V passing through the steam main transport pipe 110. By doing so, the structure is such that the steam transfer efficiency can be improved.
 図2は、図1に示すスチームトラップ1の好ましい内部構造例を示す軸方向に沿った断面図である。
 図2に示すように、蒸気主搬送管110は、一次側ユニオン111と、二次側ユニオン112を有している。一次側ユニオン111と二次側ユニオン112は、スチームトラップ1を着脱可能に取り付けるための一方と他方の接続部である。スチームトラップ1は、これらの一次側ユニオン111と、二次側ユニオン112との間に、着脱可能に接続することで、必要に応じて交換できるようになっている。一次側ユニオン111は、連結部材111Bと、連結ネジ111Cと、パッキン111Dとを有する。同様にして、反対側の二次側ユニオン112は、連結部材112Bと、連結ネジ112Cと、パッキン112Dとを有する。二次側ユニオン112は、連結部材112Bと、連結ネジ112Cを有する。一次側ユニオン111は、図1に示す蒸気ボイラー101側(一次側)であり、二次側ユニオン112は、蒸気搬送系外(二次側)に配置されている。
FIG. 2 is a cross-sectional view taken along the axial direction showing a preferable example of the internal structure of the steam trap 1 shown in FIG.
As shown in FIG. 2, the steam main transport pipe 110 has a primary side union 111 and a secondary side union 112. The primary side union 111 and the secondary side union 112 are one and the other connecting portions for detachably attaching the steam trap 1. The steam trap 1 is detachably connected between the primary union 111 and the secondary union 112 so that the steam trap 1 can be replaced as needed. The primary union 111 has a connecting member 111B, a connecting screw 111C, and a packing 111D. Similarly, the opposite secondary union 112 has a connecting member 112B, a connecting screw 112C, and a packing 112D. The secondary union 112 has a connecting member 112B and a connecting screw 112C. The primary side union 111 is on the steam boiler 101 side (primary side) shown in FIG. 1, and the secondary side union 112 is arranged outside the steam transport system (secondary side).
(スチームトラップ1の構造例)
 図2に示すスチームトラップ1の構造例を、図3を参照して説明する。図3は、スチームトラップ1の構成部品を示す分解断面図である。
 図2と図3に示すように、スチームトラップ1は、筒状の本体部2(図2を参照)と、ドレン取入部11と、ドレン排出部12と、内部押えネジ部材3と、スプリングワッシャ4と、平ワッシャー5と、追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9と、そしてパッキン10と、を有する。ドレン取入部11は、図1の蒸気ボイラー101から蒸気Vと凝縮水Wを取り入れる側である。ドレン排出部12は、蒸気搬送系外へ蒸気Vと凝縮水Wを排出する側である。
(Structural example of steam trap 1)
A structural example of the steam trap 1 shown in FIG. 2 will be described with reference to FIG. FIG. 3 is an exploded cross-sectional view showing the components of the steam trap 1.
As shown in FIGS. 2 and 3, the steam trap 1 includes a tubular main body 2 (see FIG. 2), a drain intake portion 11, a drain discharge portion 12, an internal set screw member 3, and a spring washer. It has a flat washer 5, an overtaking suppression orifice 6, a first outflow suppression orifice 7, a spacer 8, a second outflow suppression orifice 9, and a packing 10. The drain intake unit 11 is a side that takes in steam V and condensed water W from the steam boiler 101 of FIG. The drain discharge unit 12 is a side that discharges steam V and condensed water W to the outside of the steam transport system.
 図2に示すように、第1ユニオン111の連結部材111Bの凸部111Gは、パッキン111Dを挟み込みながら、ドレン取入部11の凹部11Cにはめ込まれて密着される。連結ネジ111Cのメネジ111Fは、ドレン取入部11のオネジ11Bにねじ込まれることで、連結部材111Bとドレン取入部11とは、気密状態で着脱可能に連結される。
 同様にして、第2ユニオン112の連結部材112Bの凸部112Gは、パッキン112Dを挟み込みながら、ドレン排出部12の凹部12Cにはめ込まれて密着される。連結ネジ112Cのメネジ112Fは、ドレン排出部12のオネジ12Bにねじ込まれることで、連結部材112Bとドレン排出部12とは、気密状態で着脱可能に連結される。
As shown in FIG. 2, the convex portion 111G of the connecting member 111B of the first union 111 is fitted into the concave portion 11C of the drain intake portion 11 and closely adhered while sandwiching the packing 111D. The female screw 111F of the connecting screw 111C is screwed into the male screw 11B of the drain intake portion 11, so that the connecting member 111B and the drain intake portion 11 are detachably connected in an airtight state.
Similarly, the convex portion 112G of the connecting member 112B of the second union 112 is fitted into the concave portion 12C of the drain discharge portion 12 and closely adhered while sandwiching the packing 112D. The female screw 112F of the connecting screw 112C is screwed into the male screw 12B of the drain discharge portion 12, so that the connecting member 112B and the drain discharge portion 12 are detachably connected in an airtight state.
 図2と図3に示すように、ドレン取入部11の内端部11Nは、本体部2の一端部2Bの外周面に対して、例えば溶接や接着剤の塗布による固定部材20により固定されている。内部押えネジ部材3のオネジ部3Nは、ドレン取入部11のメネジ部11Nにねじ込まれることで、内部押えネジ部材3はドレン取入部11に対して固定されている。図3に示すように、ドレン取入部11は、内部孔11Hを有し、内部押えネジ部材3は、内部孔3H、3Jと、凸部3Kを有している。図2に示すように、凸部3Kの外周面は、本体部2の一端部2Bの内周面に密着するようにして挿入されている。内部孔11Hの内径は、内部孔3Jの内径よりも大きく、内部孔3Jの内径は、内部孔3Hの内径よりも大きい。 As shown in FIGS. 2 and 3, the inner end portion 11N of the drain intake portion 11 is fixed to the outer peripheral surface of one end portion 2B of the main body portion 2 by, for example, a fixing member 20 by welding or application of an adhesive. There is. The male threaded portion 3N of the internal settling screw member 3 is screwed into the female threaded portion 11N of the drain taking-in portion 11, so that the internal settling screw member 3 is fixed to the drain taking-in portion 11. As shown in FIG. 3, the drain intake portion 11 has an internal hole 11H, and the internal set screw member 3 has an internal hole 3H, 3J, and a convex portion 3K. As shown in FIG. 2, the outer peripheral surface of the convex portion 3K is inserted so as to be in close contact with the inner peripheral surface of one end portion 2B of the main body portion 2. The inner diameter of the inner hole 11H is larger than the inner diameter of the inner hole 3J, and the inner diameter of the inner hole 3J is larger than the inner diameter of the inner hole 3H.
