WO2021210137A1 - Wireless communication system, network control device, network control method, and program - Google Patents

Wireless communication system, network control device, network control method, and program Download PDF

Info

Publication number
WO2021210137A1
WO2021210137A1 PCT/JP2020/016763 JP2020016763W WO2021210137A1 WO 2021210137 A1 WO2021210137 A1 WO 2021210137A1 JP 2020016763 W JP2020016763 W JP 2020016763W WO 2021210137 A1 WO2021210137 A1 WO 2021210137A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal station
sta
unit
wireless communication
Prior art date
Application number
PCT/JP2020/016763
Other languages
French (fr)
Japanese (ja)
Inventor
俊翔 黄
大誠 内田
辰彦 岩國
秀樹 和井
直樹 北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022514956A priority Critical patent/JP7436915B2/en
Priority to PCT/JP2020/016763 priority patent/WO2021210137A1/en
Publication of WO2021210137A1 publication Critical patent/WO2021210137A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a wireless communication system, a network control device, a network control method and a program.
  • millimeter-wave band wireless communication technology capable of high-speed communication has attracted attention.
  • Examples of this technology include wireless LAN (IEEE 802.11ad, 802.11ay) / wireless PAN (IEEE 802.15.3e) that employs a millimeter wave band, and a fifth-generation mobile communication system.
  • IEEE 802.11ad, 802.11ay wireless LAN
  • IEEE 802.15.3e wireless PAN
  • the frequency of the microwave band is 6 GHz (gigahertz) or less, and the frequency of the millimeter wave band is several tens of GHz or more.
  • the millimeter wave band is characterized by a large attenuation of radio waves in free space propagation.
  • a radio communication system using the above standardized technology incorporates a technique for improving radio quality by beamforming.
  • Beamforming is the formation of a directional beam using a plurality of antenna elements.
  • a wireless area is often configured in a plane by installing a large number of access points (hereinafter referred to as AP).
  • Handover control is performed to maintain wireless communication between the AP and the mobile terminal station (hereinafter referred to as STA).
  • the handover control transfers the STA from the connected AP to another AP based on the monitoring result by a predetermined radio quality monitoring method (for example, whether the received power is below a certain level) performed by the AP (or STA). It is a technology to reconnect.
  • FIG. 13 is a diagram showing an example of handover control.
  • the STA is connected to AP # 1.
  • Arrow A91 is a path moving away from AP # 1 toward AP # 2.
  • the radio quality for example, received power
  • the radio quality between AP # 2 and its own station observed in STA will increase.
  • the handover control is started when the STA is near the desired boundary line A92 of the handover control.
  • the STA generally maintains a wireless connection with AP # 1 to which the station is connected until the observed radio quality drops to a certain level. If the STA continues to connect to AP # 1 whose wireless quality is deteriorated even though it has passed the desired boundary line A92, the handover control to AP # 2 is not started, and the wireless communication throughput deteriorates. There is (first problem).
  • the STA searches for the presence or absence of nearby APs in order to transmit and receive data wirelessly again.
  • the search is to search for the optimum AP (for example, the beacon with the maximum received power in the STA) from the APs found in the reception after receiving for a certain period of time in each wireless channel while the STA switches the wireless channel. It is an operation such as selecting the transmitted AP). In this way, it takes a certain amount of time for the STA to search for the optimum AP from all the candidates for the wireless channel. While the search is being executed, the STA has a problem that it cannot send and receive data wirelessly (second problem).
  • the appropriate timing corresponds to the time when the STA passes the desired boundary line A92 of the handover control in FIG.
  • FIG. 14 is a diagram showing an outline of the first prior art.
  • the difference between FIG. 14 and FIG. 13 is the radio quality (for example, reception) between AP # 1 and the STA connected to AP # 1 by a higher-level network controller (hereinafter referred to as NWC).
  • NWC higher-level network controller
  • the point is to keep monitoring (power, etc.).
  • AP # 1 transmits a radio quality report with the STA to the NWC (step S9101). If the NWC determines that the radio quality with the STA in AP # 1 is below a certain level, it presumes that the STA has crossed the desired boundary line A92 between AP # 1 and AP # 2. Based on this estimation, the NWC transmits a disconnection instruction between AP # 1 and STA (step S9102). The NWC causes the STA to disconnect from AP # 1 by the connection disconnection instruction transmitted via AP # 1, and then reconnects to AP # 2.
  • the second conventional technique is a method in which the NWC acquires position measurement information related to the STA and determines the necessity of handover control according to the position of the STA.
  • the position measurement information for example, GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) information is used.
  • GPS Global Positioning System
  • GNSS Global Navigation Satellite System
  • the NWC determines that the STA has crossed the desired boundary line A92 shown in FIG. 13, for example, based on the position measurement information, a method of initiating the handover control for the STA can be considered.
  • this method is limited to the environment in which the position measurement information of the STA can be obtained.
  • the handover control method based on the position measurement information cannot be implemented when the position is indoors where positioning is not possible, or when it is selected for the convenience of the user not to transmit the position measurement information to the NWC.
  • the third prior art is a method of handover control that solves the above-mentioned problems of the first and second conventional methods and utilizes the direction information of the directional beam in the millimeter wave band (see, for example, Patent Document 1). ..
  • FIG. 15 is a diagram showing a configuration example of a wireless communication system according to the third prior art.
  • the two APs shown in FIG. 15 are referred to as AP # 1 and AP # 2.
  • the AP can form a directional beam by the wireless communication unit.
  • AP # 1 and AP # 2 respectively, transmit information on the beam directions of the directional beams B91 and B92 to the STA (not shown in FIG. 15) transmitted and received wirelessly to the NWC via the NWC interface unit.
  • the NWC knows the sectors C91 and C92 of AP # 1 and AP # 2, respectively, in advance. Further, the NWC grasps in advance the information that the APs are adjacent to each other, for example, the directional beam B91 in the sector C91 of AP # 1 and the directional beam B92 in the sector C92 of AP # 2 are adjacent to each other. be able to.
  • FIG. 16 is a flow diagram showing an outline of an example of a handover control procedure in NWC.
  • the handover control procedure in the NWC will be described with reference to FIGS. 15 and 16.
  • the NWC handover control unit acquires beam direction information regarding the STA from the AP (step S9201). Whether or not the target STA (hereinafter referred to as the target STA) for determining the necessity of starting the handover control exists at either end of the sector of the AP (preset beam direction) in the handover control unit. (Step S9202).
  • the handover control unit determines YES in step S9202, the handover control unit monitors the radio quality between the target STA and the AP, and determines whether or not the radio quality is equal to or less than a predetermined threshold value (step S9203). If the handover control unit determines YES in step S9203, the handover control unit selects an AP to be the next connection destination of the target STA (step S9204). The handover control unit notifies the selected AP of the next connection destination of the change in the beam direction in order to accommodate the moving target STA (step S9205). By such a procedure of determining and instructing the handover control by the NWC, the STA does not need to search for APs existing in the vicinity by a plurality of wireless channels. Therefore, it is possible to reduce the time required for handover control.
  • FIG. 17 is a diagram showing an example of desired handover control according to the third prior art.
  • the three APs are described as AP # 1, AP # 2, and AP # 3.
  • the STA is connected to AP # 1.
  • AP # 1 notifies the NWC of beam direction information regarding STA (step S9301).
  • the movement path of the STA is in the direction of arrow A93.
  • the STA is moving away from sector C91 of AP # 1 and trying to enter sector C93 of AP # 3.
  • the directional beam B91 of AP # 1 is one of the directional beams at both ends in the sector C91 of AP # 1
  • the directional beam B93 of AP # 3 is the sector of AP # 3.
  • the NWC detects the change in the orientation of the STA shown in FIG. 17, and notifies the STA of the identifier of AP # 3 and the information of the radio channel by the handover instruction in the procedure shown in FIG. 16 (step S9302).
  • the STA processes the reconnection using the AP identifier and the radio channel notified by the NWC. Therefore, the third prior art can reduce the time required to control the handover of the STA as compared with the first prior art. Further, unlike the second conventional technique, the third conventional technique does not require acquisition of position measurement information by an external system.
  • FIG. 18 is a diagram showing this problem event.
  • the STA connected to AP # 1 is moving away from sector C91 of AP # 1 by the movement path in the direction of arrow A94 and is about to enter sector C92 of AP # 2.
  • the beam direction to the STA does not change.
  • the directional beam B94 of AP # 1 is neither of the directional beams at both ends in the sector C91, and the directional beam B95 of AP # 2 is neither of the directional beams at both ends of the sector C92. Therefore, it is considered that the third prior art NWC cannot determine an appropriate timing to start the handover control by using the beam direction information to the STA.
  • the handover control 18 has no choice but to determine the timing to start the handover control based on the radio quality such as the received power, as in the first conventional technique. That is, in the third conventional technique, the beam direction information cannot be utilized, and the basis of the handover control determination of the NWC is the same as that of the first conventional technique, so that there remains a problem that the accuracy of the handover control determination is lowered.
  • an object of the present invention is to provide a wireless communication system, a network control device, a network control method and a program capable of starting a handover at an appropriate timing and reducing the time required for the handover.
  • One aspect of the present invention is a wireless communication system having a network control device and a plurality of access points, wherein the access points include a wireless communication unit that wirelessly communicates with a terminal station by a beam having directional beam, and the wireless communication unit.
  • the terminal is based on a direction estimation unit that estimates the direction to the terminal station based on the beam information used by the communication unit and a round-trip transmission time in wireless communication between the wireless communication unit and the terminal station.
  • the network control device includes a distance estimation unit that estimates the distance to the station, and the network control device acquires the information of the direction estimated by the direction estimation unit and the information of the distance estimated by the distance estimation unit.
  • the key to handover of the terminal station based on the information on the position of the terminal station estimated using the information on the direction and the information on the distance acquired by the acquisition unit and the information on the position of the access point. It is used for connection with the access point of the next connection destination via the determination unit for determining whether or not and the access point to which the terminal station is connected when the determination unit determines that handover is necessary. It is a wireless communication system including a notification unit for notifying the terminal station of information.
  • One aspect of the present invention is information on the direction to the terminal station estimated based on the information of the beam used for wireless communication with the terminal station by the access point that wirelessly communicates with the terminal station by the directional beam.
  • an acquisition unit that acquires information on the distance to the terminal station estimated based on the round-trip transmission time of the access point in wireless communication with the terminal station, information in the direction acquired by the acquisition unit, and
  • a determination unit that determines the necessity of handover of the terminal station based on the information on the position of the terminal station estimated using the information on the distance and the information on the position of the access point, and the determination unit that determines the necessity of handover.
  • a notification unit that notifies the terminal station of information used for connection with the access point of the next connection destination via the access point to which the terminal station is connected. It is a network control device provided.
  • One aspect of the present invention is a network control method executed by a wireless communication system having a network control device and a plurality of access points, wherein the access points wirelessly communicate with a terminal station by a directional beam.
  • a direction estimation step that estimates the direction to the terminal station based on the information of the beam used in the communication unit, and a round-trip transmission time of the access point in wireless communication between the wireless communication unit and the terminal station.
  • the distance estimation step for estimating the distance to the terminal station based on the above, and the network control device acquires the information on the direction estimated in the direction estimation step and the information on the distance estimated in the distance estimation step.
  • One aspect of the present invention is a program for causing a computer to function as the above-mentioned network control device.
  • the handover control of the access point (AP) to which the STA is connected is appropriate as the position of the terminal station (STA) moves. It starts at an appropriate timing and reduces the time required to search for the reconnection destination AP due to handover control.
  • high frequency band radio is used for communication between AP and STA.
  • the AP detects information on the direction of the STA from its own AP by a directional beam, which is a beam having a narrow directivity.
  • the AP detects information on the distance of the STA from its own AP by transmitting a wideband signal.
  • the AP notifies the upper network control device (NWC) of the information on the direction and distance of the STA from the own AP.
  • the NWC grasps the positional relationship between the STA, the AP to which the STA is connected, and the adjacent AP by using the STA position information obtained from the STA direction and distance information notified from the AP.
  • the adjacent AP is an AP adjacent to the AP to which the STA is connected, and can be the next connection destination of the STA. Based on the grasped positional relationship, the NWC starts handover control at an appropriate timing for the STA, and is a wireless channel used for wireless communication between the AP selected as the next connection destination and the AP of the next connection destination. Instruct information such as.
  • the NWC When the NWC determines that it is necessary to start the handover control in the STA, the NWC notifies the AP identifier and the radio channel information of the next connection destination AP via the AP to which the STA is connected by the above instruction.
  • the AP identifier is information that uniquely identifies the AP. By notifying this information, the NWC causes the STA to search for the connection destination AP using the notified AP identifier and wireless channel.
  • the NWC may determine the start of handover control by further using the speed and the angular velocity obtained by differentiating the distance and direction information of the STA.
  • the NWC uses the position information of the STA obtained by wireless communication in the high frequency band without depending on an external system such as GPS, and has a positional relationship with the connected AP of the moving STA and the adjacent AP (in any case). It is possible to recognize (whether the AP is close to each other) and cause the STA to start the handover control at an appropriate timing.
  • the position information of the STA is obtained from the beam direction information used by the connected AP for wireless transmission / reception with the STA and the estimated distance information between the connected AP and the STA.
  • the NWC provides the STA with information such as the AP identifier and the radio channel identifier of the adjacent AP to be reconnected. As a result, the time required for handover control can be reduced. A detailed embodiment will be described below.
  • FIG. 1 is a diagram showing a configuration example of the wireless communication system 1 of the first embodiment.
  • the wireless communication system 1 has an AP10 and an NWC20.
  • the wireless communication system 1 has a plurality of AP10s, but FIG. 1 shows two AP10s.
  • the two AP10s are described as AP10-1 and AP10-2, respectively.
  • the sector Ci is a range in which wireless communication is possible by the antenna element of AP10-i.
  • the AP10-i may have a plurality of sectors in different directions.
  • Each AP10 is connected to the NWC20.
  • the STA (terminal station) 30 is located in an area where the sector C1 of AP10-1 and the sector C2 of AP10-2 overlap.
  • the STA 30 is connected to the AP10-1 by the directional beam B1 and is in a state of being able to communicate with the AP10-1.
  • the STA 30 moves in the direction of arrow A1.
  • the arrow A1 is a path that leaves the AP10-1 without changing its direction. That is, the STA 30 moves away from AP10-1 toward AP10-2.
  • the radio quality of the STA 30 decreases as the distance from AP10-1 increases. Therefore, there is a need for handover control in the STA 30.
  • the ideal reconnection destination for the STA 30 is the directional beam B2 of the AP10-2.
  • the handover determination is performed based on the radio quality (received power, etc.).
  • the AP10 estimates the direction of the STA30 as seen from the own AP based on the antenna directional beam used for the wireless communication, as in the third conventional technique. Further, the AP10 wirelessly communicating with the STA 30 can estimate the distance from the own AP to the STA 30 by utilizing a wide band signal, unlike the third conventional technique.
  • the AP10 generates STA position information indicating the estimated position of the STA 30, and notifies the NWC 20 of the generated STA position information.
  • the STA position information is represented by the beam direction of the AP10 and the estimated distance from the AP10 to the STA30.
  • the beam direction of AP10 represents the direction of STA30 as seen from the own AP.
  • the AP10-i notifies the NWC20 of the information on the beam direction of the AP10-i and the information on the estimated distance from the AP10-i to the STA30, and the NWC20 uses the notified information to notify the AP10-i.
  • the STA position information of the STA 30 as seen from the above may be generated.
  • AP10-1 communicating with STA30 notifies NWC20 of STA position information (step S11).
  • the NWC 20 determines whether or not it is necessary to start the handover control for reconnecting the STA 30 to an adjacent AP different from the AP10 of the current connection destination.
  • the adjacent AP is AP10-2.
  • the NWC 20 determines that it is necessary to start the handover control of the STA 30, it transmits a reconnection instruction instructing the reconnection destination to the AP10-2 to the STA30 via the AP10-1 (step S12).
  • the reconnection instruction includes information necessary for the STA 30 to wirelessly connect to the AP10-2. Specifically, these pieces of information are the AP identifier of AP10-2 and the identifier of the radio channel.
  • AP10-1 wirelessly notifies STA30 of the reconnection instruction received from NWC20. When the STA 30 receives the reconnection instruction, the STA 30 cancels the wireless connection with the AP10-1.
  • the STA 30 When the STA 30 cancels the wireless connection with the AP10-1, the STA 30 starts the procedure for reconnecting to the AP10-2 by using the AP identifier instructed by the NWC20 and the identifier of the wireless channel by the reconnection instruction.
  • the STA 30 can attempt to reconnect with the AP 10-2 by transmitting a control signal for searching a peripheral AP such as a beacon using the instructed radio channel. Alternatively, the STA 30 may search only the indicated radio channel.
  • the STA 30 responds to AP10-2 by transmitting a radio frame requesting a wireless connection when receiving a control signal such as a beacon from AP10-2 of the designated AP identifier by the designated radio channel. It is also possible to try to reconnect.
  • FIG. 2 is a functional block diagram showing a configuration example of the AP10 of the first embodiment. In FIG. 2, only the functional blocks related to the present embodiment are extracted and shown.
  • the AP 10 includes an antenna 11, a wireless communication unit 12, a direction estimation unit 13, a distance estimation unit 14, and an NWC interface unit 15.
  • Antenna 11 transmits and receives wireless signals.
  • the wireless communication unit 12 wirelessly communicates with the STA 30 (not shown in FIG. 2) by a directional beam B having a narrow directivity.
  • the AP10 can change the direction of the directional beam B formed by the antenna 11 within a certain range. As an example, this fixed range is the range of sector C.
  • the directional beams B in each direction are described as directional beams B-1 to Bn.
  • the directional beams B-1 and Bn are both ends of sector C.
  • the wireless communication unit 12 can output transmission / reception time information indicating the time transmitted / received wirelessly to the STA 30 to the direction estimation unit 13 and the distance estimation unit 14.
  • the direction estimation unit 13 acquires transmission / reception time information from the wireless communication unit 12 and records it together with the beam direction information.
  • the beam direction information indicates the beam direction of the directional beam B used in the wireless communication unit 12.
  • the direction estimation unit 13 adds transmission / reception time information indicating the time when the beam direction information is obtained to the beam direction information, and outputs the beam direction information to the NWC interface unit 15.
  • the distance estimation unit 14 estimates the distance to the STA 30 using the transmission / reception time information acquired from the wireless communication unit 12.
  • the distance estimation unit 14 outputs estimated distance information indicating the estimated distance to the NWC interface unit 15.
  • Time Of Arrival is an example of the distance estimation method performed by the distance estimation unit 14.
  • the AP10 measures the reciprocating time. Specifically, the distance estimation unit 14 sets the time when the wireless communication unit 12 of the AP 10 transmits some radio signal to the STA 30 to T 0 , and the time when the wireless communication unit 12 receives the response signal to the radio signal from the STA 30. Record as 1. Further, it is assumed that the response time from when the STA 30 receives the radio signal from the AP 10 to when the response signal is transmitted is defined as T Response.
  • the transmission / reception time of AP10 (or STA30) can be obtained from the wireless communication information that can be acquired by the wireless communication unit 12 by another method, the information is not limited to the above method.
  • the distances d AP and STA may be estimated based on.
  • the distance estimation unit 14 After estimating the distance between the AP 10 and the STA 30, the distance estimation unit 14 records the estimated distance information indicating the estimated distance and outputs the estimated distance information to the NWC interface unit 15. The distance estimation unit 14 may add the transmission / reception time information used for estimation to the estimated distance information.
  • the NWC interface unit 15 adds the STA identifier of the STA 30 and the AP identifier of its own device to the estimated distance information calculated using the information obtained by wireless communication with the STA 30 and the STA position information in which the beam direction information is set. In addition, the NWC20 is notified.
  • the STA identifier is information that uniquely identifies the STA 30.
  • the NWC 20 records the STA position information of each STA 30 notified from the AP 10.
  • the NWC interface unit 15 may notify the NWC 20 by adding the STA identifier of the STA 30 and the AP identifier of its own device to the estimated distance information and the beam direction information.
  • the NWC 20 records the estimated distance information of each STA 30 notified from the AP 10 and the beam direction information in association with each other as STA position information. Further, when the NWC interface unit 15 receives the reconnection instruction to the STA 30 based on the determination result that the handover control is started from the NWC 20, the NWC interface unit 15 outputs the reconnection instruction to the wireless communication unit 12. The wireless communication unit 12 wirelessly transmits a reconnection instruction to the STA 30.
  • FIG. 3 is a functional block diagram showing a configuration example of the NWC 20 of the first embodiment. In FIG. 3, only the functional blocks related to the present embodiment are extracted and shown.
  • the NWC 20 determines whether or not the handover control of the STA 30 needs to be started.
  • the NWC 20 includes an AP interface unit 21, a handover control determination unit 23, and a storage unit 22.
  • the AP interface unit 21 communicates with a plurality of AP10s under the control of the NWC 20.
  • the AP interface unit 21 stores the STA position information of each STA 30 collected from each AP 10.
  • the AP interface unit 21 records the estimated distance information of each STA 30 collected from each AP 10 and the beam direction information in association with each other as STA position information.
  • the AP interface unit 21 notifies the handover control determination unit 23 of the recorded STA position information.
  • the storage unit 22 stores information about the candidate AP10 that is the handover destination of the STA 30. Specifically, the storage unit 22 stores the AP position information of each AP and the AP information in advance. The AP position information indicates the position of AP10. The AP position information may be a record of the position of each AP10 at the time of stationing design in a coordinate system fixed on a map prepared in advance. Alternatively, the storage unit 22 may acquire the position information of the AP10 measured by the GPS provided in each AP10 and store it as the AP position information. If the storage unit 22 can store the information indicating the position of each AP10, the storage unit 22 may acquire the information by any method.
