WO2021210251A1 - Road condition identification device and vehicle system - Google Patents

Road condition identification device and vehicle system Download PDF

Info

Publication number
WO2021210251A1
WO2021210251A1 PCT/JP2021/004953 JP2021004953W WO2021210251A1 WO 2021210251 A1 WO2021210251 A1 WO 2021210251A1 JP 2021004953 W JP2021004953 W JP 2021004953W WO 2021210251 A1 WO2021210251 A1 WO 2021210251A1
Authority
WO
WIPO (PCT)
Prior art keywords
road
damage
information
vehicle
road condition
Prior art date
Application number
PCT/JP2021/004953
Other languages
French (fr)
Japanese (ja)
Inventor
其賢 全
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021210251A1 publication Critical patent/WO2021210251A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map

Definitions

  • the present invention relates to a technique for identifying a road condition including a road surface damage condition.
  • the road surface may be damaged due to aging roads, larger vehicles, and a significant increase in traffic volume.
  • road surface damage such as a hole in the road surface and lane disappearance in which the white line on the road surface disappears have occurred.
  • Road surface damage can cause traffic accidents and hinder traffic.
  • driving support systems and autonomous driving it is important to identify road conditions in a timely manner and take measures such as repairs based on the identified conditions.
  • Patent Document 1 in order to identify cracks, widths, and their positions on a road, a crack detection camera that projects to the front of the upper part of the vehicle and is arranged symmetrically and images the road surface from above is provided. It is provided.
  • Patent Document 2 discloses a telematics system that detects a vehicle traveling on a road and damage to the road surface and notifies the road administrator of the damage to the road surface.
  • Patent Document 3 describes that the acceleration applied in the vertical direction of the vehicle is sequentially acquired, and based on this acceleration, it is determined whether or not the vibration due to the unevenness of the road surface is generated.
  • the road condition changes depending on the installation position, terrain, and environment. For example, on a road provided on a swelling terrain and a road on a flat surface, the same unevenness may be damaged. Furthermore, the criteria for judging whether or not the damage is caused will change depending on the state of the gradient. In addition, on a road with a center line, if no line-shaped object is confirmed on the road surface, it is judged that the lane has disappeared. On the contrary, on a road without a white line, if something like a line is detected, there is a possibility of damage. Furthermore, the road bump may be judged as an unnecessary unevenness.
  • Patent Documents 1 to 3 considers what the road should look like. For this reason, each of these patent documents has a problem that a erroneous detection in which a portion that is not originally damaged is damaged and erroneously detected occurs, or conversely, a detection failure in which the damage cannot be detected occurs.
  • an object of the present invention is to provide a technique for suppressing false detection and undetectability and more accurately grasping the road condition.
  • the present invention identifies the road condition for each section of the road by using a high-precision map composed of reference peripheral road condition information for each road element constituting the road. do.
  • each section of the road is composed of reference peripheral road condition information for each road element constituting the road.
  • a storage unit that stores a high-precision map to be used, a data reception unit that receives the surrounding road conditions detected as the vehicle travels from a sensor, a locator estimation unit that estimates the position of the vehicle, and a road damage determination.
  • the road damage determination unit has a unit, and the road damage determination unit has a unit for each section.
  • the present invention also includes a vehicle system using the above-mentioned road condition identification device and a method of executing the vehicle system with the road condition identification device and the vehicle system.
  • the road condition can be confirmed more accurately by using a vehicle. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
  • FIG. 1 shows the road damage management system 1 used in the first embodiment.
  • the road damage management system 1 includes a vehicle 10 which is a kind of traveling device having a traveling function, a network 20, and a damage information management server 30.
  • the vehicle 10 is connected to the damage information management server 30 via the network 20.
  • the vehicle 10 has an electronic control unit (ECU) 100, an external environment recognition sensor 110, a communication unit 120, and a vehicle attitude sensor 130.
  • ECU electronice control unit
  • the external environment recognition sensor 110 and the vehicle attitude sensor 130 can be collectively treated as sensors.
  • the electronic control unit 100 is used as a road condition identification device.
  • the electronic control unit 100 includes a road damage determination unit 1000 for determining the presence or absence of road damage and a storage unit 1001. Further, the high-precision map 101 is stored in the storage unit 1001. The high-precision map 101 is preferably transmitted from the damage information management server 30 and stored in the storage unit 1001, but is not limited to this mode. Further, the storage unit 1001 may be provided outside the electronic control unit 100.
  • the details of the electronic control unit 100 and its processing will be described later with reference to the drawings shown in FIGS. 2 and later.
  • the high-precision map 101 shows reference road condition information for each road element constituting the road for each section of the road.
  • the section in the present specification may be any unit position information.
  • the high-precision map 101 can be realized by vector data including a road shape, a lane shape, a pedestrian crossing, a stop line, a traffic sign, a signboard, and the like as an example. An example of this high-precision map 101 is shown in FIG.
  • the high-precision map 101 of this embodiment is composed of road identification information (#), section information, road surface information, lane information, stop line information, and display information.
  • the road identification information only needs to be able to identify the road such as the road number (National Highway No. 1).
  • the section information is information for specifying a section that divides a road, and it is sufficient if the position can be specified.
  • longitude and latitude information is used.
  • road surface information, lane information, stop line information, and display information are used as reference peripheral road conditions for each road element.
  • the road surface information includes a gradient (unit: per mille), the presence / absence of a road bump as a transmission, the presence of repair / foreign matter, the road surface shape, and the lane shape.
  • the lane information indicates the presence or absence of a lane and its type.
  • the stop line information indicates the presence or absence of a stop line.
  • the displayed information includes a traffic sign indicating the type and presence / absence of the traffic sign, and a signboard indicating the type of the signboard and the presence / absence thereof.
  • a traffic sign indicating the type and presence / absence of the traffic sign
  • a signboard indicating the type of the signboard and the presence / absence thereof.
  • the high-precision map 101 can be realized as vector data, but in FIG. 5, the contents are shown in characters for understanding. However, the high-precision map 101 may be realized as character data as shown in FIG. Further, the high-precision map 101 may be realized as sensing data such as image data. In this case, the comparison with the high-precision map 101 is performed based on the road condition (image data) acquired from the external environment recognition sensor 110. Further, the high-precision map 101 may be provided for each traveling direction of the vehicle (for example, up and down lines).
  • the electronic control unit 100 includes a road damage determination unit 1000 that determines the presence or absence of road surface damage, a storage unit 1001 that stores a high-precision map 101, a locator estimation unit 1002 that estimates the position of the vehicle 10, and a high-precision map 101.
  • Map data acquisition unit 1003 that acquires reference peripheral road information according to the position of the vehicle from, external environment recognition sensor data reception unit 1004, damage information creation unit 1005 that creates damage information (V_RDI) 105, and damage information 105 It includes a transmission possibility determination unit 1006 for determining whether or not transmission to the damage information management server 30 is possible, a transmission unit 1007 for transmitting damage information 105 to the network 20, and a reception unit 1008 for receiving information from the network 20.
  • the road damage determination unit 1000 compares the reference peripheral road information with the peripheral road condition information based on the peripheral road condition acquired via the external environment recognition sensor data reception unit 1004, and determines the presence or absence of road surface damage.
  • the external environment recognition sensor data receiving unit 1004 may receive the vehicle posture of the vehicle 10 acquired from the vehicle posture sensor 130. In this case, the surrounding road condition information is also created by using the vehicle posture.
  • this example will be described in Example 2. Then, the damage information creation unit 1005 creates the damage information 105 when the road damage determination unit 1000 detects the road surface damage.
  • the damage information 105 of this embodiment is composed of road identification information (#), section information, transmission availability flag, damage, road damage type, surrounding road conditions, and normal return mileage.
  • the road identification information (#) and the section information are the same as those of the high-precision map 101.
  • the surrounding road condition is information detected by the external environment recognition sensor 110 and the vehicle attitude sensor 130. Then, the peripheral road condition information based on the peripheral road condition is compared with the high-precision map 101. That is, the surrounding road condition information is composed of the road surface information, the lane information, the stop line information, and the display information of the high-precision map 101.
  • the transmission availability determination unit 1006 is used. If the road damage determination unit 1000 does not detect the road surface damage within a predetermined fixed time after the vehicle 10 starts traveling, the transmission possibility determination unit 1006 permits the transmission of the damage information 105. That is, when the road damage determination unit 1000 does not detect the road surface damage, it is determined that there is no failure in the component related to the road damage determination of the vehicle 10.
  • the transmission availability determination unit 1006 may determine whether transmission is possible using the weather information received via the communication unit 120. Further, the vehicle 10 may omit the identification of the road condition for the section where the road surface damage is confirmed.
  • the hardware of the electronic control unit 100 is composed of a storage medium 1001-1, an MCU (MicroControllerUnit) 1002-1, an input interface 1004-1, an output interface 1007-1, and a bus 1010-1.
  • the storage medium 1001-1 corresponds to the storage unit 1001 and can be realized by a so-called memory.
  • the MCU 1002-1 executes the functions of the road damage determination unit 1000, the locator estimation unit 1002, the map data acquisition unit 1003, the damage information creation unit 1005, and the transmission availability determination unit 1006.
  • the MCU 1002-1 includes the CPU 1002-2 and the memory 1002-3, and the CPU 1002-2 executes various operations according to the program of the memory 1002-3.
  • the MCU1002-1 may be capable of executing various operations by using FPGA (field-programmable gate array) technology.
  • the input interface 1004-1 corresponds to the external environment recognition sensor data receiving unit 1004 and the receiving unit 1008, and receives information from an external device such as the vehicle attitude sensor 130.
  • the output interface 1007-1 corresponds to the transmission unit 1007 and transmits information to an external device such as the communication unit 120. Then, the bus 1010-1 intervenes in the transmission and reception of information of each configuration in the electronic control unit 100.
  • step S100 the locator estimation unit 1002 estimates the position of the vehicle 10.
  • the locator estimation unit 1002 needs to have an accuracy corresponding to the section information as the position. Therefore, it is preferable to estimate using the results detected by the GPS receiver and the gyro. However, the detection result of either the GPS receiver or the gyro may be used.
  • step S101 the map data acquisition unit 1003 acquires the reference peripheral road condition information around the locator of the traveling device from the high-precision map 101 stored in the storage unit 1001.
  • the map data acquisition unit 1003 specifies the section information corresponding to the position acquired in step S100 from the high-precision map 101.
  • the map data acquisition unit 1003 specifies the record of the section information of the high-precision map 101 including the position estimated by S100 as the reference peripheral road condition information.
  • the external environment recognition sensor data receiving unit 1004 receives the surrounding road condition from the external environment recognition sensor 110.
  • the external environment recognition sensor 110 can be realized by a camera, a radar, an ultrasonic sensor, or the like. These are information indicating the condition of the road. For example, when a camera is used as the external environment recognition sensor 110, image data is acquired as surrounding road conditions.