 また、図2と図3に示すように、ドレン排出部12の内端部12Nは、本体部2の他端部2Cの外周面に対して、例えば溶接や接着剤の塗布による固定部材21により固定されている。図3に示すように、ドレン排出部12は、内部孔12Hを有している。内部孔12Hの内径は、内部孔3Hの内径と同じである。ドレン排出部12の凸部12Kの外周面は、本体部2の他端部2Cの内周面に密着するようにして挿入されている。 Further, as shown in FIGS. 2 and 3, the inner end portion 12N of the drain discharge portion 12 is attached to the outer peripheral surface of the other end portion 2C of the main body portion 2 by, for example, a fixing member 21 by welding or application of an adhesive. It is fixed. As shown in FIG. 3, the drain discharge unit 12 has an internal hole 12H. The inner diameter of the inner hole 12H is the same as the inner diameter of the inner hole 3H. The outer peripheral surface of the convex portion 12K of the drain discharge portion 12 is inserted so as to be in close contact with the inner peripheral surface of the other end portion 2C of the main body portion 2.
 図2に示すように、図3に示すスプリングワッシャ4と、平ワッシャー5と、追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9と、パッキン10は、筒状の本体部2の内部において、一端部2Bから他端部2Cに渡って、順番にしかも直列に配列されている。図2に示すように、スプリングワッシャ4と平ワッシャー5と、追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9と、パッキン10の各外周面は、本体部2の内周面に密着されている。これらの各部材は、パッキン10を除いて、例えばSUS等の金属により作られている。 As shown in FIG. 2, the spring washer 4, the flat washer 5, the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10 shown in FIG. 3 are Inside the tubular main body 2, they are arranged in order and in series from one end 2B to the other end 2C. As shown in FIG. 2, each outer peripheral surface of the spring washer 4, the flat washer 5, the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10 is It is in close contact with the inner peripheral surface of the main body 2. Each of these members is made of a metal such as SUS, except for the packing 10.
 図3に示すように、スプリングワッシャ4と平ワッシャー5と、追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9と、パッキン10の外径は、凸部3Kと凸部12Kの外径と同じである。スプリングワッシャ4と平ワッシャー5は、凸部3Kと追い越し抑制オリフィス6の間に配置されており、追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9は、スプリングワッシャ―4により、パッキン10を挟んでドレン排出部12側へ付勢されている。 As shown in FIG. 3, the outer diameters of the spring washer 4, the flat washer 5, the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10 are convex. It is the same as the outer diameter of the portion 3K and the convex portion 12K. The spring washer 4 and the flat washer 5 are arranged between the convex portion 3K and the overtaking suppression orifice 6, and the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, and the second outflow suppression orifice 9 are arranged. , The spring washer-4 urges the drain discharge portion 12 side with the packing 10 interposed therebetween.
 図4は、図3に示す円筒状の追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9だけを、取り出して示している。図5は、追い越し抑制オリフィス6の特徴的な形状を示している。 FIG. 4 shows only the cylindrical overtaking suppression orifice 6 shown in FIG. 3, the first outflow suppression orifice 7, the spacer 8, and the second outflow suppression orifice 9. FIG. 5 shows the characteristic shape of the overtaking suppression orifice 6.
(追い越し抑制オリフィス6)
 図3と図4に示すように、追い越し抑制オリフィス6は、入口孔6Bと、オリフィス孔6Cと、出口孔6Dと、凹部6Fを有する。入口孔6Bの内径と出口孔6Dの内径は同じであるが、凹部6Fの内径は出口孔6Dの内径よりも大きい。また、特徴的なのは、オリフィス6Cの内径は、入口孔6Bの内径に比べてかなり小さく、オリフィス6Cの内径は例えば3mm程度であるが、特に限定されない。
(Overtaking suppression orifice 6)
As shown in FIGS. 3 and 4, the overtaking suppression orifice 6 has an inlet hole 6B, an orifice hole 6C, an outlet hole 6D, and a recess 6F. The inner diameter of the inlet hole 6B and the inner diameter of the outlet hole 6D are the same, but the inner diameter of the recess 6F is larger than the inner diameter of the outlet hole 6D. Further, characteristically, the inner diameter of the orifice 6C is considerably smaller than the inner diameter of the inlet hole 6B, and the inner diameter of the orifice 6C is, for example, about 3 mm, but is not particularly limited.
 しかも、図5に示すように、オリフィス孔6Cの中心軸CL2は、入口孔6Bと出口孔6Dと凹部6Fの中心軸CL1に対して、下方に偏心されている。このように、追い越し抑制オリフィス6では、蒸気の流れが凝縮水の流れを追い越して、あるいは先立って流れる現象を抑制する。すなわち、追い越し抑制オリフィス6のオリフィス孔6Cの口径が小さくなっており、しかも中心軸より下方に偏心されていることで、軽い蒸気Vより重くて下方位置に存在する凝縮水Wを先に通して、その後に蒸気Vを通すことで、凝縮水Wが蒸気Vを追い越して搬送されてしまうのを抑制する。これにより、多量の蒸気Vが、ドレンである凝縮水Wを追い越してしまう現象を抑えることができる。 Moreover, as shown in FIG. 5, the central axis CL2 of the orifice hole 6C is eccentric downward with respect to the central axis CL1 of the inlet hole 6B, the outlet hole 6D, and the recess 6F. In this way, the overtaking suppression orifice 6 suppresses the phenomenon that the steam flow overtakes or precedes the flow of the condensed water. That is, the diameter of the orifice hole 6C of the overtaking suppression orifice 6 is small, and since it is eccentric below the central axis, the condensed water W, which is heavier than the light steam V and exists at the lower position, is passed first. After that, by passing the steam V, it is possible to prevent the condensed water W from being transported overtaking the steam V. As a result, it is possible to suppress the phenomenon that a large amount of steam V overtakes the condensed water W which is a drain.
