WO2021209650A1 - Power supply circuit, safety device and photovoltaic facility - Google Patents

Power supply circuit, safety device and photovoltaic facility Download PDF

Info

Publication number
WO2021209650A1
WO2021209650A1 PCT/ES2020/070240 ES2020070240W WO2021209650A1 WO 2021209650 A1 WO2021209650 A1 WO 2021209650A1 ES 2020070240 W ES2020070240 W ES 2020070240W WO 2021209650 A1 WO2021209650 A1 WO 2021209650A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
circuit
terminals
power
Prior art date
Application number
PCT/ES2020/070240
Other languages
Spanish (es)
French (fr)
Inventor
Joan Marc RIERA PERA
Original Assignee
Ridelin S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ridelin S.L. filed Critical Ridelin S.L.
Priority to PCT/ES2020/070240 priority Critical patent/WO2021209650A1/en
Publication of WO2021209650A1 publication Critical patent/WO2021209650A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J11/00Circuit arrangements for providing service supply to auxiliaries of stations in which electric power is generated, distributed or converted
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention is in the field of photovoltaic solar installations.
  • the invention refers to a power supply circuit, with a first circuit terminal and a second circuit terminal, configured to be connected in line on a supply line of a photovoltaic direct current source, so that, in said connection, said second circuit terminal is downstream of said first circuit terminal with respect to said source.
  • the invention also relates to a safety device for a photovoltaic direct current source, and to a photovoltaic installation.
  • photovoltaic modules In the field of photovoltaic solar installations, it is common for photovoltaic modules to be grouped into what is known as strings, which correspond to a set of photovoltaic modules connected in series with each other, and with a common output power supply line that it carries the energy generated by the modules in the form of electrical current, generally direct current. In other cases, the supply line comes from a single photovoltaic module. Other arrangements are also possible.
  • complementary devices are often convenient, for example devices intended to monitor the status of solar panels or supply lines.
  • This type of device generally requires electrical power for its operation.
  • dedicated power wiring is generally required for such devices.
  • the installation and maintenance of this supplementary wiring involves a considerable economic cost.
  • Other options such as, for example, the use of batteries for the devices have other drawbacks such as the need to periodically replace or recharge said batteries.
  • EP2962380 (HOPF, Markus) describes a circuit that is suitable for obtaining an electric potential difference by means of an in-line connection on the supply line, so that it can be used to power an electronic device.
  • the invention is based on having a first diode in line on the supply line, and a second diode connected in parallel to the first, but with the polarity reversed. In this way, the invention takes advantage of the small drop in electrical potential between the ends of the first diode as an on-line power source.
  • the two diodes oriented antiparallel ensure that the potential drop remains small regardless of the direction of current flow.
  • the above solution has the drawback that the electric potential drop is limited and generally low.
  • elements such as voltage boosters.
  • This type of element also has some drawbacks, for example, they tend to inject noise and / or harmonics into power lines, which can be difficult to filter in this type of high-power applications.
  • the purpose of the invention is to provide a power supply circuit of the type indicated at the beginning, which makes it possible to solve the problems set out above.
  • a security device and a photovoltaic installation using said power circuit This purpose is achieved by a power circuit of the type indicated at the beginning, characterized in that said power circuit comprises a first circuit branch and a second circuit branch, each of said branches connected in parallel between said circuit terminals; wherein said first branch comprises: a diode, having an anode and a cathode, said anode being connected to said first circuit terminal; and a capacitor, having a first capacitor terminal connected to said cathode, and a second capacitor terminal connected to said second circuit terminal; wherein said second branch comprises a switch, controllable by means of a short circuit signal, so that it is configured to: remain closed in the presence of said short circuit signal; and remain open in the absence of said short circuit signal; said supply circuit having: a first supply terminal connected to said first capacitor terminal; and a second supply terminal connected to said second capacitor terminal; wherein said supply circuit further comprises a control module, configured to: generate said short circuit signal from the moment when the voltage between said capacitor terminal
  • the output voltage of the power circuit is obtained from the terminals of the capacitor of the first circuit branch.
  • the supply terminals are directly connected to the capacitor terminals or they are connected through an intermediate module, for example, configured to suit the voltage and / or current parameters.
  • the circuit also comprises a switch, connected in parallel with the branch formed by the diode and the capacitor, so that one terminal of the switch is connected to the anode of the diode, while the other terminal of the switch is connected to the second terminal of the capacitor.
  • a switch connected in parallel with the branch formed by the diode and the capacitor, so that one terminal of the switch is connected to the anode of the diode, while the other terminal of the switch is connected to the second terminal of the capacitor.
  • the control module when the switch is open, charge is stored in the capacitor, and a potential difference appears between its terminals.
  • the control module When said potential difference equals or exceeds the second threshold, the control module generates a short circuit signal.
  • the switch Upon the appearance of said short-circuit signal, the switch goes to the closed state, and remains in said state until said short-circuit signal disappears.
  • the short circuit signal can take various forms, such as non-limiting examples, a predetermined value of voltage or current, a digital signal, or even an optical or electromagnetic signal.
  • the closed state the current from the photovoltaic source no longer passes through the capacitor, so it is discharging. The diode prevents currents back from the capacitor.
  • the control module stops generating the short-circuit signal, so the switch returns to the open state, thus repeating the cycle.
  • the voltage across the capacitor terminals follows a sawtooth pattern between charge and discharge cycles.
  • this sawtooth description corresponds to a situation in which the capacitor is discharged at constant speed, other power requirements may have different profiles. However, in general the voltage across the capacitor will always cycle up (switch closed) and cycle down (switch open).
  • the expert can easily determine the supply voltage and its tolerance range. As an example, if the first threshold is chosen as 11.5V and the second threshold as 12.5V, the voltage between the capacitor terminals will be within 12V ⁇ 0.5V, except in transient stages such as the first charge. .
  • the invention makes it possible to easily select the operating parameters of voltage and tolerance, without the need to depend on specific characteristics of some elements, in particular the forward voltage of the diode in the case cited in the state of the art.
  • the supply lines of a photovoltaic string usually provide voltages between 1000 and 1500V, the above allows to obtain relatively high voltage values from the start, which can make the use of voltage boosters and their related problems unnecessary.
  • a voltage increase of between 100 and 200V typically occurs, which can be taken advantage of by the invention.
  • Another advantage of the present invention is that it allows the same elements to be used for different power values, that is, different voltages at the capacitor terminals or the power terminals, simply by selecting a first threshold and a second threshold with appropriate values for said values. feeding.
  • the control module is programmable or remotely controllable
  • the same power circuit can provide different power values depending on programming or remote control.
  • the elements that support the power step can be the same for a wide range of supply voltages. Thus, the homologation of the circuit elements is facilitated, as well as the manufacturing, stock control and maintenance operations.
  • said control module is electrically powered by at least one of: said power terminals; and said capacitor terminals.
  • the power circuit control module can obtain the necessary power to operate from the power terminals, or even directly from the capacitor terminals.
  • the capacitor terminals provide a voltage profile that exhibits a temporal variation between the first threshold and the second threshold.
  • the power terminals can present a conditioned voltage by means of elements arranged for this purpose. However, depending on the particular implementation of the control module and the selection of the thresholds, such conditioning may be unnecessary. Additionally, the control module can have some elements powered directly by the capacitor terminals and others powered from the power terminals. All of the above allows that the circuit does not require another external power source and minimizes the complexity of the circuit, potentially also reducing its consumption and maintenance.
  • the power circuit further comprises conditioning means arranged between said capacitor terminals and said power terminals, and configured to condition some of the electrical parameters at the output of said power terminals.
  • the power circuit is capable of offering a conditioned power supply, suitable for the devices that must be powered with it.
  • said conditioning means comprise a voltage regulator configured to regulate the voltage between said supply terminals, which makes it possible to offer a direct current to the output.
  • said voltage is 5V or 12V, which represent advantageous options for the power needs of many electronic devices.
  • said switch comprises a transistor, so that the switching between the open and closed state can be controlled through the gate of said transistor, even at high switching frequencies, which may be required as a function of the voltage difference between the first threshold and second threshold, and the electrical consumption needs of the device to be powered by the power circuit.
  • said circuit further comprises galvanic isolation means, connected to said supply terminals, and configured to offer a first isolated terminal and a second isolated terminal, such that said isolated terminals are galvanically isolated from said supply terminals.
  • galvanic isolation means connected to said supply terminals, and configured to offer a first isolated terminal and a second isolated terminal, such that said isolated terminals are galvanically isolated from said supply terminals.
  • the power terminals can be used to power a low power circuit, and the isolated terminals to power a high power circuit, without the latter posing a risk to the low power circuit, thanks to the insulation. galvanic between the two.
  • said galvanic isolation means offer an additional isolated terminal, galvanically isolated from said supply terminals, and having a polarity with respect to said isolated second terminal that is opposite to the polarity between said isolated first terminal and said isolated second terminal, thereby which is particularly advantageous for high power components that may require a positive pole, a negative pole and a neutral pole.
  • said transistor is of the MOSFET type, presenting a drain terminal, a source terminal and a gate terminal, with a transistor threshold voltage, and in which said short-circuit signal comprises a voltage between said gate terminal and said source terminal exceeding said transistor threshold voltage.
  • MOSFET-type transistors allow switching even in high electrical power situations, which makes it an advantageous option to act as a switch for the power circuit described here. In this case, when the potential difference between the gate terminal and the source terminal exceeds the threshold voltage of the MOSFET transistor, the transistor allows current to pass between the drain terminal and the source terminal. For this reason, this potential difference is used as a short-circuit signal.
  • the difference between said second threshold and said first threshold is in the range from 0.5V to 13V, which is a suitable range in photovoltaic installations, particularly those that comprise strings with output voltages between 1000-1500V.
  • the time required for charging and discharging the capacitor decreases as the difference between the thresholds decreases. Therefore, when this difference is in the lower part of the range, the voltage across the capacitor terminals has a small variation in voltage, but a high switching frequency is required for the switch. On the contrary, when this difference is in the upper part of the range, the variation in voltage is greater but the switching frequency of the switch decreases.
  • the expert will have no problems in selecting the value of the capacitor and the area of the range that is most indicated between said second threshold and said first threshold. , based on the considerations outlined here.
  • said first threshold is a value in the range from 3 to 18V, preferably 16V. It is common for electronic devices to require a power supply of between 3.3 and 12V.
  • the first threshold controls the point of lowest voltage at the output of the capacitor terminals, so the choice of the value of said first threshold must be made accordingly to the type of devices to be powered.
  • the first threshold is a value close to the operating voltage of the device to be powered or, if several devices are powered, to the operating voltage of all of them that has the highest value. This makes it possible to avoid the use of voltage boosters that can introduce unwanted noise and harmonics on the line.
  • said second threshold is a value in the range of 6 to 30V, preferably 18V. Similar to the previous case, the second threshold controls the point of highest voltage at the output of the capacitor terminals, so the choice of the value of said second threshold must be made accordingly to the type of devices to be powered. In case the first threshold is selected first, the choice of the second threshold must necessarily take into account the considerations described for the choice of the threshold difference described above. The final value should also take into account the desired effective stress value. This effective voltage is commonly known as the RMS voltage (Root Mean Square, mean square value for its acronym in English) in case of sinusoidal waveforms, or TRMS (True RMS) in other wave types.
  • RMS voltage Root Mean Square, mean square value for its acronym in English
  • the value of the RMS or TRMS voltage is relevant since the voltage between the capacitor terminals is not constant, but variable, despite the fact that it does not follow a sinusoidal waveform but rather a sawtooth, as described. previously.
  • the rectified voltage will generally be related to the RMS / TRMS voltage value.
  • the invention also relates to a safety device for a photovoltaic direct current source, comprising:
  • At least one safety module electrically powered by said power circuit.
  • each of said at least one security module is electrically powered by at least one of: said capacitor terminals of said power circuit; said supply terminals of said supply circuit; and said terminals isolated from said power circuit.
  • the power circuit has at least two possible outputs to power other modules: the direct output from the capacitor terminals and the output from the power terminals. Some embodiments also have power terminals galvanically isolated from the rest.
  • the offered voltage presents voltage rise and fall cycles due to the capacitor charge and discharge cycles described above.
  • the supply circuit can be provided with a matching module, for example a voltage rectifier.
  • the safety module is tolerant to voltage variations, it is possible to use the direct output of the capacitor terminals. In other cases, the already regulated output from the power terminals will be preferable.
  • Another possible scenario is the use of electrical insulation means, configured to isolate the output of the supply terminals from the output of the capacitor terminals and consequently from the supply line.
  • a combined supply is also possible, for example, that a part of the safety module is supplied via the capacitor terminals and another part is supplied via the supply terminals. All of the above facilitates and provides flexibility in the design of the security device.
  • each of said at least one security module is one of the list consisting of: a warning light, preferably an LED diode; allowing visual identification by an operator; an acoustic alarm; so that a warning arrives even if there is no direct vision; a transmitter of warnings by wireless connection; so that, for example, an alarm can be received at a monitoring console, without the need for wiring; a transmitter of warnings by wired connection; so that the signal can be received, even if environmental conditions make wireless connection difficult; and an overcurrent detector module configured to activate a line break module to cut said supply line.
  • a warning light preferably an LED diode
  • the foregoing enables the photovoltaic installation to be equipped with warning means to facilitate the detection of anomalous situations or even protection systems to avoid problems derived from said situations, such as the overcurrent detector module. Indeed, this last preferred option makes it possible to cut the supply line in the event that an electrical current of too great intensity is detected.
  • the example safety modules are not exclusive, so that in preferred embodiments the device incorporates a plurality of said modules, for example, a warning LED and an overcurrent detector module.
  • said overcurrent detector module comprises: a shunt resistor, connected in line on said supply line, and which has two terminals between which a shunt voltage is defined that is proportional to the current flowing through said resistor bypass; and a comparison module, configured to generate an overcurrent signal when said bypass voltage is greater than a cutoff threshold voltage; wherein said line break module is configured to cut said supply line upon receiving said overcurrent signal from said comparison module.
  • the current flowing through the supply line passes through the shunt resistor, producing a potential difference between its terminals, here called shunt voltage, which is the product of the ohm value of the resistance and the current in amperes of current flowing through it.
  • shunt voltage is the product of the ohm value of the resistance and the current in amperes of current flowing through it.
  • the resistance value be low to minimize electrical consumption on the line itself. It will also be necessary to choose a type of resistance that is capable of tolerating the electrical power flowing through the supply line.
  • the module interrupts the supply line to avoid any problems derived from downstream overcurrent.
  • the cutoff threshold voltage value is the product of the resistance value and a cutoff threshold current value.
  • said switch of said supply circuit is a transistor, in particular a MOSFET transistor
  • said shunt resistance is the conduction resistance of said transistor between its drain and source terminals. In this way, it is possible to obtain the voltage without the use of dedicated resistors that suppose an additional electrical consumption. On the other hand, the precision in the comparison of the shunt voltage value may be affected.
  • said comparison module comprises a comparison output, said comparison module being configured to offer at said comparison output a predetermined overcurrent voltage when said shunt voltage is greater than a threshold voltage, so that said overcurrent signal is it corresponds to the situation in which the voltage at said comparison output presents the value of said overcurrent voltage.
  • the comparison module presents at its output a predetermined voltage value when the amplified voltage exceeds a reference voltage.
  • This predetermined output voltage here called the overcurrent voltage, is used as the overcurrent signal for the line break module, which facilitates the design of the line break module since the type of overcurrent signal is simple to detect.
  • said overcurrent voltage may be a predetermined positive value, so that the comparison output offers a voltage of 0V if there is no overcurrent, or this positive value if there is overcurrent.
  • Another illustrative example is in the case that the output voltage in normal operation presents a positive voltage value, while the overcurrent voltage is 0V.
  • said comparison module comprises: a first closed-loop operational amplifier, configured to amplify said shunt voltage; and a comparator, configured to compare said amplified bypass voltage and generate said overcurrent signal in the event that it exceeds a predetermined threshold.
  • the shunt resistance value should be reduced in order to minimize electrical consumption and associated heat dissipation. Consequently, the bypass voltage will generally be low.
  • said comparator is a second open-loop operational amplifier, or an analog comparator.
  • the second op amp is arranged in an open loop, so it behaves like a comparator. In this way, high detection precision is obtained using components widely available on the market, which minimizes manufacturing costs and facilitates obtaining spare parts if necessary.
  • the reference voltage is equal to or less than the voltage provided by the supply terminals of the supply circuit.
  • said supply voltage for example 12V
  • a voltage divider to obtain the reference voltage from the supply voltage.