  • step S103 the road damage determination unit 1000 creates peripheral road condition information from the peripheral road condition acquired in step S102. This process is performed to compare with the standard surrounding road conditions constituting the high-precision map 101. Therefore, the road damage determination unit 1000 creates data of the same type as the high-precision map 101. In this embodiment, the road damage determination unit 1000 creates vector data including road surface information, lane information, stop line information, and display information from the surrounding road conditions.
  • the road damage determination unit 1000 compares the standard surrounding road condition information acquired in step S101 with the created surrounding road condition information. Based on the comparison result, the road damage determination unit 1000 determines whether or not there is road damage. In the comparison process here, it is desirable that the road damage determination unit 1000 specifies the reference peripheral road condition information and the peripheral road condition information to be compared by using the road identification information and the section information.
  • the road damage determination unit 1000 may determine that there is road damage if there is a difference within a certain range in the comparison results. Further, in this embodiment, vector data is used as the surrounding road condition information, but the present invention is not limited to this format. Further, sensing data such as image data may be used as the reference surrounding road condition information. In this case, it is desirable that the road damage determination unit 1000 omits the creation of the surrounding road condition information and compares the received peripheral road condition with the standard peripheral road condition information.
  • the road damage determination unit 1000 identifies the road damage type based on the result of comparison when there is damage. For example, the road damage determination unit 1000 determines that lane mourning has disappeared when there is no lane in the surrounding road condition information and there is lane information in the reference peripheral road condition information. Further, the road damage determination unit 1000 determines that there is no damage when the transmission road bump of the reference peripheral road condition information is ⁇ , although the road surface information of the peripheral road condition information has unevenness.
  • the road damage determination unit 1000 may collectively determine the presence or absence of damage and identify the road damage type.
  • step S104 if there is no damage as a result of step S103, the road damage determination unit 1000 returns to step S100 and executes the processing of the next section. If there is damage, the road damage determination unit 1000 proceeds to step S105.
  • step S105 the transmission availability determination unit 1006 determines whether to transmit the damage information 105 created in step S106 or later to the damage information management server 30.
  • the transmission availability determination unit 1006 determines using the transmission availability flag of the damage information 105.
  • the transmission enable / disable flag is indicated by "possible” and “no", but it may be possible to determine whether or not the flag is recorded (ON, OFF).
  • the recording of the transmission enable / disable flag is executed at the time of starting the vehicle 10, as will be described later with reference to FIG. Further, in this embodiment, a transmission enable / disable flag is provided for each record of damage information (peripheral road condition information), but it may be managed separately as one piece of information.
  • step S106 If transmission is possible (ON), the process proceeds to step S106. If the transmission is rejected (OFF), the process is terminated, and the process returns to step S101 in order to execute the process in the next section of this flowchart.
  • step S106 the road damage determination unit 1000 temporarily stores the surrounding road condition received in step S102 in the storage unit 1001 after being detected by the external environment recognition sensor 110. Note that this storage may be performed on another storage medium.
  • step S107 the road damage determination unit 1000 determines whether or not the road damage detection has returned to normal after determining that there is damage. Specifically, when the road damage determination unit 1000 determines that the damage has disappeared after determining that there is damage, it determines that the vehicle has returned to normal. If the road damage determination unit 1000 does not determine that there is damage for a certain period of time or longer, it may determine that the road damage has returned to normal.
  • the road damage determination unit 1000 identifies a position where it is determined that there is damage and a position where it is determined that the damage has disappeared. This can be achieved by determining the position where the damage has disappeared by periodically repeating the determination of the presence or absence of damage in step S104.
  • step S109 If it returns to normal (Yes), the process proceeds to step S109. If the normal recovery has not been performed (No), the process proceeds to step S108.
  • step S108 the road damage determination unit 1000 determines whether the surrounding road condition detected by the external environment recognition sensor 110 stored in step S106 exceeds the predetermined data size. As a result, if the data size is exceeded, the process returns to step S107. If the data size is exceeded, the process returns to step S106.
  • step S109 the damage information creation unit 1005 creates data to be transmitted to the damage information management server 30. That is, the damage information creation unit 1005 creates the damage information 105.
  • the damage information 105 which is shown in FIG. 6 as described above, is created as follows.
  • the damage information creation unit 1005 receives the road identification information, section information, damage presence, and road damage type from the road damage determination unit 1000. In addition, the damage information creation unit 1005 receives the surrounding road condition acquired in step S102 by the external environment recognition sensor data reception unit 1004. Further, the damage information creation unit 1005 may receive the surrounding road condition from the road damage determination unit 1000 instead of the surrounding road condition.
  • the damage information creation unit 1005 receives the position where the damage is detected and the position where the damage disappears from the road damage determination unit 1000. Then, the damage information creation unit 1005 calculates the normal return mileage from these.
  • the damage information creation unit 1005 creates the damage information 105 by merging each of these information. As described above, the transmission enable / disable flag is recorded at the stage of this step S109.
  • the transmission unit 1007 transmits the damage information 105 created in step S109 to the damage information management server 30 via the network 20 using the communication unit 120.
  • the transmission unit 1007 may transmit a part of the damage information 105 to the damage information management server 30. For example, transmission of the transmission enable / disable flag may be omitted.
  • the process shown in FIG. 3 above is repeatedly executed for each section. This makes it possible to grasp the damage status of each section.
  • the damage information 105 is created in step S109. That is, the damage information creation unit 1005 creates the damage information 105 when the transmission is possible as a result of the transmission possibility determination in step S105. As a result, it is possible to prevent the creation of useless damage information 105.
  • the damage information creation unit 1005 may create damage information before S105.
  • step S1000 the transmission enable / disable determination unit 1006 sets the transmission enable / disable flag as transmission impossible (OFF) as an initial value. As shown in FIG. 6, when the transmission permission / rejection flag is set for each section of the damage information 105, the transmission permission / rejection determination unit 1006 is set in the first section.
  • step S1001 the transmission availability determination unit 1006 uses a speedometer and an OBD function (On-board diagnostics) to determine whether the vehicle 10 has started running, that is, whether it is above a certain company rule. .. As a result, when the vehicle 10 starts traveling, the process proceeds to step S1002.
  • OBD function On-board diagnostics
  • step S1002 the transmission availability determination unit 1006 sets the normality determination timer to 0 as the initial value. Then, the normality determination timer starts to start, and the elapsed time is measured.
  • step S1003 the transmission availability determination unit 1006 executes the same process as in step S104. That is, the transmission availability determination unit 1006 determines the presence or absence of damage. As a result, if there is damage, the process returns to step S1002, and if there is no damage, the process proceeds to step S1004.
  • the transmission availability determination unit 1006 may receive the determination result of the road damage determination unit 1000 in step S104 and use it.
  • step S1004 the transmission availability determination unit 1006 confirms whether the elapsed time of the normality determination timer has passed a certain time (T). After a certain period of time, move to step S1005. If a certain time (T) has not passed, the process returns to step S1003.
  • step S1005 the transmission permission / rejection determination unit 1006 sets the transmission permission / rejection flag to transmission permission (ON).
  • the damage information 105 can be transmitted when a predetermined fixed time (T) has elapsed.
  • T a predetermined fixed time
  • the reason for this is as follows. At the start of driving, the possibility of road damage is low, so if damage is detected during this period, there is a high possibility of an error. On the contrary, if there is no damage within a certain period of time (t), it is likely to be accurate and other, so transmission is possible. Therefore, the fixed time (t) does not have to be from the start of traveling. For example, it may be a fixed period on a high-standard road such as an expressway.
  • Example 2 of the present invention will be described.
  • the presence or absence of road surface damage is determined by using the detection result of the vehicle posture sensor 130 that detects the posture / behavior of the vehicle that changes as the vehicle travels in the vehicle 10 of the first embodiment.
  • the configuration, flowchart, and various information of the second embodiment are the same as those of the first embodiment. Therefore, the difference from the first embodiment will be described below.
  • the external environment recognition sensor data receiving unit 1004 receives the posture / behavior of the vehicle 10 from the vehicle posture sensor 130.
  • the external environment recognition sensor data receiving unit 1004 receives, for example, the vertical vibration of the vehicle 10 as the posture / behavior of the vehicle.
  • the road damage determination unit 1000 creates peripheral road condition information from the posture / behavior of the vehicle 10.
  • the road damage determination unit 1000 creates, for example, information indicating the presence / absence of a transmission road bump and the presence / absence of repair / foreign matter as peripheral road condition information.
  • the road damage determination unit 1000 determines the presence / absence of the transmission load bump and the presence / absence of repair / foreign matter according to the magnitude of the amplitude in the vibration. Further, the road damage determination unit 1000 may make a determination using the frequency of vibration and the period thereof.
  • the road damage determination unit 1000 compares the corresponding standard surrounding road condition information with the surrounding road condition information. For example, the road damage determination unit 1000 determines that there is damage when it is determined that the transmission road bump is present in the above process, and when it is not in the reference surrounding road condition information. In this way, as a result of comparison, if the respective information does not correspond, the road damage determination unit 1000 determines that there is damage. Further, the road damage determination unit 1000 may determine the presence or absence of a slope.
  • the road damage determination unit 1000 may determine the damage based on the posture / behavior instead of the above-mentioned comparison. That is, the road damage determination unit 1000 determines that there is damage when the amplitude and frequency of the vibration in the vertical direction satisfy a predetermined condition set in advance.
  • the processing after step S104 is the same as that of the first embodiment.
  • the determination of the second embodiment and the determination of the first embodiment may be shared and executed according to the damage type. Further, either process may be performed.
  • 10 ... Vehicle, 20 ... Network, 30 ... Damage information management server, 100 ... Electronic control unit, 110 ... External environment recognition sensor, 120 ... Communication unit, 130 ... Vehicle attitude sensor, 1000 ... Road damage judgment unit, 1001 ... Storage unit , 1002 ... Locator estimation unit, 1003 ... Map data acquisition unit, 1004 ... External environment recognition sensor data reception unit, 1005 ... Damage information creation unit, 1006 ... Transmission availability judgment unit, 1007 ... Transmission unit, 1008 ... Receiver unit

Abstract

The purpose of the present invention is to provide a technique that enables detection of conventionally undetectable road damage. According to the present invention, a vehicle 10 is provided with an electronic control unit (ECU) 100, an external environment recognition sensor 110, and a vehicle posture sensor 130. A high-precision map 101 is stored in a storage unit 1001 of the electronic control unit 100. In a road damage determination unit 1000, surrounding road condition information that is based on information acquired from the sensors is matched against reference surrounding road condition information acquired from the high-precision map 101, and it is determined whether there is road surface damage. Then, using the result of the determination, a damage information creation unit 1005 creates damage information (V_RDI).