(第1流出抑制オリフィス7)
 図4に示すように、第1流出抑制オリフィス7は、凸部7Bと、柱状孔7Cと、凹部7Dを有する。凹部7Dの内径は、凸部7Bの内径よりも大きく、柱状孔7Cの内径は、凸部7Bの内径よりも小さく、上述したオリフィス6Cの内径よりも小さい。第1流出抑制オリフィス7では、凸部7Bと、柱状孔7Cと、凹部7Dの各中心軸の位置は、同じである。図2に示すように、凸部7Bは、追い越し抑制オリフィス6の凹部6Fに、密着してはめ込まれる。この第1流出抑制オリフィス7は、流出抑制柱状オリフィスともいい、一次側の蒸気Vの流出速度を抑制する。
(1st outflow suppression orifice 7)
As shown in FIG. 4, the first outflow suppression orifice 7 has a convex portion 7B, a columnar hole 7C, and a concave portion 7D. The inner diameter of the concave portion 7D is larger than the inner diameter of the convex portion 7B, and the inner diameter of the columnar hole 7C is smaller than the inner diameter of the convex portion 7B and smaller than the inner diameter of the above-mentioned orifice 6C. In the first outflow suppression orifice 7, the positions of the central axes of the convex portion 7B, the columnar hole 7C, and the concave portion 7D are the same. As shown in FIG. 2, the convex portion 7B is fitted in close contact with the concave portion 6F of the overtaking suppression orifice 6. The first outflow suppression orifice 7 is also called an outflow suppression columnar orifice, and suppresses the outflow rate of steam V on the primary side.
(スペーサー8)
 図4に示すように、スペーサー8は、凸部8Bと、案内孔8Cと、凹部8Dを有する。このスペーサー8は、第1流出抑制オリフィス7と第2流出抑制オリフィス9とを離して配置させるための部材である。凹部8Dの内径は、凸部8Bの内径よりも大きく、案内孔8Cの内径は、凸部7Bの内径と同じである。スペーサー8では、凸部8Bと、案内孔8Cと、凹部8Dの各中心軸の位置は、同じである。図2に示すように、凸部8Bは、第1流出抑制オリフィス7の凹部7Dに、密着してはめ込まれる。このスペーサー8は、背圧維持スペーサーともいい、スペーサー8内の圧力を、ドレン(凝縮水W)の負荷低減時にドレン開放部(凝縮水の開放部)側の圧力よりも高く維持する。
(Spacer 8)
As shown in FIG. 4, the spacer 8 has a convex portion 8B, a guide hole 8C, and a concave portion 8D. The spacer 8 is a member for arranging the first outflow suppression orifice 7 and the second outflow suppression orifice 9 apart from each other. The inner diameter of the concave portion 8D is larger than the inner diameter of the convex portion 8B, and the inner diameter of the guide hole 8C is the same as the inner diameter of the convex portion 7B. In the spacer 8, the positions of the central axes of the convex portion 8B, the guide hole 8C, and the concave portion 8D are the same. As shown in FIG. 2, the convex portion 8B is fitted in close contact with the concave portion 7D of the first outflow suppression orifice 7. The spacer 8 is also referred to as a back pressure maintaining spacer, and maintains the pressure inside the spacer 8 higher than the pressure on the drain opening portion (condensed water opening portion) side when the load of the drain (condensed water W) is reduced.
(第2流出抑制オリフィス9)
 図4に示すように、第2流出抑制オリフィス9の形状は、第1流出抑制オリフィス7の形状と似ている。第2流出抑制オリフィス9は、凸部9Bと、柱状孔9Cと、凹部9Dを有する。凹部9Dの内径は、凸部9Bの内径とほぼ同じであり、柱状孔9Cの内径は、凸部9Bの内径よりも小さい。第2流出抑制オリフィス9では、凸部9Bと、オリフィス9Cと、凹部9Dの各中心軸の位置は、同じである。柱状孔9Cの直径と柱状孔7Cの直径は同じである。図2に示すように、凸部9Bは、スペーサー8の凹部8Dに、密着してはめ込まれる。凹部9Dは、ドレン排出部12の内部孔12Hに対して、パッキン10を介して密着して接続される。第2流出抑制オリフィス9は、背圧維持スペーサー圧力維持オリフィスともいい、ドレン(凝縮水W)の負荷低減時に、スペーサー8からの蒸気Wの流出を抑制する。
(Second outflow suppression orifice 9)
As shown in FIG. 4, the shape of the second outflow suppression orifice 9 is similar to the shape of the first outflow suppression orifice 7. The second outflow suppression orifice 9 has a convex portion 9B, a columnar hole 9C, and a concave portion 9D. The inner diameter of the concave portion 9D is substantially the same as the inner diameter of the convex portion 9B, and the inner diameter of the columnar hole 9C is smaller than the inner diameter of the convex portion 9B. In the second outflow suppression orifice 9, the positions of the central axes of the convex portion 9B, the orifice 9C, and the concave portion 9D are the same. The diameter of the columnar hole 9C and the diameter of the columnar hole 7C are the same. As shown in FIG. 2, the convex portion 9B is closely fitted into the concave portion 8D of the spacer 8. The recess 9D is closely connected to the internal hole 12H of the drain discharge portion 12 via the packing 10. The second outflow suppression orifice 9 is also referred to as a back pressure maintenance spacer pressure maintenance orifice, and suppresses the outflow of steam W from the spacer 8 when the load of the drain (condensed water W) is reduced.
 ところで、図1に示すように、蒸気ボイラー101が発生する蒸気Vが、加熱機器102へ、蒸気主搬送管110を通じて供給される際に、加熱機器102を加熱するための蒸気Vの加熱能力は、「凝縮水Wの滞留」により低下する。この凝縮水Wは、蒸気主搬送管110が放熱することにより蒸気主搬送管110内に発生するが、凝縮水Wは高圧の温水であり、水塊ともいう。 By the way, as shown in FIG. 1, when the steam V generated by the steam boiler 101 is supplied to the heating device 102 through the steam main transfer pipe 110, the heating capacity of the steam V for heating the heating device 102 is , It decreases due to "retention of condensed water W". The condensed water W is generated in the steam main transport pipe 110 when the steam main transport pipe 110 dissipates heat. The condensed water W is high-pressure hot water and is also called a water mass.
 「凝縮水Wの滞留」が、図1に示す蒸気主搬送管110においては発生するのを防止するために、スチームトラップ1が、凝縮水Wの排出能力を持ち、かつ蒸気Vの流出量を抑制することができるように、上述した第1流出抑制オリフィス7の柱状孔7Cと、第2流出抑制オリフィス9の柱状孔9Cの形状について、特に柱状孔7C、9Cの軸方向の長さLは、以下のように式(1)で定義する。