  • said line cut module comprises: a line cut transistor, arranged in line on said supply line, and configured as a switch of said supply line controlled by its gate voltage, defined as the voltage between the gate and the source of said line cut transistor; and a gate control module, configured to receive said overcurrent signal, and connected to said line cut transistor to control said gate voltage; wherein said line cut transistor has a gate control voltage, defined as the gate voltage above which said line cut transistor allows electrical conduction between its drain and its source, and below the which prevents electrical conduction between said drain and said source; said door control module being configured such that a reception of said overcurrent signal produces a change in said door voltage from a value higher than said door control voltage to a value lower than said door control voltage.
  • the comparison module detects it and generates the overcurrent signal.
  • this overcurrent signal is received by the line cut module, in particular the gate control module, it lowers the gate voltage of the line cut transistor until it falls below its gate control voltage.
  • the line cut transistor behaves like an open switch, preventing the passage of current between its drain and its source. Consequently, the supply line is cut off.
  • said line cut transistor is of the insulated gate bipolar transistor, IGBT type, or else a MOSFET type transistor.
  • IGBT transistors are particularly advantageous for use in power circuits, making them a convenient element for use as a cut-off element of the supply line in cases of overcurrent.
  • IGBTs tend to get hot, so another advantageous option is the use of a high quality MOSFET transistor, selected to withstand the voltages and, especially, the working currents that are usually around 10-15A for supply lines of a string.
  • said door control module comprises a latching relay, configured as a switch between said door and said first capacitor terminal, said first power supply terminal or said first insulated terminal.
  • the relay in normal operation, the relay is armed and acts as a closed switch, establishing an electrical connection between a supply terminal among those offered by the supply circuit, and the gate terminal of the line cut transistor, so that the gate voltage is above the gate control voltage and the line cut transistor allows the passage of electrical current between its drain and its source.
  • the relay Upon receipt of the short-circuit signal, the relay goes to the disarmed state and the gate is disconnected from the power supply, so that the gate voltage is then below the gate control voltage and the line cut transistor prevents the passage of electrical current between its drain and its source, thus cutting off the supply line.
  • the interlock relay ensures that the cut-out will be maintained until the interlock relay is reassembled.
  • said source of said line cut transistor is connected to said second insulated terminal; wherein said gate control module comprises an isolated gate driver for said line cut transistor, connected to said comparison output, and configured to keep said gate of said line cut transistor connected to said first isolated terminal, and proceeding to connect said gate with said additional insulated terminal in the event that the voltage at said comparison output is said overcurrent voltage.
  • Isolated gate drivers are commercially available devices that feature an output terminal that is internally switched between two source terminals based on the voltage at the gate driver input.
  • the output terminal and source terminals are electrically isolated from the gate controller input. This type of insulation It can be achieved through different technologies, although the use of optocouplers is common.
  • an isolated gate controller and galvanically isolated power terminals are used together, so that the branch of the low-power circuit that performs the comparison is isolated from the branch of the control circuit. high power acting on the supply line.
  • This configuration increases device security and improves reliability. In particular, it minimizes the possibility of damage to some of its components due to the passage of current peaks, especially from high-power circuits to low-power circuits.
  • the line cutter module further comprises voltage reduction means arranged between the gate of the cutoff transistor and its source, for example a resistor.
  • the selection of said voltage reduction means and of the output voltage of the capacitor terminals, or of the supply terminals, is carried out as a function of the gate control voltage of the cut-off transistor, so that, in normal operation, the gate voltage value is above the gate control value.
  • the invention also refers to a photovoltaic installation, comprising at least one of: a power circuit according to any of the options described above; and a security device according to any of the options described above.
  • Fig. 1 shows a simplified electrical diagram of an embodiment of the power circuit of the invention.
  • Fig. 2 shows some graphs of example of the temporal evolution of the voltages and currents at different points of the supply circuit of the example of Fig. 1.
  • Fig. 3 shows a simplified electrical diagram of an embodiment of the safety device of the invention.
  • Fig. 4 shows a simplified electrical diagram of an embodiment of the overcurrent detector module.
  • Fig. 5 shows a simplified electrical diagram of an embodiment of the line break module.
  • Fig. 6 shows a simplified electrical diagram of another embodiment of the overcurrent detector module.
  • Fig. 7 shows a simplified electrical diagram of another embodiment of the line cutter module.
  • Fig. 1 to Fig. 5 show a first embodiment of a supply circuit 1 according to the invention and of a corresponding safety device 100. It should be noted that all the electrical diagrams in the figures correspond to simplified schematic representations in which common elements have been used in the representation of electrical circuits. Likewise, for the sake of clarity, in the circuits shown in the figures only the components that have been considered necessary to clarify the operation of the invention are represented.
  • the supply circuit 1 shown in Fig. 1 has a first circuit terminal 2 and a second circuit terminal 3.
  • the supply circuit 1 is shown connected on a supply line 4 of a current source continuous photovoltaic.
  • the supply line 4 has been represented as a solid line. Terminals have been schematically represented at the ends of supply line 4, representing the continuation of the supply line 4. The upper terminal is upstream and would be connected to the output of the photovoltaic direct current source, for example, a string.
  • the circuit terminals 2 and 3 are connected in line on the supply line 4, so that the second circuit terminal 3 is downstream of the first circuit terminal 2, with respect to the source.
  • the supply circuit 1 comprises two circuit branches 5 and 6, highlighted in FIG. 1 by boxes in broken lines. Both branches 5 and 6 are connected in parallel between circuit terminals 2 and 3.
  • a first circuit branch 5 comprises a diode 51 and a capacitor 52 connected in series with each other.
  • Diode 51 has an anode and a cathode. Said anode is connected to the first circuit terminal 2.
  • the capacitor has two capacitor terminals 521 and 522, a first capacitor terminal 521 that is connected to the cathode of diode 51, and a second capacitor terminal 522 that is connected to the second terminal. circuit 3.
  • a second circuit branch 6 comprises a switch 61, controllable by means of a short-circuit signal, so that it is configured to remain closed in the presence of said short-circuit signal; and remain open in the absence of said short circuit signal.
  • the switch 61 is a MOSFET-type transistor having a drain terminal, a source terminal and a gate terminal, and with a transistor threshold voltage that is the voltage between the gate terminal and source terminal from which transistor 61 allows electrical conduction between drain terminal and source terminal.
  • the short-circuit signal in this case corresponds to a voltage between the gate terminal and the source terminal that exceeds said transistor threshold voltage.
  • the supply circuit 1 is additionally provided with supply terminals 7 and 8.
  • a first supply terminal 7 connected to the first capacitor terminal 521, and a second supply terminal 8 connected to the second capacitor terminal 522.
  • the second capacitor terminal 522 and the second power terminal 8 are directly connected to each other, and are used as ground reference. Instead, the first capacitor terminal 521 and the first supply terminal 7 are connected via conditioning means 10 arranged between them.
  • said conditioning means 100 is a voltage regulator that is configured to regulate the voltage between the supply terminals 7 and 8 to a value of 5V.
  • the voltage regulator is the ON Semiconductor® model MC7805, although other equivalent devices may be envisaged.
  • the voltage between the supply terminals 7 and 8 has other values, for example, 12V, using the MC7812 model from ON Semiconductor® or equivalent voltage regulators.
  • the supply circuit 1 of the first embodiment shown in Fig. 1, is also provided with galvanic isolation means 101, connected to the supply terminals 7 and 8.
  • These galvanic isolation means 101 offer a first isolated terminal 71, a second insulated terminal 81, and a further insulated terminal 71b having a polarity with respect to the second insulated terminal 81 that is opposite to the polarity between the first insulated terminal 71 and the second insulated terminal 81.
  • the voltage between the The first insulated terminal 71 and the second insulated terminal 81 is 15V
  • the voltage between the additional insulated terminal 71b and the second insulated terminal 81 is -15V. All the isolated terminals 71, 71b and 81 are galvanically isolated from the supply terminals 7, 8.
  • the galvanic isolation means 101 is a TRACO POWER® model TMV 0515D isolated DC / DC converter, although other equivalent devices may be envisaged.
  • the power circuit 1 also comprises a control module 9, which in the figure has been highlighted by a box in broken line.
  • Said control module 9 is configured to generate the short-circuit signal that causes the closing of the switch 61 from the moment in which the voltage between the capacitor terminals 521, 522 is higher than a second threshold 92, which in the example is of 17.6.
  • the control module 9 is also configured not to generate said short circuit signal when the voltage between the capacitor terminals 521, 522 is less than a first threshold 91, which in the example is 16.4.
  • the control module 9 is a comparison circuit based on an operational amplifier that is powered by the power terminals 7 and 8.
  • the voltage relative to the reference of ground at the first terminal of capacitor 521 is compared to a reference value, and the output of the amplifier is directed to the gate of the MOSFET transistor that acts as switch 61.
  • the voltage of capacitor 521 passes through a voltage divider and the output is compared to the 5V voltage from the supply terminal 7.
  • Fig. 2 shows a simulation of a temporal evolution of the currents and voltages in some points of the supply circuit 1 corresponding to Fig. 1.
  • the horizontal axis of the graphs corresponds to time and, in the example, it is a window of about 90 microseconds.
  • an element equivalent to a resistance connected to capacitor terminals 521 and 522 has been used, and another resistance between terminals 7 and 8.
  • the third graph corresponds to the current flowing through the second branch 6 of circuit 1 a across transistor 61, measured in amps. It can be seen that it remains substantially constant except for brief dips to zero. These drops correspond to the situation in which the switch 61 is open, and the electric charge is directed to the capacitor 52.
  • the third graph also shows current peaks that are due to the fact that the simulation has been carried out with mathematical models of real components. , in which the diode passes a peak of reverse current before completely cutting off the capacitor current.
  • the first graph of Fig. 2 shows the voltage in volts between capacitor terminals 521, 522. As can be seen, if switch 61 is open, capacitor 52 charges rapidly and when switch 61 closes, capacitor 52 discharges as the elements supplied by the power circuit use the charge stored in the capacitor. The charge and discharge cycles of the capacitor 52 have a sawtooth profile in Fig. 2 since it is a simulation with a constant discharge (equivalent to a resistance). For the example of Fig.
  • the first threshold 91 has a value of around 16.4, while the second threshold 92 has a value of around 17.6. In this way, the difference between the two is about 1.2V, so the potential difference between the terminals of capacitor 521, 522 varies between 17V ⁇ 0.6V.
  • the difference between thresholds 92 and 91 is in the range of 0.5V to 13V
  • the first threshold 91 has a value between 3 and 18V
  • the second threshold has a value in the range of 6 to 30V.
  • the second graph shown in Fig. 2 represents the voltage in gate volts of the MOSFET transistor used as switch 61 that is controlled by the control module 9. In the example, the transistor threshold voltage is around 3 V.
  • the fourth graph shows the voltage in millivolts between circuit terminals 2 and 3.
  • supply circuit 1 produces a drop of about 300mV between its circuit terminals 2 and 3, which is constant, despite the commutations shown in the rest of the graphs.
  • Fig. 3 shows the first embodiment of a safety device 100 for a photovoltaic direct current source according to the invention.
  • the safety device 100 has a power circuit 1 as described above and represented in Fig. 1.
  • the representation of said power circuit 1 has been simplified, replacing it with a block marked with the corresponding reference.
  • the security device 100 of Fig. 3 comprises two security modules 200. Each of said security modules 200 is electrically powered by said power circuit 1.
  • the security device 100 has a first security module 200 which comprises an LED and is powered by capacitor terminals 521 and 522.
  • the safety device 100 has a second safety module 200, which comprises an overcurrent detector module 210 configured to activate a line cut-off module 250 to cut said supply line 4.
  • the overcurrent detector module 210 is powered by the power terminals 7 and 8, while the line cut module 250 is powered by both the power terminals 7 and 8, as well as the terminals isolated 71, 71b and 81.
  • the overcurrent detector module 210 comprises a shunt resistor 211 that is connected in line on the supply line 4, so that it has two terminals between which a shunt voltage is defined that is proportional to the intensity of current flowing through said shunt resistor 211.
  • the overcurrent detector module 210 further comprises a comparison module 220 that is configured to generate an overcurrent signal when the shunt voltage is greater than a cutoff threshold voltage.
  • the comparison module 220 has a comparison output 223, in which a predetermined overcurrent voltage is offered when the bypass voltage across bypass resistor 211 is greater than a predetermined threshold voltage.
  • the overcurrent signal corresponds to the situation in which the voltage at said comparison output 223 presents the value of said overcurrent voltage.
  • the line cutting module 250 is configured to cut the supply line 4 when it receives the overcurrent signal from the comparison module 220, that is, when the voltage at the comparison output 223 presents the value of the default overcurrent voltage.
  • Fig. 4 shows the detail of the overcurrent detector module 210 and its comparison module 220.
  • the circuit uses a Texas Instruments® model INA300 comparison device.
  • the references marked in the entries have been maintained with respect to the documentation of the device so that they are easily identifiable by an expert.
  • the IN + and IN- references correspond to the input terminals of the shunt resistor, GND connects to the ground reference, and ALERT to the comparison output.
  • the upper line in the ALERT label indicates that the signal is inverted, that is, the comparison output 223 displays a value of 0V when overcurrent is detected, and a constant positive value of 5V when no overcurrent is detected. Thus, the default overcurrent voltage value is 0V.
  • the comparison device is powered by power supply terminals 7 and 8 of power circuit 1.
  • the overcurrent detector module comprises a potentiometer connected to the LIMIT label that allows the comparison threshold to be adjusted.
  • VS corresponds to the power supply, in this case, it is connected to the first power terminal 7 that offers 5V.
  • ENABLE is used to activate / deactivate the overcurrent detection, which is useful to avoid generating the overcurrent signal under transient conditions.
  • LATCH is used to latch the overcurrent signal once it has been detected.
  • DELAY in this case is not used.
  • HYS is used to perform a hysteresis effect in the event that interlocking is not used.
  • Fig. 5 shows the detail of the line cut-off module 250.
  • Said module comprises a line cut-off transistor 251 which is arranged in line on the line of supply 4, and configured as a switch for said supply line 4.
  • the line cut transistor 251 is a MOSFET-type transistor that is controlled by its gate voltage, defined as the voltage between its input terminals. gate 2511 and source 2512.
  • said transistor has a gate control voltage, defined as the gate voltage above which said line cut transistor 251 allows electrical conduction between its drain 2513 and its source 2512, and below which it prevents electrical conduction between said drain 2513 and said source 2512.
  • the line cut module 250 further comprises a gate control module 252, which is configured to receive the overcurrent signal, and which is connected to said line cut transistor 251 to control said gate voltage.
  • the overcurrent signal is a voltage of 0V at the comparison output 223 which is connected to an input of the door control module 252.
  • the door control module 252 is configured such that, upon receiving said signal from Overcurrent causes a change in the gate voltage of the line cutoff transistor 251 from a value higher than its gate control voltage to a value lower than said gate control voltage. Consequently, the switch goes from being closed to being open and the passage of electric current through the supply line 4 is interrupted.
  • the interruption is supplied by the insulated terminals 71, 71b and 81.
  • the source 2512 of the line cutoff transistor 251 is connected to the second isolated terminal 81, while the gate 2511 is connected to the first isolated terminal 71 or to the additional isolated terminal 71b, depending on the overcurrent signal.
  • the gate voltage goes from + 15V when no overcurrent is detected, to -15V when overcurrent is detected.
  • the switching between both values as a function of the input voltage from the comparison output 223 is carried out by means of an isolated gate controller 2521, in particular, the UCC23511 model from Texas Instruments®, although other equivalent devices may be envisaged.
  • the main internal components of the isolated door controller 2521 are represented in a blurred way, although they are not the object of the invention.
  • the gate control module 252 keeps the gate 2511 of the line cut transistor 251 connected with the first isolated terminal 71 and proceeds to connect said gate 2511 with the additional isolated terminal 71b in the event that the voltage at the comparison output 223 is the overcurrent voltage of 0V.
  • the supply circuit 1 is additionally provided with a low-pass RC filter connected to the capacitor terminals 521 and 522, in such a way that it offers a filtered voltage that presents a more temporal variation. gentle.
  • This type of voltage profile can be used to power various electronic components, avoiding overloads on the voltage regulator 10.
  • control module 9 of the power circuit comprises an analog comparator to compare the voltage at the capacitor terminals 521 and 522, and a gate controller to control the switch 61 in function of the output of said analog comparator.
  • the security device 100 of the invention incorporates an acoustic alarm. In other embodiments, it incorporates a wired or wireless alarm transmitter. Still in other forms, security devices 100 can be provided that incorporate a combination of the security modules 200 described above.
  • the comparison module 220 comprises a first closed-loop operational amplifier 221, which amplifies the bypass voltage of the bypass resistor 211; and a comparator 222, in particular a second open-loop operational amplifier, which compares said amplified bypass voltage and generates the overcurrent signal in the event that it exceeds a predetermined threshold.
  • the overcurrent signal corresponds to a predetermined overcurrent voltage, coming from the first power supply terminal 7.
  • the comparison output is 0V when no overcurrent is detected and 5V when overcurrent is detected.
  • the voltage offered by the supply terminals 7 and 8 is different, for example 12V.
  • the gate control module 252 comprises an interlocking relay 2522, configured as a switch between the gate 2511 of the line cut transistor 251 and the first capacitor terminal 521.
  • the supply circuit 1 is not provided with galvanic isolation means 101.
  • electrical isolation is achieved by physically separating the relay contacts in the event of an interruption.
  • other embodiments can be envisaged in which said relay 2522 is used and in which the supply circuit 1 is provided with galvanic isolation means 101.
  • any of the safety devices 100 described above are used in the strings of a photovoltaic installation, so that each string is provided with a safety device 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The invention relates to a power supply circuit, a safety device and a photovoltaic facility. The circuit comprises two terminals (2, 3) for the in-line connection thereof to a DC photovoltaic supply line (4), with two branches (5, 6) being connected in parallel: a first branch (5) provided with a diode (51) in series with a capacitor; and a second branch (6) provided with a switch (61), the opening and closing of which are controlled by means of a short-circuit signal generated by a control module (9) from the moment the voltage between the terminals of the capacitor (521, 522) exceeds a second threshold (92) until said voltage falls below a first threshold (91). Said power supply circuit (1) has output power supply terminals (7, 8), electrically connected to the terminals of the capacitor (521, 522) directly or by means of a conditioning module (10).

Description

CIRCUITO DE ALIMENTACIÓN, DISPOSITIVO DE SEGURIDAD E INSTALACIÓN POWER SUPPLY CIRCUIT, SAFETY DEVICE AND INSTALLATION
FOTOVOLTAICA PHOTOVOLTAIC
DESCRIPCIÓN DESCRIPTION
Campo de la invención Field of the invention
La invención se sitúa en el campo de las instalaciones solares fotovoltaicas. The invention is in the field of photovoltaic solar installations.
Más concretamente, la invención se refiere a un circuito de alimentación, con un primer terminal de circuito y un segundo terminal de circuito, configurados para su conexión en línea sobre una línea de suministro de fuente de corriente continua fotovoltaica, de forma que, en dicha conexión, dicho segundo terminal de circuito está aguas abajo de dicho primer terminal de circuito respecto a dicha fuente. More specifically, the invention refers to a power supply circuit, with a first circuit terminal and a second circuit terminal, configured to be connected in line on a supply line of a photovoltaic direct current source, so that, in said connection, said second circuit terminal is downstream of said first circuit terminal with respect to said source.
La invención también se refiere a un dispositivo de seguridad para una fuente de corriente continua fotovoltaica, y a una instalación fotovoltaica. The invention also relates to a safety device for a photovoltaic direct current source, and to a photovoltaic installation.
Estado de la técnica State of the art
En el campo de las instalaciones solares fotovoltaicas, es habitual que los módulos fotovoltaicos se agrupen en lo que se conoce como strings, que corresponde a un conjunto de módulos fotovoltaicos conectados en serie entre sí, y con una línea de suministro eléctrico común de salida que transporta la energía generada por los módulos en forma de corriente eléctrica, generalmente corriente continua. En otros casos, la línea de suministro proviene de un único módulo fotovoltaico. Otras disposiciones son también posibles. In the field of photovoltaic solar installations, it is common for photovoltaic modules to be grouped into what is known as strings, which correspond to a set of photovoltaic modules connected in series with each other, and with a common output power supply line that it carries the energy generated by the modules in the form of electrical current, generally direct current. In other cases, the supply line comes from a single photovoltaic module. Other arrangements are also possible.
A menudo resulta conveniente el uso de dispositivos complementarios, por ejemplo, dispositivos destinados a monitorizar el estado de las placas solares o las líneas de suministros. Este tipo de dispositivos generalmente requiere de alimentación eléctrica para su funcionamiento. Sin embargo, no resulta conveniente conectar en cascada un dispositivo a la propia línea de suministro para que pueda utilizar dicha energía eléctrica trasportada por dicha línea de suministro. Así, generalmente es necesario un cableado eléctrico de alimentación dedicado para dichos dispositivos. Sin embargo, y especialmente en el caso de grandes instalaciones fotovoltaicas, la instalación y mantenimiento de este cableado suplementario supone un coste económico considerable. Otras opciones como, por ejemplo, el uso de baterías para los dispositivos presenta otros inconvenientes tales como la necesidad de reemplazar o recargar de forma periódica dichas baterías. The use of complementary devices is often convenient, for example devices intended to monitor the status of solar panels or supply lines. This type of device generally requires electrical power for its operation. However, it is not convenient to cascade a device to the supply line itself so that it can use said electrical energy carried by said supply line. Thus, dedicated power wiring is generally required for such devices. However, and especially in the case of large photovoltaic installations, the installation and maintenance of this supplementary wiring involves a considerable economic cost. Other options such as, for example, the use of batteries for the devices have other drawbacks such as the need to periodically replace or recharge said batteries.
EP2962380 (HOPF, Markus) describe un circuito que es adecuado para obtener una diferencia de potencial eléctrico mediante una conexión en línea sobre la línea de suministro, de forma que pueda ser utilizada para alimentar un dispositivo electrónico. La invención se basa en disponer un primer diodo en línea sobre la línea de suministro, y un segundo diodo conectado en paralelo al primero, pero con la polaridad invertida. De esta forma, la invención aprovecha la pequeña caída de potencial eléctrico entre los extremos del primer diodo como fuente de alimentación en línea. Los dos diodos orientados en antiparalelo aseguran que la caída de potencial permanece pequeña sea cual sea la dirección de flujo de la corriente. EP2962380 (HOPF, Markus) describes a circuit that is suitable for obtaining an electric potential difference by means of an in-line connection on the supply line, so that it can be used to power an electronic device. The invention is based on having a first diode in line on the supply line, and a second diode connected in parallel to the first, but with the polarity reversed. In this way, the invention takes advantage of the small drop in electrical potential between the ends of the first diode as an on-line power source. The two diodes oriented antiparallel ensure that the potential drop remains small regardless of the direction of current flow.
Sin embargo, la solución anterior presenta el inconveniente que la caída de potencial eléctrico es limitada y en general baja. En particular, en función de las necesidades de alimentación del dispositivo al que se desea alimentar, es necesario el uso de elementos tales como elevadores de tensión. Este tipo de elementos presenta a su vez algunos inconvenientes, por ejemplo, suelen inyectar ruido y/o armónicos en las líneas eléctricas, que pueden ser difíciles de filtrar en este tipo de aplicaciones de alta potencia. However, the above solution has the drawback that the electric potential drop is limited and generally low. In particular, depending on the power needs of the device to be powered, it is necessary to use elements such as voltage boosters. This type of element also has some drawbacks, for example, they tend to inject noise and / or harmonics into power lines, which can be difficult to filter in this type of high-power applications.
Por todo lo anterior, resulta conveniente una solución técnica que permita la obtención de energía desde la propia línea de suministro, pero que permita obtener voltajes adecuados para los dispositivos a alimentar, minimizando a la vez la aparición de ruido y/o de armónicos. For all the above, a technical solution is convenient that allows obtaining energy from the supply line itself, but that allows obtaining adequate voltages for the devices to be supplied, while minimizing the appearance of noise and / or harmonics.
Descripción de la invención Description of the invention
La invención tiene como finalidad proporcionar un circuito de alimentación del tipo indicado al principio, que permita solventar los problemas expuestos anteriormente. The purpose of the invention is to provide a power supply circuit of the type indicated at the beginning, which makes it possible to solve the problems set out above.
Otros objetos de la invención son un dispositivo de seguridad y una instalación fotovoltaica que usan dicho circuito de alimentación. Esta finalidad se consigue mediante un circuito de alimentación del tipo indicado al principio, caracterizado por que dicho circuito de alimentación comprende una primera rama de circuito y una segunda rama de circuito, cada una de dichas ramas conectada en paralelo entre dichos terminales de circuito; en el que dicha primera rama comprende: un diodo, que presenta un ánodo y un cátodo, estando dicho ánodo conectado a dicho primer terminal de circuito; y un condensador, que presenta un primer terminal de condensador conectado a dicho cátodo, y un segundo terminal de condensador conectado a dicho segundo terminal de circuito; en el que dicha segunda rama comprende un interruptor, controlable mediante una señal de cortocircuito, de forma que está configurado para: mantenerse cerrado ante la presencia de dicha señal de cortocircuito; y mantenerse abierto ante la ausencia de dicha señal de cortocircuito; presentando dicho circuito de alimentación: un primer terminal de alimentación conectado a dicho primer terminal de condensador; y un segundo terminal de alimentación conectado a dicho segundo terminal de condensador; en el que dicho circuito de alimentación comprende además un módulo de control, configurado para: generar dicha señal de cortocircuito a partir del momento en el que el voltaje entre dichos terminales de condensador es superior a un segundo umbral; y no generar dicha señal de cortocircuito cuando el voltaje entre dichos terminales de condensador es inferior a un primer umbral. Other objects of the invention are a security device and a photovoltaic installation using said power circuit. This purpose is achieved by a power circuit of the type indicated at the beginning, characterized in that said power circuit comprises a first circuit branch and a second circuit branch, each of said branches connected in parallel between said circuit terminals; wherein said first branch comprises: a diode, having an anode and a cathode, said anode being connected to said first circuit terminal; and a capacitor, having a first capacitor terminal connected to said cathode, and a second capacitor terminal connected to said second circuit terminal; wherein said second branch comprises a switch, controllable by means of a short circuit signal, so that it is configured to: remain closed in the presence of said short circuit signal; and remain open in the absence of said short circuit signal; said supply circuit having: a first supply terminal connected to said first capacitor terminal; and a second supply terminal connected to said second capacitor terminal; wherein said supply circuit further comprises a control module, configured to: generate said short circuit signal from the moment when the voltage between said capacitor terminals is greater than a second threshold; and not generating said short circuit signal when the voltage between said capacitor terminals is less than a first threshold.
De esta forma, el voltaje de salida del circuito de alimentación se obtiene desde los terminales del condensador de la primera rama de circuito. Los terminales de alimentación están conectados directamente a los terminales de condensador o bien están conectados a través de un módulo intermedio, por ejemplo, configurado para adecuar los parámetros de voltaje y/o intensidad. In this way, the output voltage of the power circuit is obtained from the terminals of the capacitor of the first circuit branch. The supply terminals are directly connected to the capacitor terminals or they are connected through an intermediate module, for example, configured to suit the voltage and / or current parameters.
Esta forma de obtener el voltaje de alimentación se diferencia del estado de la técnica conocida citada anteriormente, en la que el voltaje se obtenía en línea desde los terminales de un par de diodos dispuestos antiparalelos. La invención sustituye dichos diodos antiparalelos por dicha primera rama que comprende un diodo en serie con un condensador. Además, a diferencia del estado de la técnica citado, los terminales desde los que se obtiene la diferencia de potencial eléctrico no son los de la primera rama, sino únicamente los del condensador. El diodo no se usa en este caso para obtener la diferencia de potencial, sino que su función es la de impedir corrientes de vuelta desde el condensador, tal y como se detallará más adelante. This way of obtaining the supply voltage differs from the known state of the art cited above, in which the voltage was obtained in line from the terminals of a pair of diodes arranged antiparallel. The invention replaces said antiparallel diodes by said first branch comprising a diode in series with a capacitor. Furthermore, unlike the cited state of the art, the terminals from which the electric potential difference is obtained are not those of the first branch, but only those of the capacitor. The diode is not used in this case to obtain the potential difference, but its function is to prevent return currents from the capacitor, as will be detailed later.
El circuito también comprende un interruptor, conectado en paralelo con la rama formada por el diodo y el condensador, de forma que un terminal del interruptor está conectado al ánodo del diodo, mientras que el otro terminal del interruptor está conectado al segundo terminal del condensador. De esta forma, cuando el interruptor está abierto, la corriente que pasa por la línea de suministro pasa a través de la primera rama, es decir, a través del diodo y el condensador. El diodo está dispuesto de forma que permite dicho paso de corriente. En cambio, cuando el interruptor está cerrado, la primera rama queda cortocircuitada por la segunda rama, por lo que la corriente de la línea de suministro circula únicamente por la segunda rama a través del interruptor. El experto entenderá que la explicación anterior corresponde a elementos ideales y que, en a la práctica, pueden existir pequeñas divergencias a la situación ideal debidas, por ejemplo, a efectos de resistencia o de corrientes de fuga. The circuit also comprises a switch, connected in parallel with the branch formed by the diode and the capacitor, so that one terminal of the switch is connected to the anode of the diode, while the other terminal of the switch is connected to the second terminal of the capacitor. In this way, when the switch is open, the current that passes through the supply line passes through the first branch, that is, through the diode and the capacitor. The diode is arranged in such a way as to allow said current to pass. In contrast, when the switch is closed, the first branch is short-circuited by the second branch, so the current from the supply line flows only through the second branch through the switch. The skilled person will understand that the above explanation corresponds to ideal elements and that, in practice, there may be small deviations from the ideal situation due, for example, to resistance or leakage currents.
De esta forma, cuando el interruptor está abierto, se va almacenando carga en el condensador, y apareciendo una diferencia de potencial entre sus terminales. Cuando dicha diferencia de potencial iguala o supera el segundo umbral, el módulo de control genera una señal de cortocircuito. Ante la aparición de dicha señal de cortocircuito, el interruptor pasa a estado cerrado, y se mantiene en dicho estado hasta que dicha señal de cortocircuito desaparece. La señal de cortocircuito puede presentar varias formas, como ejemplos no limitativos, un valor predeterminado de voltaje o corriente, una señal digital, o incluso una señal óptica o electromagnética. En estado cerrado, la corriente proveniente de la fuente fotovoltaica ya no pasa por el condensador, por lo que este se va descargando. El diodo impide las corrientes de vuelta desde el condensador. Cuando la diferencia de potencial entre los terminales del condensador baja y alcanza el primer umbral el módulo de control deja de generar la señal de cortocircuito, por lo que el interruptor vuelve a pasar a estado abierto, repitiendo así el ciclo. Como resultado, el voltaje entre los terminales del condensador va siguiendo un perfil similar a un diente de sierra entre ciclos de carga y descarga. El experto entenderá que esta descripción de diente de sierra corresponde a una situación en la que el condensador se descarga a velocidad constante, otros requerimientos de alimentación pueden presentar perfiles distintos. Sin embargo, en general el voltaje en el condensador siempre presentará un ciclo de subida (con el interruptor cerrado) y un ciclo de bajada (con el interruptor abierto). In this way, when the switch is open, charge is stored in the capacitor, and a potential difference appears between its terminals. When said potential difference equals or exceeds the second threshold, the control module generates a short circuit signal. Upon the appearance of said short-circuit signal, the switch goes to the closed state, and remains in said state until said short-circuit signal disappears. The short circuit signal can take various forms, such as non-limiting examples, a predetermined value of voltage or current, a digital signal, or even an optical or electromagnetic signal. In the closed state, the current from the photovoltaic source no longer passes through the capacitor, so it is discharging. The diode prevents currents back from the capacitor. When the potential difference between the capacitor terminals drops and reaches the first threshold, the control module stops generating the short-circuit signal, so the switch returns to the open state, thus repeating the cycle. As a result, the voltage across the capacitor terminals follows a sawtooth pattern between charge and discharge cycles. The skilled person will understand that this sawtooth description corresponds to a situation in which the capacitor is discharged at constant speed, other power requirements may have different profiles. However, in general the voltage across the capacitor will always cycle up (switch closed) and cycle down (switch open).
Mediante la selección del primer umbral y del segundo umbral, el experto podrá determinar con facilidad el voltaje de alimentación y su rango de tolerancia. A modo de ejemplo, si el primer umbral se escoge como 11, 5V y el segundo umbral como 12, 5V, el voltaje entre los terminales del condensador estará comprendido en 12V ± 0,5V, excepto en las etapas transitorias tales como la primera carga. By selecting the first threshold and the second threshold, the expert can easily determine the supply voltage and its tolerance range. As an example, if the first threshold is chosen as 11.5V and the second threshold as 12.5V, the voltage between the capacitor terminals will be within 12V ± 0.5V, except in transient stages such as the first charge. .
De esta forma, la invención permite seleccionar con facilidad los parámetros operativos de voltaje y tolerancia, sin necesidad de depender de características concretas de algunos elementos, en particular de la tensión directa del diodo del caso citado en el estado de la técnica. Dado que típicamente las líneas de suministro de un string fotovoltaico suelen proporcionar voltajes de entre 1000 y 1500V, lo anterior permite obtener de partida valores de voltaje relativamente elevados lo que puede hacer innecesario el uso de elevadores de tensión y sus problemas derivados. Además, debido a las particularidades de las fuentes fotovoltaicas y/o a la propia inductancia de la línea de suministro, tras una desconexión que deja la línea de suministro en circuito abierto, típicamente se produce un aumento de tensión de entre 100 y 200V, que puede ser aprovechado por la invención. In this way, the invention makes it possible to easily select the operating parameters of voltage and tolerance, without the need to depend on specific characteristics of some elements, in particular the forward voltage of the diode in the case cited in the state of the art. Given that typically the supply lines of a photovoltaic string usually provide voltages between 1000 and 1500V, the above allows to obtain relatively high voltage values from the start, which can make the use of voltage boosters and their related problems unnecessary. In addition, due to the peculiarities of photovoltaic sources and / or the inductance of the supply line, after a disconnection that leaves the supply line in an open circuit, a voltage increase of between 100 and 200V typically occurs, which can be taken advantage of by the invention.
En cambio, para la solución basada en la tensión directa de un diodo, para obtener de partida valores altos de voltaje es necesario utilizar diodos en los que dicha tensión directa sea lo más elevada posible, lo que implica una pérdida de energía en la línea debida al propio circuito de alimentación, así como un aumento de la disipación de calor. Alternativamente, puede usarse un diodo con una tensión directa baja y un elevador de voltaje. On the other hand, for the solution based on the direct voltage of a diode, to obtain high voltage values from the beginning it is necessary to use diodes in which said direct voltage is as high as possible, which implies a loss of energy in the line due to the power circuit itself, as well as an increase in heat dissipation. Alternatively, a diode with a low forward voltage and a boost can be used.
Otra ventaja de la presente invención es que permite utilizar los mismos elementos para valores de alimentación distintos, es decir, distintos voltajes en los terminales de condensador o los terminales de alimentación, simplemente seleccionado un primer umbral y un segundo umbral con valores adecuados para dichos valores de alimentación. En unos casos ventajosos en los que el módulo de control es programable o controlable remotamente, el mismo circuito de alimentación puede proporcionar valores de alimentación distintos en función de la programación o del control remoto. Además, dado que los elementos que soportan el paso de potencia pueden ser los mismos para un amplio rango de voltajes de alimentación. Se facilita así la homologación de los elementos del circuito, y también las operaciones de fabricación, control de stocks y mantenimiento. Another advantage of the present invention is that it allows the same elements to be used for different power values, that is, different voltages at the capacitor terminals or the power terminals, simply by selecting a first threshold and a second threshold with appropriate values for said values. feeding. In advantageous cases where the control module is programmable or remotely controllable, the same power circuit can provide different power values depending on programming or remote control. In addition, since the elements that support the power step can be the same for a wide range of supply voltages. Thus, the homologation of the circuit elements is facilitated, as well as the manufacturing, stock control and maintenance operations.
Preferentemente, dicho módulo de control está alimentado eléctricamente mediante por lo menos uno de entre: dichos terminales de alimentación; y dichos terminales de condensador. Preferably, said control module is electrically powered by at least one of: said power terminals; and said capacitor terminals.
De esta forma, el módulo de control del circuito de alimentación puede obtener la energía necesaria para funcionar desde los terminales de alimentación, o incluso directamente de los terminales de condensador. Como se ha descrito anteriormente, los terminales de condensador proporcionan un perfil de voltaje que presenta una variación temporal entre el primer umbral y el segundo umbral. Los terminales de alimentación pueden en cambio presentar un voltaje acondicionado mediante elementos dispuestos a tal efecto. Sin embargo, dependiendo de la implementación particular del módulo de control y de la selección de los umbrales, tal acondicionamiento puede ser innecesario. Adicionalmente el módulo de control puede presentar algunos elementos alimentados directamente por los terminales de condensador y otros alimentados desde los terminales de alimentación. Todo lo anterior permite que el circuito no requiera de otra fuente de alimentación externa y minimiza la complejidad del circuito, potencialmente reduciendo también su consumo y mantenimiento. In this way, the power circuit control module can obtain the necessary power to operate from the power terminals, or even directly from the capacitor terminals. As described above, the capacitor terminals provide a voltage profile that exhibits a temporal variation between the first threshold and the second threshold. On the other hand, the power terminals can present a conditioned voltage by means of elements arranged for this purpose. However, depending on the particular implementation of the control module and the selection of the thresholds, such conditioning may be unnecessary. Additionally, the control module can have some elements powered directly by the capacitor terminals and others powered from the power terminals. All of the above allows that the circuit does not require another external power source and minimizes the complexity of the circuit, potentially also reducing its consumption and maintenance.
Preferentemente, el circuito de alimentación comprende además unos medios de acondicionamiento dispuestos entre dichos terminales de condensador y dichos terminales de alimentación, y configurados para acondicionar alguno de los parámetros eléctricos a la salida de dichos terminales de alimentación. De esta forma, el circuito de alimentación es capaz de ofrecer una alimentación acondicionada, adecuada para los dispositivos que deban ser alimentados con él. Preferentemente dichos medios de acondicionamiento comprenden un regulador de voltaje configurado para regular el voltaje entre dichos terminales de alimentación, lo que permite ofrecer una corriente continua a la salida. Preferentemente dicho voltaje es de 5V o bien de 12V, que suponen unas opciones ventajosas para las necesidades de alimentación de numerosos dispositivos electrónicos. Preferentemente, dicho interruptor comprende un transistor, de forma que la conmutación entre el estado abierto y cerrado puede controlarse a través de la puerta de dicho transistor, incluso a frecuencias elevadas de conmutación, que pueden ser requeridas en función de la diferencia de voltaje entre el primer umbral y el segundo umbral, y las necesidades de consumo eléctrico del dispositivo que se vaya a alimentar con el circuito de alimentación. Preferably, the power circuit further comprises conditioning means arranged between said capacitor terminals and said power terminals, and configured to condition some of the electrical parameters at the output of said power terminals. In this way, the power circuit is capable of offering a conditioned power supply, suitable for the devices that must be powered with it. Preferably said conditioning means comprise a voltage regulator configured to regulate the voltage between said supply terminals, which makes it possible to offer a direct current to the output. Preferably said voltage is 5V or 12V, which represent advantageous options for the power needs of many electronic devices. Preferably, said switch comprises a transistor, so that the switching between the open and closed state can be controlled through the gate of said transistor, even at high switching frequencies, which may be required as a function of the voltage difference between the first threshold and second threshold, and the electrical consumption needs of the device to be powered by the power circuit.
Preferentemente, dicho circuito además comprende unos medios de aislamiento galvánico, conectados a dichos terminales de alimentación, y configurados para ofrecer un primer terminal aislado y un segundo terminal aislado, de forma que dichos terminales aislados están galvánicamente aislados de dichos terminales de alimentación. De esta forma, resulta posible proveer unas salidas de alimentación distintas y que exista un aislamiento de protección entre ellas. A modo de ejemplo no limitativo, pueden usarse los terminales de alimentación para alimentar un circuito de baja potencia, y los terminales aislados para alimentar un circuito de alta potencia, sin que este último suponga un riesgo para el circuito de baja potencia, gracias al aislamiento galvánico entre ambos. Preferably, said circuit further comprises galvanic isolation means, connected to said supply terminals, and configured to offer a first isolated terminal and a second isolated terminal, such that said isolated terminals are galvanically isolated from said supply terminals. In this way, it is possible to provide different power outputs and there is a protective isolation between them. By way of non-limiting example, the power terminals can be used to power a low power circuit, and the isolated terminals to power a high power circuit, without the latter posing a risk to the low power circuit, thanks to the insulation. galvanic between the two.
Preferentemente, dichos medios de aislamiento galvánico ofrecen un terminal aislado adicional, galvánicamente aislado de dichos terminales de alimentación, y que presenta una polaridad respecto a dicho segundo terminal aislado que es opuesta a la polaridad entre dicho primer terminal aislado y dicho segundo terminal aislado, lo que resulta particularmente ventajoso para componentes de alta potencia que pueden requerir un polo positivo, un polo negativo y un polo neutro. Preferably, said galvanic isolation means offer an additional isolated terminal, galvanically isolated from said supply terminals, and having a polarity with respect to said isolated second terminal that is opposite to the polarity between said isolated first terminal and said isolated second terminal, thereby which is particularly advantageous for high power components that may require a positive pole, a negative pole and a neutral pole.
Preferentemente, dicho transistor es de tipo MOSFET, presentando un terminal de drenaje, un terminal de fuente y un terminal de puerta, con una tensión de umbral de transistor, y en el que dicha señal de cortocircuito comprende una tensión entre dicho terminal de puerta y dicho terminal de fuente que supera dicha tensión de umbral de transistor. Los transistores de tipo MOSFET permiten la conmutación incluso en situaciones de alta potencia eléctrica, lo que lo convierte en una opción ventajosa para actuar como interruptor del circuito de alimentación aquí descrito. En este caso, cuando la diferencia de potencial entre el terminal de puerta y el terminal de fuente supera la tensión umbral del transistor MOSFET, el transistor permite el paso de corriente entre el terminal de drenaje y el terminal de fuente. Por este motivo, dicha diferencia de potencial se utiliza como señal de cortocircuito. Preferentemente, la diferencia entre dicho segundo umbral y dicho primer umbral está comprendido en el rango de 0,5V a 13V, lo que supone un rango adecuado en instalaciones fotovoltaicas, particularmente aquellas que comprenden strings con tensiones de salida de entre 1000-1500V. El experto entenderá que, para un mismo condensador y una misma carga conectada a la salida de alimentación del circuito de alimentación, el tiempo necesario para la carga y la descarga del condensador disminuye conforme disminuye la diferencia entre los umbrales. Por lo tanto, cuando dicha diferencia está en la parte baja del rango, la tensión entre los terminales del condensador presenta una variación pequeña en voltaje, pero se requiere una frecuencia de conmutación elevada para el interruptor. Por el contrario, cuando dicha diferencia está en la parte alta del rango, la variación en voltaje es mayor pero la frecuencia de conmutación del interruptor disminuye. En función del tipo de dispositivo a alimentar por el circuito de alimentación y del resto de elementos de la instalación, el experto no tendrá problemas en seleccionar el valor del condensador y la zona del rango que resulte más indicado entre dicho segundo umbral y dicho primer umbral, basándose en las consideraciones expuestas aquí. Preferably, said transistor is of the MOSFET type, presenting a drain terminal, a source terminal and a gate terminal, with a transistor threshold voltage, and in which said short-circuit signal comprises a voltage between said gate terminal and said source terminal exceeding said transistor threshold voltage. MOSFET-type transistors allow switching even in high electrical power situations, which makes it an advantageous option to act as a switch for the power circuit described here. In this case, when the potential difference between the gate terminal and the source terminal exceeds the threshold voltage of the MOSFET transistor, the transistor allows current to pass between the drain terminal and the source terminal. For this reason, this potential difference is used as a short-circuit signal. Preferably, the difference between said second threshold and said first threshold is in the range from 0.5V to 13V, which is a suitable range in photovoltaic installations, particularly those that comprise strings with output voltages between 1000-1500V. The expert will understand that, for the same capacitor and the same load connected to the power output of the power circuit, the time required for charging and discharging the capacitor decreases as the difference between the thresholds decreases. Therefore, when this difference is in the lower part of the range, the voltage across the capacitor terminals has a small variation in voltage, but a high switching frequency is required for the switch. On the contrary, when this difference is in the upper part of the range, the variation in voltage is greater but the switching frequency of the switch decreases. Depending on the type of device to be supplied by the power circuit and the rest of the elements of the installation, the expert will have no problems in selecting the value of the capacitor and the area of the range that is most indicated between said second threshold and said first threshold. , based on the considerations outlined here.
Preferentemente, dicho primer umbral es un valor en el rango de 3 a 18V, preferentemente 16V. Es habitual que los dispositivos electrónicos requieran una alimentación de entre 3,3 y 12V. El primer umbral controla el punto de menor voltaje en la salida de los terminales de condensador, por lo que la elección del valor de dicho primer umbral debe realizarse en consecuencia al tipo de dispositivos que se quiera alimentar. Preferentemente, el primer umbral es un valor próximo a la tensión de funcionamiento del dispositivo a alimentar o bien, si se alimentan varios dispositivos, a la tensión de funcionamiento de entre todos ellos que presenta el mayor valor. Lo anterior permite evitar el uso de elevadores de tensión que pueden introducir ruido y armónicos indeseados en la línea. Preferably, said first threshold is a value in the range from 3 to 18V, preferably 16V. It is common for electronic devices to require a power supply of between 3.3 and 12V. The first threshold controls the point of lowest voltage at the output of the capacitor terminals, so the choice of the value of said first threshold must be made accordingly to the type of devices to be powered. Preferably, the first threshold is a value close to the operating voltage of the device to be powered or, if several devices are powered, to the operating voltage of all of them that has the highest value. This makes it possible to avoid the use of voltage boosters that can introduce unwanted noise and harmonics on the line.
Preferentemente, dicho segundo umbral es un valor en el rango de 6 a 30V, preferentemente 18V. De forma similar al caso anterior, el segundo umbral controla el punto de mayor voltaje en la salida de los terminales de condensador, por lo que la elección del valor de dicho segundo umbral debe realizarse en consecuencia al tipo de dispositivos que se quiera alimentar. En caso de que se seleccione en primer lugar el primer umbral, la elección del segundo umbral deberá necesariamente tener en cuenta las consideraciones descritas para la elección de la diferencia de umbrales descritas arriba. El valor final deberá también tener en consideración el valor de tensión efectiva que se desee. Esta tensión efectiva se conoce comúnmente como tensión RMS (Root Mean Square, valor cuadrático medio por sus siglas en inglés) en caso de formas de onda sinusoidales, o TRMS (True RMS) en otros tipos de onda. El valor de la tensión RMS o TRMS resulta relevante dado que la tensión entre los terminales del condensador no es constante, sino variable, pese a que no sigue una forma de onda sinusoidal sino más parecida un diente de sierra, tal y como se ha descrito anteriormente. En el caso de utilizar rectificadores de tensión entre los terminales de condensador y los terminales de alimentación, la tensión rectificada generalmente estará relacionada con el valor de tensión RMS/TRMS. Preferably, said second threshold is a value in the range of 6 to 30V, preferably 18V. Similar to the previous case, the second threshold controls the point of highest voltage at the output of the capacitor terminals, so the choice of the value of said second threshold must be made accordingly to the type of devices to be powered. In case the first threshold is selected first, the choice of the second threshold must necessarily take into account the considerations described for the choice of the threshold difference described above. The final value should also take into account the desired effective stress value. This effective voltage is commonly known as the RMS voltage (Root Mean Square, mean square value for its acronym in English) in case of sinusoidal waveforms, or TRMS (True RMS) in other wave types. The value of the RMS or TRMS voltage is relevant since the voltage between the capacitor terminals is not constant, but variable, despite the fact that it does not follow a sinusoidal waveform but rather a sawtooth, as described. previously. In the case of using voltage rectifiers between the capacitor terminals and the power terminals, the rectified voltage will generally be related to the RMS / TRMS voltage value.
La invención también se refiere a un dispositivo de seguridad para una fuente de corriente continua fotovoltaica, que comprende: The invention also relates to a safety device for a photovoltaic direct current source, comprising:
- un circuito de alimentación según alguna de las formas preferentes descritas anteriormente; y - a power supply circuit according to one of the preferred forms described above; and
- por lo menos un módulo de seguridad, alimentado eléctricamente mediante dicho circuito de alimentación. - at least one safety module, electrically powered by said power circuit.
De esta forma, resulta posible proveer a la fuente de corriente continua fotovoltaica de un dispositivo que esté alimentado eléctricamente mediante el circuito de alimentación descrito anteriormente, sin necesidad de utilizar cableado de alimentación dedicado o baterías. In this way, it is possible to provide the photovoltaic direct current source with a device that is electrically powered by the power circuit described above, without the need to use dedicated power wiring or batteries.
Preferentemente, cada uno de dichos por lo menos un módulo de seguridad está alimentado eléctricamente mediante por lo menos uno de: dichos terminales de condensador de dicho circuito de alimentación; dichos terminales de alimentación de dicho circuito de alimentación; y dichos terminales aislados de dicho circuito de alimentación. Preferably, each of said at least one security module is electrically powered by at least one of: said capacitor terminals of said power circuit; said supply terminals of said supply circuit; and said terminals isolated from said power circuit.
El circuito de alimentación presenta al menos dos posibles salidas para alimentar otros módulos: la salida directa de los terminales de condensador y la salida de los terminales de alimentación. Algunas formas de realización presentan además unos terminales de alimentación aislados galvánicamente del resto. En la primera opción, la tensión ofrecida presenta unos ciclos de subida y de bajada de tensión debidos a los ciclos de carga y descarga del condensador descritos anteriormente. En el caso de la segunda opción, el circuito de alimentación puede estar provisto de un módulo de adecuación, por ejemplo, un rectificador de tensión. En los casos en los que el módulo de seguridad es tolerante a variaciones de tensión es posible utilizar la salida directa de los terminales de condensador. En otros casos, resultará preferible la salida ya regulada de los terminales de alimentación. Otro posible escenario es el uso de medios de aislamiento eléctrico, configurados para aislar la salida de los terminales de alimentación de la salida de los terminales de condensador y, en consecuencia, de la línea de suministro. También resulta posible una alimentación combinada, por ejemplo, que una parte del módulo de seguridad se alimente mediante los terminales de condensador y otra parte se alimente mediante los terminales de alimentación. Todo lo anterior facilita y proporciona flexibilidad en el diseño del dispositivo de seguridad. The power circuit has at least two possible outputs to power other modules: the direct output from the capacitor terminals and the output from the power terminals. Some embodiments also have power terminals galvanically isolated from the rest. In the first option, the offered voltage presents voltage rise and fall cycles due to the capacitor charge and discharge cycles described above. In the case of the second option, the supply circuit can be provided with a matching module, for example a voltage rectifier. In cases where the safety module is tolerant to voltage variations, it is possible to use the direct output of the capacitor terminals. In other cases, the already regulated output from the power terminals will be preferable. Another possible scenario is the use of electrical insulation means, configured to isolate the output of the supply terminals from the output of the capacitor terminals and consequently from the supply line. A combined supply is also possible, for example, that a part of the safety module is supplied via the capacitor terminals and another part is supplied via the supply terminals. All of the above facilitates and provides flexibility in the design of the security device.
Preferentemente, cada uno de dichos por lo menos un módulo de seguridad es uno de la lista que consiste en: un avisador luminoso, preferentemente un diodo LED; que permite una identificación visual por parte de un operario; un avisador acústico; de forma que llegue un aviso incluso si no hay visión directa; un transmisor de avisos por conexión inalámbrica; de forma que, por ejemplo, pueda recibirse una alarma en una consola de monitorización, sin necesidad de cableado; un transmisor de avisos por conexión cableada; de forma que pueda recibirse la señal, incluso si las condiciones ambientales dificultan la conexión inalámbrica; y un módulo detector de sobrecorriente configurado para activar un módulo de corte de línea para cortar dicha línea de suministro. Preferably, each of said at least one security module is one of the list consisting of: a warning light, preferably an LED diode; allowing visual identification by an operator; an acoustic alarm; so that a warning arrives even if there is no direct vision; a transmitter of warnings by wireless connection; so that, for example, an alarm can be received at a monitoring console, without the need for wiring; a transmitter of warnings by wired connection; so that the signal can be received, even if environmental conditions make wireless connection difficult; and an overcurrent detector module configured to activate a line break module to cut said supply line.
Lo anterior permite dotar a la instalación fotovoltaica de medios de aviso para facilitar la detección de situaciones anómalas o incluso de sistemas de protección para evitar problemas derivados de dichas situaciones, como es el caso del módulo detector de sobrecorriente. En efecto, esta última opción preferente permite cortar la línea de suministro en el caso de que se detecte una corriente eléctrica de demasiada intensidad. Los módulos de seguridad de ejemplo no son excluyentes, de modo que en unas formas de realización preferente el dispositivo incorpora una pluralidad de dichos módulos, por ejemplo, un LED de aviso y un módulo detector de sobrecorriente. The foregoing enables the photovoltaic installation to be equipped with warning means to facilitate the detection of anomalous situations or even protection systems to avoid problems derived from said situations, such as the overcurrent detector module. Indeed, this last preferred option makes it possible to cut the supply line in the event that an electrical current of too great intensity is detected. The example safety modules are not exclusive, so that in preferred embodiments the device incorporates a plurality of said modules, for example, a warning LED and an overcurrent detector module.
Preferentemente, dicho módulo detector de sobrecorriente comprende: una resistencia de derivación, conectada en línea sobre dicha línea de suministro, y que presenta dos terminales entre los que queda definida una tensión de derivación que es proporcional a la intensidad de corriente que circula por dicha resistencia de derivación; y un módulo de comparación, configurado para generar una señal de sobrecorriente cuando dicha tensión de derivación es mayor que una tensión umbral de corte; en el que dicho módulo de corte de línea está configurado para cortar dicha línea de suministro al recibir dicha señal de sobrecorriente desde dicho módulo de comparación. Preferably, said overcurrent detector module comprises: a shunt resistor, connected in line on said supply line, and which has two terminals between which a shunt voltage is defined that is proportional to the current flowing through said resistor bypass; and a comparison module, configured to generate an overcurrent signal when said bypass voltage is greater than a cutoff threshold voltage; wherein said line break module is configured to cut said supply line upon receiving said overcurrent signal from said comparison module.
De esta forma, la corriente que circula por la línea de suministro atraviesa la resistencia de derivación, produciendo entre sus terminales una diferencia de potencial, llamada aquí tensión de derivación, que es el producto del valor en ohmios de la resistencia y de la corriente en amperios de corriente que la atraviesan. Por motivos que resultaran claros para un experto en la materia, es recomendable que el valor de resistencia sea bajo para minimizar el consumo eléctrico en la propia línea. También resultará necesario la elección de un tipo resistencia que sea capaz de tolerar la potencia eléctrica que circula a través de la línea de suministro. En el caso de que la tensión de derivación sea mayor que un umbral, el módulo interrumpe la línea de suministro para evitar cualquier problema derivado de la sobrecorriente aguas abajo. El valor de tensión umbral de corte es el producto del valor de la resistencia y de un valor de corriente umbral de corte. In this way, the current flowing through the supply line passes through the shunt resistor, producing a potential difference between its terminals, here called shunt voltage, which is the product of the ohm value of the resistance and the current in amperes of current flowing through it. For reasons that will be clear to a person skilled in the art, it is recommended that the resistance value be low to minimize electrical consumption on the line itself. It will also be necessary to choose a type of resistance that is capable of tolerating the electrical power flowing through the supply line. In the event that the bypass voltage is greater than a threshold, the module interrupts the supply line to avoid any problems derived from downstream overcurrent. The cutoff threshold voltage value is the product of the resistance value and a cutoff threshold current value.
Preferentemente, en los casos en los que dicho interruptor de dicho circuito de alimentación es un transistor, en particular un transistor MOSFET, dicha resistencia de derivación es la resistencia de conducción de dicho transistor entre sus terminales de drenaje y fuente. De esta forma, es posible obtener la tensión sin uso de resistencias dedicadas que supongan un consumo eléctrico suplementario. En contrapartida, la precisión en la comparación del valor de tensión de derivación puede verse afectada. Preferably, in cases where said switch of said supply circuit is a transistor, in particular a MOSFET transistor, said shunt resistance is the conduction resistance of said transistor between its drain and source terminals. In this way, it is possible to obtain the voltage without the use of dedicated resistors that suppose an additional electrical consumption. On the other hand, the precision in the comparison of the shunt voltage value may be affected.
Preferentemente, dicho módulo de comparación comprende una salida de comparación, estando dicho módulo de comparación configurado para ofrecer en dicha salida de comparación una tensión de sobrecorriente predeterminada cuando dicha tensión de derivación es mayor que una tensión umbral, de forma que dicha señal de sobrecorriente se corresponde con la situación en la que la tensión en dicha salida de comparación presenta el valor de dicha tensión de sobrecorriente. De esta forma, el módulo de comparación presenta a su salida un valor de tensión predeterminada cuando la tensión amplificada supera una tensión de referencia. Esta tensión de salida predeterminada, aquí llamada tensión de sobrecorriente, se utiliza como señal de sobrecorriente para el módulo de corte de línea, lo que facilita el diseño del módulo de corte de línea dado que el tipo de señal de sobrecorriente resulta simple de detectar. A modo de ejemplo, dicha tensión de sobrecorriente puede ser un valor positivo predeterminado, de manera que la salida de comparación ofrece una tensión de 0V si no hay sobrecorriente, o bien dicho valor positivo si hay sobrecorriente. Otro ejemplo ilustrativo, es en el caso que la tensión de salida en funcionamiento normal presente un valor positivo de tensión, mientras que la tensión de sobrecorriente es 0V. Preferably, said comparison module comprises a comparison output, said comparison module being configured to offer at said comparison output a predetermined overcurrent voltage when said shunt voltage is greater than a threshold voltage, so that said overcurrent signal is it corresponds to the situation in which the voltage at said comparison output presents the value of said overcurrent voltage. In this way, the comparison module presents at its output a predetermined voltage value when the amplified voltage exceeds a reference voltage. This predetermined output voltage, here called the overcurrent voltage, is used as the overcurrent signal for the line break module, which facilitates the design of the line break module since the type of overcurrent signal is simple to detect. By way of example, said overcurrent voltage may be a predetermined positive value, so that the comparison output offers a voltage of 0V if there is no overcurrent, or this positive value if there is overcurrent. Another illustrative example is in the case that the output voltage in normal operation presents a positive voltage value, while the overcurrent voltage is 0V.
Preferentemente, dicho módulo de comparación comprende: un primer amplificador operacional en lazo cerrado, configurado para amplificar dicha tensión de derivación; y un comparador, configurado para comparar dicha tensión de derivación amplificada y generar dicha señal de sobrecorriente en el caso de que supere un umbral predeterminado. Preferably, said comparison module comprises: a first closed-loop operational amplifier, configured to amplify said shunt voltage; and a comparator, configured to compare said amplified bypass voltage and generate said overcurrent signal in the event that it exceeds a predetermined threshold.
El valor de resistencia de derivación conviene que sea reducido de cara a minimizar el consumo eléctrico y la disipación de calor asociada. En consecuencia, la tensión de derivación resultará en general baja. Sin embargo, realizar una comparación respecto a niveles de tensión reducidos puede resultar complejo dado que se hace necesario detectar pequeñas variaciones en la tensión. Por este motivo, la comparación se realiza en dos pasos: primero una amplificación y en segundo lugar la comparación propiamente dicha. Preferentemente, dicho comparador es un segundo amplificador operacional en lazo abierto, o bien un comparador analógico. En el primer caso, el segundo amplificador operacional está dispuesto en lazo abierto, por lo que se comporta como un comparador. De esta forma, se obtiene una alta precisión en la detección usando componentes ampliamente disponibles en el mercado, lo que minimiza los costes de fabricación y facilita la obtención de recambios en caso necesario. En unas formas de realización preferentes, la tensión de referencia es un valor igual o inferior al de la tensión proporcionada por los terminales de alimentación del circuito de alimentación. De esta forma, es posible usar dicha tensión de alimentación, por ejemplo, 12V, como tensión de referencia, o bien usar un divisor de tensión para obtener la tensión de referencia a partir de la tensión de alimentación. Así, la elección del valor de amplificación del primer amplificador operacional puede escogerse fácilmente para proporcionar la tensión requerida. Siguiendo estas consideraciones, el experto no tendrá problemas en seleccionar los parámetros del módulo de comparación en función del valor de intensidad umbral de corte deseado y el valor de la resistencia de derivación. The shunt resistance value should be reduced in order to minimize electrical consumption and associated heat dissipation. Consequently, the bypass voltage will generally be low. However, making a comparison for low voltage levels can be complex as it is necessary to detect small variations in voltage. For this reason, the comparison is carried out in two steps: first an amplification and secondly the comparison itself. Preferably, said comparator is a second open-loop operational amplifier, or an analog comparator. In the first case, the second op amp is arranged in an open loop, so it behaves like a comparator. In this way, high detection precision is obtained using components widely available on the market, which minimizes manufacturing costs and facilitates obtaining spare parts if necessary. In preferred embodiments, the reference voltage is equal to or less than the voltage provided by the supply terminals of the supply circuit. In this way, it is possible to use said supply voltage, for example 12V, as the reference voltage, or to use a voltage divider to obtain the reference voltage from the supply voltage. Thus, the choice of the amplification value of the first operational amplifier can easily be chosen to provide the required voltage. Following these considerations, the skilled person will have no problem in selecting the parameters of the comparison module based on the desired cut-off current value and the value of the shunt resistance.
Preferentemente, dicho módulo de corte de línea comprende: un transistor de corte de línea, dispuesto en línea sobre dicha línea de suministro, y configurado a modo de interruptor de dicha línea de suministro controlado por su tensión de puerta, definida como la tensión entre la puerta y la fuente de dicho transistor de corte de línea; y un módulo de control de puerta, configurado para recibir dicha señal de sobrecorriente, y conectado a dicho transistor de corte de línea para controlar dicha tensión de puerta; en el que dicho transistor de corte de línea presenta una tensión de control de puerta, definida como la tensión de puerta por encima de la cual dicho transistor de corte de línea permite la conducción eléctrica entre su drenaje y su fuente, y por debajo de la cual impide la conducción eléctrica entre dicho drenaje y dicha fuente; estando dicho módulo de control de puerta configurado de forma que una recepción de dicha señal de sobrecorriente produce un cambio en dicha tensión de puerta desde un valor superior a dicha tensión de control de puerta hasta un valor inferior a dicha tensión de control de puerta. Preferably, said line cut module comprises: a line cut transistor, arranged in line on said supply line, and configured as a switch of said supply line controlled by its gate voltage, defined as the voltage between the gate and the source of said line cut transistor; and a gate control module, configured to receive said overcurrent signal, and connected to said line cut transistor to control said gate voltage; wherein said line cut transistor has a gate control voltage, defined as the gate voltage above which said line cut transistor allows electrical conduction between its drain and its source, and below the which prevents electrical conduction between said drain and said source; said door control module being configured such that a reception of said overcurrent signal produces a change in said door voltage from a value higher than said door control voltage to a value lower than said door control voltage.
El experto en la materia entenderá que se ha utilizado una nomenclatura para el transistor de corte de línea correspondiente a los transistores de efecto campo. En particular, se utiliza las etiquetas “puerta”, “drenaje” y “fuente”. Sin embargo, dicho experto no tendrá problemas en identificar los terminales equivalentes para otro tipo de transistores. A modo de ejemplo, un transistor bipolar de puerta aislada, IGBT, presenta unos terminales comúnmente denominados como “puerta”, “colector” y “emisor”, que son los equivalentes a los terminales de “puerta”, “drenaje” y “fuente” antes mencionados. Así mismo, para otros tipos de transistores, el terminal equivalente a la “puerta” se denomina “base”. The person skilled in the art will understand that a nomenclature has been used for the line cut transistor corresponding to field effect transistors. In particular, the labels "gate", "drain" and "source" are used. However, such an expert will have no problem identifying equivalent terminals for other types of transistors. By way of example, an insulated gate bipolar transistor, IGBT, has terminals commonly referred to as "gate", "collector" and "emitter", which are equivalent to the "gate", "drain" and "source" terminals. " aforementioned. Likewise, for other types of transistors, the terminal equivalent to the "gate" is called "base".
En caso de sobrecorriente, el módulo de comparación la detecta y genera la señal de sobrecorriente. Cuando esta señal de sobrecorriente es recibida por el módulo de corte de línea, en particular, por el módulo de control de puerta, este disminuye la tensión de puerta del transistor de corte de línea hasta quedar por debajo de su tensión de control de puerta. En ese momento, el transistor de corte de línea pasa a comportarse como un interruptor abierto, impidiendo el paso de corriente entre su drenaje y su fuente. En consecuencia, la línea de suministro queda cortada. Esta forma ventajosa de realización comporta una gran fiabilidad del sistema dado que únicamente el transistor de corte de línea soporta el paso de corriente de la línea de suministro. Dado que este tipo de transistores están fabricados para aplicaciones de alta potencia, el dispositivo de seguridad resulta fiable y se minimiza la posibilidad de fallos. Preferentemente, dicho transistor de corte de línea es de tipo transistor bipolar de puerta aislada, IGBT, o bien un transistor de tipo MOSFET. Los transistores IGBT son particularmente ventajosos para el uso en circuitos de potencia, por lo que resulta un elemento conveniente para su uso como elemento de corte de la línea de suministro en casos de sobrecorriente. Sin embargo, los IGBT tienden a calentarse, por lo que otra opción ventajosa es el uso de un transistor MOSFET de alta calidad, seleccionado para soportar las tensiones y, en especial, las corrientes de trabajo que suelen estar entorno a los 10-15A para líneas de suministro de un string. In the event of an overcurrent, the comparison module detects it and generates the overcurrent signal. When this overcurrent signal is received by the line cut module, in particular the gate control module, it lowers the gate voltage of the line cut transistor until it falls below its gate control voltage. At that moment, the line cut transistor behaves like an open switch, preventing the passage of current between its drain and its source. Consequently, the supply line is cut off. This advantageous form of embodiment involves a high reliability of the system since only the line cut transistor supports the passage of current from the supply line. Since these types of transistors are manufactured for high power applications, the safety device is reliable and the possibility of failure is minimized. Preferably, said line cut transistor is of the insulated gate bipolar transistor, IGBT type, or else a MOSFET type transistor. IGBT transistors are particularly advantageous for use in power circuits, making them a convenient element for use as a cut-off element of the supply line in cases of overcurrent. However, IGBTs tend to get hot, so another advantageous option is the use of a high quality MOSFET transistor, selected to withstand the voltages and, especially, the working currents that are usually around 10-15A for supply lines of a string.
Preferentemente, dicho módulo de control de puerta comprende un relé de enclavamiento, configurado a modo de interruptor entre dicha puerta y dicho primer terminal de condensador dicho primer terminal de alimentación o bien dicho primer terminal aislado. De esta forma, en funcionamiento normal, el relé está armado y actúa como un interruptor cerrado, estableciendo una conexión eléctrica entre un terminal de alimentación de entre los ofrecidos por el circuito de alimentación, y el terminal de puerta del transistor de corte de línea, de manera que la tensión de puerta está por encima de la tensión de control de puerta y el transistor de corte de línea permite el paso de corriente eléctrica entre su drenaje y su fuente. Ante la recepción de la señal de cortocircuito, el relé pasa a estado desarmado y se desconecta la puerta de la alimentación, por lo que la tensión de puerta queda entonces por debajo de la tensión de control de puerta y el transistor de corte de línea impide el paso de corriente eléctrica entre su drenaje y su fuente, cortando así la línea de suministro. El relé de enclavamiento garantiza que el corte se mantendrá hasta que dicho relé vuelva a armarse. Preferably, said door control module comprises a latching relay, configured as a switch between said door and said first capacitor terminal, said first power supply terminal or said first insulated terminal. In this way, in normal operation, the relay is armed and acts as a closed switch, establishing an electrical connection between a supply terminal among those offered by the supply circuit, and the gate terminal of the line cut transistor, so that the gate voltage is above the gate control voltage and the line cut transistor allows the passage of electrical current between its drain and its source. Upon receipt of the short-circuit signal, the relay goes to the disarmed state and the gate is disconnected from the power supply, so that the gate voltage is then below the gate control voltage and the line cut transistor prevents the passage of electrical current between its drain and its source, thus cutting off the supply line. The interlock relay ensures that the cut-out will be maintained until the interlock relay is reassembled.
En una forma de realización ventajosa, dicha fuente de dicho transistor de corte de línea está conectado a dicho segundo terminal aislado; en el que dicho módulo de control de puerta comprende un controlador de puerta aislado para dicho transistor de corte de línea, conectado a dicha salida de comparación, y configurado para mantener conectada dicha puerta de dicho transistor de corte de línea con dicho primer terminal aislado, y pasar a conectar dicha puerta con dicho terminal aislado adicional en el caso de que la tensión en dicha salida de comparación sea dicha tensión de sobrecorriente. Los controladores de puerta aislados (del inglés isolated gate drivers) son dispositivos disponibles en el mercado, que presentan un terminal de salida que se conmuta internamente entre dos terminales de fuente en función de la tensión a la entrada del controlador de puerta. Además, el terminal de salida y los terminales de fuente quedan aislados eléctricamente de la entrada del controlador de puerta. Este tipo de aislamiento se puede conseguir mediante distintas tecnologías, aunque resulta habitual el uso de optoacopladores. En el caso de esta forma de realización preferente, se utiliza de forma conjunta un controlador de puerta aislado y unos terminales de alimentación aislados galvánicamente, de manera que la rama del circuito de baja potencia que realiza la comparación queda aislada de la rama del circuito de alta potencia que actúa sobre la línea de suministro. Esta configuración incrementa la seguridad del dispositivo y mejora la fiabilidad. En particular, minimiza la posibilidad de daños de alguno de sus componentes debidos al paso de picos de corriente, especialmente de los circuitos de alta potencia hacia los circuitos de baja potencia. In an advantageous embodiment, said source of said line cut transistor is connected to said second insulated terminal; wherein said gate control module comprises an isolated gate driver for said line cut transistor, connected to said comparison output, and configured to keep said gate of said line cut transistor connected to said first isolated terminal, and proceeding to connect said gate with said additional insulated terminal in the event that the voltage at said comparison output is said overcurrent voltage. Isolated gate drivers are commercially available devices that feature an output terminal that is internally switched between two source terminals based on the voltage at the gate driver input. In addition, the output terminal and source terminals are electrically isolated from the gate controller input. This type of insulation It can be achieved through different technologies, although the use of optocouplers is common. In the case of this preferred embodiment, an isolated gate controller and galvanically isolated power terminals are used together, so that the branch of the low-power circuit that performs the comparison is isolated from the branch of the control circuit. high power acting on the supply line. This configuration increases device security and improves reliability. In particular, it minimizes the possibility of damage to some of its components due to the passage of current peaks, especially from high-power circuits to low-power circuits.
En algunas formas de realización preferentes, el módulo de corte de línea comprende además unos medios de reducción de tensión dispuestos entre la puerta del transistor de corte y su fuente, por ejemplo, una resistencia. La selección de dichos medios de reducción de tensión y de la tensión de salida de los terminales de condensador, o bien de los terminales de alimentación, se realiza en función de la tensión de control de puerta del transistor de corte, de forma que, en funcionamiento normal, el valor de tensión de puerta esté por encima del valor de control de puerta. In some preferred embodiments, the line cutter module further comprises voltage reduction means arranged between the gate of the cutoff transistor and its source, for example a resistor. The selection of said voltage reduction means and of the output voltage of the capacitor terminals, or of the supply terminals, is carried out as a function of the gate control voltage of the cut-off transistor, so that, in normal operation, the gate voltage value is above the gate control value.
La invención también se refiere a una instalación fotovoltaica, que comprende por lo menos uno de entre: un circuito de alimentación según cualquiera de las opciones descritas anteriormente; y un dispositivo de seguridad según cualquiera de las opciones descritas anteriormente. The invention also refers to a photovoltaic installation, comprising at least one of: a power circuit according to any of the options described above; and a security device according to any of the options described above.
La invención también abarca otras características de detalle ilustradas en la descripción detallada de una forma de realización de la invención y en las figuras que la acompañan.
Figure imgf000017_0001
The invention also encompasses other features of detail illustrated in the detailed description of an embodiment of the invention and in the accompanying figures.
Figure imgf000017_0001
Las ventajas y características de la invención se aprecian a partir de la siguiente descripción en la que, sin carácter limitativo con respecto al alcance de la reivindicación principal, se exponen unas formas preferidas de realización de la invención haciendo mención de las figuras. The advantages and characteristics of the invention can be seen from the following description in which, without limiting the scope of the main claim, preferred forms of embodiment of the invention are set forth with reference to the figures.
La Fig. 1 muestra un esquema eléctrico simplificado de una forma de realización del circuito de alimentación de la invención. La Fig. 2 muestra unas gráficas de ejemplo de evolución temporal de los voltajes y corrientes en distintos puntos del circuito de alimentación del ejemplo de la Fig. 1. Fig. 1 shows a simplified electrical diagram of an embodiment of the power circuit of the invention. Fig. 2 shows some graphs of example of the temporal evolution of the voltages and currents at different points of the supply circuit of the example of Fig. 1.
La Fig. 3 muestra un esquema eléctrico simplificado de una forma de realización del dispositivo de seguridad de la invención. Fig. 3 shows a simplified electrical diagram of an embodiment of the safety device of the invention.
La Fig. 4 muestra un esquema eléctrico simplificado de una forma de realización del módulo detector de sobrecorriente. Fig. 4 shows a simplified electrical diagram of an embodiment of the overcurrent detector module.
La Fig. 5 muestra un esquema eléctrico simplificado de una forma de realización del módulo de corte de línea. Fig. 5 shows a simplified electrical diagram of an embodiment of the line break module.
La Fig. 6 muestra un esquema eléctrico simplificado de otra forma de realización del módulo detector de sobrecorriente. Fig. 6 shows a simplified electrical diagram of another embodiment of the overcurrent detector module.
La Fig. 7 muestra un esquema eléctrico simplificado de otra forma de realización del módulo de corte de línea. Fig. 7 shows a simplified electrical diagram of another embodiment of the line cutter module.
Descripción detallada de unas formas de realización de la invención Detailed description of some embodiments of the invention
Las Fig. 1 a Fig. 5 muestran una primera forma de realización de un circuito de alimentación 1 según la invención y de un dispositivo de seguridad 100 correspondiente. Cabe destacar que todos los esquemas eléctricos de las figuras corresponden a representaciones esquemáticas simplificadas en la que se han utilizado elementos habituales en la representación de circuitos eléctricos. Así mismo, en aras de la claridad, en los circuitos mostrados en las figuras únicamente se representan los componentes que se han considerado necesarios para clarificar el funcionamiento de la invención. Fig. 1 to Fig. 5 show a first embodiment of a supply circuit 1 according to the invention and of a corresponding safety device 100. It should be noted that all the electrical diagrams in the figures correspond to simplified schematic representations in which common elements have been used in the representation of electrical circuits. Likewise, for the sake of clarity, in the circuits shown in the figures only the components that have been considered necessary to clarify the operation of the invention are represented.
El circuito de alimentación 1 mostrado en la Fig. 1 presenta un primer terminal de circuito 2 y un segundo terminal de circuito 3. En la Fig. 1 se muestra el circuito de alimentación 1 conectado sobre una línea de suministro 4 de una fuente de corriente continua fotovoltaica. En las figuras se ha representado la línea de suministro 4 como una línea continua. En los extremos de la línea de suministro 4 se han representado de forma esquemática unos terminales, que representan la continuación de la línea de suministro 4. El terminal superior está aguas arriba y estaría conectado a la salida de la fuente de corriente continua fotovoltaica, por ejemplo, un string. De esta forma, los terminales de circuito 2 y 3 están conectados en línea sobre la línea de suministro 4, de manera que el segundo terminal de circuito 3 está aguas abajo del primer terminal de circuito 2, respecto a la fuente. The supply circuit 1 shown in Fig. 1 has a first circuit terminal 2 and a second circuit terminal 3. In Fig. 1 the supply circuit 1 is shown connected on a supply line 4 of a current source continuous photovoltaic. In the figures the supply line 4 has been represented as a solid line. Terminals have been schematically represented at the ends of supply line 4, representing the continuation of the supply line 4. The upper terminal is upstream and would be connected to the output of the photovoltaic direct current source, for example, a string. In this way, the circuit terminals 2 and 3 are connected in line on the supply line 4, so that the second circuit terminal 3 is downstream of the first circuit terminal 2, with respect to the source.
El circuito de alimentación 1 comprende dos ramas de circuito 5 y 6, destacadas en la Fig. 1 mediante unos recuadros en línea discontinua. Ambas ramas 5 y 6 están conectadas en paralelo entre los terminales de circuito 2 y 3. The supply circuit 1 comprises two circuit branches 5 and 6, highlighted in FIG. 1 by boxes in broken lines. Both branches 5 and 6 are connected in parallel between circuit terminals 2 and 3.
Una primera rama de circuito 5 comprende un diodo 51 y un condensador 52 conectados en serie entre ellos. El diodo 51, presenta un ánodo y un cátodo. Dicho ánodo está conectado al primer terminal de circuito 2. El condensador presenta dos terminales de condensador 521 y 522, un primer terminal de condensador 521 que está conectado al cátodo del diodo 51, y un segundo terminal de condensador 522 que está conectado al segundo terminal de circuito 3. A first circuit branch 5 comprises a diode 51 and a capacitor 52 connected in series with each other. Diode 51 has an anode and a cathode. Said anode is connected to the first circuit terminal 2. The capacitor has two capacitor terminals 521 and 522, a first capacitor terminal 521 that is connected to the cathode of diode 51, and a second capacitor terminal 522 that is connected to the second terminal. circuit 3.
Una segunda rama de circuito 6 comprende un interruptor 61 , controlable mediante una señal de cortocircuito, de forma que está configurado para mantenerse cerrado ante la presencia de dicha señal de cortocircuito; y mantenerse abierto ante la ausencia de dicha señal de cortocircuito. En particular, para la primera forma de realización, el interruptor 61 es un transistor de tipo MOSFET que presenta un terminal de drenaje, un terminal de fuente y un terminal de puerta, y con una tensión de umbral de transistor que es la tensión entre el terminal de puerta y el terminal de fuente a partir de la cual el transistor 61 permite la conducción eléctrica entre el terminal de drenaje y el terminal de fuente. De esta forma, la señal de cortocircuito en este caso se corresponde con una tensión entre el terminal de puerta y el terminal de fuente que supera dicha tensión de umbral de transistor. A second circuit branch 6 comprises a switch 61, controllable by means of a short-circuit signal, so that it is configured to remain closed in the presence of said short-circuit signal; and remain open in the absence of said short circuit signal. In particular, for the first embodiment, the switch 61 is a MOSFET-type transistor having a drain terminal, a source terminal and a gate terminal, and with a transistor threshold voltage that is the voltage between the gate terminal and source terminal from which transistor 61 allows electrical conduction between drain terminal and source terminal. In this way, the short-circuit signal in this case corresponds to a voltage between the gate terminal and the source terminal that exceeds said transistor threshold voltage.
El circuito de alimentación 1 está adicionalmente provisto de unos terminales de alimentación 7 y 8. En particular un primer terminal de alimentación 7 conectado al primer terminal de condensador 521, y un segundo terminal de alimentación 8 conectado al segundo terminal de condensador 522. Como se puede apreciar en la Fig. 1, el segundo terminal de condensador 522 y el segundo terminal de alimentación 8 están conectados directamente entre ellos, y se usan como referencia de tierra. En cambio, el primer terminal de condensador 521 y el primer terminal de alimentación 7 están conectados a través de unos medios de acondicionamiento 10 dispuestos entre ellos. En particular, dichos medios de acondicionamiento 100 son un regulador de voltaje que está configurado para regular el voltaje entre los terminales de alimentación 7 y 8 a un valor de 5V. En el primer ejemplo, el regulador de voltaje es el modelo MC7805 de ON Semiconductor®, aunque pueden preverse otros dispositivos equivalentes. Así mismo, pueden preverse otras formas de realización en las que el voltaje entre los terminales de alimentación 7 y 8 presenta otros valores, por ejemplo, de 12V, utilizando el modelo MC7812 de ON Semiconductor® o reguladores de tensión equivalentes. The supply circuit 1 is additionally provided with supply terminals 7 and 8. In particular a first supply terminal 7 connected to the first capacitor terminal 521, and a second supply terminal 8 connected to the second capacitor terminal 522. As stated As you can see in Fig. 1, the second capacitor terminal 522 and the second power terminal 8 are directly connected to each other, and are used as ground reference. Instead, the first capacitor terminal 521 and the first supply terminal 7 are connected via conditioning means 10 arranged between them. In particular, said conditioning means 100 is a voltage regulator that is configured to regulate the voltage between the supply terminals 7 and 8 to a value of 5V. In the first example, the voltage regulator is the ON Semiconductor® model MC7805, although other equivalent devices may be envisaged. Likewise, other embodiments can be envisaged in which the voltage between the supply terminals 7 and 8 has other values, for example, 12V, using the MC7812 model from ON Semiconductor® or equivalent voltage regulators.
El circuito de alimentación 1 de la primera forma de realización mostrada en la Fig. 1, está también provisto de unos medios de aislamiento galvánico 101 , conectados a los terminales de alimentación 7 y 8. Estos medios de aislamiento galvánico 101 ofrecen un primer terminal aislado 71 , un segundo terminal aislado 81 , y un terminal aislado adicional 71b que presenta una polaridad respecto al segundo terminal aislado 81 que es opuesta a la polaridad entre el primer terminal aislado 71 y el segundo terminal aislado 81. En particular, la tensión entre el primer terminal aislado 71 y el segundo terminal aislado 81 es de 15V, mientras que la tensión entre el terminal aislado adicional 71b y el segundo terminal aislado 81 es de -15V. Todos los terminales aislados 71, 71b y 81 están galvánicamente aislados de los terminales de alimentación 7, 8. En particular, no comparten ni siquiera la referencia de tierra a la que están conectados el segundo terminal de condensador 522 y el segundo terminal de alimentación 8. En el caso del ejemplo, el segundo terminal aislado 81 se utiliza como referencia de tierra para los dispositivos o elementos que se alimentan mediante dichos terminales de alimentación galvánicamente aislados 71, 71b y 81. En esta forma de realización, los medios de aislamiento galvánico 101 son un convertidor CC/CC aislado TRACO POWER® modelo TMV 0515D, aunque pueden preverse otros dispositivos equivalentes. The supply circuit 1 of the first embodiment shown in Fig. 1, is also provided with galvanic isolation means 101, connected to the supply terminals 7 and 8. These galvanic isolation means 101 offer a first isolated terminal 71, a second insulated terminal 81, and a further insulated terminal 71b having a polarity with respect to the second insulated terminal 81 that is opposite to the polarity between the first insulated terminal 71 and the second insulated terminal 81. In particular, the voltage between the The first insulated terminal 71 and the second insulated terminal 81 is 15V, while the voltage between the additional insulated terminal 71b and the second insulated terminal 81 is -15V. All the isolated terminals 71, 71b and 81 are galvanically isolated from the supply terminals 7, 8. In particular, they do not even share the ground reference to which the second capacitor terminal 522 and the second supply terminal 8 are connected. In the case of the example, the second isolated terminal 81 is used as a ground reference for the devices or elements that are powered by said galvanically isolated supply terminals 71, 71b and 81. In this embodiment, the galvanic isolation means 101 is a TRACO POWER® model TMV 0515D isolated DC / DC converter, although other equivalent devices may be envisaged.
En la Fig. 1 se muestra como el circuito de alimentación 1 comprende además un módulo de control 9, que en la figura se ha destacado mediante un recuadro en línea discontinua. Dicho módulo de control 9 está configurado para generar la señal de cortocircuito que provoca el cierre del interruptor 61 a partir del momento en el que el voltaje entre los terminales de condensador 521 , 522 es superior a un segundo umbral 92, que en el ejemplo es de 17,6. El módulo de control 9 también está configurado para no generar dicha señal de cortocircuito cuando el voltaje entre los terminales de condensador 521, 522 es inferior a un primer umbral 91 , que en el ejemplo es de 16,4. En el caso de la forma de realización mostrada en la Fig. 1 , el módulo de control 9 es un circuito de comparación basado en un amplificador operacional que está alimentado mediante los terminales de alimentación 7 y 8. La tensión respecto a la referencia de tierra en el primer terminal de condensador 521 se compara con un valor de referencia, y la salida del amplificador se dirige a la puerta del transistor MOSFET que actúa como interruptor 61. En particular, la tensión del condensador 521 pasa por un divisor de tensión y la salida se compara con la tensión de 5V del terminal de alimentación 7. Pueden preverse múltiples opciones de circuito para el módulo de control 9, el expuesto aquí a modo de ejemplo es una opción simplificada ilustrativa. In Fig. 1 it is shown how the power circuit 1 also comprises a control module 9, which in the figure has been highlighted by a box in broken line. Said control module 9 is configured to generate the short-circuit signal that causes the closing of the switch 61 from the moment in which the voltage between the capacitor terminals 521, 522 is higher than a second threshold 92, which in the example is of 17.6. The control module 9 is also configured not to generate said short circuit signal when the voltage between the capacitor terminals 521, 522 is less than a first threshold 91, which in the example is 16.4. In the case of the embodiment shown in Fig. 1, the control module 9 is a comparison circuit based on an operational amplifier that is powered by the power terminals 7 and 8. The voltage relative to the reference of ground at the first terminal of capacitor 521 is compared to a reference value, and the output of the amplifier is directed to the gate of the MOSFET transistor that acts as switch 61. In particular, the voltage of capacitor 521 passes through a voltage divider and the output is compared to the 5V voltage from the supply terminal 7. Multiple circuit options may be provided for the control module 9, the one set forth herein by way of example is an illustrative simplified option.
La Fig. 2 muestra una simulación de una evolución temporal de las corrientes y tensiones en algunos puntos del circuito de alimentación 1 correspondiente a la Fig. 1. El eje horizontal de las gráficas corresponde al tiempo y, en el ejemplo, se trata de una ventana de unos 90 microsegundos. Para la simulación se ha usado un elemento equivalente a una resistencia conectado a los terminales de condensador 521 y 522, y otra resistencia entre los terminales 7 i 8. La tercera gráfica corresponde a la corriente que circula por la segunda rama 6 del circuito 1 a través del transistor 61 , medida en amperios. Se puede observar que se mantiene sustancialmente constante excepto en unas breves caídas a cero. Estas caídas corresponden a la situación en la que el interruptor 61 está abierto, y la carga eléctrica se dirige al condensador 52. La tercera gráfica también muestra unos picos de corriente que son debidos a que la simulación se ha realizado con modelos matemáticos de componentes reales, en los que el diodo deja pasar un pico de corriente inversa antes de cortar completamente la corriente del condensador. La primera gráfica de la Fig. 2 muestra la tensión en voltios entre los terminales de condensador 521, 522. Como se puede apreciar, si el interruptor 61 está abierto, el condensador 52 se va cargando rápidamente y, cuando el interruptor 61 se cierra, el condensador 52 se va descargando a medida que los elementos alimentados por el circuito de alimentación van usando la carga almacenada en el condensador. Los ciclos de carga y descarga del condensador 52 presentan un perfil en forma de diente de sierra en la Fig. 2 dado que se trata de una simulación con una descarga constante (equivalente a una resistencia). Para el ejemplo de la Fig. 2, el primer umbral 91 presenta un valor de en torno a 16,4, mientras que el segundo umbral 92 presenta un valor de en torno a 17,6. De esta forma, la diferencia entre ambos es de unos 1 ,2V, por lo que la diferencia de potencial entre los terminales del condensador 521, 522 varía entre 17V ± 0.6V. Se pueden prever otros ejemplos en los que la diferencia entre los umbrales 92 y 91 está comprendida en el rango de 0.5V a 13V, el primer umbral 91 presenta un valor de entre 3 y 18V y el segundo umbral presenta un valor en el rango de 6 a 30V. La segunda gráfica mostrada en la Fig. 2 representa la tensión en voltios de puerta del transistor MOSFET usado como interruptor 61 que está controlada mediante el módulo de control 9. En el ejemplo, la tensión umbral de transistor se encuentra alrededor de 3V. Cuando la tensión de puerta supera dicho umbral, el interruptor 61 está cerrado y permite el paso de corriente. En cambio, cuando la tensión de puerta está por debajo de la tensión umbral de transistor, el interruptor 61 se abre e impide el paso de corriente, lo que corresponde con las caídas a cero de la tercera gráfica. La cuarta gráfica muestra la tensión en milivoltios entre los terminales de circuito 2 y 3. En el caso del ejemplo, el circuito de alimentación 1 produce una caída de unos 300mV entre sus terminales de circuito 2 y 3, que resulta constante, pese a las conmutaciones mostradas en el resto de las gráficas. Fig. 2 shows a simulation of a temporal evolution of the currents and voltages in some points of the supply circuit 1 corresponding to Fig. 1. The horizontal axis of the graphs corresponds to time and, in the example, it is a window of about 90 microseconds. For the simulation, an element equivalent to a resistance connected to capacitor terminals 521 and 522 has been used, and another resistance between terminals 7 and 8. The third graph corresponds to the current flowing through the second branch 6 of circuit 1 a across transistor 61, measured in amps. It can be seen that it remains substantially constant except for brief dips to zero. These drops correspond to the situation in which the switch 61 is open, and the electric charge is directed to the capacitor 52. The third graph also shows current peaks that are due to the fact that the simulation has been carried out with mathematical models of real components. , in which the diode passes a peak of reverse current before completely cutting off the capacitor current. The first graph of Fig. 2 shows the voltage in volts between capacitor terminals 521, 522. As can be seen, if switch 61 is open, capacitor 52 charges rapidly and when switch 61 closes, capacitor 52 discharges as the elements supplied by the power circuit use the charge stored in the capacitor. The charge and discharge cycles of the capacitor 52 have a sawtooth profile in Fig. 2 since it is a simulation with a constant discharge (equivalent to a resistance). For the example of Fig. 2, the first threshold 91 has a value of around 16.4, while the second threshold 92 has a value of around 17.6. In this way, the difference between the two is about 1.2V, so the potential difference between the terminals of capacitor 521, 522 varies between 17V ± 0.6V. Other examples can be envisaged in which the difference between thresholds 92 and 91 is in the range of 0.5V to 13V, the first threshold 91 has a value between 3 and 18V and the second threshold has a value in the range of 6 to 30V. The second graph shown in Fig. 2 represents the voltage in gate volts of the MOSFET transistor used as switch 61 that is controlled by the control module 9. In the example, the transistor threshold voltage is around 3 V. When the gate voltage exceeds said threshold, switch 61 is closed and allows current to flow. On the other hand, when the gate voltage is below the transistor threshold voltage, the switch 61 opens and prevents the passage of current, which corresponds to the drops to zero in the third graph. The fourth graph shows the voltage in millivolts between circuit terminals 2 and 3. In the case of the example, supply circuit 1 produces a drop of about 300mV between its circuit terminals 2 and 3, which is constant, despite the commutations shown in the rest of the graphs.
La Fig. 3 muestra la primera forma de realización de un dispositivo de seguridad 100 para una fuente de corriente continua fotovoltaica según la invención. En esta forma de realización, el dispositivo de seguridad 100 presenta un circuito de alimentación 1 como el descrito arriba y representado en la Fig. 1. En la Fig. 3 se ha simplificado la representación de dicho circuito de alimentación 1 , sustituyéndolo por un bloque marcado con la referencia correspondiente. Fig. 3 shows the first embodiment of a safety device 100 for a photovoltaic direct current source according to the invention. In this embodiment, the safety device 100 has a power circuit 1 as described above and represented in Fig. 1. In Fig. 3 the representation of said power circuit 1 has been simplified, replacing it with a block marked with the corresponding reference.
El dispositivo de seguridad 100 de la Fig. 3 comprende dos módulos de seguridad 200. Cada uno de dichos módulos de seguridad 200 está alimentado eléctricamente mediante dicho circuito de alimentación 1. En particular, el dispositivo de seguridad 100 presenta un primer módulo de seguridad 200 que comprende un LED y está alimentado mediante los terminales de condensador 521 y 522. Así mismo, el dispositivo de seguridad 100 presenta un segundo módulo de seguridad 200, que comprende un módulo detector de sobrecorriente 210 configurado para activar un módulo de corte de línea 250 para cortar dicha línea de suministro 4. El módulo detector de sobrecorriente 210 está alimentado mediante los terminales de alimentación 7 y 8, mientras que el módulo de corte de línea 250 está alimentado tanto por los terminales de alimentación 7 y 8, como por los terminales aislados 71 , 71b y 81. The security device 100 of Fig. 3 comprises two security modules 200. Each of said security modules 200 is electrically powered by said power circuit 1. In particular, the security device 100 has a first security module 200 which comprises an LED and is powered by capacitor terminals 521 and 522. Likewise, the safety device 100 has a second safety module 200, which comprises an overcurrent detector module 210 configured to activate a line cut-off module 250 to cut said supply line 4. The overcurrent detector module 210 is powered by the power terminals 7 and 8, while the line cut module 250 is powered by both the power terminals 7 and 8, as well as the terminals isolated 71, 71b and 81.
En la Fig. 3 se muestra como el módulo detector de sobrecorriente 210 comprende una resistencia de derivación 211 que está conectada en línea sobre la línea de suministro 4, de forma que presenta dos terminales entre los que queda definida una tensión de derivación que es proporcional a la intensidad de corriente que circula por dicha resistencia de derivación 211. El módulo detector de sobrecorriente 210 además comprende un módulo de comparación 220 que está configurado para generar una señal de sobrecorriente cuando la tensión de derivación es mayor que una tensión umbral de corte. En particular, el módulo de comparación 220 presenta una salida de comparación 223, en la que se ofrece una tensión de sobrecorriente predeterminada cuando la tensión de derivación en la resistencia de derivación 211 es mayor que una tensión umbral predeterminada. De esta forma, para el caso de la primera forma de realización, la señal de sobrecorriente se corresponde con la situación en la que la tensión en dicha salida de comparación 223 presenta el valor de dicha tensión de sobrecorriente. Por su parte, el módulo de corte de línea 250 está configurado para cortar la línea de suministro 4 al recibir la señal de sobrecorriente desde el módulo de comparación 220, es decir, cuando la tensión en la salida de comparación 223 presenta el valor de la tensión de sobrecorriente predeterminada. In Fig. 3 it is shown how the overcurrent detector module 210 comprises a shunt resistor 211 that is connected in line on the supply line 4, so that it has two terminals between which a shunt voltage is defined that is proportional to the intensity of current flowing through said shunt resistor 211. The overcurrent detector module 210 further comprises a comparison module 220 that is configured to generate an overcurrent signal when the shunt voltage is greater than a cutoff threshold voltage. In particular, the comparison module 220 has a comparison output 223, in which a predetermined overcurrent voltage is offered when the bypass voltage across bypass resistor 211 is greater than a predetermined threshold voltage. In this way, for the case of the first embodiment, the overcurrent signal corresponds to the situation in which the voltage at said comparison output 223 presents the value of said overcurrent voltage. For its part, the line cutting module 250 is configured to cut the supply line 4 when it receives the overcurrent signal from the comparison module 220, that is, when the voltage at the comparison output 223 presents the value of the default overcurrent voltage.
La Fig. 4 muestra el detalle del módulo detector de sobrecorriente 210 y de su módulo de comparación 220. El circuito utiliza un dispositivo de comparación Texas Instruments® modelo INA300. Las referencias marcadas en las entradas se han mantenido respecto a la documentación del dispositivo de forma que sean fácilmente identificables por un experto. Las referencias IN+ y IN- corresponden a los terminales de entrada de la resistencia de derivación, GND se conecta a la referencia de tierra, y ALERT a la salida de comparación. La raya superior en la etiqueta ALERT indica que la señal está invertida, esto es, la salida de comparación 223 presenta un valor de 0V cuando se detecta sobrecorriente, y un valor constante positivo de 5V cuando no se detecta sobrecorriente. De esta forma, el valor de la tensión de sobrecorriente predeterminada es 0V. El dispositivo de comparación está alimentado mediante los terminales de alimentación 7 y 8 del circuito de alimentación 1. No es un objetivo del presente documento la descripción exhaustiva del funcionamiento del dispositivo de comparación INA300, sin embargo, en aras de mejorar la comprensión general se incluyen unas breves indicaciones del uso del resto de etiquetas. LIMIT, se utiliza para seleccionar el umbral de comparación en función de la resistencia conectada. En algunas formas de realización no mostradas en las figuras, el módulo detector de sobrecorriente comprende un potenciómetro conectado a la etiqueta LIMIT que permite ajustar el umbral de comparación. VS, corresponde a la alimentación, en este caso, está conectada al primer terminal de alimentación 7 que ofrece 5V. ENABLE, se utiliza para activar/desactivar la detección de sobrecorriente, lo que resulta de utilidad para evitar generar la señal de sobrecorriente en condiciones transitorias. LATCH, se utiliza para enclavar la señal de sobrecorriente una vez se ha detectado. DELAY, en este caso no se utiliza. HYS, se utiliza para realizar un efecto de histéresis en el caso de que no se use enclavamiento. Fig. 4 shows the detail of the overcurrent detector module 210 and its comparison module 220. The circuit uses a Texas Instruments® model INA300 comparison device. The references marked in the entries have been maintained with respect to the documentation of the device so that they are easily identifiable by an expert. The IN + and IN- references correspond to the input terminals of the shunt resistor, GND connects to the ground reference, and ALERT to the comparison output. The upper line in the ALERT label indicates that the signal is inverted, that is, the comparison output 223 displays a value of 0V when overcurrent is detected, and a constant positive value of 5V when no overcurrent is detected. Thus, the default overcurrent voltage value is 0V. The comparison device is powered by power supply terminals 7 and 8 of power circuit 1. It is not an objective of this document to provide an exhaustive description of the operation of the INA300 comparison device, however, in order to improve general understanding, they are included brief indications of the use of the rest of the labels. LIMIT, is used to select the comparison threshold based on the connected resistance. In some embodiments not shown in the figures, the overcurrent detector module comprises a potentiometer connected to the LIMIT label that allows the comparison threshold to be adjusted. VS, corresponds to the power supply, in this case, it is connected to the first power terminal 7 that offers 5V. ENABLE, is used to activate / deactivate the overcurrent detection, which is useful to avoid generating the overcurrent signal under transient conditions. LATCH, is used to latch the overcurrent signal once it has been detected. DELAY, in this case is not used. HYS, is used to perform a hysteresis effect in the event that interlocking is not used.
La Fig. 5 muestra el detalle del módulo de corte de línea 250. Dicho módulo comprende un transistor de corte de línea 251 que está dispuesto en línea sobre la línea de suministro 4, y configurado a modo de interruptor para dicha línea de suministro 4. En el ejemplo, el transistor de corte de línea 251 es un transistor de tipo MOSFET que está controlado por su tensión de puerta, definida como la tensión entre sus terminales de puerta 2511 y fuente 2512. Además, dicho transistor presenta una tensión de control de puerta, definida como la tensión de puerta por encima de la cual dicho transistor de corte de línea 251 permite la conducción eléctrica entre su drenaje 2513 y su fuente 2512, y por debajo de la cual impide la conducción eléctrica entre dicho drenaje 2513 y dicha fuente 2512. Fig. 5 shows the detail of the line cut-off module 250. Said module comprises a line cut-off transistor 251 which is arranged in line on the line of supply 4, and configured as a switch for said supply line 4. In the example, the line cut transistor 251 is a MOSFET-type transistor that is controlled by its gate voltage, defined as the voltage between its input terminals. gate 2511 and source 2512. Furthermore, said transistor has a gate control voltage, defined as the gate voltage above which said line cut transistor 251 allows electrical conduction between its drain 2513 and its source 2512, and below which it prevents electrical conduction between said drain 2513 and said source 2512.
El módulo de corte de línea 250 además comprende un módulo de control de puerta 252, que está configurado para recibir la señal de sobrecorriente, y que está conectado a dicho transistor de corte de línea 251 para controlar dicha tensión de puerta. En particular, la señal de sobrecorriente es una tensión de 0V en la salida de comparación 223 que está conectada a una entrada del módulo de control de puerta 252. El módulo de control de puerta 252 está configurado de forma que, al recibir dicha señal de sobrecorriente, produce un cambio en la tensión de puerta del transistor de corte de línea 251 desde un valor superior a su tensión de control de puerta hasta un valor inferior a dicha tensión de control de puerta. En consecuencia, el interruptor pasa de estar cerrado a estar abierto y se interrumpe el paso de corriente eléctrica por la línea de suministro 4. Para el caso del primer ejemplo de realización mostrado en la Fig. 5, la interrupción está alimentada mediante los terminales aislados 71 , 71b y 81. En particular, la fuente 2512 del transistor de corte de línea 251 está conectada al segundo terminal aislado 81 , mientras que la puerta 2511 se conecta al primer terminal aislado 71 o bien al terminal aislado adicional 71b, en función de la señal de sobrecorriente. Así, la tensión de puerta pasa de +15V cuando no se detecta sobrecorriente, a -15V cuando se detecta sobrecorriente. La conmutación entre ambos valores en función de la tensión de entrada proveniente de la salida de comparación 223 se realiza mediante un controlador de puerta aislado 2521 , en particular, el modelo UCC23511 de Texas Instruments®, aunque pueden preverse otros dispositivos equivalentes. A modo de referencia aclaratoria, en la Fig. 5 se ha representado de forma difuminada los principales componentes internos del controlador de puerta aislado 2521, pese a que no son el objeto de la invención. De esta forma, el módulo de control de puerta 252 mantiene conectada la puerta 2511 del transistor de corte de línea 251 con el primer terminal aislado 71 y pasa a conectar dicha puerta 2511 con el terminal aislado adicional 71b en el caso de que la tensión en la salida de comparación 223 sea la tensión de sobrecorriente de 0V. A continuación, se describen otras formas de realización del dispositivo de seguridad 100 y del correspondiente circuito de alimentación 1 que comparten gran parte de las características de la primera forma de realización descrita anteriormente. Por consiguiente, en adelante sólo se describirán los elementos diferenciadores. En las figuras, se han utilizado las mismas referencias numéricas que en la primera forma de realización para designar elementos equivalentes. The line cut module 250 further comprises a gate control module 252, which is configured to receive the overcurrent signal, and which is connected to said line cut transistor 251 to control said gate voltage. In particular, the overcurrent signal is a voltage of 0V at the comparison output 223 which is connected to an input of the door control module 252. The door control module 252 is configured such that, upon receiving said signal from Overcurrent causes a change in the gate voltage of the line cutoff transistor 251 from a value higher than its gate control voltage to a value lower than said gate control voltage. Consequently, the switch goes from being closed to being open and the passage of electric current through the supply line 4 is interrupted. For the case of the first embodiment shown in Fig. 5, the interruption is supplied by the insulated terminals 71, 71b and 81. In particular, the source 2512 of the line cutoff transistor 251 is connected to the second isolated terminal 81, while the gate 2511 is connected to the first isolated terminal 71 or to the additional isolated terminal 71b, depending on the overcurrent signal. Thus, the gate voltage goes from + 15V when no overcurrent is detected, to -15V when overcurrent is detected. The switching between both values as a function of the input voltage from the comparison output 223 is carried out by means of an isolated gate controller 2521, in particular, the UCC23511 model from Texas Instruments®, although other equivalent devices may be envisaged. By way of clarifying reference, in Fig. 5 the main internal components of the isolated door controller 2521 are represented in a blurred way, although they are not the object of the invention. In this way, the gate control module 252 keeps the gate 2511 of the line cut transistor 251 connected with the first isolated terminal 71 and proceeds to connect said gate 2511 with the additional isolated terminal 71b in the event that the voltage at the comparison output 223 is the overcurrent voltage of 0V. Next, other embodiments of the safety device 100 and of the corresponding power circuit 1 are described that share a large part of the characteristics of the first embodiment described above. Therefore, only the differentiating elements will be described hereinafter. In the figures, the same reference numerals as in the first embodiment have been used to designate equivalent elements.
En una segunda forma de realización no mostrada en las figuras, el circuito de alimentación 1 está adicionalmente provisto de un filtro RC paso-bajo conectado a los terminales de condensador 521 y 522, de forma que ofrece una tensión filtrada que presenta una variación temporal más suave. Este tipo de perfil de tensión es susceptible de usarse para alimentar a diversos componentes electrónicos, evitando sobrecargas en el regulador de voltaje 10. In a second embodiment not shown in the figures, the supply circuit 1 is additionally provided with a low-pass RC filter connected to the capacitor terminals 521 and 522, in such a way that it offers a filtered voltage that presents a more temporal variation. gentle. This type of voltage profile can be used to power various electronic components, avoiding overloads on the voltage regulator 10.
En una tercera forma de realización no mostrada en las figuras, el módulo de control 9 del circuito de alimentación comprende un comparador analógico para comparar la tensión en los terminales de condensador 521 y 522, y un controlador de puerta para controlar el interruptor 61 en función de la salida de dicho comparador analógico. In a third embodiment not shown in the figures, the control module 9 of the power circuit comprises an analog comparator to compare the voltage at the capacitor terminals 521 and 522, and a gate controller to control the switch 61 in function of the output of said analog comparator.
En una cuarta forma de realización no mostrada en las figuras, el dispositivo de seguridad 100 de la invención incorpora un avisador acústico En otras formas de realización, incorpora un transmisor de avisos alámbrico o inalámbrico Todavía en otras formas, pueden preverse dispositivos de seguridad 100 que incorporan una combinación de los módulos de seguridad 200 descritos anteriormente. In a fourth embodiment not shown in the figures, the security device 100 of the invention incorporates an acoustic alarm. In other embodiments, it incorporates a wired or wireless alarm transmitter. Still in other forms, security devices 100 can be provided that incorporate a combination of the security modules 200 described above.
En una quinta forma de realización mostrada en la Fig. 6 y la Fig. 7, el módulo de comparación 220 comprende un primer amplificador operacional 221 en lazo cerrado, que amplifica la tensión de derivación de la resistencia de derivación 211 ; y un comparador 222, en particular, un segundo amplificador operacional en lazo abierto, que compara dicha tensión de derivación amplificada y genera la señal de sobrecorriente en el caso de que supere un umbral predeterminado. En el caso del ejemplo de la Fig. 6, la señal de sobrecorriente se corresponde a una tensión de sobrecorriente predeterminada, proveniente del primer terminal de alimentación 7. De esta forma, la salida de comparación es de 0V cuando no se detecta sobrecorriente y de 5V cuando se detecta sobrecorriente. Se pueden prever otras formas de realización en las que la tensión que ofrecen los terminales de alimentación 7 y 8 es distinta, por ejemplo, 12V. Así mismo, en la Fig. 7 se aprecia como el transistor de corte de línea 251 en este caso es un IGBT, aunque pueden preverse otros transistores de funcionalidad equivalente, por ejemplo, de tipo MOSFET. Por su parte, el módulo de control de puerta 252 comprende un relé 2522 de enclavamiento, configurado a modo de interruptor entre la puerta 2511 del transistor de corte de línea 251 y el primer terminal de condensador 521. De esta forma, para el caso de este ejemplo de realización, el circuito de alimentación 1 no está provisto de medios de aislamiento 101 galvánicos. En el caso de esta forma de realización, se consigue un aislamiento eléctrico mediante la separación física de los contactos del relé en caso de corte. De todas formas, pueden preverse otras formas de realización en las que se utiliza dicho relé 2522 y en la que el circuito de alimentación 1 está provisto de unos medios de aislamiento 101 galvánicos. In a fifth embodiment shown in Fig. 6 and Fig. 7, the comparison module 220 comprises a first closed-loop operational amplifier 221, which amplifies the bypass voltage of the bypass resistor 211; and a comparator 222, in particular a second open-loop operational amplifier, which compares said amplified bypass voltage and generates the overcurrent signal in the event that it exceeds a predetermined threshold. In the case of the example in Fig. 6, the overcurrent signal corresponds to a predetermined overcurrent voltage, coming from the first power supply terminal 7. In this way, the comparison output is 0V when no overcurrent is detected and 5V when overcurrent is detected. Other embodiments can be envisaged in which the voltage offered by the supply terminals 7 and 8 is different, for example 12V. Likewise, Fig. 7 shows how the line cut transistor 251 in this case is an IGBT, although other transistors of equivalent functionality can be envisaged, for example, of the MOSFET type. For its part, the gate control module 252 comprises an interlocking relay 2522, configured as a switch between the gate 2511 of the line cut transistor 251 and the first capacitor terminal 521. Thus, in the case of In this embodiment, the supply circuit 1 is not provided with galvanic isolation means 101. In the case of this embodiment, electrical isolation is achieved by physically separating the relay contacts in the event of an interruption. In any case, other embodiments can be envisaged in which said relay 2522 is used and in which the supply circuit 1 is provided with galvanic isolation means 101.
Aunque no se ha representado en las figuras, cualquiera de los dispositivos de seguridad 100 descritos anteriormente se utiliza en los strings de una instalación fotovoltaica, de forma que cada string está provisto de un dispositivo de seguridad 100. Although not represented in the figures, any of the safety devices 100 described above are used in the strings of a photovoltaic installation, so that each string is provided with a safety device 100.

Claims

REIVINDICACIONES
1- Circuito de alimentación (1), con un primer terminal de circuito (2) y un segundo terminal de circuito (3), configurados para su conexión en línea sobre una línea de suministro (4) de fuente de corriente continua fotovoltaica, de forma que, en dicha conexión, dicho segundo terminal de circuito (3) está aguas abajo de dicho primer terminal de circuito (2) respecto a dicha fuente; caracterizado por que dicho circuito de alimentación (1) comprende una primera rama (5) de circuito y una segunda rama (6) de circuito, cada una de dichas ramas conectada en paralelo entre dichos terminales de circuito (2, 3); en el que dicha primera rama (5) comprende: un diodo (51), que presenta un ánodo y un cátodo, estando dicho ánodo conectado a dicho primer terminal de circuito (2); y un condensador (52), que presenta un primer terminal de condensador (521) conectado a dicho cátodo, y un segundo terminal de condensador (522) conectado a dicho segundo terminal de circuito (3); en el que dicha segunda rama (6) comprende un interruptor (61), controlable mediante una señal de cortocircuito, de forma que está configurado para: mantenerse cerrado ante la presencia de dicha señal de cortocircuito; y mantenerse abierto ante la ausencia de dicha señal de cortocircuito; presentando dicho circuito de alimentación (1): un primer terminal de alimentación (7) conectado a dicho primer terminal de condensador (521); y un segundo terminal de alimentación (8) conectado a dicho segundo terminal de condensador (522); en el que dicho circuito de alimentación (1) comprende además un módulo de control (9), configurado para: generar dicha señal de cortocircuito a partir del momento en el que el voltaje entre dichos terminales de condensador (521 , 522) es superior a un segundo umbral (92); y no generar dicha señal de cortocircuito cuando el voltaje entre dichos terminales de condensador (521 , 522) es inferior a un primer umbral (91). 1- Power supply circuit (1), with a first circuit terminal (2) and a second circuit terminal (3), configured for online connection on a supply line (4) of a photovoltaic direct current source, of so that, in said connection, said second circuit terminal (3) is downstream of said first circuit terminal (2) with respect to said source; characterized in that said supply circuit (1) comprises a first circuit branch (5) and a second circuit branch (6), each of said branches connected in parallel between said circuit terminals (2, 3); wherein said first branch (5) comprises: a diode (51), having an anode and a cathode, said anode being connected to said first circuit terminal (2); and a capacitor (52), having a first capacitor terminal (521) connected to said cathode, and a second capacitor terminal (522) connected to said second circuit terminal (3); wherein said second branch (6) comprises a switch (61), controllable by means of a short-circuit signal, so that it is configured to: remain closed in the presence of said short-circuit signal; and remain open in the absence of said short circuit signal; said supply circuit (1) having: a first supply terminal (7) connected to said first capacitor terminal (521); and a second supply terminal (8) connected to said second capacitor terminal (522); wherein said power circuit (1) further comprises a control module (9), configured to: generate said short-circuit signal from the moment in which the voltage between said capacitor terminals (521, 522) is greater than a second threshold (92); and not generating said short circuit signal when the voltage between said capacitor terminals (521, 522) is less than a first threshold (91).
2- Circuito de alimentación (1) según la reivindicación 1 , caracterizado por que dicho módulo de control está alimentado eléctricamente mediante por lo menos uno de entre: dichos terminales de alimentación (7, 8); y dichos terminales de condensador (521 , 522). 2- Power supply circuit (1) according to claim 1, characterized in that said control module is electrically powered by at least one of: said power terminals (7, 8); and said capacitor terminals (521, 522).
3- Circuito de alimentación (1) según cualquiera de las reivindicaciones 1 o 2, caracterizado por que comprende además unos medios de acondicionamiento (10) dispuestos entre dichos terminales de condensador (521 , 522) y dichos terminales de alimentación (7, 8), en el que dichos medios de acondicionamiento (10) comprenden preferentemente un regulador de voltaje configurado para regular el voltaje entre dichos terminales de alimentación (7, 8), preferentemente a 5V o bien a 12V. 3- Power circuit (1) according to any of claims 1 or 2, characterized in that it also comprises conditioning means (10) arranged between said capacitor terminals (521, 522) and said power terminals (7, 8) , in which said conditioning means (10) preferably comprise a voltage regulator configured to regulate the voltage between said supply terminals (7, 8), preferably at 5V or at 12V.
4- Circuito de alimentación (1) según la reivindicación 3, caracterizado porque además comprende unos medios de aislamiento galvánico (101), conectados a dichos terminales de alimentación (7, 8), y configurados para ofrecer un primer terminal aislado (71) y un segundo terminal aislado (81), de forma que dichos terminales aislados (71, 81) están galvánicamente aislados de dichos terminales de alimentación (7, 8). 4- Power circuit (1) according to claim 3, characterized in that it also comprises galvanic isolation means (101), connected to said power terminals (7, 8), and configured to offer a first isolated terminal (71) and a second insulated terminal (81), such that said insulated terminals (71, 81) are galvanically isolated from said supply terminals (7, 8).
5- Circuito de alimentación según la reivindicación 4, caracterizado por que dichos medios de aislamiento galvánico (101) ofrecen un terminal aislado adicional (71b), galvánicamente aislado de dichos terminales de alimentación (7, 8), y que presenta una polaridad respecto a dicho segundo terminal aislado (81) que es opuesta a la polaridad entre dicho primer terminal aislado (71) y dicho segundo terminal aislado (81). 5- Power circuit according to claim 4, characterized in that said galvanic isolation means (101) offer an additional isolated terminal (71b), galvanically isolated from said supply terminals (7, 8), and which has a polarity with respect to said second insulated terminal (81) which is opposite the polarity between said first insulated terminal (71) and said second insulated terminal (81).
6- Circuito de alimentación (1) según cualquiera de las reivindicaciones 1 a 5, caracterizado por que dicho interruptor (61) comprende un transistor, preferentemente, un transistor de tipo MOSFET, presentando un terminal de drenaje, un terminal de fuente y un terminal de puerta, con una tensión de umbral de transistor, y en el que dicha señal de cortocircuito comprende una tensión entre dicho terminal de puerta y dicho terminal de fuente que supera dicha tensión de umbral de transistor. 6- Power supply circuit (1) according to any of claims 1 to 5, characterized in that said switch (61) comprises a transistor, preferably a MOSFET-type transistor, presenting a drain terminal, a source terminal and a terminal gate, with a transistor threshold voltage, and wherein said short circuit signal comprises a voltage between said gate terminal and said source terminal that exceeds said transistor threshold voltage.
7- Circuito de alimentación (1) según cualquiera de las reivindicaciones 1 a 6, caracterizado por que la diferencia entre dicho segundo umbral (92) y dicho primer umbral (91) está comprendida en el rango de 0,5V a 13V. 8- Circuito de alimentación (1) según cualquiera de las reivindicaciones 1 a 7, caracterizado por que dicho primer umbral (91) es un valor en el rango de 3 a 18V, preferentemente 16V. 7- Power supply circuit (1) according to any of claims 1 to 6, characterized in that the difference between said second threshold (92) and said first threshold (91) is in the range from 0.5V to 13V. 8. Power circuit (1) according to any of claims 1 to 7, characterized in that said first threshold (91) is a value in the range of 3 to 18V, preferably 16V.
9- Circuito de alimentación (1) según cualquiera de las reivindicaciones 1 a 8, caracterizado por que dicho segundo umbral (92) es un valor en el rango de 6 a 30V, preferentemente 18V. 9. Power circuit (1) according to any of claims 1 to 8, characterized in that said second threshold (92) is a value in the range of 6 to 30V, preferably 18V.
10- Dispositivo de seguridad (100) para una fuente de corriente continua fotovoltaica, caracterizado por que comprende: 10- Safety device (100) for a photovoltaic direct current source, characterized in that it comprises:
- un circuito de alimentación (1) según cualquiera de las reivindicaciones 1 a 9; y- a power circuit (1) according to any of claims 1 to 9; and
- por lo menos un módulo de seguridad (200), alimentado eléctricamente mediante dicho circuito de alimentación (1). - at least one security module (200), electrically powered by said power circuit (1).
11- Dispositivo de seguridad (100) según la reivindicación 10, caracterizado por que cada uno de dichos por lo menos un módulo de seguridad (200) está alimentado eléctricamente mediante por lo menos uno de: dichos terminales de condensador (521, 522) de dicho circuito de alimentación11. Security device (100) according to claim 10, characterized in that each of said at least one security module (200) is electrically powered by at least one of: said capacitor terminals (521, 522) of said power circuit
O); dichos terminales de alimentación (7, 8) de dicho circuito de alimentación (1); y dichos terminales aislados (71, 81, 71b) de dicho circuito de alimentación (1). OR); said power terminals (7, 8) of said power circuit (1); and said insulated terminals (71, 81, 71b) of said power circuit (1).
12- Dispositivo de seguridad (100) según cualquiera de las reivindicaciones 10 u 11, caracterizado por que cada uno de dichos por lo menos un módulo de seguridad (200) es uno de la lista que consiste en: un avisador luminoso, preferentemente un diodo LED; un avisador acústico; un transmisor de avisos por conexión inalámbrica; un transmisor de avisos por conexión cableada; y un módulo detector de sobrecorriente (210) configurado para activar un módulo de corte de línea (250) para cortar dicha línea de suministro (4). 12- Security device (100) according to any of claims 10 or 11, characterized in that each of said at least one security module (200) is one of the list consisting of: a warning light, preferably a diode LED; an acoustic alarm; a transmitter of warnings by wireless connection; a transmitter of warnings by wired connection; and an overcurrent detector module (210) configured to activate a line break module (250) to cut said supply line (4).
13- Dispositivo de seguridad (100) según la reivindicación 12, caracterizado por que dicho módulo detector de sobrecorriente (210) comprende: una resistencia de derivación (211), conectada en línea sobre dicha línea de suministro (4), y que presenta dos terminales entre los que queda definida una tensión de derivación que es proporcional a la intensidad de corriente que circula por dicha resistencia de derivación (211); y un módulo de comparación (220), configurado para generar una señal de sobrecorriente cuando dicha tensión de derivación es mayor que una tensión umbral de corte; en el que dicho módulo de corte de línea (250) está configurado para cortar dicha línea de suministro (4) al recibir dicha señal de sobrecorriente desde dicho módulo de comparación (220). 13. Safety device (100) according to claim 12, characterized in that said overcurrent detector module (210) comprises: a shunt resistor (211), connected in line on said supply line (4), and having two terminals between which a shunt voltage that is proportional to the intensity of current flowing through said shunt resistor (211); and a comparison module (220), configured to generate an overcurrent signal when said bypass voltage is greater than a cutoff threshold voltage; wherein said line break module (250) is configured to cut said supply line (4) upon receiving said overcurrent signal from said comparison module (220).
14- Dispositivo de seguridad (100) según la reivindicación 13, caracterizado por que dicho módulo de comparación (220) comprende una salida de comparación (223), estando dicho módulo de comparación (220) configurado para ofrecer en dicha salida de comparación (223) una tensión de sobrecorriente predeterminada cuando dicha tensión de derivación es mayor que una tensión umbral, de forma que dicha señal de sobrecorriente se corresponde con la situación en la que la tensión en dicha salida de comparación (223) presenta el valor de dicha tensión de sobrecorriente. 14. Security device (100) according to claim 13, characterized in that said comparison module (220) comprises a comparison output (223), said comparison module (220) being configured to offer in said comparison output (223 ) a predetermined overcurrent voltage when said shunt voltage is greater than a threshold voltage, so that said overcurrent signal corresponds to the situation in which the voltage at said comparison output (223) presents the value of said voltage of overcurrent.
15- Dispositivo de seguridad (100) según la reivindicación 14, caracterizado por que dicho módulo de comparación (220) comprende: un primer amplificador operacional (221) en lazo cerrado, configurado para amplificar dicha tensión de derivación; y un comparador (222), preferentemente un segundo amplificador operacional en lazo abierto o bien un comparador analógico, configurado para comparar dicha tensión de derivación amplificada y generar dicha señal de sobrecorriente en el caso de que supere un umbral predeterminado. 15. Safety device (100) according to claim 14, characterized in that said comparison module (220) comprises: a first closed-loop operational amplifier (221), configured to amplify said bypass voltage; and a comparator (222), preferably a second open-loop operational amplifier or an analog comparator, configured to compare said amplified bypass voltage and generate said overcurrent signal in the event that it exceeds a predetermined threshold.
16- Dispositivo de seguridad (100) según cualquiera de las reivindicaciones 14 o 15, caracterizado por que dicho módulo de corte de línea (250) comprende: un transistor de corte de línea (251), dispuesto en línea sobre dicha línea de suministro (4), y configurado a modo de interruptor de dicha línea de suministro (4) controlado por su tensión de puerta, definida como la tensión entre la puerta (2511) y la fuente (2512) de dicho transistor de corte de línea (251); y un módulo de control de puerta (252), configurado para recibir dicha señal de sobrecorriente, y conectado a dicho transistor de corte de línea (251) para controlar dicha tensión de puerta; en el que dicho transistor de corte de línea (251) presenta una tensión de control de puerta, definida como la tensión de puerta por encima de la cual dicho transistor de corte de línea (251) permite la conducción eléctrica entre su drenaje (2513) y su fuente (2512), y por debajo de la cual impide la conducción eléctrica entre dicho drenaje (2513) y dicha fuente (2512); estando dicho módulo de control de puerta (252) configurado de forma que una recepción de dicha señal de sobrecorriente produce un cambio en dicha tensión de puerta desde un valor superior a dicha tensión de control de puerta hasta un valor inferior a dicha tensión de control de puerta. 16. Safety device (100) according to any of claims 14 or 15, characterized in that said line cut module (250) comprises: a line cut transistor (251), arranged in line on said supply line ( 4), and configured as a switch of said supply line (4) controlled by its gate voltage, defined as the voltage between the gate (2511) and the source (2512) of said line cut transistor (251) ; and a gate control module (252), configured to receive said overcurrent signal, and connected to said line cut transistor (251) to control said gate voltage; wherein said line cut transistor (251) presents a gate control voltage, defined as the gate voltage above which said line cut transistor (251) allows electrical conduction between its drain (2513) and its source (2512), and below which it prevents electrical conduction between said drain (2513) and said source (2512); said door control module (252) being configured such that a reception of said overcurrent signal produces a change in said door voltage from a value higher than said door control voltage to a value lower than said control voltage of door.
17- Dispositivo de seguridad (100) según la reivindicación 16, caracterizado por que dicho transistor de corte de línea (251) es de tipo transistor bipolar de puerta aislada, IGBT, o bien un transistor de tipo MOSFET. 17. Safety device (100) according to claim 16, characterized in that said line cut transistor (251) is of the insulated gate bipolar transistor, IGBT, or a MOSFET type transistor.
18- Dispositivo de seguridad (100) según cualquiera de las reivindicaciones 16 o 17, caracterizado por que dicho módulo de control de puerta (252) comprende un relé (2522) de enclavamiento, configurado a modo de interruptor entre dicha puerta (2511) y dicho primer terminal de condensador (521), dicho primer terminal de alimentación (7) o bien dicho primer terminal aislado (71). 18. Security device (100) according to any of claims 16 or 17, characterized in that said door control module (252) comprises an interlocking relay (2522), configured as a switch between said door (2511) and said first capacitor terminal (521), said first power terminal (7) or said first insulated terminal (71).
19- Dispositivo de seguridad (100) según cualquiera de las reivindicaciones 16 o 17, caracterizado por que dicha fuente (2512) de dicho transistor de corte de línea (251) está conectada a dicho segundo terminal aislado (81); en el que dicho módulo de control de puerta (252) comprende un controlador de puerta aislado (2521) para dicho transistor de corte de línea (251), conectado a dicha salida de comparación (223), y configurado para mantener conectada dicha puerta (2511) de dicho transistor de corte de línea (251) con dicho primer terminal aislado (71), y pasar a conectar dicha puerta (2511) con dicho terminal aislado adicional (71b) en el caso de que la tensión en dicha salida de comparación (223) sea dicha tensión de sobrecorriente. 19. Safety device (100) according to any of claims 16 or 17, characterized in that said source (2512) of said line cut transistor (251) is connected to said second insulated terminal (81); wherein said gate control module (252) comprises an isolated gate driver (2521) for said line cut transistor (251), connected to said comparison output (223), and configured to keep said gate ( 2511) of said line cut transistor (251) with said first insulated terminal (71), and proceed to connect said gate (2511) with said additional insulated terminal (71b) in the event that the voltage at said comparison output (223) is said overcurrent voltage.
20- Instalación fotovoltaica, caracterizada por que comprende por lo menos uno de entre: un circuito de alimentación (1) según cualquiera de las reivindicaciones 1 a 9; y un dispositivo de seguridad (100) según cualquiera de las reivindicaciones 10 a 19. 20- Photovoltaic installation, characterized in that it comprises at least one of: a power circuit (1) according to any of claims 1 to 9; and a security device (100) according to any of claims 10 to 19.
PCT/ES2020/070240 2020-04-14 2020-04-14 Power supply circuit, safety device and photovoltaic facility WO2021209650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2020/070240 WO2021209650A1 (en) 2020-04-14 2020-04-14 Power supply circuit, safety device and photovoltaic facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2020/070240 WO2021209650A1 (en) 2020-04-14 2020-04-14 Power supply circuit, safety device and photovoltaic facility

Publications (1)

Publication Number Publication Date
WO2021209650A1 true WO2021209650A1 (en) 2021-10-21

Family

ID=70847417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070240 WO2021209650A1 (en) 2020-04-14 2020-04-14 Power supply circuit, safety device and photovoltaic facility

Country Status (1)

Country Link
WO (1) WO2021209650A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004536A2 (en) * 2011-07-01 2013-01-10 Tyco Electronics Corporation Power harvesting device
EP2962380A1 (en) 2013-06-28 2016-01-06 SMA Solar Technology AG Circuit arrangement for inline voltage supply, use of such a circuit arrangement and device having such a circuit arrangement
US20160203932A1 (en) * 2013-08-30 2016-07-14 Eaton Industries (Netherlands) B.V. Circuit breaker with hybrid switch
US9600012B2 (en) * 2013-07-26 2017-03-21 Siemens Aktiengesellschaft Internal power supply of a device
WO2017053333A1 (en) * 2015-09-21 2017-03-30 Symptote Technologies Llc One-transistor devices for protecting circuits and autocatalytic voltage conversion therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004536A2 (en) * 2011-07-01 2013-01-10 Tyco Electronics Corporation Power harvesting device
EP2962380A1 (en) 2013-06-28 2016-01-06 SMA Solar Technology AG Circuit arrangement for inline voltage supply, use of such a circuit arrangement and device having such a circuit arrangement
US9600012B2 (en) * 2013-07-26 2017-03-21 Siemens Aktiengesellschaft Internal power supply of a device
US20160203932A1 (en) * 2013-08-30 2016-07-14 Eaton Industries (Netherlands) B.V. Circuit breaker with hybrid switch
WO2017053333A1 (en) * 2015-09-21 2017-03-30 Symptote Technologies Llc One-transistor devices for protecting circuits and autocatalytic voltage conversion therefor

Similar Documents

Publication Publication Date Title
US9231399B2 (en) Devices and methods for overvoltage protection
ES2346267T3 (en) CONTROL DEVICE OF AN ELECTRONIC POWER SWITCH AND THE UNIT THAT INCLUDES SUCH DEVICE.
US9000615B2 (en) Solar power module with safety features and related method of operation
ES2401777T3 (en) Disconnector for galvanic interruption of direct current
US20130009483A1 (en) Power generator module connectivity control
US20190003725A1 (en) Hot water controller
US9496710B2 (en) Rapid shutdown solid state circuit for photovoltaic energy generation systems
US20180083438A1 (en) Inrush current limiter circuit
US20130265683A1 (en) Circuit for protecting an electric load from overvoltages
CN109327011B (en) Overvoltage protection device
US10566785B2 (en) Surge protective device with abnormal overvoltage protection
CN104954002A (en) Controlled switch-off of power switch
CN108604607B (en) Protection circuit for a Photovoltaic (PV) module, method for operating the protection circuit and Photovoltaic (PV) system comprising such a protection circuit
US10998761B2 (en) Rapid shutdown of photovoltaic systems
JP6245516B2 (en) Voltage detector
WO2021209650A1 (en) Power supply circuit, safety device and photovoltaic facility
CN109327211A (en) Load switch and its method of switching
JP5864006B1 (en) DC power system safety device
US8525425B1 (en) LED lighting system
WO2015109357A1 (en) Phase cutting controlled dimmer arrangement with over-current protection when powering a lamp
JP2019176714A (en) Voltage detection device
CN108271287B (en) Protective circuit
EP3086377B1 (en) Led driver circuit and method of controlling led driver circuit
ES2928344T3 (en) Wind turbine blade lightning protection with active components
US11081297B2 (en) Hybridization system for high voltage direct current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20728093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20728093

Country of ref document: EP

Kind code of ref document: A1