WO2021208549A1 - 充电认证的方法和装置 - Google Patents

充电认证的方法和装置 Download PDF

Info

Publication number
WO2021208549A1
WO2021208549A1 PCT/CN2021/072430 CN2021072430W WO2021208549A1 WO 2021208549 A1 WO2021208549 A1 WO 2021208549A1 CN 2021072430 W CN2021072430 W CN 2021072430W WO 2021208549 A1 WO2021208549 A1 WO 2021208549A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electric vehicle
key
connection
charging pile
Prior art date
Application number
PCT/CN2021/072430
Other languages
English (en)
French (fr)
Inventor
雅思敏·雷哈娜
杨艳江
詹松烈
魏卓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21788276.0A priority Critical patent/EP4119388A4/en
Priority to KR1020227039619A priority patent/KR20220166869A/ko
Priority to JP2022562621A priority patent/JP7457156B2/ja
Publication of WO2021208549A1 publication Critical patent/WO2021208549A1/zh
Priority to US17/965,906 priority patent/US20230030673A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0823Network architectures or network communication protocols for network security for authentication of entities using certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/088Usage controlling of secret information, e.g. techniques for restricting cryptographic keys to pre-authorized uses, different access levels, validity of crypto-period, different key- or password length, or different strong and weak cryptographic algorithms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This application relates to the field of Internet of Vehicles, and more specifically, to a method and device for charging authentication.
  • Electric vehicles are the most important new energy vehicles in the future.
  • the charging system of electric vehicles includes at least: electric vehicles, charging spots (CS), and charging management systems (CMS).
  • the charging management system is a centralized trusted service system that manages charging piles and charging charges. For networked electric vehicles, information security is very important. When electric vehicles use public charging piles for charging, both electric vehicles and charging piles may be attacked, causing the communication between electric vehicles and charging piles to be tampered with or information Give way.
  • This application provides a charging authentication method and device to improve the communication security between the electric vehicle and the charging pile.
  • a charging authentication method is provided.
  • the method is executed by an electric vehicle.
  • the electric vehicle and the charging pile establish a first connection through the controller area network CAN bus.
  • the electric vehicle establishes a first connection with the charging management system through the mobile communication network.
  • the second connection includes: the electric vehicle sends a charging request message to the charging pile through the first connection; the electric vehicle performs identity authentication and keys with the charging pile through the second connection and the third connection between the charging pile and the charging management system Negotiation.
  • the method of the embodiment of the application forwards the message between the electric vehicle and the charging pile connected via the CAN bus by the charging management system, which can solve the problem of insufficient CAN bus bandwidth.
  • the electric vehicle and the charging pile are authenticated and encrypted. Key negotiation can improve the security of information transmission between electric vehicles and charging piles.
  • the electric vehicle performs identity authentication and key negotiation with the charging pile through the second connection and the third connection between the charging pile and the charging management system, including: electric The vehicle sends the identity information of the electric vehicle to the charging pile through the first connection; the electric vehicle receives the identity information of the charging pile, and the identity information of the charging pile is forwarded by the charging management system through the second connection; the electric vehicle sends the first secret to the charging pile Key information, the first key information is forwarded by the charging management system through the third connection, the first key information includes the first key; the electric vehicle receives the second key information sent by the charging pile, and the second key information is Forwarded by the charging management system through the second connection, the second key information includes the second key; the electric vehicle determines the third key according to the first key and the second key, and the third key is the electric vehicle and the charging pile The shared key, the third key is used to encrypt the message between the electric vehicle and the charging pile. .
  • the method of the embodiment of the present application forwards the message between the electric vehicle and the charging pile connected via the CAN bus by the charging management system, which can solve the problem of insufficient CAN bus bandwidth.
  • the electric vehicle and the charging pile can obtain a consensus key, which can be used to protect the subsequent communication between the electric vehicle and the charging pile.
  • the second key information further includes a digital signature of the charging pile.
  • the electric vehicle receives the second key information sent by the charging pile, wherein the digital signature of the charging pile in the second key information is replaced with the digital signature of the charging management system.
  • a method for charging authentication is provided.
  • the method is executed by a charging pile.
  • the charging pile and the electric vehicle establish a first connection through the controller area network CAN bus.
  • the charging pile establishes a first connection with the charging management system through the mobile communication network.
  • the charging pile performs identity authentication and key negotiation with the electric vehicle through the third connection and the second connection between the electric vehicle and the charging management system, including: charging The pile receives the identity information of the electric vehicle sent by the electric vehicle through the first connection; the charging pile sends the identity information of the charging pile, and the identity information of the charging pile is forwarded by the charging management system through the second connection; the charging pile receives the first connection sent by the electric vehicle.
  • the first key information is forwarded by the charging management system through the third connection, the first key information includes the first key; the charging pile sends the second key information to the electric vehicle, the second key information It is forwarded by the charging management system through the second connection, the second key information includes the second key; the charging pile determines the third key according to the first key and the second key, and the third key is the electric vehicle and charging The key shared by the pile, the third key is used to encrypt the message between the electric vehicle and the charging pile.
  • the first key information further includes a digital signature of the electric vehicle.
  • the method further includes: the charging pile verifies the digital signature of the electric vehicle.
  • the charging pile receives the first key information sent by the electric vehicle, wherein the digital signature of the electric vehicle in the first key information is replaced with the digital signature of the charging management system.
  • a method for charging authentication is provided.
  • the method is executed by a charging management system.
  • the charging management system establishes a second connection with the electric vehicle through a mobile communication network, and the charging management system establishes a third connection with the charging pile through the mobile communication network.
  • the charging management system forwards the identity authentication message and key agreement message between the electric vehicle and the charging pile through the second connection and the third connection, including: the charging management system passes The third connection receives the identity information of the charging pile; the charging management system sends the identity information of the charging pile to the electric vehicle through the second connection; the charging management system receives the first key information and the first key information sent by the electric vehicle through the second connection Including the first key; the charging management system sends the first key information to the charging pile through the third connection; the charging management system receives the second key information sent by the charging pile through the third connection, and the second key information includes the second key information.
  • the charging management system sends the second key information to the electric vehicle through the second connection, so that the electric vehicle and the charging pile determine the third key according to the first key and the second key, and the third key is the electric vehicle and charging The key shared by the pile, the third key is used to encrypt the message between the electric vehicle and the charging pile.
  • the method further includes: the charging management system verifies the identity information of the charging pile.
  • the first key information further includes a digital signature of the electric vehicle.
  • the method further includes: the charging management system verifies the digital signature of the electric vehicle; the charging management system Replace the digital signature of the electric vehicle with the digital signature of the charging management system.
  • the second key information further includes the digital signature of the charging pile.
  • the method further includes: the charging management system verifies the digital signature through the charging pile; the charging management system Replace the digital signature of the charging pile with the digital signature of the charging management system.
  • a charging authentication device is provided.
  • the device is installed in an electric vehicle.
  • a first connection is established between the device and the charging pile through the controller area network CAN bus.
  • the device is established with a charging management system through a mobile communication network.
  • the second connection includes: a transceiver module for sending a charging request message to the charging pile through the first connection; a processing module, and the transceiver module are also used for, through the second connection and the third connection between the charging pile and the charging management system , Perform identity authentication and key negotiation with the charging pile.
  • the processing module and the transceiver module are also used to perform identity authentication and confidentiality between the charging pile and the charging management system through the second connection and the third connection between the charging pile and the charging management system.
  • the key negotiation includes: the transceiver module is used to send the identity information of the electric vehicle to the charging pile through the first connection; the transceiver module is also used to receive the identity information of the charging pile, and the identity information of the charging pile is passed through the second The transceiver module is also used to send the first key information to the charging pile, the first key information is forwarded by the charging management system through the third connection, and the first key information includes the first key; the transceiver module It is also used to receive the second key information sent by the charging pile, the second key information is forwarded by the charging management system through the second connection, and the second key information includes the second key; the processing module is used to, according to the first The first key and the second key determine the third key.
  • the third key is the key shared by the electric vehicle and the
  • the second key information further includes the digital signature of the charging pile.
  • the processing module is further used to verify the digital signature passing the charging pile.
  • the transceiver module receives the second key information sent by the charging pile, wherein the digital signature of the charging pile in the second key information is replaced with the digital signature of the charging management system.
  • a charging authentication device is provided.
  • the device is installed in a charging pile.
  • a first connection is established between the device and the electric vehicle through the controller area network CAN bus.
  • the device is established with a charging management system through a mobile communication network.
  • the third connection includes: a transceiver module for receiving the charging request message sent by the electric vehicle through the first connection; the processing module, and the transceiver module are also used for, through the third connection and the second connection between the electric vehicle and the charging management system Connect, perform identity authentication and key negotiation with the electric vehicle.
  • the processing module and the transceiver module are also used to perform identity authentication and encryption with the electric vehicle through the third connection and the second connection between the electric vehicle and the charging management system.
  • the key negotiation includes: the transceiver module is used to receive the identity information of the electric vehicle sent by the electric vehicle through the first connection; the transceiver module is also used to transmit the identity information of the charging pile, and the identity information of the charging pile is passed by the charging management system through the first connection.
  • the second connection is forwarded;
  • the transceiver module is also used to receive the first key information sent by the electric vehicle, the first key information is forwarded by the charging management system through the third connection, and the first key information includes the first key;
  • the transceiver module is also used to send second key information to the electric vehicle, the second key information is forwarded by the charging management system through the second connection, and the second key information includes the second key;
  • the processing module is used to, according to The first key and the second key determine the third key, the third key is a key shared by the electric vehicle and the charging pile, and the third key is used to encrypt messages between the electric vehicle and the charging pile.
  • the first key information further includes a digital signature of the electric vehicle.
  • the processing module is further used to verify the digital signature of the electric vehicle.
  • the transceiver module receives the first key information sent by the electric vehicle, wherein the digital signature of the electric vehicle in the first key information is replaced with the digital signature of the charging management system.
  • a charging authentication device characterized in that the device is installed in a charging management system, the device and the electric vehicle establish a second connection through a mobile communication network, and the device and the charging pile establish a third connection through the mobile communication network.
  • the first connection between the electric vehicle and the charging pile is established through the controller area network CAN bus, including: a transceiver module, used to forward the identity authentication message and key between the electric vehicle and the charging pile through the second connection and the third connection Negotiation message.
  • the transceiver module forwards the identity authentication message and the key agreement message between the electric vehicle and the charging pile through the second connection and the third connection, including: the transceiver module is also used for , Receiving the identity information of the charging pile through the third connection; the transceiver module is also used to send the identity information of the charging pile to the electric vehicle through the second connection; the transceiver module is also used to receive the first secret sent by the electric vehicle through the second connection Key information, the first key information includes the first key; the transceiver module is also used to send the first key information to the charging pile through the third connection; the transceiver module is also used to receive the first key information sent by the charging pile through the third connection Two key information, the second key information includes the second key; the transceiver module is also used to send the second key information to the electric vehicle through the second connection, so that the electric vehicle and the charging pile can according to the first key and the second key.
  • the key determines the third key, the third key is
  • the device before the transceiver module sends the identity information of the charging pile to the electric vehicle through the second connection, the device further includes: a processing module for verifying the identity information of the charging pile.
  • the first key information further includes a digital signature of the electric vehicle.
  • the device further includes: a processing module for verifying the digital signature of the electric vehicle; the processing module is also used for replacing the digital signature of the electric vehicle with charging management The digital signature of the system.
  • the second key information further includes the digital signature of the charging pile.
  • the device before the transceiver module sends the second key information to the electric vehicle through the second connection, the device further includes: a processing module for the charging management system to verify the digital signature passed through the charging pile .
  • the processing module is also used to replace the digital signature of the charging pile with the digital signature of the charging management system.
  • a device for charging authentication includes: a memory, a processor, the memory stores code and data, the memory is coupled to the processor, and the processor runs the code in the memory to make the device execute the first aspect described above. And any one of the implementation manners of the first aspect, any one of the foregoing second aspect and the second aspect, and the method in any one of the third aspect and the third aspect.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, any one of the foregoing first aspect and the first aspect and the foregoing second aspect and the second aspect are executed.
  • the method in any one of the implementation manners and the method in any one of the third aspect and the third aspect.
  • a computer program product including instructions, which when the computer program product runs on a computer, cause the computer to execute any one of the foregoing first aspect and the first aspect, and the foregoing second and first aspects.
  • the method in any one of the implementation manners of the second aspect and the method in any one of the implementation manners of the third aspect and the third aspect.
  • FIG. 1 is a working flow chart of the charging system using WeChat to pay on-site payment according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a charging protocol for billing payment according to an embodiment of the present application
  • FIG. 3 is a system architecture of a charging authentication method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a charging authentication method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another charging authentication method according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a charging authentication method according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of another charging authentication method according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a charging authentication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a charging authentication device according to an application embodiment.