 L≧A/B・・・・・・・式(1)

L=柱状孔7C、9C(オリフィス孔)の軸方向の長さ(mm)
A=柱状孔7C、9C(オリフィス孔)の径(mm)
B=想定最小負荷率(%)
In order to prevent "retention of condensed water W" from occurring in the steam main transport pipe 110 shown in FIG. 1, the steam trap 1 has a discharge capacity of condensed water W and an outflow amount of steam V. Regarding the shapes of the columnar holes 7C of the first outflow suppression orifice 7 and the columnar holes 9C of the second outflow suppression orifice 9 described above so as to be able to be suppressed, in particular, the axial lengths L of the columnar holes 7C and 9C are , Is defined by equation (1) as follows.

L ≧ A / B ・ ・ ・ ・ ・ ・ ・ Equation (1)

L = Axial length (mm) of columnar holes 7C and 9C (orifice holes)
A = Diameter (mm) of columnar holes 7C and 9C (orifice holes)
B = assumed minimum load factor (%)
 ここで、柱状孔7C、9Cの径(オリフィス径)Aは、スチームトラップ1が蒸気主搬送管110に設置される設置部位の前後の差圧により排出される凝縮水Wの量が、必要最大排出量と等しくなるように設計された径である。
 また、想定最小負荷率Bは、スチームトラップ1が蒸気主搬送管110に設置される設置部位の前後の差圧により排出される凝縮水Wの量の、加熱負荷変動等により想定される、最小負荷の割合・・・[想定最小負荷(kg/h)/想定最大負荷(kg/h)]・・%
である。
 想定最小負荷率Bは、一般的には50%であるが、本発明の実施形態では、例えば20%に設定されている。
 このように口径Aで長さL以上の柱状孔7C、9C内には、柱状孔7C、9Cの長さ方向に少なくとも2箇所において凝縮水Wによって柱状孔7C、9Cを塞ぐ水塊が発生して、蒸気Vが多量に流出して送られてしまうことを防ぐことができる。
Here, for the diameters (orifice diameters) A of the columnar holes 7C and 9C, the maximum amount of condensed water W discharged due to the differential pressure before and after the installation site where the steam trap 1 is installed in the steam main transport pipe 110 is the maximum required. The diameter is designed to be equal to the emission amount.
Further, the assumed minimum load factor B is the minimum assumed by the heating load fluctuation and the like of the amount of condensed water W discharged due to the differential pressure before and after the installation site where the steam trap 1 is installed in the steam main transport pipe 110. Load ratio: [Assumed minimum load (kg / h) / Assumed maximum load (kg / h)] ・ ・%
Is.
The assumed minimum load factor B is generally 50%, but in the embodiment of the present invention, it is set to, for example, 20%.
In this way, in the columnar holes 7C and 9C having a diameter A and a length L or more, water lumps that block the columnar holes 7C and 9C by the condensed water W are generated at at least two places in the length direction of the columnar holes 7C and 9C. Therefore, it is possible to prevent a large amount of steam V from flowing out and being sent.
 第1流出抑制オリフィス7の柱状孔7Cと第2流出抑制オリフィス9の柱状孔9Cの軸方向の長さLと、柱状孔7C、9Cの径(オリフィス径)Aとの関係を、式(1)で定義することにより、柱状孔7C、9Cが小さい場合に凝縮水Wだけが送られて、必要とする蒸気Vの搬送量が確保できなかったり、逆に、柱状孔7C、9Cが大きい場合に凝縮水Wが崩壊して、蒸気Vが多量に流出して送られてしまうことを防ぐことができる。 The relationship between the axial length L of the columnar hole 7C of the first outflow suppression orifice 7 and the columnar hole 9C of the second outflow suppression orifice 9 and the diameter (orifice diameter) A of the columnar holes 7C and 9C is expressed by the equation (1). ), When the columnar holes 7C and 9C are small, only the condensed water W is sent and the required amount of steam V cannot be secured, or conversely, when the columnar holes 7C and 9C are large. It is possible to prevent the condensed water W from collapsing and causing a large amount of steam V to flow out and be sent.
 すなわち、凝縮水Wの発生量(ドレン発生量)と、蒸気Vの圧力と、排出側の蒸気凝縮水の圧力を正確に把握しながら、柱状孔7C、9Cの径Aを適切に設定することで、図1に示す蒸気主搬送管110において凝縮水Wの壁ができてしまって必要とする蒸気Vの量が不足して蒸気Vを必要量確保できずに図1の加熱機器102側へ供給できなかったり、逆に凝縮水Wの壁ができずに凝縮水Wが崩壊して、蒸気Vが図1の加熱機器102側へ多量に流出してしまう現象を防ぐことができる。柱状孔7C、9Cの長さLは、好ましくは5mm以上、最も好ましくは10mm以上に設定することで、負荷変動による蒸気Vの流出体積および流出速度が予測できるようになる。 That is, the diameters A of the columnar holes 7C and 9C should be appropriately set while accurately grasping the amount of condensed water W generated (drain generation amount), the pressure of steam V, and the pressure of steam condensed water on the discharge side. Then, in the steam main transport pipe 110 shown in FIG. 1, a wall of condensed water W is formed, and the required amount of steam V is insufficient to secure the required amount of steam V. It is possible to prevent a phenomenon in which the condensed water W cannot be supplied or, conversely, the wall of the condensed water W is not formed and the condensed water W collapses, causing a large amount of steam V to flow out to the heating device 102 side of FIG. By setting the length L of the columnar holes 7C and 9C to preferably 5 mm or more, most preferably 10 mm or more, the outflow volume and outflow rate of the vapor V due to the load fluctuation can be predicted.
 このようにして、図2に示す本体部2内では、追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9と、パッキン10により、凝縮水Wの搬送経路が形成されており、図1に示す蒸気ボイラー101から発生する凝縮水Wは、凝縮水Wを壊さないようにして蒸気主搬送管110の途中に配置されたスチームトラップ1を通すことで、加熱機器102を加熱するための蒸気Vの供給量の減少を抑制して、加熱機器102へ蒸気Vを効率よく搬送できる構造になっている。 In this way, in the main body 2 shown in FIG. 2, the condensed water W is conveyed by the overtaking suppression orifice 6, the first outflow suppression orifice 7, the spacer 8, the second outflow suppression orifice 9, and the packing 10. A path is formed, and the condensed water W generated from the steam boiler 101 shown in FIG. 1 is passed through a steam trap 1 arranged in the middle of the steam main transport pipe 110 without damaging the condensed water W. The structure is such that the decrease in the supply amount of steam V for heating the heating device 102 is suppressed, and the steam V can be efficiently transported to the heating device 102.
(スチームトラップ1の動作例)
 次に、図を参照して、スチームトラップ1の動作例を説明する。
 図1に示す蒸気ボイラー101からは、蒸気Vが、蒸気主搬送管110に供給される。凝縮水Wは、蒸気主搬送管110の放熱により、蒸気主搬送管110内に発生する。図2に示すように、この凝縮水Wは、一次側ユニオン111の連結部材111Bの内部孔と、ドレン取入部11の内部孔11Hと、内部押えネジ部材3の内部孔3J、3Hと、スプリングワッシャ4と、平ワッシャー5を通って、追い越し抑制オリフィス6に達する。
(Operation example of steam trap 1)
Next, an operation example of the steam trap 1 will be described with reference to the figure.
From the steam boiler 101 shown in FIG. 1, steam V is supplied to the steam main transport pipe 110. The condensed water W is generated in the steam main transport pipe 110 due to heat dissipation from the steam main transport pipe 110. As shown in FIG. 2, the condensed water W includes an internal hole of the connecting member 111B of the primary union 111, an internal hole 11H of the drain intake portion 11, an internal hole 3J, 3H of the internal washer screw member 3, and a spring. It reaches the overtaking suppression orifice 6 through the washer 4 and the flat washer 5.
 図5に示すように、追い越し抑制オリフィス6のオリフィス孔6Cの中心軸CL2は、入口孔6Bと出口孔6Dの中心軸CL1に対して、下方に偏心している。このため、凝縮水Wが軽い蒸気Vよりも先にオリフィス孔6C内を流れていき、この凝縮水Wが流れた後に、蒸気Vがオリフィス孔6Cを流れる。すなわち、追い越し抑制オリフィス6では、蒸気Vの流れが凝縮水Wの流れを追い越して、あるいは先立って流れる現象を抑制することで、凝縮水Wを先行させ、凝縮水Wの後に蒸気Vを送る。これにより、多量の蒸気Wが、ドレンである凝縮水Vを追い越して先に送られてしまう現象を抑えることができ、凝縮水Wが流れた後に蒸気Vが流れる。 As shown in FIG. 5, the central axis CL2 of the orifice hole 6C of the overtaking suppression orifice 6 is eccentric downward with respect to the central axis CL1 of the inlet hole 6B and the outlet hole 6D. Therefore, the condensed water W flows in the orifice hole 6C before the light steam V, and after the condensed water W flows, the steam V flows through the orifice hole 6C. That is, in the overtaking suppression orifice 6, the condensed water W is preceded and the steam V is sent after the condensed water W by suppressing the phenomenon that the flow of the steam V overtakes or precedes the flow of the condensed water W. As a result, it is possible to suppress the phenomenon that a large amount of steam W overtakes the condensed water V which is the drain and is sent first, and the steam V flows after the condensed water W flows.
 次に、凝縮水Wの流れと、この凝縮水Wの流れにつづく後方の蒸気Vの流れは、図2に示す追い越し抑制オリフィス6から、第1流出抑制オリフィス7の凸部7Bと、柱状孔7Cと、凹部7Dを通ることで、一次側の蒸気Vの流出速度を抑制する。すなわち、第1流出抑制オリフィス7は、流出抑制柱状オリフィスともいい、一次側の蒸気Vの流出速度を抑制することができる。 Next, the flow of the condensed water W and the flow of the steam V behind the flow of the condensed water W are transferred from the overtaking suppression orifice 6 shown in FIG. 2 to the convex portion 7B of the first outflow suppression orifice 7 and the columnar hole. By passing through 7C and the recess 7D, the outflow rate of steam V on the primary side is suppressed. That is, the first outflow suppression orifice 7 is also referred to as an outflow suppression columnar orifice, and can suppress the outflow rate of steam V on the primary side.
 このように、凝縮水Wの流れにつづく後方の蒸気Vの流れは、第1流出抑制オリフィス7の柱状孔7Cを通過して凹部7Dにおいて解放されて低圧になっても、上述したように、柱状孔7Cの軸方向の長さLが定義されているので、柱状孔7C内には少なくとも1個の凝縮水W(水塊)が常に存在するので、柱状孔7Cの全長が全くなくなって凝縮水W(水塊)が崩壊することはない。すなわち、凝縮水Wの流れにつづく後方の蒸気Vの流れが柱状孔7Cを通過した後に凹部7Dにおいて低圧になっても、柱状孔7Cの上流側(一次側)には少なくとも1箇所の凝縮水W(水塊)が存在するので、凝縮水W(水塊)は崩壊せずに、凝縮水Wの流れにつづき後方の蒸気Vの流れを抑制することができる。 As described above, even if the flow of the steam V behind the flow of the condensed water W passes through the columnar hole 7C of the first outflow suppression orifice 7 and is released in the recess 7D to become a low pressure, as described above. Since the axial length L of the columnar hole 7C is defined, at least one condensed water W (water mass) is always present in the columnar hole 7C, so that the total length of the columnar hole 7C is completely eliminated and condensed. Water W (water mass) does not collapse. That is, even if the flow of the steam V behind the flow of the condensed water W becomes low pressure in the recess 7D after passing through the columnar hole 7C, at least one condensed water is located on the upstream side (primary side) of the columnar hole 7C. Since W (water mass) exists, the condensed water W (water mass) does not collapse, and the flow of the steam V behind can be suppressed following the flow of the condensed water W.
 凝縮水Wの流れにつづく後方の蒸気Vの流れは、図3のスペーサー8の案内孔8Cをそのままの状態で通過する。このスペーサー8は、背圧維持スペーサーともいい、スペーサー8内の圧力を、ドレン(凝縮水W)の負荷低減時にドレン(凝縮水W)の開放部の圧力よりも高く維持する。そして、凝縮水Wの流れにつづく後方の蒸気Vの流れは、図3の第1流出抑制オリフィス7の凹部7Dから第2流出抑制オリフィス8の凸部8Bと、案内孔8Cと、凹部8Dを順に通る。 The flow of steam V behind the flow of condensed water W passes through the guide hole 8C of the spacer 8 in FIG. 3 as it is. The spacer 8 is also referred to as a back pressure maintaining spacer, and maintains the pressure inside the spacer 8 higher than the pressure at the open portion of the drain (condensed water W) when the load of the drain (condensed water W) is reduced. Then, the flow of the steam V behind the flow of the condensed water W is formed from the concave portion 7D of the first outflow suppression orifice 7 in FIG. 3 to the convex portion 8B of the second outflow suppression orifice 8, the guide hole 8C, and the concave portion 8D. Go through in order.
 凝縮水Wの流れにつづく後方の蒸気Vの流れは、第2流出抑制オリフィス9の柱状孔9C内を前記の第1流出抑制オリフィス7の柱状孔7Cの場合と同様にして通過する。これにより第2流出抑制オリフィス9においても凝縮水W(水塊)は崩壊せずに、凝縮水Wの流れにつづき後方の蒸気Vの流れを抑制される。第2流出抑制オリフィス9の柱状孔9Cおよび凹部9Dを通過した凝縮水Wと蒸気Vは、その状態を維持したままで、ドレン排出部12の内部孔12Hを通過し、その後、二次側ユニオン112を通過して、二次側に送給される。 The flow of steam V behind the flow of the condensed water W passes through the columnar hole 9C of the second outflow suppression orifice 9 in the same manner as in the case of the columnar hole 7C of the first outflow suppression orifice 7. As a result, the condensed water W (water mass) does not collapse even in the second outflow suppression orifice 9, and the flow of the steam V behind is suppressed following the flow of the condensed water W. The condensed water W and steam V that have passed through the columnar holes 9C and the recesses 9D of the second outflow suppression orifice 9 pass through the internal holes 12H of the drain discharge portion 12 while maintaining the state, and then the secondary union. It passes through 112 and is delivered to the secondary side.
 更に、柱状孔7C、9Cにおける動作を具体的に説明する。
前記式(1)において、A=柱状孔7C、9C(オリフィス孔)の径(mm)を1mm、B=想定最小負荷率(%)を20%と仮定して、L=柱状孔7C、9C(オリフィス孔)の軸方向の長さ(mm)を求めると、
 L≧A/B=5mm
となる。
 このようにしてL、A、Bが決定された柱状孔における凝縮水Wと蒸気Vとの流れ動作を図6により説明する。
 図6(A)から図6(C)は、柱状孔の軸方向の長さLについて、(A)がLの計算値5mmの2倍の10mm、(B)がLの計算値5mmと等しい5mm、(C)がLの計算値5mmより短い1/2長さの2.5mmの場合の凝縮水Wと蒸気Vの流れ動作例を模式的に示している。図6(A)および(B)はLの計算値5mm以上の条件を満たしている本実施形態を示しており、図6(C)はLの計算値5mm以上を満たしていない比較例を示している。口径Aが1mmの柱状孔7C、9Cにおいては、凝縮水Wが表面張力によって膜幅(長さ)が0.5mmの水塊W(図6において、ハッチング部参照)として形成される。柱状孔の内部には、膜幅が0.5mmの水塊Wは、孔の長さ2.5mmの長さ領域に1個形成されることとなる。従って、同図(A)のLは計算値5mmの2倍の10mmであるので、4個の水塊Wが2.5mm間隔で形成され、同図(B)のLは計算値5mmと等しい5mmであるので、2個の水塊Wが2.5mm間隔で形成され、同図(C)のLは計算値5mmより短い1/2長さの2.5mmであるので、1個の水塊Wが形成される。
 図6(A)から同図(C)のそれぞれにおいては、最上段の柱状孔部分において水塊Wが最右側位置の蒸気圧力が作用する最も一次側に位置し、下段側の柱状孔に4回変位するに従って水塊Wが水塊Wと同一幅の0.5mmずつ左の二次側(大気側)に移動している状態を示している。水塊Wは各図の最下段から最上段に戻って同一の移動が順に繰り返される。
 特に、各図(A)から(C)の最下段の状態から水塊Wが更に二次側の左側に進むと、柱状孔の最も二次側の最左部に位置していた水塊が二次側に放出されて水塊Wの右側に存在していた蒸気Vが一気に左側の二次側に放出される。その後、各図(A)から(C)の最上段の状態に戻るようにして柱状孔の最も一時側の最右側に新しい水塊Wが形成される。
 この水塊Wの移動状態が各図(A)から(C)の最下段の状態から最上段の状態に移行する際に、柱状孔の最左部に位置していた水塊が二次側に放出された瞬間に、各図(A)から(C)の柱状孔内の蒸気Vの移動を低速に抑制することができる能力が発揮されるかが問われるところである。
図6(A)および(B)の本発明の実施形態においては、柱状孔の長さLが前記式(1)を満たす5mm以上であるので、柱状孔の内部に少なくとも2個の水塊Wが存在するので、最左部に位置していた水塊Wが二次側に放出された瞬間においても、放出された水塊Wより上流側(右側)に別の水塊Wが確実に存在するので、柱状孔全体が一瞬でも水塊Wが存在しないで全開通となって蒸気Vが高速に排出されてしまう状態が発生することが確実に防止されて、蒸気Vの漏洩を少なくして蒸気搬送効率を上げることができる。特に、図6(A)および(B)の柱状孔の左側の二次側が大気圧(atm)である場合には、最左部の水塊Wは各図(A)(B)の最上段から最下段の各段においても大気側に蒸発して霧散することも予測されるが、蒸発しようとする水塊Wより上流側(右側)に別の水塊Wが確実に存在するので、前記と同様にして蒸気Vの漏洩を少なくして蒸気搬送効率を上げることができる。
ところが、図6(C)の比較例においては、柱状孔の内部に水塊Wが1個のみ存在するので、最左部に位置していた水塊が二次側に放出された瞬間に、一瞬ではあるが柱状孔の全体に亘って水塊Wが存在しないで全開通となって蒸気Vが高速に排出されてしまう問題が発生することが予測される。また、同図(C)の柱状孔の左側の二次側が大気圧(atm)である場合には、柱状孔の内部に存在する1個のみの水塊Wが同図(C)の最上段から最下段の各段においても大気側に蒸発することとなり、前記と同様に蒸気Vが高速に排出されてしまう問題が発生することが予測される。
Further, the operations in the columnar holes 7C and 9C will be specifically described.
In the above formula (1), assuming that A = columnar hole 7C, 9C (orifice hole) diameter (mm) is 1 mm, B = assumed minimum load factor (%) is 20%, L = columnar hole 7C, 9C. When the axial length (mm) of (orifice hole) is obtained,
L ≧ A / B = 5mm
Will be.
The flow operation of the condensed water W and the steam V in the columnar holes in which L, A, and B are determined in this way will be described with reference to FIG.
6 (A) to 6 (C) show that (A) is equal to 10 mm, which is twice the calculated value of L, and (B) is equal to the calculated value of L, 5 mm, with respect to the axial length L of the columnar hole. An example of the flow operation of the condensed water W and the steam V when 5 mm and (C) are 2.5 mm having a half length shorter than the calculated value of 5 mm of L is schematically shown. 6 (A) and 6 (B) show the present embodiment satisfying the condition of the calculated value of L of 5 mm or more, and FIG. 6 (C) shows a comparative example in which the calculated value of L of 5 mm or more is not satisfied. ing. In the columnar holes 7C and 9C having a diameter A of 1 mm, the condensed water W is formed as a water mass W (see the hatched portion in FIG. 6) having a film width (length) of 0.5 mm due to surface tension. Inside the columnar pores, one water mass W having a film width of 0.5 mm is formed in a length region having a pore length of 2.5 mm. Therefore, since L in the figure (A) is 10 mm, which is twice the calculated value of 5 mm, four water masses W are formed at intervals of 2.5 mm, and L in the figure (B) is equal to the calculated value of 5 mm. Since it is 5 mm, two water masses W are formed at intervals of 2.5 mm, and L in FIG. A mass W is formed.
In each of FIGS. 6 (A) to 6 (C), the water mass W is located on the most primary side where the steam pressure at the rightmost position acts in the columnar hole portion on the uppermost stage, and 4 in the columnar hole on the lower stage side. It shows a state in which the water mass W moves to the left secondary side (atmosphere side) by 0.5 mm, which is the same width as the water mass W, as it is displaced. The water mass W returns from the bottom to the top of each figure, and the same movement is repeated in order.
In particular, when the water mass W further advances to the left side on the secondary side from the state at the bottom of each figure (A) to (C), the water mass located on the leftmost part on the most secondary side of the columnar hole becomes. The steam V that was released to the secondary side and existed on the right side of the water mass W is released to the secondary side on the left side at once. After that, a new water mass W is formed on the rightmost side of the columnar hole on the most temporary side so as to return to the state of the uppermost stage of each figure (A) to (C).
When the moving state of the water mass W shifts from the bottom state to the top state in each figure (A) to (C), the water mass located at the leftmost part of the columnar hole is on the secondary side. At the moment when the water is released into the column, it is questioned whether the ability to suppress the movement of the steam V in the columnar holes of FIGS. (A) to (C) at a low speed is exhibited.
In the embodiment of the present invention shown in FIGS. 6A and 6B, since the length L of the columnar hole is 5 mm or more satisfying the above formula (1), at least two water masses W are inside the columnar hole. Therefore, even at the moment when the water mass W located on the leftmost side is discharged to the secondary side, another water mass W is surely present on the upstream side (right side) of the discharged water mass W. Therefore, it is surely prevented that the entire columnar hole is fully opened without the presence of the water mass W even for a moment and the steam V is discharged at high speed, and the leakage of the steam V is reduced. The steam transfer efficiency can be increased. In particular, when the secondary side on the left side of the columnar holes of FIGS. 6 (A) and 6 (B) is atmospheric pressure (atm), the leftmost water mass W is the uppermost stage of each of FIGS. It is predicted that each of the lowermost stages will also evaporate and disperse to the atmosphere side, but since another water mass W is surely present on the upstream side (right side) of the water mass W to be evaporated, the above Similarly, the leakage of steam V can be reduced and the steam transport efficiency can be improved.
