WO2021208866A1 - 一种飞行时间tof测量方法及装置 - Google Patents

一种飞行时间tof测量方法及装置 Download PDF

Info

Publication number
WO2021208866A1
WO2021208866A1 PCT/CN2021/086690 CN2021086690W WO2021208866A1 WO 2021208866 A1 WO2021208866 A1 WO 2021208866A1 CN 2021086690 W CN2021086690 W CN 2021086690W WO 2021208866 A1 WO2021208866 A1 WO 2021208866A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
pulse
pulses
emission
transmission
Prior art date
Application number
PCT/CN2021/086690
Other languages
English (en)
French (fr)
Inventor
余恺
屈丰广
俞锋
何世传
蒋珂玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21789062.3A priority Critical patent/EP4130796A4/en
Publication of WO2021208866A1 publication Critical patent/WO2021208866A1/zh
Priority to US17/964,691 priority patent/US20230045083A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Definitions

  • This application relates to the field of electronic technology, and in particular to a TOF measurement method, distance measurement method, device and electronic equipment for time-of-flight.
  • Composition includes: pulse transmitter, pulse receiver, time to digital converter (Time to Digital Conversion, TDC), controller.
  • the pulse transmitter is responsible for generating pulses and transmitting them to the environment under test.
  • the pulse receiver converts the received photons into electrons.
  • the controller controls the pulse transmitter to send the transmitted pulse to the measured environment, and when the transmitted pulse is reflected by the object, it is received by the pulse receiver.
  • the time-digital converter is controlled by the "start" signal to control the timing, and the "end” signal controls the timing to stop.
  • TOF time of flight
  • t the flight time of the pulse to the pulse receiver after being reflected by the environment after the pulse is emitted
  • PRF Pulse Repetition Frequency
  • interference may also occur inside a single 3D depth camera.
  • Figure 4 when there are two targets, one far and one close, and the distance of the long-distance high-reflectivity target is greater than the maximum measurement range supported by the system, the time delay of the returned signal will exceed the current pulse emission. Period, causing the signal to fall into the next pulse transmission period or other transmission periods and be used as the feedback pulse in the next pulse transmission period or other transmission periods, thereby causing interference.
  • This application discloses a TOF measurement method, a distance measurement method, a device, and an electronic device for time-of-flight measurement, so as to solve the problem of interference during distance measurement.
  • an embodiment of the present application provides a distance measuring device, including: a controller, a time-to-digital converter, a pulse transmitter, and a pulse receiver, and the controller is respectively connected to the time-to-digital converter, pulse transmitter, and The pulse receiver is connected, and the pulse receiver is connected to the time-to-digital converter; the controller is used to control the pulse transmitter to send M transmission pulses in sequence according to a predetermined transmission law in a working cycle, wherein The emission law is unique to the distance measuring device, where M is an integer greater than 1; the pulse receiver is used to receive N feedback pulses within the working period, where N is an integer greater than 1; The time-to-digital converter is used to obtain the flight time information corresponding to the N feedback pulses; the controller is also used to obtain the target flight time according to the flight time information corresponding to the N feedback pulses, and according to the target flight time Get the target distance.
  • the emitted M emission pulses are based on the unique emission law of the distance measuring device (hereinafter also referred to as "the machine") (that is, different from other distance measuring devices).
  • the machine For this machine, The time value obtained according to the multiple reflected pulses of the transmitted pulse of this machine after being reflected by the object will conform to a normal distribution law; and because the transmission law of other distance measuring devices is different from this machine, the machine will receive
  • the time value obtained by multiple interference pulses (such as the pulses emitted by other distance measuring devices after being reflected by the object) is equivalent to the random noise of the machine.
  • the distribution of the time values generated by these interference pulses It is equivalent to a random distribution, which will not affect the normal distribution of the machine. In this way, interference from other devices or internal devices can be effectively eliminated, and the correct normal distribution can be used to obtain accurate time values and increase the distance. Reliability of measurement.
  • the working period may include M transmission periods
  • the controller is configured to send M transmission pulses in sequence according to a predetermined transmission rule within a working period, specifically including: the controller is in the M transmission periods
  • the M transmission pulses are sequentially sent according to M transmission times, wherein the transmission time of the i-th transmission pulse in the M transmission pulses is based on the transmission period of the i-th transmission pulse in the M transmission pulses The starting time of, and the i-th delay of M delays.
  • the distance measuring device uses M transmission cycles to send M transmission pulses, that is, only one transmission pulse is sent in one transmission cycle. This solution can reduce power consumption.
  • each of the above M transmission pulses may be delayed transmission based on a random time directly generated.
  • the emission time of each of the above M emission pulses can also be obtained based on a basic period and a random delay, where the basic period is greater than the random delay; in this way, each The launch time is equivalent to the base period plus a random delay.
  • the basic period of the transmitted pulse is 10ns
  • the M delays are m1, m2, m3, m4...
  • these M delays can be any positive number, negative number, zero, etc.
  • the emission time of the M emission pulses is 0+m1 (or 10+m1), 10+m2, 20+m3, 30+m4...
  • both the basic period and random delay can be realized by hardware.
  • a basic period is generated by a basic period generating circuit (this is easy to implement); and then a random delay generating circuit is used to generate a basic period. Random delay.
  • the random delay (such as 0-2ns) does not need to be set too large, and it is easier to implement with hardware than generating a larger random delay (such as 8-12ns), thereby reducing the implementation cost.
  • the above M delays can be acquired at one time, that is, M delays are acquired before the transmission pulse is sent; it can also be acquired in multiple times, such as when the transmission pulse is sent in the i-th transmission period, the i-th delay is acquired. +1 delay.
  • the flight time information of the i-th transmitting pulse is the difference between the timing end time of the time-digital converter and the timing start time of the time-digital converter Difference; wherein, the timing end time of the time-to-digital converter is the time when the pulse receiver receives the feedback pulse within the transmission period of the i-th transmit pulse; the timing start time of the time-to-digital converter corresponds to The transmission time of the i-th transmission pulse, or the timing start time of the time-to-digital converter corresponds to the start time of the transmission period of the i-th transmission pulse.
  • the above-mentioned time-to-digital converter may store each obtained flight time information and then send it to the controller; it may also directly send any flight time information to the controller when it obtains any flight time information.
  • the flight time of the N feedback pulses is the flight time information corresponding to the N feedback pulses;
  • the flight time of the N feedback pulses is obtained by delay compensation, where:
  • the device further includes a delay compensator connected to the controller, and the delay compensator is configured to delay the flight time information of the N feedback pulses according to the M delays. Time compensation to obtain the flight time of the N feedback pulses.
  • the target flight time is the flight time with the largest number of occurrences among the flight times of the N feedback pulses.
  • the acquisition of the target flight time in this embodiment is based on statistical knowledge. Among them, the flight time with the most occurrences can indicate that it is the target flight time with a greater probability.
  • the method is simple, direct and objective, and improves the distance measurement. Reliability.
  • the device further includes a memory, the memory is connected to the controller, and the memory is used to store the flight time of the N feedback pulses.
  • a memory to store the flight time of the N feedback pulses can facilitate the controller to obtain the flight time of the N feedback pulses, and obtain the target flight time according to the flight time information corresponding to the N feedback pulses.
  • the device further includes a delay generator, the delay generator is connected to the controller, and the M delays are acquired by the controller from the delay generator.
  • M delays are generated by a delay generator, where the M delays are set according to true random numbers or pseudo-random numbers or preset rules, so that the controller controls the transmission according to the M delays Pulse improves the randomness of the emission time corresponding to the emission pulse, and further improves the reliability of distance measurement.
  • the M delays are generated by the controller.
  • M delays are generated by the controller, wherein the M delays are set according to a true random number or a pseudorandom number or a preset rule, so that the controller controls the sending of the transmission pulse according to the M delays, The randomness of the emission time corresponding to the emission pulse is improved, and the reliability of the distance measurement is further improved.
  • the foregoing M delays may be generated by hardware devices, or they may be generated by software.
  • the present application provides a distance measurement method, including: an electronic device sends M transmit pulses in sequence according to a predetermined emission rule within a working cycle, wherein the emission rule is unique to the electronic device, Wherein, M is an integer greater than 1; the electronic device receives N feedback pulses in the working period, where N is an integer greater than 1, and the electronic device obtains flight time information corresponding to the N feedback pulses The electronic device obtains the target flight time according to the flight time information corresponding to the N feedback pulses, and obtains the target distance according to the target flight time.
  • the working period includes M emission periods
  • the electronic device sequentially sends M emission pulses according to a predetermined emission rule in one work period, specifically including: the electronic device is within the M emission periods
  • the M transmit pulses are sequentially sent according to M transmit times, where the transmit time of the i-th transmit pulse in the M transmit pulses is based on the transmit period of the i-th transmit pulse in the M transmit pulses The starting time of, and the i-th delay of M delays.
  • the flight time information of the i-th transmitting pulse is the difference between the timing end time of the timer and the timing start time of the timer; wherein , The timing end time of the timer is the time when the electronic device receives the feedback pulse in the transmission period of the i-th transmit pulse; the timing start time of the timer corresponds to the transmission of the i-th transmit pulse Time, or, the starting time of the timer corresponds to the starting time of the transmission period of the i-th transmission pulse.
  • the flight time of the N feedback pulses is the flight time information corresponding to the N feedback pulses
  • the flight time of the N feedback pulses is obtained by delay compensation.