  • FIG. 10 is a schematic block diagram of another charging authentication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another charging authentication device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of still another charging authentication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of still another charging authentication device according to an embodiment of the present application.
  • On-site payment that is, after the charge is over, use cash, credit card, prepaid card, mobile phone application (WeChat Pay or Alipay) to pay for the fee.
  • book-entry payment that is, the amount of consumption is credited to the user's account and settled regularly.
  • malicious electric vehicles can attack the charging management system through charging piles; malicious electric vehicles can transfer charging fees to other accounts through identity forgery; in the case of billing and payment, malicious electric vehicles can deny charging transactions; malicious Charging piles can attack electric vehicles; through malicious charging piles and electric vehicles, the identity of legitimate electric vehicles charged at malicious charging piles can be used to charge malicious electric vehicles at legal charging piles; between electric vehicles and charging piles Communication has been tampered with or information has been leaked.
  • FIG 1 shows the workflow of a charging system that uses WeChat to pay on-site.
  • a controller area network (CAN) bus is used for communication between the electric vehicle and the charging pile.
  • Electric vehicle users need to register with the charging management system in advance, provide information such as phone number, ID number, etc., and then register a WeChat payment account and install the mobile phone charging application APP that belongs to the charging management system.
  • the user’s electric vehicle needs to be charged first use the mobile phone charging APP to scan the QR code on the charging pile.
  • the QR code contains the identity information of the charging pile; the mobile charging APP transmits the QR code and the user’s registration information to the charging management system.
  • the user sends a charging command to the charging management system; the charging management system forwards the charging command to the charging pile; the charging pile starts to charge the electric vehicle. After the charging is over, the charging management system sends a bill to the user, and the user uses WeChat to pay for the charging.
  • Figure 2 shows a billing-based charging protocol. Electric vehicle users purchase a charging contract from an electric mobility operator (EMO), and charge them at the charging pile set up by the charging spot operator (CSO). After charging, the EMO will regularly contact electric vehicle users and CSOs. proceed to checkout.
  • Figure 2 is a secure communication protocol based on the communication between electric vehicles and charging piles through a programmable logic controller (PLC) provided by ISO15118, where the bandwidth of the PLC is greater than that of the CAN.
  • PLC programmable logic controller
  • the electric vehicle obtains a signed charging contract certificate from the EMO in advance, that is, a public-private key pair.
  • the electric vehicle and the charging pile exchange identity information first, and then exchange their signature certificates for authentication.
  • the electric vehicle and the charging pile establish a transport layer security (TLS) session, and then the electric vehicle sends its signed charging contract certificate and certificate chain to the charging pile.
  • TLS transport layer security
  • the charging pile verifies the certificate and sends a random challenge to the electric vehicle.
  • the electric vehicle needs to be signed with the private key of the charging contract.
  • the electric vehicle signs the challenge and sends it back to the charging pile, and charging starts after the charging pile is successfully verified.
  • the charging pile After the charging is over, the charging pile sends the charging degree to the electric vehicle, and the electric vehicle signs and sends it back to the charging pile, and the TLS session ends. Finally, the charging pile sends the signed charging degree to the charging management system and EMO respectively as proof of the bill.
  • the billing payment charging protocol provided by ISO 15118 shown in Figure 2 is suitable for communication between electric vehicles and charging piles through PLC. Due to the limited bandwidth of CAN, the billing payment charging protocol provided by ISO 15118 is not It is suitable for communication between electric vehicles and charging piles via CAN.
  • the embodiment of the present application provides a charging authentication method, so that the CAN bus can be used for communication between the electric vehicle and the charging pile, and the communication security between the electric vehicle and the charging pile is improved.
  • Fig. 3 is a system architecture of a charging authentication method provided by an embodiment of the present application.
  • the electric vehicle and the charging pile communicate through the CAN bus, but the CAN bandwidth is limited.
  • the charging pile and the charging management system use a cellular network or wired communication, and the electric vehicle and the charging management system communicate through a cellular network. These two communication bandwidths are relatively rich.
  • the charging management system, charging piles, and electric vehicles all have corresponding network interfaces, computing units, and secure storage units, and have their own public and private key pairs for digital signatures, and they have obtained information from the corresponding certification authority (CA). )
  • CA certification authority
  • FIG. 4 shows a schematic flowchart of a charging authentication method provided by an embodiment of the present application, including steps 401 and 402.
  • the method in FIG. 4 is executed by an electric vehicle.
  • the electric vehicle and the charging pile establish a first connection through the controller area network CAN bus, and the electric vehicle establishes a second connection with the charging management system through the mobile communication network.
  • the electric vehicle sends a charging request message to the charging pile through the first connection.
  • the electric vehicle when it sends a charging request message to the charging pile through the first connection, it can also send its own identity information.
  • the electric vehicle performs identity authentication and key negotiation with the charging pile through the second connection and the third connection between the charging pile and the charging management system.
  • the electric vehicle sends the first message to the charging management system through the second connection, so that the charging management system forwards the first message to the charging pile through the third connection; or, the electric vehicle receives the first message forwarded by the charging management system through the second connection.
  • the second message may include the identity information of the charging pile and the random challenge for the selection of the charging pile;
  • the first message may include the random challenge for the selection of the electric vehicle and the response to the random challenge of the charging pile; After the challenge, it can also respond to the random challenge of the electric vehicle, so the second message may also include the response of the charging pile to the challenge of the electric vehicle.
  • the embodiment of the present application is based on a challenge response mechanism, which can avoid replay attacks, thereby improving the security of information transmission between the charging pile and the electric vehicle.
  • the charging pile may also send charging parameters to the electric vehicle.
  • the charging parameters include information such as voltage and current that the charging pile can provide. Therefore, the second message may also include charging parameters.
  • the charging pile sends charging parameters to the electric vehicle, so that the electric vehicle can monitor whether the charging parameters match in real time during the charging process, so as to avoid the loss caused by the relay attack and improve the safety of information transmission between the charging pile and the electric vehicle.
  • DHE1 is an element related to the private key of the electric vehicle and can be disclosed, and can be considered as the public key of the electric vehicle.
  • DHE2 is an element related to the private key of the charging post and can be disclosed, and can be considered as the public key of the charging post.
  • the electric vehicle After receiving the DHE2 sent by the charging pile, the electric vehicle obtains the key K according to DHE1 and DHE2. Similarly, the charging pile also obtains the key K according to DHE1 and DHE2. In this way, the electric vehicle and the charging pile can obtain a consensus key, which can be used to protect the subsequent communication between the electric vehicle and the charging pile.
  • the first message and the second message between the electric vehicle and the charging pile are both forwarded through the charging management system.
  • the digital signature is verified, and all received messages are forwarded after the verification is passed.
  • the charging management system can also replace the digital signature of the electric vehicle and/or charging pile with the digital signature of the charging management system itself, and then forward the replaced message .
  • electric vehicles and charging piles need to verify the digital certificate before mutually verifying their digital signatures, the workload of verifying digital certificates is relatively large. Electric vehicles and charging piles usually already know the public key of the charging management system, so there is no need for electric vehicles and charging piles. Verify the digital certificate of the charging management system, which can save work.
  • FIG. 5 shows a schematic flowchart of another charging authentication method provided by an embodiment of the present application, including steps 501 and 502.
  • the method in FIG. 5 is executed by a charging pile, the charging pile and the electric vehicle establish a first connection through the controller area network CAN bus, and the charging pile establishes a third connection with the charging management system through the mobile communication network.
  • the charging pile receives a charging request message sent by the electric vehicle through the first connection.
  • the charging pile performs identity authentication and key negotiation with the electric vehicle through the third connection and the second connection between the electric vehicle and the charging management system.
  • FIG. 5 The method shown in FIG. 5 is similar to the method shown in FIG. 4, and for specific description, please refer to the description of the steps in FIG. 4 above. For brevity, details are not repeated here.
  • the embodiment of the present application also provides a charging authentication method, which is executed by a charging management system.
  • the charging management system establishes a second connection with the electric vehicle through a mobile communication network, and the charging management system establishes a third connection with the charging pile through the mobile communication network.
  • Establishing a first connection between the electric vehicle and the charging pile through the controller area network CAN bus, the method includes:
  • the charging management system forwards the identity authentication message and key agreement message between the electric vehicle and the charging pile through the second connection and the third connection.
  • the charging management system receives the identity information of the charging pile through the third connection; the charging management system sends the identity information of the charging pile to the electric vehicle through the second connection; the charging management system receives the first secret sent by the electric vehicle through the second connection.
  • the first key information includes the first key; the charging management system sends the first key information to the charging pile through the third connection; the charging management system receives the second key information sent by the charging pile through the third connection.
  • the second key information includes the second key; the charging management system sends the second key information to the electric vehicle through the second connection, so that the electric vehicle and the charging pile can determine the third key according to the first key and the second key.
  • the third key is a key shared by the electric vehicle and the charging pile, and the third key is used to encrypt messages between the electric vehicle and the charging pile.
  • the charging management system before the charging management system sends the identity information of the charging pile to the electric vehicle through the second connection, the charging management system verifies the identity information of the charging pile.
  • the first key information further includes a digital signature of the electric vehicle.
  • the charging management system verifies the digital signature of the electric vehicle before sending the first key information to the charging pile through the third connection, and the charging management system replaces the digital signature of the electric vehicle with the digital signature of the charging management system .
  • the second key information further includes a digital signature of the charging pile.
  • the charging management system verifies the digital signature of the charging pile, and the charging management system replaces the digital signature of the charging pile with the digital signature of the charging management system. sign.
  • Fig. 6 shows a schematic diagram of a charging authentication method provided by an embodiment of the present application. The method shown in FIG. 6 includes the following steps.
  • the electric vehicle After the charging cable between the charging pile and the electric vehicle is connected, the electric vehicle starts the identity authentication and key agreement protocol, and sends the charging request ChargingReq and the identity information VID to the charging pile.
  • the charging request can be a fixed string, such as 0000, and the VID is the identity of the electric vehicle, which needs to be included in the certificate Cert EV of the electric vehicle public key.
  • the charging post may send the identity information CSID to the electric vehicle, where the CSID needs to be included in the public key certificate Cert CS of the charging post.
  • the charging pile sends its own identity information CSID, the received electric vehicle identity information VID, challenge N CS and ⁇ DHParas ⁇ to the charging management system to inform the charging management system that the agreement is between the charging pile and the electric vehicle.
  • N CS is a random number with an appropriate length, such as 125 bits, which represents a challenge to electric vehicles.
  • ⁇ DHParas ⁇ is the key exchange algorithm (diffie-hellman, DH) parameter set supported by the charging pile.
  • a set of DH parameters includes the (elliptic curve) prime number group and the generator g of the group.
  • ⁇ DHParas ⁇ includes all charging pile support The DH parameter group, the power supply train selection.
  • the system can define multiple groups of DH parameters, so ⁇ DHParas ⁇ is the serial number of each group of DH parameters.
  • the charging management system forwards CSID, N CS and ⁇ DHParas ⁇ to the electric vehicle to inform the electric vehicle that it needs to answer the challenge of the charging pile.
  • the embodiment of the present application further includes that the charging management system can also check whether each data is qualified before forwarding, and if it is not qualified, it can request the charging pile to resend the data.
  • N EV is a random challenge for electric vehicle selection.
  • DHPara is a set of DH parameters supported by electric vehicles selected from ⁇ DHParas ⁇ .
  • g a is the DH element calculated by the electric vehicle, where g is the generator in DHPara, and a is the random index.
  • Sign EV (CSID, N CS , N EV , DHPara, g a ) is the digital signature calculated by the private key of the electric vehicle, and is the response to the challenge of the charging pile N CS , while Cert EV is the digital certificate or the public key of the electric vehicle.
  • the certificate chain is the digital signature calculated by the private key of the electric vehicle, and is the response to the challenge of the charging pile N CS , while Cert EV is the digital certificate or the public key of the electric vehicle.
  • the charging management system uses Cert EV to verify the digital signature of the electric vehicle, and after the verification is passed, it forwards all the data it receives to the charging pile.
  • the charging pile uses Cert EV to verify the digital signature of the electric vehicle. After the verification is passed, it will reply g b , Charging Para, Sign CS (VID, N EV , Charging Para, g b ), and Cert CS to the charging management system. Specifically, the charging pile first uses Cert EV to verify the digital signature of the electric vehicle, and the identity of the electric vehicle is verified when the verification is passed.
  • g b is the DH element calculated by the charging pile.
  • ChargingPara is the charging parameters that the charging pile can provide, such as voltage and current.
  • Sign CS (VID, N EV , Charging Para, g b ) is a digital signature calculated by the charging pile with its own private key, and is a response to the random challenge N EV of electric vehicles.
  • the charging management system uses Cert CS to verify the digital signature of the charging pile, and after the verification is passed, it forwards all the data it receives to the electric vehicle.
  • KDF key derivation function
  • K is used to protect the communication between subsequent electric vehicles and charging piles.
  • the charging pile can also calculate the key K at this time.
  • the electric vehicle uses the key K to calculate and send MAC (K, VID, CSID, N CS , N EV ) to the charging pile to determine the generated key K.
  • MAC is the message authentication code. If there is no key K, the MAC value will not be forged.
  • the challenge response mechanism is used to avoid replay attacks
  • the key exchange algorithm is used to achieve key negotiation
  • the digital signature is used for identity authentication between the electric vehicle and the charging pile, and there is a sufficient identity authentication mechanism, and generation
  • the random key is used for subsequent communication protection.
  • the information of steps 2, 2', 3, 3', 4, and 4'in the embodiments of this application are all forwarded through the charging management system, realizing electric vehicles Lightweight communication with charging pile, suitable for CAN bus communication.
  • Fig. 7 shows a schematic diagram of another charging authentication method provided by an embodiment of the present application.
  • the charging authentication process shown in Fig. 7 is similar to Fig. 6, except that:
  • step 3'of Figure 6 after receiving the information sent by the electric vehicle, the charging management system verifies the digital signature of the electric vehicle according to the Cert EV of the electric vehicle, and forwards all the data it receives to the charging pile after the verification is passed.
  • the charging pile uses Cert EV to verify the digital signature of the electric vehicle; similarly, in step 4'of Figure 6, the charging management system uses Cert CS to verify the digital signature of the charging pile, and then forwards its received after verification. All of the data is given to the electric vehicle.
  • step 5 of Figure 6 the electric vehicle uses Cert CS to verify the digital signature of the charging pile.
  • step 3'of Figure 5 the charging management system verifies the digital signature of the electric vehicle according to the Cert EV of the electric vehicle.
  • step 4' the charging management system verifies the digital signature of the charging pile according to the Cert CS of the charging pile, and after the verification is passed, the digital signature of the charging pile is removed and replaced with the digital signature of the charging management system. It can be seen that in Figure 6, the role of the charging management system is verification and forwarding, while in Figure 7, the role of the charging management system is verification, re-signing and forwarding.