However, in the comparative example of FIG. 6C, since there is only one water mass W inside the columnar hole, the moment the water mass located on the leftmost side is released to the secondary side, For a moment, it is predicted that there will be a problem that the water mass W does not exist over the entire columnar hole and the water mass W is fully opened and the steam V is discharged at high speed. Further, when the secondary side on the left side of the columnar hole in the figure (C) is atmospheric pressure (atm), only one water mass W existing inside the columnar hole is the uppermost stage in the figure (C). It is predicted that the vapor V will evaporate to the atmosphere side in each of the lowermost stages as well, and the problem that the steam V will be discharged at high speed will occur as described above.
 このように本実施形態においては、図2に示すように、スチームトラップ1を蒸気搬送設備100の蒸気主搬送管110に適用することで、チューブ状の本体部2内に少なくとも合計して2つの第1流出抑制オリフィス7と第2流出抑制オリフィス9が直列に配置されることになる。このスチームトラップ1は、チューブ状の本体部2内に、スプリングワッシャ4と、平ワッシャー5と、追い越し抑制オリフィス6と、第1流出抑制オリフィス7と、スペーサー8と、第2流出抑制オリフィス9とパッキン10の各構成要素を直列に収容する構造を採用している。このため、本実施形態のスチームトラップ1は、本体部2から外部に突出している部分が無いので、従来のスチームトラップに比べて大型化を防ぐとともに構造を簡単化することができる。また、蒸気主搬送管110の放熱により発生した凝縮水Wを速やかに蒸気搬送系外に排出しながら、蒸気主搬送管110を通る蒸気Vの漏洩を少なくして加熱機器102に供給できるので、蒸気搬送効率を上げることができる。 As described above, in the present embodiment, as shown in FIG. 2, by applying the steam trap 1 to the steam main transfer pipe 110 of the steam transfer facility 100, at least two totals are provided in the tubular main body 2. The first outflow suppression orifice 7 and the second outflow suppression orifice 9 will be arranged in series. The steam trap 1 has a spring washer 4, a flat washer 5, an overtaking suppression orifice 6, a first outflow suppression orifice 7, a spacer 8, and a second outflow suppression orifice 9 in a tubular main body 2. A structure is adopted in which each component of the packing 10 is housed in series. Therefore, since the steam trap 1 of the present embodiment does not have a portion protruding outward from the main body 2, it is possible to prevent the steam trap from becoming larger and to simplify the structure as compared with the conventional steam trap. Further, since the condensed water W generated by the heat radiation of the steam main transport pipe 110 can be quickly discharged to the outside of the steam transport system, the leakage of steam V passing through the steam main transport pipe 110 can be reduced and supplied to the heating device 102. The steam transfer efficiency can be increased.
 図7は、本発明のスチームトラップの流出抑制オリフィスの他の実施形態を示す。
本実施形態の流出抑制オリフィス17は、前記実施形態の流出抑制オリフィス7における1本の柱状孔7Cに変えて2本の柱状孔17C、17Cを設けたものである。この2本の柱状孔17C、17Cは、各柱状孔17C、17Cの面積の合計を1本の柱状孔7Cの面積と同一としたものである。これにより2本の柱状孔17C、17Cは合計で式(1)のL≧A/Bをみたすようにしている。その他の構成である凸部17Bと柱状孔7Cと凹部17Dは、前記実施形態の流出抑制オリフィス7と同一に形成されている。
図2の実施形態の流出抑制オリフィス17によっても、前記実施形態の流出抑制オリフィス7の作用効果と同一の作用効果が発揮されて、蒸気Vの漏洩を少なくして蒸気搬送効率を上げることができる。
 なお、オリフィスの柱状孔の設定数は、図2の実施形態のように1つの場合と、図7の実施形態のように2つの場合とを説明したが、さらには、オリフィスの柱状孔の設定数は、3つ以上であっても良い。
FIG. 7 shows another embodiment of the outflow control orifice of the steam trap of the present invention.
The outflow suppression orifice 17 of the present embodiment is provided with two columnar holes 17C and 17C instead of the one columnar hole 7C in the outflow suppression orifice 7 of the above embodiment. The two columnar holes 17C and 17C have the same total area of the columnar holes 17C and 17C as the area of one columnar hole 7C. As a result, the two columnar holes 17C and 17C satisfy L ≧ A / B in the formula (1) in total. The convex portion 17B, the columnar hole 7C, and the concave portion 17D, which have other configurations, are formed in the same manner as the outflow suppression orifice 7 of the embodiment.
The outflow suppression orifice 17 of the embodiment of FIG. 2 also exerts the same effect as that of the outflow suppression orifice 7 of the embodiment, and can reduce the leakage of steam V and improve the steam transfer efficiency. ..
Although the number of columnar holes of the orifice to be set is one as in the embodiment of FIG. 2 and two cases as in the embodiment of FIG. 7, further, the columnar holes of the orifice are set. The number may be 3 or more.
 本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。
 例えば、図示の実施形態では、第1流出抑制オリフィス7と第2流出抑制オリフィス9のような2つの流出抑制オリフィスが、本体部2内に直列に配置されているが、これに限らず、1個もしくは3個以上の流出抑制オリフィスを直列に設けても良い。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of claims.
For example, in the illustrated embodiment, two outflow suppression orifices such as the first outflow suppression orifice 7 and the second outflow suppression orifice 9 are arranged in series in the main body 2, but the present invention is not limited to this. One or three or more outflow suppression orifices may be provided in series.
1 スチームトラップ
2 本体部
3 内部押えネジ部材
4 スプリングワッシャ
5 平ワッシャー
6 追い越し抑制オリフィス
7 第1流出抑制オリフィス
8 スペーサー
9 第2流出抑制オリフィス
10 パッキン
11 ドレン取入部
12 ドレン排出部
17 流出抑制オリフィス
100 蒸気搬送設備
110 蒸気主搬送管(搬送管の例)
101 蒸気ボイラー(蒸気発生源の例)
102 加熱対象としての加熱機器(蒸気供給対象の例)
111 第1ユニオン
112 第2ユニオン
1 Steam trap 2 Main body 3 Internal retainer screw member 4 Spring washer 5 Flat washer 6 Overtaking suppression orifice 7 First outflow suppression orifice 8 Spacer 9 Second outflow suppression orifice 10 Packing 11 Drain intake part 12 Drain discharge part 17 Outflow suppression orifice 100 Steam transfer equipment 110 Steam main transfer pipe (example of transfer pipe)
101 Steam boiler (example of steam source)
102 Heating equipment as a heating target (example of steam supply target)
111 1st Union 112 2nd Union

Claims (4)

  1.  蒸気発生源からの蒸気を蒸気供給対象に搬送する搬送管の途中に配置されるスチームトラップであって、
     チューブ状の本体部と、
     前記本体部内に配置されて、前記蒸気と、前記搬送管の放熱により発生する凝縮水とを通すための柱状孔を有するオリフィスと、を備え、
     前記柱状孔の軸方向の長さLは、以下の式(1)で定義される

     L≧A/B・・・式(1)

    L=前記柱状孔の軸方向の長さ(mm)
    A=前記柱状孔の径(mm)
    B=想定最小負荷率(%)

     ここで、前記柱状孔の径Aは、前記スチームトラップが設置される前記搬送管の設置部位の前後の差圧により排出される前記凝縮水の量が、必要最大排出量と等しくなるように設計された径、
     想定最小負荷率Bは、前記スチームトラップが設置される前記搬送管の設置部位の前後の差圧により排出される前記凝縮水の量の、加熱負荷変動等により想定される、最小負荷の割合である[想定最小負荷(kg/h)/想定最大負荷(kg/h)]

    ことを特徴とするスチームトラップ。
    A steam trap placed in the middle of a transport pipe that transports steam from a steam source to a steam supply target.
    Tube-shaped body and
    An orifice arranged in the main body portion and having a columnar hole for passing the steam and condensed water generated by heat dissipation of the transport pipe is provided.
    The axial length L of the columnar hole is defined by the following equation (1).

    L ≧ A / B ・ ・ ・ Equation (1)

    L = Axial length (mm) of the columnar hole
    A = Diameter of the columnar hole (mm)
    B = assumed minimum load factor (%)

    Here, the diameter A of the columnar hole is designed so that the amount of the condensed water discharged due to the differential pressure before and after the installation portion of the transport pipe in which the steam trap is installed is equal to the required maximum discharge amount. Diameter,
    The assumed minimum load factor B is the ratio of the minimum load assumed due to the fluctuation of the heating load, etc., of the amount of the condensed water discharged due to the differential pressure before and after the installation site of the transport pipe in which the steam trap is installed. Yes [Assumed minimum load (kg / h) / Assumed maximum load (kg / h)]

    A steam trap that features that.
  2.  1つまたは複数の前記オリフィスが、前記本体部内に配置されていることを特徴とする請求項1に記載のスチームトラップ。 The steam trap according to claim 1, wherein one or more of the orifices are arranged in the main body portion.
  3.  複数の前記オリフィスが、前記本体部内に直列に配置されており、前記複数の前記オリフィスに対して、前記本体部内の前記蒸気の流れる方向の上流側には、前記蒸気の流れが前記凝縮水の流れを追い越す現象を抑制するための追い越し抑制オリフィスが配置されていることを特徴とする請求項1に記載のスチームトラップ。 A plurality of the orifices are arranged in series in the main body portion, and the steam flow is the condensed water on the upstream side in the main body portion in the direction in which the steam flows with respect to the plurality of orifices. The steam trap according to claim 1, wherein an overtaking suppression orifice for suppressing a flow overtaking phenomenon is arranged.
  4.  1つの前記オリフィスには、前記本体部の軸方向と平行になるように複数の前記柱状孔が設けられていることを特徴とする請求項1~3のいずれか1項に記載のスチームトラップ。 The steam trap according to any one of claims 1 to 3, wherein the one orifice is provided with a plurality of columnar holes so as to be parallel to the axial direction of the main body.
PCT/JP2021/015294 2020-04-14 2021-04-13 Steam trap WO2021210572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-072307 2020-04-14
JP2020072307A JP6886156B1 (en) 2020-04-14 2020-04-14 steam trap

Publications (1)

Publication Number Publication Date
WO2021210572A1 true WO2021210572A1 (en) 2021-10-21

Family

ID=76310179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015294 WO2021210572A1 (en) 2020-04-14 2021-04-13 Steam trap

Country Status (2)

Country Link
JP (1) JP6886156B1 (en)
WO (1) WO2021210572A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090044868A1 (en) * 2007-08-14 2009-02-19 Ying Chuan Chiang Steam trap with capillary action based blocking arrangement
JP2016223461A (en) * 2015-05-27 2016-12-28 命得 金城 Steam trap
JP6523545B1 (en) * 2018-12-26 2019-06-05 Susテクノワークス株式会社 Fluid discharge device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090044868A1 (en) * 2007-08-14 2009-02-19 Ying Chuan Chiang Steam trap with capillary action based blocking arrangement
JP2016223461A (en) * 2015-05-27 2016-12-28 命得 金城 Steam trap
JP6523545B1 (en) * 2018-12-26 2019-06-05 Susテクノワークス株式会社 Fluid discharge device

Also Published As

Publication number Publication date
JP2021169830A (en) 2021-10-28
JP6886156B1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US6889754B2 (en) Phase control in the capillary evaporators
JP3115294B2 (en) Exhaust heat recovery boiler and hot banking release method
US9593598B2 (en) Steam conditioning system
JP2009257200A (en) Fuel supplying device
US20090158762A1 (en) Refrigerant control of a heat-recovery chiller
WO2021210572A1 (en) Steam trap
JP6390225B2 (en) Cooling system and electronic device
US8528358B2 (en) Refrigerant vapor injection for distribution improvement in parallel flow heat exchanger manifolds
JP7261018B2 (en) steam heat exchange system
CN110998801A (en) Fluid supply device and fluid supply method
FI120557B (en) Heat Exchanger Unit for recovering heat from a hot gas stream
JP2009150625A (en) Steam generation system
JP4644631B2 (en) Absorption heat pump
KR101700753B1 (en) Steam generator and nuclear power plant having the same
JP6075016B2 (en) Boiler system
JP2004085124A (en) Desuperheater
US6817210B1 (en) Absorptive high temperature desorber having mechanically narrow width of combustion area and absorption chiller-heater using the same
KR200433070Y1 (en) Hot water generating apparatus using heat pump
US20240175639A1 (en) Heat pipe unit and waste heat recovery boiler including same
KR101383859B1 (en) Two drum type marine boiler
JP7390185B2 (en) Vacuum water heater
JP7187942B2 (en) Rankine cycle system
KR102495908B1 (en) Ammonia solution vaporizer
JP4230398B2 (en) Exhaust gas temperature reduction device and exhaust gas temperature reduction method using hot water
JP2009115363A (en) Vapor generating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788107

Country of ref document: EP

Kind code of ref document: A1