Description

道路状況特定装置および車両システムRoad condition identification device and vehicle system
 本発明は、路面の損傷状況を含む道路状況を特定するための技術に関する。 The present invention relates to a technique for identifying a road condition including a road surface damage condition.
 現在、道路の老朽化、車両の大型化および交通量の大幅な増加により、路面が損傷することがある。例えば、路面に穴が開くなどの路面破損や、路面上の白線が消える車線消失が生じている。路面の損傷は、交通事故の原因や交通に支障を及ぼす原因になる。特に、運転支援システムや自動運転においては、道路状況をタイムリーに特定し、特定した状況に基づいて、修繕などの対処を行うことが重要である。 Currently, the road surface may be damaged due to aging roads, larger vehicles, and a significant increase in traffic volume. For example, road surface damage such as a hole in the road surface and lane disappearance in which the white line on the road surface disappears have occurred. Road surface damage can cause traffic accidents and hinder traffic. In particular, in driving support systems and autonomous driving, it is important to identify road conditions in a timely manner and take measures such as repairs based on the identified conditions.
 道路に車両を走行させ、当該車両のセンサー類を用いて、道路状況を特定する技術が提案されている。例えば、特許文献1では、道路のひび割れ、幅員、それらの位置を特定するために、車両の上部前方に張り出され左右対称的位置にそれぞれ配置し、上方から路面を撮像するひび割れ検出用カメラを設けている。 A technology has been proposed in which a vehicle is driven on a road and the sensors of the vehicle are used to identify the road condition. For example, in Patent Document 1, in order to identify cracks, widths, and their positions on a road, a crack detection camera that projects to the front of the upper part of the vehicle and is arranged symmetrically and images the road surface from above is provided. It is provided.
 また、特許文献2には、道路を走行する車両、路面の損傷を検出し、道路管理者に路面の損傷を通報するテレマティクスシステムが開示されている。 Further, Patent Document 2 discloses a telematics system that detects a vehicle traveling on a road and damage to the road surface and notifies the road administrator of the damage to the road surface.
 さらに、特許文献3には、車両の上下方向に加わる加速度を逐次取得し、この加速度に基づいて、路面の凹凸による振動が発生しているかを判断することが記載されている。 Further, Patent Document 3 describes that the acceleration applied in the vertical direction of the vehicle is sequentially acquired, and based on this acceleration, it is determined whether or not the vibration due to the unevenness of the road surface is generated.
特開平08-184422号公報Japanese Unexamined Patent Publication No. 08-184422 特開2016-95184号公報Japanese Unexamined Patent Publication No. 2016-95184 特開2018-71318号公報Japanese Unexamined Patent Publication No. 2018-71318
 ここで、道路状況は、その設置位置、地形、環境により道路のあるべき姿が変わってくる。例えば、うねりの多い地形に設けられた道路と平坦部の道路では、同じ凹凸でも損傷であるかが変わってくる。さらに、勾配の様子によっても損傷であるかの判断基準が変わってくる。また、センターラインがある道路では、路面にライン状のものが確認されないと、車線消失と判断される。逆に、白線がない道路では何らかのライン状のものを検知した場合に、損傷の可能性がある。またさらに、ロードバンプを不要な凹凸として、判断されることもあり得る。 Here, the road condition changes depending on the installation position, terrain, and environment. For example, on a road provided on a swelling terrain and a road on a flat surface, the same unevenness may be damaged. Furthermore, the criteria for judging whether or not the damage is caused will change depending on the state of the gradient. In addition, on a road with a center line, if no line-shaped object is confirmed on the road surface, it is judged that the lane has disappeared. On the contrary, on a road without a white line, if something like a line is detected, there is a possibility of damage. Furthermore, the road bump may be judged as an unnecessary unevenness.
 このように、道路状況の特定には、道路のあるべき姿、つまり、判断基準となる情報を把握しておくことが必要である。 In this way, in order to identify the road condition, it is necessary to grasp the ideal shape of the road, that is, the information that serves as the judgment standard.
 しかしながら、特許文献1~3のいずれでも、道路のあるべき姿については考慮されていない。このため、これら各特許文献では、本来損傷でない箇所を損傷して誤って検知してしまう誤検知や逆に損傷を検知できない検知不可が発生してしまう、との課題がある。 However, neither of Patent Documents 1 to 3 considers what the road should look like. For this reason, each of these patent documents has a problem that a erroneous detection in which a portion that is not originally damaged is damaged and erroneously detected occurs, or conversely, a detection failure in which the damage cannot be detected occurs.
 そこで、本発明は、誤検知や検知不可を抑止し、より正確な道路状況の把握する技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique for suppressing false detection and undetectability and more accurately grasping the road condition.
 上記の目的を達成するために、本発明は、各道路の区間ごとに、道路を構成する道路要素ごとの基準周辺道路状況情報で構成される高精度地図を用いて、道路状況の特定を実行する。 In order to achieve the above object, the present invention identifies the road condition for each section of the road by using a high-precision map composed of reference peripheral road condition information for each road element constituting the road. do.
 より詳細には、道路を走行する車両に設置され、前記道路の道路状況を特定する道路状況特定装置において、各道路の区間ごとに、道路を構成する道路要素ごとの基準周辺道路状況情報で構成される高精度地図を記憶する記憶部と、センサーから、前記車両の走行に伴い検知される周辺道路状況を受信するデータ受信部と、前記車両の位置を推定するロケータ推定部と、道路損傷判定部とを有し、前記道路損傷判定部は、前記区間ごとに、
(1)前記高精度地図から、推定された前記車両の位置に対応する基準周辺道路状況情報を特定し、(2)特定された前記基準周辺道路状況情報と、推定された前記車両の位置において検知された前記周辺道路状況に応じた周辺道路状況情報を比較し、(3)当該比較の結果に基づいて、前記道路の損傷を特定する道路状況特定装置である。
More specifically, in a road condition identification device installed on a vehicle traveling on a road and specifying the road condition of the road, each section of the road is composed of reference peripheral road condition information for each road element constituting the road. A storage unit that stores a high-precision map to be used, a data reception unit that receives the surrounding road conditions detected as the vehicle travels from a sensor, a locator estimation unit that estimates the position of the vehicle, and a road damage determination. The road damage determination unit has a unit, and the road damage determination unit has a unit for each section.
(1) From the high-precision map, the reference peripheral road condition information corresponding to the estimated position of the vehicle is specified, and (2) in the specified reference peripheral road condition information and the estimated position of the vehicle. It is a road condition specifying device that compares the detected peripheral road condition information according to the peripheral road condition, and (3) identifies the damage of the road based on the result of the comparison.
 本発明には、上記道路状況特定装置を用いた車両システムや、道路状況特定装置や車両システムで実行する方法も含まれる。 The present invention also includes a vehicle system using the above-mentioned road condition identification device and a method of executing the vehicle system with the road condition identification device and the vehicle system.
 本発明によれば、車両を用いて、道路の状況をより正確に確認することができる。前述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the road condition can be confirmed more accurately by using a vehicle. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
本発明の実施例における損傷管理システムのブロック図であるIt is a block diagram of the damage management system in the Example of this invention. 本発明の実施例における電子制御ユニットのブロック図である。It is a block diagram of the electronic control unit in the Example of this invention. 本発明の実施例における道路損傷判定処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the road damage determination processing in an Example of this invention. 本発明の実施例における送信可否フラグの作成(設定)およびその利用方法を示すフローチャートである。It is a flowchart which shows the creation (setting) of the transmission permission flag in the Example of this invention, and the usage method thereof. 本発明の実施例で用いられる高精度地図を示す図である。It is a figure which shows the high-precision map used in the Example of this invention. 本発明の実施例で用いられる損傷情報を示す図である。It is a figure which shows the damage information used in the Example of this invention. 本発明の実施例における電子制御ユニットのハードウエア構成図である。It is a hardware block diagram of the electronic control unit in the Example of this invention.
 以下、本発明の実施例を、図面を用いて説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.
 まず、実施例1について説明する。図1は、実施例1で用いられる道路損傷管理システム1を示す。道路損傷管理システム1は、走行機能を有する走行装置の一種である車両10と、ネットワーク20と、損傷情報管理サーバー30と、を備える。車両10は、ネットワーク20を介して損傷情報管理サーバー30に接続される。 First, Example 1 will be described. FIG. 1 shows the road damage management system 1 used in the first embodiment. The road damage management system 1 includes a vehicle 10 which is a kind of traveling device having a traveling function, a network 20, and a damage information management server 30. The vehicle 10 is connected to the damage information management server 30 via the network 20.
 車両10は、電子制御ユニット(ECU)100と、外界環境認識センサー110と、通信ユニット120と、車両姿勢センサー130を有する。なお、外界環境認識センサー110と車両姿勢センサー130は、まとめてセンサーとして扱うことも可能である。 The vehicle 10 has an electronic control unit (ECU) 100, an external environment recognition sensor 110, a communication unit 120, and a vehicle attitude sensor 130. The external environment recognition sensor 110 and the vehicle attitude sensor 130 can be collectively treated as sensors.
 電子制御ユニット100は、道路状況特定装置として用いられる。電子制御ユニット100は、道路損傷有無を判定する道路損傷判定部1000と、記憶部1001を備える。また、記憶部1001には、高精度地図101が記憶される。なお、高精度地図101は、損傷情報管理サーバー30から送信され、記憶部1001に記憶されることが望ましいが、この態様には限定されない。
また、記憶部1001は、電子制御ユニット100の外部に設けてもよい。
The electronic control unit 100 is used as a road condition identification device. The electronic control unit 100 includes a road damage determination unit 1000 for determining the presence or absence of road damage and a storage unit 1001. Further, the high-precision map 101 is stored in the storage unit 1001. The high-precision map 101 is preferably transmitted from the damage information management server 30 and stored in the storage unit 1001, but is not limited to this mode.
Further, the storage unit 1001 may be provided outside the electronic control unit 100.
 また、電子制御ユニット100は、外界環境認識センサー110から取得した周辺道路状況=カメラの画像情報や車両姿勢センサー130が取得した車両姿勢に基づく周辺道路状況情報!と、高精度地図101の内容を比較し、道路の損傷を特定する。そして、電子制御ユニット100は、道路の損傷を検知した場合、通信ユニット120を用いて、道路の損傷情報を、ネットワーク20を経由して損傷情報管理サーバー30へ送信する。なお、電子制御ユニット100およびこれらの処理の詳細は、図2以降の各図面を用いて、後述する。 In addition, the electronic control unit 100 has peripheral road conditions acquired from the external environment recognition sensor 110 = camera image information and peripheral road condition information based on the vehicle attitude acquired by the vehicle attitude sensor 130! And the contents of the high-precision map 101 are compared to identify the damage to the road. Then, when the electronic control unit 100 detects the damage to the road, the electronic control unit 100 transmits the damage information of the road to the damage information management server 30 via the network 20 by using the communication unit 120. The details of the electronic control unit 100 and its processing will be described later with reference to the drawings shown in FIGS. 2 and later.
 またさらに、ネットワーク20を介して損傷情報管理サーバー30と接続される車両10は、複数存在する。また、高精度地図101とは、各道路の区間ごとに、道路を構成する道路要素ごとの基準道路状況情報を示す。なお、本明細書での区間とは、任意の単位位置情報であればよい。さらに、高精度地図101は、その一例として、道路形状、車線形状、横断歩道、停止線、交通標識、看板などを含むベクトルデータで実現可能である。この高精度地図101の一例を図5に示す。本実施例の高精度地図101は、道路の識別情報(#)、区間情報、路面情報、車線情報、停止線情報および表示情報で構成される。ここで、道路の識別情報は、道路の番号(国道1号線)など道路を識別できればよい。また、区間情報は、道路を区切る区間を特定する情報であり、その位置が特定できればよい。本実施例では、経度、緯度の情報を用いる。また、本実施例では、道路要素ごとの基準周辺道路状況として、路面情報、車線情報、停止線情報および表示情報を用いる。ここで、路面情報には、勾配(単位:パーミル)、変速装置であるロードバンプの有無、補修/異物の存在、路面形状、車線形状が含まれる。さらに、車線情報は、車線の有無とその種類を示す。また、停止線情報は、停止線の有無を示す。また、表示情報には、交通標識の種類およびその有無を示す交通標識や看板の種類およびその有無を示す看板が含まれる。これら各項目は一例であり、これらに限定されないし、その一部を用いなくともよい。 Furthermore, there are a plurality of vehicles 10 connected to the damage information management server 30 via the network 20. Further, the high-precision map 101 shows reference road condition information for each road element constituting the road for each section of the road. The section in the present specification may be any unit position information. Further, the high-precision map 101 can be realized by vector data including a road shape, a lane shape, a pedestrian crossing, a stop line, a traffic sign, a signboard, and the like as an example. An example of this high-precision map 101 is shown in FIG. The high-precision map 101 of this embodiment is composed of road identification information (#), section information, road surface information, lane information, stop line information, and display information. Here, the road identification information only needs to be able to identify the road such as the road number (National Highway No. 1). Further, the section information is information for specifying a section that divides a road, and it is sufficient if the position can be specified. In this embodiment, longitude and latitude information is used. Further, in this embodiment, road surface information, lane information, stop line information, and display information are used as reference peripheral road conditions for each road element. Here, the road surface information includes a gradient (unit: per mille), the presence / absence of a road bump as a transmission, the presence of repair / foreign matter, the road surface shape, and the lane shape. Further, the lane information indicates the presence or absence of a lane and its type. The stop line information indicates the presence or absence of a stop line. In addition, the displayed information includes a traffic sign indicating the type and presence / absence of the traffic sign, and a signboard indicating the type of the signboard and the presence / absence thereof. Each of these items is an example, and the present invention is not limited to these items, and some of them may not be used.