  • the charging pile verifies the digital signature of the electric vehicle, it first needs to verify the certificate of the electric vehicle.
  • the certificate chain of electric vehicles may be very long, so the charging pile may pay a higher price to verify the certificate of electric vehicles.
  • electric vehicles may also pay a higher price to verify the certification of charging piles.
  • the charging management system also verifies the digital signatures of the electric vehicle and the charging pile before forwarding, and the charging management system has a public-private key pair for signing. Therefore, the charging authentication method of the embodiment of the present application further includes that after the charging management system verifies the digital signatures of the electric vehicle and the charging pile, the digital signature of the electric vehicle and the charging pile is replaced with its own digital signature.
  • the public key of the charging management system is already known, so there is no need to verify the certificate of the charging management system, which can greatly reduce the verification workload.
  • the charging authentication method of the embodiment of the present application further includes that after the charging management system verifies the digital signature of the electric vehicle and the charging pile, only the digital signature of either the electric vehicle or the charging pile is replaced with Own digital signature.
  • FIG. 8 shows a schematic block diagram of a charging authentication device 800 according to an embodiment of the present application.
  • the device 800 is used to execute the method executed by the electric vehicle in the foregoing method embodiment.
  • the device 800 is installed in an electric vehicle, and a first connection is established between the device 800 and the charging pile through the controller area network CAN bus, and the device 800 establishes a second connection with the charging management system through a mobile communication network.
  • the specific form of the apparatus 800 may be a network device or a chip in a network device, which is not limited in the embodiment of the present application.
  • the device 800 includes:
  • the transceiver module 820 is configured to send a charging request message to the charging pile through the first connection.
  • the processing module 810 and the transceiver module 820 are also used to perform identity authentication and key negotiation with the charging pile through the second connection and the third connection between the charging pile and the charging management system.
  • the transceiver module is used to send the identity information of the electric vehicle to the charging pile through the first connection;
  • the transceiver module is also used to receive the identity information of the charging pile, which is forwarded by the charging management system through the second connection; the transceiver module is also used to send the first key information to the charging pile, the first key The information is forwarded by the charging management system through the third connection, the first key information includes the first key; the transceiver module is also used to receive the second key information sent by the charging pile, the second key information is managed by the charging The second key information is forwarded by the system through the second connection, and the second key information includes the second key; the processing module is used to determine the third key according to the first key and the second key, and the third key is the electric vehicle and the charging pile The shared key, the third key is used to encrypt the message between the electric vehicle and the charging pile, and the third key is used to encrypt the message between the electric vehicle and the charging pile.
  • the second key information further includes a digital signature of the charging pile.
  • the processing module is further used to verify the digital signature passed through the charging pile.
  • the transceiver module receives the second key information sent by the charging pile, where the digital signature of the charging pile in the second key information is replaced with the digital signature of the charging management system.
  • the device 800 for charging authentication may correspond to the method in FIG. 4 in the foregoing method embodiment, and the above-mentioned and other management operations and/or functions of each module in the device 800 are respectively intended to achieve
  • the corresponding steps of the method executed by the electric vehicle in the foregoing method embodiment can also achieve the beneficial effects in the foregoing method embodiment.
  • details are not repeated here.
  • each module in the device 800 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the device 800 is presented in the form of functional modules.
  • the "module” here may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the device 800 may adopt the form shown in FIG. 9.
  • the processing module 810 may be implemented by the processor 901 shown in FIG. 9.
  • the transceiver module 820 may be implemented by the transceiver 903 shown in FIG. 9.
  • the processor is implemented by executing a computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 810 may also be implemented by pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in a computer device, such as the memory 902 shown in FIG. 9.
  • the above-mentioned transceiver module 820 may be a transceiver, and the transceiver (indicated by the transceiver module 820 in FIG. 8) constitutes a communication interface in the communication unit.
  • FIG. 9 shows a schematic structural diagram of a charging authentication device 900 according to an embodiment of the present application.
  • the device 900 includes a processor 901, and the processor 901 is configured to control and manage charging authentication actions.
  • the processor 901 may call an interface to perform the foregoing receiving and sending actions, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented by a transceiver.
  • the device 900 further includes a transceiver 903.
  • the device 900 further includes a memory 902, and the memory 902 can store the program code in the foregoing method embodiment, so that the processor 901 can call it.
  • the memory 902 may be coupled with the processor 901 or not.
  • the device 900 includes the processor 901, the memory 902, and the transceiver 903, the processor 901, the memory 902, and the transceiver 903 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the processor 901, the memory 902, and the transceiver 903 can be implemented by chips, and the processor 901, the memory 902, and the transceiver 903 can be implemented on the same chip, or they may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 902 can store program codes, and the processor 901 calls the program codes stored in the memory 902 to implement corresponding functions of the device 900. It should be understood that the device 900 may also be used to perform other steps and/or operations performed by the electric vehicle in the foregoing embodiment, and for the sake of brevity, details are not described herein.
  • FIG. 10 shows a schematic block diagram of a charging authentication device 1000 according to an embodiment of the present application.
  • the device 1000 is used to execute the method executed by the charging pile in the foregoing method embodiment.
  • the device 1000 is installed in a charging pile, the device 1000 establishes a first connection with the electric vehicle through the controller area network CAN bus, and the device 1000 establishes a second connection with the charging management system through a mobile communication network.
  • the specific form of the apparatus 1000 may be a network device or a chip in a network device, which is not limited in the embodiment of the present application.
  • the device 1000 includes:
  • the transceiver module 1020 is configured to receive the charging request message sent by the electric vehicle through the first connection.
  • the processing module 1010 and the transceiver module 1020 are also used to perform identity authentication and key negotiation with the electric vehicle through the third connection and the second connection between the electric vehicle and the charging management system.
  • the transceiving module is used to receive the identity information of the electric vehicle sent by the electric vehicle through the first connection; the transceiving module is also used to transmit the identity information of the charging pile, which is used by the charging management system through the second connection
  • the transceiver module is also used to receive the first key information sent by the electric vehicle, the first key information is forwarded by the charging management system through the third connection, and the first key information includes the first key
  • the transceiver module It is also used to send second key information to the electric vehicle, the second key information is forwarded by the charging management system through the second connection, and the second key information includes the second key
  • the processing module is used to, according to the first The key and the second key determine the third key, the third key is the key shared by the electric vehicle and the charging pile, and the third key is used to encrypt the message between the electric vehicle and the charging pile.
  • the first key information further includes a digital signature of the electric vehicle.
  • the processing module is further used to verify the digital signature of the electric vehicle.
  • the transceiver module receives the first key information sent by the electric vehicle, wherein the digital signature of the electric vehicle in the first key information is replaced with the digital signature of the charging management system.
  • the device 1000 for charging authentication may correspond to the method in FIG. 5 in the foregoing method embodiment, and the above-mentioned and other management operations and/or functions of each module in the device 1000 are respectively intended to realize
  • the corresponding steps of the charging authentication method in the foregoing method embodiment can also achieve the beneficial effects in the foregoing method embodiment. For brevity, details are not described here.
  • each module in the device 1000 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the device 1000 is presented in the form of functional modules.
  • the "module” herein may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the device 1000 may adopt the form shown in FIG. 11.
  • the processing module 1010 may be implemented by the processor 1101 shown in FIG. 11.
  • the transceiver module 1020 can be implemented by the transceiver 1103 shown in FIG. 11.
  • the processor is implemented by executing a computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 1010 can also be implemented by pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in a computer device, such as the memory 1102 shown in FIG. 11.
  • the foregoing transceiver module 1020 may be a transceiver, and the transceiver (indicated by the transceiver module 1020 in FIG. 10) constitutes a communication interface in the communication unit.
  • FIG. 11 shows a schematic structural diagram of a charging authentication device 1100 according to an embodiment of the present application.
  • the device 1100 includes a processor 1101, and the processor 1101 is configured to control and manage charging authentication actions.
  • the processor 1101 may call an interface to perform the foregoing receiving and sending actions, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented by a transceiver.
  • the apparatus 1100 further includes a transceiver 1103.
  • the apparatus 1100 further includes a memory 1102, and the memory 1102 can store the program code in the foregoing method embodiments, so as to be called by the processor 1101.
  • the memory 1102 may be coupled with the processor 1101 or not.
  • the device 1100 includes the processor 1101, the memory 1102, and the transceiver 1103, the processor 1101, the memory 1102, and the transceiver 1103 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the processor 1101, the memory 1102, and the transceiver 1103 may be implemented by chips.
  • the processor 1101, the memory 1102, and the transceiver 1103 may be implemented on the same chip or may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 1102 may store program codes, and the processor 1101 calls the program codes stored in the memory 1102 to implement corresponding functions of the apparatus 1100. It should be understood that the device 1100 may also be used to perform other steps and/or operations performed by the charging pile in the foregoing embodiment, and for the sake of brevity, details are not described herein.
  • FIG. 12 shows a schematic block diagram of a charging authentication device 1200 according to an embodiment of the present application.
  • the device 1200 is used to execute the method executed by the charging management system in the foregoing method embodiment.
  • the device 1200 is installed in the charging management system, the device 1200 and the electric vehicle establish a second connection through the mobile communication network, the device 1200 and the charging pile establish a third connection through the mobile communication network, and the electric vehicle and the charging pile are connected through the controller area network CAN bus Establish the first connection.
  • the specific form of the apparatus 1200 may be a network device or a chip in a network device, which is not limited in the embodiment of the present application.
  • the device 1200 includes:
  • the transceiver module 1220 is configured to forward the identity authentication message and the key agreement message between the electric vehicle and the charging pile through the second connection and the third connection.
  • the transceiver module is used to receive the identity information of the charging pile through the third connection; the transceiver module is also used to transmit the identity information of the charging pile to the electric vehicle through the second connection; the transceiver module is also used to receive the identity information of the charging pile through the second connection.
  • the first key information sent by the electric vehicle, the first key information includes the first key; the transceiver module is also used to send the first key information to the charging pile through the third connection; the transceiver module is also used to, through the third connection
  • the second key information sent by the charging pile is connected to receive the second key information.
  • the second key information includes the second key; the transceiver module is also used to send the second key information to the electric vehicle through the second connection, so that the electric vehicle and the charging pile are based on The first key and the second key determine the third key, the third key is a key shared by the electric vehicle and the charging pile, and the third key is used to encrypt messages between the electric vehicle and the charging pile.
  • the device before the transceiver module sends the identity information of the charging pile to the electric vehicle through the second connection, the device further includes: a processing module 1210 for verifying the identity information of the charging pile.
  • the first key information further includes a digital signature of the electric vehicle.
  • the device before the transceiver module sends the first key information to the charging pile through the third connection, the device further includes: a processing module for verifying the digital signature of the electric vehicle; the processing module is also used for sending the digital signature of the electric vehicle Replaced by the digital signature of the charging management system.
  • the second key information further includes a digital signature of the charging pile.
  • the device before the transceiver module sends the second key information to the electric vehicle through the second connection, the device further includes: a processing module for the charging management system to verify the digital signature passed through the charging pile; the processing module is also used for connecting the charging pile The digital signature of is replaced with the digital signature of the charging management system.
  • the device 1200 for charging authentication may correspond to the method executed by the charging management system in the foregoing method embodiment, and the above-mentioned and other management operations and/or functions of each module in the device 1200 are respectively
  • the corresponding steps of the charging authentication method in the foregoing method embodiment are implemented, and therefore, the beneficial effects in the foregoing method embodiment can also be achieved.
  • details are not described here.
  • each module in the device 1200 can be implemented in the form of software and/or hardware, which is not specifically limited.
  • the apparatus 1200 is presented in the form of functional modules.
  • the "module” herein may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the apparatus 1200 may adopt the form shown in FIG. 13.
  • the processing module 1210 may be implemented by the processor 1301 shown in FIG. 13.
  • the transceiver module 1220 may be implemented by the transceiver 1303 shown in FIG. 13.
  • the processor is implemented by executing a computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 1210 may also be implemented by pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in a computer device, such as the memory 1302 shown in FIG. 13.
  • the above-mentioned transceiver module 1220 may be a transceiver, and the transceiver (indicated by the transceiver module 1220 in FIG. 12) constitutes a communication interface in the communication unit.
  • FIG. 13 shows a schematic structural diagram of a charging authentication device 1300 according to an embodiment of the present application.
  • the device 1300 includes a processor 1301, and the processor 1301 is configured to control and manage charging authentication actions.
  • the processor 1301 may call an interface to perform the above-mentioned transceiving action, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented by a transceiver.
  • the device 1300 further includes a transceiver 1303.
  • the device 1300 further includes a memory 1302, and the memory 1302 can store the program code in the foregoing method embodiment, so that the processor 1301 can call it.
  • the memory 1302 may be coupled with the processor 1301 or not.
  • the device 1300 includes the processor 1301, the memory 1302, and the transceiver 1303, the processor 1301, the memory 1302, and the transceiver 1303 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the processor 1301, the memory 1302, and the transceiver 1303 may be implemented by chips.
  • the processor 1301, the memory 1302, and the transceiver 1303 may be implemented in the same chip or may be implemented in different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 1302 may store program codes, and the processor 1301 calls the program codes stored in the memory 1302 to implement corresponding functions of the apparatus 1300. It should be understood that the device 1300 may also be used to perform other steps and/or operations performed by the charging pile in the foregoing embodiment, and for the sake of brevity, details are not described here.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components can also be system on chip (SoC), central processor unit (CPU), or network processor (network processor).
  • SoC system on chip
  • CPU central processor unit
  • network processor network processor
  • processor, NP can also be a digital signal processing circuit
  • DSP can also be a microcontroller (microcontroller unit, MCU), can also be a programmable controller (programmable logic device, PLD) or other Integrated chip.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory ROM, random access memory RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

一种充电认证的方法和装置,以提高电动车和充电桩之间的通信安全。其中当该方法由电动车执行时,电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,电动车通过移动通信网络与充电管理系统建立第二连接,包括:电动车通过第一连接向充电桩发送充电请求消息;电动车通过第二连接以及充电桩和充电管理系统之间的第三连接,与充电桩之间进行身份认证和密钥协商。

Description

充电认证的方法和装置
本申请要求于2020年04月15日提交中国国家知识产权局、申请号为202010296590.2、申请名称为“充电认证的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车联网领域,并且更具体地,涉及充电认证的方法和装置。
背景技术
电动车(electric vehicle,EV)是未来最重要的一种新能源汽车,电动车的充电系统至少包括:电动车、充电桩(charging spot,CS)和充电管理系统(charging management system,CMS),其中充电管理系统是管理充电桩和充电收费的集中式可信服务系统。对于联网的电动车,信息安全至关重要,在电动车使用公共充电桩进行充电的过程中,电动车和充电桩都可能受到攻击,导致电动车和充电桩之间的通信被篡改或者信息被泄露。
发明内容
本申请提供一种充电认证的方法和装置,以提高电动车和充电桩之间的通信安全。
第一方面,提供了一种充电认证的方法,该方法由电动车执行,电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,电动车通过移动通信网络与充电管理系统建立第二连接,包括:电动车通过第一连接向充电桩发送充电请求消息;电动车通过第二连接以及充电桩和充电管理系统之间的第三连接,与充电桩之间进行身份认证和密钥协商。
由于CAN的带宽极其有限,当电动车和充电桩之间通过CAN总线连接进行通信时,难以通过CAN总线进行大量数据的发送。本申请实施例的方法将通过CAN总线连接的电动车和充电桩之间的消息由充电管理系统进行转发,可以解决CAN总线带宽不够的问题,同时电动车与充电桩之间进行身份认证和密钥协商,可以提高电动车和充电桩之间的信息传输安全。
结合第一方面,在一种可能的实现方式中,电动车通过第二连接以及充电桩和充电管理系统之间的第三连接,与充电桩之间进行身份认证和密钥协商,包括:电动车通过第一连接向充电桩发送电动车的身份信息;电动车接收充电桩的身份信息,充电桩的身份信息是由充电管理系统通过第二连接转发的;电动车向充电桩发送第一密钥信息,第一密钥信息是由充电管理系统通过第三连接转发的,第一密钥信息包括第一密钥;电动车接收充电桩发送的第二密钥信息,第二密钥信息是由充电管理系统通过第二连接转发的,第二密钥信息包括第二密钥;电动车根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。。
由于CAN的带宽极其有限,当电动车和充电桩之间通过CAN总线连接进行通信时, 难以通过CAN总线进行大量数据的发送。本申请实施例的方法将通过CAN总线连接的电动车和充电桩之间的消息由充电管理系统进行转发,可以解决CAN总线带宽不够的问题。电动车和充电桩可以得到协商一致的密钥,该密钥可以用于保护电动车和充电桩之间的后续通信。
结合第一方面,在一种可能的实现方式中,第二密钥信息还包括充电桩的数字签名。
结合第一方面,在一种可能的实现方式中,电动车接收充电桩发送的第二密钥信息,其中第二密钥信息中的充电桩的数字签名被替换为充电管理系统的数字签名。
由于电动车和充电桩互相验证数字签名之前需要先验证数字证书,验证数字证书的工作量较大,而电动车和充电桩通常已经知道充电管理系统的公钥,因此电动车和充电桩无需再验证充电管理系统的数字证书,从而可以节省工作量。
第二方面,提供了一种充电认证的方法,该方法由充电桩执行,充电桩与电动车之间通过控制器局域网CAN总线建立第一连接,充电桩通过移动通信网络与充电管理系统建立第三连接,包括:充电桩通过第一连接接收电动车发送的充电请求消息;充电桩通过第三连接以及电动车和充电管理系统之间的第二连接,与电动车之间进行身份认证和密钥协商。
结合第二方面,在一种可能的实现方式中,充电桩通过第三连接以及电动车和充电管理系统之间的第二连接,与电动车之间进行身份认证和密钥协商,包括:充电桩通过第一连接接收电动车发送的电动车的身份信息;充电桩发送充电桩的身份信息,充电桩的身份信息是由充电管理系统通过第二连接转发的;充电桩接收电动车发送的第一密钥信息,第一密钥信息是由充电管理系统通过第三连接转发的,第一密钥信息包括第一密钥;充电桩向电动车发送第二密钥信息,第二密钥信息是由充电管理系统通过第二连接转发的,第二密钥信息包括第二密钥;充电桩根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。
结合第二方面,在一种可能的实现方式中,第一密钥信息还包括电动车的数字签名。
结合第二方面,在一种可能的实现方式中,充电桩接收电动车发送的第一密钥信息之后,该方法还包括:充电桩验证通过电动车的数字签名。
结合第二方面,在一种可能的实现方式中,充电桩接收电动车发送的第一密钥信息,其中第一密钥信息中的电动车的数字签名被替换为充电管理系统的数字签名。
第三方面,提供了一种充电认证的方法,该方法由充电管理系统执行,充电管理系统与电动车通过移动通信网络建立第二连接,充电管理系统与充电桩通过移动通信网络建立第三连接,电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,包括:充电管理系统通过第二连接和第三连接,转发电动车与充电桩之间的身份认证消息和密钥协商消息。
结合第三方面,在一种可能的实现方式中,充电管理系统通过第二连接和第三连接,转发电动车与充电桩之间的身份认证消息和密钥协商消息,包括:充电管理系统通过第三连接接收充电桩的身份信息;充电管理系统通过第二连接向电动车发送充电桩的身份信息;充电管理系统通过第二连接接收电动车发送的第一密钥信息,第一密钥信息包括第一密钥;充电管理系统通过第三连接向充电桩发送第一密钥信息;充电管理系统通过第三连接接收充电桩发送的第二密钥信息,第二密钥信息包括第二密钥;充电管理系统通过第二 连接向电动车发送第二密钥信息,以便电动车和充电桩根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。
结合第三方面,在一种可能的实现方式中,充电管理系统通过第二连接向电动车发送充电桩的身份信息之前,方法还包括:充电管理系统验证通过充电桩的身份信息。
结合第三方面,在一种可能的实现方式中,第一密钥信息还包括电动车的数字签名。
结合第三方面,在一种可能的实现方式中,充电管理系统通过第三连接向充电桩发送第一密钥信息之前,方法还包括:充电管理系统验证通过电动车的数字签名;充电管理系统将电动车的数字签名替换为充电管理系统的数字签名。
结合第三方面,在一种可能的实现方式中,第二密钥信息还包括充电桩的数字签名。
结合第三方面,在一种可能的实现方式中,充电管理系统通过第二连接向电动车发送第二密钥信息之前,方法还包括:充电管理系统验证通过充电桩的数字签名;充电管理系统将充电桩的数字签名替换为充电管理系统的数字签名。
第四方面,提供了一种充电认证的装置,该装置安装在电动车中,该装置与充电桩之间通过控制器局域网CAN总线建立第一连接,该装置通过移动通信网络与充电管理系统建立第二连接,包括:收发模块,用于通过第一连接向充电桩发送充电请求消息;处理模块,和收发模块还用于,通过第二连接以及充电桩和充电管理系统之间的第三连接,与充电桩之间进行身份认证和密钥协商。
结合第四方面,在一种可能的实现方式中,处理模块和收发模块还用于通过第二连接以及充电桩和充电管理系统之间的第三连接,与充电桩之间进行身份认证和密钥协商,包括:收发模块用于,通过第一连接向充电桩发送电动车的身份信息;收发模块还用于,接收充电桩的身份信息,充电桩的身份信息是由充电管理系统通过第二连接转发的;收发模块还用于,向充电桩发送第一密钥信息,第一密钥信息是由充电管理系统通过第三连接转发的,第一密钥信息包括第一密钥;收发模块还用于,接收充电桩发送的第二密钥信息,第二密钥信息是由充电管理系统通过第二连接转发的,第二密钥信息包括第二密钥;处理模块用于,根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息,第三密钥用于加密电动车和充电桩之间的消息。
结合第四方面,在一种可能的实现方式中,第二密钥信息还包括充电桩的数字签名。
结合第四方面,在一种可能的实现方式中,收发模块接收充电桩发送的第二密钥信息之后,处理模块还用于:验证通过充电桩的数字签名。
结合第四方面,在一种可能的实现方式中,收发模块接收充电桩发送的第二密钥信息,其中第二密钥信息中的充电桩的数字签名被替换为充电管理系统的数字签名。
第五方面,提供了一种充电认证的装置,该装置安装在充电桩中,该装置与电动车之间通过控制器局域网CAN总线建立第一连接,该装置通过移动通信网络与充电管理系统建立第三连接,包括:收发模块,用于通过第一连接接收电动车发送的充电请求消息;处理模块,和收发模块还用于,通过第三连接以及电动车和充电管理系统之间的第二连接,与电动车之间进行身份认证和密钥协商。
结合第五方面,在一种可能的实现方式中,处理模块和收发模块还用于通过第三连接 以及电动车和充电管理系统之间的第二连接,与电动车之间进行身份认证和密钥协商,包括:收发模块用于,通过第一连接接收电动车发送的电动车的身份信息;收发模块还用于,发送充电桩的身份信息,充电桩的身份信息是由充电管理系统通过第二连接转发的;收发模块还用于,接收电动车发送的第一密钥信息,第一密钥信息是由充电管理系统通过第三连接转发的,第一密钥信息包括第一密钥;收发模块还用于,向电动车发送第二密钥信息,第二密钥信息是由充电管理系统通过第二连接转发的,第二密钥信息包括第二密钥;处理模块用于,根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。
结合第五方面,在一种可能的实现方式中,第一密钥信息还包括电动车的数字签名。
结合第五方面,在一种可能的实现方式中,收发模块接收电动车发送的第一密钥信息之后,处理模块还用于:验证通过电动车的数字签名。
结合第五方面,在一种可能的实现方式中,收发模块接收电动车发送的第一密钥信息,其中第一密钥信息中的电动车的数字签名被替换为充电管理系统的数字签名。
第六方面,提供了一种充电认证的装置,其特征在于,装置安装在充电管理系统中,装置与电动车通过移动通信网络建立第二连接,装置与充电桩通过移动通信网络建立第三连接,电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,包括:收发模块,用于通过第二连接和第三连接,转发电动车与充电桩之间的身份认证消息和密钥协商消息。
结合第六方面,在一种可能的实现方式中,收发模块通过第二连接和第三连接,转发电动车与充电桩之间的身份认证消息和密钥协商消息,包括:收发模块还用于,通过第三连接接收充电桩的身份信息;收发模块还用于,通过第二连接向电动车发送充电桩的身份信息;收发模块还用于,通过第二连接接收电动车发送的第一密钥信息,第一密钥信息包括第一密钥;收发模块还用于,通过第三连接向充电桩发送第一密钥信息;收发模块还用于,通过第三连接接收充电桩发送的第二密钥信息,第二密钥信息包括第二密钥;收发模块还用于,通过第二连接向电动车发送第二密钥信息,以便电动车和充电桩根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。
结合第六方面,在一种可能的实现方式中,收发模块通过第二连接向电动车发送充电桩的身份信息之前,装置还包括:处理模块,用于验证通过充电桩的身份信息。
结合第六方面,在一种可能的实现方式中,第一密钥信息还包括电动车的数字签名。
收发模块通过第三连接向充电桩发送第一密钥信息之前,装置还包括:处理模块,用于验证通过电动车的数字签名;处理模块还用于,将电动车的数字签名替换为充电管理系统的数字签名。
结合第六方面,在一种可能的实现方式中,第二密钥信息还包括充电桩的数字签名。
结合第六方面,在一种可能的实现方式中,收发模块通过第二连接向电动车发送第二密钥信息之前,装置还包括:处理模块,用于充电管理系统验证通过充电桩的数字签名。处理模块还用于,将充电桩的数字签名替换为充电管理系统的数字签名。
第七方面,提供了一种充电认证的装置,该装置包括:存储器、处理器,存储器中存储代码和数据,存储器与处理器耦合,处理器运行存储器中的代码使得该装置执行上述第 一方面和第一方面中任一种实现方式以及上述第二方面和第二方面中任一种实现方式以及第三方面和第三方面中任一种实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述第一方面和第一方面中任一种实现方式以及上述第二方面和第二方面中任一种实现方式中的方法以及第三方面和第三方面中任一种实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括:指令,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面和第一方面中任一种实现方式以及上述第二方面和第二方面中任一种实现方式中的方法以及第三方面和第三方面中任一种实现方式中的方法。
附图说明
图1是本申请实施例的利用微信支付现场付费的充电系统的工作流程图;
图2是本申请实施例的一种记账式付费的充电协议示意图;
图3是本申请实施例的一种充电认证的方法的系统架构;
图4是本申请实施例的一种充电认证的方法的示意性流程图;
图5是本申请实施例的另一种充电认证的方法的示意性流程图;
图6是本申请实施例的一种充电认证的方法的示意性框图;
图7是本申请实施例的另一种充电认证的方法的示意性框图;
图8是本申请实施例的一种充电认证装置的示意性框图;
图9是申请实施例的一种充电认证装置的示意性结构图;
图10是本申请实施例的另一种充电认证装置的示意性框图;
图11是本申请实施例的另一种充电认证装置的示意性结构图;
图12是本申请实施例的再一种充电认证装置的示意性框图;
图13是本申请实施例的再一种充电认证装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
电动车在公用充电桩充电通常有两种付费方式。一种是现场付费,即充电结束后,使用现金、信用卡、预付卡、手机应用程序(微信支付或支付宝支付)等支付费用。另一种是记账式付费,即消费的金额计入用户的账户,定期结算。
在电动车使用公共充电桩进行充电的过程中,电动车和充电桩之间的通信可能存在诸多安全问题。例如,恶意的电动车可以通过充电桩攻击充电管理系统;恶意的电动车可以通过身份伪造将充电费用转移到别的账号;在记账付费情况下,恶意的电动车可以抵赖充电交易;恶意的充电桩可以攻击电动车;通过恶意的充电桩和电动车,可以利用在恶意充电桩充电的合法电动车的身份,给恶意的电动车在合法的充电桩充电;电动车和充电桩之间的通信被篡改或者信息被泄露。
图1示出了一种利用微信支付现场付费的充电系统的工作流程。如图1所示,电动车和充电桩之间采用控制器局域网(controller area network,CAN)总线进行通信。电动车用户需要事先向充电管理系统注册,提供诸如电话号码、身份证号码等信息,然后用户注 册一个微信支付账号,并安装隶属于充电管理系统的手机充电应用程序APP。当用户的电动车需要充电时,先使用手机充电APP扫描充电桩上的二维码,二维码包含充电桩的身份信息;手机充电APP传送二维码和用户的注册信息给充电管理系统进行认证;认证成功后,用户传送充电命令给充电管理系统;充电管理系统转发充电命令给充电桩;充电桩开始给电动车充电。充电结束后,充电管理系统发送账单给用户,用户使用微信支付充电费用。
从图1中可以看出,在充电过程中,电动车和充电桩之间无直接认证,只有用户的手机充电APP和充电管理系统之间有信息安全机制。
图2示出了一种记账式付费的充电协议。电动车用户从充电移动化管理公司(electric mobility operator,EMO)购买充电合同,在充电桩运营公司(charging spot operator,CSO)设置的充电桩进行充电,充电后EMO会定期与电动车用户和CSO进行结算。图2为ISO15118提供的基于电动车和充电桩通过可编程逻辑控制器(programmable logic controller,PLC)进行通信的安全通信协议,其中,PLC的带宽大于CAN的带宽。
如图2所示,电动车预先从EMO获取签名的充电合同证书即公私钥对。当需要充电时,电动车和充电桩先交换身份信息,然后交换各自签名的证书进行认证。验证证书后,电动车和充电桩建立一个传输层安全(transport layer security,TLS)会话,接着电动车将其签名的充电合同证书和证书链发送给充电桩。充电桩验证证书并发送一个随机挑战给电动车,需要电动车用充电合同的私钥签名。电动车签名该挑战后发送回充电桩,充电桩验证成功后开始充电。充电结束后,充电桩将充电度数发送给电动车,电动车签名后发送回充电桩,TLS会话结束。最后充电桩分别将签名后的充电度数发送给充电管理系统和EMO,作为账单的凭据。
图2所示的ISO 15118提供的记账式付费的充电协议,适用于电动车和充电桩之间通过PLC进行通信,由于CAN的带宽有限,因此ISO 15118提供的记账式付费的充电协议不适用于电动车和充电桩之间通过CAN进行通信。
因此本申请实施例提供了一种充电认证的方法,使得电动车和充电桩之间可以利用CAN总线进行通信,提高电动车和充电桩之间的通信安全。
图3是本申请实施例提供的一种充电认证的方法的系统架构。如图3所示,电动车和充电桩之间通过CAN总线进行通信,但是CAN带宽有限。充电桩和充电管理系统之间通过蜂窝网络或使用有线通信,电动车和充电管理系统之间通过蜂窝网络通信,这两段通信带宽相对丰富。应理解,充电管理系统、充电桩和电动车都有相应的网络接口、计算单元和安全存储单元,且拥有各自用于数字签名的公私钥对,并且已经从相应的认证机构(certificate authority,CA)取得公钥证书或证书链,其中私钥需安全保管。
图4示出了本申请实施例提供的一种充电认证的方法的示意性流程图,包括步骤401和402。图4的方法由电动车执行,电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,电动车通过移动通信网络与充电管理系统建立第二连接。以下对这些步骤分别进行介绍。
401,电动车通过第一连接向充电桩发送充电请求消息。
可选地,电动车通过第一连接向充电桩发送充电请求消息的同时,还可以发送电动车自己的身份信息。
402,电动车通过第二连接以及充电桩和充电管理系统之间的第三连接,与充电桩之间进行身份认证和密钥协商。
具体地,电动车通过第二连接向充电管理系统发送第一消息,以便充电管理系统将第一消息通过第三连接转发至充电桩;或者,电动车接收充电管理系统通过第二连接转发的第二消息,其中第二消息是充电桩通过第三连接发送至充电管理系统的。
例如,第二消息可以包括充电桩的身份信息和充电桩选取的随机挑战;第一消息可以包括电动车选取的随机挑战和对充电桩的随机挑战的回应;充电桩在收到电动车的随机挑战后,还可以对电动车的随机挑战进行回应,因此第二消息还可以包括充电桩对电动车挑战的回应。本申请实施例基于挑战应答的机制,可以避免重放攻击,从而提高充电桩和电动车之间信息传输的安全。
可选地,充电桩对电动车的随机挑战进行回应的同时,还可以发送充电参数给电动车,该充电参数包括充电桩能提供的电压、电流等信息。因此第二消息中还可以包括充电参数。充电桩发送充电参数给电动车,以便电动车在充电过程中可以实时监测充电参数是否匹配,从而可以避免中继攻击带来的损失,提高充电桩和电动车之间信息传输的安全。
本申请实施例的充电认证方法还包括电动车和充电桩通过密钥交换算法
(diffie-hellman,DH)实现密钥协商。具体地,电动车生成自己的DH元素DHE1,然后发送给充电桩,因此第一消息中还包括DHE1。其中DHE1是与电动车的私钥有关的且可以公开的元素,可以认为是电动车的公钥。类似的,充电桩接收到电动车发送的DHE1后,充电桩生成自己的DH元素DHE2,然后发送给电动车,因此第二消息中还包括DHE2。其中DHE2是与充电桩的私钥有关的且可以公开的元素,可以认为是充电桩的公钥。电动车接收到充电桩发送的DHE2后,根据DHE1和DHE2得到密钥K,同样的,充电桩也根据DHE1和DHE2得到密钥K。由此电动车和充电桩可以得到协商一致的密钥,该密钥可以用于保护电动车和充电桩之间的后续通信。
本申请实施例中,电动车和充电桩之间的第一消息和第二消息均通过充电管理系统转发,充电管理系统在接收到电动车或充电桩发送的消息后对电动车和充电桩的数字签名进行验证,验证通过后转发收到的全部消息。
可选地,充电管理系统在对电动车和充电桩的数字签名验证通过后,还可以将电动车和/或充电桩的数字签名替换为充电管理系统自己的数字签名,然后转发替换后的消息。由于电动车和充电桩互相验证数字签名之前需要先验证数字证书,验证数字证书的工作量较大,而电动车和充电桩通常已经知道充电管理系统的公钥,因此电动车和充电桩无需再验证充电管理系统的数字证书,从而可以节省工作量。
图5示出了本申请实施例提供的另一种充电认证的方法的示意性流程图,包括步骤501和502。图5的方法由充电桩执行,充电桩与电动车之间通过控制器局域网CAN总线建立第一连接,充电桩通过移动通信网络与充电管理系统建立第三连接。
501,充电桩通过第一连接接收电动车发送的充电请求消息。
502,充电桩通过第三连接以及电动车和充电管理系统之间的第二连接,与电动车之间进行身份认证和密钥协商。
图5所示的方法与图4所示的方法类似,具体描述可以参见以上对于图4的步骤的描述,为了简洁,在此不再赘述。
本申请实施例还提供一种充电认证的方法,该方法由充电管理系统执行,充电管理系统与电动车通过移动通信网络建立第二连接,充电管理系统与充电桩通过移动通信网络建立第三连接,电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,该方法包括:
充电管理系统通过第二连接和第三连接,转发电动车与充电桩之间的身份认证消息和密钥协商消息。
可选地,充电管理系统通过第三连接接收充电桩的身份信息;充电管理系统通过第二连接向电动车发送充电桩的身份信息;充电管理系统通过第二连接接收电动车发送的第一密钥信息,第一密钥信息包括第一密钥;充电管理系统通过第三连接向充电桩发送第一密钥信息;充电管理系统通过第三连接接收充电桩发送的第二密钥信息,第二密钥信息包括第二密钥;充电管理系统通过第二连接向电动车发送第二密钥信息,以便电动车和充电桩根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。
可选地,充电管理系统通过二连接向电动车发送充电桩的身份信息之前,充电管理系统验证通过充电桩的身份信息。
可选地,第一密钥信息还包括电动车的数字签名。
可选地,充电管理系统通过第三连接向充电桩发送第一密钥信息之前充电管理系统验证通过电动车的数字签名,并且充电管理系统将电动车的数字签名替换为充电管理系统的数字签名。
可选地,第二密钥信息还包括充电桩的数字签名。
可选地,充电管理系统通过第二连接向电动车发送第二密钥信息之前,充电管理系统验证通过充电桩的数字签名,并且充电管理系统将充电桩的数字签名替换为充电管理系统的数字签名。
该方法的具体事项可以参考对于图4的描述,为了简洁,在此不再赘述。
图6示出了本申请实施例提供的一种充电认证的方法的示意图。图6所示的方法包括如下步骤。
1、当充电桩和电动车之间的充电电缆接好后,电动车启动身份认证和密钥协商协议,发送充电请求ChargingReq和身份信息VID给充电桩。其中,充电请求可以是固定的字串,例如0000,而VID是电动车的身份,需要包含在电动车公钥的证书Cert EV中。
1’、可选地,作为回应,充电桩可以将身份信息CSID发送给电动车,其中CSID需要包含在充电桩的公钥证书Cert CS中。
2、充电桩将自己的身份信息CSID、接收到的电动车身份信息VID、挑战N CS、{DHParas}发送给充电管理系统,告知充电管理系统该协议是发生在充电桩和电动车之间。其中,N CS是适当长度例如125比特的随机数,代表对电动车的挑战。{DHParas}是充电桩支持的密钥交换算法(diffie-hellman,DH)参数集,通常,一组DH参数包括(椭圆曲线)素数群及群的生成元g,{DHParas}包含所有充电桩支持的DH参数组,供电动车选择。系统可以定义多组DH参数,如此{DHParas}是各组DH参数的序号。
2’、充电管理系统转发CSID、N CS、{DHParas}给电动车,告知电动车需要答复充电桩的挑战。本申请实施例还包括,充电管理系统在转发之前还可以检验各数据是否合格, 若不合格,可以请求充电桩重新发送数据。
3、电动车收到充电管理系统转发的数据后,回复N EV、DHPara、g a、Sign EV(CSID,N CS,N EV,DHPara,g a),Cert EV给充电管理系统。其中,N EV是电动车选取的随机挑战。DHPara是电动车从{DHParas}中选取的其支持的一组DH参数。g a是电动车计算的DH元素,其中g是DHPara中的生成元,a是随机指数。Sign EV(CSID,N CS,N EV,DHPara,g a)是电动车用私钥计算的数字签名,是对充电桩的挑战N CS的应答,而Cert EV是电动车公钥的数字证书或证书链。
3’、充电管理系统利用Cert EV验证电动车的数字签名,验证通过后转发其收到的所有数据给充电桩。
4、充电桩利用Cert EV验证电动车的数字签名,验证通过后回复g b、ChargingPara、Sign CS(VID,N EV,ChargingPara,g b),Cert CS给充电管理系统。具体地,充电桩首先利用Cert EV验证电动车的数字签名,验证通过即验证了电动车的身份。g b是充电桩计算的DH元素。ChargingPara是充电桩能提供的充电参数,如电压、电流等。Sign CS(VID,N EV,ChargingPara,g b)是充电桩用自己的私钥计算的数字签名,是对电动车的随机挑战N EV的回应。
4’、充电管理系统利用Cert CS验证充电桩的数字签名,验证通过后转发其收到的所有数据给电动车。
5、电动车利用Cert CS验证充电桩的数字签名,验证通过后再利用a和g b计算得到(g b) a=g ab=DH(g a,g b),再通过g ab推衍密钥K,例如可以利用密钥导出函数(key derivation function,KDF)导出密钥K。其中,K用于保护后续电动车和充电桩之间的通信。类似的,充电桩此时也可以计算密钥K。
6、电动车利用密钥K计算并发送MAC(K,VID,CSID,N CS,N EV)给充电桩,确定生成的密钥K。其中,MAC是消息认证码,如果没有密钥K,MAC值不会被伪造。
本申请实施例中,使用挑战应答机制避免了重放攻击,通过密钥交换算法实现密钥协商,电动车和充电桩之间利用数字签名来进行身份认证,有充分的身份认证机制,并生成随机密钥用于后续通信保护。此外,相对于ISO 15118提供的记账式付费的充电协议,本申请实施例中步骤2、2’、3、3’、4、4’的信息均是通过充电管理系统转发,实现了电动车和充电桩之间的轻量级通信,适用于CAN总线通信。
图7示出了本申请实施例提供的另一种充电认证的方法的示意图。图7所示的充电认证过程与图6类似,不同之处在于:
在图6的步骤3’中,充电管理系统收到电动车发送的信息后,根据电动车的Cert EV验证电动车的数字签名,验证通过后转发其收到的所有数据给充电桩,在图6的步骤4中,充电桩利用Cert EV验证电动车的数字签名;类似的,在图6的步骤4’中,充电管理系统利用Cert CS验证充电桩的数字签名,验证通过后转发其收到的所有数据给电动车,在图6的步骤5中,电动车利用Cert CS验证充电桩的数字签名。而在图5的步骤3’中,充电管理系统根据电动车的Cert EV验证电动车的数字签名,验证通过后将电动车的数字签名去掉,换成充电管理系统的数字签名,在图7的步骤4’中,充电管理系统根据充电桩的Cert CS验证充电桩的数字签名,验证通过后将充电桩的数字签名去掉,换成充电管理系统的数字签名。可知,在图6中,充电管理系统的作用是验证和转发,而在图7中,充电管理系统的作用是验证、重签名和转发。
这是由于,充电桩在验证电动车的数字签名时,首先需要验证电动车的证书。在实际应用中,电动车的证书链可能很长,因此充电桩验证电动车的证书可能付出较高代价。同样的,电动车验证充电桩的证书也可能付出较高代价。而充电管理系统在进行转发前也会验证电动车和充电桩的数字签名,且充电管理系统具有用于签名的公私钥对。因此本申请实施例的充电认证方法还包括,充电管理系统在验证通过电动车和充电桩的数字签名后,将电动车和充电桩的数字签名替换为自己的数字签名,由于电动车和充电桩已经知道充电管理系统的公钥,因此无需再验证充电管理系统的证书,可以极大减少验证的工作量。
可选地,本申请实施例的充电认证方法还包括,充电管理系统在验证通过电动车和充电桩的数字签名后,只将电动车和充电桩两者中的任一者的数字签名替换为自己的数字签名。
图8示出了根据本申请实施例的充电认证装置800的示意性框图。装置800用于执行前文方法实施例中电动车执行的方法。装置800安装在电动车中,装置800与充电桩之间通过控制器局域网CAN总线建立第一连接,装置800通过移动通信网络与充电管理系统建立第二连接。可选地,装置800的具体形态可以是网络设备或网络设备中的芯片,本申请实施例对此不作限定。装置800包括:
收发模块820,用于通过第一连接向充电桩发送充电请求消息。
处理模块810,和收发模块820还用于,通过第二连接以及充电桩和充电管理系统之间的第三连接,与充电桩之间进行身份认证和密钥协商。
具体地,收发模块用于,通过第一连接向充电桩发送电动车的身份信息;
收发模块还用于,接收充电桩的身份信息,充电桩的身份信息是由充电管理系统通过第二连接转发的;收发模块还用于,向充电桩发送第一密钥信息,第一密钥信息是由充电管理系统通过第三连接转发的,第一密钥信息包括第一密钥;收发模块还用于,接收充电桩发送的第二密钥信息,第二密钥信息是由充电管理系统通过第二连接转发的,第二密钥信息包括第二密钥;处理模块用于,根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息,第三密钥用于加密电动车和充电桩之间的消息。
可选地,第二密钥信息还包括充电桩的数字签名。
可选地,收发模块接收充电桩发送的第二密钥信息之后,处理模块还用于:验证通过充电桩的数字签名。
可选地,收发模块接收充电桩发送的第二密钥信息,其中第二密钥信息中的充电桩的数字签名被替换为充电管理系统的数字签名。
应理解,根据本申请实施例的用于充电认证的装置800可对应于前述方法实施例中图4中的方法,并且装置800中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中电动车执行的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置800中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置800是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人 员可以想到装置800可以采用图9所示的形式。处理模块810可以通过图9所示的处理器901实现。收发模块820可以通过图9所示的收发器903来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当装置800是芯片时,那么收发模块810的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,存储器为芯片内的存储单元,比如寄存器、缓存等,存储单元还可以是计算机设备内的位于芯片外部的存储单元,如图9所的存储器902。
在硬件实现上,上述收发模块820可以为收发器,收发器(图8中是以收发模块820示意)在通信单元中构成通信接口。
图9示出了根据本申请实施例的充电认证装置900的示意性结构图。如图9所示,装置900包括:处理器901,处理器901用于对充电认证的动作进行控制管理。
应理解,处理器901可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,装置900还包括收发器903。
可选地,装置900还包括存储器902,存储器902中可以存储上述方法实施例中的程序代码,以便于处理器901调用。存储器902可以跟处理器901耦合在一起,也可以不耦合在一起。
具体地,若装置900包括处理器901、存储器902和收发器903,则处理器901、存储器902和收发器903之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器901、存储器902和收发器903可以通过芯片实现,处理器901、存储器902和收发器903可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器902可以存储程序代码,处理器901调用存储器902存储的程序代码,以实现装置900的相应功能。应理解,装置900还可用于执行前文实施例中电动车执行的其他步骤和/或操作,为了简洁,这里不作赘述。
图10示出了根据本申请实施例的充电认证装置1000的示意性框图。装置1000用于执行前文方法实施例中充电桩执行的方法。装置1000安装在充电桩中,装置1000与电动车之间通过控制器局域网CAN总线建立第一连接,装置1000通过移动通信网络与充电管理系统建立第二连接。可选地,装置1000的具体形态可以是网络设备或网络设备中的芯片,本申请实施例对此不作限定。装置1000包括:
收发模块1020,用于通过第一连接接收电动车发送的充电请求消息。
处理模块1010,和收发模块1020还用于,通过第三连接以及电动车和充电管理系统之间的第二连接,与电动车之间进行身份认证和密钥协商。
具体地,收发模块用于,通过第一连接接收电动车发送的电动车的身份信息;收发模块还用于,发送充电桩的身份信息,充电桩的身份信息是由充电管理系统通过第二连接转发的;收发模块还用于,接收电动车发送的第一密钥信息,第一密钥信息是由充电管理系统通过第三连接转发的,第一密钥信息包括第一密钥;收发模块还用于,向电动车发送第二密钥信息,第二密钥信息是由充电管理系统通过第二连接转发的,第二密钥信息包括第二密钥;处理模块用于,根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。
可选地,第一密钥信息还包括电动车的数字签名。
可选地,收发模块接收电动车发送的第一密钥信息之后,处理模块还用于:验证通过电动车的数字签名。
可选地,收发模块接收电动车发送的第一密钥信息,其中第一密钥信息中的电动车的数字签名被替换为充电管理系统的数字签名。
应理解,根据本申请实施例的用于充电认证的装置1000可对应于前述方法实施例中图5中的方法,并且装置1000中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中充电认证的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置1000中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置1000是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置1000可以采用图11所示的形式。处理模块1010可以通过图11所示的处理器1101实现。收发模块1020可以通过图11所示的收发器1103来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当装置1000是芯片时,那么收发模块1010的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,存储器为芯片内的存储单元,比如寄存器、缓存等,存储单元还可以是计算机设备内的位于芯片外部的存储单元,如图11所的存储器1102。
在硬件实现上,上述收发模块1020可以为收发器,收发器(图10中是以收发模块1020示意)在通信单元中构成通信接口。
图11示出了根据本申请实施例的充电认证装置1100的示意性结构图。如图11所示,装置1100包括:处理器1101,处理器1101用于对充电认证的动作进行控制管理。
应理解,处理器1101可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,装置1100还包括收发器1103。
可选地,装置1100还包括存储器1102,存储器1102中可以存储上述方法实施例中的程序代码,以便于处理器1101调用。存储器1102可以跟处理器1101耦合在一起,也可以不耦合在一起。
具体地,若装置1100包括处理器1101、存储器1102和收发器1103,则处理器1101、存储器1102和收发器1103之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1101、存储器1102和收发器1103可以通过芯片实现,处理器1101、存储器1102和收发器1103可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1102可以存储程序代码,处理器1101调用存储器1102存储的程序代码,以实现装置1100的相应功能。应理解,装置1100还可用于执行前文实施例中充电桩执行的其他步骤和/或操作,为了简洁,这里不作赘述。
图12示出了根据本申请实施例的充电认证装置1200的示意性框图。装置1200用于执行前文方法实施例中充电管理系统执行的方法。装置1200安装在充电管理系统中,装置1200与电动车通过移动通信网络建立第二连接,装置1200与充电桩通过移动通信网络 建立第三连接,电动车与充电桩之间通过控制器局域网CAN总线建立第一连接。可选地,装置1200的具体形态可以是网络设备或网络设备中的芯片,本申请实施例对此不作限定。装置1200包括:
收发模块1220,用于通过第二连接和第三连接,转发电动车与充电桩之间的身份认证消息和密钥协商消息。
具体地,收发模块用于,通过第三连接接收充电桩的身份信息;收发模块还用于,通过第二连接向电动车发送充电桩的身份信息;收发模块还用于,通过第二连接接收电动车发送的第一密钥信息,第一密钥信息包括第一密钥;收发模块还用于,通过第三连接向充电桩发送第一密钥信息;收发模块还用于,通过第三连接接收充电桩发送的第二密钥信息,第二密钥信息包括第二密钥;收发模块还用于,通过第二连接向电动车发送第二密钥信息,以便电动车和充电桩根据第一密钥和第二密钥确定第三密钥,第三密钥为电动车和充电桩共有的密钥,第三密钥用于加密电动车和充电桩之间的消息。
可选地,收发模块通过第二连接向电动车发送充电桩的身份信息之前,装置还包括:处理模块1210,用于验证通过充电桩的身份信息。
可选地,第一密钥信息还包括电动车的数字签名。
可选地,收发模块通过第三连接向充电桩发送第一密钥信息之前,装置还包括:处理模块,用于验证通过电动车的数字签名;处理模块还用于,将电动车的数字签名替换为充电管理系统的数字签名。
可选地,第二密钥信息还包括充电桩的数字签名。
可选地,收发模块通过第二连接向电动车发送第二密钥信息之前,装置还包括:处理模块,用于充电管理系统验证通过充电桩的数字签名;处理模块还用于,将充电桩的数字签名替换为充电管理系统的数字签名。
应理解,根据本申请实施例的用于充电认证的装置1200可对应于前述方法实施例中充电管理系统执行的方法,并且装置1200中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中充电认证的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置1200中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置1200是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置1200可以采用图13所示的形式。处理模块1210可以通过图13所示的处理器1301实现。收发模块1220可以通过图13所示的收发器1303来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当装置1200是芯片时,那么收发模块1210的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,存储器为芯片内的存储单元,比如寄存器、缓存等,存储单元还可以是计算机设备内的位于芯片外部的存储单元,如图13所的存储器1302。
在硬件实现上,上述收发模块1220可以为收发器,收发器(图12中是以收发模块1220示意)在通信单元中构成通信接口。
图13示出了根据本申请实施例的充电认证装置1300的示意性结构图。如图13所示, 装置1300包括:处理器1301,处理器1301用于对充电认证的动作进行控制管理。
应理解,所述处理器1301可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置1300还包括收发器1303。
可选地,所述装置1300还包括存储器1302,存储器1302中可以存储上述方法实施例中的程序代码,以便于处理器1301调用。存储器1302可以跟处理器1301耦合在一起,也可以不耦合在一起。
具体地,若所述装置1300包括处理器1301、存储器1302和收发器1303,则处理器1301、存储器1302和收发器1303之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1301、存储器1302和收发器1303可以通过芯片实现,处理器1301、存储器1302和收发器1303可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1302可以存储程序代码,处理器1301调用存储器1302存储的程序代码,以实现装置1300的相应功能。应理解,所述装置1300还可用于执行前文实施例中充电桩执行的其他步骤和/或操作,为了简洁,这里不作赘述。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。
上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机 存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如,为了区分不同的时间差、定位参考信号等,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种充电认证的方法,其特征在于,所述方法由电动车执行,所述电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,所述电动车通过移动通信网络与充电管理系统建立第二连接,包括:
    所述电动车通过所述第一连接向所述充电桩发送充电请求消息;
    所述电动车通过所述第二连接以及所述充电桩和所述充电管理系统之间的第三连接,与所述充电桩之间进行身份认证和密钥协商。
  2. 根据权利要求1所述的方法,其特征在于,所述电动车通过所述第二连接以及所述充电桩和所述充电管理系统之间的第三连接,与所述充电桩之间进行身份认证和密钥协商,包括:
    所述电动车通过所述第一连接向所述充电桩发送所述电动车的身份信息;
    所述电动车接收所述充电桩的身份信息,所述充电桩的身份信息是由所述充电管理系统通过所述第二连接转发的;
    所述电动车向所述充电桩发送第一密钥信息,所述第一密钥信息是由所述充电管理系统通过所述第三连接转发的,所述第一密钥信息包括第一密钥;
    所述电动车接收所述充电桩发送的第二密钥信息,所述第二密钥信息是由所述充电管理系统通过所述第二连接转发的,所述第二密钥信息包括第二密钥;
    所述电动车根据所述第一密钥和所述第二密钥确定第三密钥,所述第三密钥为所述电动车和所述充电桩共有的密钥,所述第三密钥用于加密所述电动车和所述充电桩之间的消息。
  3. 根据权利要求2所述的方法,其特征在于,所述第二密钥信息还包括所述充电桩的数字签名。
  4. 根据权利要求3所述的方法,其特征在于,所述电动车接收所述充电桩发送的第二密钥信息之后,所述方法还包括:
    所述电动车验证通过所述充电桩的数字签名。
  5. 根据权利要求3所述的方法,其特征在于,所述电动车接收所述充电桩发送的第二密钥信息,其中所述第二密钥信息中的所述充电桩的数字签名被替换为所述充电管理系统的数字签名。
  6. 一种充电认证的方法,其特征在于,所述方法由充电桩执行,所述充电桩与电动车之间通过控制器局域网CAN总线建立第一连接,所述充电桩通过移动通信网络与充电管理系统建立第三连接,包括:
    所述充电桩通过所述第一连接接收所述电动车发送的充电请求消息;
    所述充电桩通过所述第三连接以及所述电动车和所述充电管理系统之间的第二连接,与所述电动车之间进行身份认证和密钥协商。
  7. 根据权利要求6所述的方法,其特征在于,所述充电桩通过所述第三连接以及所述电动车和所述充电管理系统之间的第二连接,与所述电动车之间进行身份认证和密钥协商,包括:
    所述充电桩通过所述第一连接接收所述电动车发送的所述电动车的身份信息;
    所述充电桩发送所述充电桩的身份信息,所述充电桩的身份信息是由所述充电管理系统通过所述第二连接转发的;
    所述充电桩接收所述电动车发送的第一密钥信息,所述第一密钥信息是由所述充电管理系统通过所述第三连接转发的,所述第一密钥信息包括第一密钥;
    所述充电桩向所述电动车发送第二密钥信息,所述第二密钥信息是由所述充电管理系统通过所述第二连接转发的,所述第二密钥信息包括第二密钥;
    所述充电桩根据所述第一密钥和所述第二密钥确定第三密钥,所述第三密钥为所述电动车和所述充电桩共有的密钥,所述第三密钥用于加密所述电动车和所述充电桩之间的消息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一密钥信息还包括所述电动车的数字签名。
  9. 根据权利要求8所述的方法,其特征在于,所述充电桩接收所述电动车发送的第一密钥信息之后,所述方法还包括:
    所述充电桩验证通过所述电动车的数字签名。
  10. 根据权利要求8所述的方法,其特征在于,所述充电桩接收所述电动车发送的第一密钥信息,其中所述第一密钥信息中的所述电动车的数字签名被替换为所述充电管理系统的数字签名。
  11. 一种充电认证的方法,其特征在于,所述方法由充电管理系统执行,所述充电管理系统与电动车通过移动通信网络建立第二连接,所述充电管理系统与充电桩通过移动通信网络建立第三连接,所述电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,包括:
    所述充电管理系统通过所述第二连接和所述第三连接,转发所述电动车与所述充电桩之间的身份认证消息和密钥协商消息。
  12. 根据权利要求11所述的方法,其特征在于,所述充电管理系统通过所述第二连接和所述第三连接,转发所述电动车与所述充电桩之间的身份认证消息和密钥协商消息,包括:
    所述充电管理系统通过所述第三连接接收所述充电桩的身份信息;
    所述充电管理系统通过所述第二连接向所述电动车发送所述充电桩的身份信息;
    所述充电管理系统通过所述第二连接接收所述电动车发送的第一密钥信息,所述第一密钥信息包括第一密钥;
    所述充电管理系统通过所述第三连接向所述充电桩发送所述第一密钥信息;
    所述充电管理系统通过所述第三连接接收所述充电桩发送的第二密钥信息,所述第二密钥信息包括第二密钥;
    所述充电管理系统通过所述第二连接向所述电动车发送所述第二密钥信息,以便所述电动车和所述充电桩根据所述第一密钥和所述第二密钥确定第三密钥,所述第三密钥为所述电动车和所述充电桩共有的密钥,所述第三密钥用于加密所述电动车和所述充电桩之间的消息。
  13. 根据权利要求12所述的方法,其特征在于,所述充电管理系统通过所述第二连 接向所述电动车发送所述充电桩的身份信息之前,所述方法还包括:
    所述充电管理系统验证通过所述充电桩的身份信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一密钥信息还包括所述电动车的数字签名。
  15. 根据权利要求14所述的方法,其特征在于,所述充电管理系统通过所述第三连接向所述充电桩发送所述第一密钥信息之前,所述方法还包括:
    所述充电管理系统验证通过所述电动车的数字签名;
    所述充电管理系统将所述电动车的数字签名替换为所述充电管理系统的数字签名。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述第二密钥信息还包括所述充电桩的数字签名。
  17. 根据权利要求16所述的方法,其特征在于,所述充电管理系统通过所述第二连接向所述电动车发送所述第二密钥信息之前,所述方法还包括:
    所述充电管理系统验证通过所述充电桩的数字签名;
    所述充电管理系统将所述充电桩的数字签名替换为所述充电管理系统的数字签名。
  18. 一种充电认证的装置,其特征在于,所述装置安装在电动车中,所述装置与充电桩之间通过控制器局域网CAN总线建立第一连接,所述装置通过移动通信网络与充电管理系统建立第二连接,包括:
    收发模块,用于通过所述第一连接向所述充电桩发送充电请求消息;
    处理模块,和所述收发模块还用于,通过所述第二连接以及所述充电桩和所述充电管理系统之间的第三连接,与所述充电桩之间进行身份认证和密钥协商。
  19. 根据权利要求18所述的装置,其特征在于,所述处理模块和所述收发模块还用于通过所述第二连接以及所述充电桩和所述充电管理系统之间的第三连接,与所述充电桩之间进行身份认证和密钥协商,包括:
    所述收发模块用于,通过所述第一连接向所述充电桩发送所述电动车的身份信息;
    所述收发模块还用于,接收所述充电桩的身份信息,所述充电桩的身份信息是由所述充电管理系统通过所述第二连接转发的;
    所述收发模块还用于,向所述充电桩发送第一密钥信息,所述第一密钥信息是由所述充电管理系统通过所述第三连接转发的,所述第一密钥信息包括第一密钥;
    所述收发模块还用于,接收所述充电桩发送的第二密钥信息,所述第二密钥信息是由所述充电管理系统通过所述第二连接转发的,所述第二密钥信息包括第二密钥;
    所述处理模块用于,根据所述第一密钥和所述第二密钥确定第三密钥,所述第三密钥为所述电动车和所述充电桩共有的密钥,所述第三密钥用于加密所述电动车和所述充电桩之间的消息,所述第三密钥用于加密所述电动车和所述充电桩之间的消息。
  20. 根据权利要求19所述的装置,其特征在于,所述第二密钥信息还包括所述充电桩的数字签名。
  21. 根据权利要求20所述的装置,其特征在于,所述收发模块接收所述充电桩发送的第二密钥信息之后,所述处理模块还用于:
    验证通过所述充电桩的数字签名。
  22. 根据权利要求20所述的装置,其特征在于,所述收发模块接收所述充电桩发送 的第二密钥信息,其中所述第二密钥信息中的所述充电桩的数字签名被替换为所述充电管理系统的数字签名。
  23. 一种充电认证的装置,其特征在于,所述装置安装在充电桩中,所述装置与电动车之间通过控制器局域网CAN总线建立第一连接,所述装置通过移动通信网络与充电管理系统建立第三连接,包括:
    收发模块,用于通过所述第一连接接收所述电动车发送的充电请求消息;
    处理模块,和所述收发模块还用于,通过所述第三连接以及所述电动车和所述充电管理系统之间的第二连接,与所述电动车之间进行身份认证和密钥协商。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块和所述收发模块还用于通过所述第三连接以及所述电动车和所述充电管理系统之间的第二连接,与所述电动车之间进行身份认证和密钥协商,包括:
    所述收发模块用于,通过所述第一连接接收所述电动车发送的所述电动车的身份信息;
    所述收发模块还用于,发送所述充电桩的身份信息,所述充电桩的身份信息是由所述充电管理系统通过所述第二连接转发的;
    所述收发模块还用于,接收所述电动车发送的第一密钥信息,所述第一密钥信息是由所述充电管理系统通过所述第三连接转发的,所述第一密钥信息包括第一密钥;
    所述收发模块还用于,向所述电动车发送第二密钥信息,所述第二密钥信息是由所述充电管理系统通过所述第二连接转发的,所述第二密钥信息包括第二密钥;
    所述处理模块用于,根据所述第一密钥和所述第二密钥确定第三密钥,所述第三密钥为所述电动车和所述充电桩共有的密钥,所述第三密钥用于加密所述电动车和所述充电桩之间的消息。
  25. 根据权利要求24所述的装置,其特征在于,所述第一密钥信息还包括所述电动车的数字签名。
  26. 根据权利要求25所述的装置,其特征在于,所述收发模块接收所述电动车发送的第一密钥信息之后,所述处理模块还用于:
    验证通过所述电动车的数字签名。
  27. 根据权利要求25所述的装置,其特征在于,所述收发模块接收所述电动车发送的第一密钥信息,其中所述第一密钥信息中的所述电动车的数字签名被替换为所述充电管理系统的数字签名。
  28. 一种充电认证的装置,其特征在于,所述装置安装在充电管理系统中,所述装置与电动车通过移动通信网络建立第二连接,所述装置与充电桩通过移动通信网络建立第三连接,所述电动车与充电桩之间通过控制器局域网CAN总线建立第一连接,包括:
    收发模块,用于通过所述第二连接和所述第三连接,转发所述电动车与所述充电桩之间的身份认证消息和密钥协商消息。
  29. 根据权利要求28所述的装置,其特征在于,所述收发模块通过所述第二连接和所述第三连接,转发所述电动车与所述充电桩之间的身份认证消息和密钥协商消息,包括:
    所述收发模块还用于,通过所述第三连接接收所述充电桩的身份信息;
    所述收发模块还用于,通过所述第二连接向所述电动车发送所述充电桩的身份信息;
    所述收发模块还用于,通过所述第二连接接收所述电动车发送的第一密钥信息,所述第一密钥信息包括第一密钥;
    所述收发模块还用于,通过所述第三连接向所述充电桩发送所述第一密钥信息;
    所述收发模块还用于,通过所述第三连接接收所述充电桩发送的第二密钥信息,所述第二密钥信息包括第二密钥;
    所述收发模块还用于,通过所述第二连接向所述电动车发送所述第二密钥信息,以便所述电动车和所述充电桩根据所述第一密钥和所述第二密钥确定第三密钥,所述第三密钥为所述电动车和所述充电桩共有的密钥,所述第三密钥用于加密所述电动车和所述充电桩之间的消息。
  30. 根据权利要求29所述的装置,其特征在于,所述收发模块通过所述第二连接向所述电动车发送所述充电桩的身份信息之前,所述装置还包括:
    处理模块,用于验证通过所述充电桩的身份信息。
  31. 根据权利要求29或30所述的装置,其特征在于,所述第一密钥信息还包括所述电动车的数字签名。
  32. 根据权利要求31所述的装置,其特征在于,所述收发模块通过所述第三连接向所述充电桩发送所述第一密钥信息之前,所述装置还包括:
    处理模块,用于验证通过所述电动车的数字签名;
    所述处理模块还用于,将所述电动车的数字签名替换为所述充电管理系统的数字签名。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述第二密钥信息还包括所述充电桩的数字签名。
  34. 根据权利要求33所述的装置,其特征在于,所述收发模块通过所述第二连接向所述电动车发送所述第二密钥信息之前,所述装置还包括:
    处理模块,用于充电管理系统验证通过所述充电桩的数字签名;
    所述处理模块还用于,将所述充电桩的数字签名替换为所述充电管理系统的数字签名。
  35. 一种充电认证的装置,其特征在于,所述装置包括:存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述装置执行权利要求1-5中任一项所述的充电认证的方法,或者执行权利要求6-10中任一项所述的充电认证的方法,或者执行权利要求11-17中任一项所述的充电认证的方法。
  36. 一种计算机可读存储介质,其上存储有指令,其特征在于,该指令被执行时执行如权利要求1-5中任一项所述的充电认证的方法,或者执行权利要求6-10中任一项所述的充电认证的方法,或者执行权利要求11-17中任一项所述的充电认证的方法。
  37. 一种计算机程序产品,其特征在于,包括:指令,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1-5中任一项所述的充电认证的方法,或者执行权利要求6-10中任一项所述的充电认证的方法,或者执行权利要求11-17中任一项所述的充电认证的方法。
PCT/CN2021/072430 2020-04-15 2021-01-18 充电认证的方法和装置 WO2021208549A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21788276.0A EP4119388A4 (en) 2020-04-15 2021-01-18 CHARGING AUTHENTICATION METHOD AND DEVICE
KR1020227039619A KR20220166869A (ko) 2020-04-15 2021-01-18 충전 인증 방법 및 디바이스
JP2022562621A JP7457156B2 (ja) 2020-04-15 2021-01-18 充電認証方法及び装置
US17/965,906 US20230030673A1 (en) 2020-04-15 2022-10-14 Charging Authentication Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010296590.2A CN113525152B (zh) 2020-04-15 2020-04-15 充电认证的方法和装置
CN202010296590.2 2020-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/965,906 Continuation US20230030673A1 (en) 2020-04-15 2022-10-14 Charging Authentication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021208549A1 true WO2021208549A1 (zh) 2021-10-21

Family

ID=78083949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072430 WO2021208549A1 (zh) 2020-04-15 2021-01-18 充电认证的方法和装置

Country Status (6)

Country Link
US (1) US20230030673A1 (zh)
EP (1) EP4119388A4 (zh)
JP (1) JP7457156B2 (zh)
KR (1) KR20220166869A (zh)
CN (1) CN113525152B (zh)
WO (1) WO2021208549A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394026A (zh) * 2021-12-21 2022-04-26 中汽创智科技有限公司 一种电动汽车充电方法、系统、装置、充电桩及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595097A (zh) * 2013-11-15 2014-02-19 重庆长安汽车股份有限公司 一种纯电动车远程预约充电的控制方法
CN204068319U (zh) * 2014-07-09 2014-12-31 沈阳时尚实业有限公司 一种二维码电动汽车充电桩
WO2017029424A1 (en) * 2015-08-17 2017-02-23 Nokia Technologies Oy Methods, apparatuses and computer-readable instructions for activating charging of an electric vehicle
WO2018166422A1 (zh) * 2017-03-14 2018-09-20 北京佰才邦技术有限公司 一种充电的方法及管理平台、充电桩、电动车
CN109849728A (zh) * 2019-04-12 2019-06-07 国网电动汽车(山西)服务有限公司 具备防仿冒的电动汽车资费套餐运营方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101116284B (zh) * 2004-12-17 2012-11-14 艾利森电话股份有限公司 无线电通信网络中的防克隆相互鉴权的方法、身份模块、服务器以及系统
CN1731890A (zh) * 2005-08-09 2006-02-08 重庆邮电学院 移动通信增值服务认证和支付的方法
JP5887534B2 (ja) 2012-02-01 2016-03-16 パナソニックIpマネジメント株式会社 充電システム
US8515865B1 (en) 2012-05-26 2013-08-20 At&T Intellectual Property I, L.P. Methods, systems, and products for charging batteries
DE102012014456A1 (de) * 2012-07-21 2014-01-23 Audi Ag Verfahren zum Betreiben einer Aufladestation
JP5886333B2 (ja) 2014-02-04 2016-03-16 ソフトバンク株式会社 電力供給システム
KR101623338B1 (ko) 2013-03-19 2016-05-24 주식회사 케이티 도전 방지를 위한 전기차 충전 방법 및 이를 위한 전기차의 충전 인증 시스템
US11349675B2 (en) * 2013-10-18 2022-05-31 Alcatel-Lucent Usa Inc. Tamper-resistant and scalable mutual authentication for machine-to-machine devices
US9315109B2 (en) 2013-11-02 2016-04-19 At&T Intellectual Property I, L.P. Methods, systems, and products for charging batteries
DE102014212415A1 (de) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Verfahren zum Betreiben einer Ladestation
US9805519B2 (en) 2015-08-12 2017-10-31 Madhusoodhan Ramanujam Performing services on autonomous vehicles
CN108369763A (zh) * 2015-12-03 2018-08-03 英诺吉创新有限公司 用于车辆的充电系统
CN107801187B (zh) * 2016-08-31 2021-02-02 华为技术有限公司 加解密方法、装置及系统
JP6896471B2 (ja) 2017-03-23 2021-06-30 株式会社東芝 サービス利用認証システムおよびサービス利用認証方法
CN107786548B (zh) * 2017-10-13 2021-03-23 北京佰才邦技术有限公司 充电管理方法及装置、服务器和计算机可读存储介质
CN107670040B (zh) 2017-10-25 2020-10-27 深圳先进技术研究院 金纳米笼-二氧化锰复合纳米颗粒及其制备方法和应用
JP6919496B2 (ja) * 2017-10-25 2021-08-18 トヨタ自動車株式会社 通信システム、およびサーバ装置
CN111791741B (zh) * 2018-03-09 2021-07-30 宁德时代新能源科技股份有限公司 充电认证方法、充电桩、监控平台、bms、认证芯片和介质
CN109774526A (zh) 2019-03-28 2019-05-21 国网电动汽车(山西)服务有限公司 一种具备防仿冒的车桩识别鉴权方法
CN110519726B (zh) * 2019-09-20 2022-08-16 湖北工业大学 一种基于多服务器的v2g网络中车辆的轻量级匿名认证系统与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595097A (zh) * 2013-11-15 2014-02-19 重庆长安汽车股份有限公司 一种纯电动车远程预约充电的控制方法
CN204068319U (zh) * 2014-07-09 2014-12-31 沈阳时尚实业有限公司 一种二维码电动汽车充电桩
WO2017029424A1 (en) * 2015-08-17 2017-02-23 Nokia Technologies Oy Methods, apparatuses and computer-readable instructions for activating charging of an electric vehicle
WO2018166422A1 (zh) * 2017-03-14 2018-09-20 北京佰才邦技术有限公司 一种充电的方法及管理平台、充电桩、电动车
CN109849728A (zh) * 2019-04-12 2019-06-07 国网电动汽车(山西)服务有限公司 具备防仿冒的电动汽车资费套餐运营方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119388A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394026A (zh) * 2021-12-21 2022-04-26 中汽创智科技有限公司 一种电动汽车充电方法、系统、装置、充电桩及存储介质

Also Published As

Publication number Publication date
EP4119388A4 (en) 2023-09-27
JP2023522017A (ja) 2023-05-26
CN113525152A (zh) 2021-10-22
EP4119388A1 (en) 2023-01-18
JP7457156B2 (ja) 2024-03-27
CN113525152B (zh) 2023-07-18
US20230030673A1 (en) 2023-02-02
KR20220166869A (ko) 2022-12-19

Similar Documents

Publication Publication Date Title
CN110380852B (zh) 双向认证方法及通信系统
JP5579872B2 (ja) 安全な複数uim認証および鍵交換
CN103491540B (zh) 一种基于身份凭证的无线局域网双向接入认证系统及方法
US8724819B2 (en) Credential provisioning
AU2011305477B2 (en) Shared secret establishment and distribution
US10516654B2 (en) System, apparatus and method for key provisioning delegation
US20080235513A1 (en) Three Party Authentication
CN101409619B (zh) 闪存卡及虚拟专用网密钥交换的实现方法
CN106327184A (zh) 一种基于安全硬件隔离的移动智能终端支付系统及方法
CN109714167A (zh) 适用于移动应用签名的身份认证与密钥协商方法及设备
CN109067539A (zh) 联盟链交易方法、设备及计算机可读存储介质
WO2019001061A1 (zh) 支付验证的方法、系统及移动设备和安全认证设备
CN103020825A (zh) 一种基于软体客户端的安全支付认证方法
CN114362993B (zh) 一种区块链辅助的车联网安全认证方法
CN103905384A (zh) 基于安全数字证书的嵌入式终端间会话握手的实现方法
CN112311543B (zh) Gba的密钥生成方法、终端和naf网元
WO2021208549A1 (zh) 充电认证的方法和装置
CN112419021A (zh) 电子发票验证方法、系统、存储介质、计算机设备、终端
CN103716328A (zh) 一种操作请求处理方法和系统
WO2013152653A1 (zh) 空中接口安全方法及设备
Pejaś et al. Authentication protocol for software and hardware components in distributed electronic signature creation system
Chen et al. Building general-purpose security services on EMV payment cards
CN113676468B (zh) 一种基于消息验证技术的三方增强认证系统设计方法
CN114118996A (zh) 一种基于区块链的电力账单支付的方法
CN103716327B (zh) 一种操作请求处理方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562621

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021788276

Country of ref document: EP

Effective date: 20221014

ENP Entry into the national phase

Ref document number: 20227039619

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE