WO2021208905A1 - Harq-ack反馈时序的确定方法及设备 - Google Patents

Harq-ack反馈时序的确定方法及设备 Download PDF

Info

Publication number
WO2021208905A1
WO2021208905A1 PCT/CN2021/086890 CN2021086890W WO2021208905A1 WO 2021208905 A1 WO2021208905 A1 WO 2021208905A1 CN 2021086890 W CN2021086890 W CN 2021086890W WO 2021208905 A1 WO2021208905 A1 WO 2021208905A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
dci
harq
multiple carriers
ack
Prior art date
Application number
PCT/CN2021/086890
Other languages
English (en)
French (fr)
Inventor
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/918,892 priority Critical patent/US20230336278A1/en
Priority to EP21789069.8A priority patent/EP4138483A4/en
Publication of WO2021208905A1 publication Critical patent/WO2021208905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the embodiments of the present disclosure relate to the field of communication technology, and in particular to a method and device for determining a hybrid automatic repeat request acknowledgement (HARQ-ACK) feedback sequence.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • DCI Downlink Control Information
  • NR New Radio
  • Rel-17 New Radio
  • the DCI schedules physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transmission on multiple carriers at the same time.
  • PDSCH Physical Downlink Shared Channel
  • the PDSCH on different carriers is determined using the same feedback timing (ie K1) value notified in the DCI
  • K1 feedback timing
  • DCI Downlink Assignment Index
  • the embodiments of the present disclosure provide a method and device for determining HARQ-ACK feedback timing to solve the problem of how to use a dynamic HARQ-ACK codebook for HARQ-ACK feedback of multiple carriers.
  • some embodiments of the present disclosure provide a method for determining HARQ-ACK feedback timing, which is applied to a terminal, and includes:
  • the HARQ-ACK transmitting the PDSCH on the multiple carriers scheduled by the first DCI Time unit.
  • the determination of the HARQ-ACK time unit of the PDSCH on the multiple carriers scheduled by the first DCI according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI include:
  • the SCS for transmitting the PUCCH determine the latest time unit that overlaps the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, or determine the time unit scheduled with the first DCI The latest time unit in which the time slot in which the PDSCH transmission with the latest end position of the PDSCH on multiple carriers overlaps;
  • the time unit is used as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined according to the feedback timing value of the PDSCH to HARQ-ACK. Time unit.
  • determining the HARQ-ACK time unit of the PDSCH on the multiple carriers scheduled by the first DCI according to the reference SCS includes:
  • the reference time slot includes: the last time slot overlapping with the PDSCH, or the same as the PDSCH.
  • the last time slot where the time slots overlap, the reference time slot is defined based on the reference SCS;
  • the determined time unit is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the PDSCH to HARQ-ACK feedback timing value is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the SCS of the carrier transmitting the PUCCH transmitting the PUCCH.
  • the time unit is a plurality of predefined symbol lengths or one slot or one sub-slot.
  • the time unit of HARQ-ACK of PDSCH on the carrier is determined to transmit the multiple PDSCHs scheduled for the first DCI according to the reference SCS or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI.
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same subcarrier spacing
  • the multiple carriers have the same PDSCH processing capability
  • some embodiments of the present disclosure also provide a method for determining HARQ-ACK feedback timing, which is applied to network equipment, and includes:
  • the determination of the HARQ-ACK time unit of the PDSCH on the multiple carriers scheduled by the first DCI according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI include:
  • the SCS for transmitting the PUCCH determine the latest time unit that overlaps the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, or determine the time unit scheduled with the first DCI The latest time unit in which the time slot in which the PDSCH transmission with the latest end position of the PDSCH on multiple carriers overlaps;
  • the time unit is used as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined according to the feedback timing value of the PDSCH to HARQ-ACK. Time unit.
  • determining the HARQ-ACK time unit of the PDSCH on the multiple carriers scheduled by the first DCI according to the reference SCS includes:
  • the reference time slot includes: the last time slot overlapping with the PDSCH, or the same as the PDSCH.
  • the last time slot where the time slots overlap, the reference time slot is defined based on the reference SCS;
  • the determined time unit is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the PDSCH to HARQ-ACK feedback timing value is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the SCS of the carrier transmitting the PUCCH transmitting the PUCCH.
  • the time unit is a plurality of predefined symbol lengths or one slot or one sub-slot.
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same subcarrier spacing
  • the multiple carriers have the same PDSCH processing capability
  • some embodiments of the present disclosure also provide a terminal, including:
  • a receiving module configured to receive a first DCI, where the first DCI is used to schedule PDSCH transmission on multiple carriers;
  • the first determining module is configured to determine, according to the reference SCS, or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, to determine the transmission of the PDSCH on the multiple carriers scheduled by the first DCI
  • the time unit of HARQ-ACK is configured to determine, according to the reference SCS, or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, to determine the transmission of the PDSCH on the multiple carriers scheduled by the first DCI The time unit of HARQ-ACK.
  • the first determining module is further configured to:
  • the SCS for transmitting the PUCCH determine the latest time unit that overlaps the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, or determine the time unit scheduled with the first DCI The latest time unit in which the time slot in which the PDSCH transmission with the latest end position of the PDSCH on multiple carriers overlaps;
  • the time unit is used as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined according to the feedback timing value of the PDSCH to HARQ-ACK. Time unit.
  • the first determining module is further configured to:
  • the reference time slot includes: the last time slot overlapping with the PDSCH, or the same as the PDSCH.
  • the last time slot where the time slots overlap, the reference time slot is defined based on the reference SCS;
  • the determined time unit is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the reference SCS includes any one of the following:
  • the SCS of the carrier transmitting the PUCCH transmitting the PUCCH.
  • the time unit of HARQ-ACK of PDSCH on the carrier is determined to transmit the multiple PDSCHs scheduled for the first DCI according to the reference SCS or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI.
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same subcarrier spacing
  • the multiple carriers have the same PDSCH processing capability
  • some embodiments of the present disclosure also provide a terminal, including: a first transceiver and a first processor;
  • the first transceiver sends and receives data under the control of the first processor
  • the first processor reads the program in the memory to perform the following operations: receive the first DCI, which is used to schedule PDSCH transmission on multiple carriers; according to the reference SCS, or according to the first DCI scheduling
  • receive the first DCI which is used to schedule PDSCH transmission on multiple carriers
  • the PDSCH with the latest end position among the PDSCHs on the multiple carriers determines the time unit for transmitting the HARQ-ACK of the PDSCHs on the multiple carriers scheduled by the first DCI.
  • some embodiments of the present disclosure also provide a network device, including:
  • a sending module configured to send a first DCI, where the first DCI is used to schedule PDSCH transmission on multiple carriers;
  • the second determining module is configured to determine, according to the reference SCS, or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, to determine the transmission of the PDSCH on the multiple carriers scheduled by the first DCI
  • the time unit of HARQ-ACK is configured to determine, according to the reference SCS, or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, to determine the transmission of the PDSCH on the multiple carriers scheduled by the first DCI The time unit of HARQ-ACK.
  • some embodiments of the present disclosure also provide a network device, including: a second transceiver and a second processor;
  • the second transceiver sends and receives data under the control of the second processor
  • the second processor reads the program in the memory to perform the following operations: send the first DCI, which is used to schedule PDSCH transmission on multiple carriers; according to the reference SCS, or according to the first DCI scheduled
  • the PDSCH with the latest end position among the PDSCHs on the multiple carriers determines the time unit for transmitting the HARQ-ACK of the PDSCHs on the multiple carriers scheduled by the first DCI.
  • implementations of the present disclosure also provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the realization of The steps of the method for determining the HARQ-ACK feedback timing are described.
  • the HARQ-ACK feedback of the PDSCH on the multiple carriers scheduled by the DCI can be determined according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled with reference to the SCS or the received DCI Time slot or sub-slot, to ensure PDSCH on multiple carriers scheduled by the same DCI.
  • the SCS of different carriers it can be determined to perform HARQ-ACK in the same time slot or sub-slot according to the same feedback timing value.
  • the feedback ensures the consistency of the understanding of HARQ-ACK transmission between the network equipment and the terminal, and guarantees the normal transmission of HARQ-ACK.
  • Figure 1 is a schematic diagram of downlink scheduling timing and HARQ-ACK feedback timing
  • Figure 2 is one of the schematic diagrams of determining the PUCCH time slot where HARQ-ACK transmission is located according to the K1 value;
  • Fig. 3 is the second schematic diagram of determining the PUCCH time slot where HARQ-ACK transmission is located according to the K1 value
  • 4 is a schematic diagram of determining the PDCCH detection opportunity set of the dynamic HARQ-ACK codebook
  • Fig. 5 is a schematic diagram of DAI design of a dynamic HARQ-ACK codebook
  • FIG. 6 is one of the schematic diagrams of the method for determining the HARQ-ACK feedback timing in some embodiments of the present disclosure
  • FIG. 7 is one of the schematic diagrams of step 602 in FIG. 6;
  • FIG. 8 is one of the schematic diagrams of step 602 in FIG. 6;
  • FIG. 9 is a second schematic diagram of a method for determining HARQ-ACK feedback timing in some embodiments of the present disclosure.
  • FIG. 10 is one of the schematic diagrams of step 902 in FIG. 9;
  • FIG. 11 is the second schematic diagram of step 902 in FIG. 9;
  • FIG. 12 is one of the schematic diagrams for determining HARQ-ACK feedback timing in some embodiments of the disclosure.
  • FIG. 13 is the second schematic diagram of determining HARQ-ACK feedback timing in some embodiments of the present disclosure.
  • FIG. 14 is the third schematic diagram of determining HARQ-ACK feedback timing in some embodiments of the present disclosure.
  • 15 is the fourth schematic diagram of determining HARQ-ACK feedback timing in some embodiments of the present disclosure.
  • FIG. 16 is one of the schematic diagrams of the terminal of some embodiments of the present disclosure.
  • FIG. 17 is a second schematic diagram of a terminal according to some embodiments of the present disclosure.
  • FIG. 18 is one of the schematic diagrams of the network device of some embodiments of the present disclosure.
  • FIG. 19 is a second schematic diagram of a network device according to some embodiments of the present disclosure.
  • the new wireless communication system (5Generation New RAT, 5G NR) supports flexible timing relationships.
  • the physical downlink shared channel Physical Downlink Shared CHannel, PDSCH
  • the physical downlink control channel Physical Downlink Control Channel, PDCCH
  • PDCCH Physical Downlink Control Channel
  • HARQ-ACK timing The feedback timing (HARQ-ACK timing) relationship between the PDSCH and its corresponding HARQ-ACK (that is, K1).
  • the Time Domain Resource Assignment (TDRA) indicator field in the DCI format used by the PDCCH indicates the time slot where the PDSCH is located and the PDCCH (or DCI, because DCI is the specific transmission format of the PDCCH.
  • the time slot offset K0 of the time slot that describes the scheduling and feedback relationship is considered equivalent).
  • the PDSCH-to-HARQ_feedback timing indication field in the DCI format indicates the number of time slots K1 between the end of the PDSCH and the beginning of HARQ-ACK, that is, the PDSCH transmitted in time slot n is in time slot n+ HARQ-ACK transmission is performed in K1.
  • the complete set of K1 is ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 ⁇ , which is usually configured to the terminal at most 8 values.
  • the value of K1 can be in units of time slots or sub-slots.
  • the sub-slots can be pre-configured with 2 symbol lengths (that is, there are 7 sub-slots in sequence in a time slot). ), or 7 symbol length (that is, there are 2 sub-slots in sequence in a slot).
  • the PDSCH transmitted in time slot n or the PDCCH also known as SPS PDSCH release
  • the PDCCH also known as SPS PDSCH release
  • SPS semi-persistent scheduling
  • the 5G NR system supports two HARQ-ACK codebook generation methods, semi-static and dynamic.
  • the so-called HARQ-ACK codebook refers to the HARQ-ACK feedback sequence generated for the downlink transmission of HARQ-ACK feedback on the same time domain location or uplink channel.
  • the Dynamic HARQ-ACK codebook performs HARQ-ACK according to the indication of the cumulative downlink assignment index (Counter-Downlink Assignment Index, C-DAI) field in the Downlink (DL) DCI (that is, the DCI for scheduling downlink transmission) Sort and determine the total number of bits of the HARQ-ACK codebook according to the total DAI (Total-DAI, T-DAI) field. Therefore, the size of the HARQ-ACK codebook can be adjusted according to the actual scheduling at different feedback moments to achieve Dynamically change the codebook size, thereby saving HARQ-ACK feedback overhead.
  • C-DAI Cumult Downlink Assignment Index
  • a downlink transmission opportunity can be found according to n-K1, and then the corresponding PDCCH monitoring occasion can be found according to the scheduling relationship of this downlink transmission opportunity. If the number of repetitions is greater than 1, the transmission will be repeated
  • the K0 of the PDSCH is determined based on the first time slot of the multiple time slots occupied by the repeated PDSCH transmission
  • the K1 of the repeatedly transmitted PDSCH is determined based on the last time slot of the multiple time slots occupied by the repeated PDSCH transmission. It means that the N time slots of the following time slots n-K1 to n-K1-N are a group of time slots for repeated PDSCH transmission.
  • the PDCCH monitoring occasion determined based on K0 is time slot n- The PDCCH monitoring occasion corresponding to K1-N. Assuming that K0 is always 0, the actual K0 can have multiple values. If there are multiple values, one downlink time slot corresponding to n-K1 can determine multiple PDCCH monitoring occasions, each The time slot may also include multiple PDCCH monitoring occasions. In the case of carrier aggregation, the full set of PDCCH monitoring occasions of all carriers is obtained based on the PDCCH monitoring occasion corresponding to each carrier.
  • the PDCCH monitoring occasions on different carriers may be misaligned in time, and then according to the previous time (before and after the time) Order) and then frequency domain (that is, the carrier number from small to large) is sorted.
  • the terminal detects the PDCCH using a certain DCI format (for example, one or more of format 1-0, format 1-1, and format 1-2) in the determined PDCCH monitoring occasion set, and according to the received PDCCH DAI information (including C-DAI and T-DAI) generates HARQ-ACK codebook, assuming that C-DAI and T-DAI in DCI are set based on the PDCCH monitoring occasion set.
  • a certain DCI format for example, one or more of format 1-0, format 1-1, and format 1-2
  • the received PDCCH DAI information including C-DAI and T-DAI
  • the C-DAI indicates the cumulative number of PDSCHs that have been transmitted to the current PDCCH monitoring and occurrence on the current carrier or the cumulative number of PDCCHs that indicate the release of the SPS PDSCH in the order of frequency domain followed by time domain.
  • T-DAI indicates the total number of PDSCHs transmitted on all carriers or indicates the number of PDCCHs released by SPS PDSCH to the current PDCCH monitoring and occurrence.
  • the T-DAI in the DCI in the time-domain aligned PDCCH monitoring occasion on multiple carriers is the same, as shown in Figure 5, where C-DAI and T-DAI take 2 bits each as an example, and values exceeding 4 are used as modulus.
  • the way is expressed by the same DAI state, for example, the 2-bit DAI "00" state can represent values such as 1 ⁇ 5 ⁇ 9.
  • a DCI can schedule PDSCHs on multiple carriers for transmission
  • the DAI in the DCI accumulates the PDSCHs on multiple scheduled carriers, it is necessary to ensure that the PDSCHs on multiple carriers are in the same time slot or sub-slot
  • Only the HARQ-ACK feedback can ensure that the size of the HARQ-ACK sequence determined by the network device and the terminal according to the DAI in the DCI is consistent.
  • the DCI indicates the same K1 value for the PDSCH on multiple scheduled carriers
  • the SCS of multiple carriers is different, it cannot be guaranteed that the PDSCHs on multiple carriers are in the same time slot or sub-slot For HARQ-ACK feedback, at this time, how to use dynamic HARQ-ACK codebook to perform HARQ-ACK feedback for multiple carriers has not yet been clear.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • LTE Long Time Evolution
  • LTE-A Long Time Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • the terms “system” and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000 and Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • the TDMA system can implement radio technologies such as the Global System for Mobile Communication (GSM).
  • OFDMA system can realize such as Ultra Mobile Broadband (UMB), Evolved UTRA (Evolution-UTRA, E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. Radio technology.
  • UMB Ultra Mobile Broadband
  • Evolution-UTRA Evolved UTRA
  • E-UTRA IEEE 802.11
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • LTE and more advanced LTE are new UMTS versions that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the technology described in this article can be used for the systems and radio technologies mentioned above, as well as other systems and radio technologies.
  • some embodiments of the present disclosure provide a method for determining HARQ-ACK feedback timing.
  • the method may be executed by a terminal, and includes: step 601 and step 602.
  • Step 601 Receive a first DCI, where the first DCI is used to schedule PDSCH transmission on multiple carriers;
  • Step 602 Determine the HARQ-ACK transmitting the PDSCH on the multiple carriers scheduled by the first DCI according to the reference SCS or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI Time unit.
  • the reference SCS can be used to determine a common HARQ-ACK transmission time unit for PDSCHs on multiple carriers scheduled by a first DCI, when different carriers may have different SCS or DL and UL have different SCS , Refer to the respective SCS to determine the time unit of HARQ-ACK transmission, it may be obtained that the time unit of HARQ-ACK transmission of multiple PDSCHs is different.
  • step 602 may include:
  • Step 6021 The terminal, according to the time unit defined by the SCS transmitting the Physical Uplink Control Channel (PUCCH), determines the PDSCH that overlaps the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI. Late time unit (that is, the time unit for transmitting PUCCH), or determining the latest time unit overlapping with the time slot in which the PDSCH transmission with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI is located;
  • Late time unit that is, the time unit for transmitting PUCCH
  • the PUCCH transmission time unit is used as a reference, that is, the time unit division on the carrier transmitting the PUCCH, that is, the time unit divided by the SCS of the PUCCH, such as time slots, sub-slots, and so on.
  • Step 6022 The terminal uses the time unit as the reference point of the PDSCH to HARQ-ACK feedback timing, and determines the PDSCH on the multiple carriers scheduled by the first DCI according to the PDSCH to HARQ-ACK feedback timing value.
  • the time unit of HARQ-ACK is the time unit of HARQ-ACK.
  • the reference point in step 6022 can be understood as a determined time unit as the time unit corresponding to when the feedback timing value from PDSCH to HARQ-ACK is 0.
  • step 602 may include:
  • Step 6023 The terminal determines the reference time slot of each PDSCH of the PDSCHs on the multiple carriers scheduled by the first DCI, where the reference time slot includes: the last time slot overlapping with the PDSCH, or The last time slot overlapped by the time slot in which the PDSCH is located, and the reference time slot is defined based on a reference SCS;
  • Step 6024 The terminal uses the latest reference time slot among the reference time slots as the first reference time slot, and determines the latest one that overlaps the first reference time slot according to the time unit defined by the SCS for transmitting PUCCH A time unit
  • the first reference time slot is used to determine the reference time slot of the HARQ-ACK feedback position. If there is only one reference time slot, the reference time slot is the reference time slot used to determine the HARQ-ACK feedback position. .
  • Step 6025 The terminal uses the determined time unit as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, determines the data on the multiple carriers scheduled by the first DCI The time unit of the HARQ-ACK of the PDSCH.
  • the feedback timing value from the PDSCH to the HARQ-ACK is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the time unit is a plurality of predefined symbol lengths or one slot or one sub-slot.
  • the terminal determines according to the reference SCS or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same PDSCH processing capability
  • the terminal may determine the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the DCI according to the PDSCH with the latest ending position among the PDSCHs on the multiple carriers scheduled with reference to the SCS or received DCI.
  • the feedback time slot or sub-slot guarantees the PDSCH on multiple carriers scheduled by the same DCI.
  • the SCS of different carriers it can be determined to perform HARQ in the same time slot or sub-slot according to the same feedback timing value.
  • ACK feedback ensures the consistency of understanding of HARQ-ACK transmission between network equipment and terminals, and guarantees the normal transmission of HARQ-ACK.
  • some embodiments of the present disclosure provide a method for determining HARQ-ACK feedback timing.
  • the execution subject of the method may be a network device, and includes: step 901 and step 902.
  • Step 901 Send a first DCI, where the first DCI is used to schedule PDSCH transmission on multiple carriers;
  • Step 902 Determine the HARQ-ACK transmitting the PDSCH on the multiple carriers scheduled by the first DCI according to the reference SCS or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI Time unit.
  • step 902 may include:
  • Step 9021 The network device determines, according to the time unit defined by the SCS for transmitting the PUCCH, the latest time unit that overlaps with the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI (that is, the time for transmitting PUCCH) Unit), or determine the latest time unit that overlaps with the time slot in which the PDSCH transmission with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI is located;
  • the PUCCH transmission time unit is used as a reference, that is, the time unit division on the carrier transmitting the PUCCH, that is, the time unit divided by the SCS of the PUCCH, such as time slots, sub-slots, and so on.
  • Step 9022 The network device uses the time unit as a reference point for the feedback timing of PDSCH to HARQ-ACK, and determines PDSCHs on multiple carriers scheduled by the first DCI according to the feedback timing value of the PDSCH to HARQ-ACK The time unit of HARQ-ACK.
  • the reference point in step 9022 can be understood as a determined time unit as the time unit corresponding to when the feedback timing value from PDSCH to HARQ-ACK is 0.
  • step 902 may include:
  • Step 9023 The network device determines the reference time slot of each PDSCH of the PDSCHs on the multiple carriers scheduled by the first DCI, where the reference time slot includes: the last time slot overlapping with the PDSCH, or The last time slot overlapped by the time slot in which the PDSCH is located, and the reference time slot is defined based on a reference SCS;
  • Step 9024 The network device uses the latest reference time slot in the reference time slots as the first reference time slot, and determines the latest time slot overlapped with the first reference time slot according to the time unit defined by the SCS transmitting PUCCH A time unit of
  • the first reference time slot is used to determine the reference time slot of the HARQ-ACK feedback position. If there is only one reference time slot, the reference time slot is the reference time slot used to determine the HARQ-ACK feedback position. .
  • Step 9025 The network device uses the determined time unit as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, determines the multiple carriers scheduled by the first DCI The time unit of the HARQ-ACK of the PDSCH.
  • the feedback timing value from the PDSCH to the HARQ-ACK is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the time unit is a plurality of predefined symbol lengths or one slot or one sub-slot.
  • the network device schedules the PDSCH with the latest end position among the PDSCHs on the multiple carriers according to the reference SCS or according to the first DCI, Determine the time unit for transmitting the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI:
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same PDSCH processing capability
  • the network device may determine the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the DCI according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by reference to the SCS or received DCI The feedback time slot or sub-slot to ensure the PDSCH on multiple carriers scheduled by the same DCI.
  • the SCS of different carriers it can be determined to perform HARQ in the same time slot or sub-slot according to the same feedback timing value.
  • -ACK feedback ensures the consistency of understanding of HARQ-ACK transmission between network equipment and terminals, and guarantees the normal transmission of HARQ-ACK.
  • Example 1 The following describes the implementation of the present disclosure in combination with Example 1 and Example 2.
  • Embodiment 1 As shown in Fig. 12 and Fig. 13, the HARQ-ACK feedback slot common to PDSCH1 and PDSCH2 is determined according to the latest PDSCH of the two PDSCHs scheduled by the same DCI on carrier 1 and carrier 2, namely PDSCH2:
  • Method 1 Find the latest PUCCH time slot that overlaps with PDSCH2 (that is, the UL time slot on carrier 1), that is, the uplink time slot 2n+2 of carrier 1.