 なお、上述のとおり、高精度地図101はベクトルデータとして実現できるが、図5では理解のためその内容を文字で示している。但し、高精度地図101を、図5に示すような文字データとして実現してもよい。さらに、高精度地図101を、画像データなどセンシングデータとして実現してもよい。この場合、高精度地図101との比較を、外界環境認識センサー110から取得した道路状況(画像データ)で実行する。さらに、高精度地図101は、車両の走行方向(例えば、上下線)ごとに、設けられてもよい。 As mentioned above, the high-precision map 101 can be realized as vector data, but in FIG. 5, the contents are shown in characters for understanding. However, the high-precision map 101 may be realized as character data as shown in FIG. Further, the high-precision map 101 may be realized as sensing data such as image data. In this case, the comparison with the high-precision map 101 is performed based on the road condition (image data) acquired from the external environment recognition sensor 110. Further, the high-precision map 101 may be provided for each traveling direction of the vehicle (for example, up and down lines).
 次に、図2を用いて、電子制御ユニット100の機能構成を説明する。電子制御ユニット100は、道路の路面損傷有無を判定する道路損傷判定部1000と、高精度地図101を格納する記憶部1001と、車両10の位置を推定するロケータ推定部1002と、高精度地図101から車両の位置に応じた基準周辺道路情報を取得する地図データ取得部1003と、外界環境認識センサーデータ受信部1004と、損傷情報(V_RDI)105を作成する損傷情報作成部1005と、損傷情報105の損傷情報管理サーバー30への送信可否を判定する送信可否判定部1006と、ネットワーク20へ損傷情報105を送信する送信部1007と、ネットワーク20から情報を受信する受信部1008と、を備える。 Next, the functional configuration of the electronic control unit 100 will be described with reference to FIG. The electronic control unit 100 includes a road damage determination unit 1000 that determines the presence or absence of road surface damage, a storage unit 1001 that stores a high-precision map 101, a locator estimation unit 1002 that estimates the position of the vehicle 10, and a high-precision map 101. Map data acquisition unit 1003 that acquires reference peripheral road information according to the position of the vehicle from, external environment recognition sensor data reception unit 1004, damage information creation unit 1005 that creates damage information (V_RDI) 105, and damage information 105 It includes a transmission possibility determination unit 1006 for determining whether or not transmission to the damage information management server 30 is possible, a transmission unit 1007 for transmitting damage information 105 to the network 20, and a reception unit 1008 for receiving information from the network 20.
 また、道路損傷判定部1000は、基準周辺道路情報を、外界環境認識センサーデータ受信部1004を介して取得した周辺道路状況に基づく、周辺道路状況情報と比較し、路面損傷の有無を判定する。なお、外界環境認識センサーデータ受信部1004は、車両姿勢センサー130から取得した車両10の車両姿勢を受信してもよい。この場合、周辺道路状況情報は、車両姿勢も用いて作成される。なお、この例については、実施例2で説明する。そして、損傷情報作成部1005は、道路損傷判定部1000が路面損傷を検知した場合、損傷情報105を作成する。 In addition, the road damage determination unit 1000 compares the reference peripheral road information with the peripheral road condition information based on the peripheral road condition acquired via the external environment recognition sensor data reception unit 1004, and determines the presence or absence of road surface damage. The external environment recognition sensor data receiving unit 1004 may receive the vehicle posture of the vehicle 10 acquired from the vehicle posture sensor 130. In this case, the surrounding road condition information is also created by using the vehicle posture. In addition, this example will be described in Example 2. Then, the damage information creation unit 1005 creates the damage information 105 when the road damage determination unit 1000 detects the road surface damage.
 ここで、損傷情報105の内容を、図6に示す。本実施例の損傷情報105は、道路の識別情報(#)、区間情報、送信可否フラグ、損傷、道路損傷タイプ、周辺道路状況および正常復帰走行距離で構成される。ここで、道路の識別情報(#)および区間情報は、高精度地図101と同様である。また、周辺道路状況は、外界環境認識センサー110や車両姿勢センサー130で検知される情報である。そして、周辺道路状況に基づく周辺道路状況情報が、高精度地図101と比較される。つまり、周辺道路状況情報は、高精度地図101の路面情報、車線情報、停止線情報および表示情報で構成される。 Here, the contents of the damage information 105 are shown in FIG. The damage information 105 of this embodiment is composed of road identification information (#), section information, transmission availability flag, damage, road damage type, surrounding road conditions, and normal return mileage. Here, the road identification information (#) and the section information are the same as those of the high-precision map 101. The surrounding road condition is information detected by the external environment recognition sensor 110 and the vehicle attitude sensor 130. Then, the peripheral road condition information based on the peripheral road condition is compared with the high-precision map 101. That is, the surrounding road condition information is composed of the road surface information, the lane information, the stop line information, and the display information of the high-precision map 101.
 さらに、車両10の構成要素に障害が発生した場合、路面損傷がなくても道路損傷判定部1000にて路面損傷を誤検知する可能性がある。それを防ぐため、送信可否判定部1006を用いる。送信可否判定部1006は、車両10が走行開始後の予め定めた一定時間内に、道路損傷判定部1000が路面損傷を検知しない場合、損傷情報105の送信を許可にする。つまり、道路損傷判定部1000が路面損傷を検知しない場合、車両10の道路の損傷判断に関する構成要素に、故障がないと判断する。なお、送信可否判定部1006は、通信ユニット120を介して受信した天候情報を用いて、送信可否を判定してもよい。また、車両10は、路面の損傷が確認された区間について、道路状況の特定を省略してもよい。 Furthermore, if a failure occurs in a component of the vehicle 10, there is a possibility that the road damage determination unit 1000 erroneously detects the road surface damage even if there is no road surface damage. In order to prevent this, the transmission availability determination unit 1006 is used. If the road damage determination unit 1000 does not detect the road surface damage within a predetermined fixed time after the vehicle 10 starts traveling, the transmission possibility determination unit 1006 permits the transmission of the damage information 105. That is, when the road damage determination unit 1000 does not detect the road surface damage, it is determined that there is no failure in the component related to the road damage determination of the vehicle 10. The transmission availability determination unit 1006 may determine whether transmission is possible using the weather information received via the communication unit 120. Further, the vehicle 10 may omit the identification of the road condition for the section where the road surface damage is confirmed.
 次に、図7を用いて、図2に示す電子制御ユニット100の機能構成を実装するハードウエア構成を説明する。電子制御ユニット100のハードウエアは、記憶媒体1001-1、MCU(Micro Controller Unit)1002-1、入力インターフェース1004-1、出力インターフェース1007-1およびバス1010-1で構成される。記憶媒体1001-1は、記憶部1001に対応し、いわゆるメモリで実現できる。MCU1002-1は、道路損傷判定部1000と、ロケータ推定部1002と、地図データ取得部1003と、損傷情報作成部1005と、送信可否判定部1006との機能を実行するものである。具体的には、MCU1002-1は、CPU1002-2とメモリ1002-3を含み、メモリ1002-3のプログラムに従ってCPU1002-2が各種演算を実行する。なお、MCU1002-1は、FPGA(field-programmable gate array)技術を用いて、各種演算を実行可能としてもよい。入力インターフェース1004-1は、外界環境認識センサーデータ受信部1004や受信部1008に対応し、車両姿勢センサー130などの外部装置からの情報を受信する。また、出力インターフェース1007-1は、送信部1007に対応し、通信ユニット120などの外部装置へ情報を送信する。そして、バス1010-1は、電子制御ユニット100内の各構成の情報の送受信を介在する。 Next, the hardware configuration for implementing the functional configuration of the electronic control unit 100 shown in FIG. 2 will be described with reference to FIG. 7. The hardware of the electronic control unit 100 is composed of a storage medium 1001-1, an MCU (MicroControllerUnit) 1002-1, an input interface 1004-1, an output interface 1007-1, and a bus 1010-1. The storage medium 1001-1 corresponds to the storage unit 1001 and can be realized by a so-called memory. The MCU 1002-1 executes the functions of the road damage determination unit 1000, the locator estimation unit 1002, the map data acquisition unit 1003, the damage information creation unit 1005, and the transmission availability determination unit 1006. Specifically, the MCU 1002-1 includes the CPU 1002-2 and the memory 1002-3, and the CPU 1002-2 executes various operations according to the program of the memory 1002-3. The MCU1002-1 may be capable of executing various operations by using FPGA (field-programmable gate array) technology. The input interface 1004-1 corresponds to the external environment recognition sensor data receiving unit 1004 and the receiving unit 1008, and receives information from an external device such as the vehicle attitude sensor 130. Further, the output interface 1007-1 corresponds to the transmission unit 1007 and transmits information to an external device such as the communication unit 120. Then, the bus 1010-1 intervenes in the transmission and reception of information of each configuration in the electronic control unit 100.
 次に、図3を用いて、本実施例の道路損傷判定処理の詳細を説明する。 Next, the details of the road damage determination process of this embodiment will be described with reference to FIG.
 ステップS100において、ロケータ推定部1002は、車両10の位置を推定する。ロケータ推定部1002は、位置として、区間情報に対応する精度が必要になる。このため、GPS受信機およびジャイロでの検出された結果を用いて推定することが好適である。但し、GPS受信機やジャイロのいずれかでの検出結果を用いてもよい。 In step S100, the locator estimation unit 1002 estimates the position of the vehicle 10. The locator estimation unit 1002 needs to have an accuracy corresponding to the section information as the position. Therefore, it is preferable to estimate using the results detected by the GPS receiver and the gyro. However, the detection result of either the GPS receiver or the gyro may be used.
 次に、ステップS101において、地図データ取得部1003が、記憶部1001に記憶された高精度地図101から走行装置のロケータ周辺の基準周辺道路状況情報を取得する。このために、地図データ取得部1003は、ステップS100で取得された位置に対応する区間情報を、高精度地図101から特定する。この際、地図データ取得部1003は、S100で推定された位置を含む高精度地図101の区間情報のレコードを、基準周辺道路状況情報として特定する。 Next, in step S101, the map data acquisition unit 1003 acquires the reference peripheral road condition information around the locator of the traveling device from the high-precision map 101 stored in the storage unit 1001. For this purpose, the map data acquisition unit 1003 specifies the section information corresponding to the position acquired in step S100 from the high-precision map 101. At this time, the map data acquisition unit 1003 specifies the record of the section information of the high-precision map 101 including the position estimated by S100 as the reference peripheral road condition information.
 次に、ステップS102において、外界環境認識センサーデータ受信部1004は、外界環境認識センサー110から周辺道路状況を受信する。外界環境認識センサー110は、カメラ、レーダー、超音波センサーなどで実現できる。これらは、道路の状況を示す情報である。例えば、外界環境認識センサー110としてカメラを用いた場合、画像データが周辺道路状況として取得される。 Next, in step S102, the external environment recognition sensor data receiving unit 1004 receives the surrounding road condition from the external environment recognition sensor 110. The external environment recognition sensor 110 can be realized by a camera, a radar, an ultrasonic sensor, or the like. These are information indicating the condition of the road. For example, when a camera is used as the external environment recognition sensor 110, image data is acquired as surrounding road conditions.
 次に、ステップS103において、道路損傷判定部1000は、ステップS102で取得された周辺道路状況から周辺道路状況情報を作成する。この処理は、高精度地図101を構成する基準周辺道路状況との比較を行うために行われる。このため、道路損傷判定部1000は、高精度地図101と同種のデータになるように作成を行う。本実施例では、道路損傷判定部1000は、周辺道路状況から路面情報、車線情報、停止線情報および表示情報を含むベクトルデータを作成する。 Next, in step S103, the road damage determination unit 1000 creates peripheral road condition information from the peripheral road condition acquired in step S102. This process is performed to compare with the standard surrounding road conditions constituting the high-precision map 101. Therefore, the road damage determination unit 1000 creates data of the same type as the high-precision map 101. In this embodiment, the road damage determination unit 1000 creates vector data including road surface information, lane information, stop line information, and display information from the surrounding road conditions.
 そして、道路損傷判定部1000は、ステップS101で取得された基準周辺道路状況情報と作成された周辺道路状況情報を比較する。当該比較結果に基づいて、道路損傷判定部1000は、道路損傷有無を判定する。なお、ここでの比較処理では、道路損傷判定部1000は、道路の識別情報と区間情報を用いて、比較対象である基準周辺道路状況情報と周辺道路状況情報を特定することが望ましい。 Then, the road damage determination unit 1000 compares the standard surrounding road condition information acquired in step S101 with the created surrounding road condition information. Based on the comparison result, the road damage determination unit 1000 determines whether or not there is road damage. In the comparison process here, it is desirable that the road damage determination unit 1000 specifies the reference peripheral road condition information and the peripheral road condition information to be compared by using the road identification information and the section information.