  • the storage unit 22 notifies the handover control determination unit 23 of the positional relationship information indicating the positional relationship of the plurality of AP10s based on the positional information of each AP10.
  • the positional relationship information is, for example, information including the positional information of each of the plurality of AP10s including the AP10 to which the STA 30 is connected.
  • the AP information indicates the AP identifier, radio frequency and radio channel of each AP10.
  • the AP information further indicates information on the connection area of each AP10.
  • the connection area is represented by, for example, the combined range of one or more sectors C of AP10.
  • the handover control determination unit 23 makes a handover control determination of the STA 30. Details of the handover control determination unit 23 will be described later with reference to FIG.
  • FIG. 4 is a functional block diagram showing a detailed configuration example of the handover control determination unit 23 included in the NWC 20 of the first embodiment.
  • the handover control determination unit 23 includes a STA position information acquisition unit 231, an AP information acquisition unit 232, a determination unit 233, and a reconnection instruction unit 234.
  • the STA position information acquisition unit 231 acquires the STA position information from the AP interface unit 21, and inputs the acquired STA position information to the determination unit 233.
  • the AP information acquisition unit 232 acquires information on the AP 10 that can be the reconnection destination of the handover control in the vicinity of the target STA 30 (hereinafter referred to as the target STA) for determining whether or not the handover control needs to be started.
  • the AP10 that can be the reconnection destination is an AP10 (hereinafter referred to as an adjacent AP) adjacent to the AP10 to which the target STA is currently connected (hereinafter referred to as a connected AP).
  • the AP next to the target STA is connected to the NWC20, and among the AP10s different from the connected AP, the AP10 at a position within a predetermined distance from the position of the connected AP or the AP10 at a position closer to the connected AP is in order.
  • the position of the AP 10 is obtained from the positional relationship information notified from the storage unit 22.
  • the AP information acquisition unit 232 acquires the position information of the connected AP and the AP position information and the AP information of the adjacent AP and inputs them to the determination unit 233.
  • Positional relationship information may be used as the position information of the connected AP and the AP position information of the adjacent AP.
  • the determination unit 233 makes a handover control determination based on the STA position information input from the STA position information acquisition unit 231 and the information input from the AP information acquisition unit 232.
  • the reconnection instruction unit 234 acquires the determination result by the determination unit 233 and the information necessary for the STA 30 to search for the reconnection destination AP10, and outputs the information to the AP interface unit 21.
  • the determination unit 233 makes a handover control determination when the target STA moves away from the connected AP. In the handover control determination, whether or not the determination unit 233 causes the target STA to start handover control based on the positional relationship between the target STA and the adjacent AP indicated by the STA position information of the target STA and the AP position information of the adjacent AP. , When starting, the AP10 to be the next connection destination is determined. In addition, there are the following examples as a method of determining whether or not to start the handover control. One is a method in which a distance threshold value is set in advance for each AP10 shown in FIG. 1, and when the distance between the target STA and the connected AP exceeds the distance threshold value, it is determined that the handover control is started.
  • Another example is a method in which the information of the connection area of each AP 10 is stored in the storage unit 22 in advance, and when the target STA crosses the boundary of the connection area, it is determined that the handover control is started. It is conceivable to design this connection area in consideration of the communication distance, the movable range of the directional beam, the direction, and the like. Further, as a method of determining using the distance threshold value, it is conceivable to change the distance threshold value for each direction, considering that the antenna gains of the directional beams B-1 to Bn of each AP10 are different for each direction. ..
  • a method of selecting the AP10 of the next connection destination of the target STA when the determination unit 233 determines that the handover control is started is a method of selecting the closest AP10 by comparing the linear distances between two points between the target STA and the adjacent APs.
  • the position of the target STA can be obtained by adding the position of the STA 30 as seen from the AP 10 indicated by the STA position information of the target STA to the position of the connected AP.
  • the determination unit 233 determines the above determination result, that is, the start of the handover control, the fact of the start, the AP identifier of the next connection destination AP10, the radio channel identifier used by the AP10, and the like, etc.
  • the information is output to the reconnection instruction unit 234.
  • the reconnection instruction unit 234 outputs the determination result to the AP interface unit 21 including the determination result.
  • FIG. 5 is a flow chart showing the operation of the wireless communication system 1.
  • the direction estimation unit 13 of the AP 10 includes transmission / reception time information indicating the time when the signal is transmitted or received in the information indicating the beam direction when the wireless communication unit 12 wirelessly transmits or receives the signal to and from the STA 30. Is added and output to the NWC interface unit 15 (step S101).
  • the distance estimation unit 14 estimates the distance to the STA 30 using the transmission / reception time information acquired from the wireless communication unit 12 (step S102).
  • the distance estimation unit 14 outputs estimated distance information indicating the estimated distance to the NWC interface unit 15.
  • the NWC interface unit 15 adds the STA identifier of the STA 30 and the AP identifier of the own device to the STA position information in which the estimated distance information and the beam direction information are set, and notifies the NWC 20 (step S103).
  • Each AP10 performs the processes of steps S101 to S103 for each of the connected STA30s, for example, at predetermined cycles.
  • the AP10 may perform the process of step S101 and the process of step S102 in parallel, or may perform the process of step S101 after the process of step S102.
  • the AP interface unit 21 of the NWC 20 receives the STA position information of each STA 30 from each AP 10 (step S201).
  • the AP interface unit 21 notifies the handover control determination unit 23 of the STA position information of each received STA 30.
  • the STA position information acquisition unit 231 of the handover control determination unit 23 inputs the STA position information acquired from the AP interface unit 21 to the determination unit 233.
  • the AP information acquisition unit 232 identifies the target STA and the connected AP based on the STA identifier and the AP identifier set in the STA position information.
  • the AP information acquisition unit 232 selects an adjacent AP of the connected AP with reference to the positional relationship information acquired from the storage unit 22 (step S202).
  • the AP information acquisition unit 232 reads the AP information of the adjacent AP from the storage unit 22.
  • the AP information acquisition unit 232 reads the position information of the connected AP and the AP position information and the AP information of the adjacent AP from the storage unit 22 and inputs them to the determination unit 233.
  • the determination unit 233 determines whether the target STA is moving away from the connected AP by using the time-series STA position information of the target STA (step S203). When the determination unit 233 determines that the target STA is moving away from the connected AP (step S203: YES), the determination unit 233 uses the position information of the connected AP and the AP position information and AP information of the adjacent AP. Then, it is determined whether or not to start the handover control of the target STA (step S204). For example, the determination unit 233 determines that the handover control is started when the distance between the target STA and the connected AP exceeds the distance threshold value or when the target STA crosses the boundary of the connection area.
  • the determination unit 233 uses the position information of the connected AP and the AP position information and AP information of the adjacent AP from among the adjacent APs.
  • the next connection destination AP10 is selected (step S205). For example, the determination unit 233 may select the AP10 at the position closest to the position of the target STA from the adjacent APs, or may select the AP10 having a connection area including the position of the target STA.
  • the determination unit 233 includes information indicating the target STA, information indicating the connecting AP, the AP identifier of the next connection destination AP10, the radio frequency and the radio channel identifier used for connecting to the next connection destination AP10, and the like.
  • the information is output to the reconnection instruction unit 234.
  • the reconnection instruction unit 234 sends a reconnection instruction in which the destination information indicating the target STA and the AP identifier, radio frequency, and radio channel identifier of the next connection destination AP10 are set via the AP interface unit 21 to the connecting AP. (Step S206).
  • the reconnection instruction unit 234 may further notify the AP10 of the next connection destination to instruct the position of the target STA to change the beam direction.
  • step S203 determines that the target STA has not moved away from the connected AP (step S203: NO), or determines that the handover control of the target STA is not started (step S204:). NO), the process ends.
  • the NWC interface unit 15 of the connected AP receives the reconnection instruction transmitted from the NWC 20 in step S260, and outputs the received reconnection instruction to the wireless communication unit 12.
  • the wireless communication unit 12 wirelessly transmits a reconnection instruction from the antenna 11.
  • the target STA receives the reconnection instruction, it disconnects from the connecting AP and reconnects with the next connection destination AP10 using the information set in the reconnection instruction.
  • the NWC uses the position information at a certain moment of the STA to determine whether or not the handover control needs to be started for the moving STA.
  • the NWC may frequently cause the STA to perform handover control by the method shown in the first embodiment. Due to frequent handover control instructions, there may be a problem that the overhead increases and the throughput deteriorates, or a problem that the control sequence is repeated for a certain period of time and wireless connection becomes impossible.
  • the second embodiment prevents the NWC from causing the STA to perform frequent handover control.
  • the configuration of the wireless communication system of this embodiment is the same as that of the first embodiment shown in FIG.
  • the NWC 20 of the second embodiment determines the necessity of starting the handover control based on the information regarding the movement obtained from the STA position information of the moving STA 30 shown in FIG.
  • the information regarding the movement of the STA 30 is motion information such as a velocity vector estimated by differentiating the STA position information or an angular velocity vector.
  • the NWC 20 determines whether or not the handover control needs to be started in consideration of the estimated moving speed vector or the angular velocity vector.
  • the differences between the second embodiment and the first embodiment will be mainly described.
  • the NWC 20 acquires STA position information at different times a plurality of times (twice or more).
  • the determination unit 233 of the NWC 20 estimates the velocity vector or the angular velocity vector of the target STA based on the STA position information at different times, and uses the estimated velocity vector or the angular velocity vector to control the handover of the target STA. Determine if it is necessary to start.
  • the determination unit 233 determines that the target STA moves away from the connected AP based on the STA position information, the positional relationship between the target STA and the neighboring AP, and the estimated velocity vector v or the estimated angular velocity vector ⁇ of the target STA. Based on the above, it is determined whether or not the target STA is to start the handover control.
  • the determination unit 233 determines that the handover control has started based on the STA position information of the target STA as in the first embodiment, and then further changes the positive / negative symbol of the estimated speed vector v within a predetermined period, or , When it is determined that the positive / negative symbol change of the estimated angular velocity ⁇ within a predetermined period is not more than a predetermined number of times, it is determined that the target STA starts the handover control.
  • the determination unit 233 may determine that the handover control starts when both the positive / negative symbol change of the estimated velocity vector v and the positive / negative symbol change of the estimated angular velocity ⁇ are less than or equal to a predetermined number of times, and the positive / negative symbol of the estimated velocity vector v.
  • the handover control is started.
  • the predetermined period and the predetermined number of times are arbitrary set values. These set values may be set in advance in the determination unit 233. Alternatively, the determination unit 233 or manually may change these set values according to the position, speed, angular velocity of the target STA and the radio quality before and after the handover control. Any setting method can be used for setting a predetermined period and a predetermined number of times. Further, the predetermined number of times of the estimated velocity vector v and the predetermined number of times of the estimated angular velocity ⁇ may be common or different.
  • the operation of the NWC 20 after the determination unit 233 determines the necessity of starting the handover control based on the estimated velocity vector v and the estimated angular velocity ⁇ as described above is the same as that of the first embodiment.
  • the NWC 20 of the second embodiment can determine the start of handover control by the macroscopic movement of the STA 30 using one or both of the estimated velocity vector v and the estimated angular velocity ⁇ . Therefore, when the STA 30 frequently changes the moving direction, it is possible to avoid excessive handover control. For example, when the STA 30 moves back and forth between the boundary zones of a plurality of AP10s, in the first embodiment, the handover control is frequently performed, and the throughput may be deteriorated or the wireless connection itself may not be possible. be. In the second embodiment, it is possible to avoid frequent handover control for the STA 30 performing such a movement and maintain the connected AP10 to maintain the radio quality.
  • FIG. 6 is a diagram showing a configuration example of the wireless communication system 1a according to the third embodiment.
  • the wireless communication system 1a has an AP10a and an NWC20a.
  • the wireless communication system 1a has a plurality of AP10a, but FIG. 6 shows two AP10a.
  • the two AP10a are described as AP10a-1 and AP10a-2, respectively.
  • AP10a-1 does not move and AP10a-2 can move.
  • AP10a-2 is mounted on, for example, a drone, a mobile base station vehicle, or the like.
  • the non-moving AP10a the AP10 of the first embodiment may be used.
  • the NWC uses the position information or motion information of the target STA to determine whether or not to start handover control for the target STA.
  • a movable AP10a is also connected under the NWC20a.
  • each AP10a is provided with a function of acquiring its own position information and notifying the NWC20a of the acquired position information.
  • FIG. 7 is a functional block diagram showing a configuration example of AP10a according to the third embodiment.
  • the difference between the configuration of the AP10a shown in FIG. 7 and the configuration of the AP10 of the first embodiment shown in FIG. 2 is that the AP10a further includes the AP position information notification unit 16.
  • the AP position information notification unit 16 acquires AP position information indicating the position of the AP10a itself periodically or irregularly, and notifies the NWC20a of the acquired AP position information via the NWC interface unit 15.
  • a positioning method using, for example, GPS can be used.
  • the configuration of the NWC 20a is the same as that of the NWC 20 of the first embodiment shown in FIG. However, the storage unit 22 of the NWC 20a is different in that the AP position information is updated by storing the AP position information notified from the AP 10a.
  • the NWC 20a performs appropriate handover control for the STA based on the latest position information of the AP10a by grasping the position information of each AP10a that changes with time. It becomes possible.
  • the NWC uses the position information or the motion information of the target STA to determine whether or not the handover control of the target STA needs to be started.
  • the handover control is mounted only on a single device, that is, the NWC
  • any AP is provided with a function related to the collection of the position information of the STA possessed by the NWC and the handover control determination.
  • the AP performs handover control for each STA as an alternative to the NWC.
  • such an AP will be referred to as a master controller. This embodiment will be described focusing on the differences from the above-described embodiments.
  • FIG. 8 is a diagram showing a configuration example of the wireless communication system 1b according to the fourth embodiment.
  • the wireless communication system 1b has an AP10b and an NWC20.
  • the wireless communication system 1b has a plurality of AP10b units, but FIG. 8 shows two AP10b units.
  • the plurality of AP10b and NWC20 are connected to the network 40.
  • the two AP10b units are described as AP10b-1 and AP10b-2, respectively.
  • the wireless communication system 1b may further have the AP10 of the first or second embodiment, and may further have the AP10a of the third embodiment. Further, the wireless communication system 1b may have one AP10b and one or more AP10s or AP10a.
  • FIG. 8 it is assumed that the NWC 20 is disconnected from the network 40 due to some kind of failure. In this case, one of the plurality of AP10b stations becomes the master control device.
  • the AP10b-2 selected as the master control device collects the position information of the STA 30 under the AP10b-1 and determines the handover control. Since these functions of AP10b-2 are equivalent to those of NWC20 and 20a in the first to third embodiments, detailed description thereof will be omitted here.
  • AP10b-2 is selected as the master control device, but any one station may be selected as the master control device among the AP10bs connected to each other by any method. ..
  • each AP10b may autonomously determine which AP10b serves as the master control device based on predetermined predetermined conditions, and a monitoring system (not shown) that monitors and controls the wireless communication system 1b. May instruct AP10b to become the master control device according to the input of the maintainer. Then, from the once selected master control device, its role or function can be transferred to another interconnected AP10b by any method.
  • FIG. 9 is a functional block diagram of a configuration example of AP10b according to the fourth embodiment.
  • the difference between the configuration of AP10b shown in FIG. 9 and the configuration of AP10 of the first embodiment shown in FIG. 2 is that AP10b includes an inter-AP interface unit 17 instead of the NWC interface unit 15 and handover control.
  • the point is that the functional unit 18 is further provided.
  • the AP-to-AP interface unit 17 transmits / receives data to / from another AP10b.
  • the above differences may be applied to AP10a of the third embodiment shown in FIG. 7.
  • FIG. 10 is a block diagram showing a detailed configuration of the handover control function unit 18 of the AP10b.
  • the handover control function unit 18 includes a storage unit 181 and a handover control determination unit 182.
  • the handover control function unit 18 has the same function as the handover control determination unit 23 of the NWCs 20 and 20a of the first to third embodiments. That is, the storage unit 181 and the handover control determination unit 182 have the same functions as the storage unit 22 and the handover control determination unit 23, respectively.
  • FIG. 11 is a block diagram showing a detailed configuration of the handover control determination unit 182.
  • the handover control determination unit 182 includes an STA position information acquisition unit 1821, an AP information acquisition unit 1822, a determination unit 1823, and a reconnection instruction unit 1824.
  • the STA position information acquisition unit 1821, AP information acquisition unit 1822, determination unit 1823, and reconnection instruction unit 1824 are the STA position information acquisition unit 231 and AP included in the handover control determination unit 23 of the first embodiment shown in FIG. 4, respectively. It has the same functions as the information acquisition unit 232, the determination unit 233, and the reconnection instruction unit 234. According to the configuration examples shown in FIGS. 10 and 11, the master control device realizes the same function as the NWC.
  • the handover control function unit 18 is connected to another AP10b via the inter-AP interface unit 17.
  • the AP-to-AP interface unit 17 inputs the STA position information transmitted by another AP10b. Further, the inter-AP interface unit 17 outputs an instruction for starting the handover control to the STA 30 to another AP 10b to which the STA 30 is connected.
  • step S101 of FIG. 5 the direction estimation unit 13 of AP10b outputs information indicating the beam direction to the inter-AP interface unit 17, and in step S102 of FIG. 5, the distance estimation unit 14 outputs the estimated distance information. Is output to the inter-AP interface unit 17.
  • step S103 of FIG. 5 the AP-to-AP interface unit 17 of the AP10b notifies the master control device of the STA position information. When AP10b is a master control device, the process of step S103 in FIG. 5 is not performed.
  • the master control device performs the processes of steps S201 to S206 of FIG. However, in step S201, the inter-AP interface unit 17 of the master control device notifies the handover control function unit 18 of the STA position information of each STA 30 received from the other AP 10b and the STA position information generated by the own device. .. Further, in step S206, the reconnection instruction unit 1824 transmits a reconnection instruction to the connecting AP via the inter-AP interface unit 17. The inter-AP interface unit 17 outputs a reconnection instruction to the wireless communication unit 12 when the connected AP is a master control device.
  • the handover control determination of the STA 30 can be determined by the function of the AP10b serving as the master control device, appropriate handover control can be performed even when a failure of the NWC 20 or the like occurs.
  • NWC20 and 20a in the above-described embodiment may be realized by a computer.
  • the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and may be a program for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • FIG. 12 is a device configuration diagram showing a hardware configuration example of the NWC 20.
  • the NWC 20 includes a processor 71, a storage unit 72, a communication interface 73, and a user interface 74.
  • the NWC 20a has the same configuration.
  • the processor 71 is a central processing unit that performs calculations and controls.
  • the processor 71 is, for example, a CPU.
  • the processor 71 reads a program from the storage unit 72 and executes it.
  • the storage unit 72 further has a work area for the processor 71 to execute various programs and the like.
  • the communication interface 73 is connected so as to be able to communicate with another device.
  • the user interface 74 is an input device such as a button, a keyboard, and a pointing device, and a display device such as a lamp and a display. An artificial operation is input by the user interface 74.
  • the function of the handover control determination unit 23 is realized by the processor 71 reading a program from the storage unit 72 and executing it. All or part of these functions may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • the AP interface unit 21 is realized by the communication interface 73. Note that some of these functions may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
  • the wireless communication system has a network control device and a plurality of access points.
  • the access point includes a wireless communication unit, a direction estimation unit, and a distance estimation unit.
  • the wireless communication unit wirelessly communicates with the terminal station by means of a directional beam.
  • the direction estimation unit estimates the direction to the terminal station as seen from itself based on the beam information used by the wireless communication unit.
  • the distance estimation unit estimates the distance to the terminal station based on the round-trip transmission time in the wireless communication between the wireless communication unit and the terminal station.
  • the network control device includes an acquisition unit, a determination unit, and a notification unit. The acquisition unit, the direction information estimated by the direction estimation unit, and the distance information estimated by the distance estimation unit are acquired.
  • the acquisition unit is, for example, the STA position information acquisition unit 231.
  • the determination unit determines the necessity of handover of the terminal station based on the information on the position of the terminal station estimated using the information on the direction and the information on the distance acquired by the acquisition unit and the information on the position of the access point. do.
  • the notification unit notifies the terminal station of information used for connection with the next connection destination access point via the access point to which the terminal station is connected.
  • the notification unit is a reconnection instruction unit 234.
  • the determination unit is based on the estimated terminal station position information, the terminal station movement information estimated using the estimated terminal station position information, and the access point position information. The necessity of handover of the station may be determined.
  • the information regarding movement is, for example, motion information such as the movement speed and angular velocity of the terminal station.
  • the access point may further include a position information notification unit that acquires information on its own position and notifies the network control device of the acquired information on its own position. Further, at least a part of the plurality of access points may further include an acquisition unit, a determination unit, and a notification unit.

Abstract

This wireless communication system includes a network control device, and a plurality of access points. The access points perform wireless communication with a terminal station by means of a directional beam. The access points estimate the direction of the terminal station on the basis of information relating to the beam, and estimate the distance to the terminal station on the basis of the round-trip transmission time to and from the terminal station. The network control device determines the necessity for handover on the basis of information relating to the position of the terminal station, estimated using the direction and distance information estimated by the access points, and information relating to the position of the access points. If it is determined that handover is necessary, the network control device notifies the terminal station of information to be used to connect to the next connection destination access point, by way of the access point to which the terminal station is currently connected.

Description

無線通信システム、ネットワーク制御装置、ネットワーク制御方法及びプログラムWireless communication system, network control device, network control method and program
 本発明は、無線通信システム、ネットワーク制御装置、ネットワーク制御方法及びプログラムに関する。 The present invention relates to a wireless communication system, a network control device, a network control method and a program.
 近年、高速通信が可能なミリ波帯無線通信技術が注目されている。この技術として、ミリ波帯を採用した無線LAN(IEEE 802.11ad,802.11ay)/無線PAN(IEEE 802.15.3e)、さらに第五世代の移動体通信システムなどが挙げられ、これらの国際標準規格が制定されている。 In recent years, millimeter-wave band wireless communication technology capable of high-speed communication has attracted attention. Examples of this technology include wireless LAN (IEEE 802.11ad, 802.11ay) / wireless PAN (IEEE 802.15.3e) that employs a millimeter wave band, and a fifth-generation mobile communication system. International standards have been established.
 マイクロ波帯の周波数は、6GHz(ギガヘルツ)以下であり、ミリ波帯の周波数は、数十GHz以上である。マイクロ波帯に比べてミリ波帯では、自由空間伝搬における電波の減衰が大きいという特徴を有する。こうした伝搬減衰を補償するため、上記の標準化された技術を用いる無線通信システムには、ビームフォーミングにより無線品質を改善する技術が盛り込まれている。ビームフォーミングとは、複数アンテナ素子を用いて指向性ビームを形成することである。 The frequency of the microwave band is 6 GHz (gigahertz) or less, and the frequency of the millimeter wave band is several tens of GHz or more. Compared to the microwave band, the millimeter wave band is characterized by a large attenuation of radio waves in free space propagation. In order to compensate for such propagation attenuation, a radio communication system using the above standardized technology incorporates a technique for improving radio quality by beamforming. Beamforming is the formation of a directional beam using a plurality of antenna elements.
 一般的な無線通信システムでは、多数のアクセスポイント(以下、APと記載)を設置することにより、面的に無線エリアを構成することが多い。APと、移動する端末局(以下、STAと記載)との無線通信を維持するために、ハンドオーバ制御が行われる。ハンドオーバ制御は、AP(またはSTA)が行う所定の無線品質監視方法(例えば、受信電力が一定レベルを下回っていないか)による監視結果に基づいて、STAを、接続中のAPから他のAPへ再接続させる技術である。図13は、ハンドオーバ制御の一例を示す図である。 In a general wireless communication system, a wireless area is often configured in a plane by installing a large number of access points (hereinafter referred to as AP). Handover control is performed to maintain wireless communication between the AP and the mobile terminal station (hereinafter referred to as STA). The handover control transfers the STA from the connected AP to another AP based on the monitoring result by a predetermined radio quality monitoring method (for example, whether the received power is below a certain level) performed by the AP (or STA). It is a technology to reconnect. FIG. 13 is a diagram showing an example of handover control.
 図13に示すハンドオーバ制御に伴う問題点を以下に記載する。図13において、STAは、AP#1に接続している。矢印A91は、AP#1から離れてAP#2に向かって移動する経路である。STAが矢印A91の経路を移動していくと、STAにおいて観測される接続中のAP#1と自局との無線品質(例えば、受信電力など)が低下していく。一方で、STAにおいて観測されるAP#2と自局との無線品質は上昇していく。図13の例では、STAがハンドオーバ制御の所望境界線A92の付近に存在するときに、ハンドオーバ制御が開始されることが望ましい。しかしながら、STAは、観測している無線品質が一定のレベルに低下するまで、自局が接続中のAP#1との無線接続を維持するのが一般的である。STAが所望境界線A92を通過したにもかかわらず無線品質が低下しているAP#1と接続し続けると、AP#2へのハンドオーバ制御が開始されず、無線通信のスループットが劣化するという問題がある(第一の問題)。 The problems associated with the handover control shown in FIG. 13 are described below. In FIG. 13, the STA is connected to AP # 1. Arrow A91 is a path moving away from AP # 1 toward AP # 2. As the STA moves along the path of arrow A91, the radio quality (for example, received power) between the connected AP # 1 observed in the STA and its own station deteriorates. On the other hand, the radio quality between AP # 2 and its own station observed in STA will increase. In the example of FIG. 13, it is desirable that the handover control is started when the STA is near the desired boundary line A92 of the handover control. However, the STA generally maintains a wireless connection with AP # 1 to which the station is connected until the observed radio quality drops to a certain level. If the STA continues to connect to AP # 1 whose wireless quality is deteriorated even though it has passed the desired boundary line A92, the handover control to AP # 2 is not started, and the wireless communication throughput deteriorates. There is (first problem).
 また、STAにおいて観測されるAP#1との無線品質がある一定のレベルを下回ると、AP#1との接続が切断される。この切断により、STAは、無線によるデータの送受信ができなくなる。そこで、STAは、再度無線によりデータを送受信するために、周辺のAPの有無を検索する。しかし、STAは、自局の周辺に存在しているAPが分からないことから、通常は全無線チャネル候補を検索する。検索とは、STAが無線チャネルを切り替えながら、各無線チャネルそれぞれで一定時間受信を行った後、その受信において発見したAPの中から、最適のAP(例えば、STAにおける受信電力が最大のビーコンを送信したAP)を選択するといった動作である。このように、STAが無線チャネルの全候補の中から最適のAPを検索するのには一定時間がかかる。検索を実行している期間、STAは、無線によるデータの送受信ができないという問題がある(第二の問題)。 Also, when the radio quality with AP # 1 observed in STA falls below a certain level, the connection with AP # 1 is disconnected. Due to this disconnection, the STA cannot send and receive data wirelessly. Therefore, the STA searches for the presence or absence of nearby APs in order to transmit and receive data wirelessly again. However, since the STA does not know the APs existing around its own station, it usually searches for all radio channel candidates. The search is to search for the optimum AP (for example, the beacon with the maximum received power in the STA) from the APs found in the reception after receiving for a certain period of time in each wireless channel while the STA switches the wireless channel. It is an operation such as selecting the transmitted AP). In this way, it takes a certain amount of time for the STA to search for the optimum AP from all the candidates for the wireless channel. While the search is being executed, the STA has a problem that it cannot send and receive data wirelessly (second problem).
 ハンドオーバ制御における第一の問題を解消するための技術として、適切なタイミングにおいてハンドオーバ制御を開始する以下の従来技術がある。なお、適切なタイミングとは、図13において、STAがハンドオーバ制御の所望境界線A92を通過したときに相当する。 As a technique for solving the first problem in handover control, there are the following conventional techniques for starting handover control at an appropriate timing. The appropriate timing corresponds to the time when the STA passes the desired boundary line A92 of the handover control in FIG.
 図14は、第一の従来技術の概要を示す図である。図14と図13との差分は、上位のネットワーク制御装置(Network controller;以下、NWCと記載)が、AP#1と、そのAP#1に接続しているSTAとの無線品質(例えば、受信電力など)を監視し続ける点である。AP#1は、STAとの無線品質報告をNWCに送信する(ステップS9101)。NWCは、AP#1におけるSTAとの無線品質が一定のレベルを下回ったと判定した場合、STAがAP#1とAP#2の所望境界線A92を通過したと推定する。この推定に基づき、NWCは、AP#1とSTAとの接続解除指示を送信する(ステップS9102)。NWCは、AP#1を介して送信した接続解除指示によりSTAにAP#1との接続を解除させたのち、AP#2へ再接続させる。 FIG. 14 is a diagram showing an outline of the first prior art. The difference between FIG. 14 and FIG. 13 is the radio quality (for example, reception) between AP # 1 and the STA connected to AP # 1 by a higher-level network controller (hereinafter referred to as NWC). The point is to keep monitoring (power, etc.). AP # 1 transmits a radio quality report with the STA to the NWC (step S9101). If the NWC determines that the radio quality with the STA in AP # 1 is below a certain level, it presumes that the STA has crossed the desired boundary line A92 between AP # 1 and AP # 2. Based on this estimation, the NWC transmits a disconnection instruction between AP # 1 and STA (step S9102). The NWC causes the STA to disconnect from AP # 1 by the connection disconnection instruction transmitted via AP # 1, and then reconnects to AP # 2.
 上記の方法は、無線品質の観測結果をハンドオーバ制御の判定に利用しているため、STAの移動に伴うフェージング、および受信機の熱雑音により位置推定の誤差が生じやすい。これにより、ハンドオーバ制御を開始するタイミングの精度が劣化するという課題が生じる。また、NWCは、AP#1とSTAとの無線品質からはSTAの位置が分からないため、STAの再接続先となるAP、及びそのAPの無線チャネルについては未知である。そのため、STAが再接続するまで、前述のように一定時間の検索が引き続き必要である。従って、無線によりデータ再送信できるまでに時間がかかるという問題(第二の問題)は解消されない。 Since the above method uses the radio quality observation result for the determination of handover control, an error in position estimation is likely to occur due to fading due to the movement of the STA and thermal noise of the receiver. This causes a problem that the accuracy of the timing for starting the handover control deteriorates. Further, since the NWC does not know the position of the STA from the radio quality between AP # 1 and the STA, the AP to which the STA is reconnected and the radio channel of the AP are unknown. Therefore, the search for a certain period of time is still required until the STA is reconnected. Therefore, the problem that it takes time to retransmit data wirelessly (second problem) cannot be solved.
 第二の従来技術は、NWCが、STAに関する位置測定情報を取得し、STAの位置に応じて、ハンドオーバ制御の要否を判定する手法である。位置測定情報には、例えば、GPS(Global Positioning System)やGNSS(Global Navigation Satellite System)の情報が用いられる。NWCは、位置測定情報に基づいて、STAが例えば図13に示す所望境界線A92を越えたと判定した場合に、STAに対してハンドオーバ制御を開始させる方法が考えられる。しかし、この方法は、STAの位置測定情報が取得可能な環境のみに適用が限定される。測位が不可である屋内の場合、もしくは、位置測定情報をNWCへ送信しないことがユーザの都合により選択された場合には、位置測定情報に基づくハンドオーバ制御方法は実施できないという課題がある。 The second conventional technique is a method in which the NWC acquires position measurement information related to the STA and determines the necessity of handover control according to the position of the STA. As the position measurement information, for example, GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) information is used. When the NWC determines that the STA has crossed the desired boundary line A92 shown in FIG. 13, for example, based on the position measurement information, a method of initiating the handover control for the STA can be considered. However, this method is limited to the environment in which the position measurement information of the STA can be obtained. There is a problem that the handover control method based on the position measurement information cannot be implemented when the position is indoors where positioning is not possible, or when it is selected for the convenience of the user not to transmit the position measurement information to the NWC.
 第三の従来技術は、上述した第一及び第二の従来方法の課題を解決し、ミリ波帯の指向性ビームの方向情報を利用するハンドオーバ制御の方法である(例えば、特許文献1参照)。図15は、第三の従来技術による無線通信システムの構成例を示す図である。図15に示す2台のAPを、AP#1、AP#2と記載する。 The third prior art is a method of handover control that solves the above-mentioned problems of the first and second conventional methods and utilizes the direction information of the directional beam in the millimeter wave band (see, for example, Patent Document 1). .. FIG. 15 is a diagram showing a configuration example of a wireless communication system according to the third prior art. The two APs shown in FIG. 15 are referred to as AP # 1 and AP # 2.
 APは、無線通信部により指向性ビームを形成することができる。AP#1、AP#2はそれぞれ、無線で送受信を行ったSTA(図15では図示せず)に対する指向性ビームB91、B92のビーム方向の情報をNWCインタフェース部経由で、NWCに送信する。NWCは、AP#1、AP#2それぞれのセクタC91、C92を事前に把握している。また、NWCは、AP同士の隣接関係、例えば、AP#1のセクタC91における指向性ビームB91と、AP#2のセクタC92における指向性ビームB92とが隣接しているという情報を事前に把握することができる。 The AP can form a directional beam by the wireless communication unit. AP # 1 and AP # 2, respectively, transmit information on the beam directions of the directional beams B91 and B92 to the STA (not shown in FIG. 15) transmitted and received wirelessly to the NWC via the NWC interface unit. The NWC knows the sectors C91 and C92 of AP # 1 and AP # 2, respectively, in advance. Further, the NWC grasps in advance the information that the APs are adjacent to each other, for example, the directional beam B91 in the sector C91 of AP # 1 and the directional beam B92 in the sector C92 of AP # 2 are adjacent to each other. be able to.
 図16は、NWCにおけるハンドオーバ制御手順の例の概要を示すフロー図である。図15及び図16を参照して、NWCにおけるハンドオーバ制御手順を説明する。NWCのハンドオーバ制御部は、STAに関するビーム方向の情報をAPから取得する(ステップS9201)。ハンドオーバ制御部は、ハンドオーバ制御の開始の要否を判定する対象のSTA(以下、対象STAと記載)が、APのセクタの両端(事前に設定されたビーム方向)のいずれかに存在するか否かを判定する(ステップS9202)。ハンドオーバ制御部は、ステップS9202においてYESと判定した場合、対象STAとAPとの間の無線品質を監視し、無線品質が所定閾値以下であるか否かを判定する(ステップS9203)。ハンドオーバ制御部は、ステップS9203においてYESと判定した場合、対象STAの次の接続先となるAPを選定する(ステップS9204)。ハンドオーバ制御部は、移動する対象STAを収容するため、選定された次の接続先のAPに、ビーム方向の変更を通知する(ステップS9205)。こうしたNWCによるハンドオーバ制御の判定と指示の手順により、STAはあらためて、周辺に存在するAPを複数の無線チャネルにより検索する必要がなくなる。よって、ハンドオーバ制御に伴う所要時間を削減が可能となる。 FIG. 16 is a flow diagram showing an outline of an example of a handover control procedure in NWC. The handover control procedure in the NWC will be described with reference to FIGS. 15 and 16. The NWC handover control unit acquires beam direction information regarding the STA from the AP (step S9201). Whether or not the target STA (hereinafter referred to as the target STA) for determining the necessity of starting the handover control exists at either end of the sector of the AP (preset beam direction) in the handover control unit. (Step S9202). If the handover control unit determines YES in step S9202, the handover control unit monitors the radio quality between the target STA and the AP, and determines whether or not the radio quality is equal to or less than a predetermined threshold value (step S9203). If the handover control unit determines YES in step S9203, the handover control unit selects an AP to be the next connection destination of the target STA (step S9204). The handover control unit notifies the selected AP of the next connection destination of the change in the beam direction in order to accommodate the moving target STA (step S9205). By such a procedure of determining and instructing the handover control by the NWC, the STA does not need to search for APs existing in the vicinity by a plurality of wireless channels. Therefore, it is possible to reduce the time required for handover control.
 図17は、第三の従来技術による所望のハンドオーバ制御の例を示す図である。図17において、3台のAPをAP#1、AP#2、AP#3と記載している。STAは、AP#1に接続している。AP#1は、STAに関するビーム方向情報をNWCに通知する(ステップS9301)。STAの移動経路は、矢印A93の方向である。STAは、AP#1のセクタC91から離れていき、AP#3のセクタC93に進入しようとしている。第三の従来技術のNWCは、AP#1の指向性ビームB91がAP#1のセクタC91における両端の指向性ビームの一つであり、AP#3の指向性ビームB93がAP#3のセクタC93における両端の指向性ビームの一つであることは事前に把握することができる。そこで、NWCは、図17に示すSTAの方位変化を検出し、図16に示した手順で、AP#3の識別子及び無線チャネルの情報をハンドオーバ指示によりSTAに通知する(ステップS9302)。STAは、NWCから通知されたAP識別子及び無線チャネルを用いて再接続の処理を行う。よって、第三の従来技術は、第一の従来技術と比較して、STAのハンドオーバを制御するための所要時間を削減できる。また、第三の従来技術は第二の従来技術とは異なり、外部システムによる位置測定情報の取得が不要である。 FIG. 17 is a diagram showing an example of desired handover control according to the third prior art. In FIG. 17, the three APs are described as AP # 1, AP # 2, and AP # 3. The STA is connected to AP # 1. AP # 1 notifies the NWC of beam direction information regarding STA (step S9301). The movement path of the STA is in the direction of arrow A93. The STA is moving away from sector C91 of AP # 1 and trying to enter sector C93 of AP # 3. In the third prior art NWC, the directional beam B91 of AP # 1 is one of the directional beams at both ends in the sector C91 of AP # 1, and the directional beam B93 of AP # 3 is the sector of AP # 3. It can be grasped in advance that it is one of the directional beams at both ends in C93. Therefore, the NWC detects the change in the orientation of the STA shown in FIG. 17, and notifies the STA of the identifier of AP # 3 and the information of the radio channel by the handover instruction in the procedure shown in FIG. 16 (step S9302). The STA processes the reconnection using the AP identifier and the radio channel notified by the NWC. Therefore, the third prior art can reduce the time required to control the handover of the STA as compared with the first prior art. Further, unlike the second conventional technique, the third conventional technique does not require acquisition of position measurement information by an external system.
日本国特許第6530720号公報Japanese Patent No. 6530720
 第三の従来技術では、APのセクタの両端のいずれでもない同一ビーム方向に向かってSTAが移動した場合、NWCのハンドオーバ制御部が取得するSTAへのビーム方向情報は変化しない。そのため、NWCはハンドオーバ制御の開始を判断できない。図18は、この問題事象を示す図である。 In the third prior art, when the STA moves toward the same beam direction that is neither of both ends of the sector of the AP, the beam direction information to the STA acquired by the handover control unit of the NWC does not change. Therefore, the NWC cannot determine the start of handover control. FIG. 18 is a diagram showing this problem event.
 図18では、AP#1に接続しているSTAは、矢印A94の方向の移動経路により、AP#1のセクタC91から離れていき、AP#2のセクタC92に進入しようとしている。この移動経路では、STAへのビーム方向は変化しない。そして、AP#1の指向性ビームB94は、セクタC91における両端の指向性ビームのいずれでもなく、AP#2の指向性ビームB95は、セクタC92における両端の指向性ビームのいずれでもない。そのため、第三の従来技術のNWCは、STAへのビーム方向情報を用いることでは、ハンドオーバ制御を開始する適切なタイミングを判定できないと考えられる。図18に示すNWCは、第一の従来技術と同じく、受信電力などの無線品質に基づいてハンドオーバ制御を開始するタイミングを判定するしかない。すなわち、第三の従来技術では、ビーム方向情報を活用できず、NWCのハンドオーバ制御判定の根拠が第一の従来技術と同じであるため、ハンドオーバ制御判定の精度が低下する課題が残る。 In FIG. 18, the STA connected to AP # 1 is moving away from sector C91 of AP # 1 by the movement path in the direction of arrow A94 and is about to enter sector C92 of AP # 2. In this movement path, the beam direction to the STA does not change. The directional beam B94 of AP # 1 is neither of the directional beams at both ends in the sector C91, and the directional beam B95 of AP # 2 is neither of the directional beams at both ends of the sector C92. Therefore, it is considered that the third prior art NWC cannot determine an appropriate timing to start the handover control by using the beam direction information to the STA. The NWC shown in FIG. 18 has no choice but to determine the timing to start the handover control based on the radio quality such as the received power, as in the first conventional technique. That is, in the third conventional technique, the beam direction information cannot be utilized, and the basis of the handover control determination of the NWC is the same as that of the first conventional technique, so that there remains a problem that the accuracy of the handover control determination is lowered.
 上記事情に鑑み、本発明は、適切なタイミングでハンドオーバを開始し、かつ、ハンドオーバにかかる時間を低減することができる無線通信システム、ネットワーク制御装置、ネットワーク制御方法及びプログラムを提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide a wireless communication system, a network control device, a network control method and a program capable of starting a handover at an appropriate timing and reducing the time required for the handover. There is.
 本発明の一態様は、ネットワーク制御装置と、複数のアクセスポイントとを有する無線通信システムであって、前記アクセスポイントは、指向性を持つビームにより端末局と無線通信する無線通信部と、前記無線通信部が使用している前記ビームの情報に基づいて前記端末局への方向を推定する方向推定部と、前記無線通信部と前記端末局との無線通信における往復の伝送時間に基づいて前記端末局までの距離を推定する距離推定部とを備え、前記ネットワーク制御装置は、前記方向推定部により推定された前記方向の情報及び前記距離推定部により推定された前記距離の情報を取得する取得部と、前記取得部が取得した前記方向の情報及び前記距離の情報を用いて推定される前記端末局の位置の情報と、前記アクセスポイントの位置の情報とに基づいて前記端末局のハンドオーバの要否を判定する判定部と、前記判定部によりハンドオーバが必要と判定された場合に、前記端末局が接続中の前記アクセスポイントを介して、次の接続先の前記アクセスポイントとの接続に用いられる情報を前記端末局に通知する通知部とを備える、無線通信システムである。 One aspect of the present invention is a wireless communication system having a network control device and a plurality of access points, wherein the access points include a wireless communication unit that wirelessly communicates with a terminal station by a beam having directional beam, and the wireless communication unit. The terminal is based on a direction estimation unit that estimates the direction to the terminal station based on the beam information used by the communication unit and a round-trip transmission time in wireless communication between the wireless communication unit and the terminal station. The network control device includes a distance estimation unit that estimates the distance to the station, and the network control device acquires the information of the direction estimated by the direction estimation unit and the information of the distance estimated by the distance estimation unit. The key to handover of the terminal station based on the information on the position of the terminal station estimated using the information on the direction and the information on the distance acquired by the acquisition unit and the information on the position of the access point. It is used for connection with the access point of the next connection destination via the determination unit for determining whether or not and the access point to which the terminal station is connected when the determination unit determines that handover is necessary. It is a wireless communication system including a notification unit for notifying the terminal station of information.
 本発明の一態様は、指向性を持つビームにより端末局と無線通信するアクセスポイントが前記端末局との無線通信に使用しているビームの情報に基づいて推定した前記端末局への方向の情報と、前記アクセスポイントが前記端末局との無線通信における往復の伝送時間に基づいて推定した前記端末局までの距離の情報とを取得する取得部と、前記取得部が取得した前記方向の情報及び前記距離の情報を用いて推定される前記端末局の位置の情報と、前記アクセスポイントの位置の情報とに基づいて前記端末局のハンドオーバの要否を判定する判定部と、前記判定部によりハンドオーバが必要と判定された場合に、前記端末局が接続中の前記アクセスポイントを介して、次の接続先の前記アクセスポイントとの接続に用いられる情報を前記端末局に通知する通知部と、を備えるネットワーク制御装置である。 One aspect of the present invention is information on the direction to the terminal station estimated based on the information of the beam used for wireless communication with the terminal station by the access point that wirelessly communicates with the terminal station by the directional beam. And an acquisition unit that acquires information on the distance to the terminal station estimated based on the round-trip transmission time of the access point in wireless communication with the terminal station, information in the direction acquired by the acquisition unit, and A determination unit that determines the necessity of handover of the terminal station based on the information on the position of the terminal station estimated using the information on the distance and the information on the position of the access point, and the determination unit that determines the necessity of handover. When it is determined that is necessary, a notification unit that notifies the terminal station of information used for connection with the access point of the next connection destination via the access point to which the terminal station is connected. It is a network control device provided.
 本発明の一態様は、ネットワーク制御装置と、複数のアクセスポイントとを有する無線通信システムが実行するネットワーク制御方法であって、前記アクセスポイントが、指向性を持つビームにより端末局と無線通信する無線通信部において使用している前記ビームの情報に基づいて前記端末局への方向を推定する方向推定ステップと、前記アクセスポイントが、前記無線通信部と前記端末局との無線通信における往復の伝送時間に基づいて前記端末局までの距離を推定する距離推定ステップと、前記ネットワーク制御装置が、前記方向推定ステップにおいて推定された前記方向の情報及び前記距離推定ステップにおいて推定された前記距離の情報を取得する取得ステップと、前記ネットワーク制御装置が、前記取得ステップにおいて取得された前記方向の情報及び前記距離の情報を用いて推定される前記端末局の位置の情報と、前記アクセスポイントの位置の情報とに基づいて前記端末局のハンドオーバの要否を判定する判定ステップと、前記ネットワーク制御装置が、前記判定ステップにおいてハンドオーバが必要と判定された場合に、前記端末局が接続中の前記アクセスポイントを介して、次の接続先の前記アクセスポイントとの接続に用いられる情報を前記端末局に通知する通知ステップと、を有するネットワーク制御方法である。 One aspect of the present invention is a network control method executed by a wireless communication system having a network control device and a plurality of access points, wherein the access points wirelessly communicate with a terminal station by a directional beam. A direction estimation step that estimates the direction to the terminal station based on the information of the beam used in the communication unit, and a round-trip transmission time of the access point in wireless communication between the wireless communication unit and the terminal station. The distance estimation step for estimating the distance to the terminal station based on the above, and the network control device acquires the information on the direction estimated in the direction estimation step and the information on the distance estimated in the distance estimation step. The acquisition step to be performed, the position information of the terminal station estimated by the network control device using the information of the direction and the information of the distance acquired in the acquisition step, and the information of the position of the access point. A determination step for determining the necessity of handover of the terminal station based on the above, and a determination step in which the network control device determines that handover is necessary in the determination step, via the access point to which the terminal station is connected. This is a network control method including a notification step for notifying the terminal station of information used for connection with the access point of the next connection destination.
 本発明の一態様は、コンピュータを、上述のネットワーク制御装置として機能させるためのプログラムである。 One aspect of the present invention is a program for causing a computer to function as the above-mentioned network control device.
 本発明により、適切なタイミングでハンドオーバを開始し、かつ、ハンドオーバにかかる時間を低減することが可能となる。 According to the present invention, it is possible to start the handover at an appropriate timing and reduce the time required for the handover.
本発明の第一の実施形態による無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the wireless communication system by 1st Embodiment of this invention. 同実施形態によるAPの構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of AP by the same embodiment. 同実施形態によるNWCの構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of NWC by the same embodiment. 同実施形態によるハンドオーバ制御判定部の詳細な構成例を示す機能ブロック図である。It is a functional block diagram which shows the detailed configuration example of the handover control determination part by this embodiment. 同実施形態による無線通信システムの動作を示すフロー図である。It is a flow chart which shows the operation of the wireless communication system by this embodiment. 第三の実施形態による無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system by 3rd Embodiment. 同実施形態によるAPの構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of AP by the same embodiment. 第四の実施形態による無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system by 4th Embodiment. 同実施形態によるAPの構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of AP by the same embodiment. 同実施形態によるハンドオーバ制御機能部の詳細な構成例を示す機能ブロック図である。It is a function block diagram which shows the detailed configuration example of the handover control function part by this embodiment. 同実施形態によるハンドオーバ制御判定部の詳細な構成例を示す機能ブロック図である。It is a functional block diagram which shows the detailed configuration example of the handover control determination part by this embodiment. 第一から第四の実施形態によるNWCのハードウェア構成例を示す装置構成図である。It is a device block diagram which shows the hardware configuration example of NWC by 1st to 4th Embodiment. 従来のハンドオーバ制御を示す図である。It is a figure which shows the conventional handover control. 第一の従来技術の概要を示す図である。It is a figure which shows the outline of the 1st prior art. 第三の従来技術による無線通信システムの構成例を示す図である。It is a figure which shows the configuration example of the wireless communication system by the 3rd prior art. 同従来技術によるNWCにおけるハンドオーバ制御手順の概要を示すフロー図である。It is a flow chart which shows the outline of the handover control procedure in NWC by the prior art. 同従来技術による所望のハンドオーバ制御の例を示す図である。It is a figure which shows the example of the desired handover control by the prior art. 同従来技術によるNWCがハンドオーバ制御の開始を判断できない場合を示す図である。It is a figure which shows the case where the NWC by the prior art cannot determine the start of the handover control.
 以下、図面を参照しながら本発明の実施形態を詳細に説明する。本実施形態では、指向性ビームの形成、及び広帯域信号の伝送が可能な無線通信システムにおいて、端末局(STA)の位置移動に伴い、そのSTAが接続するアクセスポイント(AP)のハンドオーバ制御を適切なタイミングで開始するとともに、ハンドオーバ制御に伴う再接続先APを検索するための所要時間を削減する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, in a wireless communication system capable of forming a directional beam and transmitting a wideband signal, the handover control of the access point (AP) to which the STA is connected is appropriate as the position of the terminal station (STA) moves. It starts at an appropriate timing and reduces the time required to search for the reconnection destination AP due to handover control.
 本実施形態の無線通信システムにおいては、APとSTAとの通信に高周波帯の無線を用いる。APは、狭い指向性を持つビームである指向性ビームにより自APからのSTAの方向の情報を検知する。また、APは、広帯域信号の伝送により自APからのSTAの距離の情報を検知する。APは、上位のネットワーク制御装置(NWC)に、自APからのSTAの方向及び距離の情報を通知する。NWCは、APから通知されたSTAの方向及び距離の情報から得られるSTAの位置情報を用いて、STAと、そのSTAが接続中のAP、及び、隣接APとの位置関係を把握する。隣接APは、STAが接続中のAPに隣接するAPであり、STAの次の接続先となり得る。NWCは、把握した位置関係に基づいて、STAに対して適切なタイミングでハンドオーバ制御の開始と、次の接続先として選択したAPと、次の接続先のAPとの無線通信に使用する無線チャネルなどの情報とを指示する。 In the wireless communication system of this embodiment, high frequency band radio is used for communication between AP and STA. The AP detects information on the direction of the STA from its own AP by a directional beam, which is a beam having a narrow directivity. In addition, the AP detects information on the distance of the STA from its own AP by transmitting a wideband signal. The AP notifies the upper network control device (NWC) of the information on the direction and distance of the STA from the own AP. The NWC grasps the positional relationship between the STA, the AP to which the STA is connected, and the adjacent AP by using the STA position information obtained from the STA direction and distance information notified from the AP. The adjacent AP is an AP adjacent to the AP to which the STA is connected, and can be the next connection destination of the STA. Based on the grasped positional relationship, the NWC starts handover control at an appropriate timing for the STA, and is a wireless channel used for wireless communication between the AP selected as the next connection destination and the AP of the next connection destination. Instruct information such as.
 NWCは、STAにおいてハンドオーバ制御の開始が必要と判定した場合、上記の指示により、そのSTAが接続中のAPを介して、次の接続先のAPのAP識別子及び無線チャネルの情報を通知する。AP識別子は、APを一意に識別する情報である。これらの情報を通知することにより、NWCは、通知したAP識別子及び無線チャネルを用いた接続先APの検索をSTAに行わせる。なお、NWCは、STAの距離及び方向の情報を微分して得られた速度及び角速度をさらに用いて、ハンドオーバ制御の開始を判定してもよい。 When the NWC determines that it is necessary to start the handover control in the STA, the NWC notifies the AP identifier and the radio channel information of the next connection destination AP via the AP to which the STA is connected by the above instruction. The AP identifier is information that uniquely identifies the AP. By notifying this information, the NWC causes the STA to search for the connection destination AP using the notified AP identifier and wireless channel. The NWC may determine the start of handover control by further using the speed and the angular velocity obtained by differentiating the distance and direction information of the STA.
 上記により、NWCは、GPSなどの外部システムに依らずに、高周波帯の無線通信により得られたSTAの位置情報を用いて、移動するSTAの接続中AP、及び隣接APとの位置関係(いずれのAPが近いか)を認識し、適切なタイミングでSTAにハンドオーバ制御を開始させることが可能である。STAの位置情報は、具体的には、接続中APがSTAとの無線送受信に使用したビーム方向情報、および接続中APとSTAとの推定距離情報により得られる。また、ハンドオーバ制御の実施においては、NWCが、STAに再接続先となる隣接APのAP識別子、無線チャネル識別子などの情報を提供する。これにより、ハンドオーバ制御の所要時間が低減可能である。以下に、詳細な実施形態を説明する。 According to the above, the NWC uses the position information of the STA obtained by wireless communication in the high frequency band without depending on an external system such as GPS, and has a positional relationship with the connected AP of the moving STA and the adjacent AP (in any case). It is possible to recognize (whether the AP is close to each other) and cause the STA to start the handover control at an appropriate timing. Specifically, the position information of the STA is obtained from the beam direction information used by the connected AP for wireless transmission / reception with the STA and the estimated distance information between the connected AP and the STA. Further, in the implementation of the handover control, the NWC provides the STA with information such as the AP identifier and the radio channel identifier of the adjacent AP to be reconnected. As a result, the time required for handover control can be reduced. A detailed embodiment will be described below.
[第一の実施形態]
(無線通信システム全体構成の説明)
 図1は、第一の実施形態の無線通信システム1の構成例を示す図である。無線通信システム1は、AP10と、NWC20とを有する。無線通信システム1は、複数台のAP10を有しているが、図1では2台のAP10を示している。2台のAP10をそれぞれ、AP10-1、AP10-2と記載する。また、AP10-i(i=1,2)のセクタCを、セクタCiと記載する。セクタCiは、AP10-iのアンテナ素子により無線通信が可能な範囲である。なお、AP10-iは異なる方向の複数のセクタを有してもよい。各AP10は、NWC20と接続される。
[First Embodiment]
(Explanation of the overall configuration of the wireless communication system)
FIG. 1 is a diagram showing a configuration example of the wireless communication system 1 of the first embodiment. The wireless communication system 1 has an AP10 and an NWC20. The wireless communication system 1 has a plurality of AP10s, but FIG. 1 shows two AP10s. The two AP10s are described as AP10-1 and AP10-2, respectively. Further, the sector C of AP10-i (i = 1, 2) is referred to as a sector Ci. The sector Ci is a range in which wireless communication is possible by the antenna element of AP10-i. The AP10-i may have a plurality of sectors in different directions. Each AP10 is connected to the NWC20.
 図1においてSTA(端末局)30は、AP10-1のセクタC1と、AP10-2のセクタC2とが重なる領域に位置している。STA30は、AP10-1と指向性ビームB1で接続しており、AP10-1と通信可能な状態である。それと同時に、STA30は、矢印A1の方向に移動する。矢印A1は、AP10-1から見ると方向を変えずに離れていく経路である。すなわち、STA30は、AP10-1から離れてAP10-2に向かって移動する。STA30の無線品質は、AP10-1から離れるほど低下していく。そのため、STA30には、ハンドオーバ制御の必要性が生じる。STA30にとって、理想的な再接続先は、AP10-2の指向性ビームB2である。なお、この場合、ビーム方向は変わらないため、第三の従来技術では、無線品質(受信電力など)に基づいてハンドオーバ判定を行う状況である。 In FIG. 1, the STA (terminal station) 30 is located in an area where the sector C1 of AP10-1 and the sector C2 of AP10-2 overlap. The STA 30 is connected to the AP10-1 by the directional beam B1 and is in a state of being able to communicate with the AP10-1. At the same time, the STA 30 moves in the direction of arrow A1. The arrow A1 is a path that leaves the AP10-1 without changing its direction. That is, the STA 30 moves away from AP10-1 toward AP10-2. The radio quality of the STA 30 decreases as the distance from AP10-1 increases. Therefore, there is a need for handover control in the STA 30. The ideal reconnection destination for the STA 30 is the directional beam B2 of the AP10-2. In this case, since the beam direction does not change, in the third prior art, the handover determination is performed based on the radio quality (received power, etc.).
 AP10は、STA30と無線通信している場合に、第三の従来技術と同様に、無線通信に使用しているアンテナ指向性ビームに基づき、自APから見たSTA30の方向を推定する。さらに、STA30と無線通信しているAP10は、第三の従来技術とは異なり、広帯域信号を活用して自APからSTA30までの距離を推定可能である。AP10は、STA30の推定位置を示すSTA位置情報を生成し、生成したSTA位置情報をNWC20に通知する。STA位置情報は、AP10のビーム方向、及び、AP10からSTA30までの推定距離により表される。AP10のビーム方向は、自APから見たSTA30の方向を表す。なお、AP10-iは、AP10-iのビーム方向の情報、及び、AP10-iからSTA30までの推定距離の情報をNWC20に通知し、NWC20は、通知されたこれらの情報を用いてAP10-iから見たSTA30のSTA位置情報を生成してもよい。図1の場合、STA30と通信しているAP10-1が、STA位置情報をNWC20に通知する(ステップS11)。 When the AP10 is communicating wirelessly with the STA30, the AP10 estimates the direction of the STA30 as seen from the own AP based on the antenna directional beam used for the wireless communication, as in the third conventional technique. Further, the AP10 wirelessly communicating with the STA 30 can estimate the distance from the own AP to the STA 30 by utilizing a wide band signal, unlike the third conventional technique. The AP10 generates STA position information indicating the estimated position of the STA 30, and notifies the NWC 20 of the generated STA position information. The STA position information is represented by the beam direction of the AP10 and the estimated distance from the AP10 to the STA30. The beam direction of AP10 represents the direction of STA30 as seen from the own AP. The AP10-i notifies the NWC20 of the information on the beam direction of the AP10-i and the information on the estimated distance from the AP10-i to the STA30, and the NWC20 uses the notified information to notify the AP10-i. The STA position information of the STA 30 as seen from the above may be generated. In the case of FIG. 1, AP10-1 communicating with STA30 notifies NWC20 of STA position information (step S11).
 NWC20は、STA位置情報に基づき、STA30を現在の接続先のAP10とは異なる隣接APに再接続するハンドオーバ制御の開始が必要か否かを判定する。図1において、隣接APは、AP10-2である。NWC20は、STA30のハンドオーバ制御の開始が必要と判定した場合に、AP10-2と再接続先するよう指示する再接続指示を、AP10-1を介してSTA30に送信する(ステップS12)。再接続指示には、STA30がAP10-2と無線接続するために必要な情報を含む。これらの情報は、具体的には、AP10-2のAP識別子、及び無線チャネルの識別子である。AP10-1は、NWC20から受信した再接続指示を無線によりSTA30に通知する。STA30は、再接続指示を受信した場合、AP10-1との無線接続を解除する。 Based on the STA position information, the NWC 20 determines whether or not it is necessary to start the handover control for reconnecting the STA 30 to an adjacent AP different from the AP10 of the current connection destination. In FIG. 1, the adjacent AP is AP10-2. When the NWC 20 determines that it is necessary to start the handover control of the STA 30, it transmits a reconnection instruction instructing the reconnection destination to the AP10-2 to the STA30 via the AP10-1 (step S12). The reconnection instruction includes information necessary for the STA 30 to wirelessly connect to the AP10-2. Specifically, these pieces of information are the AP identifier of AP10-2 and the identifier of the radio channel. AP10-1 wirelessly notifies STA30 of the reconnection instruction received from NWC20. When the STA 30 receives the reconnection instruction, the STA 30 cancels the wireless connection with the AP10-1.
 STA30は、AP10-1との無線接続を解除すると、再接続指示によりNWC20から指示されたAP識別子、及び無線チャネルの識別子を利用して、AP10-2に対する再接続の手順を開始する。STA30は、指示された無線チャネルを用いて、ビーコンなどの周辺APを検索するための制御信号を送信し、AP10-2との再接続を試みることが可能である。あるいは、STA30は、指示された無線チャネルのみを検索してもよい。STA30は、指示された無線チャネルにより、指示されたAP識別子のAP10-2からのビーコンなどの制御信号を受信した場合に、無線接続を要求する無線フレームを送信することによりAP10-2に応答して、再接続を試みることも可能である。 When the STA 30 cancels the wireless connection with the AP10-1, the STA 30 starts the procedure for reconnecting to the AP10-2 by using the AP identifier instructed by the NWC20 and the identifier of the wireless channel by the reconnection instruction. The STA 30 can attempt to reconnect with the AP 10-2 by transmitting a control signal for searching a peripheral AP such as a beacon using the instructed radio channel. Alternatively, the STA 30 may search only the indicated radio channel. The STA 30 responds to AP10-2 by transmitting a radio frame requesting a wireless connection when receiving a control signal such as a beacon from AP10-2 of the designated AP identifier by the designated radio channel. It is also possible to try to reconnect.
 なお、図1では第一の実施形態の説明に必要最小台数のAP10、およびSTA30のみ表示している。より多くのAP10、もしくはSTA30が存在する場合でも、同様の動作を行うことが可能である。 Note that, in FIG. 1, only the minimum number of AP10s and STA30s required for the explanation of the first embodiment are displayed. The same operation can be performed even when more AP10s or STA30s are present.
(AP10の構成の説明)
 図2は、第一の実施形態のAP10の構成例を示す機能ブロック図である。図2では、本実施形態と関係する機能ブロックのみを抽出して示してある。AP10は、アンテナ11と、無線通信部12と、方向推定部13と、距離推定部14と、NWCインタフェース部15とを備える。
(Explanation of configuration of AP10)
FIG. 2 is a functional block diagram showing a configuration example of the AP10 of the first embodiment. In FIG. 2, only the functional blocks related to the present embodiment are extracted and shown. The AP 10 includes an antenna 11, a wireless communication unit 12, a direction estimation unit 13, a distance estimation unit 14, and an NWC interface unit 15.
 アンテナ11は、無線信号を送受信する。無線通信部12は、STA30(図2では不図示)と狭い指向性を持つ指向性ビームBにより無線通信する。AP10は、アンテナ11が形成する指向性ビームBの方向を一定の範囲内で変更できる。一例として、この一定の範囲は、セクタCの範囲である。同図では、各方向の指向性ビームBを指向性ビームB-1~B-nと記載している。指向性ビームB-1及びB-nは、セクタCの両端である。無線通信部12は、STA30と無線により送受信した時刻を示す送受信時刻情報を、方向推定部13、及び距離推定部14に出力可能である。 Antenna 11 transmits and receives wireless signals. The wireless communication unit 12 wirelessly communicates with the STA 30 (not shown in FIG. 2) by a directional beam B having a narrow directivity. The AP10 can change the direction of the directional beam B formed by the antenna 11 within a certain range. As an example, this fixed range is the range of sector C. In the figure, the directional beams B in each direction are described as directional beams B-1 to Bn. The directional beams B-1 and Bn are both ends of sector C. The wireless communication unit 12 can output transmission / reception time information indicating the time transmitted / received wirelessly to the STA 30 to the direction estimation unit 13 and the distance estimation unit 14.
 方向推定部13は、無線通信部12から送受信時刻情報を取得し、ビーム方向情報とともに記録する。ビーム方向情報は、無線通信部12において使用された指向性ビームBのビーム方向を示す。方向推定部13は、ビーム方向情報に、そのビーム方向情報が得られた時刻を示す送受信時刻情報を付加してNWCインタフェース部15に出力する。 The direction estimation unit 13 acquires transmission / reception time information from the wireless communication unit 12 and records it together with the beam direction information. The beam direction information indicates the beam direction of the directional beam B used in the wireless communication unit 12. The direction estimation unit 13 adds transmission / reception time information indicating the time when the beam direction information is obtained to the beam direction information, and outputs the beam direction information to the NWC interface unit 15.
 距離推定部14は、無線通信部12から取得した送受信時刻情報を用いて、STA30との距離を推定する。距離推定部14は、推定した距離を示す推定距離情報をNWCインタフェース部15に出力する。 The distance estimation unit 14 estimates the distance to the STA 30 using the transmission / reception time information acquired from the wireless communication unit 12. The distance estimation unit 14 outputs estimated distance information indicating the estimated distance to the NWC interface unit 15.
 距離推定部14が行う距離推定の方法の一例としてTime Of Arrival(ToA)がある。例えば、AP10とSTA30との間に何かしらの往復する無線信号シーケンスが既にある場合に、AP10はその往復時間を測定する。具体的には、距離推定部14は、AP10の無線通信部12がSTA30へ何らかの無線信号を送信した時刻をT、無線通信部12がSTA30からその無線信号に対する応答信号を受信した時刻をTとして記録する。また、STA30がAP10から無線信号を受信してからその応答信号を送信するまでの応答時間をTResponseとして規定されているとする。この場合、記録された時刻T及び時刻Tと、規定の応答時間TResponseと、光速c(=3×108(m/s))とにより、AP10とSTA30との距離dAP,STAを、式(1)により推定可能である。 Time Of Arrival (ToA) is an example of the distance estimation method performed by the distance estimation unit 14. For example, if there is already some reciprocating radio signal sequence between the AP10 and the STA 30, the AP10 measures the reciprocating time. Specifically, the distance estimation unit 14 sets the time when the wireless communication unit 12 of the AP 10 transmits some radio signal to the STA 30 to T 0 , and the time when the wireless communication unit 12 receives the response signal to the radio signal from the STA 30. Record as 1. Further, it is assumed that the response time from when the STA 30 receives the radio signal from the AP 10 to when the response signal is transmitted is defined as T Response. In this case, the distance d AP, STA between AP10 and STA30 is determined by the recorded time T 0 and time T 1 , the specified response time T Response, and the speed of light c (= 3 × 108 (m / s)). , Can be estimated by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、本実施形態では、上記方法に限定せず、他の方法により、無線通信部12において取得可能な無線通信の情報から、AP10(またはSTA30)の送受信時刻を入手可能であれば、その情報を元に、距離dAP,STAを推定しても構わない。 In the present embodiment, if the transmission / reception time of AP10 (or STA30) can be obtained from the wireless communication information that can be acquired by the wireless communication unit 12 by another method, the information is not limited to the above method. The distances d AP and STA may be estimated based on.
 上記の方法により、AP10は、STA30との距離を測定するための専用の外部システムを利用する必要がない。距離推定部14は、AP10とSTA30との距離を推定した後、その推定した距離を示す推定距離情報を記録し、NWCインタフェース部15に出力する。距離推定部14は、推定距離情報に、推定に用いた送受信時刻情報を付加してもよい。 By the above method, AP10 does not need to use a dedicated external system for measuring the distance from STA30. After estimating the distance between the AP 10 and the STA 30, the distance estimation unit 14 records the estimated distance information indicating the estimated distance and outputs the estimated distance information to the NWC interface unit 15. The distance estimation unit 14 may add the transmission / reception time information used for estimation to the estimated distance information.
 NWCインタフェース部15は、STA30との無線通信により得られた情報を用いて算出された推定距離情報、及び、ビーム方向情報を設定したSTA位置情報に、STA30のSTA識別子及び自装置のAP識別子を付加してNWC20に通知する。STA識別子は、STA30を一意に識別する情報である。NWC20は、AP10から通知された各STA30のSTA位置情報を記録する。あるいは、NWCインタフェース部15は、推定距離情報、及び、ビーム方向情報に、STA30のSTA識別子及び自装置のAP識別子を付加してNWC20に通知してもよい。NWC20は、AP10から通知された各STA30の推定距離情報、及びビーム方向情報を対応付けてSTA位置情報として記録する。また、NWCインタフェース部15は、ハンドオーバ制御を開始する旨の判定結果に基づくSTA30への再接続指示をNWC20から受信した場合、その再接続指示を無線通信部12に出力する。無線通信部12は、再接続指示をSTA30に無線により送信する。 The NWC interface unit 15 adds the STA identifier of the STA 30 and the AP identifier of its own device to the estimated distance information calculated using the information obtained by wireless communication with the STA 30 and the STA position information in which the beam direction information is set. In addition, the NWC20 is notified. The STA identifier is information that uniquely identifies the STA 30. The NWC 20 records the STA position information of each STA 30 notified from the AP 10. Alternatively, the NWC interface unit 15 may notify the NWC 20 by adding the STA identifier of the STA 30 and the AP identifier of its own device to the estimated distance information and the beam direction information. The NWC 20 records the estimated distance information of each STA 30 notified from the AP 10 and the beam direction information in association with each other as STA position information. Further, when the NWC interface unit 15 receives the reconnection instruction to the STA 30 based on the determination result that the handover control is started from the NWC 20, the NWC interface unit 15 outputs the reconnection instruction to the wireless communication unit 12. The wireless communication unit 12 wirelessly transmits a reconnection instruction to the STA 30.
(NWC20の構成の説明)
 図3は、第一の実施形態のNWC20の構成例を示す機能ブロック図である。図3では、本実施形態と関係する機能ブロックのみを抽出して示してある。NWC20は、STA30のハンドオーバ制御の開始の要否を判定する。NWC20は、APインタフェース部21と、ハンドオーバ制御判定部23と、記憶部22とを備える。
(Explanation of the configuration of NWC20)
FIG. 3 is a functional block diagram showing a configuration example of the NWC 20 of the first embodiment. In FIG. 3, only the functional blocks related to the present embodiment are extracted and shown. The NWC 20 determines whether or not the handover control of the STA 30 needs to be started. The NWC 20 includes an AP interface unit 21, a handover control determination unit 23, and a storage unit 22.
 APインタフェース部21は、NWC20の配下の複数のAP10と通信する。APインタフェース部21は、各AP10から収集した各STA30のSTA位置情報を記憶する。あるいは、APインタフェース部21は、各AP10から収集した各STA30の推定距離情報、及びビーム方向情報を対応付けてSTA位置情報として記録する。APインタフェース部21は、記録したSTA位置情報をハンドオーバ制御判定部23に通知する。 The AP interface unit 21 communicates with a plurality of AP10s under the control of the NWC 20. The AP interface unit 21 stores the STA position information of each STA 30 collected from each AP 10. Alternatively, the AP interface unit 21 records the estimated distance information of each STA 30 collected from each AP 10 and the beam direction information in association with each other as STA position information. The AP interface unit 21 notifies the handover control determination unit 23 of the recorded STA position information.
 記憶部22は、STA30のハンドオーバ先となる候補のAP10に関する情報を記憶する。具体的には、記憶部22は各APのAP位置情報と、AP情報とを予め記憶する。AP位置情報は、AP10の位置を示す。AP位置情報は、事前に用意された地図上に固定された座標系における、各AP10の置局設計時の位置が記録されたものでもよい。あるいは、記憶部22は、各AP10に具備されたGPSが測定したAP10の位置情報を取得し、AP位置情報として記憶してもよい。なお、記憶部22は、各AP10の位置を示す情報を記憶できれば、それら情報を任意の方法で取得してよい。記憶部22は、各AP10の位置情報に基づいて、複数のAP10の位置関係を示す位置関係情報をハンドオーバ制御判定部23に通知する。位置関係情報は、例えば、STA30が接続中のAP10を含む複数のAP10それぞれの位置情報を含んだ情報である。AP情報は、各AP10のAP識別子、無線周波数及び無線チャネルを示す。AP情報はさらに、各AP10の接続エリアの情報を示す。接続エリアは、例えば、AP10の1以上のセクタCを合わせた範囲により表される。 The storage unit 22 stores information about the candidate AP10 that is the handover destination of the STA 30. Specifically, the storage unit 22 stores the AP position information of each AP and the AP information in advance. The AP position information indicates the position of AP10. The AP position information may be a record of the position of each AP10 at the time of stationing design in a coordinate system fixed on a map prepared in advance. Alternatively, the storage unit 22 may acquire the position information of the AP10 measured by the GPS provided in each AP10 and store it as the AP position information. If the storage unit 22 can store the information indicating the position of each AP10, the storage unit 22 may acquire the information by any method. The storage unit 22 notifies the handover control determination unit 23 of the positional relationship information indicating the positional relationship of the plurality of AP10s based on the positional information of each AP10. The positional relationship information is, for example, information including the positional information of each of the plurality of AP10s including the AP10 to which the STA 30 is connected. The AP information indicates the AP identifier, radio frequency and radio channel of each AP10. The AP information further indicates information on the connection area of each AP10. The connection area is represented by, for example, the combined range of one or more sectors C of AP10.
 ハンドオーバ制御判定部23は、STA30のハンドオーバ制御判定を行う。ハンドオーバ制御判定部23の詳細は、図4を用いて後述する。 The handover control determination unit 23 makes a handover control determination of the STA 30. Details of the handover control determination unit 23 will be described later with reference to FIG.
(ハンドオーバ制御判定部23の詳細な構成の説明)
 図4は、第一の実施形態のNWC20が有するハンドオーバ制御判定部23の詳細な構成例を示す機能ブロック図である。ハンドオーバ制御判定部23は、STA位置情報取得部231と、AP情報取得部232と、判定部233と、再接続指示部234とを備える。
(Explanation of Detailed Configuration of Handover Control Judgment Unit 23)
FIG. 4 is a functional block diagram showing a detailed configuration example of the handover control determination unit 23 included in the NWC 20 of the first embodiment. The handover control determination unit 23 includes a STA position information acquisition unit 231, an AP information acquisition unit 232, a determination unit 233, and a reconnection instruction unit 234.
 STA位置情報取得部231は、APインタフェース部21からSTA位置情報を取得し、取得したSTA位置情報を判定部233に入力する。AP情報取得部232は、ハンドオーバ制御の開始の要否を判断する対象のSTA30(以下、対象STAと記載)の付近において、ハンドオーバ制御の再接続先になりうるAP10の情報を取得する。再接続先になり得るAP10は、対象STAが現在接続中のAP10(以下、接続中APと記載)に隣接するAP10(以下、隣接APと記載)である。例えば、対象STAの隣APは、NWC20に接続され、かつ、接続中APとは異なるAP10のうち、接続中APの位置から所定距離以内の位置のAP10、あるいは、接続中APから距離が近い順に選択した所定数のAP10である。AP10の位置は、記憶部22から通知された位置関係情報から得られる。AP情報取得部232は、接続中APの位置情報と、隣接APのAP位置情報及びAP情報とを取得して判定部233に入力する。接続中APの位置情報及び隣接APのAP位置情報として、位置関係情報を用いてもよい。 The STA position information acquisition unit 231 acquires the STA position information from the AP interface unit 21, and inputs the acquired STA position information to the determination unit 233. The AP information acquisition unit 232 acquires information on the AP 10 that can be the reconnection destination of the handover control in the vicinity of the target STA 30 (hereinafter referred to as the target STA) for determining whether or not the handover control needs to be started. The AP10 that can be the reconnection destination is an AP10 (hereinafter referred to as an adjacent AP) adjacent to the AP10 to which the target STA is currently connected (hereinafter referred to as a connected AP). For example, the AP next to the target STA is connected to the NWC20, and among the AP10s different from the connected AP, the AP10 at a position within a predetermined distance from the position of the connected AP or the AP10 at a position closer to the connected AP is in order. A predetermined number of selected AP10s. The position of the AP 10 is obtained from the positional relationship information notified from the storage unit 22. The AP information acquisition unit 232 acquires the position information of the connected AP and the AP position information and the AP information of the adjacent AP and inputs them to the determination unit 233. Positional relationship information may be used as the position information of the connected AP and the AP position information of the adjacent AP.
 判定部233は、STA位置情報取得部231から入力したSTA位置情報と、AP情報取得部232から入力した情報とに基づいて、ハンドオーバ制御判定を行う。再接続指示部234は、判定部233による判定結果と、STA30が再接続先のAP10を探索するために必要な情報とを取得し、APインタフェース部21に出力する。 The determination unit 233 makes a handover control determination based on the STA position information input from the STA position information acquisition unit 231 and the information input from the AP information acquisition unit 232. The reconnection instruction unit 234 acquires the determination result by the determination unit 233 and the information necessary for the STA 30 to search for the reconnection destination AP10, and outputs the information to the AP interface unit 21.
 判定部233は、対象STAが接続中APから離れていく場合に、ハンドオーバ制御判定を行う。ハンドオーバ制御判定において、判定部233は、対象STAのSTA位置情報及び隣接APのAP位置情報により示される対象STAと隣接APとの位置関係に基づいて、対象STAにハンドオーバ制御を開始させるか否か、開始させる場合は次の接続先となるAP10の判定を行う。なお、ハンドオーバ制御を開始させるか否かの判定方法には、以下の例がある。一つは、図1に示す各AP10に距離閾値を予め設定しておき、対象STAと接続中APとの距離がその距離閾値を超えた場合にハンドオーバ制御の開始と判定する方法である。他の例は、予め各AP10それぞれの接続エリアの情報を記憶部22に記憶しておき、対象STAが接続エリアの境界を跨いだときにハンドオーバ制御の開始と判定する方法である。なお、通信距離や指向性ビームの可動範囲、方向などを勘案してこの接続エリアを設計することが考えられる。また、距離閾値を用いて判定する方法として、各AP10の指向性ビームB-1~B-nのアンテナ利得が方向毎に異なることも勘案し、その距離閾値を方向毎に変えることも考えられる。 The determination unit 233 makes a handover control determination when the target STA moves away from the connected AP. In the handover control determination, whether or not the determination unit 233 causes the target STA to start handover control based on the positional relationship between the target STA and the adjacent AP indicated by the STA position information of the target STA and the AP position information of the adjacent AP. , When starting, the AP10 to be the next connection destination is determined. In addition, there are the following examples as a method of determining whether or not to start the handover control. One is a method in which a distance threshold value is set in advance for each AP10 shown in FIG. 1, and when the distance between the target STA and the connected AP exceeds the distance threshold value, it is determined that the handover control is started. Another example is a method in which the information of the connection area of each AP 10 is stored in the storage unit 22 in advance, and when the target STA crosses the boundary of the connection area, it is determined that the handover control is started. It is conceivable to design this connection area in consideration of the communication distance, the movable range of the directional beam, the direction, and the like. Further, as a method of determining using the distance threshold value, it is conceivable to change the distance threshold value for each direction, considering that the antenna gains of the directional beams B-1 to Bn of each AP10 are different for each direction. ..
 また、判定部233がハンドオーバ制御の開始と判定した時の対象STAの次の接続先のAP10の選択方法としては、以下の例がある。一つは、対象STAと隣接APそれぞれとの二点間直線距離を比較して、最近接のAP10を選択する方法である。なお、対象STAの位置は、接続中APの位置に、対象STAのSTA位置情報が示すAP10から見たSTA30の位置を加えることにより得られる。また、上記の各接続エリアを考慮し、対象STAの位置が接続エリアに入ったAP10を選択する方法がある。また、対象STAの位置が複数のAP10の接続エリアに入った場合に、その中でも対象STAと最近接のAP10を選択する方法も考えられる。 Further, there is the following example as a method of selecting the AP10 of the next connection destination of the target STA when the determination unit 233 determines that the handover control is started. One is a method of selecting the closest AP10 by comparing the linear distances between two points between the target STA and the adjacent APs. The position of the target STA can be obtained by adding the position of the STA 30 as seen from the AP 10 indicated by the STA position information of the target STA to the position of the connected AP. Further, there is a method of selecting the AP10 in which the position of the target STA is in the connection area in consideration of each of the above connection areas. Further, when the position of the target STA enters the connection area of a plurality of AP10s, a method of selecting the AP10 closest to the target STA can be considered.
 判定部233は、上記の判定結果、すなわち、ハンドオーバ制御の開始と判定した場合には、その開始の旨と次の接続先のAP10のAP識別子、そのAP10が使用している無線チャネル識別子などの情報を、再接続指示部234に出力する。再接続指示部234は、この判定結果を含めてAPインタフェース部21に出力する。 When the determination unit 233 determines the above determination result, that is, the start of the handover control, the fact of the start, the AP identifier of the next connection destination AP10, the radio channel identifier used by the AP10, and the like, etc. The information is output to the reconnection instruction unit 234. The reconnection instruction unit 234 outputs the determination result to the AP interface unit 21 including the determination result.
 図5は、無線通信システム1の動作を示すフロー図である。AP10の方向推定部13は、無線通信部12がSTA30との間で無線により信号の送信又は受信を行ったときのビーム方向を示す情報に、その信号を送信又は受信した時刻を示す送受信時刻情報を付加してNWCインタフェース部15に出力する(ステップS101)。距離推定部14は、無線通信部12から取得した送受信時刻情報を用いて、STA30との距離を推定する(ステップS102)。距離推定部14は、推定した距離を示す推定距離情報をNWCインタフェース部15に出力する。NWCインタフェース部15は、推定距離情報、及び、ビーム方向情報を設定したSTA位置情報に、STA30のSTA識別子及び自装置のAP識別子を付加してNWC20に通知する(ステップS103)。 FIG. 5 is a flow chart showing the operation of the wireless communication system 1. The direction estimation unit 13 of the AP 10 includes transmission / reception time information indicating the time when the signal is transmitted or received in the information indicating the beam direction when the wireless communication unit 12 wirelessly transmits or receives the signal to and from the STA 30. Is added and output to the NWC interface unit 15 (step S101). The distance estimation unit 14 estimates the distance to the STA 30 using the transmission / reception time information acquired from the wireless communication unit 12 (step S102). The distance estimation unit 14 outputs estimated distance information indicating the estimated distance to the NWC interface unit 15. The NWC interface unit 15 adds the STA identifier of the STA 30 and the AP identifier of the own device to the STA position information in which the estimated distance information and the beam direction information are set, and notifies the NWC 20 (step S103).
 各AP10は、例えば、所定の周期毎に、接続中のSTA30それぞれについてステップS101~ステップS103の処理を行う。なお、AP10は、ステップS101の処理とステップS102の処理とを並行して行ってもよく、ステップS102の処理の後にステップS101の処理を行ってもよい。 Each AP10 performs the processes of steps S101 to S103 for each of the connected STA30s, for example, at predetermined cycles. The AP10 may perform the process of step S101 and the process of step S102 in parallel, or may perform the process of step S101 after the process of step S102.
 NWC20のAPインタフェース部21は、各AP10から各STA30のSTA位置情報を受信する(ステップS201)。APインタフェース部21は、受信した各STA30のSTA位置情報をハンドオーバ制御判定部23に通知する。ハンドオーバ制御判定部23のSTA位置情報取得部231は、APインタフェース部21から取得したSTA位置情報を判定部233に入力する。 The AP interface unit 21 of the NWC 20 receives the STA position information of each STA 30 from each AP 10 (step S201). The AP interface unit 21 notifies the handover control determination unit 23 of the STA position information of each received STA 30. The STA position information acquisition unit 231 of the handover control determination unit 23 inputs the STA position information acquired from the AP interface unit 21 to the determination unit 233.
 AP情報取得部232は、STA位置情報に設定されているSTA識別子及びAP識別子に基づいて対象STA及び接続中APを特定する。AP情報取得部232は、記憶部22から取得した位置関係情報を参照して、接続中APの隣接APを選択する(ステップS202)。AP情報取得部232は、隣接APのAP情報を記憶部22から読み出す。AP情報取得部232は、接続中APの位置情報と、隣接APのAP位置情報及びAP情報とを記憶部22から読み出して判定部233に入力する。 The AP information acquisition unit 232 identifies the target STA and the connected AP based on the STA identifier and the AP identifier set in the STA position information. The AP information acquisition unit 232 selects an adjacent AP of the connected AP with reference to the positional relationship information acquired from the storage unit 22 (step S202). The AP information acquisition unit 232 reads the AP information of the adjacent AP from the storage unit 22. The AP information acquisition unit 232 reads the position information of the connected AP and the AP position information and the AP information of the adjacent AP from the storage unit 22 and inputs them to the determination unit 233.
 判定部233は、対象STAの時系列のSTA位置情報を用いて、対象STAが接続中APから離れるように移動しているかを判定する(ステップS203)。判定部233は、対象STAが接続中APから離れるように移動していると判定した場合(ステップS203:YES)、接続中APの位置情報と、隣接APのAP位置情報及びAP情報とを用いて、対象STAのハンドオーバ制御を開始するか否かを判定する(ステップS204)。例えば、判定部233は、対象STAと接続中APとの距離が距離閾値を超えた場合や、対象STAが接続エリアの境界を跨いだときにハンドオーバ制御の開始と判定する。 The determination unit 233 determines whether the target STA is moving away from the connected AP by using the time-series STA position information of the target STA (step S203). When the determination unit 233 determines that the target STA is moving away from the connected AP (step S203: YES), the determination unit 233 uses the position information of the connected AP and the AP position information and AP information of the adjacent AP. Then, it is determined whether or not to start the handover control of the target STA (step S204). For example, the determination unit 233 determines that the handover control is started when the distance between the target STA and the connected AP exceeds the distance threshold value or when the target STA crosses the boundary of the connection area.
 判定部233は、対象STAのハンドオーバ制御を開始すると判定した場合(ステップS204:YES)、接続中APの位置情報と、隣接APのAP位置情報及びAP情報とを用いて、隣接APの中から次の接続先のAP10を選定する(ステップS205)。例えば、判定部233は、隣接APの中から、対象STAの位置に最も近い位置のAP10を選択してもよく、対象STAの位置を含んだ接続エリアを有するAP10を選択してもよい。 When the determination unit 233 determines that the handover control of the target STA is started (step S204: YES), the determination unit 233 uses the position information of the connected AP and the AP position information and AP information of the adjacent AP from among the adjacent APs. The next connection destination AP10 is selected (step S205). For example, the determination unit 233 may select the AP10 at the position closest to the position of the target STA from the adjacent APs, or may select the AP10 having a connection area including the position of the target STA.
 判定部233は、対象STAを示す情報と、接続中APを示す情報と、次の接続先のAP10のAP識別子と、次の接続先のAP10との接続に用いる無線周波数及び無線チャネル識別子などの情報を、再接続指示部234に出力する。再接続指示部234は、対象STAを示す宛先情報と、次の接続先のAP10のAP識別子、無線周波数及び無線チャネル識別子とを設定した再接続指示を、APインタフェース部21を介して接続中APに送信する(ステップS206)。なお、再接続指示部234は、次の接続先のAP10に、対象STAの位置にビーム方向を変更するよう指示する通知をさらに行ってもよい。 The determination unit 233 includes information indicating the target STA, information indicating the connecting AP, the AP identifier of the next connection destination AP10, the radio frequency and the radio channel identifier used for connecting to the next connection destination AP10, and the like. The information is output to the reconnection instruction unit 234. The reconnection instruction unit 234 sends a reconnection instruction in which the destination information indicating the target STA and the AP identifier, radio frequency, and radio channel identifier of the next connection destination AP10 are set via the AP interface unit 21 to the connecting AP. (Step S206). The reconnection instruction unit 234 may further notify the AP10 of the next connection destination to instruct the position of the target STA to change the beam direction.
 なお、判定部233は、対象STAが接続中APから離れるように移動していないと判定した場合(ステップS203:NO)、又は、対象STAのハンドオーバ制御を開始しないと判定した場合(ステップS204:NO)、処理を終了する。 When the determination unit 233 determines that the target STA has not moved away from the connected AP (step S203: NO), or determines that the handover control of the target STA is not started (step S204:). NO), the process ends.
 接続中APのNWCインタフェース部15は、ステップS260においてNWC20から送信された再接続指示を受信し、受信した再接続指示を無線通信部12に出力する。無線通信部12は、アンテナ11から無線により再接続指示を送信する。対象STAは、再接続指示を受信すると、接続中APとの接続を切断し、再接続指示に設定されている情報を用いて、次の接続先のAP10と再接続する。 The NWC interface unit 15 of the connected AP receives the reconnection instruction transmitted from the NWC 20 in step S260, and outputs the received reconnection instruction to the wireless communication unit 12. The wireless communication unit 12 wirelessly transmits a reconnection instruction from the antenna 11. When the target STA receives the reconnection instruction, it disconnects from the connecting AP and reconnects with the next connection destination AP10 using the information set in the reconnection instruction.
[第二の実施形態]
 第一の実施形態では、NWCがSTAのある瞬間の位置情報を用いて、移動するSTAに対してハンドオーバ制御の開始の要否を判定していた。しかし、STAが頻繁に移動方向を変更する場合、第一の実施形態に示した方法では、NWCは、頻繁にSTAにハンドオーバ制御をさせる可能性がある。頻繁なハンドオーバ制御の指示に起因して、オーバヘッドが増大してスループットが劣化するという問題や、一定期間その制御シーケンスが繰り返されて無線接続ができなくなるという問題が生じる場合がある。第二の実施形態は、このような課題を鑑みて、NWCがSTAに頻繁なハンドオーバ制御をさせないようにする。
[Second Embodiment]
In the first embodiment, the NWC uses the position information at a certain moment of the STA to determine whether or not the handover control needs to be started for the moving STA. However, when the STA frequently changes the moving direction, the NWC may frequently cause the STA to perform handover control by the method shown in the first embodiment. Due to frequent handover control instructions, there may be a problem that the overhead increases and the throughput deteriorates, or a problem that the control sequence is repeated for a certain period of time and wireless connection becomes impossible. In view of such a problem, the second embodiment prevents the NWC from causing the STA to perform frequent handover control.
 本実施形態の無線通信システムの構成は、図1に示す第一の実施形態と同様である。ただし、第二の実施形態のNWC20は、図1に示した移動するSTA30のSTA位置情報から得られる移動に関する情報に基づいて、ハンドオーバ制御の開始の要否を判定する。STA30の移動に関する情報は、STA位置情報の微分により推定される速度ベクトル、または角速度ベクトルなどの運動情報である。NWC20は、推定した移動速度ベクトルまたは角速度ベクトル考慮して、ハンドオーバ制御の開始の要否を判定する。以下では、第二の実施形態と第一の実施形態の差分を中心に説明する。 The configuration of the wireless communication system of this embodiment is the same as that of the first embodiment shown in FIG. However, the NWC 20 of the second embodiment determines the necessity of starting the handover control based on the information regarding the movement obtained from the STA position information of the moving STA 30 shown in FIG. The information regarding the movement of the STA 30 is motion information such as a velocity vector estimated by differentiating the STA position information or an angular velocity vector. The NWC 20 determines whether or not the handover control needs to be started in consideration of the estimated moving speed vector or the angular velocity vector. Hereinafter, the differences between the second embodiment and the first embodiment will be mainly described.
 NWC20は、異なる時刻のSTA位置情報を複数回(2回以上)取得する。そしてNWC20の判定部233は、ある時刻tのSTA位置情報が示す推定距離dAP,STAと、時刻tの次の時刻tのSTA位置情報が示す推定距離d'AP,STA、及び、これら時刻の間差Δt=t-tを用いて、対象STAの推定速度ベクトルvを以下の式(2)により計算する。 The NWC 20 acquires STA position information at different times a plurality of times (twice or more). The determination unit 233 of the NWC20 is estimated distance dAP the STA location information at a certain time t 0 indicates, STA and the estimated distance d 'AP indicated the following STA location information of the time t 1 at time t 0, STA and, Using the time difference Δt = t 1 − t 0 , the estimated speed vector v of the target STA is calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、NWC20の判定部233は、ある時刻tのSTA位置情報が示す方向情報θAP,STA、時刻tの次の時刻tのSTA位置情報が示す方向情報θ’AP,STA、及び、これら時刻の間差Δt=t-tを用いて、対象STAの推定角速度ωを以下の式(3)で計算する。 The determination unit 233 of the NWC20, the direction information theta AP indicating STA location information at a certain time t 0 is, STA, the time t 0 of the next time t 1 in the direction information theta 'AP indicated by the STA location information, STA, and , The estimated angular velocity ω of the target STA is calculated by the following equation (3) using the time difference Δt = t 1 − t 0.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 NWC20の判定部233は、上記のように、異なる時刻のSTA位置情報に基づいて対象STAの速度ベクトルまたは角速度ベクトルを推定し、推定した速度ベクトルまたは角速度ベクトルを用いて、対象STAのハンドオーバ制御の開始の要否を判定する。判定部233は、STA位置情報に基づいて対象STAが接続中APから離れていくと判定した場合、対象STAと近隣APとの位置関係、及び、対象STAの推定速度ベクトルvまたは推定角速度ベクトルωに基づき、対象STAにハンドオーバ制御を開始させるか否かを判定する。一例として、判定部233は、第一の実施形態と同様に対象STAのSTA位置情報に基づきハンドオーバ制御の開始と判定した後、さらに、所定の期間内における推定速度ベクトルvの正負記号変化、または、所定の期間内における推定角速度ωの正負記号変化が所定回数以下であると判定した場合に、対象STAにハンドオーバ制御を開始させると決定する。 As described above, the determination unit 233 of the NWC 20 estimates the velocity vector or the angular velocity vector of the target STA based on the STA position information at different times, and uses the estimated velocity vector or the angular velocity vector to control the handover of the target STA. Determine if it is necessary to start. When the determination unit 233 determines that the target STA moves away from the connected AP based on the STA position information, the positional relationship between the target STA and the neighboring AP, and the estimated velocity vector v or the estimated angular velocity vector ω of the target STA. Based on the above, it is determined whether or not the target STA is to start the handover control. As an example, the determination unit 233 determines that the handover control has started based on the STA position information of the target STA as in the first embodiment, and then further changes the positive / negative symbol of the estimated speed vector v within a predetermined period, or , When it is determined that the positive / negative symbol change of the estimated angular velocity ω within a predetermined period is not more than a predetermined number of times, it is determined that the target STA starts the handover control.
 なお、判定部233は、推定速度ベクトルvの正負記号変化及び推定角速度ωの正負記号変化の両方が所定回数以下の場合にハンドオーバ制御の開始と判定してもよく、推定速度ベクトルvの正負記号変化と、推定角速度ωの正負記号変化とのうちいずれか一方が所定回数以下の場合にハンドオーバ制御開始と判定してもよい。 The determination unit 233 may determine that the handover control starts when both the positive / negative symbol change of the estimated velocity vector v and the positive / negative symbol change of the estimated angular velocity ω are less than or equal to a predetermined number of times, and the positive / negative symbol of the estimated velocity vector v. When either the change or the change of the positive or negative symbol of the estimated angular velocity ω is less than or equal to a predetermined number of times, it may be determined that the handover control is started.
 また、所定期間、所定回数は任意の設定値である。これらの設定値は、事前に判定部233へ設定されもよい。あるいは、判定部233が又は手動により、これらの設定値を、対象STAの位置、速度、角速度及びハンドオーバ制御の前後の無線品質に応じて変更してもよい。所定期間、所定回数の設定には、任意の設定方法を用いることができる。また、推定速度ベクトルvの所定回数と推定角速度ωの所定回数とは共通でもよいし、異なってもよい。 Also, the predetermined period and the predetermined number of times are arbitrary set values. These set values may be set in advance in the determination unit 233. Alternatively, the determination unit 233 or manually may change these set values according to the position, speed, angular velocity of the target STA and the radio quality before and after the handover control. Any setting method can be used for setting a predetermined period and a predetermined number of times. Further, the predetermined number of times of the estimated velocity vector v and the predetermined number of times of the estimated angular velocity ω may be common or different.
 判定部233が、上記のように推定速度ベクトルv及び推定角速度ωに基づきハンドオーバ制御開始の要否判定を行った後のNWC20の動作は、第一の実施形態と同様である。 The operation of the NWC 20 after the determination unit 233 determines the necessity of starting the handover control based on the estimated velocity vector v and the estimated angular velocity ω as described above is the same as that of the first embodiment.
 第二の実施形態のNWC20は、推定速度ベクトルvと推定角速度ωとの一方又は両方を用いて、STA30のマクロ的な動きにより、ハンドオーバ制御の開始を判定できる。よって、STA30が頻繁に移動方向を変える場合に、過剰なハンドオーバ制御を回避することが可能となる。例えば、STA30が複数のAP10の境界ゾーンを行ったり来たりするように移動する場合、第一の実施形態では、頻繁にハンドオーバ制御を実施してしまい、スループット劣化や無線接続自体ができなくなることがある。第二の実施形態では、このような移動を行うSTA30に対する頻繁なハンドオーバ制御を回避し、接続中のAP10を維持して無線品質を維持することが可能となる。 The NWC 20 of the second embodiment can determine the start of handover control by the macroscopic movement of the STA 30 using one or both of the estimated velocity vector v and the estimated angular velocity ω. Therefore, when the STA 30 frequently changes the moving direction, it is possible to avoid excessive handover control. For example, when the STA 30 moves back and forth between the boundary zones of a plurality of AP10s, in the first embodiment, the handover control is frequently performed, and the throughput may be deteriorated or the wireless connection itself may not be possible. be. In the second embodiment, it is possible to avoid frequent handover control for the STA 30 performing such a movement and maintain the connected AP10 to maintain the radio quality.
[第三の実施形態]
 第一及び第二の実施形態では、APの位置は固定であった。本実施形態では、APの位置が移動する。
[Third Embodiment]
In the first and second embodiments, the position of the AP was fixed. In this embodiment, the position of the AP moves.
 図6は、第三の実施形態による無線通信システム1aの構成例を示す図である。無線通信システム1aは、AP10aと、NWC20aとを有する。無線通信システム1aは、複数台のAP10aを有しているが、図6では2台のAP10aを示している。2台のAP10aをそれぞれ、AP10a-1、AP10a-2と記載する。AP10a-1は移動せず、AP10a-2は移動可能である。AP10a-2は、例えば、ドローン、もしくは移動基地局車等に搭載される。なお、移動しないAP10aとして、第一の実施形態のAP10を用いてもよい。 FIG. 6 is a diagram showing a configuration example of the wireless communication system 1a according to the third embodiment. The wireless communication system 1a has an AP10a and an NWC20a. The wireless communication system 1a has a plurality of AP10a, but FIG. 6 shows two AP10a. The two AP10a are described as AP10a-1 and AP10a-2, respectively. AP10a-1 does not move and AP10a-2 can move. AP10a-2 is mounted on, for example, a drone, a mobile base station vehicle, or the like. As the non-moving AP10a, the AP10 of the first embodiment may be used.
 上述した第一及び第二の実施形態では、NWCが対象STAの位置情報、又は運動情報を用いて、対象STAについてハンドオーバ制御の開始の要否を判定する。第一及び第二の実施形態では、ハンドオーバ制御開始の要否を判定するために、NWCの記憶部に座標系におけるAPの置局設計位置を事前に記録しておく必要がある。しかし、図6に示すように、NWC20aの配下には、移動可能なAP10aも接続されている。第一及び第二の実施形態のNWCの場合、時間に応じてAPの位置に変化があると、記憶部に記憶される情報はその変化に対応できず、対象STAに対して適切なハンドオーバ制御の再接続先を指示できないことがある。そこで、第三の実施形態では、このような課題を鑑みて、各AP10aに、自身の位置情報を取得し、取得した位置情報をNWC20aに通知する機能を具備する。 In the first and second embodiments described above, the NWC uses the position information or motion information of the target STA to determine whether or not to start handover control for the target STA. In the first and second embodiments, it is necessary to record in advance the station design position of the AP in the coordinate system in the storage unit of the NWC in order to determine the necessity of starting the handover control. However, as shown in FIG. 6, a movable AP10a is also connected under the NWC20a. In the case of the NWC of the first and second embodiments, if the position of the AP changes with time, the information stored in the storage unit cannot respond to the change, and appropriate handover control is performed for the target STA. It may not be possible to specify the reconnection destination of. Therefore, in the third embodiment, in view of such a problem, each AP10a is provided with a function of acquiring its own position information and notifying the NWC20a of the acquired position information.
 図7は、第三の実施形態におけるAP10aの構成例を示す機能ブロック図である。図7に示すAP10aの構成と、図2に示す第一の実施形態のAP10の構成とが異なる点は、AP10aがAP位置情報通知部16をさらに具備している点である。AP位置情報通知部16は、定期的にもしくは不定期的に、AP10a自身の位置を示すAP位置情報を取得し、取得したAP位置情報を、NWCインタフェース部15を介してNWC20aに通知する。AP位置情報通知部16におけるAP位置情報の取得方法の一例として、例えばGPSなどを用いた測位方法を利用することができる。 FIG. 7 is a functional block diagram showing a configuration example of AP10a according to the third embodiment. The difference between the configuration of the AP10a shown in FIG. 7 and the configuration of the AP10 of the first embodiment shown in FIG. 2 is that the AP10a further includes the AP position information notification unit 16. The AP position information notification unit 16 acquires AP position information indicating the position of the AP10a itself periodically or irregularly, and notifies the NWC20a of the acquired AP position information via the NWC interface unit 15. As an example of the method of acquiring the AP position information in the AP position information notification unit 16, a positioning method using, for example, GPS can be used.
 NWC20aの構成は、図3に示す第一の実施形態のNWC20と同様である。ただし、NWC20aの記憶部22は、AP10aから通知されたAP位置情報を記憶することにより、AP位置情報を最新にする点が異なる。 The configuration of the NWC 20a is the same as that of the NWC 20 of the first embodiment shown in FIG. However, the storage unit 22 of the NWC 20a is different in that the AP position information is updated by storing the AP position information notified from the AP 10a.
 第三の実施形態によれば、NWC20aは、時間に応じて変化する各AP10aの位置の情報を把握することにより、AP10aの最新の位置の情報に基づき、STAに対して適切なハンドオーバ制御を行うことが可能となる。 According to the third embodiment, the NWC 20a performs appropriate handover control for the STA based on the latest position information of the AP10a by grasping the position information of each AP10a that changes with time. It becomes possible.
[第四の実施形態]
 上述した第一から第三の実施形態においては、NWCが、対象STAの位置情報、もしくは運動情報を用いて、対象STAについてハンドオーバ制御の開始の要否を判定する。しかし、ハンドオーバ制御を単一の装置、すなわち、NWCにのみ搭載した場合、その装置の故障や処理負荷増加等の原因により、正常にハンドオーバ制御が実施できないという課題がある。このような課題を解決するため、本実施形態では、NWCが保有するSTAの位置情報の収集、及びハンドオーバ制御判定に関する機能を任意のAPに備える。そして、APがNWCの代替として、各STAに対してハンドオーバ制御を行う。以下の説明では、こうしたAPをマスタ制御装置と呼ぶ。本実施形態を、上述した実施形態との差分を中心に説明する。
[Fourth Embodiment]
In the first to third embodiments described above, the NWC uses the position information or the motion information of the target STA to determine whether or not the handover control of the target STA needs to be started. However, when the handover control is mounted only on a single device, that is, the NWC, there is a problem that the handover control cannot be normally performed due to a failure of the device, an increase in the processing load, or the like. In order to solve such a problem, in the present embodiment, any AP is provided with a function related to the collection of the position information of the STA possessed by the NWC and the handover control determination. Then, the AP performs handover control for each STA as an alternative to the NWC. In the following description, such an AP will be referred to as a master controller. This embodiment will be described focusing on the differences from the above-described embodiments.
 図8は、第四の実施形態の無線通信システム1bの構成例を示す図である。無線通信システム1bは、AP10bと、NWC20とを有する。無線通信システム1bは、複数台のAP10bを有しているが、図8では2台のAP10bを示している。複数のAP10b及びNWC20は、ネットワーク40に接続される。2台のAP10bをそれぞれ、AP10b-1、AP10b-2と記載する。なお、無線通信システム1bは、第一又は第二の実施形態のAP10をさらに有してもよく、第三の実施形態のAP10aをさらに有してもよい。また、無線通信システム1bは、1台のAP10bと、1台以上のAP10又はAP10aを有してもよい。図8では、NWC20が何らかの故障により、ネットワーク40から切り離された場合を想定している。この場合、複数のAP10bのうち1局がマスタ制御装置となる。 FIG. 8 is a diagram showing a configuration example of the wireless communication system 1b according to the fourth embodiment. The wireless communication system 1b has an AP10b and an NWC20. The wireless communication system 1b has a plurality of AP10b units, but FIG. 8 shows two AP10b units. The plurality of AP10b and NWC20 are connected to the network 40. The two AP10b units are described as AP10b-1 and AP10b-2, respectively. The wireless communication system 1b may further have the AP10 of the first or second embodiment, and may further have the AP10a of the third embodiment. Further, the wireless communication system 1b may have one AP10b and one or more AP10s or AP10a. In FIG. 8, it is assumed that the NWC 20 is disconnected from the network 40 due to some kind of failure. In this case, one of the plurality of AP10b stations becomes the master control device.
 図8では、マスタ制御装置として選ばれたAP10b-2は、AP10b-1の配下のSTA30の位置情報収集とハンドオーバ制御判定とを行う。AP10b-2のこれらの機能は、第一~第三の実施形態におけるNWC20、20aと同等のため、ここでは詳細な説明を省略する。なお、図8に示した例では、AP10b-2をマスタ制御装置として選択したが、相互に接続されているAP10b間で、任意の1局を任意の方法でマスタ制御装置として選択してもよい。例えば、各AP10bは、予め定められた所定の条件に基づいていずれのAP10bがマスタ制御装置となるかを自律的に決定してもよく、無線通信システム1bの監視及び制御を行う図示しない監視システムが保守者の入力に従ってAP10bにマスタ制御装置となることを指示してもよい。そして、一旦選定されたマスタ制御装置から、その役割または機能を任意の方法で、相互に接続されている他のAP10bに移転することが可能である。 In FIG. 8, the AP10b-2 selected as the master control device collects the position information of the STA 30 under the AP10b-1 and determines the handover control. Since these functions of AP10b-2 are equivalent to those of NWC20 and 20a in the first to third embodiments, detailed description thereof will be omitted here. In the example shown in FIG. 8, AP10b-2 is selected as the master control device, but any one station may be selected as the master control device among the AP10bs connected to each other by any method. .. For example, each AP10b may autonomously determine which AP10b serves as the master control device based on predetermined predetermined conditions, and a monitoring system (not shown) that monitors and controls the wireless communication system 1b. May instruct AP10b to become the master control device according to the input of the maintainer. Then, from the once selected master control device, its role or function can be transferred to another interconnected AP10b by any method.
 図9は、第四の実施形態におけるAP10bの構成例を機能ブロック図である。図9に示すAP10bの構成と、図2に示す第一の実施形態のAP10の構成とが異なる点は、AP10bがNWCインタフェース部15に代えてAP間インタフェース部17を備える点、及び、ハンドオーバ制御機能部18をさらに備える点である。AP間インタフェース部17は、他のAP10bとデータを送受信する。なお、上記の相違点を、図7に示す第三の実施形態のAP10aに適用してもよい。 FIG. 9 is a functional block diagram of a configuration example of AP10b according to the fourth embodiment. The difference between the configuration of AP10b shown in FIG. 9 and the configuration of AP10 of the first embodiment shown in FIG. 2 is that AP10b includes an inter-AP interface unit 17 instead of the NWC interface unit 15 and handover control. The point is that the functional unit 18 is further provided. The AP-to-AP interface unit 17 transmits / receives data to / from another AP10b. The above differences may be applied to AP10a of the third embodiment shown in FIG. 7.
 図10は、AP10bのハンドオーバ制御機能部18の詳細な構成を示すブロック図である。ハンドオーバ制御機能部18は、記憶部181と、ハンドオーバ制御判定部182とを備える。ハンドオーバ制御機能部18は、第一~第三の実施形態のNWC20、20aのハンドオーバ制御判定部23と同じ機能を有する。すなわち、記憶部181及びハンドオーバ制御判定部182はそれぞれ、記憶部22及びハンドオーバ制御判定部23と同様の機能を有する。 FIG. 10 is a block diagram showing a detailed configuration of the handover control function unit 18 of the AP10b. The handover control function unit 18 includes a storage unit 181 and a handover control determination unit 182. The handover control function unit 18 has the same function as the handover control determination unit 23 of the NWCs 20 and 20a of the first to third embodiments. That is, the storage unit 181 and the handover control determination unit 182 have the same functions as the storage unit 22 and the handover control determination unit 23, respectively.
 図11は、ハンドオーバ制御判定部182の詳細な構成を示すブロック図である。ハンドオーバ制御判定部182は、STA位置情報取得部1821と、AP情報取得部1822と、判定部1823と、再接続指示部1824とを備える。STA位置情報取得部1821、AP情報取得部1822、判定部1823及び再接続指示部1824はそれぞれ、図4に示す第一の実施形態のハンドオーバ制御判定部23が備えるSTA位置情報取得部231、AP情報取得部232、判定部233及び再接続指示部234と同様の機能を有する。図10及び図11に示した構成例により、マスタ制御装置がNWCと同等の機能を実現する。 FIG. 11 is a block diagram showing a detailed configuration of the handover control determination unit 182. The handover control determination unit 182 includes an STA position information acquisition unit 1821, an AP information acquisition unit 1822, a determination unit 1823, and a reconnection instruction unit 1824. The STA position information acquisition unit 1821, AP information acquisition unit 1822, determination unit 1823, and reconnection instruction unit 1824 are the STA position information acquisition unit 231 and AP included in the handover control determination unit 23 of the first embodiment shown in FIG. 4, respectively. It has the same functions as the information acquisition unit 232, the determination unit 233, and the reconnection instruction unit 234. According to the configuration examples shown in FIGS. 10 and 11, the master control device realizes the same function as the NWC.
 なお、ハンドオーバ制御機能部18は、AP間インタフェース部17を介して、他のAP10bと接続する。AP間インタフェース部17は、他のAP10bが送信したSTA位置情報を入力する。また、AP間インタフェース部17は、STA30にハンドオーバ制御を開始させるための指示をSTA30が接続中の他のAP10bに出力する。 The handover control function unit 18 is connected to another AP10b via the inter-AP interface unit 17. The AP-to-AP interface unit 17 inputs the STA position information transmitted by another AP10b. Further, the inter-AP interface unit 17 outputs an instruction for starting the handover control to the STA 30 to another AP 10b to which the STA 30 is connected.
 上記構成により、図5のステップS101において、AP10bの方向推定部13は、ビーム方向を示す情報をAP間インタフェース部17に出力し、図5のステップS102において、距離推定部14は、推定距離情報をAP間インタフェース部17に出力する。図5のステップS103において、AP10bのAP間インタフェース部17は、STA位置情報をマスタ制御装置に通知する。なお、AP10bがマスタ制御装置の場合、図5のステップS103の処理を行わない。 With the above configuration, in step S101 of FIG. 5, the direction estimation unit 13 of AP10b outputs information indicating the beam direction to the inter-AP interface unit 17, and in step S102 of FIG. 5, the distance estimation unit 14 outputs the estimated distance information. Is output to the inter-AP interface unit 17. In step S103 of FIG. 5, the AP-to-AP interface unit 17 of the AP10b notifies the master control device of the STA position information. When AP10b is a master control device, the process of step S103 in FIG. 5 is not performed.
 マスタ制御装置は、図5のステップS201~ステップS206の処理を行う。ただし、ステップS201において、マスタ制御装置のAP間インタフェース部17は、他のAP10bから受信した各STA30のSTA位置情報と、自装置において生成したSTA位置情報とを、ハンドオーバ制御機能部18に通知する。また、ステップS206において、再接続指示部1824は、AP間インタフェース部17を介して接続中APに再接続指示を送信する。なお、AP間インタフェース部17は、接続中APがマスタ制御装置である場合、再接続指示を無線通信部12に出力する。 The master control device performs the processes of steps S201 to S206 of FIG. However, in step S201, the inter-AP interface unit 17 of the master control device notifies the handover control function unit 18 of the STA position information of each STA 30 received from the other AP 10b and the STA position information generated by the own device. .. Further, in step S206, the reconnection instruction unit 1824 transmits a reconnection instruction to the connecting AP via the inter-AP interface unit 17. The inter-AP interface unit 17 outputs a reconnection instruction to the wireless communication unit 12 when the connected AP is a master control device.
 第四の実施形態では、マスタ制御装置となるAP10bの機能により、STA30のハンドオーバ制御判定ができるため、NWC20の故障等が発生した場合でも、適切なハンドオーバ制御が実施可能である。 In the fourth embodiment, since the handover control determination of the STA 30 can be determined by the function of the AP10b serving as the master control device, appropriate handover control can be performed even when a failure of the NWC 20 or the like occurs.
 上述した実施形態におけるNWC20、20aの機能をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 The functions of NWC20 and 20a in the above-described embodiment may be realized by a computer. In that case, the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and may be a program for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
 NWC20のハードウェア構成例を説明する。図12は、NWC20のハードウェア構成例を示す装置構成図である。NWC20は、プロセッサ71、記憶部72、通信インタフェース73、及び、ユーザインタフェース74を備える。なお、NWC20aも同様の構成である。 A hardware configuration example of NWC20 will be described. FIG. 12 is a device configuration diagram showing a hardware configuration example of the NWC 20. The NWC 20 includes a processor 71, a storage unit 72, a communication interface 73, and a user interface 74. The NWC 20a has the same configuration.
 プロセッサ71は、演算や制御を行う中央演算装置である。プロセッサ71は、例えば、CPUである。プロセッサ71は、記憶部72からプログラムを読み出して実行する。記憶部72は、さらに、プロセッサ71が各種プログラムを実行する際のワークエリアなどを有する。通信インタフェース73は、他装置と通信可能に接続するものである。ユーザインタフェース74は、ボタン、キーボード、ポインティングデバイスなどの入力装置や、ランプ、ディスプレイなどの表示装置である。ユーザインタフェース74により、人為的な操作が入力される。 The processor 71 is a central processing unit that performs calculations and controls. The processor 71 is, for example, a CPU. The processor 71 reads a program from the storage unit 72 and executes it. The storage unit 72 further has a work area for the processor 71 to execute various programs and the like. The communication interface 73 is connected so as to be able to communicate with another device. The user interface 74 is an input device such as a button, a keyboard, and a pointing device, and a display device such as a lamp and a display. An artificial operation is input by the user interface 74.
 ハンドオーバ制御判定部23の機能は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現される。なお、これらの機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。APインタフェース部21は、通信インタフェース73により実現される。なお、これらの一部の機能は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現されてもよい。 The function of the handover control determination unit 23 is realized by the processor 71 reading a program from the storage unit 72 and executing it. All or part of these functions may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). The AP interface unit 21 is realized by the communication interface 73. Note that some of these functions may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
 上述した実施形態によれば、無線通信システムは、ネットワーク制御装置と、複数のアクセスポイントとを有する。アクセスポイントは、無線通信部と、方向推定部と、距離推定部とを備える。無線通信部は、指向性を持つビームにより端末局と無線通信する。方向推定部は、無線通信部が使用しているビームの情報に基づいて自身から見た端末局への方向を推定する。距離推定部は、無線通信部と端末局との無線通信における往復の伝送時間に基づいて端末局までの距離を推定する。ネットワーク制御装置は、取得部と、判定部と、通知部とを備える。取得部と、方向推定部により推定された方向の情報及び距離推定部により推定された距離の情報を取得する。取得部は、例えば、STA位置情報取得部231である。判定部は、取得部が取得した方向の情報及び距離の情報を用いて推定される端末局の位置の情報と、アクセスポイントの位置の情報とに基づいて、端末局のハンドオーバの要否を判定する。通知部は、判定部によりハンドオーバが必要と判定された場合に、端末局が接続中のアクセスポイントを介して、次の接続先のアクセスポイントとの接続に用いられる情報を端末局に通知する。例えば、通知部は、再接続指示部234である。 According to the above-described embodiment, the wireless communication system has a network control device and a plurality of access points. The access point includes a wireless communication unit, a direction estimation unit, and a distance estimation unit. The wireless communication unit wirelessly communicates with the terminal station by means of a directional beam. The direction estimation unit estimates the direction to the terminal station as seen from itself based on the beam information used by the wireless communication unit. The distance estimation unit estimates the distance to the terminal station based on the round-trip transmission time in the wireless communication between the wireless communication unit and the terminal station. The network control device includes an acquisition unit, a determination unit, and a notification unit. The acquisition unit, the direction information estimated by the direction estimation unit, and the distance information estimated by the distance estimation unit are acquired. The acquisition unit is, for example, the STA position information acquisition unit 231. The determination unit determines the necessity of handover of the terminal station based on the information on the position of the terminal station estimated using the information on the direction and the information on the distance acquired by the acquisition unit and the information on the position of the access point. do. When the determination unit determines that a handover is necessary, the notification unit notifies the terminal station of information used for connection with the next connection destination access point via the access point to which the terminal station is connected. For example, the notification unit is a reconnection instruction unit 234.
 判定部は、推定された端末局の位置の情報と、推定された端末局の位置の情報を用いて推定された端末局の移動に関する情報と、アクセスポイントの位置の情報とに基づいて、端末局のハンドオーバの要否を判定してもよい。移動に関する情報は、例えば、端末局の移動の速度や角速度などの運動情報である。また、アクセスポイントは、自身の位置の情報を取得し、取得した自身の位置の情報をネットワーク制御装置へ通知する位置情報通知部をさらに備えてもよい。また、複数のアクセスポイントのうち少なくとも一部のアクセスポイントは、取得部、判定部及び通知部をさらに備えてもよい。 The determination unit is based on the estimated terminal station position information, the terminal station movement information estimated using the estimated terminal station position information, and the access point position information. The necessity of handover of the station may be determined. The information regarding movement is, for example, motion information such as the movement speed and angular velocity of the terminal station. Further, the access point may further include a position information notification unit that acquires information on its own position and notifies the network control device of the acquired information on its own position. Further, at least a part of the plurality of access points may further include an acquisition unit, a determination unit, and a notification unit.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれら実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs and the like within a range that does not deviate from the gist of the present invention.
1、…無線通信システム,1a…無線通信システム,1b…無線通信システム,11…アンテナ、12…無線通信部、13…方向推定部、14…距離推定部、15…NWCインタフェース部、16…AP位置情報通知部、17…AP間インタフェース部、18…ハンドオーバ制御機能部、21…APインタフェース部、22…記憶部、23…ハンドオーバ制御判定部、40…ネットワーク、71…プロセッサ、72…記憶部、73…通信インタフェース、74…ユーザインタフェース、181…記憶部、182…ハンドオーバ制御判定部、231…STA位置情報取得部、232…AP情報取得部、233…判定部、234…再接続指示部、1821…STA位置情報取得部、1822…AP情報取得部、1823…判定部、1824…再接続指示部 1, ... wireless communication system, 1a ... wireless communication system, 1b ... wireless communication system, 11 ... antenna, 12 ... wireless communication unit, 13 ... direction estimation unit, 14 ... distance estimation unit, 15 ... NWC interface unit, 16 ... AP Position information notification unit, 17 ... AP-to-AP interface unit, 18 ... Handover control function unit, 21 ... AP interface unit, 22 ... Storage unit, 23 ... Handover control determination unit, 40 ... Network, 71 ... Processor, 72 ... Storage unit, 73 ... Communication interface, 74 ... User interface, 181 ... Storage unit, 182 ... Handover control determination unit, 231 ... STA position information acquisition unit, 232 ... AP information acquisition unit, 233 ... Judgment unit, 234 ... Reconnection instruction unit, 1821 ... STA position information acquisition unit, 1822 ... AP information acquisition unit, 1823 ... judgment unit, 1824 ... reconnection instruction unit

Claims (7)

  1.  ネットワーク制御装置と、複数のアクセスポイントとを有する無線通信システムであって、
     前記アクセスポイントは、
     指向性を持つビームにより端末局と無線通信する無線通信部と、
     前記無線通信部が使用している前記ビームの情報に基づいて前記端末局への方向を推定する方向推定部と、
     前記無線通信部と前記端末局との無線通信における往復の伝送時間に基づいて前記端末局までの距離を推定する距離推定部とを備え、
     前記ネットワーク制御装置は、
     前記方向推定部により推定された前記方向の情報及び前記距離推定部により推定された前記距離の情報を取得する取得部と、
     前記取得部が取得した前記方向の情報及び前記距離の情報を用いて推定される前記端末局の位置の情報と、前記アクセスポイントの位置の情報とに基づいて前記端末局のハンドオーバの要否を判定する判定部と、
     前記判定部によりハンドオーバが必要と判定された場合に、前記端末局が接続中の前記アクセスポイントを介して、次の接続先の前記アクセスポイントとの接続に用いられる情報を前記端末局に通知する通知部とを備える、
     無線通信システム。
    A wireless communication system having a network control device and a plurality of access points.
    The access point is
    A wireless communication unit that wirelessly communicates with a terminal station using a directional beam,
    A direction estimation unit that estimates the direction to the terminal station based on the beam information used by the wireless communication unit, and a direction estimation unit.
    It is provided with a distance estimation unit that estimates the distance to the terminal station based on the round-trip transmission time in wireless communication between the wireless communication unit and the terminal station.
    The network control device is
    An acquisition unit that acquires information on the direction estimated by the direction estimation unit and information on the distance estimated by the distance estimation unit.
    Based on the information on the position of the terminal station estimated by using the information on the direction and the information on the distance acquired by the acquisition unit and the information on the position of the access point, the necessity of handover of the terminal station is determined. Judgment unit and
    When the determination unit determines that a handover is necessary, the terminal station is notified of information used for connection with the access point of the next connection destination via the access point to which the terminal station is connected. Equipped with a notification unit,
    Wireless communication system.
  2.  前記判定部は、推定された前記端末局の位置の情報と、推定された前記端末局の位置の情報を用いて推定された前記端末局の移動に関する情報と、前記アクセスポイントの位置の情報とに基づいて前記端末局のハンドオーバの要否を判定する、
     請求項1に記載の無線通信システム。
    The determination unit includes information on the estimated position of the terminal station, information on the movement of the terminal station estimated using the estimated information on the position of the terminal station, and information on the position of the access point. Determines the necessity of handover of the terminal station based on
    The wireless communication system according to claim 1.
  3.  前記アクセスポイントは、
     自身の位置の情報を取得し、取得した前記位置の情報を前記ネットワーク制御装置へ通知する位置情報通知部をさらに備える、
     請求項1又は2に記載の無線通信システム。
    The access point is
    It further includes a position information notification unit that acquires information on its own position and notifies the acquired information on the position to the network control device.
    The wireless communication system according to claim 1 or 2.
  4.  複数の前記アクセスポイントのうち少なくとも一部のアクセスポイントは、
     前記取得部、前記判定部及び前記通知部をさらに備える、
     請求項1から請求項3のいずれか一項に記載の無線通信システム。
    At least some of the access points mentioned above
    The acquisition unit, the determination unit, and the notification unit are further provided.
    The wireless communication system according to any one of claims 1 to 3.
  5.  指向性を持つビームにより端末局と無線通信するアクセスポイントが前記端末局との無線通信に使用しているビームの情報に基づいて推定した前記端末局への方向の情報と、前記アクセスポイントが前記端末局との無線通信における往復の伝送時間に基づいて推定した前記端末局までの距離の情報とを取得する取得部と、
     前記取得部が取得した前記方向の情報及び前記距離の情報を用いて推定される前記端末局の位置の情報と、前記アクセスポイントの位置の情報とに基づいて前記端末局のハンドオーバの要否を判定する判定部と、
     前記判定部によりハンドオーバが必要と判定された場合に、前記端末局が接続中の前記アクセスポイントを介して、次の接続先の前記アクセスポイントとの接続に用いられる情報を前記端末局に通知する通知部と、
     を備えるネットワーク制御装置。
    Information on the direction to the terminal station estimated based on the information of the beam used for wireless communication with the terminal station by the access point that wirelessly communicates with the terminal station by the directional beam, and the access point is said to be said. An acquisition unit that acquires information on the distance to the terminal station estimated based on the round-trip transmission time in wireless communication with the terminal station.
    Based on the information on the position of the terminal station estimated by using the information on the direction and the information on the distance acquired by the acquisition unit and the information on the position of the access point, the necessity of handover of the terminal station is determined. Judgment unit and
    When the determination unit determines that a handover is necessary, the terminal station is notified of information used for connection with the access point of the next connection destination via the access point to which the terminal station is connected. Notification section and
    A network control device.
  6.  ネットワーク制御装置と、複数のアクセスポイントとを有する無線通信システムが実行するネットワーク制御方法であって、
     前記アクセスポイントが、指向性を持つビームにより端末局と無線通信する無線通信部において使用している前記ビームの情報に基づいて前記端末局への方向を推定する方向推定ステップと、
     前記アクセスポイントが、前記無線通信部と前記端末局との無線通信における往復の伝送時間に基づいて前記端末局までの距離を推定する距離推定ステップと、
     前記ネットワーク制御装置が、前記方向推定ステップにおいて推定された前記方向の情報及び前記距離推定ステップにおいて推定された前記距離の情報を取得する取得ステップと、
     前記ネットワーク制御装置が、前記取得ステップにおいて取得された前記方向の情報及び前記距離の情報を用いて推定される前記端末局の位置の情報と、前記アクセスポイントの位置の情報とに基づいて前記端末局のハンドオーバの要否を判定する判定ステップと、
     前記ネットワーク制御装置が、前記判定ステップにおいてハンドオーバが必要と判定された場合に、前記端末局が接続中の前記アクセスポイントを介して、次の接続先の前記アクセスポイントとの接続に用いられる情報を前記端末局に通知する通知ステップと、
     を有するネットワーク制御方法。
    A network control method executed by a wireless communication system having a network control device and a plurality of access points.
    A direction estimation step in which the access point estimates the direction to the terminal station based on the information of the beam used in the wireless communication unit that wirelessly communicates with the terminal station by the beam having directivity.
    A distance estimation step in which the access point estimates the distance to the terminal station based on the round-trip transmission time in wireless communication between the wireless communication unit and the terminal station.
    An acquisition step in which the network control device acquires information on the direction estimated in the direction estimation step and information on the distance estimated in the distance estimation step.
    The terminal based on the information on the position of the terminal station estimated by the network control device using the information on the direction and the information on the distance acquired in the acquisition step and the information on the position of the access point. Judgment step to determine the necessity of handover of the station and
    When the network control device determines that a handover is necessary in the determination step, the information used for connecting to the access point of the next connection destination via the access point to which the terminal station is connected is input. The notification step to notify the terminal station and
    Network control method having.
  7.  コンピュータを、
     請求項5に記載のネットワーク制御装置として機能させるためのプログラム。
    Computer,
    The program for functioning as the network control device according to claim 5.
PCT/JP2020/016763 2020-04-16 2020-04-16 Wireless communication system, network control device, network control method, and program WO2021210137A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022514956A JP7436915B2 (en) 2020-04-16 2020-04-16 Wireless communication system, network control device, network control method and program
PCT/JP2020/016763 WO2021210137A1 (en) 2020-04-16 2020-04-16 Wireless communication system, network control device, network control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/016763 WO2021210137A1 (en) 2020-04-16 2020-04-16 Wireless communication system, network control device, network control method, and program

Publications (1)

Publication Number Publication Date
WO2021210137A1 true WO2021210137A1 (en) 2021-10-21

Family

ID=78084157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016763 WO2021210137A1 (en) 2020-04-16 2020-04-16 Wireless communication system, network control device, network control method, and program

Country Status (2)

Country Link
JP (1) JP7436915B2 (en)
WO (1) WO2021210137A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169325A (en) * 1999-12-06 2001-06-22 Nippon Telegr & Teleph Corp <Ntt> Cell changeover system
JP2007318335A (en) * 2006-05-24 2007-12-06 Casio Comput Co Ltd Handover processing system, handover processing method and wireless base station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169325A (en) * 1999-12-06 2001-06-22 Nippon Telegr & Teleph Corp <Ntt> Cell changeover system
JP2007318335A (en) * 2006-05-24 2007-12-06 Casio Comput Co Ltd Handover processing system, handover processing method and wireless base station

Also Published As

Publication number Publication date
JPWO2021210137A1 (en) 2021-10-21
JP7436915B2 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
EP3902317A1 (en) Method and apparatus for directionally sending positioning reference signal
JP5390012B2 (en) Method and apparatus for handover between UMA (unlicensed mobile access) network and cellular communication network
US8971293B2 (en) Method and system for station location based neighbor determination and handover probability estimation
US10284999B2 (en) Mobile device position determination using compatible dedicated-frequency nodes and non-dedicated-frequency nodes
US7764794B2 (en) Location-based wireless messaging for wireless devices
KR101242174B1 (en) Vertical handover method for overlay communication system
US20030199269A1 (en) Cell area formation control method, control apparatus, and cell area formation control program
EP3400655B1 (en) Beam selection based on ue position measurements
EP2600654B1 (en) Wireless base station and method for controlling same
EP2763478B1 (en) Method and device using observed time difference of arrival for positioning mobile station
EP3336578B1 (en) Device and method for estimating position of terminal in wireless communication system
WO2018194758A1 (en) Mobile device position determination using non-dedicated-frequency nodes
JP5284927B2 (en) Communications system
EP3711353B1 (en) Network access nodes and method thereof
EP3772227B1 (en) Cellular telecommunications network
WO2021210137A1 (en) Wireless communication system, network control device, network control method, and program
KR20090066571A (en) Location estimation apparatus and method using location fingerprint, and handoff decision apparatus and method using its
US8060097B1 (en) Method and apparatus for intelligent mobile-assisted hard handoff
KR20230162080A (en) Cell reselection using expected cell serving time
JP6570469B2 (en) Communication apparatus, control method, and program
KR101436187B1 (en) Apparatus and method for Handover using received signal strength and radial velocity in terminal
JP6841502B2 (en) Communication equipment, base station selection method and base station selection program
TWI596964B (en) Method and system for station location based neighbor determination and handover probability estimation
JP7357818B1 (en) Relay route control device, wireless communication terminal, communication system, communication route determination method, control circuit, and storage medium
JP2014039279A (en) Communication device, communication method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931116

Country of ref document: EP

Kind code of ref document: A1