  • Method 2 Find the latest PUCCH time slot (ie UL time slot on carrier 1) that overlaps with PDSCH2's time slot (ie, time slot n+1 on carrier 2 where PDSCH2 is located), that is, carrier 1 uplink time slot 2n+ 3.
  • the HARQ-ACK of PDSCH1 and PDSCH2 is transmitted in slot 2n+4, as shown in FIG. 13.
  • the terminal sends the HARQ-ACK feedback sequence containing PDSCH1 and PDSCH2 through PUCCH (of course, it can also be through PUSCH, which does not affect the above timing design) in the above determined feedback time slot, and the base station receives through PUCCH in this time slot
  • PUCCH Physical Uplink Control Channel
  • Embodiment 2 As shown in Figures 14 and 15, the HARQ-ACK feedback time slot shared by two PDSCHs scheduled by the same DCI on carrier 1 and carrier 2 is determined according to the reference SCS:
  • Method 1 Use the SCS of DCI (that is, the downlink SCS of the carrier where the DCI transmission is located) as the reference SCS, that is, the downlink SCS of carrier 1, that is, 30kHz, as the reference SCS, according to the time slot division of the reference SCS, that is, the time slot division on carrier 1, Based on the time slot division on carrier 1, the reference time slot of PDSCH1 is determined to be time slot 2n on carrier 1, and the reference time slot of PDSCH2 is determined to be time slot 2n+1 on carrier 1.
  • time slot 2n+1 is used as the first reference time slot to find the last PUCCH time slot that overlaps this first reference time slot on the PUCCH carrier (that is, every PUCCH time slot on the PUCCH carrier)
  • Time slots are considered to be time slots that can transmit PUCCH), that is, UL time slot 2n+1 on carrier 1.
  • Method 2 Use the smallest SCS among the SCSs (ie downlink SCS) of multiple carriers scheduled by DCI as the reference SCS, that is, 15kHz of carrier 2 as the reference SCS, and the time slot division of the reference SCS is the time slot on carrier 2.
  • the division is based on the time slot division on carrier 2, and the reference time slot of PDSCH1 is determined to be time slot n on carrier 2, and the reference time slot of PDSCH2 is determined to be time slot n on carrier 2. If there is only one reference time slot, then This reference time slot is the first reference time slot.
  • the HARQ-ACK feedback slot is determined to be the slot 2n+2 on carrier 1, that is, it is determined to transmit the HARQ-ACK of PDSCH1 and PDSCH2 in the slot 2n+2, as shown in FIG. 15.
  • Manner 4 Use the largest SCS among the SCSs (ie, downlink SCS) of multiple carriers scheduled by DCI as the reference SCS, that is, 30kHz of carrier 1 as the reference SCS.
  • the specific execution process is similar to that of Manner 1, and will not be repeated;
  • the PDSCH reference time slot overlaps with the PDSCH itself. If the PDSCH reference time slot overlaps with the time slot in which the PDSCH is transmitted, the above method can also be used. In this embodiment, the result obtained is The same is not repeated here.
  • the terminal sends the HARQ-ACK feedback sequence containing PDSCH1 and PDSCH2 through PUCCH (of course, it can also be through PUSCH, which does not affect the above timing design) in the above-determined time slot, and the base station uses PUCCH in this time slot.
  • the HARQ-ACK feedback based on the time slot is taken as an example (that is, the unit of K1 is a time slot).
  • the HARQ-ACK feedback based on a sub-slot that is, the unit of K1 is a sub-slot
  • the above method is also applicable.
  • the SCS of carriers 1 and 2 is only an example, and other SCS combinations can also be used.
  • the DCI on carrier 1 simultaneously schedules the PDSCH on carrier 1 and carrier 2 as an example, and it can also be the DCI on one carrier. More carriers are scheduled, and the scheduled carrier may or may not include this carrier (that is, if carrier 1 sends DCI, the DCI-scheduled carrier may or may not include carrier 1). In these cases, the above methods are also applicable.
  • Frequency Division Duplexing if TDD alternates between uplink and downlink time slots and TDM on the same carrier, the above method is also applicable.
  • some embodiments of the present disclosure further provide a terminal, and the terminal 1600 includes:
  • the receiving module 1601 is configured to receive a first DCI, where the first DCI is used to schedule PDSCH transmission on multiple carriers;
  • the first determining module 1602 is configured to determine the PDSCH on the multiple carriers scheduled for transmission of the first DCI according to the reference SCS or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI The time unit of HARQ-ACK.
  • the first determining module 1602 is further configured to:
  • the SCS for transmitting the PUCCH determine the latest time unit that overlaps the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, or determine the time unit scheduled with the first DCI The latest time unit in which the time slot in which the PDSCH transmission with the latest end position of the PDSCH on multiple carriers overlaps;
  • the time unit is used as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined according to the feedback timing value of the PDSCH to HARQ-ACK. Time unit.
  • the first determining module 1602 is further configured to:
  • the reference time slot includes: the last time slot overlapping with the PDSCH, or the same as the PDSCH.
  • the last time slot where the time slots overlap, the reference time slot is defined based on the reference SCS;
  • the determined time unit is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the feedback timing value from the PDSCH to the HARQ-ACK is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the time unit is a predefined number of symbol lengths or one slot or one sub-slot.
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same PDSCH processing capability
  • the terminal provided by some embodiments of the present disclosure can execute the method embodiments shown in FIG. 6, FIG. 7, and FIG.
  • the terminal 1700 includes: a first transceiver 1701 and a first processor 1702;
  • the first transceiver 1701 sends and receives data under the control of the first processor 1702;
  • the first processor 1702 reads the program in the memory to perform the following operations: receive the first DCI, the first DCI is used to schedule PDSCH transmission on multiple carriers; according to the reference SCS, or according to the first DCI scheduling
  • receive the first DCI the first DCI is used to schedule PDSCH transmission on multiple carriers; according to the reference SCS, or according to the first DCI scheduling
  • the PDSCH with the latest end position among the PDSCHs on the multiple carriers determines the time unit for transmitting the HARQ-ACK of the PDSCHs on the multiple carriers scheduled by the first DCI.
  • the first processor 1702 reads the program in the memory to perform the following operations: according to the time unit defined by the SCS for transmitting the PUCCH, it is determined that the PDSCH on the multiple carriers scheduled with the first DCI ends The latest time unit that overlaps the PDSCH with the latest position, or the latest time unit that overlaps with the time slot in which the PDSCH transmission with the latest end position is located among the PDSCHs on the multiple carriers scheduled by the first DCI;
  • the time unit is used as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined according to the feedback timing value of the PDSCH to HARQ-ACK. Time unit.
  • the first processor 1702 reads a program in the memory to perform the following operations: determine the reference time slot of each PDSCH of the PDSCHs on the multiple carriers scheduled by the first DCI, the reference The time slot includes: the last time slot overlapping with the PDSCH, or the last time slot overlapping with the time slot in which the PDSCH is located, the reference time slot is defined based on a reference SCS; and the reference time slot The latest reference time slot in the SCS is used as the first reference time slot, and the latest time unit overlapping with the first reference time slot is determined according to the time unit defined by the SCS transmitting PUCCH; the determined time unit As a reference point for the feedback timing of the PDSCH to the HARQ-ACK, based on the feedback timing value of the PDSCH to the HARQ-ACK, the time unit of the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the feedback timing value from the PDSCH to the HARQ-ACK is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the time unit is a predefined number of symbol lengths or one slot or one sub-slot.
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same PDSCH processing capability
  • the terminal provided by some embodiments of the present disclosure can execute the method embodiments shown in FIG. 6, FIG. 7, and FIG.
  • some embodiments of the present disclosure further provide a network device, and the network device 1800 includes:
  • the sending module 1801 is configured to send a first DCI, where the first DCI is used to schedule PDSCH transmission on multiple carriers;
  • the second determining module 1802 is configured to determine the PDSCH on the multiple carriers scheduled for transmission of the first DCI according to the reference SCS or according to the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI The time unit of HARQ-ACK.
  • the second determining module 1802 is further configured to:
  • the SCS for transmitting the PUCCH determine the latest time unit that overlaps the PDSCH with the latest end position among the PDSCHs on the multiple carriers scheduled by the first DCI, or determine the time unit scheduled with the first DCI The latest time unit in which the time slot in which the PDSCH transmission with the latest end position of the PDSCH on multiple carriers overlaps;
  • the time unit is used as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined according to the feedback timing value of the PDSCH to HARQ-ACK. Time unit.
  • the second determining module 1802 is further configured to:
  • the reference time slot includes: the last time slot overlapping with the PDSCH, or the same as the PDSCH.
  • the last time slot where the time slots overlap, the reference time slot is defined based on the reference SCS;
  • the determined time unit is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the feedback timing value from the PDSCH to the HARQ-ACK is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the time unit is a predefined number of symbol lengths or one slot or one sub-slot.
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same PDSCH processing capability
  • the network device provided by some embodiments of the present disclosure can execute the method embodiments shown in FIG. 9, FIG. 10, and FIG.
  • the network device 1900 includes: a second transceiver 1901 and a second processor 1902;
  • the second transceiver 1901 sends and receives data under the control of the second processor 1902;
  • the second processor 1902 reads the program in the memory to perform the following operations: send the first DCI, the first DCI is used to schedule PDSCH transmission on multiple carriers; according to the reference SCS, or according to the first DCI scheduling
  • the PDSCH with the latest end position among the PDSCHs on the multiple carriers determines the time unit for transmitting the HARQ-ACK of the PDSCHs on the multiple carriers scheduled by the first DCI.
  • the second processor 1902 reads the program in the memory to perform the following operations: according to the time unit defined by the SCS for transmitting the PUCCH, it is determined that the PDSCH on the multiple carriers scheduled with the first DCI ends The latest time unit that overlaps the PDSCH with the latest position, or the latest time unit that overlaps with the time slot in which the PDSCH transmission with the latest end position is located among the PDSCHs on the multiple carriers scheduled by the first DCI;
  • the time unit is used as a reference point for the feedback timing of the PDSCH to HARQ-ACK, and the HARQ-ACK of the PDSCH on the multiple carriers scheduled by the first DCI is determined according to the feedback timing value of the PDSCH to HARQ-ACK. Time unit.
  • the second processor 1902 reads a program in the memory to perform the following operations: determine the reference time slot of each PDSCH of the PDSCH on the multiple carriers scheduled by the first DCI, the reference The time slot includes: the last time slot overlapping with the PDSCH, or the last time slot overlapping with the time slot in which the PDSCH is located, and the reference time slot is defined based on a reference SCS;
  • the determined time unit is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the time unit of ACK is used as a reference point for the feedback timing of PDSCH to HARQ-ACK, and based on the feedback timing value of the PDSCH to HARQ-ACK, the HARQ of the PDSCH on the multiple carriers scheduled by the first DCI is determined.
  • the feedback timing value from the PDSCH to the HARQ-ACK is indicated by the first DCI or configured by higher layer signaling.
  • the reference SCS includes any one of the following:
  • the time unit is a predefined number of symbol lengths or one slot or one sub-slot.
  • the terminal is configured to use dynamic HARQ-ACK codebook transmission
  • the multiple carriers have the same PDSCH processing capability
  • the network device provided by some embodiments of the present disclosure can execute the method embodiments shown in FIG. 9, FIG. 10, and FIG.
  • the steps of the method or algorithm described in conjunction with the disclosure of the present disclosure may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disks, mobile hard disks, read-only optical disks, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • Each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or more Microprocessor (digital signal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the functions described in the present disclosure can be implemented by hardware, software, firmware, or any combination thereof.
  • these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the embodiments of the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present disclosure may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing equipment are used to generate It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

本公开实施例提供一种HARQ-ACK反馈时序的确定方法及设备,该方法包括:接收第一DCI,所述第一DCI用于调度多个载波上的物理下行共享信道PDSCH传输;根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。

Description

HARQ-ACK反馈时序的确定方法及设备
相关申请的交叉引用
本申请主张在2020年4月15日在中国提交的中国专利申请号No.202010296252.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,具体涉及一种混合自动重传请求应答(Hybrid automatic repeat request acknowledgement,HARQ-ACK)反馈时序的确定方法及设备。
背景技术
为了增加调度的效率,节省下行控制信息(Downlink Control Information,DCI)开销,新空口(New Radio,NR)版本17(Rel-17)中可能需要考虑采用一个DCI调度多个载波的方式,即一个DCI同时调度在多个载波上进行物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输。考虑到多个载波可能具有不同的基带参数(numerology,如子载波间隔(Sub-Carrier Spacing,SCS)等),不同载波上的PDSCH在使用DCI中通知的同一个反馈时序(即K1)值确定传输其HARQ-ACK的时隙或子时隙时,可能无法对应到同一个时隙或子时隙进行HARQ-ACK反馈,但在采用动态(dynamic)HARQ-ACK码本(codebook)时,由于多个载波上的PDSCH是由DCI中的下行分配索引(Downlink Assignment Index,DAI)共同计数的,如果多个载波上的PDSCH在不同的时隙或子时隙进行HARQ-ACK反馈,将导致终端和基站对HARQ-ACK反馈比特数的理解不一致,导致HARQ-ACK传输错误。
当一个DCI可以调度多个载波上的PDSCH进行传输时,如何使用动态HARQ-ACK码本进行多个载波的HARQ-ACK反馈还没有明确的方案。
发明内容
本公开实施例提供一种HARQ-ACK反馈时序的确定方法及设备,解决如 何使用动态HARQ-ACK码本进行多个载波的HARQ-ACK反馈的问题。
第一方面,本公开的一些实施例的提供一种HARQ-ACK反馈时序的确定方法,应用于终端,包括:
接收第一下行控制信息DCI,所述第一DCI用于调度多个载波上的物理下行共享信道PDSCH传输;
根据参考子载波间隔SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,所述根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,根据参考SCS,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元确定与所述第一参考时隙重叠的最晚的一个时间单元;
将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的 多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
可选地,所述参考SCS包括以下任意一项:
所述第一DCI传输所在载波的SCS;
被调度的多个载波的SCS中最大的SCS;
被调度的多个载波的SCS中最小的SCS;
传输PUCCH的载波的SCS。
可选地,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
可选地,在满足如下至少一个条件时,根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
终端被配置使用动态HARQ-ACK码本传输;
所述多个载波具有相同的子载波间隔;
所述多个载波具有相同的PDSCH处理能力;
所述多个载波之间没有时隙或子时隙编号的偏移。
第二方面,本公开的一些实施例还提供一种HARQ-ACK反馈时序的确定方法,应用于网络设备,包括:
发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,所述根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的 PDSCH传输所在的时隙重叠的最晚的时间单元;
将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,根据参考SCS,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元,确定与所述第一参考时隙重叠的最晚的一个时间单元;
将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
可选地,所述参考SCS包括以下任意一项:
所述第一DCI传输所在载波的SCS;
被调度的多个载波的SCS中最大的SCS;
被调度的多个载波的SCS中最小的SCS;
传输PUCCH的载波的SCS。
可选地,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
可选地,在满足如下至少一个条件时,根据参考子载波间隔SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
终端被配置使用动态HARQ-ACK码本传输;
所述多个载波具有相同的子载波间隔;
所述多个载波具有相同的PDSCH处理能力;
所述多个载波之间没有时隙或子时隙编号的偏移。
第三方面,本公开的一些实施例还提供一种终端,包括:
接收模块,用于接收第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
第一确定模块,用于根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,所述第一确定模块进一步用于:
根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,所述第一确定模块进一步用于:
确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元确定与所述第一参考时隙重叠的最晚的一个时间单元;
将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可选地,所述参考SCS包括以下任意一项:
所述第一DCI传输所在载波的SCS;
被调度的多个载波的SCS中最大的SCS;
被调度的多个载波的SCS中最小的SCS;
传输PUCCH的载波的SCS。
可选地,在满足如下至少一个条件时,根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
终端被配置使用动态HARQ-ACK码本传输;
所述多个载波具有相同的子载波间隔;
所述多个载波具有相同的PDSCH处理能力;
所述多个载波之间没有时隙或子时隙编号的偏移。
第四方面,本公开的一些实施例还提供一种终端,包括:第一收发机和第一处理器;
所述第一收发机在所述第一处理器的控制下发送和接收数据;
所述第一处理器读取存储器中的程序执行以下操作:接收第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
第五方面,本公开的一些实施例还提供一种网络设备,包括:
发送模块,用于发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
第二确定模块,用于根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
第六方面,本公开的一些实施例还提供一种网络设备,包括:第二收发机和第二处理器;
所述第二收发机在所述第二处理器的控制下发送和接收数据;
所述第二处理器读取存储器中的程序执行以下操作:发送第一DCI,所 述第一DCI用于调度多个载波上的PDSCH传输;根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
第七方面,本公开实施还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现包括如第一方面或第二方面所述的HARQ-ACK反馈时序的确定方法的步骤。
在本公开的一些实施例中,可以根据参考SCS或接收到的DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定DCI调度的多个载波上的PDSCH的HARQ-ACK的反馈时隙或子时隙,保证由同一个DCI调度的多个载波上的PDSCH,在不同载波的SCS不同时可以根据同一个反馈时序值确定在同一个时隙或者子时隙中进行HARQ-ACK反馈,保证了网络设备和终端对HARQ-ACK传输的理解一致性,保证HARQ-ACK的正常传输。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为下行调度时序和HARQ-ACK反馈时序的示意图;
图2为根据K1值确定HARQ-ACK传输所在的PUCCH时隙的示意图之一;
图3为根据K1值确定HARQ-ACK传输所在的PUCCH时隙的示意图之二;
图4为动态HARQ-ACK码本的PDCCH检测机会集合的确定示意图;
图5为动态HARQ-ACK码本的DAI设计的示意图;
图6为本公开的一些实施例中HARQ-ACK反馈时序的确定方法的示意图之一;
图7为图6中步骤602的示意图之一;
图8为图6中步骤602的示意图之一;
图9为本公开的一些实施例中HARQ-ACK反馈时序的确定方法的示意图之二;
图10为图9中步骤902的示意图之一;
图11为图9中步骤902的示意图之二;
图12为本公开的一些实施例中确定HARQ-ACK反馈时序的示意图之一;
图13为本公开的一些实施例中确定HARQ-ACK反馈时序的示意图之二;
图14为本公开的一些实施例中确定HARQ-ACK反馈时序的示意图之三;
图15为本公开的一些实施例中确定HARQ-ACK反馈时序的示意图之四;
图16为本公开的一些实施例的终端的示意图之一;
图17为本公开的一些实施例的终端的示意图之二;
图18为本公开的一些实施例的网络设备的示意图之一;
图19为本公开的一些实施例的网络设备的示意图之二。
具体实施方式
新的无线通信系统(5Generation New RAT,5G NR)中支持灵活的定时关系。对于物理下行共享信道(Physical Downlink Shared CHannel,PDSCH),承载其调度信息的物理下行控制信道(Physical Downlink Control Channel,PDCCH)指示PDSCH与PDCCH之间的调度时序(Scheduling timing)关系(即K0)以及PDSCH到其对应的HARQ-ACK之间的反馈时序(HARQ-ACK timing)关系(即K1)。具体地,PDCCH所使用的DCI格式中的时域资源分配(Time Domain Resource Assignment,TDRA)指示域指示PDSCH所在时隙与PDCCH(也可以说DCI,因为DCI是PDCCH的具体传输格式,两者从描述调度和反馈关系上认为等价)所在时隙的时隙偏移K0。DCI格式中的PDSCH到HARQ-ACK反馈定时(PDSCH-to-HARQ_feedback timing)指示域指示PDSCH结束到HARQ-ACK开始之间的时隙个数K1,即时隙n中传输的PDSCH在时隙n+K1中进行HARQ-ACK传输。
如图1所示,K1的全集为{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},通常会配置给终端最多8个值。在Rel-15中,K1的值是以时隙(slot)为单位的,即K1=1表示间隔1个时隙。在Rel-16中,K1的值可以是以时隙或者子时隙(sub-slot)为单位,其中子时隙可以预先配置为2个符号长度(即一个时隙中顺序存在7个子时隙),或者7个符号长度(即一个时隙中顺序存在2个子时隙)。
具体的,在时隙n中传输的PDSCH或指示半持续调度(Semi-Persistent Scheduling,SPS)资源释放的PDCCH(也成SPS PDSCH release),先找到与这个PDSCH或SPS PDSCH release的结束位置重叠的最后一个PUCCH时隙(即PUCCH传输所在载波上的SCS确定的时隙)作为参考,以这个参考时隙作为K1=0时的参考点,进一步根据K1值确定HARQ-ACK传输所在的PUCCH时隙。如图2和图3所示。
5G NR系统中支持半静态(semi-static)和动态(dynamic)两种HARQ-ACK码本(codebook)产生方式。所谓HARQ-ACK codebook即针对在同一个时域位置或上行信道上进行HARQ-ACK反馈的下行传输产生的HARQ-ACK反馈序列。
Dynamic HARQ-ACK codebook是根据下行链路(Down Link,DL)DCI(即调度下行传输的DCI)中的累计下行分配索引(Counter-Downlink Assignment Index,C-DAI)域的指示来进行HARQ-ACK排序、并根据总计DAI(Total-DAI,T-DAI)域来确定HARQ-ACK codebook的总比特数的,因此,可以在不同的反馈时刻根据实际的调度来调整HARQ-ACK codebook的大小,实现动态的改变codebook大小,从而节省HARQ-ACK反馈开销。
具体的,首选需要根据K1、K0以及配置的重复传输次数(如果配置了),确定一个载波上的激活带宽部分(Band Width Part,BWP)对应的PDCCH检测机会(monitoring occasion)。
如图4所示,假设不进行重复传输,即可以根据n-K1找到一个下行传输机会,进而根据这个下行传输机会的调度关系找到对应的PDCCH monitoring occasion,如果重复次数大于1,则重复传输的PDSCH的K0基于PDSCH重复传输所占用的多个时隙中的第一个时隙确定,重复传输的PDSCH的K1时基于PDSCH重复传输所占用的多个时隙中的最后一个时隙确定的,意味着以下行时隙n-K1到n-K1-N中的N个时隙为PDSCH重复传输的一组时隙,对于该组时隙,其基于K0确定的PDCCH monitoring occasion为时隙n-K1-N对应的PDCCH monitoring occasion,假定K0总是为0,实际K0可以是多个值,如果为多个值,则对应n-K1的一个下行时隙可以确定多个PDCCH monitoring occasion,每个时隙中也可以包含多个PDCCH monitoring occasion。在载波聚合的情况下, 基于每个载波对应的PDCCH monitoring occasion得到所有载波的PDCCH monitoring occasion全集,其中,不同载波上的PDCCH monitoring occasion可能是在时间上不对齐的,则按照先时间(时间前后顺序)后频域(即载波编号从小到大)的方式进行排序。终端在确定的PDCCH monitoring occasion集合中检测使用某种DCI格式(例如格式1-0、格式1-1、格式1-2中的一种或多种)的PDCCH,并根据接收到的PDCCH中的DAI信息(包括C-DAI和T-DAI)产生HARQ-ACK codebook,假设DCI中的C-DAI和T-DAI是基于PDCCH monitoring occasion集合进行设置。C-DAI按照先频域后时域的顺序指示到当前载波上当前PDCCH monitoring occasion已经传输的PDSCH或者指示SPS PDSCH释放的PDCCH的累计个数。T-DAI指示到当前PDCCH monitoring occasion总计在所有载波上传输的PDSCH或者指示SPS PDSCH释放的PDCCH的个数。多个载波上时域对齐的PDCCH monitoring occasion中的DCI中的T-DAI相同,具体如图5所示,其中,C-DAI和T-DAI以各2比特为例,超过4的值用模的方式通过同一个DAI状态来表达,例如2比特DAI“00”状态可以表示1\5\9等数值。
当一个DCI可以调度多个载波上的PDSCH进行传输时,当DCI中的DAI累计了被调度的多个载波上的PDSCH时,需要保证多个载波上的PDSCH在同一个时隙或子时隙进行HARQ-ACK反馈才能保证网络设备和终端根据DCI中的DAI确定的HARQ-ACK序列的大小是理解一致的。而当DCI中对多个被调度的载波上的PDSCH指示同一个K1值时,按照相关技术,如果多个载波的SCS不同,不能保证多个载波上的PDSCH在同一个时隙或子时隙进行HARQ-ACK反馈,此时,如何使用动态HARQ-ACK码本进行多个载波的HARQ-ACK反馈还没有明确的方案。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系 统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。
术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技 术,也可用于其他系统和无线电技术。
参见图6,本公开的一些实施例提供一种HARQ-ACK反馈时序的确定方法,该方法的执行主体可以为终端,包括:步骤601和步骤602。
步骤601:接收第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
步骤602:根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可以理解的是,参考SCS可用于对一个第一DCI调度的多个载波上的PDSCH确定一个共同的HARQ-ACK传输的时间单元,当不同载波可能具有不同SCS或DL与UL具有不同的SCS时,参考各自的SCS进行HARQ-ACK传输的时间单元的确定,可能得到多个PDSCH的HARQ-ACK传输的时间单元不同。
在一些实施方式中,参见图7,步骤602可以包括:
步骤6021:终端根据传输物理上行控制信道(Physical Uplink Control Channel,PUCCH)的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元(即传输PUCCH的时间单元),或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
可以理解的是,在步骤6021中是以传输PUCCH的时间单元为参考,即传输PUCCH的载波上的时间单元划分,即以PUCCH的SCS划分的时间单元,如时隙,子时隙等。
步骤6022:终端将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可以理解的是,在步骤6022中的参考点可以理解为以确定的时间单元作为PDSCH到HARQ-ACK的反馈时序值为0时对应的时间单元。
在另一些实施方式中,参见图8,步骤602可以包括:
步骤6023:终端确定所述第一DCI调度的多个载波上的PDSCH中的每 一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
步骤6024:终端将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元,确定与所述第一参考时隙重叠的最晚的一个时间单元;
可以理解的是,第一参考时隙用于确定HARQ-ACK反馈位置的参考时隙,如果仅有一个参考时隙,则该参考时隙即为用于确定HARQ-ACK反馈位置的参考时隙。
步骤6025:终端将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可以理解的是,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
在本公开的一些实施例中,可选地,所述参考SCS包括以下任意一项:
(1)所述第一DCI传输所在载波的SCS;
(2)被调度的多个载波的SCS中最大的SCS;
(3)被调度的多个载波的SCS中最小的SCS;
(4)传输PUCCH的载波的SCS。
在本公开的一些实施例中,可选地,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
在本公开的一些实施例中,可选地,在满足如下至少一个条件时,终端根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
(1)终端被配置使用动态HARQ-ACK码本传输;
(2)所述多个载波具有相同的子载波间隔;
(3)所述多个载波具有相同的PDSCH处理能力;
(4)所述多个载波之间没有时隙或子时隙编号的偏移。
在本公开的一些实施例中,终端可以根据参考SCS或接收到的DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定DCI调度的多个载波上的PDSCH的HARQ-ACK的反馈时隙或子时隙,保证由同一个DCI调度的多个载波上的PDSCH,在不同载波的SCS不同时可以根据同一个反馈时序值确定在同一个时隙或者子时隙中进行HARQ-ACK反馈,保证了网络设备和终端对HARQ-ACK传输的理解一致性,保证HARQ-ACK的正常传输。
参见图9,本公开的一些实施例提供一种HARQ-ACK反馈时序的确定方法,该方法的执行主体可以是网络设备,包括:步骤901和步骤902。
步骤901:发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
步骤902:根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,参见图10,步骤902可以包括:
步骤9021:网络设备根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元(即传输PUCCH的时间单元),或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
可以理解的是,在步骤9021中是以传输PUCCH的时间单元为参考,即传输PUCCH的载波上的时间单元划分,即以PUCCH的SCS划分的时间单元,如时隙,子时隙等。
步骤9022:网络设备将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可以理解的是,步骤9022中的参考点可以理解为以确定的时间单元作为PDSCH到HARQ-ACK的反馈时序值为0时对应的时间单元。
在另一些实施方式中,参见图11,步骤902可以包括:
步骤9023:网络设备确定所述第一DCI调度的多个载波上的PDSCH中 的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
步骤9024:网络设备将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元,确定与所述第一参考时隙重叠的最晚的一个时间单元;
可以理解的是,第一参考时隙用于确定HARQ-ACK反馈位置的参考时隙,如果仅有一个参考时隙,则该参考时隙即为用于确定HARQ-ACK反馈位置的参考时隙。
步骤9025:网络设备将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
可以理解的是,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
在本公开的一些实施例中,可选地,所述参考SCS包括以下任意一项:
(1)所述第一DCI传输所在载波的SCS;
(2)被调度的多个载波的SCS中最大的SCS;
(3)被调度的多个载波的SCS中最小的SCS;
(4)传输PUCCH的载波的SCS。
在本公开的一些实施例中,可选地,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
在本公开的一些实施例中,可选地,在满足如下至少一个条件时,网络设备根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
(1)终端被配置使用动态HARQ-ACK码本传输;
(2)所述多个载波具有相同的子载波间隔;
(3)所述多个载波具有相同的PDSCH处理能力;
(4)所述多个载波之间没有时隙或子时隙编号的偏移。
在本公开的一些实施例中,网络设备可以根据参考SCS或接收到的DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定DCI调度的多个载波上的PDSCH的HARQ-ACK的反馈时隙或子时隙,保证由同一个DCI调度的多个载波上的PDSCH,在不同载波的SCS不同时可以根据同一个反馈时序值确定在同一个时隙或者子时隙中进行HARQ-ACK反馈,保证了网络设备和终端对HARQ-ACK传输的理解一致性,保证HARQ-ACK的正常传输。
下面结合实施例1和实施例2介绍本公开的实施方式。
实施例1:如图12和图13所示,根据载波1和载波2上由同一个DCI调度的2个PDSCH中最晚的PDSCH即PDSCH2来确定PDSCH1和PDSCH2共同的HARQ-ACK反馈时隙:
方式1:找到与PDSCH2重叠的最晚一个PUCCH时隙(即载波1上的UL时隙),即载波1上行时隙2n+2,当DCI中指示的K1=1时,以2n+2作为参考点(即K0=0时的时隙是这个时隙),则K1=1指示HARQ-ACK的反馈时隙为载波1上的时隙2n+3,即确定在时隙2n+3中传输PDSCH1和PDSCH2的HARQ-ACK;如图12所示;
方式2:找到与PDSCH2所在时隙(即PDSCH2所在载波2上的时隙n+1)重叠的最晚一个PUCCH时隙(即载波1上的UL时隙),即载波1上行时隙2n+3,当DCI中指示的K1=1时,以2n+3作为K1的参考时隙,则K1=1指示HARQ-ACK的反馈时隙为载波1上的时隙2n+4,即确定在时隙2n+4中传输PDSCH1和PDSCH2的HARQ-ACK,如图13所示。
终端在上述确定的反馈时隙中通过PUCCH(当然也可以是通过PUSCH,不影响上述时间(timing)设计)发送包含PDSCH1和PDSCH2的HARQ-ACK的反馈序列,基站在这个时隙中通过PUCCH接收包含PDSCH1和PDSCH2的HARQ-ACK的反馈序列。
本实施例的有益效果:在相关技术中,如果分别对每个PDSCH根据其对应的参考PUCCH时隙以及K1,则会确定与PDSCH1重叠的最晚的一个PUCCH时隙是时隙2n+1,以2n+1为参考,根据K1=1,则会得到PDSCH1在时隙2n+2反馈HARQ-ACK,从而导致与PDSCH2的HARQ-ACK在不同 的时隙反馈。
实施例2:如图14和15所示,根据参考SCS确定载波1和载波2上由同一个DCI调度的2个PDSCH共同的HARQ-ACK反馈时隙:
方式1:以DCI的SCS(即DCI传输所在的载波的下行SCS)作为参考SCS,即载波1的下行SCS即30kHz作为参考SCS,根据参考SCS的时隙划分即载波1上的时隙划分,则基于载波1上的时隙划分,确定PDSCH1的参考时隙即为载波1上的时隙2n,确定PDSCH2的参考时隙为载波1上的时隙2n+1,两个参考时隙中的最晚一个是时隙2n+1,则以时隙2n+1作为第一参考时隙,找到PUCCH载波上与这个第一参考时隙重叠的最后一个PUCCH时隙(即PUCCH载波上的每一个时隙都认为是可以传输PUCCH的时隙),即载波1上的UL时隙2n+1。
以载波1上的UL时隙2n+1为参考点(即K0=0时的时隙是这个时隙),当DCI中指示的K1=1时,确定HARQ-ACK的反馈时隙为载波1上的时隙2n+2,即确定在时隙2n+2中传输PDSCH1和PDSCH2的HARQ-ACK;如图14所示。
方式2:以DCI所调度的多个载波的SCS(即下行SCS)中的最小的SCS作为参考SCS,即载波2的15kHz作为参考SCS,根据参考SCS的时隙划分即载波2上的时隙划分,则基于载波2上的时隙划分,确定PDSCH1的参考时隙即为载波2上的时隙n,确定PDSCH2的参考时隙为载波2上的时隙n,仅一个参考时隙,则这个参考时隙即为第一参考时隙,找到PUCCH载波上与这个第一参考时隙重叠的最后一个PUCCH时隙(即PUCCH载波上的每一个时隙都认为是可以传输PUCCH的时隙),即载波1上的UL时隙2n+1,以载波1上的UL时隙2n+1为参考点(即K0=0时的时隙是这个时隙),当DCI中指示的K1=1时,确定HARQ-ACK的反馈时隙为载波1上的时隙2n+2,即确定在时隙2n+2中传输PDSCH1和PDSCH2的HARQ-ACK,如图15所示。
方式3:以PUCCH的SCS(即PUCCH传输所在载波的上行SCS)为参考,则由于PUCCH与DCI在同一个载波,且PUCCH的SCS与DCI的SCS相同。
可以理解的是,方式3中的基于参考SCS进行处理的过程与方式1相同,不再赘述。
方式4:以DCI所调度的多个载波的SCS(即下行SCS)中的最大的SCS作为参考SCS,即载波1的30kHz作为参考SCS,具体执行过程与方式1类似,不再赘述;
上述方式以与PDSCH本身重叠的规则来寻找PDSCH的参考时隙,如果以与PDSCH传输所在的时隙重叠来寻找PDSCH的参考时隙,同样可以沿用上述方式,本实施例中,得到的结果是相同的,则不再赘述。
可以理解的是,终端在上述确定的时隙中通过PUCCH(当然也可以是通过PUSCH,不影响上述timing设计)发送包含PDSCH1和PDSCH2的HARQ-ACK的反馈序列,基站在这个时隙中通过PUCCH接收包含PDSCH1和PDSCH2的HARQ-ACK的反馈序列。
需要说明的,上述实施例中,仅以基于时隙的HARQ-ACK反馈为例(即K1的单位是时隙),对于基于子时隙的HARQ-ACK反馈(即K1的单位是子时隙),上述方式同样适用。
上述实施例中,载波1和2的SCS仅为示例,还可以是其他的SCS组合,载波1上的DCI同时调度载波1和载波2上的PDSCH也为示例,还可以是一个载波上的DCI调度更多个载波,被调度的载波可以包含本载波或者不包含本载波(即如果是载波1发送DCI,DCI调度的载波可以包含或者不包含载波1),这些情况中上述方式同样适用。
上述以频分双工(Frequency Division Duplexing,FDD)为例,如果是TDD在同一个载波上下行和上行时隙TDM交替,上述方式同样适用。
参见图16,本公开的一些实施例还提供一种终端,该终端1600包括:
接收模块1601,用于接收第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
第一确定模块1602,用于根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,第一确定模块1602进一步用于:
根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,第一确定模块1602进一步用于:
确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元确定与所述第一参考时隙重叠的最晚的一个时间单元;
将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
在一些实施方式中,所述参考SCS包括以下任意一项:
(1)所述第一DCI传输所在载波的SCS;
(2)被调度的多个载波的SCS中最大的SCS;
(3)被调度的多个载波的SCS中最小的SCS;
(4)传输PUCCH的载波的SCS。
在一些实施方式中,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
在一些实施方式中,在满足如下至少一个条件时,根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确 定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
(1)终端被配置使用动态HARQ-ACK码本传输;
(2)所述多个载波具有相同的子载波间隔;
(3)所述多个载波具有相同的PDSCH处理能力;
(4)所述多个载波之间没有时隙或子时隙编号的偏移。
本公开的一些实施例提供的终端,可以执行上述图6、图7和图8所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图17,本公开的一些实施例还提供一种终端,该终端1700包括:第一收发机1701和第一处理器1702;
所述第一收发机1701在所述第一处理器1702的控制下发送和接收数据;
所述第一处理器1702读取存储器中的程序执行以下操作:接收第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述第一处理器1702读取存储器中的程序执行以下操作:根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述第一处理器1702读取存储器中的程序执行以下操作:确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元确定与所述第一参考时隙重叠的最 晚的一个时间单元;将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
在一些实施方式中,所述参考SCS包括以下任意一项:
(1)所述第一DCI传输所在载波的SCS;
(2)被调度的多个载波的SCS中最大的SCS;
(3)被调度的多个载波的SCS中最小的SCS;
(4)传输PUCCH的载波的SCS。
在一些实施方式中,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
在一些实施方式中,在满足如下至少一个条件时,根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
(1)终端被配置使用动态HARQ-ACK码本传输;
(2)所述多个载波具有相同的子载波间隔;
(3)所述多个载波具有相同的PDSCH处理能力;
(4)所述多个载波之间没有时隙或子时隙编号的偏移。
本公开的一些实施例提供的终端,可以执行上述图6、图7和图8所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图18,本公开的一些实施例还提供一种网络设备,该网络设备1800包括:
发送模块1801,用于发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
第二确定模块1802,用于根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,第二确定模块1802进一步用于:
根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,第二确定模块1802进一步用于:
确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元,确定与所述第一参考时隙重叠的最晚的一个时间单元;
将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
在一些实施方式中,所述参考SCS包括以下任意一项:
(1)所述第一DCI传输所在载波的SCS;
(2)被调度的多个载波的SCS中最大的SCS;
(3)被调度的多个载波的SCS中最小的SCS;
(4)传输PUCCH的载波的SCS。
在一些实施方式中,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
在一些实施方式中,在满足如下至少一个条件时,根据参考SCS,或根 据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
(1)终端被配置使用动态HARQ-ACK码本传输;
(2)所述多个载波具有相同的子载波间隔;
(3)所述多个载波具有相同的PDSCH处理能力;
(4)所述多个载波之间没有时隙或子时隙编号的偏移。
本公开的一些实施例提供的网络设备,可以执行上述图9、图10和图11所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
参见图19,本公开的一些实施例还提供一种网络设备,该网络设备1900包括:第二收发机1901和第二处理器1902;
所述第二收发机1901在所述第二处理器1902的控制下发送和接收数据;
所述第二处理器1902读取存储器中的程序执行以下操作:发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述第二处理器1902读取存储器中的程序执行以下操作:根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述第二处理器1902读取存储器中的程序执行以下操作:确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元,确定与所述第一参考时隙重叠的最晚的一个时间单元;
将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
在一些实施方式中,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
在一些实施方式中,所述参考SCS包括以下任意一项:
(1)所述第一DCI传输所在载波的SCS;
(2)被调度的多个载波的SCS中最大的SCS;
(3)被调度的多个载波的SCS中最小的SCS;
(4)传输PUCCH的载波的SCS。
在一些实施方式中,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
在一些实施方式中,在满足如下至少一个条件时,根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
(1)终端被配置使用动态HARQ-ACK码本传输;
(2)所述多个载波具有相同的子载波间隔;
(3)所述多个载波具有相同的PDSCH处理能力;
(4)所述多个载波之间没有时隙或子时隙编号的偏移。
本公开的一些实施例提供的网络设备,可以执行上述图9、图10和图11所示方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储 介质中。一种示例性的存储介质耦合至处理器,从而使处理器能从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或计算机程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (23)

  1. 一种混合自动重传请求应答HARQ-ACK反馈时序的确定方法,应用于终端,包括:
    接收第一下行控制信息DCI,所述第一DCI用于调度多个载波上的物理下行共享信道PDSCH传输;
    根据参考子载波间隔SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  2. 根据权利要求1所述方法,其中,所述根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
    根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
    将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  3. 根据权利要求1所述方法,其中,根据参考SCS,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
    确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
    将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元确定与所述第一参考时隙重叠的最晚的一个时间单元;
    将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点, 基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  4. 根据权利要求2或3所述方法,其中,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
  5. 根据权利要求1至4任一项所述的方法,其中,所述参考SCS包括以下任意一项:
    所述第一DCI传输所在载波的SCS;
    被调度的多个载波的SCS中最大的SCS;
    被调度的多个载波的SCS中最小的SCS;
    传输PUCCH的载波的SCS。
  6. 根据权利要求1至5任一项所述的方法,其中,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
  7. 根据权利要求1至6任一项所述的方法,其中,在满足如下至少一个条件时,根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
    终端被配置使用动态HARQ-ACK码本传输;
    所述多个载波具有相同的子载波间隔;
    所述多个载波具有相同的PDSCH处理能力;
    所述多个载波之间没有时隙或子时隙编号的偏移。
  8. 一种混合自动重传请求应答HARQ-ACK反馈时序的确定方法,应用于网络设备,包括:
    发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
    根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  9. 根据权利要求8所述方法,其中,所述根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
    根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
    将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  10. 根据权利要求8所述方法,其中,根据参考SCS,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元,包括:
    确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
    将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元,确定与所述第一参考时隙重叠的最晚的一个时间单元;
    将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  11. 根据权利要求9或10所述方法,其中,所述PDSCH到HARQ-ACK的反馈时序值是所述第一DCI指示的或者高层信令配置的。
  12. 根据权利要求8至11任一项所述的方法,其中,所述参考SCS包括以下任意一项:
    所述第一DCI传输所在载波的SCS;
    被调度的多个载波的SCS中最大的SCS;
    被调度的多个载波的SCS中最小的SCS;
    传输PUCCH的载波的SCS。
  13. 根据权利要求8至12任一项所述的方法,其中,所述时间单元是预定义的多个符号长度或一个时隙或一个子时隙。
  14. 根据权利要求8至13任一项所述的方法,其中,在满足如下至少一个条件时,根据参考子载波间隔SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
    终端被配置使用动态HARQ-ACK码本传输;
    所述多个载波具有相同的子载波间隔;
    所述多个载波具有相同的PDSCH处理能力;
    所述多个载波之间没有时隙或子时隙编号的偏移。
  15. 一种终端,包括:
    接收模块,用于接收第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
    第一确定模块,用于根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  16. 根据权利要求15所述的终端,其中,所述第一确定模块进一步用于:
    根据传输PUCCH的SCS定义的时间单元,确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH重叠的最晚的时间单元,或者确定与所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH传输所在的时隙重叠的最晚的时间单元;
    将所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,根据所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  17. 根据权利要求15所述的终端,其中,所述第一确定模块进一步用于:
    确定所述第一DCI调度的多个载波上的PDSCH中的每一个PDSCH的参考时隙,所述参考时隙包括:与所述PDSCH重叠的最后一个时隙,或者,与所述PDSCH所在的时隙重叠的最后一个时隙,所述参考时隙是基于参考SCS定义的;
    将所述参考时隙中的最晚一个参考时隙作为第一参考时隙,并根据传输PUCCH的SCS定义的时间单元确定与所述第一参考时隙重叠的最晚的一个时 间单元;
    将确定的所述时间单元作为PDSCH到HARQ-ACK的反馈时序的参考点,基于所述PDSCH到HARQ-ACK的反馈时序值,确定所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  18. 根据权利要求15所述的终端,其中,所述参考SCS包括以下任意一项:
    所述第一DCI传输所在载波的SCS;
    被调度的多个载波的SCS中最大的SCS;
    被调度的多个载波的SCS中最小的SCS;
    传输PUCCH的载波的SCS。
  19. 根据权利要求15所述的终端,其中,在满足如下至少一个条件时,根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元:
    终端被配置使用动态HARQ-ACK码本传输;
    所述多个载波具有相同的子载波间隔;
    所述多个载波具有相同的PDSCH处理能力;
    所述多个载波之间没有时隙或子时隙编号的偏移。
  20. 一种终端,包括:第一收发机和第一处理器;
    所述第一收发机在所述第一处理器的控制下发送和接收数据;
    所述第一处理器读取存储器中的程序执行以下操作:接收第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  21. 一种网络设备,包括:
    发送模块,用于发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;
    第二确定模块,用于根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  22. 一种网络设备,包括:第二收发机和第二处理器;
    所述第二收发机在所述第二处理器的控制下发送和接收数据;
    所述第二处理器读取存储器中的程序执行以下操作:发送第一DCI,所述第一DCI用于调度多个载波上的PDSCH传输;根据参考SCS,或根据所述第一DCI调度的多个载波上的PDSCH中结束位置最晚的PDSCH,确定传输所述第一DCI调度的多个载波上的PDSCH的HARQ-ACK的时间单元。
  23. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现包括如权利要求1至14中任一项所述的HARQ-ACK反馈时序的确定方法的步骤。
PCT/CN2021/086890 2020-04-15 2021-04-13 Harq-ack反馈时序的确定方法及设备 WO2021208905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/918,892 US20230336278A1 (en) 2020-04-15 2021-04-13 Method and device for determining harq-ack feedback time sequence
EP21789069.8A EP4138483A4 (en) 2020-04-15 2021-04-13 HARQ-ACK RETURN TIME DETERMINATION METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010296252.9A CN113543321B (zh) 2020-04-15 2020-04-15 Harq-ack反馈时序的确定方法及设备
CN202010296252.9 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021208905A1 true WO2021208905A1 (zh) 2021-10-21

Family

ID=78085010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086890 WO2021208905A1 (zh) 2020-04-15 2021-04-13 Harq-ack反馈时序的确定方法及设备

Country Status (4)

Country Link
US (1) US20230336278A1 (zh)
EP (1) EP4138483A4 (zh)
CN (1) CN113543321B (zh)
WO (1) WO2021208905A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541894B (zh) * 2020-04-16 2023-02-21 维沃移动通信有限公司 一种资源确定方法及设备
CN117750520A (zh) * 2020-04-30 2024-03-22 大唐移动通信设备有限公司 物理下行共享信道接收、发送方法及设备、装置、介质
US20220124767A1 (en) * 2020-10-21 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving hybrid automatic retransmission request acknowledgement information in a wireless communication system
WO2023077387A1 (zh) * 2021-11-04 2023-05-11 富士通株式会社 信号发送方法、信号接收方法和装置
WO2023092431A1 (zh) * 2021-11-25 2023-06-01 Oppo广东移动通信有限公司 无线通信的方法、终端设备以及网络设备
CN117135753A (zh) * 2022-05-27 2023-11-28 大唐移动通信设备有限公司 确定动态码本的方法、装置及通信设备
CN115336222A (zh) * 2022-06-28 2022-11-11 北京小米移动软件有限公司 一种混合自动重传请求harq反馈的确定方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432018A (zh) * 2015-04-09 2017-12-01 株式会社Ntt都科摩 用户终端、无线基站、无线通信系统以及无线通信方法
US20190268103A1 (en) * 2016-10-27 2019-08-29 Kt Corporation Method and device for scheduling uplink control channel in next generation wireless network
CN110754059A (zh) * 2017-06-16 2020-02-04 高通股份有限公司 新无线电中不同子帧结构下的载波聚集

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108474B1 (ko) * 2015-07-01 2020-05-08 엘지전자 주식회사 무선 통신 시스템에서 신호의 전송 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107432018A (zh) * 2015-04-09 2017-12-01 株式会社Ntt都科摩 用户终端、无线基站、无线通信系统以及无线通信方法
US20190268103A1 (en) * 2016-10-27 2019-08-29 Kt Corporation Method and device for scheduling uplink control channel in next generation wireless network
CN110754059A (zh) * 2017-06-16 2020-02-04 高通股份有限公司 新无线电中不同子帧结构下的载波聚集

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4138483A4 *
ZTE, SANECHIPS: "Discussion on scheduling and HARQ for NR-U", 3GPP DRAFT; R1-1905953 SCHEDULING AND HARQ, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707995 *

Also Published As

Publication number Publication date
US20230336278A1 (en) 2023-10-19
CN113543321B (zh) 2024-04-05
CN113543321A (zh) 2021-10-22
EP4138483A1 (en) 2023-02-22
EP4138483A4 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2021208905A1 (zh) Harq-ack反馈时序的确定方法及设备
US11323208B2 (en) Method of transmitting hybrid automatic retransmission request acknowledgment codebook and device
CN110086579B (zh) 一种通信方法及设备
CN107438969B (zh) 对用于低延时通信的动态tti调度的管理方法和装置
JP7032576B2 (ja) フィードバック情報送信方法および通信デバイス
US8923223B2 (en) Physical uplink control channel resource allocation for multiple component carriers
US9100158B2 (en) Method and apparatus for transmitting multiple reception confirmations in time division duplex system
CN106559878B (zh) 上行控制信息uci发送、获取方法及装置
TWI822665B (zh) 傳輸方法和裝置
WO2019191929A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
TWI775208B (zh) 用來建構下行鏈路控制資訊格式的方法及使用者裝置
JP5680746B2 (ja) キャリア情報を提供するための装置及び方法
EP2675101A2 (en) Method of handling downlink control information and a communication device related thereto
US11330595B2 (en) Method for sending control information, method for receiving control information, and apparatus
WO2016106905A1 (zh) 一种用户设备、接入网设备和反馈信息发送和接收方法
CN110546903A (zh) 反馈信息的发送和接收方法、装置以及通信系统
WO2021115218A1 (zh) Pdcch的harq-ack反馈的方法及设备
WO2016165131A1 (zh) 一种信息反馈的方法、设备和系统
WO2021160094A1 (zh) 传输方法及设备
US20210144693A1 (en) Communication method and communications apparatus
JP7299986B2 (ja) 処理方法、及び機器
WO2023151048A1 (zh) 信息反馈方法以及装置
WO2021228139A1 (zh) Pucch重复传输的方法及设备
EP4311148A1 (en) Harq information transmission method and device
WO2020244481A1 (zh) 处理方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021789069

Country of ref document: EP

Effective date: 20221115