 なお、道路損傷判定部1000は、比較結果に一定範囲内の違いがあれば、道路損傷有と判定してもよい。また、本実施例では、周辺道路状況情報として、ベクトルデータを用いたが、この形式に限定されない。さらに、基準周辺道路状況情報として画像データなどセンシングデータを用いてもよい。この場合、道路損傷判定部1000は、周辺道路状況情報の作成を省略し、受信した周辺道路状況と基準周辺道路状況情報との比較を行うことが望ましい。 Note that the road damage determination unit 1000 may determine that there is road damage if there is a difference within a certain range in the comparison results. Further, in this embodiment, vector data is used as the surrounding road condition information, but the present invention is not limited to this format. Further, sensing data such as image data may be used as the reference surrounding road condition information. In this case, it is desirable that the road damage determination unit 1000 omits the creation of the surrounding road condition information and compares the received peripheral road condition with the standard peripheral road condition information.
 さらに、本ステップにおいて、道路損傷判定部1000は、損傷有の場合、比較の結果に基づいて、道路損傷タイプを特定する。例えば、道路損傷判定部1000は、周辺道路状況情報に車線が存在せず、基準周辺道路状況情報に車線情報がある場合、車線喪消失と判断する。また、道路損傷判定部1000は、周辺道路状況情報の路面情報で凹凸が存在するものの、基準周辺道路状況情報の変速装置ロードバンプが〇の場合、損傷無と判断する。 Furthermore, in this step, the road damage determination unit 1000 identifies the road damage type based on the result of comparison when there is damage. For example, the road damage determination unit 1000 determines that lane mourning has disappeared when there is no lane in the surrounding road condition information and there is lane information in the reference peripheral road condition information. Further, the road damage determination unit 1000 determines that there is no damage when the transmission road bump of the reference peripheral road condition information is 〇, although the road surface information of the peripheral road condition information has unevenness.
 なお、道路損傷判定部1000は、損傷有無判断と道路損傷タイプの特定をまとめて行ってもよい。 Note that the road damage determination unit 1000 may collectively determine the presence or absence of damage and identify the road damage type.
 次に、ステップS104において、ステップS103の結果、損傷無の場合、道路損傷判定部1000はステップS100に戻り、次の区間の処理を実行する。損傷有の場合、道路損傷判定部1000は、ステップS105に進む。 Next, in step S104, if there is no damage as a result of step S103, the road damage determination unit 1000 returns to step S100 and executes the processing of the next section. If there is damage, the road damage determination unit 1000 proceeds to step S105.
 ステップS105において、送信可否判定部1006は、ステップS106以降で作成する損傷情報105を、損傷情報管理サーバー30へ送信するかを判定する。送信可否判定部1006は、損傷情報105の送信可否フラグを用いて判定する。なお、図5では、送信可否フラグを「可」「否」で示しているが、記録しているか否か(ON、OFF)で判定できるようにしてもよい。なお、送信可否フラグの記録は、図4を用いて後述するように、車両10の始動の際などに実行される。また、本実施例では、損傷情報の各レコード(周辺道路状況情報)ごとに、送信可否フラグを設けているが、別途1つの情報として管理してもよい。 In step S105, the transmission availability determination unit 1006 determines whether to transmit the damage information 105 created in step S106 or later to the damage information management server 30. The transmission availability determination unit 1006 determines using the transmission availability flag of the damage information 105. In FIG. 5, the transmission enable / disable flag is indicated by "possible" and "no", but it may be possible to determine whether or not the flag is recorded (ON, OFF). The recording of the transmission enable / disable flag is executed at the time of starting the vehicle 10, as will be described later with reference to FIG. Further, in this embodiment, a transmission enable / disable flag is provided for each record of damage information (peripheral road condition information), but it may be managed separately as one piece of information.
 この判定の結果、送信可(ON)の場合、ステップS106に進む。送信否(OFF)の場合、処理を終了し、本フローチャートの次の区間の処理を実行するために、ステップS101に戻る。 As a result of this determination, if transmission is possible (ON), the process proceeds to step S106. If the transmission is rejected (OFF), the process is terminated, and the process returns to step S101 in order to execute the process in the next section of this flowchart.
 次に、ステップS106では、道路損傷判定部1000は、外界環境認識センサー110で検知され、ステップS102で受信した周辺道路状況を、記憶部1001に一時的に記憶する。なお、この記憶は他の記憶媒体に行ってもよい。 Next, in step S106, the road damage determination unit 1000 temporarily stores the surrounding road condition received in step S102 in the storage unit 1001 after being detected by the external environment recognition sensor 110. Note that this storage may be performed on another storage medium.
 次に、ステップS107において、道路損傷判定部1000は、損傷有と判定してから、道路の損傷検知が正常に復帰したかを判定する。具体的には、道路損傷判定部1000は、損傷有と判定した後に、損傷が無くなったと判断した場合、正常復帰と判定する。なお、道路損傷判定部1000は、一定時間以上、損傷有と判断されなかった場合、道路損傷正常復帰と判定してもよい。 Next, in step S107, the road damage determination unit 1000 determines whether or not the road damage detection has returned to normal after determining that there is damage. Specifically, when the road damage determination unit 1000 determines that the damage has disappeared after determining that there is damage, it determines that the vehicle has returned to normal. If the road damage determination unit 1000 does not determine that there is damage for a certain period of time or longer, it may determine that the road damage has returned to normal.
 また、本ステップにおいて、道路損傷判定部1000は、損傷有と判断した位置と、当該損傷が無くなったと判断した位置を特定する。これは、ステップS104の損傷有無判断を周期的に繰り返すことで、損傷が無くなった位置を判定することで実現できる。 Further, in this step, the road damage determination unit 1000 identifies a position where it is determined that there is damage and a position where it is determined that the damage has disappeared. This can be achieved by determining the position where the damage has disappeared by periodically repeating the determination of the presence or absence of damage in step S104.
 この結果、正常復帰した場合(Yes)、ステップS109に進む。また、正常復帰していない場合(No)、ステップS108に進む。 As a result, if it returns to normal (Yes), the process proceeds to step S109. If the normal recovery has not been performed (No), the process proceeds to step S108.
 次に、ステップS108において、道路損傷判定部1000は、ステップS106で記憶した外界環境認識センサー110で検知された周辺道路状況が、予め定めたデータサイズをオーバーしているかを判断する。この結果、データサイズをオーバーしている場合、ステップS107に戻る。また、データサイズをオーバーしている場合、ステップS106に戻る。 Next, in step S108, the road damage determination unit 1000 determines whether the surrounding road condition detected by the external environment recognition sensor 110 stored in step S106 exceeds the predetermined data size. As a result, if the data size is exceeded, the process returns to step S107. If the data size is exceeded, the process returns to step S106.
 次に、ステップS109において、損傷情報作成部1005が、損傷情報管理サーバー30へ送信するデータを作成する。つまり、損傷情報作成部1005は、損傷情報105を作成する。損傷情報105は、前述したとおり、図6で示されるものであるが、以下のとおり作成される。 Next, in step S109, the damage information creation unit 1005 creates data to be transmitted to the damage information management server 30. That is, the damage information creation unit 1005 creates the damage information 105. The damage information 105, which is shown in FIG. 6 as described above, is created as follows.
 損傷情報作成部1005は、道路損傷判定部1000から、道路の識別情報、区間情報、損傷有であることおよび道路損傷タイプを受信する。また、損傷情報作成部1005は、外界環境認識センサーデータ受信部1004によりステップS102で取得した周辺道路状況を受信する。また、損傷情報作成部1005は、周辺道路状況の代わり、道路損傷判定部1000から周辺道路状況を受信してもよい。 The damage information creation unit 1005 receives the road identification information, section information, damage presence, and road damage type from the road damage determination unit 1000. In addition, the damage information creation unit 1005 receives the surrounding road condition acquired in step S102 by the external environment recognition sensor data reception unit 1004. Further, the damage information creation unit 1005 may receive the surrounding road condition from the road damage determination unit 1000 instead of the surrounding road condition.
 さらに、損傷情報作成部1005は、道路損傷判定部1000から損傷を検知した位置と当該損傷が無くなった位置を受信する。そして、損傷情報作成部1005は、これらから正常復帰走行距離を算出する。 Furthermore, the damage information creation unit 1005 receives the position where the damage is detected and the position where the damage disappears from the road damage determination unit 1000. Then, the damage information creation unit 1005 calculates the normal return mileage from these.
 そして、損傷情報作成部1005は、これらの各情報を、マージすることで、損傷情報105を作成する。なお、送信可否フラグは、上述のとおり、本ステップS109の段階では記録されている。 Then, the damage information creation unit 1005 creates the damage information 105 by merging each of these information. As described above, the transmission enable / disable flag is recorded at the stage of this step S109.
 次に、ステップS110において、送信部1007は、ステップS109で作成された損傷情報105を、通信ユニット120を用いて、ネットワーク20を介して損傷情報管理サーバー30へ送信する。なお、送信部1007は、損傷情報105のうちその一部を損傷情報管理サーバー30へ送信してもよい。例えば、送信可否フラグの送信を省略してもよい。 Next, in step S110, the transmission unit 1007 transmits the damage information 105 created in step S109 to the damage information management server 30 via the network 20 using the communication unit 120. The transmission unit 1007 may transmit a part of the damage information 105 to the damage information management server 30. For example, transmission of the transmission enable / disable flag may be omitted.
 本実施例では、以上の図3に示す処理を、区間ごとに繰り返し実行する。このことで、各区間の損傷状況を把握することが可能になる。また、本実施例では、ステップS109で損傷情報105を作成している。つまり、損傷情報作成部1005は、ステップS105の送信可否判断の結果、送信が可能な場合に損傷情報105を作成している。このことで、無駄な損傷情報105の作成を抑止できる。但し、損傷情報作成部1005は、S105以前に損傷情報を作成してもよい。 In this embodiment, the process shown in FIG. 3 above is repeatedly executed for each section. This makes it possible to grasp the damage status of each section. Further, in this embodiment, the damage information 105 is created in step S109. That is, the damage information creation unit 1005 creates the damage information 105 when the transmission is possible as a result of the transmission possibility determination in step S105. As a result, it is possible to prevent the creation of useless damage information 105. However, the damage information creation unit 1005 may create damage information before S105.
 次に、図4を用いて、送信可否フラグの作成(設定)およびその利用方法を説明する。 Next, using FIG. 4, the creation (setting) of the transmission enable / disable flag and the usage method thereof will be described.
 まず、ステップS1000において、送信可否判定部1006は、初期値として、送信可否フラグを送信不可(OFF)と設定する。図6に示すように、損傷情報105の各区間ごとに送信可否フラグを設定する場合、送信可否判定部1006は、最初の区間に設定する。 First, in step S1000, the transmission enable / disable determination unit 1006 sets the transmission enable / disable flag as transmission impossible (OFF) as an initial value. As shown in FIG. 6, when the transmission permission / rejection flag is set for each section of the damage information 105, the transmission permission / rejection determination unit 1006 is set in the first section.
 次に、ステップS1001において、送信可否判定部1006は、速度計やOBD機能(On-board diagnostics)を用いて、車両10が走行を開始したか、つまり、一定社則以上であるかを判断する。この結果、車両10が走行を開始した場合、ステップS1002に移る。 Next, in step S1001, the transmission availability determination unit 1006 uses a speedometer and an OBD function (On-board diagnostics) to determine whether the vehicle 10 has started running, that is, whether it is above a certain company rule. .. As a result, when the vehicle 10 starts traveling, the process proceeds to step S1002.
 次に、ステップS1002において、送信可否判定部1006は、正常判定タイマーを初期値として0に設定する。そして、正常判定タイマーが起動を開始し、経過時間の計測を実行する。 Next, in step S1002, the transmission availability determination unit 1006 sets the normality determination timer to 0 as the initial value. Then, the normality determination timer starts to start, and the elapsed time is measured.
 次に、ステップS1003において、送信可否判定部1006は、ステップS104と同様の処理を実行する。つまり、送信可否判定部1006は、損傷の有無を判定する。この結果、損傷有の場合、ステップS1002に戻り、損傷無の場合、ステップS1004に進む。 Next, in step S1003, the transmission availability determination unit 1006 executes the same process as in step S104. That is, the transmission availability determination unit 1006 determines the presence or absence of damage. As a result, if there is damage, the process returns to step S1002, and if there is no damage, the process proceeds to step S1004.
 なお、ステップS1003では、送信可否判定部1006は、ステップS104における道路損傷判定部1000の判定結果を受信して、これを用いてもよい。 Note that in step S1003, the transmission availability determination unit 1006 may receive the determination result of the road damage determination unit 1000 in step S104 and use it.
 次に、ステップS1004において、送信可否判定部1006は、正常判定タイマーの経過時間が、一定時間(T)を過ぎたかを確認する。一定時間を過ぎたら、ステップS1005に移る。
また一定時間(T)を経過していなければ、ステップS1003に戻る。
Next, in step S1004, the transmission availability determination unit 1006 confirms whether the elapsed time of the normality determination timer has passed a certain time (T). After a certain period of time, move to step S1005.
If a certain time (T) has not passed, the process returns to step S1003.
 次に、ステップS1005において、送信可否判定部1006は、送信可否フラグを送信許可(ON)に設定する。このように、本処理では、予め定めた一定時間(T)を経過した場合、損傷情報105を送信可能としている。この理由は、以下のとおりである。走行開始時点では、道路の損傷の可能性が低いため、この期間で損傷を検知した場合、エラーである可能性が高い。逆に、一定時間(t)間に損傷が無である場合には、正確なで^他である可能性が高いため、送信可能としている。したがって、一定時間(t)は、走行開始からでなくともよい。例えば、高速道路など高規格道路での一定期間でもいい。
 
Next, in step S1005, the transmission permission / rejection determination unit 1006 sets the transmission permission / rejection flag to transmission permission (ON). As described above, in this process, the damage information 105 can be transmitted when a predetermined fixed time (T) has elapsed. The reason for this is as follows. At the start of driving, the possibility of road damage is low, so if damage is detected during this period, there is a high possibility of an error. On the contrary, if there is no damage within a certain period of time (t), it is likely to be accurate and other, so transmission is possible. Therefore, the fixed time (t) does not have to be from the start of traveling. For example, it may be a fixed period on a high-standard road such as an expressway.
 次に、本発明の実施例2について説明する。実施例2では、実施例1の車両10に車両の走行に伴い変化する車両の姿勢・挙動を検知する車両姿勢センサー130の検知結果も用いて、路面損傷有無を判断する。なお、実施例2の構成、フローチャート、各種情報は、実施例1と同様である。このため、実施例1との相違について以下説明する。 Next, Example 2 of the present invention will be described. In the second embodiment, the presence or absence of road surface damage is determined by using the detection result of the vehicle posture sensor 130 that detects the posture / behavior of the vehicle that changes as the vehicle travels in the vehicle 10 of the first embodiment. The configuration, flowchart, and various information of the second embodiment are the same as those of the first embodiment. Therefore, the difference from the first embodiment will be described below.
 図3のステップS102において、外界環境認識センサーデータ受信部1004は、車両姿勢センサー130から、車両10の姿勢・挙動を受信する。外界環境認識センサーデータ受信部1004は、車両の姿勢・挙動として、例えば、車両10の鉛直方向の振動を受信する。 In step S102 of FIG. 3, the external environment recognition sensor data receiving unit 1004 receives the posture / behavior of the vehicle 10 from the vehicle posture sensor 130. The external environment recognition sensor data receiving unit 1004 receives, for example, the vertical vibration of the vehicle 10 as the posture / behavior of the vehicle.
 次に、ステップS103において、道路損傷判定部1000は、車両10の姿勢・挙動から周辺道路状況情報を作成する。道路損傷判定部1000は、周辺道路状況情報として、例えば、変速装置ロードバンプの有無や補修/異物の有無を示す情報を作成する。この作成のために、道路損傷判定部1000は、振動における振幅の大きさに従って、変速装置ロードバンプの有無や補修/異物の有無を判断する。また、道路損傷判定部1000は、振動の周波数やその期間を用いて判断してもよい。 Next, in step S103, the road damage determination unit 1000 creates peripheral road condition information from the posture / behavior of the vehicle 10. The road damage determination unit 1000 creates, for example, information indicating the presence / absence of a transmission road bump and the presence / absence of repair / foreign matter as peripheral road condition information. For this creation, the road damage determination unit 1000 determines the presence / absence of the transmission load bump and the presence / absence of repair / foreign matter according to the magnitude of the amplitude in the vibration. Further, the road damage determination unit 1000 may make a determination using the frequency of vibration and the period thereof.
 そして、本ステップにおいて、道路損傷判定部1000は、対応する基準周辺道路状況情報と周辺道路状況情報を比較する。例えば、道路損傷判定部1000は、上記処理で、変速装置ロードバンプが有と判断した場合、基準周辺道路状況情報では無である場合、損傷有と判断する。このように、比較の結果、それぞれの情報が対応しない場合、道路損傷判定部1000は損傷有と判断する。さらに、道路損傷判定部1000は、勾配の有無を判断してもよい。 Then, in this step, the road damage determination unit 1000 compares the corresponding standard surrounding road condition information with the surrounding road condition information. For example, the road damage determination unit 1000 determines that there is damage when it is determined that the transmission road bump is present in the above process, and when it is not in the reference surrounding road condition information. In this way, as a result of comparison, if the respective information does not correspond, the road damage determination unit 1000 determines that there is damage. Further, the road damage determination unit 1000 may determine the presence or absence of a slope.
 さらに、本ステップでは、道路損傷判定部1000は、上述した比較ではなく、姿勢・挙動で損傷を判定してもよい。つまり、道路損傷判定部1000は、鉛直方向の振動の振幅や周波数が予め定めた所定条件を満たす場合、損傷ありと判定する・
 以下、ステップS104以降の処理は、実施例1と同様である。なお、本実施例2の判断と、実施例1の判断を、損傷タイプに応じて分担して実行してもよい。さらに、いずれか一方の処理を行ってもよい。
Further, in this step, the road damage determination unit 1000 may determine the damage based on the posture / behavior instead of the above-mentioned comparison. That is, the road damage determination unit 1000 determines that there is damage when the amplitude and frequency of the vibration in the vertical direction satisfy a predetermined condition set in advance.
Hereinafter, the processing after step S104 is the same as that of the first embodiment. The determination of the second embodiment and the determination of the first embodiment may be shared and executed according to the damage type. Further, either process may be performed.
 以上の各実施例によれば、路面損傷誤検知を低下させ、検知不可車線破損も検知可能にする電子制御ユニットを提供することができる。 According to each of the above embodiments, it is possible to provide an electronic control unit that reduces false detection of road surface damage and enables detection of undetectable lane damage.
10…車両、20…ネットワーク、30…損傷情報管理サーバー、100…電子制御ユニット、110…外界環境認識センサー、120…通信ユニット、130…車両姿勢センサー、1000…道路損傷判定部、1001…記憶部、1002…ロケータ推定部、1003…地図データ取得部、1004…外界環境認識センサーデータ受信部、1005…損傷情報作成部、1006…送信可否判定部、1007…送信部、1008…受信部 10 ... Vehicle, 20 ... Network, 30 ... Damage information management server, 100 ... Electronic control unit, 110 ... External environment recognition sensor, 120 ... Communication unit, 130 ... Vehicle attitude sensor, 1000 ... Road damage judgment unit, 1001 ... Storage unit , 1002 ... Locator estimation unit, 1003 ... Map data acquisition unit, 1004 ... External environment recognition sensor data reception unit, 1005 ... Damage information creation unit, 1006 ... Transmission availability judgment unit, 1007 ... Transmission unit, 1008 ... Receiver unit

Claims (14)

  1.  道路を走行する車両に設置され、前記道路の道路状況を特定する道路状況特定装置において、
     各道路の区間ごとに、道路を構成する道路要素ごとの基準周辺道路状況情報で構成される高精度地図を記憶する記憶部と、
     センサーから、前記車両の走行に伴い検知される周辺道路状況を受信するデータ受信部と、
     前記車両の位置を推定するロケータ推定部と、
     道路損傷判定部とを有し、
     前記道路損傷判定部は、前記区間ごとに、
    (1)前記高精度地図から、推定された前記車両の位置に対応する基準周辺道路状況情報を特定し、
    (2)特定された前記基準周辺道路状況情報と、推定された前記車両の位置において検知された前記周辺道路状況に応じた周辺道路状況情報を比較し、
    (3)当該比較の結果に基づいて、前記道路の損傷を特定することを特徴とする道路状況特定装置。
    In a road condition identification device that is installed on a vehicle traveling on a road and identifies the road condition of the road.
    For each section of the road, a storage unit that stores a high-precision map composed of reference peripheral road condition information for each road element that constitutes the road, and a storage unit.
    A data receiving unit that receives the surrounding road conditions detected as the vehicle travels from the sensor,
    A locator estimation unit that estimates the position of the vehicle and
    It has a road damage judgment unit and
    The road damage determination unit is used for each section.
    (1) From the high-precision map, the reference surrounding road condition information corresponding to the estimated position of the vehicle is specified, and the information is determined.
    (2) The specified reference peripheral road condition information is compared with the peripheral road condition information according to the peripheral road condition detected at the estimated position of the vehicle.
    (3) A road condition identification device characterized by identifying damage to the road based on the result of the comparison.
  2.  請求項1に記載の道路状況特定装置において、
     さらに、
     前記道路損傷判定部により特定された前記道路の損傷を示す損傷情報を作成する損傷情報作成部と、
     前記道路損傷判定部が予め定めた一定期間において前記道路の損傷が特定されたかに応じて、作成された前記損傷情報を、外部装置に送信するかを判定する送信可否判定部とを有することを特徴とする道路状況特定装置。
    In the road condition identification device according to claim 1,
    Moreover,
    A damage information creation unit that creates damage information indicating damage to the road identified by the road damage determination unit, and a damage information creation unit.
    The road damage determination unit has a transmission possibility determination unit that determines whether to transmit the created damage information to an external device according to whether or not the road damage is identified in a predetermined fixed period. A characteristic road condition identification device.
  3.  請求項2に記載の道路状況特定装置において、
     前記送信可否判定部は、予め定めた一定期間内に、前記道路の損傷が特定されない場合、前記損傷情報を前記外部装置に送信可能であることを示す送信可否フラグを設定し、
     前記損傷情報作成部は、前記送信可否フラグが送信可能であること示す場合に、前記損傷情報を作成することを特徴とする道路状況特定装置。
    In the road condition identification device according to claim 2,
    If the damage to the road is not specified within a predetermined period of time, the transmission permission / rejection determination unit sets a transmission permission / rejection flag indicating that the damage information can be transmitted to the external device.
    The road condition identification device is characterized in that the damage information creating unit creates the damage information when the transmission enable / disable flag indicates that transmission is possible.
  4.  請求項1に記載の道路状況特定装置において、
     前記センサーは、外界環境認識センサーおよび前記車両の走行に伴い変化する当該車両の挙動状況を検知する車両姿勢センサーであり、
     前記データ受信部は、前記車両姿勢センサーから、前記挙動状況を受信し、
     前記道路損傷判定部は、前記車両の挙動状況が所定条件を満たすかにより、前記道路の損傷を特定することを特徴とする道路状況特定装置。
    In the road condition identification device according to claim 1,
    The sensor is an external environment recognition sensor and a vehicle posture sensor that detects a behavioral state of the vehicle that changes as the vehicle travels.
    The data receiving unit receives the behavior status from the vehicle posture sensor and receives the behavior status.
    The road damage determination unit is a road condition identification device, characterized in that the road damage determination unit identifies damage to the road depending on whether the behavioral condition of the vehicle satisfies a predetermined condition.
  5.  請求項4に記載の道路状況特定装置において、
     前記外界環境認識センサーは、画像を撮像するカメラであり、
     前記道路損傷判定部は、前記区間ごとに、前記画像に対して画像処理を施して、前記周辺道路状況情報を作成することを特徴とする道路状況特定装置。
    In the road condition identification device according to claim 4,
    The external environment recognition sensor is a camera that captures an image.
    The road damage determination unit is a road condition identification device characterized in that image processing is performed on the image for each section to create the surrounding road condition information.
  6.  請求項1に記載の道路状況特定装置において、
     前記道路損傷判定部は、それぞれ異なる区間の処理について、前記周辺道路状況情報の作成と、前記(1)乃至(3)の処理を、並行処理することを特徴とする道路状況特定装置。
    In the road condition identification device according to claim 1,
    The road damage determination unit is a road condition identification device, characterized in that the creation of the surrounding road condition information and the processing of the above (1) to (3) are processed in parallel for the processing of different sections.
  7.  請求項1乃至6のいずれかに記載の道路状況特定装置において、
     前記高精度地図は、前記区間における路面状況を示す路面情報、前記区間における車線の状況を示す車線情報、前記区間における停止線の有無を示す停止線情報および前記区間における交通標識または看板に関する表示情報を含むことを特徴とする道路状況特定装置。
    In the road condition identification device according to any one of claims 1 to 6.
    The high-precision map includes road surface information indicating the road surface condition in the section, lane information indicating the lane condition in the section, stop line information indicating the presence or absence of a stop line in the section, and display information regarding a traffic sign or a signboard in the section. A road condition identification device characterized by including.
  8.  道路を走行する車両に設けられた車両システムであって、前記道路の道路状況を特定する道路状況特定装置を有する車両システムにおいて、
     前記車両の走行に伴い検知される周辺道路状況を検知するセンサーと、
     前記道路状況特定装置を有し、
     前記道路状況特定装置は、
     各道路の区間ごとに、道路を構成する道路要素ごとの基準周辺道路状況情報で構成される高精度地図を記憶する記憶部と、
     前記センサーから前記周辺道路状況を受信するデータ受信部と、
     前記車両の位置を推定するロケータ推定部と、
     道路損傷判定部とを有し、
     前記道路損傷判定部は、前記区間ごとに、
    (1)前記高精度地図から、推定された前記車両の位置に対応する基準周辺道路状況情報を特定し、
    (2)特定された前記基準周辺道路状況情報と、推定された前記車両の位置において検知された前記周辺道路状況に応じた周辺道路状況情報を比較し、
    (3)当該比較の結果に基づいて、前記道路の損傷を特定することを特徴とする車両システム。
    In a vehicle system provided for a vehicle traveling on a road and having a road condition specifying device for specifying the road condition of the road.
    A sensor that detects the surrounding road conditions detected as the vehicle travels,
    It has the road condition identification device and
    The road condition identification device is
    For each section of the road, a storage unit that stores a high-precision map composed of reference peripheral road condition information for each road element that constitutes the road, and a storage unit.
    A data receiving unit that receives the surrounding road conditions from the sensor, and
    A locator estimation unit that estimates the position of the vehicle and
    It has a road damage judgment unit and
    The road damage determination unit is used for each section.
    (1) From the high-precision map, the reference surrounding road condition information corresponding to the estimated position of the vehicle is specified, and the information is determined.
    (2) The specified reference peripheral road condition information is compared with the peripheral road condition information according to the peripheral road condition detected at the estimated position of the vehicle.
    (3) A vehicle system characterized in that damage to the road is identified based on the result of the comparison.
  9.  請求項8に記載の車両システムにおいて、
     前記道路状況特定装置は、さらに、
     前記道路損傷判定部により特定された前記道路の損傷を示す損傷情報を作成する損傷情報作成部と、
     前記道路損傷判定部が予め定めた一定期間において前記道路の損傷が特定されたかに応じて、作成された前記損傷情報を、外部装置に送信するかを判定する送信可否判定部とを有することを特徴とする車両システム。
    In the vehicle system according to claim 8.
    The road condition identification device further
    A damage information creation unit that creates damage information indicating damage to the road identified by the road damage determination unit, and a damage information creation unit.
    The road damage determination unit has a transmission availability determination unit that determines whether to transmit the created damage information to an external device according to whether or not the road damage has been identified in a predetermined fixed period. Characterized vehicle system.
  10.  請求項9に記載の車両システムにおいて、
     前記送信可否判定部は、予め定めた一定期間内に、前記道路の損傷が特定されない場合、前記損傷情報を前記外部装置に送信可能であることを示す送信可否フラグを設定し、
     前記損傷情報作成部は、前記送信可否フラグが送信可能であること示す場合に、前記損傷情報を作成することを特徴とする車両システム。
    In the vehicle system according to claim 9.
    If the damage to the road is not specified within a predetermined period of time, the transmission permission / rejection determination unit sets a transmission permission / rejection flag indicating that the damage information can be transmitted to the external device.
    A vehicle system characterized in that the damage information creating unit creates the damage information when the transmission enable / disable flag indicates that transmission is possible.
  11.  請求項8に記載の車両システムにおいて、
     前記センサーは、外界環境認識センサーおよび前記車両の走行に伴い変化する当該車両の挙動状況を検知する車両姿勢センサーであり、
     前記データ受信部は、前記車両姿勢センサーから、前記挙動状況を受信し、
     前記道路損傷判定部は、前記車両の挙動状況が所定条件を満たすかにより、前記道路の損傷を特定することを特徴とする車両システム。
    In the vehicle system according to claim 8.
    The sensor is an external environment recognition sensor and a vehicle posture sensor that detects a behavioral state of the vehicle that changes as the vehicle travels.
    The data receiving unit receives the behavior status from the vehicle posture sensor and receives the behavior status.
    The road damage determination unit is a vehicle system characterized in that damage to the road is specified depending on whether the behavioral state of the vehicle satisfies a predetermined condition.
  12.  請求項11に記載の車両システムにおいて、
     前記外界環境認識センサーは、画像を撮像するカメラであり、
     前記道路損傷判定部は、前記区間ごとに、前記画像に対して画像処理を施して、前記周辺道路状況情報を作成することを特徴とする車両システム。
    In the vehicle system according to claim 11.
    The external environment recognition sensor is a camera that captures an image.
    The road damage determination unit is a vehicle system characterized in that image processing is performed on the image for each section to create the surrounding road condition information.
  13.  請求項8に記載の車両システムにおいて、
     前記道路損傷判定部は、それぞれ異なる区間の処理について、前記周辺道路状況情報の作成と、前記(1)乃至(3)の処理を、並行処理することを特徴とする車両システム。
    In the vehicle system according to claim 8.
    The road damage determination unit is a vehicle system characterized in that, for processing different sections, the creation of the surrounding road condition information and the processing of the above (1) to (3) are processed in parallel.
  14.  請求項8乃至13のいずれかに記載の車両システムにおいて、
     前記高精度地図は、前記区間における路面状況を示す路面情報、前記区間における車線の状況を示す車線情報、前記区間における停止線の有無を示す停止線情報および前記区間における交通標識または看板に関する表示情報を含むことを特徴とする車両システム。
    In the vehicle system according to any one of claims 8 to 13.
    The high-precision map includes road surface information indicating the road surface condition in the section, lane information indicating the lane condition in the section, stop line information indicating the presence or absence of a stop line in the section, and display information regarding a traffic sign or a signboard in the section. A vehicle system characterized by including.
PCT/JP2021/004953 2020-04-17 2021-02-10 Road condition identification device and vehicle system WO2021210251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-073910 2020-04-17
JP2020073910A JP2021170288A (en) 2020-04-17 2020-04-17 Road condition identification device and vehicle system

Publications (1)

Publication Number Publication Date
WO2021210251A1 true WO2021210251A1 (en) 2021-10-21

Family

ID=78084200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004953 WO2021210251A1 (en) 2020-04-17 2021-02-10 Road condition identification device and vehicle system

Country Status (2)

Country Link
JP (1) JP2021170288A (en)
WO (1) WO2021210251A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504089A (en) * 2023-06-27 2023-07-28 东风悦享科技有限公司 Unmanned public transport cluster flexible scheduling system based on road surface damage factors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140203A (en) * 2008-12-10 2010-06-24 Denso Corp Traveling object detection device
WO2013084287A1 (en) * 2011-12-06 2013-06-13 三菱電機株式会社 Center system and vehicle system
JP2014198974A (en) * 2013-03-29 2014-10-23 富士通株式会社 Road surface change calculation program, method, and apparatus
JP2016126605A (en) * 2015-01-06 2016-07-11 株式会社日立製作所 Travel environment recognition system
JP2016151967A (en) * 2015-02-18 2016-08-22 株式会社東芝 Information processor, road structure management system, and road structure management method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140203A (en) * 2008-12-10 2010-06-24 Denso Corp Traveling object detection device
WO2013084287A1 (en) * 2011-12-06 2013-06-13 三菱電機株式会社 Center system and vehicle system
JP2014198974A (en) * 2013-03-29 2014-10-23 富士通株式会社 Road surface change calculation program, method, and apparatus
JP2016126605A (en) * 2015-01-06 2016-07-11 株式会社日立製作所 Travel environment recognition system
JP2016151967A (en) * 2015-02-18 2016-08-22 株式会社東芝 Information processor, road structure management system, and road structure management method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504089A (en) * 2023-06-27 2023-07-28 东风悦享科技有限公司 Unmanned public transport cluster flexible scheduling system based on road surface damage factors
CN116504089B (en) * 2023-06-27 2023-09-12 东风悦享科技有限公司 Unmanned public transport cluster flexible scheduling system based on road surface damage factors

Also Published As

Publication number Publication date
JP2021170288A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
EP2019288B1 (en) Object recognition device
US10423841B2 (en) Abnormality detection device and abnormality detection method
JP2016095831A (en) Driving support system and center
EP3543074B1 (en) Accident determination device
EP2176846B1 (en) Method of improving database integrity for driver assistance applications
CN110738842A (en) Accident responsibility division and behavior analysis method, device, equipment and storage medium
US20200247404A1 (en) Information processing device, information processing system, information processing method, and program
CN108597245B (en) Method and system for enabling vehicles to discard irrelevant road marking information
CN110580437B (en) Road traffic sign recognition device
CN111179589B (en) Method, device, equipment and storage medium for predicting vehicle OD
JP7362733B2 (en) Automated crowdsourcing of road environment information
WO2021210251A1 (en) Road condition identification device and vehicle system
CN111489584A (en) System, system control method, and information providing server
CN114184218A (en) Method, device and storage medium for testing a sensor system of a motor vehicle
CN110580441A (en) Driving support device
US8694255B2 (en) Driver assistance system having reduced data from a digital road map
JP2022163615A (en) Road information giving/receiving system
US20220404154A1 (en) Method and device for determining emergency trajectories and for operating automated vehicles
US11113962B2 (en) Terminal device, rearward server, in-vehicle transponder, determination system, determination method, and program
CN111959523A (en) Method and device for providing an operating state of a sensor of a vehicle
CN110576867B (en) Vehicle driving support device
CN110580439B (en) Driving assistance device
WO2016072082A1 (en) Driving assistance system and center
US11370452B2 (en) Driving action determination device, driving action determination method and non-transitory storage medium storing a driving action determination program
CN110869868A (en) Method for operating a highly automated vehicle (HAF), in particular a highly automated vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788504

Country of ref document: EP

Kind code of ref document: A1