  • the target flight time is the flight time with the largest number of occurrences among the flight times of the N feedback pulses.
  • the M delays are obtained by setting according to a true random number or a pseudo random number or a preset rule.
  • the present application provides an electronic device, including a processor, a storage device, and the distance measuring device as described in the first aspect and various implementations of the first aspect; the distance measuring device and the processor Connected, the processor is also connected to the storage device, wherein the storage device is used to store a computer program, the computer program includes program instructions, and the processor is used to call the program instructions to perform various tasks; Wherein, the distance measuring device is used to send the measured target distance to the processor, and the processor is used to perform corresponding processing on the received target distance.
  • Fig. 1 is a schematic diagram of distance measurement in the prior art
  • Figure 2 is a schematic diagram of mutual interference when multiple devices measure distances in the prior art
  • Fig. 3 is another schematic diagram of mutual interference when multiple devices measure distance in the prior art
  • Fig. 4 is a schematic diagram of the interference of the device in the prior art when measuring the distance
  • FIG. 5 is a schematic diagram of a distance measuring device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of storing timing results according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of timing result processing provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another distance measuring device provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a distance measurement method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the device 500 includes: a controller 501, a time-to-digital conversion (TDC) 502, a pulse transmitter 503, and a pulse receiver 504.
  • the controller 501 is connected to the time-to-digital converter respectively A converter 502, a pulse transmitter 503, and a pulse receiver 504 are connected, and the pulse receiver 504 is connected with the time-to-digital converter 502;
  • the controller 501 is used to control the pulse transmitter 503 to send M emission pulses in sequence according to a predetermined emission rule within a working period, wherein the emission rule is unique to the distance measuring device 500, Among them, M is an integer greater than 1.
  • the duty cycle refers to the time to complete a measurement.
  • M is an integer greater than 1.
  • the emission rule is the rule of emitting M emission pulses, that is, the interval between each pulse is specified for sending.
  • the emission law is unique to the distance measuring device, that is, the distance measuring device uses its own unique way to sequentially send M emission pulses, but the emission law of the distance measuring device working together is different from that of other distance measuring devices.
  • the "unique emission law” in this application refers to the "unique” that can be realized in engineering, and does not mean an absolute, 100% "unique”. For example, by generating a random number to control the interval between each transmitted pulse, to distinguish it from other distance measuring devices as much as possible; although in extreme cases (with very low probability), it may also be different from other distance measuring devices.
  • the emission law of the two is exactly the same, but in this application, this method can still be regarded as a "special emission law".
  • the pulse receiver 504 is used to receive N feedback pulses in the working period, where N is an integer greater than 1. It can be understood that some of the transmitted pulses may be reflected without receiving the feedback pulses at the same time.
  • the pulse receiver 504 may also receive the feedback pulses of the transmit pulses emitted by other working distance measuring devices. Therefore, the actual number of N feedback pulses received is not certain. Under normal circumstances, since the number of transmitted pulses is generally many, the number of received feedback pulses will also be many, that is, N is greater than 1.
  • the pulse receiver can be specifically used to work under the control of the controller. For example, when measurement is required, the controller can control the pulse receiver to work; after the measurement is completed, the controller can control the pulse receiver to stop working.
  • the time-to-digital converter 502 is used to obtain the flight time information corresponding to the N feedback pulses; wherein, the time-to-digital converter 502 obtains the flight time information after receiving the feedback pulse, calculates the flight time information and stores it In the corresponding memory, it can also obtain any flight time information and send it to the controller 501, and the specific form is not limited here.
  • the controller 501 is further configured to obtain a target flight time according to the flight time information corresponding to the N feedback pulses, and obtain a target distance according to the target flight time.
  • the transmitted M transmit pulses are based on the unique emission law of the distance measuring device (hereinafter also referred to as the "local device”) (that is, different from other distance measuring devices).
  • the time value obtained according to the multiple reflected pulses of the machine will conform to a normal distribution law; and because the emission laws of other distance measuring devices are different from this machine, the machine is based on
  • the time value of the received multiple interference pulses (such as the pulses emitted by other distance measuring devices after being reflected by the object) is equivalent to the random noise of the machine.
  • the time value of these interference pulses The distribution of is equivalent to a random distribution, and will not affect the normal distribution of the machine. In this way, interference from other devices or internal devices can be effectively eliminated, and the correct normal distribution can be used to obtain an accurate time value to improve Improve the reliability of distance measurement.
  • the working period includes M transmission periods.
  • the emission period refers to the interval between the emission of one emission pulse and the emission of the next emission pulse (for the non-last emission pulse in the duty cycle), or the interval between the emission of a emission pulse and the end of the work (for the duty cycle).
  • the controller is used to control the pulse transmitter to send M transmission pulses in sequence according to a predetermined transmission law in a working period, and is specifically used to control the pulse transmitter to send the pulse transmitters in sequence according to M transmission times in the M transmission periods.
  • the M transmission pulses wherein the transmission time of the i-th transmission pulse in the M transmission pulses is based on the start time and M delays of the transmission period of the i-th transmission pulse in the M transmission pulses. It is obtained by the i-th delay in time, where the i-th transmit pulse is one of the M transmit pulses.
  • this solution uses M transmission cycles to send M transmission pulses, that is, only one transmission pulse is sent per transmission cycle. Compared with the existing way of transmitting multiple pulses in one transmission cycle, this solution can effectively reduce power consumption.
  • each of the above M transmission pulses may be delayed transmission based on a random time directly generated.
  • the emission time of each of the above M emission pulses can also be obtained based on a basic period and a random delay, where the basic period is greater than the random delay; in this way, each The launch time is equivalent to the base period plus a random delay.
  • the basic period of the transmitted pulse is 10ns
  • the M delays are m1, m2, m3, m4...
  • these M delays can be any positive number, negative number, zero, etc.
  • the emission time of the M emission pulses is 0+m1 (or 10+m1), 10+m2, 20+m3, 30+m4...
  • both the basic period and random delay can be realized by hardware.
  • a basic period is generated by a basic period generating circuit (this is easy to implement); and then a random delay generating circuit is used to generate a basic period. Random delay.
  • the random delay (such as 0-2ns) does not need to be set too large, and it is easier to implement with hardware than generating a larger random delay (such as 8-12ns), thereby reducing the implementation cost.
  • the M delays are obtained by setting according to a true random number or a pseudo random number or according to a preset rule.
  • the true random number can be generated by the hardware device. For example, it can be a separate chip, or it can be packaged on the same chip as the controller.
  • the true random number can be a random number generated by a physical random number generator.
  • the true random number can also be generated by software.
  • the software can share a hardware (such as a certain processing chip) with the controller and then be generated by software.
  • the pseudo-random number refers to a simulation generated according to a certain algorithm, and the result is to determine the visible random number.
  • the above-mentioned preset rule may be any rule, such as setting according to any set value of 1, 2, 1, 1, 3, 2, 1, etc.
  • the aforementioned delay may be generated by the controller 501. If it can be generated by software, the software can share the same hardware (such as a certain processing chip) with the controller and then be generated by software. Or, the device 500 further includes a delay generator, the delay generator is connected to the controller 501, and the M delays are acquired by the controller 501 from the delay generator.
  • the delay generator can be a separate chip, or it can be packaged on the same chip as the controller.
  • this embodiment specifically describes the method of obtaining flight time information and target flight time.
  • the flight time information of the i-th transmit pulse is the timing end time of the time-to-digital converter 502 And the time-to-digital converter 502 timing start time difference;
  • the timing end time of the time-to-digital converter 502 is the time when the pulse receiver 504 receives the feedback pulse in the transmission period of the i-th transmit pulse; the timing start time of the time-to-digital converter 502 corresponds to The emission time of the i-th emission pulse.
  • the timing is started when the pulse is transmitted, and the timing is stopped when the pulse is received.
  • the above flight time information corresponds to the difference between the timing end time of the time-to-digital converter 502 and the timing start time of the time-to-digital converter 502. At this time, the flight time information corresponds to the flight time of the transmitted pulse.
  • the transmission time of the M transmission pulses are 0+m1, 10+m2, 20+m3, 30 +m4. That is to say, the first emission cycle is emitted at m1, the second emission cycle is emitted at 10+m2, the third emission cycle is emitted at 20+m3, and the fourth emission cycle is at 30+ Transmit at m4...then the timing start time of the time-to-digital converter 502 is the above-mentioned m1 hour, 10+m2 hour, 20+m3 hour, 30+m4 hour...
  • the controller when the device performs distance measurement, the controller first obtains M delays from the delay generator, or generates M delays in the controller. Then, the controller sequentially sends M transmission pulses according to the preset transmission period and the aforementioned M delays. Wherein, the foregoing M delays may also be that the controller simultaneously obtains the (i+1)th transmission delay when the i-th transmission pulse is transmitted in the i-th transmission period.
  • the specific form is not limited here.
  • the controller controls the pulse transmitter 503 to send the first transmitting pulse
  • the controller controls the time-to-digital converter 502 to start timing at the same time.
  • the pulse receiver 504 receives the feedback pulse.
  • the pulse receiver 504 can receive one feedback pulse during the transmission period, it can also receive at least two feedback pulses, and in particular, it can also receive zero feedback pulses.
  • the time-to-digital converter 502 is controlled to send the timing result at this time to the controller.
  • the pulse receiver 504 receives another feedback pulse
  • the time-to-digital converter 502 is controlled to also send the timing result at this time to the controller.
  • the controller 501 triggers the time-to-digital converter 502 to stop timing.
  • the time-to-digital converter 502 may also store the time at which the feedback pulses are received and then send them to the controller 501 together, or the controller can read the time-to-digital converter 502 to obtain the timing results.
  • the specific form is not restricted here.
  • the controller triggers the pulse transmitter 503 to send the second transmission pulse, at the same time the controller triggers the time-to-digital converter 502 to start timing again.
  • the controller obtains the target flight time based on the multiple obtained timing results (that is, the pulse flight time).
  • the target flight time can be obtained by obtaining the flight time with the most occurrences among the flight times of the N feedback pulses. Furthermore, the target distance can be obtained according to the flight speed (that is, the speed of light).
  • the device 500 may further include a memory 506.
  • the memory 506 is connected to the controller 501, and the memory 506 is used to store the flight time of the N feedback pulses. Wherein, when each timing result (that is, the pulse flight time) is obtained, it can be written into the memory 506.
  • each time the controller 501 obtains a timing result the timing result is mapped to obtain the address of the corresponding storage unit in the memory, and then the controller stores the corresponding storage unit The time count is incremented by 1.
  • the above address mapping is to process the timing result to obtain the address of the corresponding storage unit, and it may specifically include multiple implementation methods.
  • a mapping method may be "start address + [timing result]", where [timing Result] means to normalize the timing result (such as rounding or truncation, etc.) to get a value.
  • start address + [timing result] means adding a predetermined start address to the value obtained from [timing result] to get the final address.
  • the memory includes 7 storage units, and each storage unit corresponds to a different address, and each address corresponds to a different time.
  • the memory cells are 1000 (0ns), 1001 (1ns), 1002 (2ns), 1003 (3ns), 1004 (4ns), 1005 (5ns), and 1006 (6ns), in which the brackets indicate each
  • the time corresponding to the address is used to count and accumulate at the address when the time is detected. For example, when the timing result obtained by the time-to-digital converter 502 is 6.6 ns, it can be truncated to obtain 6, and then rounded to obtain 6, and then a starting address such as 1000 is added, and the final corresponding address is 1006.
  • the target flight time is obtained by obtaining the flight time with the most occurrences among the flight times of the N feedback pulses. As shown in Figure 7, using statistical knowledge, based on the above storage results, a histogram between the corresponding flight time and the number of time counts is obtained. Among them, when there is multi-device interference, the measured flight time of each feedback pulse may be different, so there may be multiple peaks. Among them, the number of times corresponding to the flight time of 4ns is 5 times, which is the flight time with the largest number of occurrences, so 4ns is the target flight time. Then the target distance can be obtained according to the flight speed.
  • the feedback pulse described in the embodiment of the present application may be at least one of the following situations:
  • the pulse of the previous cycle emitted from the device and reflected from the target specifically refers to, as shown in Figure 4, when there are two targets, one far and one near, the long-distance high-reflectivity target and the device
  • the signal will fall in the next or next few transmission cycles because the long-distance target's return signal delay is greater than the pulse transmission period, and the corresponding distance is the measured distance minus Range dmax.
  • the flight time of the transmitted pulse of each device is basically determined, and the time of the transmitted pulse is randomly changed, so that the time when the signal outside the range of this cycle is received in the next or the next few cycles is random, and its random distribution On the position related to the delay.
  • the true main peak in the range can be found by checking the location of the peak.
  • this embodiment specifically describes another method of obtaining flight time information and target flight time.
  • the flight time information of the i-th transmit pulse is the timing end time of the time-to-digital converter 502 And the timing start time of the time-to-digital converter 502; wherein the timing end time of the time-to-digital converter 502 is the time when the pulse receiver 504 receives the feedback pulse in the transmission period of the i-th transmit pulse Time; the timing start time of the time-to-digital converter 502 corresponds to the start time of the transmission cycle of the i-th transmission pulse.
  • the difference from the third embodiment is that this embodiment uses the timing to start at the beginning of the transmission period of the transmission pulse.
  • the M delays are m1, m2, m3, m4...
  • the transmission time of the M transmission pulses are 0+m1, 10+m2, 20+m3, 30+ m4; That is to say, the first emission cycle is emitted at m1, the second emission cycle is emitted at 10+m2, the third emission cycle is emitted at 20+m3, and the fourth emission cycle is at 30+m4 Time transmission...
  • the controller controls the timing of the time-to-digital converter 502 at 0 o'clock, 10ns, 20ns, 30ns... That is to say, the timing of the time-to-digital converter 502 in each transmit cycle
  • the start time is earlier than the emission time of the emission pulse of the corresponding emission period.
  • the flight time information corresponds to the difference between the timing end time of the time-to-digital converter 502 and the timing start time of the time-to-digital converter 502. Since the timing start time of the time-to-digital converter 502 in this embodiment is earlier than the transmission time of the transmission pulse, the flight time information does not correspond to the flight time of the feedback pulse. It needs to perform delay compensation on the flight time information to obtain the flight time of the corresponding feedback pulse. Specifically, referring to FIG.
  • the device 500 further includes a delay compensator 505, which is connected to the controller 501, and the delay compensator 505 is configured to perform according to the M Delay performs delay compensation on the flight time information of the N feedback pulses to obtain the flight time of the N feedback pulses.
  • the delay compensation is performed based on the delays of each transmission period. That is, the flight time of the feedback pulse received in the i-th transmission period is the difference between the flight time information corresponding to the feedback pulse and the delay corresponding to the transmission period. If the first feedback pulse is received in the i-th transmission period, the flight time of the first feedback pulse is the flight time information of the first feedback pulse minus the delay corresponding to the i-th transmission period, that is, the i-th delay owned.
  • the controller 501 controls the time-to-digital converter 502 to start timing.
  • the controller controls the pulse transmitter 503 to send the first transmission pulse.
  • the pulse receiver 504 receives the feedback pulse.
  • the time-to-digital converter 502 is controlled to send the timing result at this time to the controller 501.
  • the time-to-digital converter 502 is controlled to also send the timing result at this time to the controller 501.
  • the controller 501 controls the time-to-digital converter 502 to stop timing.
  • the above-mentioned time-to-digital converter 502 may also send the above-mentioned times of receiving the feedback pulse to the controller 501 together.
  • the controller 501 when the controller 501 receives the timing result sent by the time-to-digital converter 502, it can delay compensation for the timing result according to the corresponding delay, and then obtain the flight time corresponding to the feedback pulse, where the flight time is It is the timing result after compensation. Specifically, the time delay corresponding to the transmission period is subtracted from the timing result to obtain the flight time corresponding to the feedback pulse.
  • the aforementioned delay compensation may also be performed by a delay compensator 505, which is connected to the controller 501.
  • the delay compensator 505 may obtain the corresponding delay and timing result from the controller 501, and then send the timing result after delay compensation to the controller 501.
  • the controller 501 controls the time-to-digital converter 502 to start timing again.
  • the controller 501 controls the pulse transmitter 503 to send the second transmission pulse. Repeat the above steps until the device has sent M transmit pulses and received feedback pulses within the M transmit cycles. Then, the controller 501 obtains the target flight time based on the multiple obtained timing results (that is, the pulse flight time).
  • this embodiment provides a distance measurement method, as shown in FIG. 9.
  • the method may include steps 901-904, which are executed by an electronic device including the distance measurement device in the foregoing embodiment. It can be understood that in a specific implementation manner, the distance measurement may be implemented based on the foregoing embodiment.
  • Each specific component module in the device is completed.
  • the pulse transmitter can be controlled by the controller to send M transmit pulses. This is not detailed in this application, and those skilled in the art can combine the above embodiments Know how to use electronic devices to complete each step.
  • steps 901-904 are as follows:
  • the electronic device sends M emission pulses in sequence according to a predetermined emission rule within a working cycle, where the emission rule is unique to the electronic device, and M is an integer greater than 1.
  • the working period may include M emission cycles
  • the electronic device may sequentially transmit the M emission pulses according to M emission times within the M emission cycles, wherein the i-th of the M emission pulses
  • the transmission time of each transmission pulse is obtained according to the start time of the transmission period of the i-th transmission pulse among the M transmission pulses and the i-th delay among the M delays.
  • the electronic device receives N feedback pulses in the working period, where N is an integer greater than 1.
  • the electronic device sequentially sends M transmit pulses in one working period, and receives N feedback pulses in the working period.
  • N can be greater than M, can also be less than M, or equal to M.
  • the electronic device acquires flight time information corresponding to the N feedback pulses.
  • the flight time information of the i-th transmitting pulse is the difference between the timing end time of the timer and the timing start time of the timer;
  • the timing end time of the timer is the time when the electronic device receives the feedback pulse in the transmission period of the i-th transmit pulse; the timing start time of the timer corresponds to the time of the i-th transmit pulse Launch time. In other words, when the transmission time of the transmission pulse is reached, the timer starts timing.
  • the third embodiment which will not be repeated here.
  • the timing end time of the timer is the time when the electronic device receives the feedback pulse in the transmission period of the i-th transmit pulse; the timing start time of the timer corresponds to the time of the i-th transmit pulse The start time of the transmit cycle. That is to say, at the beginning of the emission cycle of each emission pulse, the timer starts counting.
  • the fourth embodiment which will not be repeated here.
  • the electronic device obtains the target flight time according to the flight time information corresponding to the N feedback pulses, and obtains the target distance according to the target flight time.
  • the timing start time of the above-mentioned timer corresponds to the emission time of the i-th emission pulse. That is to say, when the timer starts timing when the transmission time of the transmission pulse is reached, the flight time information of the feedback pulse is the flight time of the feedback pulse. For details, please refer to the description of the third embodiment, which will not be repeated here. Then, the target flight time can be obtained directly according to the flight time information corresponding to the N feedback pulses.
  • the flight time information is because the timing start time is earlier than the transmission time of the transmit pulse, so the flight time information The corresponding is not the flight time of the transmitted pulse. Therefore, it is necessary to perform delay compensation on the flight time information to obtain the flight time of the feedback pulse.
  • the flight time corresponding to the N feedback pulses is obtained according to the flight time information corresponding to the N feedback pulses
  • the target flight time is obtained according to the flight time corresponding to the N feedback pulses.
  • the embodiments of the present application also provide an electronic device (for example, a mobile phone, a tablet computer, a drone, etc.), as shown in FIG. 10, which includes a distance measuring device, a processor, and a storage device.
  • the distance measuring device is connected to the processor, and the processor is also used to connect to the storage device.
  • the storage device is used to store a computer program
  • the computer program includes program instructions
  • the processor is used to call the program instructions to perform various tasks (for example, execute various tasks such as an operating system, an application program, etc.).
  • the specific implementation of the distance measuring device can refer to the foregoing embodiments.
  • the distance measuring device is used to send the measured target distance to the processor, and the processor is used to perform corresponding processing on the received target distance, for example, , To achieve 3D shooting.
  • the distance measuring device of this embodiment can also send any data in the process of measuring the distance of the target to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种飞行时间TOF测量方法及装置(500),包括控制器(501)、时间数字转换器(502)、脉冲发射器(503)和脉冲接收器(504)。该控制器(501)用于在一个工作周期内按预定的发射规律控制脉冲发射器(503)依次发送M个发射脉冲,该发射规律为测量装置(500)所特有的(901);脉冲接收器(503)用于在工作周期内接收N个反馈脉冲(902);时间数字转换器(502)用于获取该N个反馈脉冲对应的飞行时间信息(903);控制器(501)还用于根据N个反馈脉冲对应的飞行时间信息得到目标飞行时间,并根据目标飞行时间得到目标距离(904)。

Description

一种飞行时间TOF测量方法及装置
本申请要求于2020年4月14日提交中国专利局、申请号为202010291910.5、发明名称为“一种飞行时间TOF测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种飞行时间TOF测量方法、距离测量方法、装置及电子设备。
背景技术
随着科技的发展,计算机视觉被广泛应用到人们的日常生活和各行各业,比如应用在地理测绘成像、遥感、汽车自动驾驶、自主车辆、协作机器人、三维景深测量以及消费电子等领域。
雷达(如激光雷达、毫米波雷达、可见光雷达)是实现计算机视觉的一种重要技术,在各种电子设备上有着广泛的应用,例如,3D深度摄像头是雷达系统的一种应用实例,该系统组成包括:脉冲发射器、脉冲接收器、时间数字转换器(Time to Digital Conversion,TDC)、控制器。脉冲发射器负责产生脉冲并将脉冲发射到被测环境中。脉冲接收器将接收的光子转换为电子。控制器控制脉冲发射器将发射脉冲发送到被测环境中,当发射脉冲经物体反射后,由脉冲接收器所接收。时间数字转换器由“开始”信号控制计时,由“结束”信号控制停止计时。经由时间数字转换后,控制器则可获得脉冲在空中的飞行时间(Time OfFlight,TOF),通过飞行时间可计算出距离D=c*t/2。如图1所示,其中c为脉冲在空气中的传播速度,t为脉冲发射后经环境反射回来后到达脉冲接收器的飞行时间,上述脉冲以一定的脉冲重复频率(Pulse Repetition Frequency,PRF)发射,能够支持的最大的量测距离为:D_max=c/(2*PRF)。
如图2所示,当多个3D深度摄像头同处于一个环境中,且均处于工作状态时,由于每个3D深度摄像头发出的发射脉冲信号本身没有排他性,当一个3D深度摄像头发送发射脉冲信号后,通过物体反射或直接传播至其它3D深度摄像头,其它3D深度摄像头接收后无法识别出该脉冲信号的原始来源,则会出现相互干扰的情况,如图3所示。
除了上述多个3D深度摄像头之间相互干扰的情况外,单个3D深度摄像头内部也会形成干扰。如图4所示,当存在一远一近两个目标,远距离高反射率目标的距离大于系统支持的最大的量测距离即量程时,返回的信号的时延会超过当次的脉冲发射周期,导致信号会落到下一个脉冲发射周期或者其他发射周期中而被作为下一个脉冲发射周期内或者其他发射周期内的反馈脉冲,进而形成干扰。
发明内容
本申请公开了一种飞行时间TOF测量方法、距离测量方法、装置、电子设备,以解决在进行距离测量时出现干扰的问题。
第一方面,本申请实施例提供一种距离测量装置,包括:控制器、时间数字转换器、 脉冲发射器和脉冲接收器,所述控制器分别与所述时间数字转换器、脉冲发射器、脉冲接收器连接,所述脉冲接收器与所述时间数字转换器连接;所述控制器用于在一个工作周期内按预定的发射规律控制所述脉冲发射器依次发送M个发射脉冲,其中,所述发射规律为所述距离测量装置所特有的,其中,M为大于1的整数;所述脉冲接收器用于在所述工作周期内接收N个反馈脉冲,其中,N为大于1的整数;所述时间数字转换器用于获取所述N个反馈脉冲对应的飞行时间信息;所述控制器还用于根据所述N个反馈脉冲对应的飞行时间信息得到目标飞行时间,并根据所述目标飞行时间得到目标距离。采用该手段,其中所发射的M个发射脉冲之间基于所述距离测量装置(以下也称“本机”)特有的发射规律(即跟其他距离测量装置不一样),对于本机来讲,根据本机的发射脉冲经物体反射回来后的多个反射脉冲得到的时间值会符合一个正态分布规律;而由于其他距离测量装置的发射规律跟本机不一样,因此,本机根据接收到的多个干扰脉冲(如其他距离测量装置发射的发射脉冲经过物体反射后的脉冲)得到的时间值就相当于本机的随机噪声,对于本机来讲,这些干扰脉冲产生的时间值的分布就相当于一个随机分布,不会对本机的正态分布进行影响,这样,就可以有效地排除来自其他装置或者本装置内部的干扰,利用正确的正态分布得到准确的时间值,提高了距离测量的可靠性。
其中,所述工作周期可以包括M个发射周期,所述控制器用于在一个工作周期内按预定的发射规律依次发送M个发射脉冲,具体包括:所述控制器在所述M个发射周期内按M个发射时间依次发送所述M个发射脉冲,其中,所述M个发射脉冲中的第i个发射脉冲的发射时间是根据所述M个发射脉冲中的第i个发射脉冲的发射周期的起始时刻和M个延时中的第i个延时得到的。本申请实施例中距离测量装置采用M个发射周期发送M个发射脉冲,也就是说,在一个发射周期内仅发送一个发射脉冲,本方案可降低功耗。
其中,上述M个发射脉冲中的每个发射脉冲可以是基于直接产生的一个随机时间来延时发射。
在另一种实现方式中,上述M个发射脉冲中的每个发射脉冲的发射时间也可以是基于一个基础周期以及一个随机延时来得到,其中,基础周期大于随机延时;这样,每个发射时间相当于基础周期加上随机延时。如发射脉冲的基础周期为10ns,M个延时依次为m1、m2、m3、m4……,这些M个延时可以为任意正数、负数、零等。相应地,该M个发射脉冲的发射时间依次为0+m1(也可以10+m1)、10+m2、20+m3、30+m4……也就是说,第一个发射周期在m1时发射,第二个发射周期在10+m2时发射,第三个发射周期在20+m3时发射,第四个发射周期在30+m4时发射……依次类推。本实现方式中,基础周期以及随机延时都可以通过硬件来实现,例如,通过一个基础周期产生电路来产生一个基础周期(这块很容易实现);然后再通过一个随机延时产生电路来产生随机延时,此时,该随机延时(如0-2ns)不需要设置太大,相比产生一个更大的随机延时(如8-12ns)更容易用硬件实现,从而降低实现成本。
其中,上述M个延时可以是一次性获取,即在发送发射脉冲之前获取M个延时;其也可以是分为多次获取,如在第i个发射周期发送发射脉冲时则获取第i+1个延时。
其中,在发射所述M个发射脉冲中的第i个发射脉冲时,所述第i个发射脉冲的飞行时间信息为时间数字转换器的计时结束时刻和时间数字转换器的计时起始时刻的差值;其 中,所述时间数字转换器的计时结束时刻为所述脉冲接收器在第i个发射脉冲的发射周期内接收到反馈脉冲的时刻;所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射时间,或者,所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻。
其中,上述时间数字转换器可以将得到的各飞行时间信息进行存储,然后发送给控制器;其也可以在得到任一飞行时间信息时则直接发送给控制器。
进一步地,当所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射时间时,所述N个反馈脉冲的飞行时间为所述N个反馈脉冲对应的飞行时间信息;或者,当所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻时,所述N个反馈脉冲的飞行时间为经过延时补偿得到的,其中,所述装置还包括延时补偿器,所述延时补偿器与所述控制器连接,所述延时补偿器用于根据所述M个延时对所述N个反馈脉冲的飞行时间信息进行延时补偿,以得到所述N个反馈脉冲的飞行时间。
其中,所述目标飞行时间为所述N个反馈脉冲的飞行时间中出现次数最多的飞行时间。该实施例对目标飞行时间的获取基于统计学知识得出,其中,出现次数最多的飞行时间可较大概率的说明了其为目标飞行时间,该手段简单、直接且较为客观,提高了距离测量的可靠性。
其中,所述装置还包括存储器,所述存储器与所述控制器连接,所述存储器用于存储所述N个反馈脉冲的飞行时间。采用存储器存储所述N个反馈脉冲的飞行时间,进而可便于控制器获取所述N个反馈脉冲的飞行时间,并根据所述N个反馈脉冲对应的飞行时间信息得到目标飞行时间。
其中,所述装置还包括延时产生器,所述延时产生器与所述控制器连接,所述M个延时为所述控制器从所述延时产生器获取的。通过延时产生器产生M个延时,其中,所述M个延时为按照真随机数或伪随机数或预设规则进行设置得到的,以便控制器根据该M个延时来控制发送发射脉冲,提高了发射脉冲对应的发射时间的随机性,进一步提高了距离测量的可靠性。
可替代的,所述M个延时为所述控制器产生的。通过控制器产生M个延时,其中,所述M个延时为按照真随机数或伪随机数或预设规则进行设置得到的,以便控制器根据该M个延时来控制发送发射脉冲,提高了发射脉冲对应的发射时间的随机性,进一步提高了距离测量的可靠性。
其中,上述M个延时可以是硬件设备生成的,其也可以是软件产生的。
第二方面,本申请提供了一种距离测量方法,包括:电子设备在一个工作周期内按预定的发射规律依次发送M个发射脉冲,其中,所述发射规律为所述电子设备所特有的,其中,M为大于1的整数;所述电子设备在所述工作周期内接收N个反馈脉冲,其中,N为大于1的整数;所述电子设备获取所述N个反馈脉冲对应的飞行时间信息;所述电子设备根据所述N个反馈脉冲对应的飞行时间信息得到目标飞行时间,并根据所述目标飞行时间得到目标距离。
可选的,所述工作周期包括M个发射周期,所述电子设备在一个工作周期内按预定的发射规律依次发送M个发射脉冲,具体包括:所述电子设备在所述M个发射周期内按M 个发射时间依次发送所述M个发射脉冲,其中,所述M个发射脉冲中的第i个发射脉冲的发射时间是根据所述M个发射脉冲中的第i个发射脉冲的发射周期的起始时刻和M个延时中的第i个延时得到的。
其中,在发射所述M个发射脉冲中的第i个发射脉冲时,所述第i个发射脉冲的飞行时间信息为计时器的计时结束时刻和计时器的计时起始时刻的差值;其中,所述计时器的计时结束时刻为所述电子设备在第i个发射脉冲的发射周期内接收到反馈脉冲的时刻;所述计时器的计时起始时刻对应所述第i个发射脉冲的发射时间,或者,所述计时器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻。
进一步地,当所述计时器的计时起始时刻对应所述第i个发射脉冲的发射时间时,所述N个反馈脉冲的飞行时间为所述N个反馈脉冲对应的飞行时间信息;
或者,当所述计时器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻时,所述N个反馈脉冲的飞行时间为经过延时补偿得到的。
其中,所述目标飞行时间为所述N个反馈脉冲的飞行时间中出现次数最多的飞行时间。
其中,所述M个延时为按照真随机数或伪随机数或预设规则进行设置得到的。
第三方面,本申请提供了一种电子设备,包括处理器、存储装置以及如第一方面及第一方面各种实现方式中所述的距离测量装置;所述距离测量装置与所述处理器连接,所述处理器还与所述存储装置连接,其中,所述存储装置用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于调用所述程序指令,执行各种任务;其中,所述距离测量装置用于将测得的目标距离发送至所述处理器,所述处理器用于对接收到的目标距离进行相应处理。
本申请提供的第二方面、第三方面以及各个方面中的实现方式中所对应的效果可参见第一方面及第一方向各种实现方式所对应的有益效果,此处不再赘述。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1是现有技术中距离测量的示意图;
图2是现有技术中多设备测量距离时相互干扰的示意图;
图3是现有技术中多设备测量距离时相互干扰的另一示意图;
图4是现有技术中设备测量距离时自身干扰的示意图;
图5是本申请实施例提供的一种距离测量装置的示意图;
图6是本申请实施例提供的一种计时结果存储示意图;
图7是本申请实施例提供的一种计时结果处理示意图;
图8是本申请实施例提供的另一种距离测量装置的示意图;
图9是本申请实施例提供的一种距离测量方法的流程示意图;
图10是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请实施例的实施方式 部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
下面对本申请实施例进行详细介绍。
实施例一
参照图5所示,为本申请实施例提供的一种距离测量装置的示意图。该装置可应用于如3D深度摄像头,手机等设备。如图5所示,该装置500包括:控制器501、时间数字转换器(Time to Digital Conversion,TDC)502、脉冲发射器503和脉冲接收器504,所述控制器501分别与所述时间数字转换器502、脉冲发射器503以及脉冲接收器504连接,所述脉冲接收器504与所述时间数字转换器502连接;
其中,所述控制器501用于在一个工作周期内按预定的发射规律控制所述脉冲发射器503依次发送M个发射脉冲,其中,所述发射规律为所述距离测量装置500所特有的,其中,M为大于1的整数;本申请中,工作周期是指完成一次测量的时间,通常为了完成一次测量,需要发射多个发射脉冲(如本实施例中的M个)来收集多个飞行时间信息来得到一个目标飞行时间。一般地,为了达到性能,该M可以为500个以上,其中,本申请并不限定M的大小。本申请中,所述发射规律即为发射M个发射脉冲的规律,即规定每个脉冲间隔多少时间进行发送。本申请中,发射规律为所述距离测量装置所特有的,也即该距离测量装置采用自己的特有的方式依次发送M个发射脉冲,而与其他的一起工作的距离测量装置的发射规律不相同。可以理解,本申请中的“特有的发射规律”是指能够在工程上实现的“特有”,并不表示绝对的、100%的“特有”。例如,通过产生一个随机数来控制每个发射脉冲之间的间隔,来尽可能地跟其他的距离测量装置进行区别;虽然在极端情况下(概率非常低),也有可能跟其他的距离测量装置的发射规律恰好相同,但本申请中,这种方式仍可认为是“特有的发射规律”。
所述脉冲接收器504用于在所述工作周期内接收N个反馈脉冲,其中,N为大于1的整数;可以理解,发射脉冲发射后,有一些可能会被反射而没收到反馈脉冲,同时,脉冲接收器504还可能收到其他正在工作的距离测量装置发射的发射脉冲的反馈脉冲,因此,实际中收到的N个反馈脉冲的数量并不确定。通常情况下,由于发射脉冲数量一般会有很多个,收到的反馈脉冲的数量也会很多个,即N大于1。其中,所述脉冲接收器具体可用于在控制器的控制下进行工作,例如,需要测量时,控制器可控制脉冲接收器进行工作;在完成测量后,控制器可以控制脉冲接收器停止工作。
所述时间数字转换器502用于获取所述N个反馈脉冲对应的飞行时间信息;其中,时间数字转换器502获取飞行时间信息的方式可以为收到反馈脉冲后,会计算飞行时间信息并存储到对应的存储器中,其也可以获取到任一飞行时间信息则发送给控制器501,此处并不限定具体形式。
所述控制器501还用于根据所述N个反馈脉冲对应的飞行时间信息得到目标飞行时间,并根据所述目标飞行时间得到目标距离。本申请实施例中,其中所发射的M个发射脉冲之间基于所述距离测量装置(以下也称“本机”)特有的发射规律(即跟其他距离测量装置不一样),对于本机来讲,根据本机的发射脉冲经物体反射回来后的多个反射脉冲得到的时间值会符合一个正态分布规律;而由于其他距离测量装置的发射规律跟本机不一样,因 此,本机根据接收到的多个干扰脉冲(如其他距离测量装置发射的发射脉冲经过物体反射后的脉冲)得到的时间值就相当于本机的随机噪声,对于本机来讲,这些干扰脉冲产生的时间值的分布就相当于一个随机分布,不会对本机的正态分布进行影响,这样,就可以有效地排除来自其他装置或者本装置内部的干扰,利用正确的正态分布得到准确的时间值,提高了距离测量的可靠性。
实施例二
基于实施例一,本实施例对发射脉冲的发射方法进行详细说明。本实施例中,所述工作周期包括M个发射周期。发射周期是指发射一个发射脉冲到发射下一个发射脉冲之间的间隔(针对工作周期内的非最后一个发射脉冲),或者是指发射一个发射脉冲到工作结束之间的间隔(针对工作周期内的最后一个发射脉冲)。所述控制器用于在一个工作周期内按预定的发射规律控制脉冲发射器依次发送M个发射脉冲时,具体用于控制脉冲发射器在所述M个发射周期内按M个发射时间依次发送所述M个发射脉冲,其中,所述M个发射脉冲中的第i个发射脉冲的发射时间是根据所述M个发射脉冲中的第i个发射脉冲的发射周期的起始时刻和M个延时中的第i个延时得到的,这里的第i个发射脉冲为M个发射脉冲中的其中一个。
也就是说,本方案采用M个发射周期发送M个发射脉冲,即每个发射周期仅发送一个发射脉冲,相对于现有一个发射周期发射多脉冲的方式,本方案可有效地降低功耗。
其中,上述M个发射脉冲中的每个发射脉冲可以是基于直接产生的一个随机时间来延时发射。
在另一种实现方式中,上述M个发射脉冲中的每个发射脉冲的发射时间也可以是基于一个基础周期以及一个随机延时来得到,其中,基础周期大于随机延时;这样,每个发射时间相当于基础周期加上随机延时。如发射脉冲的基础周期为10ns,M个延时依次为m1、m2、m3、m4……,这些M个延时可以为任意正数、负数、零等。相应地,该M个发射脉冲的发射时间依次为0+m1(也可以10+m1)、10+m2、20+m3、30+m4……也就是说,第一个发射周期在m1时发射,第二个发射周期在10+m2时发射,第三个发射周期在20+m3时发射,第四个发射周期在30+m4时发射……依次类推。本实现方式中,基础周期以及随机延时都可以通过硬件来实现,例如,通过一个基础周期产生电路来产生一个基础周期(这块很容易实现);然后再通过一个随机延时产生电路来产生随机延时,此时,该随机延时(如0-2ns)不需要设置太大,相比产生一个更大的随机延时(如8-12ns)更容易用硬件实现,从而降低实现成本。
其中,该M个延时为按照真随机数或伪随机数或者按照预设规则进行设置得到的。该真随机数可以依赖硬件设备生成。如可以是单独的芯片,也可以跟控制器封装在同一个芯片。如该真随机数可以是依赖于物理随机数生成器生成的随机数。该真随机数也可以依赖软件生成,该软件可以是与控制器共用一个硬件(如某个处理芯片),然后通过软件的方式产生。该伪随机数是指按照一定算法模拟产生的,其结果是确定可见的随机数。上述预设规则可以是任意规则,如按照1、2、1、1、3、2、1等任意设定的值进行设置。
其中,上述延时可以是控制器501产生的。如可以依赖软件生成,该软件可以是与控 制器共用一个硬件(如某个处理芯片),然后通过软件的方式产生。或者所述装置500还包括延时产生器,所述延时产生器与所述控制器501连接,所述M个延时为所述控制器501从所述延时产生器获取的。所述延时产生器可以是单独的芯片,也可以跟控制器封装在同一个芯片。
实施例三
基于上述各实施例,本实施例对飞行时间信息以及目标飞行时间的获取方式进行具体说明。
作为第一种可选的实现方式,其中,在发射所述M个发射脉冲中的第i个发射脉冲时,所述第i个发射脉冲的飞行时间信息为时间数字转换器502的计时结束时刻和时间数字转换器502的计时起始时刻的差值;
其中,所述时间数字转换器502的计时结束时刻为所述脉冲接收器504在第i个发射脉冲的发射周期内接收到反馈脉冲的时刻;所述时间数字转换器502的计时起始时刻对应所述第i个发射脉冲的发射时间。
也就是说,本实施例是采用在发射脉冲的时刻即开始计时,在接收到脉冲的时刻停止计时。上述飞行时间信息对应时间数字转换器502的计时结束时刻和时间数字转换器502的计时起始时刻的差值。此时,该飞行时间信息对应的即为该发射脉冲的飞行时间。
即,如发射脉冲的基础周期为10ns,M个延时依次为m1、m2、m3、m4……则该M个发射脉冲的发射时间依次为0+m1、10+m2、20+m3、30+m4……也就是说,第一个发射周期在m1时发射,第二个发射周期在10+m2时发射,第三个发射周期在20+m3时发射,第四个发射周期在30+m4时发射……则时间数字转换器502的计时起始时刻即为上述m1时、10+m2时、20+m3时、30+m4时……
具体地,该装置在进行距离测量时,控制器先从延时产生器中获取M个延时,或者控制器中产生M个延时。然后,控制器根据预设的发射周期以及上述M个延时依次发送M个发射脉冲。其中,上述M个延时也可以是控制器在第i个发射周期发射第i个发射脉冲时同时获取第i+1个发射延时。此处并不限制具体形式。
其中,在控制器控制脉冲发射器503发送第一个发射脉冲时,同时该控制器控制时间数字转换器502开始计时。在该第一个发射周期内,脉冲接收器504接收反馈脉冲。其中,脉冲接收器504在该发射周期内可接收到一个反馈脉冲,其也可以接收到至少两个反馈脉冲,特殊地,其还可以接收到零个反馈脉冲。当脉冲接收器504接收到一个反馈脉冲时,则控制时间数字转换器502将此时的计时结果发送至控制器。当脉冲接收器504又接收到一个反馈脉冲时,则控制时间数字转换器502将此时的计时结果也发送至控制器。以此类推,直到该发射周期结束时,控制器501触发时间数字转换器502停止计时。其中,上述时间数字转换器502还可以是将上述各接收到反馈脉冲的时刻先进行存储然后一起发送给控制器501,或者控制器通过读取时间数字转换器502进而获得各计时结果。此处不限制具体形式。
然后,在第二个发射周期内,控制器触发脉冲发射器503发送第二个发射脉冲时,同时该控制器触发时间数字转换器502再次开始计时。重复以上步骤,直到该装置发送完M 个发射脉冲,并在该M个发射周期内接收完反馈脉冲。然后,该控制器基于获取到的多个计时结果(即为脉冲飞行时间)得到目标飞行时间。
其中,可通过获取所述N个反馈脉冲飞行时间中出现次数最多的飞行时间,即为目标飞行时间。进而根据飞行速度(即光速)可得到目标距离。
可选的,该装置500还可包括存储器506,如图8所示,所述存储器506与所述控制器501连接,所述存储器506用于存储所述N个反馈脉冲的飞行时间。其中,在得到上述各个计时结果(即为脉冲飞行时间)时,则可将其写入存储器506。
具体地,如图6所示。以时间数字转换器502的计时结果作为寻址依据,控制器501每获取一个计时结果,则将该计时结果经过地址映射后得到存储器中对应存储单元的地址,然后控制器将对应存储单元中存储的时间计数累加1。上述地址映射即为对计时结果进行处理进而获取与其对应的存储单元的地址,具体可以包括多种实现方式,例如,一个映射方法可以为“起始地址+[计时结果]”,其中,[计时结果]表示对计时结果进行归一化(如通过四舍五入或者截断处理等)得到一个数值。“起始地址+[计时结果]”表示将[计时结果]得到的数值再加上一个预定的起始地址,得到最终的地址。
如图6所示,在一个具体示例中,该存储器包括7个存储单元,各存储单元分别对应不同的地址,每个地址都对应于不同的时间。参照图6,各存储单元依次为1000(0ns)、1001(1ns)、1002(2ns)、1003(3ns)、1004(4ns)、1005(5ns)和1006(6ns),其中,括号内表示各个地址对应的时间,也即用于检测到该时间时,在该地址进行计数累加。如时间数字转换器502得到的计时结果为6.6ns时,可以将其截断后得到6,然后再通过四舍五入得到6,然后再加上一个起始地址如1000,得最后对应的地址为1006。如果当前该地址1006对应的时间计数为m次,则将其时间计数更新为m+1次。通过获取所述N个反馈脉冲的飞行时间中出现次数最多的飞行时间,即为目标飞行时间。如图7所示,采用统计学知识,通过基于上述存储结果,得到对应飞行时间与时间计数次数之间的直方图。其中,当存在多装置干扰时,则测得的各反馈脉冲的飞行时间可能是不同的,因此可能存在多个峰。其中,飞行时间4ns对应的次数为5次,为出现次数最多的飞行时间,因此4ns即为目标飞行时间。进而根据飞行速度即可得到目标距离。
其中,本申请实施例所述的反馈脉冲可以为以下几种情况中的至少一种:
1)从该装置发射并从目标反射回来的同周期的脉冲,
2)从该装置发射并从目标反射回来的上一或者上几个周期的脉冲,
3)从其他装置发射的脉冲。
其中,上述2)从该装置发射并从目标反射回来的上一周期的脉冲,具体是指,如图4所示,当存在一远一近两个目标,远距离高反射率目标与装置之间的距离大于装置支持的最大的量测距离时,由于远距离目标返回信号的时延大于脉冲发射周期,信号会落在下一或者下几个发射周期中,且对应的距离为测量距离减去量程dmax。由于各装置的发射脉冲的飞行时间是基本确定的,并且发射脉冲的时刻是随机变化的,这样使得本周期量程外信号在下一或者下几个周期被接收到的时间存在随机性,其随机分布于与延时相关的位置上。通过检查峰值所在位置即可找到量程内真实的主峰。
实施例四
基于上述各实施例,本实施例对飞行时间信息以及目标飞行时间的另一种获取方式进行具体说明。作为另一种可选的实现方式,其中,在发射所述M个发射脉冲中的第i个发射脉冲时,所述第i个发射脉冲的飞行时间信息为时间数字转换器502的计时结束时刻和时间数字转换器502的计时起始时刻的差值;其中,所述时间数字转换器502的计时结束时刻为所述脉冲接收器504在第i个发射脉冲的发射周期内接收到反馈脉冲的时刻;所述时间数字转换器502的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻。
也就是说,与实施例三不同之处在于,本实施例是采用在发射脉冲的发射周期的起始时刻即开始计时。
即,如发射脉冲的基础周期为10ns,M个延时依次为m1、m2、m3、m4……该M个发射脉冲的发射时间依次为0+m1、10+m2、20+m3、30+m4……也就是说,第一个发射周期在m1时发射,第二个发射周期在10+m2时发射,第三个发射周期在20+m3时发射,第四个发射周期在30+m4时发射……其中,控制器控制时间数字转换器502的计时起始时刻即为0时、10ns时、20ns时、30ns时……也就是说,时间数字转换器502在每个发射周期的计时起始时刻早于相应发射周期的发射脉冲的发射时间。
由实施例三可知,飞行时间信息对应时间数字转换器502的计时结束时刻和时间数字转换器502的计时起始时刻的差值。由于本实施例中时间数字转换器502的计时起始时刻早于发射脉冲的发射时间,因此该飞行时间信息对应的不是反馈脉冲的飞行时间。其需要对该飞行时间信息进行延时补偿进而可得到相应反馈脉冲的飞行时间。具体地,参照图8所示,所述装置500还包括延时补偿器505,所述延时补偿器505与所述控制器501连接,所述延时补偿器505用于根据所述M个延时对所述N个反馈脉冲的飞行时间信息进行延时补偿,以得到所述N个反馈脉冲的飞行时间。
其中,该延时补偿是基于各发射周期的各延时进行的。也就是说,在第i个发射周期接收到的反馈脉冲,其飞行时间为该反馈脉冲对应的飞行时间信息与该发射周期对应的延时的差值。如在第i个发射周期接收到第一反馈脉冲,则该第一反馈脉冲的飞行时间为该第一反馈脉冲的飞行时间信息减去第i个发射周期对应的延时即第i个延时得到的。
具体地,该装置在进行距离测量时,其中,在第一个发射周期的起始时刻,控制器501控制时间数字转换器502开始计时。当计时达到第一个延时时,控制器控制脉冲发射器503发送第一个发射脉冲。在该发射周期内,脉冲接收器504接收反馈脉冲。当脉冲接收器504接收到一个反馈脉冲时,则控制时间数字转换器502将此时的计时结果发送至控制器501。当脉冲接收器504在该发射周期内又接收到一个反馈脉冲时,则控制时间数字转换器502将此时的计时结果也发送至控制器501。以此类推,直到该发射周期结束时,控制器501控制时间数字转换器502停止计时。其中,上述时间数字转换器502还可以是将上述各接收到反馈脉冲的时刻一起发送给控制器501。
其中,控制器501在接收到时间数字转换器502发送的计时结果时,可根据对应的延时对该计时结果进行延时补偿,进而得到该反馈脉冲对应的飞行时间,其中,该飞行时间即为补偿后的计时结果。具体地,通过将计时结果减去该发射周期对应的延时即为该反馈脉冲对应的飞行时间。
可替代的,上述延时补偿还可以是延时补偿器505来做的,所述延时补偿器505与所述控制器501连接。延时补偿器505可通过从控制器501获取对应的延时以及计时结果,进而将延时补偿后的计时结果发送给控制器501。
然后,在第二个发射周期的起始时刻,控制器501控制时间数字转换器502再次开始计时。当计时达到第二个延时时,控制器501控制脉冲发射器503发送第二个发射脉冲。重复以上步骤,直到该装置发送完M个发射脉冲,并在该M个发射周期内接收完反馈脉冲。然后,该控制器501基于获取到的多个计时结果(即为脉冲飞行时间)得到目标飞行时间。
实施例五
基于上述各实施例,本实施例提供了一种距离测量方法,参照图9所示。该距离测量方法具体的实现过程可以参考图5中距离测量装置的具体描述以及实施例一至实施例四的相关描述。其中,该方法可包括步骤901-904,这些步骤由包括前述实施例中的距离测量装置的电子设备执行,可以理解,在一种具体的实现方式中,可以基于前述实施例中的实现距离测量装置中的各个具体组成模块来完成,例如,步骤901中,可以通过控制器来控制脉冲发射器发送M个发射脉冲,本申请中对此不再细化,本领域技术人员可结合上述实施例知道如何让电子设备来完成各个步骤。
其中,步骤901-904具体如下:
901、电子设备在一个工作周期内按预定的发射规律依次发送M个发射脉冲,其中,所述发射规律为所述电子设备所特有的,其中,M为大于1的整数;
其中,所述工作周期可包括M个发射周期,电子设备可在所述M个发射周期内按M个发射时间依次发送所述M个发射脉冲,其中,所述M个发射脉冲中的第i个发射脉冲的发射时间是根据所述M个发射脉冲中的第i个发射脉冲的发射周期的起始时刻和M个延时中的第i个延时得到的。上述电子设备按预定的发射规律依次发送M个发射脉冲的具体手段,可参阅前述各实施例所述,在此不再赘述。
902、所述电子设备在所述工作周期内接收N个反馈脉冲,其中,N为大于1的整数;
其中,所述电子设备在一个工作周期内依次发送了M个发射脉冲,且在所述工作周期内接收了N个反馈脉冲。其中,N可以大于M,也可以小于M,或者等于M。也就是说,存在在某些发射周期内接收到一个反馈脉冲或者至少两个反馈脉冲。或者,在某些发射周期内未接收到反馈脉冲等。
903、所述电子设备获取所述N个反馈脉冲对应的飞行时间信息;
其中,在发射所述M个发射脉冲中的第i个发射脉冲时,所述第i个发射脉冲的飞行时间信息为计时器的计时结束时刻和计时器的计时起始时刻的差值;
其中,所述计时器的计时结束时刻为所述电子设备在第i个发射脉冲的发射周期内接收到反馈脉冲的时刻;所述计时器的计时起始时刻对应所述第i个发射脉冲的发射时间。也就是说,在达到发射脉冲的发射时间进行发射时,该计时器开始计时。具体可参阅实施例三的描述,在此不再赘述。
或者,所述计时器的计时结束时刻为所述电子设备在第i个发射脉冲的发射周期内接 收到反馈脉冲的时刻;所述计时器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻。也就是说,在各发射脉冲的发射周期的起始时刻,该计时器即开始计时。具体可参阅实施例四的描述,在此不再赘述。
904、所述电子设备根据所述N个反馈脉冲对应的飞行时间信息得到目标飞行时间,并根据所述目标飞行时间得到目标距离。
作为第一种实现方式,对于上述计时器的计时起始时刻对应所述第i个发射脉冲的发射时间。也就是说,在达到发射脉冲的发射时间进行发射时,计时器开始计时的情况,反馈脉冲的飞行时间信息即为反馈脉冲的飞行时间。具体可参阅实施例三的描述,在此不再赘述。则可直接根据该N个反馈脉冲对应的飞行时间信息得到目标飞行时间。
作为第二种实现方式,对于上述计时器的计时起始时刻对应各发射周期的起始时刻的情况,其飞行时间信息中由于计时起始时刻早于发射脉冲的发射时间,因此该飞行时间信息对应的不是发射脉冲的飞行时间。因此,需要对该飞行时间信息进行延时补偿进而得到反馈脉冲的飞行时间。具体可参阅实施例四的描述,在此不再赘述。其中,根据所述N个反馈脉冲对应的飞行时间信息得到N个反馈脉冲对应的飞行时间,进而根据所述N个反馈脉冲对应的飞行时间得到目标飞行时间。
实施例六
基于上述各实施例,本申请实施例还提供一种电子设备(例如可以是手机、平板电脑、无人机等),如图10所示,其包括距离测量装置、处理器和存储装置,所述距离测量装置与所述处理器连接,所述处理器还用于与所述存储装置连接。其中,所述存储装置用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于调用所述程序指令来执行各种任务(例如,执行操作系统、应用程序等各种任务)。
所述距离测量装置的具体实现可参见上述各实施例,该距离测量装置用于将测得的目标距离发送至所述处理器,所述处理器用于对接收到的目标距离进行相应处理,例如,实现3D拍摄。其中,本实施例的距离测量装置还可以发送在测量目标距离过程中的任何数据给处理器。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种距离测量装置,其特征在于,包括:
    控制器、时间数字转换器、脉冲发射器和脉冲接收器,所述控制器分别与所述时间数字转换器、脉冲发射器、脉冲接收器连接,所述脉冲接收器与所述时间数字转换器连接;
    所述控制器用于在一个工作周期内按预定的发射规律控制所述脉冲发射器依次发送M个发射脉冲,其中,所述发射规律为所述距离测量装置所特有的,其中,M为大于1的整数;
    所述脉冲接收器用于在所述工作周期内接收N个反馈脉冲,其中,N为大于1的整数;
    所述时间数字转换器用于获取所述N个反馈脉冲对应的飞行时间信息;
    所述控制器还用于根据所述N个反馈脉冲对应的飞行时间信息得到目标飞行时间,并根据所述目标飞行时间得到目标距离。
  2. 根据权利要求1所述的装置,其特征在于,所述工作周期包括M个发射周期,所述控制器用于在一个工作周期内按预定的发射规律依次发送M个发射脉冲,具体包括:
    所述控制器在所述M个发射周期内按M个发射时间依次发送所述M个发射脉冲,其中,所述M个发射脉冲中的第i个发射脉冲的发射时间是根据所述M个发射脉冲中的第i个发射脉冲的发射周期的起始时刻和M个延时中的第i个延时得到的。
  3. 根据权利要求2所述的装置,其特征在于,在发射所述M个发射脉冲中的第i个发射脉冲时,所述第i个发射脉冲的飞行时间信息为时间数字转换器的计时结束时刻和时间数字转换器的计时起始时刻的差值;
    其中,所述时间数字转换器的计时结束时刻为所述脉冲接收器在第i个发射脉冲的发射周期内接收到反馈脉冲的时刻;
    所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射时间,
    或者,所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻。
  4. 根据权利要求3所述的装置,其特征在于,当所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射时间时,所述N个反馈脉冲的飞行时间为所述N个反馈脉冲对应的飞行时间信息;
    或者,当所述时间数字转换器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻时,所述N个反馈脉冲的飞行时间为经过延时补偿得到的,其中,所述装置还包括延时补偿器,所述延时补偿器与所述控制器连接,所述延时补偿器用于根据所述M个延时对所述N个反馈脉冲的飞行时间信息进行延时补偿,以得到所述N个反馈脉冲的飞行时间。
  5. 根据权利要求4所述的装置,其特征在于,所述目标飞行时间为所述N个反馈脉冲的飞行时间中出现次数最多的飞行时间。
  6. 根据权利要求4或5所述的装置,其特征在于,所述装置还包括存储器,所述存储器与所述控制器连接,所述存储器用于存储所述N个反馈脉冲的飞行时间。
  7. 根据权利要求2至6任一项所述的装置,其特征在于,所述装置还包括延时产生器,所述延时产生器与所述控制器连接,所述M个延时为所述控制器从所述延时产生器获取的。
  8. 根据权利要求2至6任一项所述的装置,其特征在于,所述M个延时为所述控制器产生的。
  9. 根据权利要求2至8任一项所述的装置,其特征在于,所述M个延时为按照真随机数或伪随机数或预设规则进行设置得到的。
  10. 一种距离测量方法,其特征在于,包括:
    电子设备在一个工作周期内按预定的发射规律依次发送M个发射脉冲,其中,所述发射规律为所述电子设备所特有的,其中,M为大于1的整数;
    所述电子设备在所述工作周期内接收N个反馈脉冲,其中,N为大于1的整数;
    所述电子设备获取所述N个反馈脉冲对应的飞行时间信息;
    所述电子设备根据所述N个反馈脉冲对应的飞行时间信息得到目标飞行时间,并根据所述目标飞行时间得到目标距离。
  11. 根据权利要求10所述的方法,其特征在于,所述工作周期包括M个发射周期,所述电子设备在一个工作周期内按预定的发射规律依次发送M个发射脉冲,具体包括:
    所述电子设备在所述M个发射周期内按M个发射时间依次发送所述M个发射脉冲,其中,所述M个发射脉冲中的第i个发射脉冲的发射时间是根据所述M个发射脉冲中的第i个发射脉冲的发射周期的起始时刻和M个延时中的第i个延时得到的。
  12. 根据权利要求11所述的方法,其特征在于,在发射所述M个发射脉冲中的第i个发射脉冲时,所述第i个发射脉冲的飞行时间信息为计时器的计时结束时刻和计时器的计时起始时刻的差值;
    其中,所述计时器的计时结束时刻为所述电子设备在第i个发射脉冲的发射周期内接收到反馈脉冲的时刻;
    所述计时器的计时起始时刻对应所述第i个发射脉冲的发射时间,
    或者,所述计时器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻。
  13. 根据权利要求12所述的方法,其特征在于,当所述计时器的计时起始时刻对应所述第i个发射脉冲的发射时间时,所述N个反馈脉冲的飞行时间为所述N个反馈脉冲对应的飞行时间信息;
    或者,当所述计时器的计时起始时刻对应所述第i个发射脉冲的发射周期的起始时刻时,所述N个反馈脉冲的飞行时间为经过延时补偿得到的。
  14. 根据权利要求13所述的方法,其特征在于,所述目标飞行时间为所述N个反馈脉冲的飞行时间中出现次数最多的飞行时间。
  15. 根据权利要求11至14任一项所述的方法,其特征在于,所述M个延时为按照真随机数或伪随机数或预设规则进行设置得到的。
  16. 一种电子设备,其特征在于,包括处理器、存储装置以及如权利要求1-9任一所述的距离测量装置;所述距离测量装置与所述处理器连接,所述处理器还与所述存储装置连接,其中,所述存储装置用于存储计算机程序,所述计算机程序包括程序指令,所述处理器用于调用所述程序指令,执行各种任务;其中,所述距离测量装置用于将测得的目标距离发送至所述处理器,所述处理器用于对接收到的目标距离进行处理。
PCT/CN2021/086690 2020-04-14 2021-04-12 一种飞行时间tof测量方法及装置 WO2021208866A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21789062.3A EP4130796A4 (en) 2020-04-14 2021-04-12 FLIGHT TIME MEASUREMENT METHOD AND DEVICE
US17/964,691 US20230045083A1 (en) 2020-04-14 2022-10-12 Time of flight measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010291910.5 2020-04-14
CN202010291910.5A CN113534180A (zh) 2020-04-14 2020-04-14 一种飞行时间tof测量方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/964,691 Continuation US20230045083A1 (en) 2020-04-14 2022-10-12 Time of flight measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2021208866A1 true WO2021208866A1 (zh) 2021-10-21

Family

ID=78084173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086690 WO2021208866A1 (zh) 2020-04-14 2021-04-12 一种飞行时间tof测量方法及装置

Country Status (4)

Country Link
US (1) US20230045083A1 (zh)
EP (1) EP4130796A4 (zh)
CN (1) CN113534180A (zh)
WO (1) WO2021208866A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116203986B (zh) * 2023-03-14 2024-02-02 成都阜时科技有限公司 无人机及其降落方法、主控设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873406B1 (en) * 2002-01-11 2005-03-29 Opti-Logic Corporation Tilt-compensated laser rangefinder
CN103913749A (zh) * 2014-03-28 2014-07-09 中国科学院上海技术物理研究所 一种基于激光脉冲飞行时间测量的测距方法
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统
CN108279407A (zh) * 2017-12-26 2018-07-13 苏州镭图光电科技有限公司 一种激光雷达回波处理系统与方法
CN109752729A (zh) * 2019-01-23 2019-05-14 电子科技大学 一种脉冲式激光测距装置及方法
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3589990A4 (en) * 2017-03-01 2021-01-20 Ouster, Inc. ACCURATE PHOTODETECTOR MEASUREMENTS FOR LIDAR
US10551501B1 (en) * 2018-08-09 2020-02-04 Luminar Technologies, Inc. Dual-mode lidar system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873406B1 (en) * 2002-01-11 2005-03-29 Opti-Logic Corporation Tilt-compensated laser rangefinder
CN103913749A (zh) * 2014-03-28 2014-07-09 中国科学院上海技术物理研究所 一种基于激光脉冲飞行时间测量的测距方法
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统
CN108279407A (zh) * 2017-12-26 2018-07-13 苏州镭图光电科技有限公司 一种激光雷达回波处理系统与方法
CN109752729A (zh) * 2019-01-23 2019-05-14 电子科技大学 一种脉冲式激光测距装置及方法
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法

Also Published As

Publication number Publication date
EP4130796A1 (en) 2023-02-08
EP4130796A4 (en) 2023-09-06
US20230045083A1 (en) 2023-02-09
CN113534180A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2017130996A1 (ja) 距離測定装置
WO2021208866A1 (zh) 一种飞行时间tof测量方法及装置
WO2023083117A1 (zh) 一种探测方法、装置和终端
US11561291B2 (en) High pulse repetition frequency lidar
CN108665522B (zh) 一种高帧频短延时动态场景仿真生成系统和方法
WO2020237765A1 (zh) 激光雷达的接收机装置及激光雷达
CN106324589B (zh) 一种移动目标的参数测量方法及电子设备
WO2022110947A1 (zh) 电子装置的控制方法、电子装置及计算机可读存储介质
WO2019157632A1 (zh) 测距系统、自动化设备及测距方法
CN108333591A (zh) 一种测距方法及其系统
CN116794669A (zh) 激光测距方法、装置、控制器及激光测距传感器
CN112711004A (zh) 一种激光测距抗干扰方法、装置、激光测距设备及可读存储介质
CN113296114B (zh) dTOF深度图像的采集方法、装置、电子设备及介质
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
CN115097420A (zh) 基于ad数据的激光测距仪信号校准方法、装置及电子设备
US11480678B2 (en) System and method for calculating a binary cross-correlation
KR20230017642A (ko) 낮은 소비 전력을 가지는 fmcw 라이다 시스템 및 그 동작 방법
US11555896B2 (en) System and method for generating very long PPM waveforms
KR102604467B1 (ko) 펄스 레이저 기반의 거리 측정 장치 및 방법과 이를 구비하는 차량
CN112596042B (zh) 一种消除串扰的激光雷达装置及方法
CN210323362U (zh) 一种微型中远距离数字式激光测距装置
WO2021168847A1 (zh) 一种基于飞行时间ToF的测距芯片、装置及方法
US11822015B2 (en) System and method for generating PPM waveforms
WO2023061296A1 (zh) 一种信号发射、处理方法及相关装置
WO2023066052A1 (zh) 一种探测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021789062

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE